
The Prior Experience of Entering CS Students

Michela Pedroni
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland
pedronim@inf.ethz.ch

Manuel Oriol
Department of Computer Science

University of York
YO10 5DD, York, U.K.

manuel@cs.york.ac.uk

Bertrand Meyer
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland
meyer@inf.ethz.ch

ABSTRACT
One of the foremost issues for instructors of “Introduction to
Programming” or “CS1” courses is the diversity of students’
backgrounds – on one end of the range, a significant por-
tion of students start their computing degree without prior
programming expertise, while on the other end, many stu-
dents have even worked in a job where programming was a
substantial part. This diversity makes it difficult to adapt
programming instruction to students’ prior experience. The
present article describes students’ programming and com-
puting experience when entering the ETH Computer Sci-
ence bachelor program. It is based on the data of over 900
ETH students participating in the study in the past seven
years and 77 students from University of York answering
the questionnaire in 2008. The article reports on the analy-
sis of changes over the years, presents a comparison between
the data of ETH and York, and describes the pedagogical
implications for courses and textbooks.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Human Factors

Keywords
Student diversity, Programming experience, CS1

1. INTRODUCTION
It is difficult to think of another field than computer sci-

ence in which, at the outset of the studies, instructors face
heterogeneity in prior experience similar to what CS1 teach-
ers handle – from students who have already worked as pro-
grammers in industry all the way to those who have no pro-
gramming experience. The diversity of students’ prior ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

posure to programming constitutes one of the challenges of
teaching introductory programming.

This article presents a study that investigates entering CS
students’ prior experience in programming and computing.
The study relies on a questionnaire that was issued in the
Introduction to Programming course at ETH for the past
seven years in the first weeks of class. The collected data
make it possible to track changes over the years and to ex-
plore the stability of the results. To investigate whether
the results are transferrable to other institutions, entering
students of the University of York filled in the same ques-
tionnaire in 2008. A comparison with ETH data identifies
similarities and differences between the two universities.

The following sections show related work, describe the
setup of the study, and discuss the participant groups. The
article also contains a discussion of the limitations of the
study and presents comparisons of the questionnaire results
for the groups dissected by topic (computer experience, pro-
gramming experience, and programming languages). It pro-
poses several measures to adapt to the student diversity
and summarizes the results. Partial results were already
reported in [13, 14, 15] and presented at the European Com-
puter Science Summit 2009 [16].

2. RELATED WORK
A number of studies have provided information on stu-

dents’ prior computing and programming knowledge. They
yield some important insights for the present work, but in
most cases the issue of prior experience is subsidiary to the
authors’ main interest rather than focus of attention as in
the present work. Sometimes the main issue is gender dif-
ferences, as in [7, 12, 19] for CS majors and [11] for general
students. In other cases the focus is on prediction of success
in introductory programming courses as in [8, 10, 20, 17,
21]. None of these studies provide data to investigate differ-
ences between institutions or the stability of the situation
concerning prior computing and programming knowledge of
CS majors.

3. STUDY SETUP
Since Fall 2003, the first semester Computer Science ma-

jors at ETH attending the mandatory “Introduction to Pro-
gramming” course have filled in a questionnaire in the first
weeks of the semester. In the first iteration, the question-
naire was handed out on paper in class; in the following
years it was available online.

The entering CS majors from University of York form the
second group of participants. For these students, the data

have only been collected in 2008 with a voluntary online
questionnaire.

The data from ETH make it possible to track changes over
the years and help assess the stability of the situation con-
cerning their prior programming and computing expertise.
The data from York provide the means to compare the re-
sults of two institutions in two different countries and thus
constitute a first step towards generalization of the multi-
year results from ETH.

3.1 Questionnaire on student backgrounds
The questionnaire changed only slightly over time to in-

clude items that better capture students’ answers. It con-
tains three main sections: Computer literacy, prior program-
ming experience, and knowledge of specific programming
languages.

The items on computer literacy ask students whether they
have a computer at home and similarly whether they have
a laptop. Other items requested them to rate for how long
they have been using the computer and for what they use
it. Questions on their familiarity with the operating systems
Windows, Linux, Mac OS, and BSD complement the com-
puter literacy section of the questionnaire. These items use
a four-point scale where students state whether they know
the operating system not at all, a little, well or very well.

The questionnaire section on programming experience con-
tains items on programming expertise (general and with
object-oriented programming), where they have learned it,
and the size of their largest projects (general and object-
oriented) and development team.

The last part of the questionnaire collects data on the level
of familiarity with various programming languages using a
four-point scale (knows it not at all, a little, well, and very
well).

3.2 Participants from ETH
At ETH, the students of seven iterations of the course

Introduction to Programming answered the questionnaire.
Out of the approximately 1340 students who took the course
over the years, 914 handed back the questionnaire. The
percentage of female students is between 5% and 16%.

Introduction to Programming is offered in the very first
semester as the only computer science course and a required
step for future computer science graduates on their way to a
bachelor’s and possibly a master’s degree. The participants
from ETH are CS majors (with a few exceptions) with a
median age of 20, either new to the computer science study
or repeating the first year because they have failed the final
examination and retake Introduction to Programming as a
preparation for their second try at the exams.

Most of the students who start a CS program at ETH
come from one of the Swiss high schools where they gradu-
ated with the so-called “Maturity” degree. The Swiss high
school system is decentralized: while a federal regulatory in-
strument sets general standards for the Maturity, each of the
26 cantons implements it with its own school laws. The Ma-
turity system is selective – in 2009 less than 32% of all young
permanent residents of Switzerland got a degree that allows
them to study at a Swiss university [3]. In the computing
area, most high schools offer introductory courses on com-
puter applications (text processing, table calculations, web
surfing), but very few teach computer science, or program-
ming using a higher-level language. Until 2007, the Swiss

high school regulations did not mention computer science;
it recently became an optional supplementary subject, and
implementation started in Fall 2008. It will be interesting
to see how this affects the background of CS students.

3.3 Participants from University of York
All entering CS students at University of York (86 CS

majors and 25 CS and Math majors) received the invitation
to the questionnaire at the beginning of the semester. Out
of the 101 students, 77 answered the call for participation.

As for ETH, most of the CS students at University of York
enter directly from high school with a median age of 18.
This is two years earlier than for ETH where the students
go through a longer secondary education.

The British high school system has similar characteristics
as the Swiss system concerning computing and computer
science at high schools: there are no national regulations
that require the schools to offer programming courses. The
University of York has a selective admission process, but
does not take prior computing and programming experience
into account. Having taken a course on programming is
therefore not a requirement for these students.

The percentage of female students at York is 9% – the
same as for the ETH students in 2008.

4. THREATS TO VALIDITY AND LIMITA-
TIONS

While we believe that many of the conclusions apply to
the teaching of computer science anywhere, a number of
specifics may limit generalization.

• The Swiss practice of selective high schools and the
admission process at University of York, which screen
the incoming students, may bias the sample of sur-
veyed students towards higher competence.

• The absence of computer science in Swiss and British
high schools (as opposed to many other countries) may
bias the results in the reverse direction.

• Another threat to validity of the survey is that it does
not measure students’ prior experience objectively, but
through their own self-appraisal. We do not know if
this introduces a bias, and if so in what direction.

• Finally, the switch from a paper questionnaire, filled
out in class at ETH in 2003, to a voluntary online form
caused a decrease in participation. This introduces the
risk of self-selection, another possible limitation. This
threat to validity also applies to the data coming from
the York participants.

To minimize the risk of having an unrepresentative
sample of students as participants to the questionnaire,
we ask ETH students to rate their prior programming
expertise again in the official end-of-semester course
evaluation questionnaire required and administered by
the university and handed out on paper during class.
The results of that second test essentially coincide with
the initial results, with the exception of a punctual dis-
crepancy (23% of novices from the university question-
naire vs. 13%) for one single year, 2007.

An obvious potential limitation of this work is that it is
mainly based on results from one institution. Although we

cannot authoritatively claim generalization to other univer-
sities and countries, the results from the student group at
University of York are very similar to the results at ETH
and provide a first indication that there are institutions with
similar characteristics.

5. STATISTICAL TESTS
The collected questionnaires come from eight populations

– seven classes of students taking Introduction to Program-
ming at ETH in the years of 2003 until 2009 and one class
from York in 2008. Based on these data, we can identify
differences between the York and the ETH population and
we can analyze changes over the years at ETH.

For the comparison of the ETH students to those of York,
we apply Mann-Whitney-U tests [6, pp. 540–551] to the
data of 2008. The Mann-Whitney test is a non-parametric
test that makes it possible to identify significant differences
between two independent samples (equivalent to the para-
metric t-test for independent samples, but also applicable
to ordinal variables). To report the test results we use the
scheme U = ..., z = ..., r = ..., p < 0.05, if the difference
is significant at the 0.05-level. This means that a differ-
ence between the data of York and of ETH students is a
chance finding with a probability of less than 5%. For non-
significant results the scheme is U = ..., z = ..., ns. U is the
test statistic of the Mann-Whitney test, z gives the z-score,
and r reports the effect size. The effect size is an ”objec-
tive and (usually) standardized measure of the magnitude
of an observed effect” [6, p. 785]. This study uses Pearson’s
correlation coefficient r as measure for the effect size. We
consider r = 0.10 a small effect, r = 0.30 a medium effect,
and r = 0.50 a large effect.

To identify significant changes over the years at ETH,
the analysis uses the Kruskall-Wallis-H test [6, pp. 559–
571]. This non-parametric test makes it possible to identify
significant differences between multiple independent sam-
ples. To report the Kruskall-Wallis test, we give the test
statistic H, its degrees of freedom df and its significance
p, H(df) = ..., p < 0.05, or H(df) = ..., ns, if it is non-
significant.

The Kruskall-Wallis test only determines whether there
are differences between the groups, but it does not indi-
cate which groups are responsible for a significant outcome.
To identify more precisely, which populations exhibit differ-
ences, we run Mann-Whitney-U tests as post hoc procedures
on each pair of data sets. Using seven groups, this results
in 21 Mann-Whitney tests as post hoc tests. We apply the
Bonferroni-Holm correction [18, pp. 337–339] to keep the
Type I error rate (false positives) down at the 5% level. The
post hoc tests use the scheme of the Mann-Whitney tests for
reporting.

6. COMPUTER LITERACY
Without knowing how to use a computer it is extremely

difficult even to consider learning how to program. This is
usually the first concern of a CS1 educator. In our setup,
Figure 1 shows that this concern is no longer justified.

The figure confirms that students entering a computer sci-
ence study are computer-literate. In fact, the majority has
used computers for ten years or more. The data of 2008
from ETH and York do not differ significantly in this re-
spect, U = 4670, z = −0.30, ns. With a median age of

1% 1% 0% 0% 0% 1% 0% 0%
6% 2% 4% 3% 1% 3% 4% 4%

55%
35%

47%
35% 38% 34% 41% 36%

38%
63%

48%
62% 61% 62% 55% 60%

0%

20%

40%

60%

80%

100%

2003 2004 2005 2006 2007 2008 2009 2008

ETH York

st
ud

en
ts

>=10 years
5-9 years
2-4 years
< 2 years

Figure 1: Time during which students have used computers

around 20 for ETH and 18 for York students, the computer
has been part of their life for at least half of it.

The application of the Kruskall-Wallis test indicates that
there exists a significant difference between the seven classes
of Introduction to Programming for the time spent with
computers, H(6) = 36.87, p < 0.05. The post hoc tests
show that this difference is mostly due to the 2003 popula-
tion, which had significantly less exposure to the computer
than did the students of the following years 2004-2009. This
outcome repeats for most of the items of the questionnaire: if
a significant difference exists between all the groups accord-
ing to the Kruskall-Wallis test, then it is due to differences
between the class of 2003 and the later classes. In the rest
of the discussion, we will only report significant differences
if they involve other years than 2003.

Table 1: Access to home computer and laptop

institution & year computer laptop

ETH
2003 87% 56%
2004 98% 83%
2005 98% 81%
2006 96% 92%
2007 97% 75%
2008 95% 85%
2009 97% 87%

York
2008 99% 90%

Consistently with the finding that the class of 2003 has less
experience with the computer, the percentage of ETH stu-
dents who have a desktop computer at home has risen from
87% in 2003 to percentages between 95% and 98% in the fol-
lowing years (see Table 1). Similarly, the percentages of stu-
dents who own a laptop increased from 56% in 2003 to 75%-
92% in the next years. The differences between the years are
significant for desktop computers, H(6) = 30.62, p < 0.05,
and for laptops, H(6) = 84.06, p < 0.05. The class of
2003, compared to the later classes, had significantly less
access to desktop computers at home and a smaller portion
of its students owned a laptop. Additionally, the number
of students who own a laptop is significantly lower for the
class of 2007 than for the students of the previous year,
U = 3501, z = −3.12, r = −0.23, p < 0.05.

For York students, the situation is similar as for the ETH
students in 2008: almost 99% of them have access to a com-
puter at home and 90% own a laptop. These numbers in-
dicate that students have similar access to technology at
both institutions with respect to desktop computer, U =
4566, z = −1.34, ns, and laptops, U = 4496, z = −1.02, ns.

1%

34%

35%

1%

21%
40%

2%
25%

41%

3%
31%

47%
84%

1%
28%

38%
82%

3%

38%
48%

78%

41%
32%

90%

4%
40%

48%

6%
52%

43%

7%
50%

35%

7%
40%

37%
12%

6%
40%

35%
17%

2%
26%

35%
16%

6%
30%

45%
8%

1%
56%

31%
9%

36%
22%

13%

33%
18%

14%

36%
14%

17%

29%
20%

8%
4%

30%
17%

11%
1%

33%
20%

8%
6%

34%
18%

12%
2%

30%
21%

5%
1%

60%
4%
4%

60%
8%

4%

55%
12%

7%

61%
9%
8%

64%
15%
16%

62%
16%

9%

60%
11%
11%

68%
5%

9%

2003

2004

2005

2006

2007

2008

2009

2008

ET
H

Yo

rk

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Windows
Linux

Mac OS

Windows
Linux

Mac OS

Windows
Linux

Mac OS

Windows
Linux

Mac OS
BSD

Windows
Linux

Mac OS
BSD

Windows
Linux

Mac OS
BSD

Windows
Linux

Mac OS
BSD

Windows
Linux

Mac OS
BSD

students familiar with OS

not at all a little well very well

Figure 2: Students’ familiarity with operating systems

Figure 2 shows students’ familiarity with the Windows,
Linux, Mac, and BSD operating systems. Note that the
data for BSD have only been collected in the years 2005-
2009. Windows is the operating system that most students
know (around 97%-100%), followed by the Linux variants
(59%-80%) and Mac OS (45%-68%). The percentage of stu-
dents who state very high familiarity with Windows has been
stable at around 60% over all the surveyed years, and there
are no significant differences between the years for Win-
dows, H(6) = 2.17, ns. The students of 2009 are less ex-
posed to BSD than those of 2008, U = 8371, z = −2.74, r =
−.16, p < 0.05, but the effect size is only small. The stu-
dents at York also have significantly less experience with
the operating system BSD than the 2008 ETH students,
U = 4131, z = −2.16, r = −0.15, p < 0.05.

Concerning the specific tasks that students use the com-
puter for, their main focus is on web-related tasks (see Ta-

ble 2). All of them surf the web and write e-mails. Almost
all of them also use the computer for text processing. About
three quarters of all students play games and program, while
about half of them design web pages, produce graphics, and
do system administration and maintenance. There are no
significant differences between the years 2005-2009 at ETH
except for the item on web design and the item on program-
ming. Significantly less students do web design in 2008 and
2009 than in the years 2005–2007. The students of 2009 also
use their computer less for programming than those of 2007,
U = 5747, z = −3.16, r = −0.20, p < 0.05.

ETH students use the computer significantly more for text
processing, U = 4409, z = −2.07, r = −0.15, p < 0.05, and
less for playing games, U = 4055, z = −2.40, r = −0.17, p <
0.05, than the York students. Note that the data for 2004
are missing.

Table 2: Technology tasks

task
ETH York

2003 2005 2006 2007 2008 2009 2008

surf the web 98% 100% 100% 99% 100% 100% 100%
write e-mails 98% 99% 100% 97% 99% 99% 100%
text processing 88% 96% 98% 94% 96% 99% 88%
play games 75% 74% 70% 73% 69% 73% 84%
graphics 44% 57% 68% 58% 53% 51% 46%
web design 47% 61% 68% 63% 48% 42% 42%
programming 65% 78% 79% 84% 77% 65% 68%
system admin. 43% 48% 53% 43% 50% 38% 39%

Generally, it seems that today’s entering CS majors are
computer-literate and use the computer regularly. The ETH
and York students show only marginal differences with re-
spect to their familiarity with the BSD operating system
and their usage of the computer to play games and do text
processing.

6.1 Interpretation
The significant differences between the class of 2003 and

later classes indicate that the students of 2003 have been
less exposed to computing and programming than later ones.
This could be related to the increased spread of technology,
which has reached the population of all ages. Today, most
people use computers daily to read e-mails, surf the web
and build up communities. Moreover, people attracted to
computer science programs usually exhibit a strong interest
in new media and technology.

Another explanation for the differences between 2003 and
later years is a change in the Swiss high school regulations
that shortened the duration of secondary education in cer-
tain cantons of Switzerland in the years of 2000-2003. This
may have had an effect on the student body of 2003.

6.2 Teaching implications
The surveys do not indicate how deeply students under-

stand the concepts behind computers and computer archi-
tecture. But the immediate lesson for CS1 instructors is that
they do not need to fret about“computer literacy”. Students
are familiar with computers, and instructors can go straight
into programming if this is the goal of the course.

7. PROGRAMMING EXPERIENCE
Table 3 shows the programming experience of students,

broken down into the categories “no programming” (never
programmed before), “no OO”(programmed, but never with
an object-oriented language), “small project” (worked on
object-oriented projects consisting of less than a hundred
classes) and “large project” (worked on object-oriented pro-
jects with hundreds of classes – a sizable experience for sup-
posed novices).

Table 3: Previous programming experience of students
(*: ≥ 100 classes)

institution,
year,
gender

student
numbers

no pro-
gram-
ming

some experience

no
OO

some OO

small
project

large
project*

ETH
2003

total 222 22% 39% 34% 5%
male 203 (91%) 19% 39% 37% 5%
female 19 (9%) 53% 42% 5% 0%

2004
total 127 14% 33% 43% 10%
male 117 (92%) 11% 34% 44% 11%
female 10 (8%) 50% 20% 30% 0%

2005
total 95 18% 25% 42% 15%
male 81 (85%) 12% 26% 46% 16%
female 14 (15%) 50% 22% 21% 7%

2006
total 97 19% 27% 43% 11%
male 84 (87%) 18% 25% 44% 13%
female 13 (13%) 23% 39% 38% 0%

2007
total 88 13% 20% 59% 8%
male 84 (95%) 13% 19% 60% 8%
female 4 (5%) 0% 50% 50% 0%

2008
total 124 18% 22% 43% 17%
male 113 (91%) 16% 22% 45% 17%
female 11 (9%) 46% 18% 18% 18%

2009
total 161 18% 29% 48% 5%
male 136 (84%) 15% 27% 52% 6%
female 25 (16%) 32% 36% 32% 0%

York
2008

total 77 21% 27% 47% 5%
male 70 (91%) 19% 30% 46% 6%
female 7 (9%) 43% 0% 57% 0%

The number of female students participating in the ques-
tionnaire varied between 5% and 16%, reflecting the actual
ratio of female first semester CS students. The table indi-
cates that the figures do not differ markedly between the
genders, except for the higher number of total beginners
among females; however, this measure may not have any
profound significance given the small size of the sample.

Figure 3 visualizes the results of Table 3 for students of
both genders. It indicates that an increasing subset of the

students starts with experience in object-oriented program-
ming, while the percentage of those with no object-oriented
programming experience has dropped. These changes over
the years are only significant when taking into account the
students of 2003, H(6) = 24.56, p < 0.05. The differences
between the students of 2004 to 2009 are non-significant,
H(5) = 5.17, ns.

22% 14% 18% 19% 13% 18% 18% 21%

39%
33% 25% 27%

20% 22% 29% 27%

34%
43% 42% 43% 59% 43%

48% 47%

5% 10% 15% 11% 8% 17% 5% 5%

0%

20%

40%

60%

80%

100%

03 04 05 06 07 08 09 08

ETH York

st
ud

en
ts

large OO programs
small OO programs
no OO programming
no programming

Figure 3: Programming experience

There is no identifiable change of trend over the years in
the number of novices, which hovers around one-sixth to
one-fifth of each class.

The distribution of prior programming expertise of the
York students is consistent with the ETH data. There seems
to exist a general scheme of around 20% novices, between 20-
30% of non-OOP programmers, and around 40%-50% with
experience on small object-oriented programs. For York,
the number of students who have programmed large object-
oriented applications is smaller than for ETH, but the Mann-
Whitney test shows no significant differences for the two
groups, U = 4159, z = −1.63, ns.

22% 14% 18% 19% 13% 18% 18% 21%

46% 64% 62% 66%
56%

57% 48% 45%

28% 17% 16% 5%
17% 12%

19% 26%

0% 3% 0% 4% 8% 6% 8% 1%
4% 2% 4% 6% 7% 7% 7% 7%

0%

20%

40%

60%

80%

100%

03 04 05 06 07 08 09 08

ETH York

st
ud

en
ts

other
at university
at high school
in self-study
novices

Figure 4: Where students learned to program

Another item on the questionnaires asked students where
they have learned to program (see Figure 4). On average
over the seven years, 55% of the ETH students stated that
they learned programming by themselves; 18% are novices;
only 18% took a programming course at high school and the
remaining 9% learned it at university, at work or on another
occasion (such as courses at an evening school).

Similarly to the ETH students, most students at York
learned programming in self-study (45%); 26% took a pro-
gramming course at high school, and 8% learned it at an-

other occasion. Compared to the ETH students, 8% more
students have studied programming at high school, but, as
for the ETH population, the most frequent case is having it
learned in self-study. Statistical tests did not find a signifi-
cant difference between the two populations, U = 2755, z =
−1.51, ns.

7.1 Interpretation
A possible reason for the lower exposure to programming

of the class surveyed in 2003 could be that this was still just
“after the Internet bubble burst”, after which more students
have been attracted to computer science by genuine interest.
Observations that would seem to support such a hypothesis
include: the highest percentage of novice programmers (22%
including both genders) for the year of 2003; the above-
average numbers of CS enrollments in that year (although
an alternative explanation for that particular phenomenon
could be a change that occurred in the Swiss high school
system); and our own informal observation that students in
subsequent years seemed more genuinely interested in CS.

The growth in object-oriented language experience is prob-
ably due to the increasing spread of object-oriented lan-
guages such as Java (see also Section 8).

Many students have prior programming experience when
entering university. Interestingly, most of them learned it in
self-study; only one fourth to one sixth of them have taken a
programming course at high school. Although partly influ-
enced by the absence of mandatory programming courses at
high schools, this result shows how broadly part of computer
science has reached some of the world at large, particularly
the younger segments of the population.

7.2 Teaching implications
The evidence on prior object-oriented language use in-

dicates that today object-orientation is a given and needs
no particular apology or justification. Tempering this les-
son coming from the questionnaire data is a more subjective
observation from our informal interactions with students:
many do not fully grasp the more sophisticated properties
of object technology, such as polymorphism, dynamic bind-
ing and other architectural techniques. It seems more useful
to explain these concepts in depth than to take pains to
justify the use of objects.

Another important conclusion arises from studying the
other end of the data: the persistence of the “no prior pro-
gramming” 15%-20% minority. It raises significant chal-
lenges for teachers, especially when assessed against the only
slightly lower percentage of those who have programmed
fairly large object-oriented systems. The variety of prior pro-
gramming expertise is, in our experience, one of the largest
obstacles facing introductory programming teaching today.

8. PROGRAMMING LANGUAGES
As part of the questionnaire, students rated 15 program-

ming languages (ranging from Java, PHP and C++ to For-
tran, Eiffel and Python; for a full list see Figure 8) whether
they know it not at all, a little, well or very well. The an-
swers to these questions (Table 4) reveal that a typical stu-
dent of any of the two institutions knows – in his or her
self-evaluation – two to three of the languages a little and
at least one of the languages well.

Table 4: Average (and median) number of languages known

institution & year a little well very well

ETH
2003 1.8 (2) 1.0 (1) 0.2 (0)
2004 3.2 (2) 1.1 (1) 0.6 (0)
2005 3.2 (3) 1.4 (1) 0.6 (0)
2006 2.8 (3) 1.2 (1) 0.7 (0)
2007 2.6 (2) 1.3 (1) 0.6 (0)
2008 2.4 (2) 1.2 (1) 0.5 (0)
2009 2.9 (3) 1.1 (1) 0.5 (0)

York
2008 2.0 (2) 1.0 (1) 0.5 (0)

As to the number of programming languages students
know well or very well, Figure 5 confirms that almost half of
the current students have sound proficiency in two or more
languages and that at least one third of all students have
not really mastered any of the languages (the numbers in-
clude the students who stated being novice programmers).
These figures did not change significantly for ETH students
in 2004 to 2009, H(5) = 4.9, ns. There are more students
who claim to know only one language well or very well at
York than at ETH; at ETH, the percentage of students who
claim to know three or more languages well or very well is
higher than at York. These differences, however, are not
statistically significant, U = .92, z = −.10, ns.

46%
33% 29% 38% 33% 39% 40% 33%

23%

18% 19%
15%

10%
16% 18% 25%

13%

18% 16% 15%
23%

18% 18% 21%

9%
13% 18% 11% 16% 11% 8% 9%

5%
11% 7% 6% 10% 5% 8% 7%

2% 7% 10% 13% 8% 12% 8% 6%

0%

20%

40%

60%

80%

100%

03 04 05 06 07 08 09 08

ETH York

st
ud

en
ts

more than 4
4 languages
3 languages
2 languages
1 language
0 languages

Figure 5: Number of languages known well or very well

Questionnaire items on the level of familiarity of the 15
programming languages help answer additional questions:
(1) What are the most widely known languages among them?
(2) Are there languages with growing or dropping popularity
with this particular population?

Figure 8 shows the 15 programming languages and the
percentages of students with the four levels of familiarity
(knowing the language in question not at all, a little, well
and very well). Some of the languages, marked * and **,
were only included in the survey after the first iterations.
The analysis takes into consideration the answers from all
students (including programming novices).

Taken over all years for ETH students, Java and the web
scripting language PHP are the most popular with high
numbers of students who state they know it very well and
only few students who do not know it at all. Other popular
languages are C/C++, JavaScript, and Basic/VisualBasic.

The top three languages (i.e. the languages where the

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
04

20

05

20
06

20

07

20
08

20

09

20
08

ETH York ETH York ETH York ETH York ETH York

Basic C^ C++ C# Delphi*

0%

20%

40%

60%

80%

100%

st
ud

en
ts

no answer not at all a little well very well

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

ETH York ETH York ETH York ETH York ETH York

Eiffel^ Fortran Java^ JavaScript Oberon

0%

20%

40%

60%

80%

100%

st
ud

en
ts

20
03

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
04

20

05

20
06

20

07

20
08

20

09

20
08

20

04

20
05

20

06

20
07

20

08

20
09

20

08

20
06

20

07

20
08

20

09

20
08

20

04

20
05

20

06

20
07

20

08

20
09

20

08

ETH York ETH York ETH York ETH York ETH York

Pascal Perl* PHP* Python** VisualBasic*^

0%

20%

40%

60%

80%

100%

st
ud

en
ts

* marks missing data of 2003
** marks missing data of 2003-2005
ˆ marks significant differences between York and ETH students

Figure 6: Familiarity of students with programming languages

least ETH students state that they do not know it at all),
separated by year, include most of the languages rated as
most known totaled over the years (see Table 5 and Fig-
ure 8). C++ is an evergreen – it appears almost every year
in the list of the three top languages. Since 2005, Java,
JavaScript and PHP also strengthened their position and for
the last three years around 50% of all students have worked
with PHP, JavaScript, and/or Java before starting to study
CS.

VisualBasic is the top language at York followed by the
scripting languages JavaScript and PHP (see Table 5). In-
deed, while ETH and York students do not exhibit signifi-
cant differences in their general programming backgrounds,

they differ significantly in some of the specific programming
languages that they worked with before entering university.

The programming languages in Figure 8 marked with ˆ
differ significantly for the two populations. Examples of such
languages include VisualBasic, U = 3590, z = −2.84, r =
−0.20, p < 0.05, and Java, U = 3610, z = −2.61, r = −0.19,
p < 0.05.

The data of ETH collected over multiple years make it
possible to analyze changes in the popularity of program-
ming languages. The most popular programming languages
such as PHP and Java belong to the list of programming
languages with increasing popularity amongst the students.
Figure 7 shows the most popular programming languages

Table 5: Most popular programming languages

institution
& year

1st place 2nd place 3rd place

ETH
2003 Basic Pascal C++
2004 Eiffel C++ JavaScript
2005 C++ Java PHP
2006 PHP JavaScript Java
2007 PHP Java JavaScript/C++
2008 PHP C++ C
2009 Java C++ PHP

York
2008 VisualBasic JavaScript PHP

that have a rising tendency in the percentage of ETH stu-
dents who state to know it a little, well, or very well, i.e.
the percentage of ETH students who do not know the pro-
gramming language at all has decreased since 2003. The
programming languages Basic, Pascal, and VisualBasic ex-
hibit a decreasing trend in ETH students’ level of famil-
iarity. However, most of these results are not significant.
The Kruskall-Wallis test applied to the ETH populations
of 2003-2009 exhibits only three languages with significant
differences involving other years than 2003. In 2008 and
2009, significantly less students knew Basic than in some of
the years between 2004 and 2006, H(6) = 38.83, p < 0.05.
The students of 2004 and 2005 generally state to have sig-
nificantly more experience with Eiffel than the students of
most other years, H(6) = 215.98, p < 0.05. Additionally, in
2009 less students had experience with Perl than in 2005,
U = 5902, z = −4.137, r = −0.26, p < 0.05.

0%

20%

40%

60%

2003 2004 2005 2006 2007 2008 2009

St
ud

en
ts

 fa
m

ili
ar

 w
ith

La

ng
ua

ge

PHP Java
JavaScript C
C++ C#

0%

20%

40%

60%

2003 2004 2005 2006 2007 2008 2009

Basic Pascal
VisualBasic

Figure 7: Evolution of popularity of programming languages

8.1 Interpretation
The popularity of languages such as JavaScript and PHP

most likely reflects that many students’ prior experience has
been with web applications. This fits into the observation
that today’s students are very web-oriented using the com-
puter for writing e-mails and surfing on the web.

Student backgrounds of the two populations at York and
ETH only differ with respect to the specific programming
languages that are best known (such as Java and VisualBa-
sic). This could indicate that the popularity of programming
languages is location-specific and possibly due to the varying
spread of the programming languages at the two countries’
high schools. But at this point, the collected data are too
sparse to verify this conjecture.

Note that our results are limited to the 15 languages item-
ized in the questionnaire: a student may know additional
languages.

8.2 Teaching implications
These results show that, when teaching introductory pro-

gramming, we need to take into account that the number
of students who need to learn programming almost from
scratch is higher than the 10% to 20% who have never pro-
grammed before.

In particular, it may well be that students whose pro-
gramming has mostly been with Web applications in PHP
or JavaScript are adept at writing user interface operations,
but only have superficial experience with loops, recursion,
data structures and other standard computer science tech-
niques. While the questionnaire does not test this conjec-
ture, it is definitely supported by informal observations. If
it is correct, we should not consider that proficiency at GUI
and Web programming implies proficiency at concepts and
skills of professional software development, meaning that we
need to take extra care with the teaching of fundamental
topics.

9. EFFECT ON TEACHING
The analysis of the questionnaire on student backgrounds

illustrates the full spectrum of student backgrounds that
CS1 instructors face. This section presents measures pro-
posed to adapt to such a student body.

Adapting the course material. As a first and simple op-
tion, if we want students with prior knowledge to understand
courses better, we must connect to that knowledge. This can
help adapt the course to students’ needs; when introducing
a concept, for example, instructors can provide references to
its counterpart in the most known programming languages.
They may consider going further and organizing special ex-
ercise groups for students with in-depth experience with a
specific programming language.

Adapting the teaching methodology. Because the major-
ity of CS1 students already know a programming language,
it seems more natural to offer access to the whole libraries
and to a complex development environment, thus letting the
more curious students explore a richer environment. This is
the technique used in the Inverted Curriculum approach [13].
While more novice students content themselves with the li-
brary’s APIs, their advanced colleagues may explore the li-
brary’s internals, discover the more advanced aspects, and
enhance their competence through imitation and inspira-
tion.

Another possible measure to tackle differences in prior
programming experience is the use of a programming lan-
guage that only few students have previously encountered in
CS1. Interestingly, both institutions use such a language to
“level students out” and not favor one student over another.
While this is not the full solution to the problem of student
diversity, it seems to be a reasonable way of ensuring that
all students have a fair treatment.

Offering extra lessons. Students who had learned a pro-
gramming language prior to the CS1 course are, overall,
more successful than novices [10, 17]. To confirm that these
findings apply to our setting, we use the ETH data of two

years (2004 and 2008), for which we are able to associate
grades in the final exam to the questionnaire data. Calculat-
ing Spearman’s correlation coefficient reveals that the grades
of the students are significantly related to their previous pro-
gramming knowledge (grouped into the categories “no pro-
gramming”, “no OO”, “small OO programs”, and “large OO
programs”), rs = .31, p < 0.001. The average and median
grades dissected by groups reflect this relationship. Note
that the Swiss grades range from 1 (lowest grade) to 6 (high-
est grade) in 0.25 increments; 4 is the lowest passing grade.

Table 6: Grades by prior programming knowledge

Mean Median

No programming 4.18 4.25
No OO 4.49 4.75
Small OO programs 4.80 5.00
Large OO programs 5.21 5.25

It is likely that the extra experience with other program-
ming languages provides intellectual preparation for master-
ing the intricacies of software development, for which novices
enjoy no counterpart. To redress this imbalance, it may be
interesting to allow novice students to take extra lessons on
programming either before the semester starts (such as in a
CS0 course [2]) or during the semester.

Making student groups. The differences in students’ prior
programming expertise justify the discussion of offering two
or more courses targeted to the various competence levels.
This would require the development of competence mod-
els and associated programming language independent tests,
which guarantee objective assessment of prior knowledge.
The competence model for object interaction developed by
Bennedsen and Schulte [1] could serve as a starting point.
It describes a taxonomy consisting of four levels. The levels
range from understanding simple object interactions (such
as feature calls and object creation) between a few objects on
the lowest level to understanding the effects of inheritance
and dynamic binding on dynamic polymorphic object struc-
tures on the highest level. The course for advanced program-
mers could then build upon existing previous knowledge and
cover ancillary material while the course for novices could
take a slower approach in introducing new concepts. One of
the main issues with such a solution is probably scarceness
of resources and increased costs. A reduced solution could
split up the course partially (for example only for the lab or
tutoring sessions such that certain parts can be adapted to
previous knowledge).

Individualized instruction. Going one step further, indi-
vidualized instruction seems well suited to handle the stu-
dent diversity. One of the main characteristics of individ-
ualized instruction is that students proceed at their own
pace, so that the differences in prior knowledge can be han-
dled. Individualized instruction is related to other teaching
methods such as programmed instruction, mastery learning,
self-controlled learning, and computer-assisted instruction.
Several variants of individualized instruction find applica-
tions in teaching introductory programming [4, 5, 9].

10. CONCLUSIONS
We will continue to track students’ prior experience, which

we view as an indispensable tool for tuning courses to the
real students of the 21st century. The questionnaires have
proved extremely useful in this endeavor.

The analysis of the data collected over seven years found
that the student body of 2003 significantly differs from the
later classes. If the data set of 2003 is ignored, then the sit-
uation appears stable with the exception of single pointed
changes in the percentage of students owning a laptop, the
portion of students using the computer for web design and
programming, their familiarity with the operating system
BSD, and their knowledge of Basic and Perl. The only
largely unstable item is on the knowledge of Eiffel. This
confirms that the ETH introductory programming course
has been and – given the mostly stable situation – will be
faced with a very diverse student body.

At one end, a considerable fraction of students have no
prior programming experience at all (between 13% and 22%)
or only moderate knowledge of some of the cited languages
(around 30%). The evidence so far does not suggest a de-
crease in either of these phenomena.

At the other end, the course faces a large portion of stu-
dents with expertise in multiple programming languages
(about 30% know more than three languages in depth). In
fact, many have worked in a job where programming was a
substantial part (24% in 2003, 30% in 2004, 26% in 2005,
35% in 2006, 31% in 2007 and 2008, and 25% in 2009).

An increasing percentage of students who have program-
ming experience used an object-oriented language; corre-
spondingly, fewer students take the course without prior ex-
posure to object-oriented programming.

If we try to picture the typical entering CS student at any
of the two institutions, he (being typical, the student is most
likely a ”he”) is between 18 and 20 years old and knows one
programming language in depth and another two to three
languages slightly. He has a computer with the Windows
operating system at home and most likely a laptop. He has
a long experience with computers and uses it mostly for web
surfing, writing e-mails, and text processing. He has learned
programming by himself and uses VisualBasic, Java, C++,
C, or a web-related programming language such as PHP or
JavaScript.

The data presented in this article show that the entering
CS students at ETH and those at University of York start
with very similar backgrounds, in particular concerning prior
programming experience, and the number of programming
languages that they know. They only differ in the specific
programming languages that they know and single items
concerning computer literacy.

There are several possible factors for this similarity. First,
courses on computer science are optional in the high school
systems of both countries. In addition, ETH and University
of York are both competitive and recruit nationwide. Third,
neither ETH nor University of York requires computer sci-
ence or programming expertise for admission. While the
University of York has a selective admission process based
on other criteria such as Math grades, ETH accepts any-
body with a Swiss Maturity degree. The selection at ETH
happens through the selective Swiss high schools, ETH’s
reputation as a top university, and the first year exams.

The outcome suggests that generalization of the results is
possible, but may be limited to other universities of countries

with similar regulations for admission and for high school
courses on computer science. To address the issue of gen-
eralization fully, it is necessary to broaden the scope of the
study to more universities and countries.

11. REFERENCES
[1] J. Bennedsen and C. Schulte. A competence model for

object-interaction in introductory programming. In
18th Workshop of the Psychology of Programming
Interest Group, PPIG, University of Sussex,
September 2006.

[2] C. Dierbach, B. Taylor, H. Zhou, and I. Zimand.
Experiences with a CS0 course targeted for CS1
success. SIGCSE Bulletin, 37 (1):317 – 320, 2005.

[3] Eidgenössisches Bundesamt für Statistik, Schweiz.
Maturitätsquote nach Maturitätstyp und Kanton.
Online at http://www.bfs.admin.ch, June 2010.

[4] H. H. Emurian. Teaching JavaTM : Managing
instructional tactics to optimize student learning.
International Journal of Information &
Communication Technology Education, 3(4):34 –49,
2007.

[5] L. Faessler, H. Hinterberger, M. Dahinden, and
M. Wyss. Evaluating student motivation in
constructivistic, problem-based introductory computer
science courses. In E-Learn 2006: Proceedings of the
World Conference on E-Learning in Corporate,
Government, Healthcare, & Higher Education,
Honolulu, Hawaii, USA, October 2006.

[6] A. Field. Discovering Statistics Using SPSS
(Introducing Statistical Methods series). Sage
Publications Ltd, 3. edition, 2009.

[7] A. Fisher, J. Margolis, and F. Miller. Undergraduate
women in computer science: experience, motivation
and culture. SIGCSE Bull., 29(1):106–110, 1997.

[8] A. Gomes and A. Mendes. A study on student’s
characteristics and programming learning. In
Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications
2008, pages 2895–2904, Vienna, Austria, June 2008.
AACE.

[9] T. Grandon Gill and C. F. Holton. A self-paced
introductory programming course. Journal of
Information Technology Education, 5:95 – 105, 2006.

[10] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? SIGCSE Bull., 32(3):25–28, 2000.

[11] M. E. Hoffman and D. R. Vance. Computer literacy:
what students know and from whom they learned it.
SIGCSE Bull., 37(1):356–360, 2005.

[12] E. M. Madigan, M. Goodfellow, and J. A. Stone.
Gender, perceptions, and reality: technological
literacy among first-year students. SIGCSE Bull.,
39(1):410–414, 2007.

[13] M. Pedroni and B. Meyer. The inverted curriculum in
practice. In SIGCSE ’06: Proceedings of the 37th
SIGCSE technical symposium on Computer science
education, pages 481–485, New York, NY, USA, 2006.
ACM Press.

[14] M. Pedroni, B. Meyer, and M. Oriol. What do
beginning CS majors know? Technical Report 631,
ETH Zurich, July 2009.

[15] M. Pedroni and M. Oriol. A comparison of CS student
backgrounds at two universities. Technical Report 613,
ETH Zurich, July 2009.

[16] M. Pedroni, M. Oriol, and B. Meyer. Student diversity
in CS1. Presented at European Computer Science
Summit – ECSS 2009, 5th Annual Informatics-Europe
Meeting, Paris, October 2009.

[17] J. S. Rosenschein, T. Vilner, and E. Zur. Work in
progress: programming knowledge – does it affect
success in the course ”introduction to computer
science using Java”. Frontiers in Education, 2004. FIE
2004. 34th Annual, 1:T2H/3–T2H/4, Oct. 2004.

[18] B. Rüger. Test- und Schätztheorie – 2. Statistische
Tests. Oldenbourg, 2002.

[19] M. G. Sackrowitz and A. P. Parelius. An unlevel
playing field: women in the introductory computer
science courses. SIGCSE Bull., 28(1):37–41, 1996.

[20] P. Ventura and B. Ramamurthy. Wanted: CS1
students. No experience required. SIGCSE Bull.,
36(1):240–244, 2004.

[21] B. C. Wilson. A study of factors promoting success in
computer science including gender differences.
Computer Science Education, 12(1-2):141–164, 2002.

