An Empirical Study of API Usability

Marco Piccioni*, Carlo A. Furia*, and Bertrand Meyer*

*Chair of Software Engineering, ETH Zurich, Switzerland

Email: firstname.lastname @inf.ethz.ch

fIT™MO NRU, St. Petersburg, Russia

Abstract—Modern software development extensively involves
reusing library components accessed through their Application
Programming Interfaces (APIs). Usability is therefore a funda-
mental goal of API design, but rigorous empirical studies of API
usability are still relatively uncommon. In this paper, we present
the design of an API usability study which combines interview
questions based on the cognitive dimensions framework, with
systematic observations of programmer behavior while solving
programming tasks based on “tokens”. We also discuss the
implementation of the study to assess the usability of a persistence
library API (offering functionalities such as storing objects
into relational databases). The study involved 25 programmers
(including students, researchers, and professionals), and provided
additional evidence to some critical features evidenced by related
studies, such as the difficulty of finding good names for API
features and of discovering relations between API types. It also
discovered new issues relevant to API design, such as the impact
of flexibility, and confirmed the crucial importance of accurate
documentation for usability.

I. INTRODUCTION

It is not by chance that software has become so complex,
but by building over the solid underpinnings of abstraction
and modularity. Modern software is a complex composition
of library components, whose elementary functionalities are
combined to achieve domain-specific applicative goals. A
component’s interface consists of features that clients can
call; the combination of interface features and a description
of their usage protocol and semantics is what is normally
called API: Application Programming Interface. Using library
components solely based on their APIs makes it possible to
abstract away implementation details and practice modularity;
therefore, learning and using APIs are everyday tasks for soft-
ware developers. From a research perspective, it is interesting
to understand what makes APIs easy or hard to use; this is the
overall goal of this paper.

APIs are a fundamental interface for the interactions be-
tween programmers and computers [[I]. Thus, API usability
impacts software development quality [2], [3]: usable APIs
are more intuitive, require less documentation browsing, and
encourage reuse, thus increasing developers’ productivity. Con-
versely, APIs that are hard to use reduce programmer produc-
tivity and quality of the final product, as shown, for example,
by measuring requests for technical support [3].

Previous empirical studies of API usability—reviewed in
Section [VIII—point to some critical issues such as the ease
of discovering relationships between types offered by an API
and how to instantiate new objects. With our work, we find
additional evidence to confirm or dispute these issues, as well
as to find out new criticalities not detected in previous work.

To this end, the first contribution of our paper is the
design of an empirical study of API usability. The study’s

research questions—described in Section [[I—are based on the
findings of previous studies with the goal of corroborating
and extending them. Section describes the specific study
design, which combines two methodologies useful for assess-
ing usability. The first is the notion of cognitive dimensions:
elements that characterize the expectations of users and what
an API actually provides, such as the abstraction level and the
consistency between different API functionalities [4]. In our
study, we collected and interpreted the feedback of participants
according to the cognitive dimensions. The second methodol-
ogy used in our study design is based on usability tokens,
an original classification of the participant reactions (such as
“surprise” or “incorrect choice”) as they try to understand
and use API functionalities to perform the assigned tasks.
We tallied usability tokens when replaying the videos of
the participants’ performances. As we discuss in Section [VI|
combining cognitive dimensions and usability tokens leads to
a rich characterization of API usability issues.

The second paper contribution is an actual execution of
the study to evaluate the usability of a persistence library
written in Eiffel. The study—which we detail in Section
involved 25 participants, including both students and profes-
sional developers. The participants solved five tasks requiring
to access, modify, and query a relational database through the
services offered by the persistence library API; we recorded
their performance to be able to analyze it postmortem. After
each session, we asked the participants about their experience
and expectations using a structured interview whose questions
were characterized by the cognitive dimensions.

Section [V] analyzes the study results based on the analysis
of performance and interviews; and Section discusses the
findings in a more general context, which include:

e Finding descriptive, non-ambiguous names for API fea-
tures is problematic given that programmers may be used
to different terminologies.

e Discovering relations between API types (classes) re-
quires significant effort; simple designs are beneficial,
especially to less experienced programmers.

e Accurate and complete documentation is a crucial issue
for API usability; all the major usability flaws discovered
in our study trace back to unsatisfactory documentation

e Flexibility is a double-edged sword in API design: expe-
rienced programmers can take advantage of it, but it may
confuse those with less practice.

Finally, Section [VII] mentions possible threats to the valid-
ity of the study; and Section concludes.

'As documentation, we mainly consider: public method signatures, com-
ments, and contracts of the class features.

II. RESEARCH QUESTIONS

We organize the study around four main research questions,
which characterize fundamental aspects of usability: under-
standability, abstraction level, reusability, and learnability. The
questions cover the critical aspects emerged in previous API
usability studies (see Section but are sufficiently general
to make room for new findings and specific aspects emerged
in our study (see Sections [V] and [VI).

RQ1 What is the effort required to understand the se-
mantics of API features based on their names and
documentation?

RQ2 Does the API’s abstraction level cater to usability?

RQ3 Does the API's design facilitate reuse and concise-
ness in client code?

RQ4 Can API usage be learned easily and incrementally?

[RQT] addresses the fundamental problems tackled by pro-
grammers using the services offered by an API: what they have
to do to understand what each feature of the API represents
and how it should be invoked. This question also encompasses
specific issues such as whether the API feature names are
descriptive, whether the relationships between API elements
are clear and unambiguous, and how to access the features
through object creation, method call, or other means.

RQ2] evaluates whether the level of abstraction is good
for usability. On the one hand, it should guarantee that
programmers can proficiently use the API without knowing
(or assuming) implementation details. On the other hand, the
abstractions should match the conventions and practices of
programmers, without being elegantly abstract at the expense
of understandability and other practical concerns. Summa-
rizing with a slogan, this research question asks whether
the API “makes simple things simple, and complex things
possible” [S]].

[RQ3] determines to what extent the client code that can
be written using the API is concise, terse, maintainable, and
extensible. Concretely, this question addresses problems such
as: if we have an application using some API features and
slightly vary or generalize its requirements, how hard is it to
adapt the application to meet the extended requirements?

targets the API learning process to see if it can be
incremental (that is, gradual and not requiring disproportionate
efforts) and whether performing a certain programming task
using the API has a positive impact on performing other,
related but different, tasks. This question is related to
and [RQ3] but emphasizes the learning process rather than its
practical outcomes.

III. STUDY DESIGN

Usability is a multifaceted feature which is hard to assess
reliably because it involves somewhat subjective aspects such
as the specific habits and styles of individual programmers.
To address such problems, the cognitive dimensions frame-
work [4] suggests to evaluate usability operationally based
on comparisons. First, we outline a number of aspects that
are sufficient to characterize the multiple facets of usability
in our specific domain. Then, we base the assessment on
the comparison, for each aspect, between the expectations of
users and what the system actually provides. For example,

regarding incremental learnability in APIs, users may expect
to be able to execute incomplete code to obtain feedback on
API behavior, whereas the API might require specific complete
call sequences before the code is executable without errors; this
would signal an imperfection in the API’s usability.

Our empirical study follows the guidelines of the cognitive
dimensions framework, and more specifically Clarke’s dimen-
sions of API usability [6]. It is based on the execution of
programming tasks that require the participants to write client
code combining API features to achieve certain functionalities;
the comparison between expectations and reality is based on
the participants’ performance on the programming tasks. With
the goal of having a multidimensional assessment, which helps
reduce the impact of subjective perceptions, we collect data
about the discrepancies between user expectations and actual
system features from two different sources.

After completing the tasks, we conducted a structured in-
terview with the participants involving a fixed list of questions
about their experience and expectations. This explicit feedback
provided by programmers through the interview highlights
their perceived usability, the difficulties they experienced, and
the features that explicitly appreciated. Section describes
the interview questions in some detail and discusses how they
articulate the research questions of Section

Independent of the interview data, we also collected feed-
back given implicitly by the participants during their perfor-
mance. To this end, we asked them to follow the thinking-
aloud protocol and recorded the video and audio of their
performances. The thinking-aloud protocol is based on Eric-
sson and Simon’s seminal work [7] and consists in having
the participants declare in speech their mental process as
it develops, including the doubts and questions they have,
the solution strategies they consider, and the reasons that
justify their decisions. This protocol is widely used in usability
testing [8], because it makes the external observer aware
of the cognitive processes leading to a certain performance.
In our study, we perused postmortem the recordings of the
performances searching for episodes revealing the expectations
of programmers and how they compared to the API features.
As we describe in Section [[II-B] we classify the episodes
in usability tokens, which express mismatch between user
expectations and actual performance. The tokens make the
implicit data collection more uniform and aligned to the issues
targeted by the research questions.

A. Structured Interview

Following Clarke’s guidelines [6l], and reflecting the re-
search questions of Section [II} the interview consists of twelve
questions which characterize various aspects of usability as
assessed by users. The questions are as follows, roughly
grouped by the research question they target (although some
of them target multiple research questions).

Questions regarding [RQI| (understandability):

1) Do you find that the API types map to the domain
concepts in the way you expected?

2) Do you feel you had to keep track of information not
represented by the API to solve the tasks?

3) Does the code required to solve the tasks match your
expectations?

Questions regarding (abstraction):

4) Do you find the API abstraction level appropriate to the
tasks?

5) Did you need to adapt the API (inheriting from API
classes, overriding default behaviors, providing non-API
types) to meet your needs?

6) Do you feel you had to understand the underlying imple-
mentation to be able to use the API?

Questions regarding (reusability){]

7) Does the amount of code required for each task seem
about right, too much, or too little for you?

8) How easy was it to evaluate your own progress (interme-
diate results) while solving the tasks?

9) Do you feel you had to choose one way (out of many) to
solve a task in the scenario?

10) Do you feel you would have to change much in your
code to access another kind of persistence store, or write
another query?

Questions regarding (learnability):

11) Once you performed the first two tasks, was it easier to
perform the remaining tasks?

12) Do you feel you had to learn many classes and depen-
dencies to solve the tasks?

We use the cognitive dimensions framework to formulate
questions that may discover the existence of problematic issues
with the API, rather than aiming at “proving” its usability.
This angle—reminiscent of the way testing cannot not prove
programs correct but discover the existence of errors—is
aligned to the best practices of using the cognitive dimensions
framework [9]], [10].

B. Usability Tokens

We classify the salient events occurring during participant
performances into five tokens. While the tokens describe
different dimensions, the same event may be associated to
multiple tokens when it reveals aspects of different nature. For
each token, we make simple examples based on a hypothetical
data-structure library to make the description independent of
the specific application domain used in our study (namely,
persistence).

Token “surprise”: the developer discovers aspects of the
API that clearly go against her expectations and original
intuitions. For example, the generic container classes may not
be usable with primitive types (e.g., integers) but only with
object types; this requires a special treatment for certain types,
which the user may find surprising.

Token “choice”: the developer is faced with a choice and
she must understand the alternatives to proceed in the right
way. For example, the element at a given position in a list
may be accessible either with a method call s.a#(i) or using

2Questionis specific to the domain of the API we evaluated, but it can
be easily generalized to different application domains.

the array notation s[i]; the user may have to understand if the
two options are equivalent and choose the most appropriate
one (in terms of correctness and code readability).

Token “missed”: the developer’s activity shows that she has
missed some important abstraction or feature of the API, which
would have been useful to effectively solve the current task.
For example, the API may offer a feature to remove the first
occurrence of a given element in the list, but the developer may
miss it and implement the same functionality by first searching
and then deleting.

Token “incorrect”: the developer uses the API incorrectly,
in a way that introduces errors or implements an incorrect
functionality. For example, popping elements from a stack
without checking for emptiness may lead to errors when the
stack is empty.

Token “unexpected”: the developer uses the API in a way
undocumented or otherwise unforeseen by the API intended
design. Unlike the “surprise” token, this token adopts the point
of view of API designers. For example, the user may inherit
from a stack class and override the push method to allow
insertion in the middle of the stack; this is not necessarily
wrong, but violates the original design abstraction.

The usability tokens are largely orthogonal to the cognitive
dimensions (on which the interview questions are based), in
that the same token may characterize events involving different
cognitive dimensions. For example, an element of surprise
may reveal inconsistent abstractions, poor understandability,
or both. This helps make the data from the interviews largely
independent of the usability token classification.

IV. STUDY SETUP

We implemented the study design discussed in Section [[I]
to assess the API usability of a recently developed persistence
library for Eiffel. In the following subsections, we give a few
details about: the library and its API; the programming tasks
involving the API which we submitted to the participants; the
demographics of the participants; and the protocol used to
carry out the experiments.

A. Persistence Library API

We evaluated the API of ABEL (A Better EiffelStore
Library), a library offering an object-oriented interface to
persistence-related functionalities like storing and retrieving
data using files (serialization) and relational databases. The
first author developed ABEL as part of his PhD work [11].
ABEL is written in Eiffel and is meant as an improvement
over the persistence services offered by FEiffel’s standard li-
braries. As it introduces features normally available in other
mature persistence frameworks such as Spring [12] and Hiber-
nate [13], it should be usable by “standard” programmers, and
hence it is interesting to assess its usability.

ABEL consists of 81 classes grouped into 11 clusters
(roughly equivalent to Java packages) for a total of roughly
10500 lines of code, comments, and assertions. In Eiffel, it
is customary to use assertions in the form of contracts (pre-
and postconditions, and class invariants) to specify the essen-
tial requirements and behavior of methods. Therefore, when
browsing the API of ABEL, developers can see the signature,

comments, and contracts of its features, which constitute the
documentation of the API’s functionalities.

B. Tasks

The study participants solved five tasks involving accessing
a relational database using ABEL’s features. Solving the tasks
requires to store objects of a simple class PERSON, also
given to the participants, and includes operations found to be
critical in previous work [14], [15]. An outline of the five tasks
follows.

Task 1: initialize a REPOSITORY instance through a
factory method; use the REPOSITORY instance through a
CRUD_EXECUTOR to insert instances of PERSON into the
repository.

Task 2: instantiate a QUERY class; use it through the
CRUD_EXECUTOR to retrieve PERSON objects from the
repository; and inspect the results.

Task 3: change the state of the PERSON objects; update the
repository with the new objects using the CRUD_EXECUTOR.

Task 4: delete one of the PERSON objects and remove it
from the repository using the CRUD_EXECUTOR.

Task 5: execute a complex query that requires selection
criteria. Developers can choose between using “predefined”
criteria (implemented using strings) and using function objects
(called “agents” in Eiffel, and similar to C#’s delegates).

C. PFarticipants

We recruited 25 participants including 10 computer science
students at ETH (6 bachelor’s and 4 master’s), 7 researchers
pursuing a PhD (2 in our group, 2 in other groups of the
computer science department of ETH, 2 in the computer sci-
ence department of other universities, and 1 from the robotics
group in the mechanical engineering department of ETH), 2
post-doctoral researchers also at ETH (1 from the computer
science department, and 1 from the mechanical engineering
department), and 6 professional programmers working for
various software companies mostly in the Zurich area. All
the participants to the study were unpaid volunteers; the only
requirement on our side was that they had at least one year of
experience with object-oriented programming.

The following table shows some statistics about their
background in terms of: years of programming experience with
object-oriented programming languages; years of experience
with the FEiffel language; and years of experience as profes-
sional programmers.

min median max stddev
Object-Oriented 1 5 22 4
Eiffel 0 1 18 5
Professional 0 2 21 5

The statistics show that the participant pool covers a
wide range of experiences; all participants, however, have a
programming background sufficient to make the experiment
meaningful. Furthermore, we ascertained that all the partici-
pants had at least some familiarity with the basic operations
of a relational database, but none of them had used the ABEL
library before.

D. Protocol

Each participant performed in an individual session tak-
ing place in an isolated office. The first author, henceforth
the “proctor”, administered all the sessions according to the
following protocol.

The proctor starts with a brief overview of the whole
process. He then administers a fifteen-minute tutorial showing
the basics of the Eiffel language and of the FEiffelStudio
IDE running on the laptop used for all the experiments. In
particular, the tutorial highlights the IDE functionalities useful
to browse library documentation (consisting of classes, method
signatures, header comments, and contracts) and to inspect the
inheritance relations among classes (such as listing all ances-
tors, descendants, clients, or suppliers of a given class). The
only documentation about ABEL available to the participant
during the study is accessed using these IDE features.

After the tutorial, the proctor describes the thinking-aloud
protocol (Section and asks the participant to stick to it
during his or her performance. Then, the proctor opens a
project consisting of the PERSON class and a “main” client
class including a terse description of the five tasks as comments
(see Section [[V-B). The project is set up with the “full void-
safety” flag, which entails that the compiler statically checks
for possible dereferencing of void references (null references in
Java); this helps avoid basic programming mistakes and lets the
participants focus on correctly using the API functionalities.
Finally, the proctor starts the audio/video recording of the
session and invites the participant to begin.

During the experiment, the proctor sits in the same room
avoiding interactions with the participant. In a few cases, some
of the participants asked for the proctor’s instant help, mainly
with using functionalities of the IDE or with the syntax of
the Eiffel language. The proctor only answered requests that
were independent of the specific tasks or the API function-
alities, giving the minimal information necessary to proceed.
Section discusses this potential threat, to demonstrate that
its impact on the soundness of the experiments is negligible.

The proctor lets the experiment continue until the partici-
pant completes all the five tasks. There is no time limit because
the focus of the experiments is assessing usability, not measur-
ing programming efficiency (something would have made not
much sense anyway, given the heterogeneous experience of the
participants). We still report the time taken by the participants
to show that it always was within a reasonable range: the fastest
participant finished in 32 minutes, the slowest in 118 minutes,
the median time was 70 minutes, and the standard deviation
22 minutes.

After completion of the tasks, the proctor interviews the
participant asking the questions of Section [[II-A| and recording
his or her answers. This concludes the experimental session.

V. RESULTS

We present the results of the study in subsections corre-
sponding to the four research questions of Section [lI} For each
question, we discuss the data both from the interviews and
from the usability tokens, which is summarized in TablesE]
and

Table [I| classifies answers to each interview question
(Section into “yes”, “no”, and “sometimes”, giving
both the absolute number of replies in that category and
the corresponding percentage. By recording and checking the
behavior of participants during interviews, we ascertained that
the classification in three discrete categories is sufficiently
reliable: we found no case were the results of mapping the
participant’s answer to one of the categories was ambiguous
or questionable. The few cases were the given answers were
considerably more articulate are mentioned in the analysis.

Table |l lists the usability tokens occurring most frequently
during the experiments; for each token, the table gives an
identifier, its type (Surprise, Choice, Missed, Incorrect, or
Unexpected) a brief description, the research questions the
token addresses, and the number and percentage of participant
sessions where the token surfaced.

We focus the discussion on the most significant points; the
complete dataset is presented elsewhere [[11, Chap. 6].

YES NO
4 16% 0 0% 21 84%
4 16% 21 84% 0 0%
4
0

SOMETIMES

Q

16% 1 4% 20 80%

80% 5 20%

2 8% 23 92%

12 48% 13 52%

22 88% 3 12%

17 68% 8 32%

0 0% 3 12%
4 16% 21 84% 0%
23 92% 2 8% 0%
5l 7 28% 18 72% 0 0%

SUMMARY OF ANSWERS GIVEN DURING THE INTERVIEWS.

0%
0%
0%
0%
0%
88%

I
S OO OO OoO O

Table 1.

In each of the following subsections, we summarize the re-
sults in the first paragraph, and then we present the quantitative
data in detail.

A. [RQI} Understandability

The effort required to understand the semantics of API fea-
tures based on their names and documentation was considered
acceptable by most participants, but a few class and method
names were found confusing and potentially misleading.

Over 80% of the participants did not have to process infor-
mation not explicitly part of the API (question [2). This sug-
gests that the API documentation is sufficiently self-contained,
and the API classes are acceptable for standard tasks.

The majority (84%) of the participants declared that the
API types map to domain concepts only “sometimes” (ques-
tion [I). More specifically, several usability tokens highlight
mismatches between names and underlying concepts. Token
T3 corresponds to 44% of the participants not being familiar
with the acronym CRUD (Create, Read, Update, and Delete)
to represent the basic functions for databases access. As a
consequence, the API designer decided for the subsequent
release an alternative, more general name such as EXECUTOR
instead of CRUD_EXECUTOR. Token T4 corresponds to 40%
of the participants expecting the REPOSITORY class to be
named DATABASE instead, since all the tasks involved rela-
tional databases. This is a valid point, even though the name
REPOSITORY was preferred by the designer because the API
also supports serialization operations which do not fit the
database abstraction.

Whether the code written matches the expectations (ques-
tion [3), and hence developers have a positive feedback that
reinforces learning, largely depended on the individual back-
grounds. Participants not familiar with Eiffel conventions—or
familiar but unappreciative—suggested a simplified design (for
example, not using command/query separation as discussed
in Section [V-B). Participants used to work with relational
databases at a lower level of abstraction expected to have
to implement the object-to-relational mapping themselves, and
hence were hesitant to use some of the features of the API that
transparently took care of the mapping. These are significant
examples of the trade-offs between abstraction and efficiency
which populate the rich design space of persistence APIs.

Finally, token T9 highlights a choice developers faced
when understanding how updates work (Task 3). The confusion
was due to the fact that querying is not necessary before
updating to solve Task 3 correctly, because the modified
PERSON obijects are still in local memory from Task 1. In
more general situations, however, querying is necessary, and
the API documentation reflects this more general scenario
which guarantees correctness.

B. [RO2} Abstraction

The abstraction level of the API was largely considered
appropriate and the functionalities offered were found suitable
to solve the tasks. Nearly half of the participants, however,
occasionally found it useful to peek at some implementation
details in order to more readily understand relations between
classes. This reveals some weak spots in the API abstraction
which are to be improved.

Over 90% of the participants did not have to modify the
library classes to solve the tasks (question [5). Three of the
participants slightly modified some classes by inheriting even
if that was not necessary. This usage was benign as it did
not break the abstraction of the API; it was done by some
of the more experienced Eiffel programmers, probably out of
habit since multiple inheritance is used extensively in Eiffel.
These were the only cases of “unexpected” usability tokens,
which do not feature in Table Il which only reports frequently
occurring tokens. This suggests that the API can be largely
used as intended by the designer.

The majority (80%) of the participants also found the
API abstraction level appropriate to the tasks (question [).
Seven participants, however, were surprised that method
execute_query does not return the query result (token T11).
The reason is that it is customary to practice command/query
separation [[17] in FEiffel libraries: each method should either
be a function (returning a component of the object state
without modifying it) or a command (a procedure modifying
the object state without directly returning a result). Method
execute_query is a command, which should be followed by
a function call to retrieve its result. Non-FEiffel programmers
may not be familiar with this design principle, which reveals
a trade-off between design clarity and practical usability.

The fact that 48% of the participants had to understand
some implementation details to use the API (question [6)
reveals a few significant deficiencies in some abstractions of
the API. Specifically, tokens T5 and T12 point to two critical
aspects for several participants. Token TS5 refers to the fact that

ID TOKEN DESCRIPTION RQs # %
Tl M criterion factory 1 14 56%
T2 C predefined criterion 2,3 13 52%
T3 N what does CRUD mean? 1,4 11 44%
T4 S expecting database, not repository 1,2 10 40%
T5 S REPOSITORY cannot execute CRUD operations 1,2 10 40%
T6 S a connection class cannot be used 1,2 9 36%
T7 C agent criterion 2,3 9 36%
T8 C which strings are valid operators? 1,4 9 36%
T9 C read required before update? 1 8 32%
T10 M default query retrieves all objects 1,4 7 28%
T11 S expecting method execute_query to return result 1,2 7 28%
Ti12 S QUERY also contains query result 2,4 6 24%
T13 1 reusing the same QUERY object without resetting 2,4 6 24%
Table II. USABILITY TOKENS OCCURRING MOST FREQUENTLY.

ten participants expected class REPOSITORY to also directly
offer features to access the database, whereas such operations
were offered by the CRUD_EXECUTOR class. The problem
was worsened because REPOSITORY does not mention class
CRUD_EXECUTOR explicitly in the method signatures, and
hence some participants decided to inspect its implementation
to find references to the other class. Token T12 is connected
to token T11, and prompted a few participants to peek into the
implementation of QUERY to understand how to access result
objects. Such difficulties in understanding relations between
types and in discovering new classes corroborate previous
empirical observations along the same lines [14].

C. RO3} Reusability

The participants agreed that they managed to write concise
client code in an incremental fashion, and that their solutions
were reusable to solve variants of the problems. They also
agreed that the API offers different ways of implementing
certain functionalities.

Over 90% of the participants thought that it would have
been easy to modify their code to access different database or
to perform different queries (question [I0). This is an important
goal which the API seems to achieve satisfactorily. Nearly 90%
of the participants also found “about right” the amount of code
they had to write (question [7). Even the few in disagreement
mainly found the keywords and names a bit verbose, but did
not express a strong criticism about succinctness.

Nearly 70% of the participants positively answered ques-
tion[8] which asks whether it was easy to keep track of progress
while solving the tasks. The recurring problem that the other
30% experienced was that they had no simple programmatic
way to clean up the database after failed attempts and restore
it to the original state to try again. This was more a deficiency
of the experimental setup than a flaw of the API, even if
quick trials are something that could often be useful to support
programmers learning an APIL.

The answers to question [9] show that the API provides
alternatives to solve certain tasks. This carries both a positive
and a negative connotation. On the positive side, it shows that
the API has a certain flexibility, and that certain tasks can be
solved very concisely (using the defaults) or less concisely but
with more control on the individual steps. This was particularly
true for the query mechanism, which offers some simple
defaults but also more flexible features based on CRITERION
classes. On the negative side, choice may also be confusing
or slow down programmers, as evidenced in a couple of the

usability tokens. Token T2 reveals that 52% of the participants
pondered whether a predefined criterion or a default query was
better suited for Task 2. Token T7 concerns a similar choice
of how to use criteria with agents (Eiffel’s function objects),
useful in Task 5 but unnecessary in the other tasks. Neither
token highlights flaws in the API, but both suggest possible
elements of design simplification.

D. [RO4} Learnability

The learning curve for the API was initially steep, as it
required to become familiar with a few non-trivial abstrac-
tions. After the initial learning phase, however, solving more
advanced tasks became relatively simpler, as the learning curve
flattened.

Over 90% of the participants agreed that they became
more efficient after completing the first two “exploratory” tasks
(question[TT). The two participants who disagreed were slowed
down by the choice offered by the CRITERION classes, already

discussed in relation to in Section

Three usability tokens point instead to usability issues
which negatively impact learnability and other aspects. The
three tokens originate in incomplete or inaccurate documenta-
tion (in terms of comment and contracts, see Section [[V-A).
Token T10 shows that seven participants missed the fact that
a QUERY object returns all objects of its generic parameter
type “by default”, that is when created with the argumentless
constructor. Indeed, this is not clear from the constructor’s
comments and could only be surmised indirectly or by look-
ing at the constructor’s implementation. Token T8 points to
a deficiency in the documentation of a constructor of the
CRITERION class: while its precondition imposes a constraint
on its string argument, the semantic of the constraint is obscure
as it involves how strings represent operators (e.g., “and”
rather than “&&” for logical conjunction). Finally, token T13
reveals that six participants incorrectly used the same QUERY
object multiple times without calling a reset method after each
usage. This is indeed something not adequately documented,
and a good example of the kinds of issues usability testing
may find.

Over 70% of the participants did not have to become
familiar with many classes to use the API (question [2).
This suggests that the API documentation is sufficiently self-
contained, and the API classes are acceptable for standard
tasks.

Three of the seven participants who claimed to have learned
“many classes and dependencies” missed a concrete factory

class [16] named REPOSITORY_FACTORY, which was quite
useful to set-up repositories with only few operations. This
is connected to a more general problem of using factories
instead of ordinary constructors to create objects and initialize
them. REPOSITORY_FACTORY is also the source of token
T6, where 36% of the participants were confused by not
having to use class CONNECTION to establish a database
connection; in fact, the factory took care of establishing the
connection. The most frequently occurring usability token T1
corresponds to participants who missed the other concrete
factory CRITERION_FACTORY to create criteria (a form of
query useful in Tasks 2 and 5). Since it is still possible to
instantiate criteria without using the corresponding factory, all
participants could successfully complete Tasks 2 and 5 even
if they had problems with using factories. For API designers,
however, this casts some doubts on the practicality of concrete
factories, corroborating previous empirical findings on this
design pattern [15].

VI. DISCUSSION

We now summarize the overall findings of our study in
more general terms than Section [V] We organize the discussion
in three parts: Section targets issues with API usability
that were discovered in previous work and replicated in our
study; Section targets issues that emerged in previous
work but were not critical in our study; Section discusses
new findings and lessons that specifically emerged in our study.

In the following discussion, we also report on the usability
issues that are significantly affected by the previous experience
of developers. We partitioned the interview answers into two
groups: 11 “experienced” participants, whose years of expe-
rience with object-oriented programming is greater than the
median; and the other 14 “novice” participants with below-
median experience. In the reminder, we point out the few
questions whose answers look qualitatively different in the
experienced and novice groups.

A. Confirmation of Previous Issues

Associating API feature names to functionalities is a prob-
lematic issue because it is hard to select names that conform to
the heterogeneous jargon of programmers and are descriptive
but not verbose. Even the basic object-oriented terminology
may vary from language to language: for example, Eiffel calls
“routine” [17]] what normally is a “method” in Java [18]] and
a “member function” in C++ [19]. Another difference is in
the naming convention for features, such as using the prefix
“is” for functions returning Booleans—such as in is_empty.
Specific to the persistence domain targeted in our study, we
discussed the problem with the class name REPOSITORY
vs. the more specific one DATABASE, and the unfamiliarity
of several programmers with the acronym CRUD which is,
however, popular in the database community [20]. Our study
reinforced the lessons learned by others [21]], [22], [23]: name
API features consistently and use common names that are still
descriptive and not vague.

Another issue which was found problematic by others [14],
as well as in our study, is discovering relationships between
types. This issue typically emerged in connection to known
usability difficulties [[15] with the concrete factory pattern to

create objects without calling constructors. Specifically, we
often detected a clash between the expectations of developers
and the usage intended by the API developer. Given the central
role of classes and types in object-oriented programming,
developers are used to ground their understanding of the API
on the relationships between types; it is thus confusing when
these are not crystal-clear from reading the documentation.
Instantiating classes using constructors is also almost second-
nature to object-oriented programmers; when factories should
be used instead, the API design must be tailored to emphasize
this exceptional usageE] None of the experienced developers,
however, reported difficulties in discovering relationships be-
tween types. Since the same group also declared that they
hardly needed to look at the implementation to find their way
through the API, this suggests that experienced programmers
have enough flexibility to interpret non-plain choices of API
design, whereas the novices need significantly more support.

Determining the outcome of method calls is another issue
mentioned in other studies of API usability [24]. Developers
tend to rely on a method’s return type to access its result;
when the method is a procedure not returning anything, they
incur a cognitive overhead. As we discussed in Section [V-B]
the Eiffel design style involves the command/query separation,
which caused issues with determining the outcome of method
calls in our study. This shows a conflict between design clarity
and practical usability.

B. Potential Issues Not Critical

A positive note of our study is the infrequent occurrence of
usability tokens characterizing incorrect or unexpected usage
of the API (see Section and Table [[). This suggests that,
even if programmers may have been slowed down by other
deficiencies, the API design normally avoids at least the most
obviously incorrect usages and makes it hardly necessary to
override the designer’s intentions. This is one way to resolve
the friction between correctness and practical usability.

A more specific issue emerged regarding argumentless
constructors. Argumentless constructors are used with (but not
limited to) a create-set-call style, whereas constructors with
arguments are used with a create-call style. Previous work
suggests [25]] that argumentless constructors are preferred, that
is considered easier to use, to constructors with arguments.
In our study, however, the participants had no particular
difficulties with using constructors with arguments, which
are in fact extensively present in the ABEL API. On the
contrary, we had one case of argumentless constructor (of class
QUERY, discussed at the end of Section[V-D)) which was found
confusing because its documentation did not spell out what
the default behavior was. More generally, choosing argument-
less vs. with-argument constructors also exercises a friction
between correctness and practical usability. Eiffel classes use
invariants to characterize valid object states; constructors must
return objects satisfying their invariants, which then every
method must preserve. To take advantage of this guard against
incorrect behavior (particularly useful for consistent object
storage [IL1]]), constructors may require arguments to correctly
initialize objects without relying on successive method calls

3Note that this issue applies only to the concrete factory pattern; abstract
factories export abstract types, which cannot be directly instantiated using
constructors [16].

which programmers may forget. Hence, such a stricter design
style comes at a cost but also brings tangible benefits.

C. Other Lessons

A recurring lesson emerging from our study—and an un-
surprising one at that—is the critical importance of having ac-
curate, unambiguous, and self-contained documentation [26].
While previous work suggests that API documentation should
ideally include code snippets and tutorials [27]], the participants
of our study faltered whenever the API documentation given to
them was imprecise or incomplete, i.e. omitting details relevant
to the task at hand (see Section and [11] for examples).
The lesson should be familiar, but is worth emphasizing: bad
documentation is a nonstarter.

Somewhat related to the problem of documentation is
another dimension of the API design space which surfaced
in relation to the usability token T8 (discussed at the end of
Section[V-D). Developers had trouble understanding how to in-
stantiate an argument of string type with a valid representation
of logic operators. While this is also an instance of incomplete
documentation, the operators passed as argument could have
been represented as types instead of constant strings. This
would have required some additional effort to discover the
new types, but would also have removed the ambiguity and
made it possible to check the actual argument at compile time
(as a type constraint) rather than relying on the weaker checks
done at runtime.

A final lesson emerged from our study is the role of
choice, also discussed in Section When the API provides
different ways to solve a task, programmers have more flex-
ibility but also more difficulties to fully understand the API
design. When answering questions during the interview, the
more experienced developers tended to emphasize the positive
connotation of choice, whereas the less experienced ones often
considered choice as a negative feature. It is clear, however,
that, even for experienced developers, choice is positive only
when the options are really complementary, rather than being
just unnecessary complications of the design.

VII. THREATS TO VALIDITY

We discuss the main threats to validity and what measures
we deployed to minimize their impact.

A. Construct Validity

A multifaceted feature such as usability can elude attempts
to get objective measures. In our study, we addressed such po-
tential threat to construct validity with a careful design which
follows well-established protocols (the cognitive dimension
framework and the thinking-aloud protocol for data collection).
As we mention in Sections and these protocols
have already been successfully used for usability studies,
which vouches for their soundness. Additionally, we tried to
complement the inherent limitations of structured interviews
by also analyzing the recordings of the experiments according
to a few “usability tokens” (Section [II-B). Combining the
explicit answers given during interviews with the implicit
tokens emerged during the study gives a richer set of data
which help reduce the impact of inaccurate measurements.

B. Internal Validity

A possible bias exists in the selection of study participants,
most of whom were known to the first author (such as former
students, former colleagues, or their acquaintances); none of
them, however, knew the author’s work on ABEL or partici-
pated in any way to the design and preparation of the study.
The participants’ programming background was sufficiently
heterogeneous (Section to guarantee that the study is
representative of programmers with quite different experience.
We do not believe that the lack of complete strangers has
influenced the outcome of the study in any significant ways; it
may have even been conducive to reducing performance stress,
and hence removed a potential factor of disturbance.

The performance of the study participants might have
been different, and possibly better representative of usability
in standard conditions, if they had been allowed to access
external documentation (for example, about Fiffel or the IDE)
and to search for code snippets on the Internet. However,
we introduced this restriction to focus the evaluation on the
features of the API and its official documentation; evaluating
the effects of browsing the web on programmer performance
is a problem in its own right [24], whose consequences would
have been difficult to control for.

Collecting answers to questions through an interview car-
ries a risk of “interviewer effect”, where the interviewer biases
the answers by giving involuntary subconscious clues [28]]. A
similar threat is involved in the proctor sitting through the
programming sessions, where he occasionally answered simple
questions by the participants (Section [V-D). We minimized
the impact of these two threats as follows. First, the proctor
only answered generic questions about the FEiffel language or
the IDE used during the study, giving succinct verbal answers
and avoiding as much as possible any reference to the specific
functionalities of the API evaluated in the study, or to the
tasks to be solved. Second, the interviews was structured
and consisted only of twelve predefined questions, which the
interviewer read from a printout. Third, all sessions were
recorded; after the experiments we replayed the recordings
checking that the intended protocol was followed. During the
replaying, we noted down the interactions between the proctor
and the participants. As required by the protocol, all inter-
actions were only about Eiffel syntax details or EiffelStudio
IDE functionalities. To better identify potential sources of such
requests, we measured correlations between the participants’
background data (Section and the number of requests for
clarification, using Kendall’s 7. We found a significant negative
correlation with Eiffel experience (p ~ 0.003, 7 ~ —0.59),
and a significant positive correlation with time to complete the
tasks (p ~ 0.0002, 7 ~ 0.44). This gives independent support
to the claim that this threat did not have a significant impact:
the more Eiffel experience a participant has—and the faster
the participant is—the fewer clarifications he or she requests.
The negative correlation with Eiffel experience also somewhat
explains the effect of having 5 out of 25 participants who
were not familiar with the programming language of the API:
these developers compensated by asking more language-related
questions, which limited the effect of this potential threat and
ultimately contributed some interesting insights originating in
their different background.

C. External Validity

The main threats to the generalizability of the findings of
our study come from the fact that it targeted a single API
and a single programming language. In fact, some of the
issues emerging during the study are somewhat specific to the
application domain or to the Eiffel design style. However, the
discussion in Section also shows that the study confirmed
several issues that emerged in other API usability studies tar-
geting different languages and different domains. This suggests
that the gist of our findings are also applicable to different
contexts.

VIII. RELATED WORK

Despite the critical impact that API usability seems to have,
there are only a few rigorous studies of API usability in the
literature. This section briefly reviews them and highlights the
connections with the rest of the paper.

An early attempt at investigating API usability analyzed
the role of examples to help design understandable APIs [29].
According to the study, APIs designed around examples are
simple to use for programming tasks that follow closely the
original examples. Conversely, when developers need to use
the APIs in scenarios significantly different from the origi-
nal examples, they may prove hard to use or inadequately
designed. A more recent study [30] presents an automatic
technique for mining and synthesizing API usage examples. In
our empirical study, we did not specifically consider the role
of examples but focused on the evaluation of the usability of a
self-documented API solely based on its features’ signatures,
comments, and contracts. Some of the difficult issues devel-
opers face when programming using APIs are understanding
the rationale of design decisions and answering questions
about APIs that are not covered by documentation or tool
support [31]. These observations suggested to restrict our study
participants to access only the official API documentation
plus take advantage of IDE support, so as to focus the
evaluation on the actual API design rather than on external
factors such as generic documentation, other programmers’
suggestions, or specific hands-on guidance (as in hierarchy-
focused techniques [32]).

Software development practices for API design are typi-
cally specific to one programming language, such as C# [21]],
Java [22], or C++ [23]. [33] suggests to generalize the tech-
niques used to evaluate specific APIs in order to investigate
the impact on usability of different design choices. To this
end, [33]] uses APIs created ad hoc to compare the usability
of specific features and to evaluate the client code developers
would write in an abstract setting. Related work [34] attempted
to reconstruct the relations between dimensions in the space
of API design and their impact on usability, and in particular
outlined the involved trade-offs. Our study also evidenced
some of these trade-offs, but based on an “in vivo” empirical
study based on an actual APIL.

A recent study about the performance of developers facing
unfamiliar APIs [24] highlighted several important issues that
were also confirmed in our study. Developers often have
difficulties associating API feature names to functionalities,
discovering relationships between API types (i.e., classes), and
determining the outcome of method calls for methods that do

not explicitly return values. Specifically, developers tend to
expect methods to return values that notify about the success
or failure of a method call. We observed a similar problem in
the case of a method that executes a query, where almost one
fourth of the participants to our study expected the method to
also explicitly return the result of the query itself.

Another issue raised in [24]] as well as in ours and in other
studies regards the fact that programmers rely on feature names
to make educated guessues about the features’ semantics,
especially when the documentation is difficult to access or
incomplete. The task of selecting the appropriate abstractions
creates then potential selection barriers [2]]. For example, an
empirical study of the names used in Java API class names and
JavaDoc documentation [35] shows that the most frequently
used words are “Exception”, “UI”, “Helper”, “Type”, “Event”,
and “Factory”. Programmers who become familiar with such
a terminology may then experience a worse usability when
working with frameworks sticking to different jargon, as we
discuss in Section

Yet another issue raised in [24] and as well [14] and
confirmed in our study regards the recurring difficulties of
discovering relationships between API types. [14] points out
that types are difficult to discover when they are not mentioned
as attributes, local variables, arguments, or even in comments.
In our experiments, the issue of discovering types emerged
mostly in connection with another usability issue reported in
related work [[15]: effectively using the concrete factory design
pattern [16]. Combining evidence from different sources, it is
remarkable that the word “Factory” is frequently used to label
API features [35]] and the concrete factory pattern is one of the
most used; and yet a source of common usability problems.

The thinking-aloud protocol [7], used in our experiments
for data collection, is widely used in usability testing. We
applied it in a less strict variant [8] suitable for usability tasks
where not only the human subjects but also the “product” being
used (in our case, an API) should be inspected and evaluated.

Methods to improve API usability are a natural comple-
ment to techniques to assess the usability. One approach [36]
consists of extracting additional information from the API
documentation—such as usage rules and special cases—and
displaying such information within the IDE whenever the
information is relevant to the current activity. Another ap-
proach [37] suggests that documentation writers should be
involved early on during API design stages; applying text
analysis and other documentation writing techniques can help
to write APIs with improved usability.

IX. CONCLUSIONS

This paper presented the design of an empirical study to
assess the usability of an API by finding issues that may
hamper it. The design is based on the idea of comparing
the expectations of programmers to their actual performance
on programming tasks requiring to write client applications
using API features. To provide a richer characterization of
their behavior, the study collected programmers’ feedback both
directly—through structured interviews with questions based
on the cognitive dimensions framework—and indirectly—
by observing recordings of the performances and classifying

episodes into “tokens” revealing of usability issues. We exe-
cuted the study with 25 programmers (students, researchers,
and professionals) working on a persistence library written
in Eiffel. The study confirmed usability issues that emerged
in related work, such as the difficulty of assigning names to
API features and of discovering relations between types (i.e.,
classes) of the APIL. It also found how several usability flaws
are ultimately due to incomplete or unclear documentation; and
revealed that flexible features are appreciated by experienced
programmers but may disorient novices.

ACKNOWLEDGMENTS

We would like to thank Martin Robillard for his useful
comments on preliminary versions of this content; Roman
Schmocker for his implementation work on the ABEL library;
and all the participants to the usability study. Work partially
supported by the ERC grant CME/291389.

REFERENCES

[1] K. Arnold, “Programmers are people, too,” Queue, vol. 3, no. 5, pp.
54-59, Jun. 2005.

[2] A. Ko, B. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of Visual Languages and Human
Centric Computing, 2004, pp. 199-206.

[3] M. Henning, “API design matters,” Commun. ACM, vol. 52, no. 5, pp.
46-56, May 2009.

[4] A. E Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A. Gurr,
G. F. Kadoda, M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast,
C. Roe, A. Wong, and R. M. Young, “Cognitive dimensions of notations:
Design tools for cognitive technology,” in Cognitive Technology, 2001,
pp. 325-341.

[51 A. C. Kay, “Quoted in: The wiki way: Quick collaboration on the web
by B. Leuf and W. Cunningham,” http://en.wikiquote.org/wiki/Alan_|
Kay, 2001.

[6] S. Clarke, “Measuring API usability,” http://www.drdobbs.com/
windows/measuring-api-usability/184405654, 2004.

[7]1 K. A. Ericsson and H. A. Simon, Protocol Analysis: Verbal Reports as
Data. MIT Press, 1984.

[8] M. T. Boren and J. Ramey, “Thinking aloud: reconciling theory and
practice,” IEEE Transactions on Professional Communication, vol. 43,
no. 3, pp. 261-278, 2000.

[9] S. Clarke, “Evaluating a new programming language,” in 13th Workshop
of the Psychology of Programming Interest Group, 2001, pp. 275-289.

[10] J. Dagit, J. Lawrance, C. Neumann, M. M. Burnett, R. A. Metoyer, and
S. Adams, “Using cognitive dimensions: Advice from the trenches,” J.
Vis. Lang. Comput., vol. 17, no. 4, pp. 302-327, 2006.

[11] M. Piccioni, “A seamless framework for object-oriented persistence in
presence of class schema evolution,” Ph.D. dissertation, ETH Zurich,
2012.

[12] “Spring framework data access,” http://www.springsource.org/features/
data-access, last visited: 15.03.2013.

[13] “Hibernate relational persistence for Java and .NET,” |http://www.
hibernate.org, last visited: 15.03.2013.

[14] J. Stylos and B. A. Myers, “The implications of method placement on

API learnability,” in 16th International Symposium on Foundations of
Software Engineering, 2008, pp. 105-112.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

B. Ellis, J. Stylos, and B. A. Myers, “The factory pattern in API design:
A usability evaluation,” in ICSE, 2007, pp. 302-312.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

B. Meyer, Object Oriented Software Construction, 2nd ed.
Hall PTR, 1997.

J. Gosling, B. Joy, and G. L. S. J. and Gilad Bracha and Alex Buckley,
The Java Language Specification, Java SE 7 Edition (Java Series).
Addison-Wesley Professional, 2013.

B. Stroustroup, Programming: Principles and Practice Using C++.
Addison-Wesley Professional, 2008.

J. Martin, Managing the Data-base Environment.
Canada, 1983.

K. Cwalina and B. Abrams, Framework Design Guidelines: Conven-
tions, Idioms, and Patterns for Reusable .NET Libraries (2nd Edition).
Addison-Wesley Professional, 2008.

J. Tulach, Practical API Design: Confessions of a Java Framework
Architect. Apress, 2012.

M. Reddy, API Design for C++.
E. Duala-Ekoko and M. P. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in /CSE, 2012, pp. 266—
276.

J. Stylos and S. Clarke, “Usability implications of requiring parameters
in objects’ constructors,” in 29th International Conference in Software
Engineering, 2007, pp. 529-539.

D. L. Parnas, “Precise documentation: The key to better software,” in
The Future of Software Engineering. Springer, 2011, pp. 125-148.
M. P. Robillard, “What makes APIs hard to learn? Answers from
developers,” IEEE Software, vol. 26, no. 6, pp. 26-34, 2009.

F. J. Fowler and T. W. Mangione, Standardized Survey Interviewing:
Minimizing Interviewer-Related Error. Sage Publications Inc., 1989.

Prentice

Pearson Education

Morgan Kaufmann, 2011.

S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi, “Building more
usable APIs,” Software, IEEE, vol. 15, no. 3, pp. 78-86, May/Jun.

R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,” in
ICSE, 2012, pp. 782-792.

A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in 29th International Conference on
Software Engineering, 2007, pp. 344-353.

F. Shull, F. Lanubile, and V. R. Basili, “Investigating reading techniques
for object-oriented framework learning,” IEEE Trans. Software Eng.,
vol. 26, no. 11, pp. 1101-1118, 2000.

J. Stylos, “Informing API design through usability studies of API design
choices: A research abstract,” in Visual Languages and Human-Centric
Computing, VL/HCC 2006. IEEE Symposium on, 2006, pp. 246-247.

J. Stylos and B. A. Myers, “Mapping the space of API design decisions,”
in VL/HCC, 2007, pp. 50-60.

C. Anslow, J. Noble, S. Marshall, and E. Tempero, “Visualizing the
word structure of Java class names,” in Companion to OOPSLA ’08.
ACM, 2008, pp. 777-778.

U. Dekel and J. D. Herbsleb, “Improving API documentation usability
with knowledge pushing,” in Proceedings of the 3l1st International
Conference on Software Engineering, ser. ICSE. IEEE Computer
Society, 2009, pp. 320-330.

R. B. Watson, “Improving software API usability through text analysis:
A case study,” in /IEEE IPCC, 2009.

http://en.wikiquote.org/wiki/Alan_Kay
http://en.wikiquote.org/wiki/Alan_Kay
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.springsource.org/features/data-access
http://www.springsource.org/features/data-access
http://www.hibernate.org
http://www.hibernate.org

