
DISS. ETH NO. 20910

A Seamless Framework for
Object-Oriented Persistence in

Presence of Class Schema
Evolution

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
MARCO PICCIONI

Laurea degree in Mathematics, Università degli Studi di Roma La Sapienza, Italia
Master in Economics, Università Commerciale L. Bocconi, Italia

born
July 7th, 1965

citizen of
Italy

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. Harald Gall, co-examiner

Prof. Dr. Martin Robillard, co-examiner

2012

ACKNOWLEDGEMENTS

First and foremost I thank Bertrand Meyer, for hiring me as a research
assistant and for giving me the opportunity to do a PhD under his super-
vision at ETH Zurich. His support and guidance made the work presented
in this thesis possible, and had a decisive influence on my formation as a
researcher in the past years.

I also thank the co-examiners of this thesis, Harald Gall and Martin
Robillard, who kindly made time in their busy schedules to co-referee this
work.

Among the present and past members and visitors of the Chair of Soft-
ware Engineering at ETH Zurich, and without following any particular
order, I would like to thank: Manuel Oriol, for helping me out in taking
the first steps in research and for the fruitful cooperation that followed;
Carlo Alberto Furia and Sebastian Nanz, who kindly agreed to review the
thesis draft; Nadia Polikarpova, for being always willing to discuss any-
thing at any time; Bernd Schoeller, for teaching me the “direct approach”
to things; Andreas Leitner, for teaching me what “Forschung” means; Cri-
stiano “Coach” Calcagno, for bringing fractional permissions to the mas-
ses; Ilinca Ciupa, for being always supportive and willing to help; Michela
Pedroni, for being there both as a colleague and as a friend; Stephan Van
Staden and Julian Tschannen for the fruitful discussions; Jason Yi Wei for
all the help; Marco “Taco” Trudel, for answering all sort of questions and
helping me out in so many ways; Benjamin Morandi, for being a nice col-
league and office-mate; Claudia Günthart for the patience and the good
spirits. And then Martin “Asador” Nordio, Scott “Native Speaker” We-
st, Christian “The Good German” Estler, Andrey “Randy” Rusakov, Max
Yu Pei, Lisa Ling Liu, Mischael Schill, Alexey Kolesnichenko, Cristina Pe-
reira, Marie-Helene Nienaltowski, Piotr Nienaltowski, Till Bay, Wolfgang
Schwedler, Mei Tang, Volkan Arslan, and Yann Müller (may he rest in
peace).

I also thank the students who worked with me during various seme-
ster, diploma, and master projects: Matthias Loeu, Peizhu Li, Adrian Hel-

i

ii

festein, Luc Hansen, Ruihua Jin, Teseo Schneider, Pascal Dufour, Adrian
Schmidmeister, Alexandra Hochuli, and Roman Schmocker.

Special thanks to all the participants to the API front-end usability
study: Alexander Kogtenkov, Arno Fiva, Michael Steindorfer, Adam Du-
racz, Tilmann Zäschke, Severin Münger, Adriana Ispas, Daniel Moser,
Mattia Gollub, Andrey Rusakov, Valentin Wüstholz, Philipp Gamper, Ilin-
ca Ciupa, Andreas Leitner, Samuel Bryner, Philipp Reist, Michela Pedro-
ni, Florian Köhl, Jiwon Shin, Miriam Tschanen, Jascha Grübel, Nicholas
Pleschko, Mischael Schill, Daniel Schweizer, Christian Locher, and Oliver
Probst.

I would also like to thank Denise Spicher from the Student Administra-
tion Office, for putting up with all my questions and always being efficient
with a smile.

In the Global Information Systems Group, particular thanks to Moira
Norrie for the useful comments on the PhD research plan, and to Stefania
Leone and Tilmann Zätschke for having discussed my TSE paper draft
providing valuable feedback.

Within the Eiffel community I wish to thank Emmanuel Stapf, Alexan-
der Kogtenkov, Jocelyn Fiat, Javier Hector, and Thomas Beale for the help
and good feedback.

My former colleagues at Sistemi Informativi supported this Swiss idea
of mine from the start: Fiorella Lancia, Cristina Alberti, Silvia Brogi, Laura
Conti, Giuseppe Di Raimondo, Alessia Fazzi, Daniela Maciariello, Arianna
Malato, Rossana Meaggia and Gianluca Rizzo have my thanks as well.

My family has been always supporting me: Rita, Roberto, Fabio,
Guido, Nicole, Valerio, Francesco, and Riccardo are all in my heart.

To Franca, a very special person, go my very special thanks.
I finally wish to thank Cecilia, “my sun and stars”, life companion and

main supporter, for always being there for me. Without her love and ca-
ring I simply could not have first started and then survived this exciting
adventure.

CONTENTS

1 Overview 1
1.1 Main results . 2
1.2 A case of object-oriented schema evolution 2
1.3 Structure . 7

2 Related Work 9
2.1 The class schema approach 9
2.2 The multi-version approach 12
2.3 Schema evolution in relational databases 15
2.4 Other approaches to schema evolution 16
2.5 Summary of contributions with respect to previous work . . 18

3 Evolving Persistent Applications: a Model 21
3.1 Syntax for classes . 22
3.2 Schema modification operators 23

3.2.1 The attribute not changed schema modification op-
erator . 24

3.2.2 The attribute added schema modification operator . 24
3.2.3 The attribute renamed schema modification operator 25
3.2.4 The attribute type changed schema modification op-

erator . 25
3.2.5 The attribute removed schema modification operator 25
3.2.6 The Attribute made attached schema modification

operator . 26
3.3 Completeness . 27
3.4 Concrete transformation syntax and object transformers . . . 27
3.5 Heuristics for class schema evolution 29
3.6 A measure of robustness to evolution for persistent object-

oriented applications . 31

iii

iv CONTENTS

4 How Software Evolution Affects Persistence: Empirical Evidence 33
4.1 Persistence-affecting changes in Java 35

4.1.1 Analyzing java.util . 35
4.1.2 The persistence evolution robustness of java.util 39
4.1.3 Analyzing the Apache Tomcat code base 40

4.2 Persistence-affecting changes in Eiffel 41
4.2.1 Eiffel libraries changes 41
4.2.2 Analyzing the EiffelStudio code base 44

4.3 Evaluating the persistence model on the Java and Eiffel
repositories . 45

4.4 The Evolution of class invariants in connection with persis-
tence . 47
4.4.1 An exploratory study on class invariant evolution . . 48
4.4.2 More results on class invariant evolution 53

4.5 Threats to validity . 58

5 Tools and Libraries for Evolving Persistent Apps 61
5.1 IDE support . 62

5.1.1 Schema evolution IDE support 62
5.1.2 Serialization support: an object browser GUI 67

5.2 Code generation . 69
5.3 The persistence library implementation 71

5.3.1 Front-end API . 72
5.3.2 The retrieval algorithm 76

6 Evaluating the Design of the Persistence API 79
6.1 Evaluation guidelines . 79
6.2 Empirical answers to API questions: example results from

previous studies . 81
6.3 Research questions . 83
6.4 Participants . 83
6.5 Study setup . 86
6.6 Data collection protocol . 90
6.7 Data analysis: API usability tokens elicitation 91

6.7.1 API usability tokens for class REPOSITORY 92
6.7.2 API usability tokens for class QUERY 93
6.7.3 API usability tokens for class CRUD_EXECUTOR 95
6.7.4 API usability tokens for class CRITERION 96

6.8 Data Analysis: final questionnaire 98
6.9 Lessons learned . 104
6.10 Threats to validity . 105

CONTENTS v

7 Conclusions and Future Work 107
7.1 Tackling the limits of existing approaches 107

7.1.1 Multi-version model 107
7.1.2 Invariant-safe evolution 108
7.1.3 Release-time evolution handling 108

7.2 Conclusions . 109
7.3 Future work . 110

A Eiffel and Design by Contract 113
A.0.1 Types . 113
A.0.2 Information hiding . 114
A.0.3 Code organization . 114
A.0.4 Terminology . 114
A.0.5 Design by Contract . 115
A.0.6 Void Safety . 116

B The Persistence Library’s Backend implementation 117
B.1 The ORM layer: from REPOSITORY to BACKEND 117

B.1.1 Collection handling 121
B.1.2 Handling object references 123

B.2 The ORM layer: from BACKEND to the database 126
B.3 Automatically generating the database schema 128
B.4 Framework support for transactions and errors 130
B.5 Framework extension points 132

B.5.1 Supporting an additional relational database 132
B.5.2 Supporting additional ORM mappings 133
B.5.3 Supporting non-relational databases 135
B.5.4 Cross-implementation extensions 136

C Graphs 137

vi CONTENTS

ABSTRACT

Many object-oriented software systems rely on persistent data. Such sys-
tems also evolve over time. These two equally valid needs clash: a sys-
tem may attempt to retrieve data whose description in the program has
changed. A typical scenario involves an object retrieval failure because
of an evolution in the corresponding class. Another, more critical one oc-
curs when a retrieval algorithm accepts objects whose class invariants are
not valid anymore. This may happen because in most programming lan-
guages class invariants are not made explicit in the code. While in the first
scenario a runtime failure will typically point out the issue, the second
scenario may lead to invalidating the consistency of the whole system.

The research and software development community has mainly been
trying to tackle the first scenario above by providing software developers
with the possibility of writing transformation functions to adapt old ob-
jects to the new classes. This thesis contributes to this effort by devising a
software framework that provides a solution to both scenarios described
above.

The framework provides a concise model for persistence-affecting class
schema modifications, and an infrastructure keeping track of all class ver-
sions and system releases, recognizing the class schema modifications stat-
ically, that is before they cause retrieval errors. The framework then further
supports developers by using heuristics to generate transformation func-
tions. At retrieval time, a version-aware retrieval algorithm leverages the
information previously collected, and together with a class invariant val-
idation step handles object retrieval in a safer way. The algorithm is part
of a persistence library seamlessly supporting multiple persistence back-
ends.

To establish the relevance of the problem under study and to validate
the choice of class schema modifications among the many possible, this
thesis presents the results of four empirical studies performed on existing
software libraries and applications, written in both Java and Eiffel. These
studies suggest that the problem of a semantically consistent class schema

vii

evolution exists, and that the chosen subset of schema modification oper-
ators is viable.

This thesis also suggests a measure for the robustness of evolving
object-oriented applications that persist their objects. The measure is
meant to offer a simple way to evaluate current and future software
projects with respect to their ability to retrieve previously stored objects.
The proposed measure is computed and evaluated over an existing Java
library.

An additional contribution consists in a study of a phenomenon not
analyzed before: the evolution of class invariants and its possible effects
on object retrieval. The analysis of eight software projects led to the con-
clusion that while developers do write class invariants, such activities
as adding and removing attributes do not lead, as one might expect, to
stronger or weaker invariants in term of number of clauses. This sug-
gests that class invariant evolution constitutes one more potential risk to
the consistency of the retrieval operations, because for example the newly
added attributes’ values could be stored and then retrieved without being
guarded by a corresponding class invariant clause.

The usability of the framework front-end API is assessed by perform-
ing an exploratory study involving 25 object-oriented developers that had
never seen the API before. The study results show that while the API can
be used for commonplace database access tasks without resorting to ex-
ternal documentation and specific database knowledge, it also has some
usability issues that need to be addressed.

In conclusion, this thesis provides a seamless and invariant-safe solu-
tion to the problem of class schema evolution of object-oriented software,
encompassing the time in which a system is released, the time in which
objects are stored, and the time in which object are retrieved.

viii

RIASSUNTO

Molti sistemi software orientati agli oggetti fanno affidamento su dati per-
sistenti. Tali sistemi evolvono anche nel tempo. Questi due aspetti, entram-
bi legittimi, confliggono, perché un sistema potrebbe leggere dei dati la cui
descrizione nel programma è cambiata. Uno scenario tipico vede la lettura
di un oggetto fallire per via di una evoluzione nella classe corrispondente.
Uno scenario piú critico si ha quando un algoritmo di lettura dati accetta
degli oggetti i cui invarianti di classe non sono piú validi. Ciò può acca-
dere perch’e in molti linguaggi di programmazione gli invarianti di classe
non sono resi espliciti nel codice. Mentre nel primo scenario un errore a
tempo di esecuzione evidenzierà il problema, il secondo scenario potrebbe
causare una mancanza di consistenza per l’intero sistema.

La comunità dei ricercatori e degli sviluppatori software ha tentato di
risolvere principalmente il primo scenario menzionato sopra dando agli
sviluppatori la possibilità di scrivere funzioni di trasformazione con lo
scopo di adattare i vecchi oggetti alle nuove classi. Questa tesi contribui-
sce a questo tentativo proponendo un framework software che fornisce
una soluzione per entrambi gli scenari sopra menzionati.

Il framework propone un conciso modello per i cambiamenti nella
struttura delle classi che sono rilevanti rispetto alla persistenza, ed una
infrastruttura che tiene conto di tutte le versioni di una classe e di tutti
i rilasci di un software, identificando i cambiamenti nella struttura delle
classi staticamente, cioè prima che causino errori di lettura. Il framework
poi supporta ulteriormente gli sviluppatori usando delle euristiche per ge-
nerare funzioni di trasformazione. Quando è il momento di leggere i dati,
un algoritmo che sa come gestire le versioni di una classe utilizza le infor-
mazioni raccolte in precedenza, e con uno step di verifica dell’invariante
gestisce la lettura degli oggetti in un modo piú sicuro. L’algoritmo fa parte
di una libreria di persistenza che supporta senza soluzione di continuità
molti back-end.

Per stabilire la rilevanza del problema sotto studio e per validare la
scelta dei cambiamenti nella struttura delle classi tra i molti possibili, que-

ix

sta tesi presenta i risultati di quattro studi empirici condotti su applica-
zioni e librerie software esistenti, scritte sia in Java che in Eiffel. Tali studi
suggeriscono che il problema della consistenza nella semantica dell’evo-
luzione della struttura delle classi esiste, e che il sottoinsieme scelto di
operatori dei cambiamenti nella struttura e’ in grado di funzionare.

Questa tesi suggerisce anche una misura per la robustezza di appli-
cazioni orientate agli oggetti che evolvono e salvano gli oggetti stessi. La
misura intende offrire un modo semplice per valutare progetti software
presenti e futuri rispetto alla loro capacità di leggere oggetti salvati in pre-
cedenza. La misura proposta è calcolata e valutata su di una libreria Java
esistente.

Un contributo aggiuntivo consiste nello studio di un fenomeno non
analizzato in precedenza: l’evoluzione di invarianti di classe e i suoi pos-
sibili effetti sulla lettura degli oggetti. L’analisi di otto progetti software
ha portato alle seguenti conclusioni: gli sviluppatori di fatto scrivono gli
invarianti di classe, ed attività come aggiungere o rimuovere attributi non
portano, come potremmo aspettarci, ad invarianti piú forti o piú debo-
li in termini di numero di clausole. Ciò suggerisce che l’evoluzione degli
invarianti di classe costituisce un risco potenziale aggiuntivo per la con-
sistenza delle operazioni di lettura, perché per esempio i valori dei nuovi
attributi potrebbero essere salvati e poi letti senza essere verificati dalle
corrispondenti clausole dell’invariante di classe.

L’usabilità della front-end API del framework è stato valutato trami-
te uno studio esplorativo che ha coinvolto 25 sviluppatori orientati agli
oggetti che non avevano mai visto l’API prima. I risultati dello studio mo-
strano che mentre l’API può essere usata per effettuare delle comuni ope-
razioni di accesso ad una base di dati senza utilizzare documentazione
esterna o presumere specifiche conoscenze di basi di dati, presenta anche
dei problemi di usabilità che devono essere affrontati.

In conclusione, questa tesi propone una soluzione al problema della
evoluzione della struttura delle classi nel software orientato agli ogget-
ti che è uniforme e sicura rispetto agli invarianti id classe, e che va dal
momento in cui un sistema viene rilasciato al momento in cui gli oggetti
vengono letti, passando per quando gli oggetti vengono salvati.

x

LIST OF FIGURES

3.1 Syntax for class definitions of Eiffel programs. 22
3.2 Attribute not changed schema modification operator. 24
3.3 Attribute added schema modification operator. 24
3.4 Attribute renamed schema modification operator. 25
3.5 Attribute type changed schema modification operator. 25
3.6 Attribute removed schema modification operator. 26
3.7 Attribute made attached schema modification operator. . . . 26
3.8 A concrete syntax for transformers. 28
3.9 Object transformers. 29

4.1 Single SMOs vs. all changes and vs. persistence-affecting ones. 37

5.1 EiffelStudio IDE tool integration. 64
5.2 Version selection pop-up. 65
5.3 Schema evolution handler report. 65
5.4 Selecting a release and a class for filtering. 66
5.5 Filtering the attributes of a class. 66
5.6 Starting the object browsing facility integrated into Eiffel-

Studio. 68
5.7 Object visualization GUI. 68
5.8 Object browsing facility integrated into EiffelStudio. 69
5.9 Object browsing facility integrated into EiffelStudio. 69
5.10 The main front-end classes and their relations. 72
5.11 The OBJECT_QUERY [G] and CRITERION class hierarchy

structures. 73

B.1 OBJECT_GRAPH_PART hierarchy 118
B.2 The Object-to-Relational API important classes. 119
B.3 Inserting and retrieving objects using RELA-

TIONAL REPOSITORY. 120

xi

B.4 An ER-model where a RELATIONAL_COLLECTION_PART

with 1:M mapping can be used. 122
B.5 An ER-model where a RELATIONAL_COLLECTION_PART

with M:N mapping can be used. 122
B.6 An ER-model where an OBJECT_COLLECTION_PART can be

used. 122
B.7 An object graph in main memory. 123
B.8 The previous object graph at depth 1 (grey nodes are not

considered). 125
B.9 From BACKEND to the databases. 127
B.10 The ER-Model of the generic database layout. 129
B.11 Partial error class hierarchy. 132
B.12 ER-Model for persons and items. 133

C.1 AutoTest project: weakening and strengthening of class in-
variant when adding or removing attributes. 138

C.2 EiffelBase project: weakening and strengthening of class in-
variant when adding or removing attributes. 139

C.3 Eiffel Program Analysis project: weakening and strengthen-
ing of class invariant when adding or removing attributes. . 140

C.4 Gobo Kernel project: weakening and strengthening of class
invariant when adding or removing attributes. 141

C.5 Gobo Structure project: weakening and strengthening of
class invariant when adding or removing attributes. 142

C.6 Gobo Time project: weakening and strengthening of class
invariant when adding or removing attributes. 143

C.7 Gobo Utility project: weakening and strengthening of class
invariant when adding or removing attributes. 144

C.8 Gobo XML project: weakening and strengthening of class
invariant when adding or removing attributes. 145

xii

LIST OF TABLES

4.1 Changes found across 5 versions of java.util. 36
4.2 Persistence-affecting changes across 5 versions of

java.util. 37
4.3 Changes found in 5 versions of java.util, by class. 38
4.4 Persistence evolution-robustness (PER) of ArrayList. . . . 39
4.5 P-evolution-robustness (PER) of java.util. 40
4.6 SMOs found in Tomcat’s repository. 41
4.7 SMOs found across 5 versions of Eiffel. 43
4.8 SMOs found across 5 Eiffel versions, per class. 44
4.9 SMOs found in EiffelStudio’s repository. 45
4.10 Changes in class invariant clauses found across 5 versions

of EiffelBase. The last small revision number is justified
by an intervening repository migration. 49

4.11 Changes in class invariant clauses found across 5 versions
of EiffelBase, by class. 50

4.12 Changes in class invariants across consecutive revisions of
EiffelBase. 51

4.13 Type of clauses occurring in class invariants across 5 ver-
sions of EiffelBase, by class. 52

4.14 List of Eiffel projects used in the study (Age is in weeks). . . 54
4.15 Invariant changes when adding attributes, by project. 56
4.16 Invariant changes when removing attributes, by project. . . 57
4.17 Attribute change analysis across all Eiffel projects. 58

6.1 Participant pool information. 85
6.2 API usability tokens (AUT) for repository-related issues. . . 93
6.3 API usability tokens (AUT) for query-related issues. 95
6.4 API usability tokens (AUT) for crud executor-related issues. 97
6.5 API usability tokens (AUT) for criterion-related issues. . . . 98
6.6 Answers to the final questionnaire. 102

xiii

6.7 Answers to the questionnaire: experienced group. 103
6.8 Answers to the questionnaire: group with less O-O experi-

ence. 103

xiv

LIST OF LISTINGS

1.1 BANK_ACCOUNT, version 1. 3
1.2 BANK_ACCOUNT, version 2. 4
1.3 Schema evolution handler for class BANK_ACCOUNT. 6
5.1 Domain class PERSON . 73
5.2 Querying a MySQL database 74
5.3 Algorithm for object retrieval. 76
6.1 Class PERSON, whose objects are to be stored. 87
6.2 Class USABILITY_TEST, the experiment starting point. 88
6.3 Constructor of class PREDEFINED_CRITERION. 97
A.1 Object test. 116
B.1 Domain class ITEM . 133
B.2 The collection handler for LINKED_LIST 134
B.3 Domain class PERSON extended by the ORM 135

xv

xvi

CHAPTER 1

OVERVIEW

Between the time when an object-oriented program writes objects to per-
sistent storage and when another execution retrieves them, the program
may have evolved; in particular, classes describing these objects may have
changed. This need to fit old objects into new classes is the problem of
schema evolution for object-oriented software. While many solutions have
been suggested and some are currently used, none has been generally ac-
cepted.

The techniques used to cope with the problem in practice rely heavily
on manual effort by the developers, who must understand and examine
previous class versions and provide conversion code. This approach is not
only tedious, but a threat to software reliability, as it usually relies on tol-
erant retrieval algorithms making questionable decisions about the key
issue: how to avoid accepting semantically inconsistent objects into the
retrieving system.

The purpose of the present work is to lay a solid foundation for a gen-
eral, stable solution to the problem of object-oriented class schema evolu-
tion.

To achieve its purpose this thesis proposes a conceptual framework
modeling class schema evolution of persistent object-oriented applica-
tions, and realizes it with a tool integrated into an integrated development
environment (IDE), and a persistence library offering seamless access to
different kinds of persistence stores.

2 CHAPTER 1. OVERVIEW

1.1 Main results

This thesis relies on the concept of seamless persistence for evolving object-
oriented software. The seamlessness is intended with respect to two di-
mensions: time and persistence media.

With respect to time, this thesis proposes a framework that aims at sup-
porting developers starting from when they release new class versions
to when they store and retrieve objects in and from persistent stores. In
particular, the thesis describes the principles behind invariant-safe class
schema evolution.

With respect to persistence media, this thesis aims at providing a
framework front-end application programming interface (API) that can
uniformly access different kinds of persistent stores, therefore minimizing
the prerequisite knowledge about the underlying database technology.

The contributions of this thesis include the following:

• A formal model for atomic changes in a class schema, resulting from
object-oriented theory and experience.

• A schema evolution tool integrated into an IDE and implementing
the formal model.

• A persistence library integrating the proposed schema evolution ap-
proach and featuring seamless access to different kinds of persis-
tence stores.

• A measure of robustness for the evolution of persistent applications,
devised to understand to what extent they are able to successfully
retrieve previously stored objects.

• Four empirical studies to assess the relevance of class schema evolu-
tion as a software engineering problem. The studies cover both Java
and Eiffel, and for each language analyze both software libraries and
realistic applications.

• A further study to investigate the evolution of the specific form of
code-integrated specification that is relevant to persistence: class in-
variants.

1.2 A case of object-oriented schema evolution

This section presents a motivating example and shows how the persis-
tence framework described in Chapter 5 copes with it. This thesis will use

1.2. A CASE OF OBJECT-ORIENTED SCHEMA EVOLUTION 3

the Eiffel notation when expressing source code, because it provides em-
bedded support for class invariants, which constitute a cornerstone of the
whole approach. The aspects of Eiffel relevant to this thesis are illustrated
in Appendix A.

Assume a software system stores objects of type BANK_ACCOUNT (see
Figure 1.1).

class
BANK_ACCOUNT

create make

feature -- Initialization

make
-- Create a bank account with an initial deposit.

do
tot_deposits := 1

end

feature -- Status report

balance: INTEGER
-- Account balance.
do
Result := tot_deposits - tot_withdrawals

end

info: INTEGER
-- Some numeric information.

feature -- Basic operations

deposit (sum: INTEGER)
-- Add ‘sum’ to account.

require
sum_positive: sum > 0

do
tot_deposits := tot_deposits + sum

ensure
balance_correct: balance = old balance + sum

end

4 CHAPTER 1. OVERVIEW

withdraw (sum: INTEGER)
-- Retrieve ‘sum’ from account.

require
sum_positive: sum > 0
has_sufficient_funds: sum < balance

do
tot_withdrawals := tot_withdrawals + sum

ensure
balance_correct: balance = old balance - sum

end

feature {NONE} -- Implementation

tot_deposits: INTEGER
-- Total amount deposited.

tot_withdrawals: INTEGER
-- Total amount withdrawn.

invariant
valid_account: tot_deposits > tot_withdrawals
info > 0

end

Listing 1.1: BANK_ACCOUNT, version 1.

The balance is computed on-demand from the total amount of deposits
and withdrawals, and there is an explicit class invariant capturing the in-
tended semantics of the bank account. This invariant is checked after the
invocation of the constructor make of a bank account object, and also be-
fore and after the invocation of any other routine in the class.

Version 1 then evolves into version 2 (Listing 1.2), in which the query
balance becomes an attribute updated every time a deposit or withdrawal
takes place, and the attribute info becomes a string. While in languages
with a C-derived syntax like Java we would need to modify client code to
accommodate the fact that a method becomes an attribute, here clients are
not affected, because in Eiffel both attributes and argumentless functions
can be accessed in the same way from outside the class, providing uniform
access to the class itself. Note also how the invariant is now expressed in
terms of the new attribute balance.

class
BANK_ACCOUNT

1.2. A CASE OF OBJECT-ORIENTED SCHEMA EVOLUTION 5

create make

feature -- Initialization

make
-- Create a bank account with an initial deposit.

do
balance := 1

end

feature -- Status report

balance: INTEGER
-- Account balance.

info: STRING
-- Some numeric information, expressed as a string.

feature -- Basic operations

deposit (sum: INTEGER)
-- Add ‘sum’ to account.

require
sum_positive: sum > 0

do
balance := balance + sum

ensure
balance_correct: balance = old balance + sum

end

withdraw (sum: INTEGER)
-- Retrieve ‘sum’ from account.

require
sum_positive: sum > 0
has_sufficient_funds: sum < balance

do
balance := balance - sum

ensure
balance_correct: balance = old balance - sum

end

invariant
valid_account: balance > 0

6 CHAPTER 1. OVERVIEW

end

Listing 1.2: BANK_ACCOUNT, version 2.

What happens when trying to retrieve an object stored with version 1
of class BANK_ACCOUNT into an object of version 2 depends on the retrieval
system, which may trigger a failure or act leniently by silently accepting
objects having the attributes balance and info initialized to the default.
In case of the example this is certainly wrong. To understand why, imag-
ine developers forgetting to code an appropriate transformation function
assigning the difference between tot_deposits and tot_withdrawals

stored in version 1 to the newly created balance attribute. Then balance

will incorrectly be zero for all retrieved objects. The same happens if the
integer value of attribute info is not appropriately converted into a string.
Luckily, in the case of the balance attribute the new class invariant will
be violated triggering an exception, because the value of balance is now
zero and not positive as the invariant prescribes.

The framework presented in this thesis aims at supporting developers
in evolving object-oriented applications. It integrates seamlessly into an
IDE, keeping track of all class versions and system releases. When a co-
herent set of classes is released, developers are supported in writing trans-
formation functions to migrate from one version to another. Depending on
the specific evolutionary changes automatically detected, the framework
support can vary from a function template containing some standard ini-
tializations to a full-blown function body generation, where no additional
developer intervention is needed. Listing 1.3 shows the code produced by
the framework for the transformation function in case of the previous ex-
ample.
class
BANK_ACCOUNT_SCHEMA_EVOLUTION_HANDLER

feature -- Transformation functions

v1_to_v2: HASH_TABLE [TUPLE [LIST [STRING], FUNCTION [ANY
, TUPLE [LIST [ANY]], ANY]], STRING]
-- Conversion function from version 1 to version 2.

local
tmp: SCHEMA_EVOLUTION_DEFAULT_CONVERSION_FUNCTIONS

do
-- auto-generated code and comments
create temp
create Result.make_default
-- New attribute of type INTEGER

1.3. STRUCTURE 7

-- What is the default value?
-- Please also check the class invariant!
Result.force (tmp.variable_constant (0), "balance")
-- Convert from INTEGER to STRING
Result.force (tmp.variable_change_type ("info", agent

tmp.to_string (?)), "info")
-- auto-generated code and comments

end
end

Listing 1.3: Schema evolution handler for class BANK_ACCOUNT.

In case of the balance attribute, the tool recognizes that two attributes
have disappeared and a new one has been added, but obviously needs the
developer’s help to figure out how to initialize it. On the bright side, a de-
fault value initialization will raise an exception because it violates the ver-
sion 2 class invariant, so there is no risk of accepting inconsistent objects
into the system. For theinfo attribute, the framework recognizes the type
change and provides a full code generation of the transformation function
body. Finally, the framework includes a retrieval algorithm that is aware
of the presence (or absence) of transformation functions between any two
versions of each class, triggering retrieval failures if the required transfor-
mation function is not present, or if the retrieved object does not satisfy
the new version class invariant. This guarantees an invariant-safe class
schema evolution.

1.3 Structure

Chapter 2 describes related approaches to class schema evolution. The rest
of the related work is cited where appropriate.

Chapter 3 defines a conceptual framework for persistent evolving
object-oriented applications by presenting a formal model representing at-
tribute changes through a set of transformation functions, and suggesting
the definition of a measure for the robustness of evolving object-oriented
applications that persist their objects.

Empirical studies are essential to understand what kind of schema evo-
lution actually happens in practice; without empirical evidence, proposed
solutions to the schema evolution problem are bound to be off the mark.
Chapter 4 presents the results of four empirical studies performed on ex-
isting software libraries and applications, written in both Java and Eiffel,
and compute the proposed measure of persistent software evolution ro-
bustness for an existing and widely used Java library. One more study

8 CHAPTER 1. OVERVIEW

analyzes the evolution of class invariants in eight software projects and
investigates if and how their evolution influences the ability to retrieve
previously stored objects.

Chapter 5 describes the framework implementation intended to sup-
port developers through the entire schema evolution process, from class
release time to retrieval time. The framework implementation is described
according to its two main components. The first component is a tool in-
tegrated into the EiffelStudio IDE and including version handling and
code template generation for transformation functions. The second com-
ponent is a persistence library, independent from the tool and supporting
an object-oriented API to access multiple persistence stores and a retrieval
algorithm preventing the acceptance of inconsistent objects into the sys-
tem.

Chapter 6 presents the empirical evaluation of the framework front-
end API, and finally Chapter 7 draws conclusions on the work done and
suggests future work.

CHAPTER 2

RELATED WORK

The issues arising from schema evolution are widely acknowledged. They
affect object-oriented databases, relational databases and all programming
languages providing a serialization facility.

This chapter presents most of the related work. The rest is referred to
where appropriate in the remainder of the thesis.

The related work is described using different sections for clarity. Sec-
tion 2.1 describes the most common approach to object-oriented persis-
tence, the one that focuses mainly on the current class schema and the
retrieved one, therefore not explicitly supporting class versioning. Sec-
tion 2.2 describes the persistence solutions offering explicit support for
multiple versions, and contrasts them with the framework proposed by
this thesis. Section 2.3 discusses the topic of schema evolution in relational
databases. This is of interest because many object-oriented applications
use relational databases, that also have evolving schemas and have been
dealing with the related issues for quite some time. Section 2.4 describes
other interesting approaches to class schema evolution that do not fall into
the previous sections. Finally, Section 2.5 summarizes the contributions of
this thesis with respect to the prior art.

2.1 The class schema approach

Given an object we need to retrieve, the most widespread approach com-
pares the object’s class schema available in the retrieving system with the
class schema of the stored object. If a mismatch occurs, developers typi-
cally implement a transformation function to adapt the retrieved object to
the newly created one. This approach is an attempt to provide a solution

10 CHAPTER 2. RELATED WORK

that is practical and relatively easy to implement as opposed to imple-
menting explicit support for multiple versions (see Section 2.2).

Serialization is a specific mechanism used to save relevant object in-
formation in a file or send it remotely over a network for later retrieval.
As compactness might be of the essence, a binary encoding of the data is
commonplace, but a textual format like XML or JSON may be used as well.

In Java a class can enable future serialization of its instances by im-
plementing the Serializable interface, or its descendant Externalizable [3, 80,
68, 102]. The difference between Serializable and Externalizable is that while
the former provides a default serialization mechanism with a predefined
format, the latter gives to the class complete control over format and con-
tents of the stream of objects and its supertypes. Developers can provide
custom deserialization methods like Serializable.readObject and Externaliz-
able.readExternal to help establishing the — typically implicit — class in-
variant. Providing custom deserialization methods becomes particularly
important when objects have non-trivial class invariants that would not be
satisfied by an automatic attribute initialization to the default values. An
important constraint is that every serializable class has an automatically
generated and unique identifier associated with it, stored in the serialVer-
sionUID attribute and calculated using a complex algorithm mimicking
closely the class schema (and including attributes information, method
signatures and other class details). If developers accept the default gen-
erated value for the serialVersionUID, they implicitly allow the serialized
form to become an encoding of the physical representation of the object
graph rooted at the object itself. Therefore the deserialization process be-
comes very sensitive to most of the class and attribute modifications, and
sometimes even to different compiler implementations. Therefore, accept-
ing the default value for the serialVersionUID attribute can lead, in time, to
unexpected difficulties in retrieving objects previously stored [14].

The JavaBeans framework offers an interesting solution for serializa-
tion. The main abstractions, XMLEncoder and XMLDecoder, suggest that
the file format used is XML-based, making it possible to use XML trans-
formations to handle class schema evolution. XMLEncoder, apart from
cloning the object graph as expected, records the necessary steps to per-
form the clone, acting therefore more as a code generator than as a stan-
dard serializer. This means that the XML documents created are basically
programs that can then be interpreted by the XMLDecoder against a fixed
set of semantics, very much in an automatic fashion. The framework relies
by default on the existence of accessors — setter and getter methods for at-
tributes. The attributes that have accessors are called properties. When the
properties are not sufficient to express a class’s persistence needs, either

2.1. THE CLASS SCHEMA APPROACH 11

because there are some relevant attributes that do not have corresponding
accessors, or because one does not want to store all the properties, it is pos-
sible to use persistence delegates (method objects passed as parameters to
other methods) during the writing process. As all the object customiza-
tion (including the creation information) is produced by the XMLEncoder,
invoking a readObject method is not needed, and the XMLDecoder has a
relatively simple structure: it is just an executor of the instructions coded
by the XMLEncoder in reverse order [94].

The .NET framework offers three technologies to serialize objects, each
suggested for specific scenarios. Data Contract Serialization (DCS) is used
for general persistence, web services and JSON serialization; XML Serial-
ization is used for a full control over the XML serialized format; Runtime
Serialization (either in binary format or compliant to the Simple Object
Access Protocol (SOAP)) is used for .NET remoting [42]. DCS requires de-
velopers that want persistent objects to apply the DataContractAttribute to
the class and the DataMemberAttribute to the fields and properties. Vari-
ous serialization callbacks can be invoked at serialization and deserializa-
tion time. The serialized stream is very sensitive to changes to the data
members structure, so even changing their order may lead to a deserial-
ization failure. The interface IExtensibleDataObject can be implemented to
store any unknown data to the current version coming from a future ver-
sion, which helps dealing with some of the possible deserialization issues.
Runtime serialization requires the class to apply at the very least the Seri-
alizableAttribute, and offers more control by implementing the ISerializable
interface to provide a special serialization constructor.

Python offers a serialization API similar to the ones seen above [64].
The action of serializing an object is called “pickling”, while the action of
deserializing is called “unpickling”. Two formats are available: a default
printable ASCII format, and a more efficient binary format. Callbacks are
available to adapt the retrieved objects to the new format. Python’s pick-
ling mechanism constitutes the backbone of the ZOPE application server
[40]. An interesting fact about Python’s serialization is that the serializa-
tion protocol is made explicit via the protocol parameter. This helps detect-
ing in advance possible deserialization failures due to serialization proto-
col evolution. To be more precise, while protocol backwards compatibility
is guaranteed, it is not possible to read an object stored using a newer pro-
tocol when using an older protocol.

Eiffel’s serialization mechanism offers a solution in which all conflicts
are resolved in one class. Custom deserialization behavior is available by
inheriting from a MISMATCH CORRECTOR class and redefining the call-
back correct mismatch to re-establish the class invariant. As a difference

12 CHAPTER 2. RELATED WORK

with the solutions above, it is easier to detect class invariant violations
because the native support for Design by Contract [90] will trigger a class
invariant check when the correct mismatch has terminated execution.

In our view, the serialization mechanisms of object-oriented languages
are converging towards a full-fledged solution such as an object oriented
database management system (OODBMS), because they have increasingly
smaller memory footprints and the ability to selectively read data, while in
the case of serialization mechanisms the data have to be read as a whole. To
assess such a solution, we examine now some object-oriented databases.

The db4o object oriented database [104, 38] offers an advantage under
the point of view of API usability, because it allows objects to be stored as
they are, without polluting them with persistence code. This means that it
is not necessary to mark the objects in any special way to allow them to
be persisted. It is sufficient to pass them to the method set in class Object-
Container. With respect to schema evolution handling, if developers need
a custom behavior to establish the retrieving object class invariant, they
have two possibilities: choose to use reflectively invoked methods in the
object class or register listeners to specific ObjectContainer events outside
the object class. As seen for Java and .NET, there is no explicit support for
class invariant violation.

The Orion object-oriented database [9] introduces a model recogniz-
ing the importance of invariants to validate conversions, and deals with
a broad set of code changes, mostly involving both single and multiple
inheritance. The model proposed in Chapter 3 is simpler with respect to
the set of code changes, because it considers the object’s flattened form. It
is also in one case more general, because it allows switching to any type
when detecting an attribute type change, while Orion only allows switch-
ing to an ancestor type. The proposed framework also offers a limited sup-
port for “attribute renamed”, while Orion does not take any action in this
case. Finally, in Orion invariants are mostly related to keeping the system
consistent with respect to inheritance, while the proposed framework uses
class invariants to validate the conversions semantically.

2.2 The multi-version approach

Storing all versions of a class makes it easier to provide more specific
schema evolution support. ENCORE [112] is an early example enforcing a
serialized form limited to the attributes in the class interface, and propos-
ing an ad hoc constraint language for inter-property constraints.

A general framework for class schema evolution that has been applied

2.2. THE MULTI-VERSION APPROACH 13

to an OODB was proposed by Lautemann [84]. Two important differ-
ences with the framework described in this thesis are that it required a
schema designer role conceptually distinct from the application developer
role, and envisioned a completely transparent schema evolution that it has
proven to be impossible to achieve in all scenarios.

A more recent example of a multi-version OODB is Versant Object
Database (VOD) [39]. It consists of two main storage areas: a dictionary,
which carries the class definitions for objects in the database, and the ac-
tual database, containing the serialized objects forms. The dictionary is
necessary to understand the structure of the objects stored in the database.
The delicate issue consists in modifying the dictionary after having stored
some objects. The dictionary keeps versions for every class, so when a class
schema modification is detected, old objects are lazily converted if possi-
ble. In the case of an attribute added to the latest version of a class, the
automatic, lazy object conversion initializes it to the default at retrieval,
a procedure that may be risky as seen in Section 1.2. When automatic
conversions are not possible, VOD provides a tool to perform server-side
manual class schema evolution.

In Objective C, to support encoding and decoding of instances a class
must adopt the NSCoding protocol and implement its methods. The pro-
tocol declares two methods that are invoked on the objects being encoded
or decoded. During encoding or decoding, a coder object invokes methods
that allow the object being encoded to substitute a replacement class or in-
stance for itself. Objective C also uses “keyed archiving”, in which every
value encoded is given an arbitrary string key and there is no automatic
versioning. This allows more flexibility when fixing a possible mismatch,
and also allows for inserting custom version information. An interesting
technique that tries to cope with forward compatibility is “fallback han-
dling”, useful when one of a set of possible keys for a value is encoded.
The set of supported keys may evolve over time, with newer keys being
preferred in future versions of your class. Fallback handling defines a fun-
damental key that must be readable forever, but is used only when no
other recognized keys are present. Future versions can then write a value
using both a new key and the fallback key. Older versions of the class will
not see the new key, but can still read the value with the fallback key [76].

To convert a stored object of a certain version into an object of the cur-
rent version, CLOSQL uses update or backdate routines [96]. An unfortu-
nate requirement is that a database administrator is needed every time a
class is created, to specify which update or backdate routines have to be ex-
ecuted. As in our approach, the update and backdate routines for a certain
version are kept all together, in this case in an “update method”. CLOSQL

14 CHAPTER 2. RELATED WORK

supports “linear versioning”: a new version can only be generated from
the latest version. In contrast to CLOSQL, the framework discussed in this
thesis handles transformation functions also from older versions with re-
spect to the last one.

GemStone is a computationally complete Smalltalk extension provid-
ing data definition, data manipulation and query facilities to persist ob-
jects across executions [67]. Each class in GemStone has an associated class
history containing all the previous versions. Instead of providing auto-
matic support for class versioning like our framework does, GemStone
allows developers to decide when to define a new version and when to
override ad hoc migration methods in the destination class.

The Oracle relational database, starting from version 11g release 2, has
introduced “editions” to offer better support for online application up-
grade [103]. The concept is more restrictive with respect to what the au-
thors call releases, because it is limited to “editionable” object types, which
do not include, for example, tables and java classes.

When a certain class evolves over time, it may be considered a differ-
ent type, and named differently, or it may be considered the same type,
keeping the same name but providing other means of taking into account
the different inner structure and semantics. While the second option is
commonplace, the first one has been previously explored [106]. Every new
version of a class is given a new name including version information. Ver-
sions can therefore be considered full citizens of the type system. To cope
with this scenario, Eiffel provides converters [92]. Converters are a lan-
guage mechanism intended to cover those cases in which inheritance is
not appropriate, for example to convert string or numeric type implemen-
tations across different systems. The main idea is that two types can either
conform, via inheritance, or convert to each other, but not conform and
convert at the same time. The mechanism (integrated into the runtime)
takes care of automatically invoking appropriate transformation functions
placed into the class itself when operations like assignments or argument
passing are performed. A downside of this approach is the lack of scalabil-
ity, because every type should provide converters for each previous ver-
sion, therefore clogging the corresponding class code with a potentially
high number of transformation functions.

Another example of making different, parallel versions explicit can be
found in UpgradeJ [12], though focused neither on object persistence nor
on enforcing semantical consistency.

The automated detection of code changes has been extensively ex-
plored in literature, both with respect to existing libraries and software
configuration systems, for example by Dig et al. [49]. D’Ambros et. al [45]

2.3. SCHEMA EVOLUTION IN RELATIONAL DATABASES 15

propose general techniques for analyzing software repositories for code
changes: one in particular, hotspot analysis, is interesting because it fo-
cuses on entities that change frequently and therefore can be critical for the
evolution of a software system. The proposed idea is to devise heuristics
and warning mechanisms similarly to the work presented in this thesis for
class attributes changes. A specific algorithm for extracting fine-grained
source code changes in Java code called change distiller was proposed by
Fluri et al. [62]. The algorithm operates on abstract syntax trees in different
revisions, detects changes using similarity measures and produces an edit
script to transform one tree into the other. The changes are classified ac-
cording to a taxonomy of 35 change types, of which two refer to attribute
declaration (renaming and type change) and two to class-body changes
(attribute addition and removal) [60]. In comparison to the sophisticated
and broader in scope change distilling algorithm, the algorithm used in
this thesis provides one new attribute change type (“Attribute made at-
tached”) and is focused on detecting only of the changes that matter to
persistence with certainty, providing warnings when a perfect match is
not possible.

One interesting approach proposes that schema evolution can be
solved by devising bi-directional transformations [43, 73]. Though ac-
knowledging the advantages of generating the inverse transformations
(mostly) for free from a bi-directional domain specific language, it is the
author’s belief that using it would be an excessive burden on the devel-
oper. The idea is that it is easier to work with just one programming lan-
guage, and that the class invariant checks and the transformation func-
tions created early can help to improve the software system robustness
with respect to its capacity to evolve and retrieve previously stored ob-
jects.

2.3 Schema evolution in relational databases

Schema evolution issues are also relevant for relational databases [46]. The
inference rules derived in Section 3 are related to those implemented in
many schema matching tools available [108]. In particular, TransScm and
Tess [95, 86] view a schema as a set of types and provide two-version
transformations following specific rules. Human intervention is required
to provide new rules or to select match candidates. Apart from the differ-
ent transformation functions semantics and implementation, the frame-
work proposed in this thesis keeps track of all versions of a class schema,
and limits the modification operations to those for which the data surveys

16 CHAPTER 2. RELATED WORK

in Chapter 4 show potential application.
The PRISM workbench [41, 7] presents some analogies with what is

presented in the following chapters, namely the use of a GUI-based tool
to facilitate schema evolution, and a certain degree of automation in the
process. The main difference to be noticed is that in PRISM the database
administrator has to input manually the Schema Modification Operators
(SMO), while in our case they are detected automatically by the system
at release time. An additional difference is that PRISM’s SMOs, though
more numerous than the ones selected for our framework, do not include
“column type change”, that would be an analog for our “attribute type
changed”.

If we consider a class under a persistence point of view, what we are left
with is a set of attributes with their respective name and types (primitive
types or other class types), and a class invariant, establishing a semantic
relation among the attributes.

In a relational database table there is not a direct counterpart for a class
invariant, but there are the following kinds of state constraints instead:

• Domain constraints, specifying a certain range of values for at-
tributes.

• Tuple constraints, specifying attribute comparison.

• Relation constraints: uniqueness with a primary key (PK), functional
dependency and aggregate.

• Database constraints, involving more relations, for example referen-
tial integrity constraints.

Grefen and Apers analyze the issues caused by semantic errors in re-
lational databases [69] and underline that referential integrity constraints
are particularly important when the a relational database is used to con-
tain data coming from an object domain. Example of relational database
engines including support for state constraints include IBM DB2, Oracle,
Ingres, and Postgres.

2.4 Other approaches to schema evolution

Orthogonal Persistence Java (OPJ) is an extension of the Java Language
Specification adding “orthogonal persistence” capabilities to the Java plat-
form [4, 6]. The three principles defining orthogonal persistence are:

2.4. OTHER APPROACHES TO SCHEMA EVOLUTION 17

• Type Orthogonality: persistence is available for all data, irrespec-
tively of type.

• Persistence by Reachability: the lifetime of all objects is determined
by reachability from a designated set of root objects, the so-called
persistent roots.

• Persistence Independence: it is indistinguishable whether code is op-
erating on short-lived or long-lived data.

The well-known prototype implementation for OPJ, PJama [5, 8, 50] is an
extension of the Java Virtual machine together with a persistent store, in
which the state of an executing application is kept. The system state is
check-pointed atomically and periodically to be able to recover from ex-
ceptions and crashes. PJama provides an approach to schema evolution
that involves persisting both objects and classes. To perform conversions
between classes, PJama developers use a small API and a standalone,
command-line utility, so the whole process is not automated and requires
human intervention. In case the changes are validated, objects are typically
converted eagerly.

Several authors suggest to assist metamodel evolution by stepwise
adaptation in a similar fashion with respect to what is presented in this
thesis, using a transformational approach and a classification of modifi-
cations [119, 70, 72, 20]. Analyzing the AST in metamodels and applying
similarity metrics to detect changes has been done by Falleri et al. [59]. All
the cited works about metamodels are of interest because class schemas
are a particular kind of metamodels.

The automatic generation of transformation functions through type
transformers in C programs has been described by Neamtiu et al. [97].
It focuses on updating structs whose layout might evolve. However, it is
not per se linked to object-orientation and it does not benefit from having
a model or an integration into an IDE.

The formal object model proposed by the ODMG standard [18] encom-
passes more definitions than the framework described in this thesis, but it
is missing some modifications on attributes that have seen to be relevant
in practice, like “attribute renamed” and “attribute type changed [48].

BKNR is the Common Lisp Web Application environment based on
transaction logging and supporting immutable binary large objects and
Common Lisp Object System (CLOS) persistence [47]. All operations
which change the persistent image of a system are explicitly written to
a transaction log file. The persistence mechanism supports a snapshot API

18 CHAPTER 2. RELATED WORK

which allows the persistent object system to write all currently active ob-
jects to a sequential file, after having tagged them with IDs. Persistent
objects IDs are written to the transaction log. Schema evolution happens
while BKNR is reading a snapshot in the sequential file. For each class
in the snapshot, there is a layout record containing the class name and
the slot (attribute) names. When reading a snapshot file, the object system
compares the class layout in the snapshot against the class definitions of
the running code. Inconsistencies detected are signaled, and restarts are
used to select schema evolution actions [75]. While this works in the sim-
plest cases, specific conversion methods can be defined for more complex
cases. The strength of this approach is that one can easily load snapshots
from a production system using new code, without any additional re-
quired conversion step. This means that changes are detected early, before
they become too complex, and there can be an incremental refinement of
the schema evolution process conceptually similar to the one promoted by
the present thesis.

A more generalized approach tackles the issues connected to software
evolution by using the semantic web. Würsch et al. propose SEON, a pyra-
mid of ontologies for software evolution devising a unifying taxonomy for
software evolution analysis and services [120]. One of the SEON’s ontolo-
gies refers to fine-grained source changes and it is based on the change dis-
tiller meta-model mentioned in Section 2.2. It seems natural to contribute
to this effort by extending the ontology mentioned above with the concept
of attribute attachment discussed in Section 3.2.6.

2.5 Summary of contributions with respect to
previous work

This thesis presents a framework that contrasts in different ways with the
approaches presented in the previous sections. Section 2.1 describes the
most common approach to object-oriented persistence, the one that fo-
cuses mainly on the current class schema and the retrieved one, there-
fore not explicitly supporting class versioning. This pragmatic approach
is acceptable for short-lived applications, or for applications that have to
maintain small amounts of relatively stable data. It becomes problematic
when applied to long-lived applications that undergo significant changes
in their lifetime and need to persist their objects. This happens because the
code to handle all the possible schemas has to live inside the only code-
bloated transformation function available, because the retrieval issues are

2.5. SUMMARY OF CONTRIBUTIONS WITH RESPECT TO PREVIOUS WORK 19

only acknowledged when they happen, and because there is no partic-
ular support—during the retrieval operations—to ensure that the retriev-
ing class’ invariant holds. The approaches described in Section 2.2 provide
support for multiple versions, and therefore provide a solution to the code
bloating issue mentioned above, but do not solve neither the issues due to
late acknowledgement of the retrieval conflicts, nor the issues due to disre-
gard for class invariants. Relational databases are of interest because they
also have evolving schemas and have been dealing with the related issues
for quite some time. Section 2.3 shows that they suffer from similar issues
with respect to the ones mentioned about the systems supporting multiple
versions, in particular with respect to providing timely support when con-
flicts arise and with respect to enforcing state constraints. The various ap-
proaches described in Section 2.4 provide some interesting ideas, but don’t
seem to offer a full-fledged solution immediately applicable to nowadays
software systems and including IDE support and invariant-safety.

That said, a list of the contributions of this thesis with respect to the
prior art is summarized below:

• A framework supporting multiple versions and multiple transfor-
mation functions (one for each pair of versions) which are kept sep-
arate from the domain class they are associated with.

• An IDE-integrated tool to support developers with the schema
evolution-related issues at system release time.

• A retrieval algorithm ensuring an invariant-safe object retrieval.

20 CHAPTER 2. RELATED WORK

CHAPTER 3

EVOLVING PERSISTENT
APPLICATIONS: A MODEL

Object-oriented applications evolve over time. This means that classes
may change their structure, in terms of routines and attributes. A persis-
tence mechanism needs to be aware of changes in the class structure, and
in particular of those concerning the attributes, because their names and
types are typically stored together with their values, and so it may hap-
pen that the stored class structure does not match the current one during
retrieval. This thesis presents a model of updates that particularly empha-
sizes the generation of transformation functions — unlike previous mod-
els [17, 65]. This chapter presents a conceptual framework modeling the
changes that may occur in class attributes. The purpose of the model is to
capture the most relevant and common attribute changes and the possi-
ble transitions between them in a way that it is possible to implement a
framework using this information.

Section 3.1 introduces a simplified syntax for Eiffel classes, which is
then used in Section 3.2 to define a set of schema modification operators
(SMOs) modeling atomic attribute changes. Section 3.3 shows that the
SMOs can be composed to produce class transformations, and that such
transformations are complete with respect to attribute modifications. Sec-
tion 3.4 illustrates that the generation of object transformers from a class
transformation can be expressed as transformation functions. Section 3.5
illustrates how the SMOs are detected, and describes the heuristics used
to generate object transformers. This is important to make the model im-
plementable.

Finally, Section 3.6 defines a measure for the robustness of object-
oriented applications that persist their objects. The measure will be com-

22 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

puted in Chapter 4.1.2 for a widely used Java library to know more about
its expected behavior with respect to its class schema evolution.

3.1 Syntax for classes

Figure 3.1 presents a simplified syntax of class definitions in Eiffel pro-
grams. The notation represents a class as set of attributes. This makes
sense in terms of persistence because when storing an object of a class
we typically store its attributes’ names and values. The definition includes
a notation for void safety. A program is void safe if it has no void deref-
erencing errors. A void (or null) dereferencing error happens when the
operation x.f() fails because the target object x denotes a void reference
at execution time [93]. Since release 6.1 (2007) the Eiffel language has in-
corporated the void safety mechanism into the compiler, requiring devel-
opers to indicate, for every attribute, whether it can accept void values
(keyword detachable) or not (keyword attached); see Appendix A. The
definition omits the declaration both of routines and constraints on generic
parameters, as they are typically not included in the persisted form. It also
does not explicitly consider inheritance, either single or multiple, because
it assumes access to the flattened class schema, which includes all the at-
tributes from ancestor classes. This is a valid assumption, because in prac-
tice the persistence mechanism flattens each object as it stores it.

C,D ∈ Names class names
N,M ∈ GNames names for generic parameters
name ∈ names names for attributes
att ::= name : type attribute definition

| name : N attribute of generic type
type ::= C class type

| type[type] generic derivation
| attached C void-safe type
| detachable C non void-safe type

class ::= Class C feature att1, . . . , attn end class
| Class C[N1, . . . , Ni] feature att1, . . . , attn end generic class

Figure 3.1: Syntax for class definitions of Eiffel programs.

3.2. SCHEMA MODIFICATION OPERATORS 23

3.2 Schema modification operators

Adapting the definition from Curino et al. [41, 7] to an object-oriented con-
text, the model is based on a set of schema modification operators (SMO).
Each SMO is a change to a class schema, along with the semantic changes
possibly occurring to all the instances conforming to that schema. More
formally, an SMO is a function

A : class 7→ class

modifying at most one attribute. The proposed model defines six SMOs:

• Attribute not changed.

• Attribute added.

• Attribute renamed.

• Attribute type changed.

• Attribute removed.

• Attribute made attached.

The choice is motivated by two reasons: firstly, when an application
stores objects it mainly stores class attributes and their values, so the SMOs
are all attribute modifications. Secondly, in our experience, supported by
the empirical data presented in Chapter 4, the first five SMOs are the
changes most frequently performed. We included the “Attribute made at-
tached” SMO because we believe that it will become a relevant attribute
modification in the near future. This intuition is based on the fact that in
the statically typed programming languages community there seem to be
an increasing interest and effort into providing more static guarantees that
certain categories of errors will not happen at runtime. With respect to this,
the elimination of the possibility that reference types are used at runtime
without having an object attached (therefore raising null pointer excep-
tions) is certainly an important topic. The set of chosen SMOs implies the
following changes found In Chapter 4: “Attribute becoming a constant”
(relevant because constants are not serialized), is considered as “Attribute
removed”; “Constant becoming an attribute” is similarly considered as
“Attribute added”. In addition, class (static) attributes are not considered
because they are typically not serialized.

In the following sections the six SMOs are defined.

24 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

3.2.1 The attribute not changed schema modification operator

Figure 3.2 defines the attribute not changed SMO. In this case what matters is
not what is shown in the figure, but what is not shown instead. The reason
why we introduced this SMO is to take into account that an attribute not
changing its name and type across versions can still change its semantics.
An example could be a numeric attribute expressing a measure in different
units, or a string attribute expressing a date in different formats.

atti ∈ class0
class0 = Class C . . . feature att0, . . . , attn end

AnoChange(atti)(class0) = class0

Figure 3.2: Attribute not changed schema modification operator.

3.2.2 The attribute added schema modification operator

Figure 3.3 defines the attribute added SMO. The rule clarifies that we con-
sider an attribute as added if its name is different from any other attribute
name in the existing class version, where none of the previous attributes
has been removed. This is the most common attribute modification, both
according to our experience and the empirical data presented in Chap-
ter 4. The most likely reason for its popularity is that adding attributes and
methods is the preferred evolutionary activity, because it does not break
backward compatibility. In this context the issues arising from persistence
are an unwelcome side effect. If an attribute added in a new class version
needs a specific initialization, it is suddenly not sufficiently to initialize
it to its default, because the class invariant can be put at risk as seen in
Section 1.2.

att /∈ {att1, . . . , attn}
Anew(att)(Class C . . . feature att1, . . . , attn end) = Class C . . . feature att1, . . . , attn, att end

Figure 3.3: Attribute added schema modification operator.

3.2. SCHEMA MODIFICATION OPERATORS 25

3.2.3 The attribute renamed schema modification operator
Figure 3.4 defines the attribute renamed SMO. In particular, the first line of
the rule specifies that the old and the new version of the attribute have
different names but same (possibly generic) type, and the third line of the
rule specifies that the new version of the attribute has a different name
with respect to any of the other attributes of the new class.

(atti = name : N ∧ att′i = name′ : N) ∨ (atti = name : type ∧ att′i = name′ : type)
atti ∈ class0

att′i /∈ {att0, . . . , atti−1, atti+1, . . . , attn}
class0 = Class C . . . feature att0, . . . , atti−1, atti, atti+1, . . . , attn end
class1 = Class C . . . feature att0, . . . , atti−1, att′i, atti+1, . . . , attn end

AnameChange(name,name′)(class0) = class1

Figure 3.4: Attribute renamed schema modification operator.

3.2.4 The attribute type changed schema modification operator
Figure 3.5 defines the attribute type changed SMO. In particular, the first line
of the rule specifies that the old and the new version of the attribute have
different types but the same name.

type 6= type′ ∧ atti = name : type ∧ att′i = name : type′

atti ∈ class0
class0 = Class C . . . feature att0, . . . , atti−1, atti, atti+1, . . . , attn end
class1 = Class C . . . feature att0, . . . , atti−1, att′i, atti+1, . . . , attn end

AtypeChange(name:type,name:type′)(class0) = class1

Figure 3.5: Attribute type changed schema modification operator.

3.2.5 The attribute removed schema modification operator
Figure 3.6 defines the attribute removed SMO. Together with the attribute
added SMO, the attribute removed SMO plays an important role in prov-
ing that the SMOs can be composed to produce class transformations, and
that such transformations are complete with respect to attribute modifica-
tions (see Section 3.3).

26 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

atti ∈ class0
class0 = Class C . . . feature att0, . . . , atti−1, atti, atti+1, . . . , attn end
class1 = Class C . . . feature att0, . . . , atti−1, atti+1, . . . , attn end

AremoveAttribute(name)(class0) = class1

Figure 3.6: Attribute removed schema modification operator.

3.2.6 The Attribute made attached schema modification operator
Attribute made attached, defined in Figure 3.7, covers the case of an attribute
that was allowed to be void (null) in a certain version and becoming at-
tached (guaranteed non-void) in a subsequent version. This scenario im-
plies that the attribute needs to be explicitly instantiated at retrieval time.

atti = name : C ∧ att′i = name : attached C
atti ∈ class0

class0 = Class C . . . feature att0, . . . , atti−1, atti, atti+1, . . . , attn end
class1 = Class C . . . feature att0, . . . , atti−1, att′i, atti+1, . . . , attn end

AaddAttach(atti)(class0) = class1

Figure 3.7: Attribute made attached schema modification operator.

As described in Appendix A, Eiffel provides a mechanism that can stat-
ically detect such erroneous use of references and relies on the two key-
words attached and detachable. Other programming languages pro-
vide support for non-null types.

C# provides nullable types; though useful when working with null val-
ues in databases, they are restricted to value types (like numeric types and
structs).

Scala tackles the issue by providing the Option class, that must deal
with the None value, and does not solve the issue at compile time [98].

Java offers the Option generic type as well, useful to avoid a NullPoint-
erException at runtime but at the cost of a conditional instruction. Again the
compiler does not check for null references statically. Java’s arguably best
IDE, IntelliJ IDEA, provides the @Nullable and @NotNull annotations for
statically detecting NullPointerExceptions [79]. These have been proposed
for inclusion in the standard JVM, but the issue is still pending at the
time of writing. There are also static analysis tools solving the problem
of null pointer references, like the FindBugs tool developed by University
of Maryland, providing compile-time checks for Java [74, 99, 100].

3.3. COMPLETENESS 27

The type system of Spec# distinguishes between non-null types and
possibly-null types, and its checker does not allow possibly-null types to
be dereferenced [10].

Finally, the NICE programming language provides language annota-
tions equivalent to those for Eiffel [15], and guarantees no references point-
ing to null at runtime.

3.3 Completeness

The given set of SMOs is complete in the following sense: any modification
to the attributes of a class can be described by some class transformation,
where a class transformation TA1,...,AN

going from one version of a class to
another is described as a composition of SMOs A1, . . . , AN (N ≥ 1):

TA1,...,AN
: class 7→ class

such that:
TA1,...,AN

(class0) = (An ◦ . . . ◦ A1)(class0)

The proof of this property is as follows: suppose we have two classes
C1 and C2 with n attributes and m attributes respectively, and assume
the generic parameter list is preserved between C1 and C2. Hence there
always exists a class transformation from C1 to C2 that first deletes all the
n attributes from C1 and then adds all the m attributes to C2. Thus, class
transformations are complete with respect to attribute modifications.

While there is always a decomposition, using a straightforward algo-
rithm might not produce the best results. Devising a heuristic is therefore
essential to use this model as the basis of an implementation. Section 3.5
describes the heuristics in detail.

3.4 Concrete transformation syntax and object
transformers

Figure 3.8 presents a possible concrete syntax for object transformers. An
object transformer is a function accepting as an argument an object of a
previous version of a class, and returning an object of a new version of
the same class. Its body may contain attribute assignments, invocations of
other object transformers or occasionally no instructions (no-op). The new
definitions introduced are oldc referring to the value of an expression c

28 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

before it is evaluated, and Result referring to the return value of the object
transformer.

otname ∈ OTNames object transformers names
e ::= e.e | oldc | name expressions
instruction ::= Result.name := e | no-op | otname(e, e) instructions
instructions ::= instruction | instruction; instructions list of instructions
ot ::= otname(oldc : oldC) : C instructions object transformer

Figure 3.8: A concrete syntax for transformers.

The generation of object transformers from a class transformation can
be expressed as transformation functions as shown in Figure 3.9. The func-
tion GJ·K takes a class transformation and generates the associated object
transformer ot. Generating an object transformer that creates an instance
of the new class from a stored instance of the old class means generat-
ing its name and the actual instructions in its body. Function SJ·K takes
a class transformation as an argument and generates the actual instruc-
tions forming the object transformer code. After the definition of SJ·K we
illustrate in Figure 3.9 all the possible transformation functions that can be
used as arguments, that is, the SMOs. While the SMOs allow a straight-
forward representation of the static transformations of a class, this is not
sufficient to generate the object transformers. The main reason is that there
is a need for an explicit default initialization of new attributes. To define
such initializations, programmers must provide default values for every
affected type. This is expressed by the IJ·K input token, evaluating to the
next value in a list of inputs. It is worth noticing that the “Attribute type
changed” SMO will be processed completely only if there is a specific ob-
ject transformer that knows how to convert the two specific types. This is
the case, for example, of strings versus integers. In the case in which no
such specific object transformer is available, we use the output generator
WJ·K (for warning) to signal the inability to generate a translation or a re-
moval operation and evaluating to no-op. FInally, the last line in Figure 3.9
states that the transformations are processed one after the other.

3.5. HEURISTICS FOR CLASS SCHEMA EVOLUTION 29

GJ·K : (class 7→ class) 7→ ot
GJTA1,...,AnK = otname(oldc : oldC) : C SJTA1,...,AN

K

SJ·K : (class 7→ class) 7→ instructions
SJAnoChange(atti)K = Result.namei:=oldc.namei
SJAnew(att)K = Result.name:=IJ·K

where att=name:. . .
SJAnameChange(name:type,name′:type)K = Result.name′:=oldc.name
SJAtypeChange(name:type,name:type’)K = Result.name:=oldc.name

if type’ is assignable to type
= Result.name:=otname(oldc.name)

if there is an object transformer otname
transforming an object of type type
into an object of type type’

= WJname0K otherwise
SJAremoveAttribute(name0)K = WJname0K
SJAaddAttach(atti)K = Result.namei:=oldc.namei
SJTA1,...,AnK = SJA1K;SJTA2,...,AN

K

Figure 3.9: Object transformers.

3.5 Heuristics for class schema evolution

While we have considered the extraction of transformations based on ac-
tual changes made by programmers using the IDE, these do not always
guarantee an improvement in handling the transformations with respect
to what is suggested in Section 3.4. This is because developers do not have
to use the IDE’s refactoring facilities, or they can simply write their pro-
gram using a different IDE, or even no IDE at all. This is why the current
solution relies on statically comparing the abstract syntax trees (ASTs) to
detect SMOs. While this guarantees that a comparison between existing
versions can always be performed, static comparisons imply that in cer-
tain situations, like the “Attribute renamed” SMO described in item 5 be-
low, the outcome of the tool can only suggest, rather than guarantee, the
possibility that the specific SMO has been applied.

To SMO detection algorithm (see also Section 5.2) first iterates through
the new class attributes, searching for a match with attributes in the old
class, and then iterates through the old class attributes, searching for a
match with attributes in the new class. The second iteration will make it

30 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

possible to find all the attributes that were removed. After detecting the
SMOs, the subsequent step is to create appropriate heuristics. Among the
following techniques, 1, 2, 3, and 4 can be inferred with certainty; the oth-
ers are only heuristics.

1. An attribute that does not change name and declared type generates
an “Attribute not changed” SMO. A possible change in the attribute
semantics will be taken care by the retrieving object’s class invariant.
The framework is always able to detect this SMO correctly, and pro-
vides a template for a transformation function and a warning about
this possibility.

2. An attribute that does not change name but changes type between
two versions generates an “Attribute type changed” SMO. The
framework is always able to detect this SMO correctly, and depend-
ing on the type involved, to provide a complete code generation (as
in the example in Section 1). A change in the attribute semantics is
taken into account by the new type and by the retrieving object class
invariant.

3. An attribute of the new version that does not appear in the old ver-
sion generates an “Attribute added” SMO. The framework always
detects this SMO correctly, initializes the attribute to its default and
suggests checking the new class invariant with respect to the old one
to avoid retrieval failures.

4. An attribute att removed from the old version generates an “At-
tribute removed” SMO if in the new version there is no new attribute
att’ having the same type as att. The framework always detects this
SMO correctly. Once again, the class invariant of the retrieving object
will take care of validating the new version semantics.

5. An attribute att removed from the old version is a candidate for gen-
erating an “Attribute renamed” SMO if in the new version there is
a new attribute att’ having the same type as att. By only comparing
the two classes’ ASTs it is not possible to determine if a rename actu-
ally occurred, because the new attribute could be semantically unre-
lated to the old one. In this case we would have a class transforma-
tion composed by an ”Attribute removed” followed by an ”Attribute
added”. The framework detects that this SMO might have occurred
and generates a transformation function template warning about the
possibility of a rename. In this case the retrieving object class invari-
ant is essential in establishing the correct object semantics. It would

3.6. A MEASURE OF ROBUSTNESS TO EVOLUTION FOR PERSISTENT
OBJECT-ORIENTED APPLICATIONS 31

be possible to obtain a result worthy of higher confidence by check-
ing that the variables are used by the same clients in the same con-
text. As this approach requires a global analysis of the code, we con-
sidered it was too time-consuming and limited ourselves to analyz-
ing the ASTs statically. An intermediate approach would be to limit
the code analysis to the class routines using the attribute candidate
to a rename. This would certainly help to better detect attribute re-
names with respect to the AST only solution and it will therefore be
considered for future work on the tool (see Section 7.3).

6. An attribute of the old version that has been augmented with the
keyword attached in the new version generates an “Attribute made
attached” SMO. The idea is to make sure the attribute is attached by
explicitly creating an object in the transformation function body, at-
taching it to the attribute and coding a postcondition stating that the
attribute should be non-void. Here both the transformation function
postcondition and the retrieving object class invariant are crucial to
validate possible semantics changes.

3.6 A measure of robustness to evolution for per-
sistent object-oriented applications

It can be helpful to measure a persistent object-oriented software statically
with respect to its robustness to software evolution.

Consider a class C with m versions, and a binary relation T over it de-
fined as “there exists a transformation function between versions vi and
vj” (i, j = 1, . . . ,m, i 6= j). We define a measure of class persistence evo-
lution robustness (PER) for C as the ratio of the modulus of the transitive
closure τ+ of the binary relation T to the total number of transformation
functions. As there are m(m-1) possible pairs of versions, each pair repre-
senting a transformation function from a version vi to a version vj , we can
then write:

PER(C) =
|τ+(T)|
m(m− 1)

(3.1)

The transitive closure τ+ is needed to reflect the fact that the existence
of transformation functions between vi and vi+1 and between vi+1 and vi+2

implies the one between vi and vi+2 (i = 1, . . . ,m− 2).
The PER measure for a class C ranges therefore between 0 and 1, where

1 means that all the transformation functions between any two of the class’

32 CHAPTER 3. EVOLVING PERSISTENT APPLICATIONS: A MODEL

versions exist. In this sense the class is considered “robust” with respect to
schema evolution.

As an example of an application of definition 3.1, consider the two ver-
sions of class BANK ACCOUNT introduced in Section 1.2, and assume
these are the only two existing versions of the class. If someone writes
only the forward transformation from version 1 to version 2, the PER of
class BANK ACCOUNT evaluates to 0.5: one existing transformation out
of a possible two (one in each direction).

As another example, consider a class with 5 versions and 4 existing
transformation functions, such as those from version vi to version vi+1

(i = 1, . . . , 4). Because of the transitive closure, there will be 6 more trans-
formation functions (v1 to v3, v1 to v4, v1 to v5, v2 to v4, v2 to v5, v3 to v5)
that can be implied by the first 4. For example v1 to v2 and v2 to v3 imply
v1 to v3, and so on. In total there are 10 transformation functions out of 20,
giving a PER of 0.5 again.

The PER measure of a class with m versions can be easily restricted
to a single version vi by computing the ratio of the existing transforma-
tion functions between vi and any other version to the total number of
transformation functions that in this case is 2(m-1). In the case of the sec-
ond example above, the class PER for version vi (i = 1, . . . ,m) would be
(m-1)/(2(m-1)), so 0.5 once more.

The PER measure can also be extended to a system release, by comput-
ing the average of the PERs of the classes in the release, though in this case
we get a measure that provides only a general indication.

To be able to compute the PER measure it is not necessary to adopt the
framework proposed in this thesis. Section 4.1.2 shows how we compute
PER for a software library that does not even implement the multi-version
approach: the java.util package and its classes. This can be useful to
evaluate the risk of experiencing retrieval failures before deciding to rad-
ically change the approach to class schema evolution in an existing soft-
ware system.

CHAPTER 4

HOW SOFTWARE EVOLUTION
AFFECTS PERSISTENCE:
EMPIRICAL EVIDENCE

Empirical studies are essential to understand what kind of schema evo-
lution actually happens in practice; without empirical evidence, proposed
solutions to the schema evolution problem are bound to be off the mark.
To assess the conceptual framework presented in Chapter 3 we therefore
need to see if the evolution of classes whose objects are likely to be per-
sisted actually happens. We formulate the following research questions:

1. Are the schema modification operators suggested in Chapter 3 actu-
ally found in realistic code bases (both software libraries and appli-
cations)?

2. Besides Eiffel—the language used for the framework
implementation—do the results apply also to a more widespread
language like Java?

3. Can the measure of robustness for the evolution of persistent appli-
cations defined in Section 3.6 be used to understand to what extent
we are able to successfully retrieve previously stored objects in the
package java.util?

This chapter analyzes the code of four software projects in two pro-
gramming languages, Java and Eiffel, focusing on persistence-affecting
changes. The projects are the following:

• The java.util data structure and utilities library (Section 4.1.1).

34
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

• The Apache Tomcat web server (Section 4.1.3).

• The EiffelBase data structure and utilities library (Section 4.2.1).

• The EiffelStudio IDE (Section 4.2.2).

For each language, the choice made is to analyze one set of classes from a
widely used data structure and utility library, and one other from an estab-
lished software project. The complete set of data is available online [87].

Section 4.1.2 describes the computation of the measure of robustness
for the evolution of persistent applications defined in Section 3.6 on the
java.util package, with the purpose of understanding to what extent we
are able in practice to successfully retrieve previously stored objects.

Section 4.3 discusses the evaluation of the persistence framework de-
scribed in chapter 3.

Finally, Section 4.4 describes two empirical studies investigating the
evolution of the specific form of code-integrated specification that is rel-
evant to persistence: class invariants. Class invariants describe relation-
ships between attribute values. As attribute types and their values are
stored by persistence mechanisms, there is a connection between class
invariants and persistence. Furthermore, class invariants are also part
of a class’ documentation. Other forms of documentation—for example,
comments—evolve together with code [61], APIs [82], or tests [121]. It
seems natural then to investigate what happens to objects that need to
be retrieved when their invariants evolve.

The research questions of interest target languages supporting Design
by Contract, where programmers can formalize class invariants. In this
context, we study the changes introduced by programmers to class in-
variants over multiple revisions, with the goal of answering the following
questions:

4. Are the changes to class invariants frequent or infrequent?

5. If they are frequent:

(a) Do they more often become stronger or weaker over time?

(b) Are their typical changes compatible with the capacity to re-
trieve previously stored objects, or do they hinder it?

(c) On a typical revision, do class invariants become stronger,
weaker or stay the same when we add or remove class at-
tributes?

4.1. PERSISTENCE-AFFECTING CHANGES IN JAVA 35

4.1 Persistence-affecting changes in Java

The Java studies that played a major role in answering the first two re-
search questions mentioned at the beginning of the chapter analyze two
source code repositories, the java.util data structure and utilities library
and the Apache Tomcat web server. The studies are intended to deter-
mine if class schema evolution actually happens in existing Java software
projects. Section 4.1.2 provides an answer to the third research question
by showing that the measure of robustness for the evolution of persistent
applications defined in Section 3.6 can be computed, and provides useful
indications for existing projects like the java.util package.

Earlier studies have already analyzed Java source code repositories
looking for changes. Advani et al. [1] evaluated changes in fifteen open
source Java systems and showed that “Rename field”, “Move field”, “Re-
name method”, and “Move method”, account for approximately 66% of
the total identified changes. We notice that, in particular, “Rename field”
and “Move field” alone account for 32% of the total. This result suggests
that the evolution of fields does actually happen in realistic systems. Fur-
thermore, given that changes in fields may influence the ability of a system
to retrieve them later, and given that class schema evolution involves fields
in 32% of the cases, it seems relevant to investigate the matter further. The
cited study [1] calculates typical attribute changes on all classes of the con-
sidered systems. There is therefore no evidence that classes whose object
are specifically tagged to be persistent would exhibit the same characteris-
tics. The following section 4.1.1 tries to improve [1], and focuses on classes
intended to produce objects that will be persisted. The classes, all from
the Java package java.util, are checked to see if they evolve in a similar
manner to non-persistent ones. Java code is an apt choice for this study
because it is widely used and because classes that might have persistent
instances are easily recognizable, as they are marked as Serializable.

4.1.1 Analyzing java.util

The java.util package contains classes modeling collections, dates, curren-
cies, and locales. The classes taken into account here are all the 22 classes
directly implementing the Serializable interface. The analysis extends
across five versions of the language: 1.2.2, 1.3.1, 1.4.2, 5.0, 6.0. These ver-
sions can be considered significant steps in the evolution of the Java lan-
guage, bearing important changes in both the APIs and their implementa-
tions [36]. The study considers 22 types of changes, seven of which are di-
rectly relevant to the serialization process and involve attributes (fields ac-

36
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

cording to the previous study [1]). While “Attribute added”, “Attribute re-
moved”, “Attribute renamed”, and “Attribute type changed” are straight-
forward, we consider “Attribute initialization value changed” because it
may influence the class invariant. In addition, “Attribute becoming a con-
stant” is relevant because constants are not serialized, and therefore it will
be interpreted as “Attribute removed”. In a similar fashion, “Constant be-
coming an attribute” will be interpreted as “Attribute added”. Further-
more, class (static) attributes are not considered because they are typically
not serialized. In line with what was discovered previously [1], Table 4.1
shows that the persistence-affecting changes constitute of 18% of the total
(115 out of 649). are shown in Table 4.1

at
tr

ib
ut

e
ad

de
d

at
tr

ib
ut

e
re

m
ov

ed

at
tr

ib
ut

e
re

na
m

ed

at
tr

ib
ut

e
ty

pe
ch

an
ge

d

at
tr

ib
ut

e
va

lu
e

ch
an

ge
d

at
tr

ib
ut

e
to

co
ns

ta
nt

co
ns

ta
nt

to
at

tr
ib

ut
e

no
n

pe
rs

is
te

nc
e-

af
fe

ct
in

g

al
l

1.2.2→ 1.3.1 4 0 0 0 1 0 0 11 16
1.3.1→ 1.4.2 10 13 1 1 0 0 1 99 125
1.4.2→ 5.0 29 6 0 13 2 4 0 270 324
5.0→ 6.0 14 9 4 1 0 2 0 154 184
All 57 28 5 15 3 6 1 534 649
% 9 4 1 2 1 1 0 82 100

Table 4.1: Changes found across 5 versions of java.util.

Table 4.2 focuses on persistence-affecting changes, and shows that “At-
tribute added”, “Attribute removed”, and ”Attribute type changed” to-
gether constitute 87% of all persistence-affecting changes (100 out of 115).

Figure 4.1 synthesizes Table 4.1 and Table 4.2 in a bar graph show-
ing a comparison between the weight of each SMO with respect to all
the changes and the weight of each SMO with respect to the persistence-
affecting changes.

Table 4.3 shows the distribution of changes across different classes and
across all five versions of the java.util package. The data suggest that
persistence-affecting changes are sufficiently widespread among classes.

4.1. PERSISTENCE-AFFECTING CHANGES IN JAVA 37

at
tr

ib
ut

e
ad

de
d

at
tr

ib
ut

e
re

m
ov

ed

at
tr

ib
ut

e
re

na
m

ed

at
tr

ib
ut

e
ty

pe
ch

an
ge

d

at
tr

ib
ut

e
va

lu
e

ch
an

ge
d

at
tr

ib
ut

e
to

co
ns

ta
nt

co
ns

ta
nt

to
at

tr
ib

ut
e

al
l

1.2.2→ 1.3.1 4 0 0 0 1 0 0 5
1.3.1→ 1.4.2 10 13 1 1 0 0 1 26
1.4.2→ 5.0 29 6 0 13 2 4 0 54
5.0→ 6.0 14 9 4 1 0 2 0 30
All 57 28 5 15 3 6 1 115
% 50 24 4 13 3 5 1 100

Table 4.2: Persistence-affecting changes across 5 versions of java.util.

Figure 4.1: Single SMOs vs. all changes and vs. persistence-affecting ones.

To summarize, the study shows that classes whose instances might

38
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

Class Changes Persistence-affecting %
ArrayList 18 3 17
BitSet 42 8 19
Calendar 52 24 46
Currency 3 2 67
Date 22 9 41
EnumMap 1 0 0
EnumSet 1 0 0
EventObject 1 1 100
HashMap 101 11 11
HashSet 9 2 22
HashTable 41 5 12
IdentityHashMap 20 2 10
LinkedHashSet 5 1 20
LinkedList 50 1 2
Locale 34 16 47
PriorityQueue 17 0 0
Random 13 7 54
TimeZone 28 7 25
TreeMap 122 13 11
TreeSet 39 3 8
UUID 0 0 0
Vector 30 0 0
All 649 115

Table 4.3: Changes found in 5 versions of java.util, by class.

be serialized do change over time. Moreover, 18% of these changes are
persistence-affecting, that is, they directly impact the capability of classes
to deserialize instances of their previous versions. This might be aggra-
vated by the high number of stored objects that may need to be updated.

As a telling example, in class java.util.Calendar, version 1.2, there are
two version-related attributes, currentSerialVersion and serialVersionOn-
Stream, in addition to the usual serialVersionUID. As explained in the code
comments, these were used to solve the problem of keeping track of
the different object versions, and had default values suggested. With the
framework proposed by this thesis and its integrated version support, cre-
ating these two attributes would have proved unnecessary and the trans-
formation function would have not been cluttering the class itself.

4.1. PERSISTENCE-AFFECTING CHANGES IN JAVA 39

4.1.2 The persistence evolution robustness of java.util

In spite of the fact that Java implements a class-schema approach (as seen
in Section 2.1), it is possible to compute the persistence evolution robust-
ness (PER) measure defined in Section 3.6 for the java.util package. Ta-
ble 4.4 shows the calculation for class ArrayList. Between versions 1.2.2 and
1.3.1 there are no changes, so we can assume that both the forward and the
backwards transformations exist and work correctly. From version 1.2.2 to
1.4.2 there is an attribute added, for which only the forward transforma-
tion exists. The reverse transformation is not handled, and so deserializa-
tion of objects of version 1.4.2 from version 1.2.2 does not work, because
removing an attribute is an incompatible change according to the Java Se-
rialization Specification [102]. Proceeding in a similar way, and taking into
account that an attribute type changed is also an incompatible change, we
end up with a total of 4 existing transformations for ArrayList, out of 20
possible across the 5 considered versions. The resulting PER value is there-
fore 0.2. Table 4.5 shows the value of PER for every class in the java.util, and
for the package itself.

The data suggest that computing the PER measure for a class can be a
simple way to quantify how likely it is that the class will throw retrieval
errors. Therefore the measure can be easily used to assess the “persistence
evolution robustness” of a software class and compare it to the measures
computed for other classes.

Version Forward Backward Attribute
interval transformation transformation changes
1.2.2→ 1.3.1 1 1 no changes
1.2.2→ 1.4.2 1 0 1 added
1.2.2→ 1.5.0 0 0 1 added, 1 type changed
1.2.2→ 6.0 0 0 1 added, 2 type changed
1.3.1→ 1.4.2 1 0 1 added
1.3.1→ 1.5.0 0 0 1 added, 1 type changed
1.3.1→ 6.0 0 0 1 added, 2 type changed
1.4.2→ 5.0 0 0 1 type changed
1.4.2→ 6.0 0 0 2 type changed
5.0→ 6.0 0 0 1 type changed
All 3 1 PER: 0.2

Table 4.4: Persistence evolution-robustness (PER) of ArrayList.

40
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

Class Class PER
ArrayList 0.2
BitSet 0.4
Calendar 0.25
Currency 0.7
Date 0.3
EnumMap 1
EnumSet 1
EventObject 0.7
HashMap 0.1
HashSet 0.3
HashTable 0.3
IdentityHashMap 0.4
LinkedHashSet 0.4
LinkedList 0.4
Locale 0.2
PriorityQueue 1
Random 0.15
TimeZone 0.3
TreeMap 0.2
TreeSet 0.35
UUID 1
Vector 1

Package PER 0.48

Table 4.5: P-evolution-robustness (PER) of java.util.

4.1.3 Analyzing the Apache Tomcat code base

The Apache Tomcat Java open source project was first released in 1999.
It implements a web server and includes Catalina as a servlet container,
Coyote as HTTP connector and Jasper as JSP (Java Server Pages) engine.

Tomcat is an example of a well-known and widely used application. It
is interesting in the context of this thesis because a web server typically
needs to store information about shared values that need to survive the
stateless HTTP protocol interaction.

This section analyzes the evolution of The Tomcat’s classes implement-
ing the Serializable interface, and takes into account the earliest and the
latest releases available in the open source repository at the time of writ-
ing (3.0 from 2006 and 7.0 from 2012 respectively) [63]. Table 4.6 shows
the classes in Tomcat’s code base containing at least one schema mod-
ification operator (SMO). This happens in 12 out of the 27 classes ana-
lyzed. Consistently with what we observed in the case of java.util,
“Attribute added”, “Attribute removed”, and ”Attribute type changed”
together constitute 93% of the persistence-affecting changes (compared to
87% in java.util). The data therefore confirm that the kind of SMOs
found in the case of the java.util library classes were also found in a
realistic and widely used software application. One additional observation
is that there were not significantly more changes than it might have been

4.2. PERSISTENCE-AFFECTING CHANGES IN EIFFEL 41

possible to expect from an application as opposed to a library project. This
might be because every mature software project puts an extremely high
value in stability and backward compatibility, and tends to limit the evo-
lutionary changes to the bare minimum.

at
tr

ib
ut

e
ad

de
d

at
tr

ib
ut

e
re

m
ov

ed

at
tr

ib
ut

e
re

na
m

ed

at
tr

ib
ut

e
ty

pe
ch

an
ge

d

al
l

ValueReference 0 2 0 0 2
ApplicationParameter 0 0 0 1 1
FilterDef 1 0 0 0 1
FilterMap 2 0 2 2 6
MultipartDef 0 0 0 3 3
NamingResources 2 0 0 0 2
SecurityCollection 2 0 0 0 2
ServletDef 4 0 0 0 4
CsrPreventionFilter 4 0 0 0 4
AbstractReplicatedMap 2 0 0 0 2
FeatureInfo 2 1 0 0 3
DeltaSession 0 1 0 0 1

All 19 4 2 6 31
% 61 13 7 19 100

Table 4.6: SMOs found in Tomcat’s repository.

4.2 Persistence-affecting changes in Eiffel

Though less widespread than Java, Eiffel provides language-integrated
support for class invariants, and more than twenty years of source code
in its repositories. These features make it a valuable asset for research in
the field of persistence. This section describes the changes found in the
EiffelBase standard data structures and utility library 4.2.1 and in the Eif-
felStudio IDE code base 4.2.2.

4.2.1 Eiffel libraries changes
The study analyzes 22 classes from EiffelBase, the standard data structures
and utility library. Most of them are direct counterparts of the classes pre-
viously analyzed in Java. In the five cases in which it is not possible to
find a direct counterpart, the study considers classes whose instances are
likely to be serialized, such as strings and data structures. The analysis

42
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

spans five releases, but the period is wider in the Java study, ranging from
1993 to 2010 versus 1999 to 2009. The difference in period is due to differ-
ent availability of data in the software repositories. The two programming
languages are taken into consideration during a “maturity” period, after
an initial stabilization period of four years.

The list of relevant changes for Eiffel persistence includes more types of
changes: “Inheritance from one class added”, “Inheritance from one class
removed”, “Class name changed”, and “Void safety clause added”. With
respect to the Java study, this study does not consider ”Attribute initial-
ization value changed” because in Eiffel assigning a value to an attribute
in the declaration means making it a constant, which is typically not seri-
alized. Furthermore, no instances of ”Attribute renamed”, ”Attribute be-
coming a constant” or ”Constant becoming an attribute” were found. In-
terestingly, however, there is a consistent number of inheritance-related
changes, of which there was no trace in Java. This may be due to the
fact that Eiffel allows multiple inheritance, making it easier to add and re-
move functionality by using inheritance. As seen in Section 3.1, the frame-
work models inheritance by considering the flattened class schema. There-
fore, the ”Inheritance added” and ”Inheritance removed” changes are sub-
sumed into the other already analyzed ones. Finally, there are also some
changes to attributes meant to enforce void-safety, a matter discussed in
section 4.2.1.1. The kinds of changes found, together with their occur-
rences and across considered versions, are summarized in Table 4.7. Note
that “Attribute added” and “Attribute removed” are still relevant, while
“Inheritance added” and “Inheritance removed” together constitute 54%
of all persistence-affecting changes.

Table 4.8 shows the distribution of changes in different classes and
across all the considered five versions of Eiffel. As in the Java study, the
data suggest that persistence-affecting changes are sufficiently widespread
among classes.

The analysis unveiled an issue that could be easily solved by the frame-
work presented in this thesis. In class HASH_TABLE, considered from re-
vision 13752 to revision 47039, there was a change in the types of three
attributes. This made it impossible to read previously serialized objects.
The solution, implemented in a later version, was to code a transforma-
tion function using an ad hoc new attribute, hash_table_version_57. If
the library maintainers had used the framework proposed by this thesis,
there would have been no need to add any new attribute, and the trans-
formation function would not have cluttered the class.

4.2. PERSISTENCE-AFFECTING CHANGES IN EIFFEL 43

at
tr

ib
ut

e
ad

de
d

at
tr

ib
ut

e
re

m
ov

ed

at
tr

ib
ut

e
ty

pe
ch

an
ge

d

in
he

ri
ta

nc
e

ad
de

d

in
he

ri
ta

nc
e

re
m

ov
ed

cl
as

s
na

m
e

ch
an

ge
d

vo
id

sa
fe

ty
ad

de
d

al
l

1993→ 2002 8 2 0 8 14 0 0 32
2002→ 2006 2 0 3 4 0 0 0 9
2006→ 2008 4 1 0 3 0 1 0 9
2008→ 2010 0 0 0 0 0 0 4 4
All 14 3 3 15 14 1 4 54

Table 4.7: SMOs found across 5 versions of Eiffel.

4.2.1.1 Void safety-related changes.

A program is void safe if it has no void dereferencing errors. A void
(or null) dereferencing error happens when the operation x.f() fails
because the target object x denotes a void reference at execution time
[93]. Since release 6.1 (2007) the Eiffel language has incorporated the
void safety mechanism into the compiler, requiring developers to indicate,
for every attribute, whether it can accept void values with the keyword
detachable or with the keyword attached (or no keyword as this is
the default); see Appendix A. In the case of class DATE_TIME_PARSER,
we discovered four changes related to void safety, in which the keyword
detachable was added to four attributes. This change (from attached to
detachable) is harmless under the point of view of software evolution,
because an attached attribute, which is required to be non-void, will al-
ways be stored and so will comply with the weaker requirement of be-
ing detachable at retrieval time. Though it did not occur in our findings,
the symmetric change, from detachable to attached, can in principle be
dangerous. A detachable attribute stored as void will be considered as
attached by the retrieving system. This will raise an exception at run-
time, both in case of retrieval from storage and in any other case involving
assignment at runtime, such as a call to an external module assigning void
to an attached attribute. This finding, while related to the Eiffel language,
can become relevant for the future evolution of languages like Java that do

44
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

Class Persistence-affecting changes
Arrayed list 2
Bit ref 0
Date time parser 6
Array 1
Date 2
String 8 6
Tuple 3
Action sequence 2
Array 2 0
Arrayed set 0
Hash table 12
Linked tree 1
Linked set 2
Linked list 0
I18n locale manager 4
Priority queue 0
Random 3
Time 2
Binary search tree 3
Binary search tree set 4
Uuid 1
Arrayed stack 0
All 54

Table 4.8: SMOs found across 5 Eiffel versions, per class.

not currently incorporate this feature.

4.2.2 Analyzing the EiffelStudio code base

EiffelStudio is an example of an Integrated Development Environment
(IDE), a very common type of application that is likely to have persistence
needs. EiffelStudio stores information about user preferences, and also
data concerning automatically generated tests. The EiffelStudio IDE was
initially called EiffelBench and was released in 1990. It was renamed to Eif-
felStudio in 2001 and was open-sourced in 2006. The study analyzes the
evolution of persistent classes of the main EiffelStudio application code
and of its automated testing facility called “AutoTest”. We take into ac-
count the earliest and the latest releases available at the time of writing:

4.3. EVALUATING THE PERSISTENCE MODEL ON THE JAVA AND EIFFEL
REPOSITORIES 45

release 5.4 from 20041 and release 6.8 from 2011 [115].
Table 4.9 shows the classes in which at least one SMO was found. This

occurred in 12 out of the 20 classes analyzed. The data again confirm what
was found in the case of the Eiffel library classes, and are also consistent
with what was found in the Java repositories.

at
tr

ib
ut

e
ad

de
d

at
tr

ib
ut

e
re

m
ov

ed

at
tr

ib
ut

e
re

na
m

ed

at
tr

ib
ut

e
ty

pe
ch

an
ge

d

in
he

ri
ta

nc
e

ad
de

d

cl
as

s
na

m
e

ch
an

ge
d

vo
id

sa
fe

ty
ad

de
d

al
l

Sd config data 8 0 1 0 0 0 0 9
Search table 2 0 0 0 0 0 1 3
Sd inner container data 0 0 0 2 0 0 4 6
Ev split area 1 0 0 0 0 0 2 3
Ev split area i 0 1 0 0 0 0 3 4
Ev widget i 1 0 0 0 0 0 3 4
Sd place holder zone 1 0 0 0 0 0 0 1
Sd notebook upper 4 3 0 2 0 0 0 9
Epa test case info 0 0 0 0 0 1 0 1
Profile information 0 0 0 1 0 0 0 1
Profile set 0 0 0 36 0 0 0 36
Test session record 0 0 0 0 1 0 0 1
All 17 4 1 41 1 1 13 78

Table 4.9: SMOs found in EiffelStudio’s repository.

4.3 Evaluating the persistence model on the Java
and Eiffel repositories

Analyzing the history of classes along different revisions provides use-
ful insights on the schema evolution process. The data analysis presented

1When EiffelStudio code was open sourced in 2006, the code from previous years was
made available as well.

46
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

in the previous sections shows that the schema of persistent classes may
evolve significantly both in software libraries and in applications.

To evaluate the formal model presented in Chapter 3, we check if it rec-
ognizes the 278 persistence-affecting SMOs (counting both Eiffel and Java
SMOs) found in the analysis. The results are that the framework is able to
identify the SMOs in 93% of all cases (259 out of 278). The unrecognized
SMOs are ”Void safety added” and ”Class name changed”, which is inter-
preted as a new class introduced into the system. ”Attribute renamed” is
counted as recognized because the framework, though not generating the
full body of the transformation function, is aware of the different possibili-
ties and generates a comment providing guidance to developers. It should
also be observed that in all of the four code repositories analyzed all the
instances of ”Attribute renamed” SMOs were all true renamings, not to be
interpreted as ”Attribute removed” plus ”Attribute added”.

While the formal model scored well with respect to the four code bases
analyzed, we don’t know if its default implementation would be suffi-
cient to deal with the majority of the scenarios. One practical problem
occurs when developers have to deal with a custom storable form. This
means that developers may want to choose which attributes to include
among those which will be persisted. This is a realistic scenario for which
the framework presented in this thesis does offer support in the IDE-
integrated implementation, by means of a filtering option that also allows
the choice of default values for retrieval (see Section 5.1).

Another possible issue is that we did not ascertain, in the case of the
Java studies, whether the analyzed classes generated objects that were ac-
tually persisted. We believe we can safely assume so based on the follow-
ing two observations: most of the classes are very often serialized data
structures and utilities, like linked lists and arrays, and all the considered
classes implement the Serializable interface, implying that their objects are
meant—by the library designers—to be serialized in the first place.

The results above suggest that the model devised is sufficiently de-
tailed to take into account a realistic set of SMOs in two different object-
oriented programming languages.

In Chapter 3 we showed that the transformations functions are com-
plete with respect to attribute modifications. Moreover, though no static
guarantees are provided, we can state that given any two versions, and
given a transformation function between the two, the tool ensures that the
function pre- and post-conditions, and the retrieving class invariant, will
hold at runtime provided assertion checks are enabled.

The importance of class invariants to avoid that potentially unsafe ob-
jects are accepted into the system has been mentioned already. Unfortu-

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 47

nately, class invariants are not yet widely used among developers outside
of Eiffel, and other mainstream languages do not offer support for them.
An obvious question is then: what can Java developers do to emulate the
framework’s mechanism enforcing class invariants? While analyzing the
Java libraries, we discovered a possible solution in class BitSet, during the
transition from version 5.0 to 6.0. The class authors introduced a method
checkInvariants(), with the idea of enforcing some class-wide properties.
This method is then invoked from every public method in the class, em-
ulating the Eiffel invariant checking mechanism. Therefore the absence of
an embedded Design By Contract language support (also for precondi-
tions and postconditions) makes things more complicated for Java devel-
opers, but the example of class BitSet shows that emulating the invariant
mechanism is possible.

In the worst case, developers can still bypass, actively or passively, all
the checks mentioned. In case of an attribute added, for example, they
could ignore the warning, accept the (possibly wrong) default provided,
and in general not code an appropriate transformation function or class
invariant. They could even code the right invariant but disable runtime
checking of assertions. This means that while the framework supports de-
velopers in handling the class schema evolution of object-oriented soft-
ware applications, it does not guarantee a completely safe class schema
evolution. To improve this, the measure for evolution robustness of per-
sistent applications (PER) may help in assessing how much trust we can
put in every single class of a code release with respect to its robustness to
schema evolution.

4.4 The Evolution of class invariants in connec-
tion with persistence

This section presents two novel studies on class invariant evolution. Our
first study (4.4.1) focuses on understanding if class invariants actually
evolve by analyzing (by hand) classes from a software data structure and
utility library. As evidence of invariant evolution is found, the study fur-
ther investigates if the invariants themselves become stronger or weaker
over time. This is relevant for persistence because it may influence the ap-
plication’s capacity to retrieve previously stored objects. The complete set
of data is available online [105].

Our second study [55] (whose lead author was our colleague C. Es-
tler) investigates the evolution of class invariants more extensively and

48
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

in a semi-automatic fashion (using a tool). The study, presented in Sec-
tion 4.4.2, suggests that though class invariants indeed evolve, their
strength is more likely not to change in presence of added or removed
attributes. This constitutes a potential threat for an application’s capacity
to retrieve objects, because developers may add attributes without corre-
spondingly strengthening their class invariants, leading to accepting in-
consistent objects into the system.

4.4.1 An exploratory study on class invariant evolution
To answer research question 4, a study analyzes 44 classes in the EiffelBase
library, containing various data structures and utility classes. The selected
subset includes commonly used classes and their complete inheritance hi-
erarchy. The library itself contains 309 classes at the time of writing, so
the sample amounts to 14% of the total. Each class is considered across 5
major revisions, spanning from 1993 to 2012. More complete data will be
presented in Section 4.4.2.

A class invariant is a boolean expression, consisting in a label and a
number of boolean clauses connected by logical operators. With this de-
scription, the class invariant changes considered are:

• Clause added.

• Clause removed.

• Clause changed.

• Label changed.

The change “clause added” is considered because an invariant can change
its strength. It becomes stronger (more difficult to satisfy) when one or
more conditions are added using an and; and it becomes weaker (easier to
satisfy) when one or more conditions are added using an or.

For the change “clause removed” similar considerations apply: de-
pending on the removed clause, the invariant can become stronger or
weaker.

A clause is considered as “changed” when any of its code changed
significantly across versions. This was established by manual inspection.
Cosmetic changes like formatting changes (e.g. added spaces) and feature
renaming that did not change the semantics were not considered. As an
example, consider class FINITE between revisions 8120 and 31933, where
clause empty = (count = 0) becomes is_empty = (count = 0).

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 49

Revision Clause Clause Clause Label Allinterval added removed changed changed
0→ 387 40 0 0 0 40

387→ 8120 28 2 1 1 32
8120→ 31933 13 8 12 0 33

31933→ 66985 1 5 1 1 8
66985→ 548 0 10 3 0 13

All 82 25 17 2 126
% 65 20 13 2 100

Table 4.10: Changes in class invariant clauses found across 5 versions of
EiffelBase. The last small revision number is justified by an intervening
repository migration.

Furthermore, as invariant labels are used to document informally the
semantics of a clause and to provide information in case of an invariant
violation, label changes were considered as well.

Table 4.10 shows the total number of class invariant clause changes
across the five considered revision intervals, without taking inheritance
into account, meaning that each class has been analyzed in isolation. To
justify the apparent irregularity in the revision numbers we considered,
the frequency of recording the changes increased considerably after the
first period. The data shed some light on the first research question above,
suggesting that class invariants do in fact evolve. Adding clauses is the
prevalent activity, mostly concentrated in the initial development phases,
and then becoming less and less frequent. Removing clauses seems to have
the opposite trend, while changing labels does not appear to be particu-
larly frequent.

Table 4.11 shows the distribution of invariant changes across different
classes and across the five considered revision intervals. The data suggest
that invariant evolution can vary significantly across classes, HASH_TABLE
and LINEAR being extreme examples, having respectively 37 and just one
change.

To answer research question 5.(a), Table 4.12 shows a summary of the
evolution of class invariants in terms of relative strength, across the five
considered revision intervals. The numbers are computed by considering
how class invariants evolve across two consecutive revisions of each class,
and then aggregated across all classes and revisions. The possibilities for
invariant evolution that are taken into consideration across pairs of con-
secutive revisions are:

• Invariant strengthened.

50
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

Class name Clause added Clause removed Clause modified Label modified All
Active 2 0 1 0 3
Any 2 0 0 0 2

Array 4 0 0 1 5
Array2 1 0 0 0 1

Arrayed list 3 1 0 0 4
Bag 0 0 0 0 0

Bilinear 3 1 0 0 4
Bounded 2 0 0 0 2

Box 0 0 0 0 0
Chain 8 1 2 0 11

Collection 0 0 0 0 0
Comparable 0 0 0 0 0

Container 0 0 0 0 0
Cursor structure 0 0 0 0 0

Dispenser 2 0 2 0 4
Dynamic chain 1 1 0 0 2

Dynamic list 0 0 0 0 0
File 3 0 1 0 4

Finite 2 1 1 0 4
Hash Table 22 12 3 0 37
IO Medium 0 0 0 0 0
Indexable 1 1 0 0 2

Iterator 1 0 0 0 1
Linear 1 0 0 0 1

Linear iterator 3 2 0 0 5
Linked List 5 0 2 0 7

List 2 0 0 0 2
Numeric 4 4 0 0 8

Part comparable 0 0 0 0 0
Resizable 1 0 0 0 1
Sequence 0 0 0 0 0

Stack 0 0 0 0 0
Table 0 0 0 0 0

Traversable 1 0 1 0 2
Tree 8 1 4 1 14

Unbounded 0 0 0 0 0
All 82 25 17 2 126
% 65 20 13 2 100

Table 4.11: Changes in class invariant clauses found across 5 versions of
EiffelBase, by class.

• Invariant weakened.

• Invariant undergoing a complex change, making it too difficult,

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 51

Stronger Weaker Complex Unmodified Totalinvariant invariant invariant invariant
59 25 7 89 180

33% 14% 4% 49% 100%

Table 4.12: Changes in class invariants across consecutive revisions of
EiffelBase.

or impossible to analyze. By complex change we mean a change
that leads to a non-comparable invariant (e.g. neither stronger nor
weaker). A simple example is x > 0 that evolves into y > 0, where
x and y are unrelated attributes. These two invariants are clearly not
comparable. The reason for such an invariant change could be a sig-
nificant class implementation change.

If none of the above three cases happens between two consecutive revi-
sions, the invariant is counted as unmodified.

Inheritance was considered as well: if class B inherits from A and there
is a clause added to the invariant of A, the invariants of both A and B are
strengthened as a result.

The data suggest that most of the time invariants do not change across
versions. When they do, they are mostly strengthened; only in a few cases
were the changes complex to assess. The conclusion: invariant strength-
ening, a potential issue for object retrieval, does happen. An example of
an invariant too complex to assess was encountered in class HASH_TABLE
between revisions 31933 and 66985: there the invariant changes amounted
to one clause added, five clauses removed and 1 clause changed.

To answer research question 5.(b), in 50% of the cases class invariant
evolution is not an issue for object retrieval. However, it may be an is-
sue in 33% of the cases, because a strengthening of a class invariant be-
tween consecutive versions v1 and v2 makes it more difficult to retrieve
objects stored in v1 format from within objects in v2 format, because there
are more clauses to satisfy. As an example, in revision 387 of class ARRAY
two clauses were added: consistent_size: count = upper - lower

+ 1 and non_negative_size: count >= 0. Retrieving an object of type
ARRAY of a version prior to 387 becomes therefore potentially more difficult
because it might violate one of the two clauses above.

Table 4.13 shows what kind of clauses the class invariants are made of,
for each class and across the five considered revision intervals.

It is interesting to notice that most of the invariant clauses analyzed
(58%) are very simple, involving relational operators applied to numeric

52
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

Class name x relational op y p/¬p predicate composite p⇒ q All
Active 0 0 0 1 1 2
Any 0 2 0 0 0 2

Array 3 1 0 0 0 4
Array2 1 0 0 0 0 1

Arrayed list 1 1 0 0 1 3
Bag 0 0 0 0 0 0

Bilinear 0 0 0 2 0 2
Bounded 2 0 0 0 0 2

Box 0 0 0 0 0 0
Chain 3 0 0 4 1 8

Collection 0 0 0 0 0 0
Comparable 0 0 0 0 0 0

Container 0 0 0 0 0 0
Cursor structure 0 0 0 0 0 0

Dispenser 0 0 2 0 0 2
Dynamic chain 0 1 0 0 0 1

Dynamic list 0 0 0 0 0 0
File 2 1 0 0 0 3

Finite 2 0 0 0 0 2
Hash Table 20 0 1 1 0 22
IO Medium 0 0 0 0 0 0
Indexable 1 0 0 0 0 1

Iterator 1 0 0 0 0 1
Linear 0 0 0 0 1 1

Linear iterator 3 0 0 0 0 3
Linked List 0 1 0 4 0 5

List 2 0 0 0 0 2
Numeric 0 0 4 0 0 4

Part comparable 0 0 0 0 0 0
Resizable 1 0 0 0 0 1
Sequence 0 0 0 0 0 0

Stack 0 0 0 0 0 0
Table 0 0 0 0 0 0

Traversable 0 0 0 0 1 1
Tree 5 0 0 2 1 8

Unbounded 0 0 0 0 0 0
All 47 7 7 14 6 81
% 58 9 9 17 7 100

Table 4.13: Type of clauses occurring in class invariants across 5 versions
of EiffelBase, by class.

operands. Simple boolean expressions, predicates involving more com-
plex computations, and implications amount altogether to 25% of the in-
variant clauses analyzed, while in 17% of the cases a combination of the

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 53

previously described items was found.

4.4.2 More results on class invariant evolution
The more recent study of our group [55] further investigates contract evo-
lution in existing contracted code bases, performing an extensive empiri-
cal study of 15 open source software projects in Eiffel and C#. The study
analyzes full-fledged contracts: preconditions, postconditions, and class
invariants; this section restricts itself to discussing the results on class in-
variant strength that directly relate to persistence. The study presented in
the Section 4.4.1 and the one presented in this section have a significant
difference. In the previous study the data were collected entirely by hand
and covered 5 revisions, whereas in the present study the data were col-
lected mostly automatically and covered all the revisions. Both approaches
are valuable: collecting data manually made a more precise analysis pos-
sible, because the invariants were inspected one by one, and further data
about which kind of clauses made up the invariants were also collected
and analyzed. Collecting data using a tool provided mainly the advan-
tage of being able to process many more data from different projects. This
allowed more confidence in the final results.

The Eiffel projects analyzed are the following:

• AutoTest, a contract-based random testing tool.

• EiffelProgramAnalysis, a utility library for analyzing programs.

• EiffelBase, a general-purpose data structures library.

• Gobo Kernel, a library for compilers interoperability.

• Gobo Structure, a data structure library.

• Gobo Time, a date and time library.

• Gobo Utility, a library to support design patterns.

• Gobo XML, a XML Library supporting XSL and XPath.

In Table 4.14 we report, for each Eiffel project, the total number of revi-
sions, the life span (in weeks), the size in lines of code at the latest revision,
and the number of developers involved.

The raw measures produced include, for each revision:

• The number of classes.

54
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

PROJECT LANG # REV AGE # LOC # DEV

1 AutoTest Eiffel 306 195 65’625 13
2 Eiffel Program Analysis Eiffel 208 114 40’750 8
3 EiffelBase Eiffel 1342 1006 61’922 45
4 Gobo Kernel Eiffel 671 747 53’316 8
5 Gobo Structure Eiffel 282 716 21’941 6
6 Gobo Time Eiffel 120 524 10’840 6
7 Gobo Utility Eiffel 215 716 6’131 7
8 Gobo XML Eiffel 922 285 163’552 6

Total 4’066 4’303 424’077 99

Table 4.14: List of Eiffel projects used in the study (Age is in weeks).

• The number of classes with invariants.

• The average number of invariant clauses per class.

• The number of classes modified compared to the previous revision.

• An estimate of whether a class invariant becoming stronger or
weaker in time.

For invariant strength, the data show that for each project there is of-
ten a certain level of effort in writing class invariants to which develop-
ers commit early in the project’s life and which remains fairly stable over
time. In the first revisions it is common to have more varied behavior,
corresponding to the system design being defined. However, the average
strength of invariants (in terms of number of invariant clauses) typically
reaches a plateau in the mature phases. This result refines what found in
the study of Section 4.4.1.

This section tries to provide an answer to research question 5.(c), that
is: do class invariants become stronger, weaker or stay the same when we
add or remove class attributes?

Measuring precisely the strength of the invariant in an automatic fash-
ion is very difficult, because it requires detailed knowledge of the seman-
tics of a class and it may even require establishing undecidable properties.
In our study, we use the number of invariant clauses (elements anded, nor-
mally on separate lines) as a proxy for invariant strength. In particular, if
we add a clause to a class invariant without changing its other clauses,
we certainly have a strengthening (and, conversely, a weakening when we
remove a clause). Of course there are scenarios in which just counting the
clauses may measure strength incorrectly, for example when some clauses

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 55

are modified while no other clause is removed or added. The data ana-
lyzed [56], however, suggest that changes to existing specifications are in-
frequent events in a project’s life if compared to changes to code; therefore,
counting the number of clauses approximates strength to a good degree in
practice.

Appendix C shows what happens to class invariant strength when at-
tributes are added or removed, project by project and across all revisions.
We summarize here some observations that are interesting for persistence:

• In AutoTest, revision 150 added 17 attributes while there is no de-
tectable increment in the number of clauses of the corresponding in-
variants. This makes it potentially more difficult to retrieve object
of this revision from objects of subsequent revisions, because there
are not new invariant clauses describing constraints on the new at-
tributes. Hence, the class invariant will likely not help with detecting
inconsistent objects as they are retrieved.

• In Eiffel Program Analysis there were many attributes added and re-
moved across revisions, but invariants stayed the same. The scenario
is similar to the one described for the AutoTest project.

• In Gobo Structure, revision 170, there are 17 added attributes while
there is no detectable increment in the number of clauses of the cor-
responding invariants. The scenario is similar to the one observed
for the Autotest project.

• In Gobo Time, revision 64, there are 3 removed attributes with the in-
variant that does not change strength in term of number of clauses.
This scenario does not pose a threat with respect to retrieving objects
in revision 64 from objects in later revisions, but it does pose po-
tential threats with respect to retrieving objects in revision 64 from
objects in previous revisions, because the scenario would be similar
to the ones above for added attributes.

• In Gobo XML there are quite a lot of changes, among which several
revisions in which up to 12 attributes were added (e.g. in revision
550), but as the class invariants were strengthened as a consequence,
it seems safe to assume that issues during object retrieval are not
likely to happen.

Tables 4.15 and 4.16 describe the invariant changes when attributes are
respectively added and removed. Each table refers to all the projects and
is divided in three sections, each corresponding to an invariant behavior

56
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

(labeled as “same”, “strong”, and “weak”). For each measure we show
minimum, median, maximum, standard deviation and sum across all re-
visions.

An observation valid for both tables is that the median is always zero,
which means that on average (given that the median as the most repre-
sentative measure of central tendency for asymmetric distributions) the
invariants do not change when an attribute is added or removed.

The standard deviation does not vary wildly across the projects and is
always relatively small. Still, it is interesting to observe what happens to
the standard deviation when adding attributes and the invariant stays the
same across revisions. It is possible to divide the projects in two groups, in
each of which the standard deviation has the same order of magnitude. As
shown in the leftmost part of Table 4.15, the standard deviation for projects
like EiffelBase, Eiffel Program Analysis, Gobo Kernel, Gobo Time, Gobo
Utility and Gobo XML is an order of magnitude smaller than for AutoTest
and Gobo Structure. This means that AutoTest and Gobo Structure have
more variability when attributes are added and the class invariant does
not change across revisions.

Looking at the sum, it is interesting to notice that Gobo XML shows
some significant invariant-related activities. Gobo XML has 184 classes
which, for some pair of consecutive revisions, attributes are added and
the invariant does not change (in terms of number of clauses), 94 classes
in which attributes are added and the invariant becomes stronger, and 65
classes in which attributes are removed and the invariant does not change.
This is confirmed by visual inspection.

+A SAME +A STRONG +A WEAK
Project m µ M σ sum m µ M σ sum m µ M σ sum
AutoTest 0 0 17 1.29 117 0 0 1 0.06 1 0 0 1 0.06 1
EiffelBase 0 0 3 0.21 41 0 0 3 0.1 7 0 0 1 0.04 2
EiffelProgramAnalysis 0 0 3 0.5 44 0 0 1 0.07 1 0 0 0 0 0
GoboKernel 0 0 2 0.1 5 0 0 0 0 0 0 0 1 0.04 1
GoboStructure 0 0 17 1.06 34 0 0 2 0.22 12 0 0 1 0.06 1
GoboTime 0 0 1 0.13 2 0 0 0 0 0 0 0 0 0 0
GoboUtility 0 0 1 0.12 3 0 0 1 0.07 1 0 0 0 0 0
GoboXML 0 0 8 0.74 184 0 0 12 0.59 94 0 0 1 0.03 1

Table 4.15: Invariant changes when adding attributes, by project.

To be able to assess more precisely how class invariants change in
strength over time we used a Wilcoxon signed-rank test to determine what
happens when attributes are added to a class: does the class invariant be-

4.4. THE EVOLUTION OF CLASS INVARIANTS IN CONNECTION WITH
PERSISTENCE 57

-A SAME -A STRONG -A WEAK
Project m µ M σ sum m µ M σ sum m µ M σ sum
AutoTest 0 0 2 0.21 12 0 0 0 0 0 0 0 1 0.1 3
EiffelBase 0 0 14 0.41 31 0 0 1 0.05 3 0 0 2 0.06 3
EiffelProgramAnalysis 0 0 3 0.35 17 0 0 0 0 0 0 0 0 0 0
GoboKernel 0 0 1 0.04 1 0 0 0 0 0 0 0 1 0.04 1
GoboStructure 0 0 2 0.16 5 0 0 2 0.12 2 0 0 2 0.18 7
GoboTime 0 0 3 0.27 3 0 0 0 0 0 0 0 1 0.09 1
GoboUtility 0 0 0 0 0 0 0 0 0 0 0 0 1 0.07 1
GoboXML 0 0 5 0.36 65 0 0 1 0.05 2 0 0 5 0.27 33

Table 4.16: Invariant changes when removing attributes, by project.

come stronger or weaker, or does it stay the same? There is evidence that
the invariant’s strength not changing is more likely than the alternatives
(V = 0, p = 0.01 in both tests, see the first two columns in Table 4.17).
This is problematic for persistence because it suggests that developers of-
ten add new attributes to a class without correspondingly adding new
invariant clauses for describing constraints on the new attributes. Hence,
the class invariant will likely not help with detecting inconsistent objects
as they are retrieved. Our measure of strength as the number of clauses
is quite fitting in this situation, as new clauses will describe properties of
new attributes that were not there previously.

We detected a similar effect—invariant not changing—when looking at
revisions where attributes are removed (see the last two columns in Table
4.17). In this case, however, the negative consequences are limited to the
arguably less common case of backward retrieval, where we want to re-
store an object stored with a newer version using an older version of its
class.

Finally, we detected no difference between the non-flattened version
(not taking inheritance into account) and the flattened version (taking in-
heritance into account) of the considered classes, so the tables refer to the
flattened versions.

58
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

+
A

in
v

w
ea

k
vs

sa
m

e

+
A

in
v

st
ro

ng
vs

sa
m

e

−
A

in
v

w
ea

k
vs

sa
m

e

−
A

in
v

st
ro

ng
vs

sa
m

e

V 0 0 3 0
p 1.41 · 10−2 1.4 · 10−2 1.41 · 10−1 2.23 · 10−2

∆(µ) −2.3 · 10 −1.65 · 10 -4 -7

Table 4.17: Attribute change analysis across all Eiffel projects.

4.5 Threats to validity

While the analysis of the results of the first four studies in this chapter
(Sections 4.1.1, 4.1.3, 4.2.1, and 4.2.2) shows that the framework model and
its implementation address in principle most practical challenges, the val-
idation based on empirical data is still limited.

The current SMO detection and code generation could be dependent
on the specific programming languages chosen (Java and Eiffel), as no sim-
ilar investigation has been conducted on other programming languages’
code bases.

The study on class invariant evolution in Section 4.4.1 compares the
state of the invariant at each revision interval, therefore without taking
into account the fact that clauses might have been added and then re-
moved again (or vice versa) between two consecutive releases.

The raw measures taken in the study of Section 4.4.2 on class invari-
ant evolution solve the issue with the previous study because they take
into account all the revisions. There are, however, two potential threats
to construct validity. First, using the number of clauses as a proxy for the
strength of a specification may produce imprecise measures. While it has
been clarified that the imprecision is an acceptable trade-off in most cases,
it remains the fact that an exact computation of strength, while not feasi-
ble in general, might have been possible to compute is some cases. Sec-
ond, the flattening introduced to study the effect of inheritance poses a
potential threat to internal validity. This was fully addressed by analyzing
all projects twice: in non-flattened and flattened version, and establish-

4.5. THREATS TO VALIDITY 59

ing with high statistical confidence that there were not significant differ-
ences. A potential threat for all Eiffel-related studies is that classes whose
instances are meant to be stored are not marked in any particular way.
While this provides more flexibility for developers, it can also lead to con-
sidering classes whose objects were not meant to be stored. We addressed
this threat by selecting, were possible, classes that have Serializable coun-
terparts in Java.

The part of the study included in this thesis is restricted to class invari-
ants in Eiffel. While other notations for contracts (e.g., JML) are similar to
the considered ones, they were not analyzed. This may limit the general-
izability of our findings. In contrast, the restriction to open-source projects
does not pose a serious threat to external validity in the study, because sev-
eral of the projects are mainly maintained by professional programmers.

Assuming that the idea and the current implementation are meaning-
ful, general willingness to adopt the framework remains to be proved. In
particular, there is no usability study trying to investigate developers’ un-
derstanding and acceptance of such an IDE-integrated solution. There is
no usability study for the IDE part of the framework because priority was
given to validating the framework persistence API, which is arguably the
first step towards adopting the whole approach in existing, realistic soft-
ware projects.

60
CHAPTER 4. HOW SOFTWARE EVOLUTION AFFECTS PERSISTENCE: EMPIRICAL

EVIDENCE

CHAPTER 5

TOOLS AND LIBRARIES FOR
EVOLVING PERSISTENT
APPLICATIONS

The framework implementation, which consists of an IDE-integrated tool
and an independently usable software persistence library, demonstrates
how the model presented in Chapter 3 can be applied in practice.

While the approach described in this thesis can be applied to any
object-oriented programming language providing support for storing and
retrieving objects, using Eiffel as an implementation language and Eiffel-
Studio as an IDE is motivated by the integrated support for Design by Con-
tract, and in particular for class invariants [34]. Class invariants do in fact
play an important role in complementing the framework’s code genera-
tion support, because they provide a form of runtime validation for the
object retrieval. This runtime validation is performed by the persistence
library’s retrieval algorithm, presented is Section 5.3.2.

The framework implementation as described in this thesis is integrated
in Eve, the ETH Zurich Chair of Software Engineering’s research branch
of the EiffelStudio source code repository. The IDE integration was de-
veloped with the contribution of Schneider [111], while the persistence
framework’s library was designed and developed with the contribution
of R. Schmocker [110], B. Meyer and the whole Chair of Software Engi-
neering at ETH Zurich that participated to the design and code reviews.

In the main wiki page [57] there are instructions to compile the latest
Eve sources for different platforms (Windows, Linux, Mac OS X), or al-
ternatively use the latest available stable release. At the bottom there are
links to the various sub-project directories containing the sources for the

62 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

IDE tool (named “Escher”), the object browser (named “Ebbro”), and the
persistence library (named “Abel”).

Section 5.1 presents the IDE support offered by the framework. In par-
ticular, it describes the developers’ interactions with the EiffelStudio GUI
to create a software project release, the schema evolution handlers con-
taining the transformation functions and the filters for the attributes. It
then illustrates the framework’s object browsing capabilities. Section 5.2
describes the framework code generation features. Section 5.3.1 describes
the front-end API, validated in the experimental study presented in Chap-
ter 6. Section 5.3.2 describes the retrieval algorithm. The rest of the frame-
work implementation is described in Appendix B. More precisely, the
appendix describes in detail the implementation of the Object-Relational
Mapping (ORM) layer of the framework, how we automatically generate
the database schema, the library support for transactions and errors, the
support for additional relational databases, custom ORM mappings, non-
relational stores, and other extensions.

5.1 IDE support

5.1.1 Schema evolution IDE support
The framework is seamlessly integrated into the EiffelStudio IDE, and its
functionalities are accessible through a specific panel. The three numbered
ovals in Figure 5.1 highlight some tool integration details. Oval 1 high-
lights the four main tool buttons, detailed below; oval 2 shows the auto-
matically created folders for the different releases and the folder contain-
ing all the schema evolution handler classes; oval 3 shows the necessary
libraries. The serializer library is a sample serialization library using a cus-
tom human-readable format. The serializer code generator contains the tool
code generation facilities discussed in the remainder of this chapter.

The four buttons available to developers are:

• The Release button.

• The Create Handler button.

• The Release Handler button.

• The Create Filter button.

The Release button triggers a release: the classes are equipped with ver-
sion numbers, if they don’t have them already, otherwise their version

5.1. IDE SUPPORT 63

numbers are incremented. The versioning mechanism relies on the notion
of release: a versioned, compiled and semantically coherent set of classes
constituting a software system. Developers decide, by pushing the Release
button, when a software system is ready for releasing. A class in a certain
version can be found in several releases; this means that the class itself did
not change across those releases. Different versions of the same class can
only be part of different releases. The release version is increased if at least
one class in the system has changed with respect to the previous release.

In addition, every time a developer releases a software system, the con-
figuration files from the current project are copied to an appropriate re-
lease folder, whose name includes the current release number (see oval 2
in Figure 5.1).

64 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

Fi
gu

re
5.

1:
Ei

ff
el

St
ud

io
ID

E
to

ol
in

te
gr

at
io

n.

5.1. IDE SUPPORT 65

The Create Handler button creates a schema evolution handler. The pro-
cess can be described in three steps. In the first step the tool visualizes a
dynamic pop-up window asking for the pair of versions the user is inter-
ested in, as shown in Figure 5.2.

Figure 5.2: Version selection pop-up.

In the second step the tool creates the actual schema
evolution handler, adds it to the list of handlers in class
SCHEMA_EVOLUTION_PROJECT_MANAGER, and notifies the user with
another pop-up (see Figure 5.3). The drop-down menu helps select the
class of interest in the system.

Figure 5.3: Schema evolution handler report.

In the third step the handler is copied in an ad-hoc schema evolution han-
dlers directory, shown in oval 2 in Figure 5.1. Section 1.2 shows an example
of generated schema evolution handler code including a transformation
function.

The Release Handler button copies the newly created handler in the ap-
propriate release directory.

66 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

Provided the required transformation functions exist, it will always be
possible to retrieve any object of a certain class and version into an object of
another version of the same class. This applies to both forward and back-
ward transformations. The forward transformations, though arguably less
frequent, are important as well, because customers might be running an
old system (specified by an old release number) and in need of retrieving
objects stored by a newer system release.

The Create Filter button creates a “filter”, which allows developers to
select the attributes they want to be part of the persisted form. This fea-
ture is important for any practical application of the tool, because there
might be data that is not necessary, possible or efficient to store. The tool
then asks about the release and class we are interested in (see Figure 5.4).
and then allows choosing the individual attributes to filter, as shown in

Figure 5.4: Selecting a release and a class for filtering.

Figure 5.5

Figure 5.5: Filtering the attributes of a class.

5.1. IDE SUPPORT 67

5.1.2 Serialization support: an object browser GUI
Object serialization supports storing and retrieving objects in files using
binary or textual format, or send them over the wire to remote machines.

Among the top ten commonly known programming languages in
the TIOBE index [116], serialization support is limited to serialization li-
braries, including the corresponding documentation, and to debugging
facilities. Microsoft Visual Studio 2010 offers an API to customize the way
objects are displayed in the debugger [35]. In Java, apart from the non-
GUI tools and plug-ins, DbVisualizer (a third party GUI tool) can display
a tree view of serialized Java objects in BLOB columns, without allowing
changes [113].

Given that many developers work using some sort of IDE, it seems
natural to provide serialization support leveraging the IDE’s capabilities.
Therefore the framework presented in this thesis provides a browsing fa-
cility meant to load previously serialized objects in binary format, visual-
ize their content, change it and possibly write them back, all from within
the IDE itself and without any need to run an ad-hoc external program.
Figure 5.6 shows how to start the Ebbro object browser from the Eiffel-
Studio “Tools” menu. To use it, one only needs to have a file containing
serialized objects stored on the local machine.

Objects can then be read and their content visualized using a simple
GUI, as shown in Figure 5.7

Two objects can also be loaded together and compared to each other as
shown in Figure 5.8.

The tool will outline the differences in red, while two content-wise
identical object are marked with a green bar on top. Finally, apart from
modifying the serialized form by changing the values of the attributes and
then write them back, it is also possible to store a custom serialized form
in which the user selects explicitly which objects to store, as shown in Fig-
ure 5.9

68 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

Figure 5.6: Starting the object browsing facility integrated into EiffelStudio.

Figure 5.7: Object visualization GUI.

5.2. CODE GENERATION 69

Figure 5.8: Object browsing facility integrated into EiffelStudio.

Figure 5.9: Object browsing facility integrated into EiffelStudio.

5.2 Code generation

The framework provides support for code generation to relieve developers
from writing boilerplate code to transform instances stored in different
versions with respect to the current one. It also lets developers focus on
the actual specification of the transformation function rather than on the
framework code necessary to wire all the transformation functions to the
rest of the software system.

70 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

The framework generates code according to which IDE buttons are
pressed (see Section 5.1), including the following:

1. Release button: a new release folder is created; classes in the new re-
lease are equipped with version numbers, if they don’t have them
already, otherwise their version numbers are incremented; the con-
figuration files from the current project are copied in the new release
folder.

2. Create Handler button: a new schema evolution han-
dler is created, added to the list of handlers in class
SCHEMA_EVOLUTION_PROJECT_MANAGER, and copied into a schema
evolution handlers folder.

3. Release Handler button: the newly created schema evolution handler
class is copied in the appropriate release folder.

The most important code generation step occurs when the framework
generates a transformation function between two class versions v1 and v2
(step 2 above). The step involves a comparison between the abstract syntax
trees of the two class versions, looking for known SMOs. To detect the
SMOs, it first iterates through the v2 class attributes, searching for a match
with attributes in the v1 class. Then it repeats the process starting from
the v1 class, in order to gather more information, for example to find all
the attributes that were removed. When a known SMO is detected, the
framework generates a transformation function template according to the
rules in Section 3.5. The generated code and comments is as follows :

1. “Attribute not changed”: apart from assigning the stored value to the
attribute, the template includes a warning about the possible seman-
tic change.

2. “Attribute type changed”: the template includes partial or complete
code generation depending on the existence of predefined type con-
verters. As an example, consider the code shown in Section 1. There
we see that attribute info: INTEGER in version 1 becomes info:

STRING in version 2. The type converter automatically applied is in
this case out from class INTEGER. For the opposite conversion (from
STRING to INTEGER) the type converter applied would have been
to_integer from class STRING. It is possible to define and apply
custom type converters.

5.3. THE PERSISTENCE LIBRARY IMPLEMENTATION 71

3. “Attribute added”: the template includes default initialization for
the newly added attribute and a warning to check the new class in-
variant with respect to the old one to avoid retrieval failures.

4. “Attribute removed”: the template includes a warning about the pos-
sible semantic change.

5. “Attribute renamed”: the template includes a warning about a pos-
sible ”Attribute removed” followed by an ”Attribute added”.

6. “Attribute made attached”: the template includes a warning about
the necessity to initialize the attribute. A postcondition checks that
this has happened.

After a developer has analyzed, possibly modified the transforma-
tion function body and finally saved it, the tool places the transforma-
tion function into the MY_CLASS_SCHEMA_EVOLUTION_HANDLER class men-
tioned above, containing all the existing transformation functions between
pairs of different versions for that class. This helps avoid polluting the
code of MY_CLASS with evolution-related code, and makes the whole ap-
proach more scalable. Comments, hints and informational messages are
always generated to guide developers through the process. In Chapter 1
there is an example of generated code and comments.

5.3 The persistence library implementation

At the time of writing the library is made of 81 classes grouped in 11 clus-
ters (roughly equivalent to packages in Java). Apart from supporting the
schema evolution framework with a retrieval algorithm, the library’s API
tries to achieve a trade-off between ease of use and flexibility, and ulti-
mately provide a seamless experience when accessing different kinds of
data stores. The first challenge for the API design was to offer a unified
interface to different kinds of data stores. By splitting the API in a front-
end API and a back-end API we followed Alan Kay’s suggestion to “make
simple things easy, and complex things possible” [81]. The front-end pro-
vides access to the main features of the framework, targeting the aver-
age user and the most common scenarios. The back-end provides object-
relational mapper capabilities and support for more sophisticated tuning
and adaptation, targeting therefore the advanced user. The boundary be-
tween front-end and back-end is represented by the REPOSITORY abstrac-
tion.

72 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

Section 5.3.1 describes the front-end API, validated in the experimen-
tal study presented in Chapter 6. Section 5.3.2 describes the retrieval algo-
rithm. The rest of the framework implementation, and in particular the
back-end API and support for extensions, is described in Appendix B.
More precisely, the appendix describes in detail the implementation of
the Object-Relational Mapping (ORM) layer of the framework, how we
automatically generate the database schema, the library support for trans-
actions and errors, the support for additional relational databases, custom
ORM mappings, non-relational stores, and other extensions.

5.3.1 Front-end API
Figure 5.10 and Figure 5.11 show the most important front-end API ab-
stractions. As it can be see from the class diagrams, they are relatively few,
and they reflect our best effort to have a minimalistic and easily usable
front-end API.

< < d e f e r r e d > >

REPOSITORY

CRUD_EXECUTOR

<<deferred>>

QUERY [G]

TRANSACTION

<<deferred>>

CRITERION

RESULT_SET [G]

REPOSITORY_FACTORY

to

back-
end

Figure 5.10: The main front-end classes and their relations.

Below there is a list of the main front-end classes, together with a short
description:

• REPOSITORY_FACTORY: utility class providing ready-to-use database-
specific REPOSITORY implementations.

• CRUD_EXECUTOR: executors of CRUD (Create Read Update Delete)
operations.

5.3. THE PERSISTENCE LIBRARY IMPLEMENTATION 73

<<deferred>>

QUERY [G]

OBJECT_QUERY [G]

TUPLE_QUERY [G]

<<deferred>>

CRITERION

PREDEFINED_CRITERION

AGENT_CRITERION

Figure 5.11: The OBJECT_QUERY [G] and CRITERION class hierarchy struc-
tures.

• QUERY [G]: generic repository-agnostic queries using criteria objects
for filtering. Available implementations (see Figure 5.11):

– OBJECT_QUERY [G] object-oriented style queries.

– TUPLE_QUERY [G] tuple-based queries.

• CRITERION: combinable criteria for object selection, used to filter the
query results. Available implementations (see Figure 5.11):

– PREDEFINED_CRITERION criteria using string triplets to select
attributes, values and operators of interest.

– AGENT_CRITERION criteria using predicates (boolean functions)
to encapsulate the needed filtering behavior.

• TRANSACTION: transaction facilities, supporting ACID (Atomicity,
Consistency, Isolation, and Durability) properties when available in
the back-end.

With the exclusion of REPOSITORY_FACTORY, the other items in the list
describe classes that are back-end-agnostic, as they only depend on the
REPOSITORY abstraction.

To give an idea of the usage of the front-end API, Listing 5.2 shows
the code a programmer would need to write to perform a simple query
on a MySQL database. We are assuming that a MySQL database is up and
running, and that some objects of type PERSON have already been created
and inserted (see Figure 5.1).

class
PERSON

74 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

feature -- Status

name: STRING
-- Name of current person.

age: INTEGER
-- Age of current person.

-- remainder omitted
end

Listing 5.1: Domain class PERSON

class MYSQL_TEST

create
make

feature -- Test features

test_mysql
-- Test code.

local
repo_factory: REPOSITORY_FACTORY
mysql_repo: RELATIONAL_REPOSITORY
executor: CRUD_EXECUTOR

do
-- Create the repository factory.
create repo_factory
-- Create a MySQL repository.
mysql_repo := repo_factory.

create_mysql_repository_with_default_host_port ("
dbname","userid","password")

-- Create an executor for CRUD operations.
create executor.make (mysql_repo)
-- Query the database for persons and print result
print_result (query_with_composite_criterion)

end

feature -- CRUD operations

query_with_composite_criterion: LINKED_LIST [PERSON]
-- Query the database using a composite criterion and

get a list of persons as result.

5.3. THE PERSISTENCE LIBRARY IMPLEMENTATION 75

local
query: OBJECT_QUERY [PERSON]

do
create Result.make
create query.make_with_criterion (

composite_search_criterion)
executor.execute_query (query)
across query as query_result
loop
Result.extend (query_result.item)

end
end

feature -- Queries with criteria

composite_search_criterion : PS_CRITERION
-- Combining criteria.
local
crit_factory: PS_CRITERION_FACTORY

do
create crit_factory
-- We are looking for a person named Poldo that is not

older than 40.
-- Different flavors of criteria can be composed using

logical operators
Result := crit_factory[["name", "=", "Poldo"]]
and not crit_factory[[agent age_more_than (?, 40)]]

end

feature -- Utility routines

age_more_than (person: PERSON; age: INTEGER): BOOLEAN
-- Age check on ‘person’ used as an agent routine.
require
age_non_negative: age >= 0

do
Result:= person.age > age

end

print_result (lis: LINKED_LIST [PERSON])
-- Utility to print a query result.
do
across lis as local_list

76 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

loop
io.new_line
print (local_list.item.name + " ")
print (local_list.item.age)

end
io.new_line

end
end

Listing 5.2: Querying a MySQL database

It is worth noticing that for the most common scenarios developers in-
teract with the framework exclusively through the front-end API, which
is a high-level object-oriented interface that does not allow any SQL com-
mand to be passed. In fact developers do not even need to know any of the
SQL commands that are commonly used to access relational databases.
These commands typically come in the form of SQL strings, and strings
tend to be error-prone (as for example happens when escaping SQL strings
from within the host language strings). Besides, all the errors will be only
caught at runtime, after the command has been sent to the database, which
brings us to the next important point. Sending SQL strings to the database
can be a potential security threat coming in the form of an SQL injection:
ad-hoc malicious code inserted into the SQL string itself [71].

5.3.2 The retrieval algorithm
At retrieval time, the persistence library relies on an ad hoc algorithm that
is aware of the existing transformation functions.

Assuming that we have a stored object of class C in version v1 and we
want to retrieve it from within an object of class C in version v2, Listing 5.3
presents a simplified pseudo-code description of the algorithm that is ap-
plied.

if v1 = v2
then

perform_standard_retrieval
elseif not schema_evolution_handler_exists_for_type

then
raise exception ("Schema evolution handler for

class C does not exist.") -- 1
elseif not transformation_function_exists (v1, v2)

then
raise exception ("Incompatible versions") -- 2

else if not attribute.is_convertible

5.3. THE PERSISTENCE LIBRARY IMPLEMENTATION 77

then
raise exception ("A type converter for the

attribute does not exist") -- 3
else

perform_across_version_retrieval
end

Listing 5.3: Algorithm for object retrieval.

In case of retrieval of objects of a certain class C, the algorithm will raise
an exception when any of the following conditions are met:

1. The specific schema evolution handler for C does not exist. This is
the case in which developers, while using the IDE and releasing a
new version of the system, deliberately chose not to create a schema
evolution handler for that class (see Section 5.1). As a remainder, a
schema evolution handler is a framework class associated to a do-
main versioned class (C in this case), containing all the existing trans-
formation functions between versions of the class. The algorithm can
easily look for the existence of such a handler because its name is
bound to the class name, so in the case of class C the handler’s name
is C_SCHEMA_EVOLUTION_HANDLER.

2. The specific transformation function between the two versions (re-
trieving object’s class version and stored object’s class version) does
not exist;

3. At least one of the required type transformers for the single attributes
does not exist. For a concrete example see the discussion about “At-
tribute type changed” in Section 5.2.

After the execution of the transformation function body, the class in-
variant is checked. A class invariant failure triggered at this point would
mean that the new objects initialized with the old values do not satisfy
what the new invariant demands from them. This step provides a substan-
tial contribution to the effectiveness of the approach, because an invariant
check failure means that inconsistent objects are not accepted into the sys-
tem. Unfortunately the number of potentially inconsistent objects that are
accepted into the system cannot be always reduced to zero because the
class invariant can be too weak and let some objects pass even if they vio-
late the real, albeit unexpressed, class invariant.

78 CHAPTER 5. TOOLS AND LIBRARIES FOR EVOLVING PERSISTENT APPS

CHAPTER 6

EVALUATING THE DESIGN OF THE
PERSISTENCE API

It is customary for software developers to learn new APIs. Devising APIs
that are easy to learn is therefore an important design target. This chapter
investigates the usability of the framework front-end API detailed in Sec-
tion 5.3.1 by describing an exploratory study in which developers have to
solve some programming tasks using the framework front-end API.

Section 6.1 describes background work on API usability that was help-
ful to outline the guidelines for the user study. Section 6.3 lists the re-
search questions. Section 6.4 describes the pool of participants. Section 6.5
explains the study set-up. Section 6.6 details the data collection protocol
used. Section 6.7 synthesizes the results of the study and analyzes the
collected data. Section 6.8 analyzes the answers to the questionnaire an-
swered by participants at the end of the study. Section 6.9 describes the
lessons learned from the study. Finally, Section 6.10 discusses threats to
validity.

6.1 Evaluation guidelines

Every API exposes a set of features that we can see as services offered.
There are many possible deficiencies of API design that can make it diffi-
cult to benefit of its services, including [91]:

• The API is difficult to learn.

• Functionality is missing.

• Functionality is incomplete.

80 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

• Functionality is not useful.

• Functionality is not immediately clear from the API description.

• Functionality is too difficult to use.

• There is a lack of consistency.

• There is a wrong level of abstraction.

To address the issues above, and more, the Microsoft .NET API design-
ers have successfully implemented a user-centric, scenario-based design
process, in which they compare the experiences of software developers
using the API against a checklist of twelve cognitive dimensions. Clarke et
al., in particular, adapted the checklist from the Cognitive Dimensions of
Notations framework from Blackwell et al. [13], originally used to describe
the usability of notational systems, to software API usability. Here is the
cognitive dimensions checklist [21]:

• Abstraction level: what level of abstraction the API exposes to devel-
opers.

• Learning style: how developers can learn the API.

• Working framework: what developers need to know to work effec-
tively.

• Work-step unit: how much of a programming task must or can be
completed in a single step.

• Progressive evaluation: to what extent partially completed code can be
executed to obtain feedback on code behavior.

• Premature commitment: how many decisions developers have to make
in a scenario and their consequences.

• Penetrability: how the API facilitates exploration, analysis and and
understanding of its components.

• API elaboration: how much the API has to be adapted to meet the
needs of targeted developers.

• API viscosity: how much the API is resistant to change.

• Consistency: how much of the rest of the API can be inferred once a
part of it is known.

6.2. EMPIRICAL ANSWERS TO API QUESTIONS: EXAMPLE RESULTS FROM
PREVIOUS STUDIES 81

• Role expressiveness: how apparent the relationship is between each
component exposed by the API and the program as a whole.

• Domain correspondence: how clearly the API maps to the domain of
interest.

The idea of the Cognitive Dimensions of Notations framework is to com-
pare the expectations of the API users with respect to what the API ac-
tually provides. This thesis follows this approach, using a questionnaire
(among other tools) to collect feedback from users about their experience
in using the API. The questionnaire, detailed in Section 6.6, is extracted by
the items above.

6.2 Empirical answers to API questions: example
results from previous studies

A previous study about the relationship between software developers and
unfamiliar APIs [52] shows that developers have issues with tasks like the
following:

• Associating API class names to functionalities.

• Discovering relationships between API types.

• Creating objects without public constructors available.

• Determining the outcome of method calls.

It does not come as a surprise that associating API class names to func-
tionalities, that is, finding the right abstractions and naming them appro-
priately, may be a difficult task. It is more interesting that even when the
class names cannot be used as keywords in search queries to locate rele-
vant code examples because there is no internet access, developers can still
use names as hints for educated guesses on the related functionalities. The
issue of selecting an appropriate abstraction for the task at hand creates
then potential selection barriers [83].

We may also expect that it will be difficult to discover relationships
between API types: Stylos et al. [118] confirmed that a type is difficult to
discover when is not mentioned—either as attribute, or local variable, or
function argument, or even in a comment—from within the type develop-
ers are using.

82 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

The issues deriving from creating objects when there are not public
constructors available, which typically means discovering an appropriate
factory class, are similar. Ellis et al. [53] questioned the usage of the con-
crete factory pattern [66], undoubtedly one of the most widely used de-
sign patterns in existing software libraries. As a better alternative to the
concrete factory they suggest the abstract factory, as for example imple-
mented in the ”Class Cluster” design of the Cocoa framework [78][77].

A somewhat surprising study suggests that argumentless constructors
are preferred over constructors with arguments [117]. Argumentless con-
structors enforce a create-set-call style, versus the create-call style enforced
by constructors with arguments. In one of the task results, all the partic-
ipants designed a File class including a default constructor, allowing the
possibility for a File to exist in an inconsistent state (without a file name).
Based on the result of the experiment, the authors in the final discussion
suggest that it is good to favor argumentless constructors over construc-
tors with arguments. To the author of the thesis this constitutes an example
of a clash between usability and correctness. If we accept that a file object
does not make much sense without an associated name, we implicitly ac-
cept that the File class has an invariant (possibly explicitly) stating that,
for example, the string attribute representing the file name exists and is
not empty. An argumentless constructor clearly violates the previous as-
sumption, so it should not be allowed. This is probably a scenario in which
the API developer should act as a “benevolent dictator” and impose a
restrictive choice for the better good, even if it goes against usability. In
conclusion, striving for API usability may be sometimes error-prone and
potentially dangerous, so it has to be handled with care.

Observing developers’ difficulties in determining the outcome of a
method call, as shown by Duala-Ekoko and Robillard [52], is also inter-
esting. One of the conclusions is that in certain scenarios (e.g. a method
validating a string) developers expect a return value from a method call
to provide some feedback on the success or failure of the call itself. When
they realize the method has no return value, it becomes hard for them hard
to figure out where to look for the equivalent information. This is also a
potential usability issue in a language like Eiffel that suggests a separation
between commands (changing the state of an object), and queries (provid-
ing information about an object).

The thinking aloud protocol, used in the experiment for data collec-
tion, is probably the most widely used method in usability testing, and
originates from Ericsson and Simon’s seminal work [54], in which they
suggest some quite restrictive rules for data collection. When trying to ap-
ply the method to usability tasks more centered on the product under test

6.3. RESEARCH QUESTIONS 83

than on the participant, it is more appropriate to adapt the rules mentioned
above to use a speech communication model, which is less strict and al-
lows to collect a more interesting set of data [16]. Being less strict means
that certain forms of interaction between the participant and the observer
are allowed, like in the case in which there is a technical problem, or when
there is a request of help on a topic that is unrelated to the task under test,
for example remembering what is the Eiffel syntax for loops.

6.3 Research questions

The research questions about the front-end API this section investigates
are motivated by findings in the previous work described in Section 6.1:

• Which keywords best describe a functionality provided by the API?

• How do developers assess the API with respect to how easy is it to
discover relationships between API types?

• How do developers assess the API with respect to object creation? Do
they find it problematic when public constructors are not available,
but factories are provided instead?

• Do developers prefer argumentless constructors to constructors with
arguments?

• Do developers manage to always determine the semantics of the out-
come of a method call?

The way the study uses the cognitive dimensions framework is not
to “prove” the usability of the front-end API. Rather, the purpose is to
discover the existence of issues, in the same way in which testing cannot
prove a program correct, but can prove the existence of bugs. This is in
line with the accumulated experience of researchers that have been using
the framework for up to 15 years [44].

6.4 Participants

Before describing the participant pool we briefly summarize the tasks, to
make it easier to assess whether the characteristics of the participants are
suitable for the tasks. More details on the tasks can be found in Section 6.5.

84 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

Each participant was asked to complete five programming tasks. The
tasks consisted in implementing some standard operations against an ex-
isting MySQL database, using the front-end object-oriented API, and re-
quired the discovery of the fundamental API abstractions, the combination
of different objects and of specific ways to create them. These are items that
previous studies found to be critical [118] [53]. More specifically:

• Task 1 involved object creation, discovering a factory class, and find-
ing a class to insert objects into the database.

• Task 2 involved finding a class to handle queries, create an appropri-
ate type of query, execute it and print its results.

• Task 3 involved finding a way to update an object in memory and in
the database.

• Task 4 involved finding a way to delete an object both from memory
and from the database.

• Task 5 involved finding a way to express a more complex query in-
volving criteria. This meant finding the criterion abstraction, creating
a concrete criterion and use it to get the right result from the query.

The participant pool is described in Table 6.1, which lists 25 partici-
pants, of which 20 males and 5 females, divided according to their qualifi-
cations as follows:

• 6 bachelor students from ETH Zurich. In their first semester at ETH,
bachelor students are exposed to the Eiffel language through an
Introduction to Programming course [101]. Afterwards they may
choose to attend courses that require to design and implement ap-
plications in Eiffel.

• 4 Master’s students, also from ETH.

• 7 PhD students, of which 5 are computer science students, and one
is a mechanical engineering student.

• 2 post-doctoral researchers, one in computer science and one in me-
chanical engineering.

• 6 professional programmers working for software companies.

6.4. PARTICIPANTS 85

Participant Current Years Eiffel Years O-O Years professional Time spent
tag occupation experience experience industry experience in min
P1 Industry 18 22 21 43
P2 Industry 4 4 3 49
P3 PhD 1 12 2 57
P4 PhD 0 7 7 69
P5 PhD 0 16 15 70
P6 Bachelor 1 4 0 89
P7 Postdoc 0 7 5 72
P8 Industry 1 10 6 78
P9 Bachelor 1 5 0 103

P10 PhD 1 5 3 97
P11 PhD 2 10 1 53
P12 Industry 4 10 7 59
P13 Industry 11 12 12 48
P14 Bachelor 0.5 6 0 58
P15 PhD 0 1 0 105
P16 Industry 7.5 13 10 65
P17 Master 5 5 1.5 72
P18 Postdoc 0 3 1 104
P19 Bachelor 1 4 0 61
P20 Bachelor 2 5 0 87
P21 Master 1 3 0 42
P22 PhD 3 12 4 32
P23 Master 4 4 0.5 71
P24 Bachelor 1 4 0 118
P25 Master 3 5 0 81

Mean 3 8 4 71
Median 1 6 2 69

Table 6.1: Participant pool information.

86 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

No compensation was provided. The participants were recruited either
via email or directly asking them if they wanted to participate. The only
technical prerequisite was to have at least one year of object-oriented pro-
gramming experience, in Eiffel or in another O-O programming language.
All those who accepted satisfy these criteria. The participants reported

• 0 to 18 years of Eiffel experience.

• 1 to 22 years years of experience with an object-oriented program-
ming language.

• 0 to 21 years of professional programming experiences.

As the experience appears to be an important factor of variability, we con-
trolled for it is the analysis of results shown in Section 6.8. Most of the
participants were familiar with Eiffel and the EiffelStudio IDE. Those not
familiar with Eiffel and the EiffelStudio IDE were provided a 15-minute
crash-course before starting the actual study. This included showing the
basics of the Eiffel language and the EiffelStudio IDE main features. While
none of the participants was familiar with the specific front-end API ob-
ject of the experiment, all of them declared to be at least minimally famil-
iar with relational databases. There were not pre-set time restrictions to
solve the tasks, because the focus was not on measuring how fast devel-
opers were, but on how they proceeded in discovering an unknown API.
Nonetheless, we measured how long it took for each participant to com-
plete all the tasks. This varied from 42 minutes to 1 hour and 58 minutes,
with a mean of 71 minutes and median of 69 minutes.

6.5 Study setup

The study was conducted through individual sessions between the au-
thor and one participant. During the study, internet access was disabled.
The only documentation available to the participants was the class header
comments and the feature comments in the code. A previous study sug-
gested that the lack of resources like code snippets and tutorials was a sig-
nificant obstacle to learning APIs [109]. While the front-end API provides
a tutorial and some technical documentation, this was not made available
because the study intended to focus on the obstacles related to the design
of the API.

The framework API used for the experiment had 81 classes grouped in
11 clusters (roughly equivalent to packages in Java) 5.3. The participants

6.5. STUDY SETUP 87

were made aware of the features of the EiffelStudio IDE which enabled
class and feature browsing, showing the ancestors, descendants, clients
and suppliers of a class.

Each participant was asked to complete five programming tasks. The
tasks consisted in implementing some standard operations against an ex-
isting MySQL database, using the front-end object-oriented API and some
objects of class PERSON (see Listing 6.1). Class PERSON is a simple domain
class whose objects can be stored using the front-end persistence API. It is
important to notice that the class does not contain any notation related to
persistence, so it does not require any additional knowledge for the devel-
opers to be able to use it.

class
PERSON

create
make

feature {NONE} -- Initialization

make (first, last: STRING)
-- Create a new person.

require
first_exists: not first.is_empty
last_exists: not last.is_empty

do
first_name := first
last_name := last
age := 0

ensure
first_name_set: first_name = first
last_name_set: last_name = last
default_age: age = 0

end

feature -- Basic routines

celebrate_birthday
-- Increase age by 1.

do
age := age + 1

ensure
age_incremented_by_one: age = old age + 1

88 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

end

feature -- Status report

first_name: STRING
-- The person’s first name.

last_name: STRING
-- The person’s last name.

age: INTEGER
-- The person’s age.

invariant
age_non_negative: age >= 0
first_name_exists: not first_name.is_empty
last_name_exists: not last_name.is_empty

end

Listing 6.1: Class PERSON, whose objects are to be stored.

The participants were then shown the main class USABILITY_TEST,
which contained the task description as comments, as shown in Listing 6.2.

class
USABILITY_TEST

create
make

feature {NONE} -- Initialization

make
-- Run application.

local
p1, p2, p3, p4, p5: PERSON

do
-- Data you need: kind of db: MySQL; host:

"127.0.0.1"; port 3306;
-- db name: "tutorial", user: "tutorial", password: "

tutorial"
-- Task 1: insert the following 5 persons in the db:
-- Catelyn Stark, Eddard Stark, Arya Stark, Bran Stark

and Jon Snow.
-- Task 2: query the db for all persons and print

6.5. STUDY SETUP 89

their first names.
-- Task 3: celebrate the birthday of Arya and update

her in the db.
-- Task 4: delete Eddard from the db.
-- Task 5: query the db for all Starks and print their

first names and ages.
end

end

Listing 6.2: Class USABILITY_TEST, the experiment starting point.

The tasks required the discovery of the fundamental API abstractions,
the combination of different objects and of specific ways to create them
(e.g. using the factory pattern). These are items that previous studies found
to be critical [118] [53]. More specifically, task 1 involved the following:

1. Creating 5 objects of type PERSON.

2. Finding the class REPOSITORY_FACTORY and use it to invoke a factory
method create_mysql_repository that uses the credentials shown
in Listing as arguments and polymorphically returns an instance of
RELATIONAL_REPOSITORY. Alternatively, performing a sequence of 4
interconnected operations to achieve the same result.

3. Finding the class CRUD_EXECUTOR and use it to insert the per-
sons into the database. The link between this abstraction and
REPOSITORY_FACTORY is that a CRUD_EXECUTOR requires an object of
type RELATIONAL_REPOSITORY as an argument to its constructor.

Task 2 involved the following:

1. Finding the generic class OBJECT_QUERY [G], understand that the
generic parameter should be of type PERSON.

2. Finding that class CRUD_EXECUTOR has a routine execute_query ac-
cepting arguments of type QUERY [G], of which OBJECT_QUERY [G]

is a descendant.

3. Finding that OBJECT_QUERY [G] is also a descendant of class
ITERABLE [G], and so it can be used to iterate over the query re-
sults, or alternatively that OBJECT_QUERY [G] exposes an object of
type RESULT_SET that can be used in a similar fashion.

Task 3 involved finding a way to update an object of type PERSON both
in memory and in the database using class CRUD_EXECUTOR.

90 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

Task 4 involved finding a way to delete an object of type PERSON both
in memory and in the database using class CRUD_EXECUTOR.

Task 5 involved finding a way to express a more complex query involv-
ing criteria. Criteria are represented in the API by class CRITERION and its
descendants, located in cluster criteriontree. The task involved taking
a decision to reuse the existing query object after having reset it for new
use with routine OBJECT_QUERY [G].reset, or using a new query object.
In both cases it was necessary to pass a CRITERION object either to routine
set_criterion or to the constructor. Concrete criteria come as objects of
classes AGENT_CRITERION and PREDEFINED_CRITERION, and can either be
created directly or using class CRITERION_FACTORY. In both cases the ar-
guments expressing the correct filtering should be passed.

The hardware on which the experiment was conducted was a Mac-
book Pro laptop equipped with EiffelStudio 7.1.8.8986, with the “full void-
safety” compiler option enabled. This detail is relevant because void safety
enabled the participants to find out at compile-time if they forgot to create
an object, therefore wasting less time to track down calls on void references
(equivalent to a NullPointerException in Java) at runtime. The Apache Web
Server and MySQL version 5.1.44 were installed and running as well.

6.6 Data collection protocol

I ran personally all the sessions and collected all the data. To collect the
data three techniques were used:

• The thinking-aloud protocol.

• The screen captured videos (including audio).

• Structured interviews.

The variety of thinking-aloud protocol adopted was already described
at the end of Section 6.1.

The sessions were conducted individually in an isolated room and
recorded using Camtasia2 [37], version 2.2, a program for screen capturing
and sound recording. Capturing the video of the programming activity, to-
gether with the sound, was essential to review the data collection process
and collect accurate data.

The structured interviews, which happened at the end of each pro-
gramming session, used a questionnaire with open answers. The ques-
tions, which address all the items suggested in Clarke’s paper [21] and

6.7. DATA ANALYSIS: API USABILITY TOKENS ELICITATION 91

listed in Section 6.1, have been adapted from the suggestions by Clarke in a
series of articles on the application of cognitive dimensions while conduct-
ing usability studies at Microsoft [22, 27, 32, 33, 30, 29, 28, 23, 24, 25, 31, 26]:

• Do you find the API abstraction level appropriate to the tasks?

• Do you feel you had to learn many classes and dependencies to solve
the tasks?

• Do you feel you had to keep track of information (not represented
by the API) to solve the tasks?

• Does the amount of code required for each task seem about right, too
much or too little for you? Why?

• How easy is to evaluate your own progress (intermediate results)
while solving the tasks?

• Do you feel you had to choose one way (out of many) to solve a task
in the scenario?

• Do you feel you had to understand the underlying implementation
to be able to use the API?

• Did you need to adapt the API (inheriting from API classes, overrid-
ing default behaviors, providing non-API types) to meet your needs?

• Do you feel you would have to change much in your code to access
another kind of persistence store, or write another query? Would you
know how to do it?

• Once you performed the first two tasks, was it easier to perform the
remaining tasks?

• Does the code required to solve the tasks match your expectations?

• Do you find that the API types map to the domain concepts in the
way you expected?

6.7 Data analysis: API usability tokens elicita-
tion

The participant’s reactions were categorized in the following way:

92 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

• By abstraction, identifying the issues with respect to the four main
abstractions of the front-end API:

– REPOSITORY-related issues.

– QUERY-related issues.

– CRUD_EXECUTOR-related issues.

– CRITERION-related issues.

• By API usability tokens (AUT). This is an original categorization cre-
ated during the analysis of this experiment:

– Missed tokens: missed abstractions or important API features
while solving the tasks.

– Unexpected tokens: API uses not foreseen by the API designers.

– Surprise tokens: API aspects that were surprising for the partic-
ipant.

– Choice tokens: choices the participants had to face before pro-
ceeding with a task.

– Incorrect tokens: incorrect API usages.

The tables below describe the extracted tokens in descending order
with respect to the number of times in which they were observed.

6.7.1 API usability tokens for class REPOSITORY

Table 6.2 shows the results of the experiment with respect to the issues
related to class REPOSITORY.

Many participants (40%) were expecting a DATABASE instead of a
REPOSITORY abstraction. This can be considered reasonable, given they
were asked to work with a relational database. The main justification for
choosing the REPOSITORY abstraction was to be able to represent mecha-
nisms like serialization, which cannot be classified as databases. Two par-
ticipants (see token number 7 in Table 6.2), once they have discovered the
REPOSITORY abstraction, were further expecting a MYSQL_REPOSITORY ab-
straction that was not there. Even after they understood they were sup-
posed to work just with a RELATIONAL_REPOSITORY, the design choice re-
mained a bit confusing.

Token number 2 highlights that 40% of the participants were expect-
ing a REPOSITORY to be able to execute standard database operations

6.7. DATA ANALYSIS: API USABILITY TOKENS ELICITATION 93

AUT AUT Repository-related Participants No.No. tag issues involved
1 Surprise expecting DATABASE, not REPOSITORY P2, P7, P9, P14, P16, P17, P18, P19, P20, P21 10 (40%)
2 Surprise REPOSITORY cannot execute CRUD operations P2, P5, P8, P9, P11, P15, P17, P20, P22, P25 10 (40%)
3 Surprise found a connection class but it cannot be used P1, P6, P7, P8, P9, P10, P16, P17, P25 9 (36%)
4 Missed repository factory P9, P10, P18, P24 4 (16%)
5 Surprise REPOSITORY does not have a CRUD EXECUTOR P8, P9, P17 3 (12%)
6 Unintended inherit from EIFFELSTORE EXPORT P5, P13, P14 3 (12%)
7 Surprise expecting class MYSQL REPOSITORY P7, P23 2 (8%)

Table 6.2: API usability tokens (AUT) for repository-related issues.

like insert, query, update, and delete directly, instead of having to dis-
cover a separate abstraction for that such as the CRUD_EXECUTOR. Among
them, three noticed that the CRUD_EXECUTOR was not mentioned from class
REPOSITORY, and so it was difficult to find (token number 5) . This is con-
sistent with what observed by Stylos et al. [118] about the issues develop-
ers have in discovering classes not mentioned from within the class they
are using.

One third of the participants (36%, token number 3) were confused by
not having a usable CONNECTION abstraction. This is reasonable, because
some typical connection data were given, and it was not clear at all that a
connection object was implicitly created by the framework and a factory
method should have been used instead.

Finding the REPOSITORY_FACTORY was a problem only for 3 partic-
ipants (12%, token number 4), probably due to the fact that in class
REPOSITORY header comment there was no mention of the fact that objects
of descendant classes could be created using the factory. Another likely
reason was that the framework did not make it easy to do without a fac-
tory (there were four nontrivial steps to perform).

Finally, 3 participants tried to bypass some visibility issues by inherit-
ing form EIFFELSTORE_EXPORT, therefore using the API in an unintended
way (token number 6). Such attempts are very useful for the API designers
during the API testing phases, because they suggest refactorings to restrict
the user choices to the intended ones.

6.7.2 API usability tokens for class QUERY

Table 6.3 shows the results of the experiment with respect to the issues
related to class QUERY.

Token number 1 refers to the choice developers had to make in assum-
ing (or not assuming) a read before an update or delete. In the tasks it
was not needed, because the objects to update and delete were already in

94 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

memory, but in general the assumption that a query is needed is correct,
and a common safe practice with databases. This is therefore not really an
issue.

Token number 2, missed by 7 participants (28%), highlights the fact
that the argumentless constructor of class QUERY [G] does not explicitly
state in its comment the intended purpose for the constructed object. The
intended semantic—query all objects of the class generic type G—was dif-
ficult to guess without looking at the implementation. To add to the con-
fusion, there is another constructor accepting a CRITERION argument that
cannot be used to query for all objects, because class EMPTY_CRITERION

has a restricted visibility for clients.
Among the tokens numbered 3 to 6, the most interesting one is token

number 4: the API incorrect usage referring to the fact that a query needs
to be made explicitly reusable by invoking feature reset. This is a good
example of what a usability test may find, and it is also something sug-
gesting that reusable queries would increase the API usability.

The remaining tokens were surprises: token number 3 is a consequence
of the fact that participants were expecting to find the result of a query in
the return type of method CRUD_EXECUTOR.execute_query.

Token number 5 is related to class ITERATION_CURSOR in the EiffelBase
library. This abstraction is usable also to iterate over streams, for which it
does not make sense to have a command to set the cursor at the start of
the stream.

Token number 6 uncovers a subtle naming issue: in class QUERY there is
an attribute result_cursor of type RESULT_SET that looks like it is both
the query result (by looking at its type) and an iteration cursor over the
query result (by looking at its name and feature comment). As it is truly
an iteration cursor, the type is a bit misleading, but this name was chosen
to make developers familiar with databases feel more at home. The issue
itself is easy to fix by making RESULT_SET inherit from ITERABLE, so that
the across syntax can be used.

Token number 7 is just one of the choices the API offers: use the ob-
ject queries or queries returning tuples of values, which sometimes can be
more efficient or appropriate.

Token number 8 indicates that three participants expected that a
query had a feature execute to execute itself, instead of CRUD_EXECUTOR.
execute_query. This was clearly a design choice. Given the fact that the
majority of participants did not have issues with this, it can be ignored.

Three people missed an interface to execute SQL queries directly (token
number 9). The answer to this is that the API was purposely designed
not to offer such an interface, to shield object-oriented developers from

6.7. DATA ANALYSIS: API USABILITY TOKENS ELICITATION 95

AUT AUT Query-related Participants No.No. tag issues involved
1 Choice do objects need to be read again before an update? P2, P3, P8, P10, P18, P19, P20, P21 8 (32%)
2 Missed default query is for all objects P9, P10, P11, P12, P17, P18, P25 7 (28%)
3 Surprise QUERY contains the result of the query itself P2, P3, P9, P21, P23, P24 6 (24%)
4 API incorrect usage tried to reuse the same query without resetting it P1, P6, P12, P13, P18, P24 6 (24%)
5 Surprise expecting command to reset cursor for iteration P13, P14, P16, P17, P23 5 (20%)
6 Surprise across syntax did not work with result set P3, P4, P8, P11, P23 5 (20%)
7 Choice object query or tuple query? P3, P6, P10, P25 4 (16%)
8 Surprise a query object cannot execute itself P7, P10, P22 3 (12%)
9 Surprise expecting a SQL interface P5, P12, P13 3 (12%)
10 Surprise QUERY [STRING] was not appropriate P6, P23 2 (8%)
11 Surprise QUERY does not allow insert, updates or deletes P9, P10 2 (8%)
12 Surprise feature new cursor suggests a new object, but it is not P13, P24 2 (8%)
13 Surprise the side effect on the query argument of execute query P13 1 (4%)

Table 6.3: API usability tokens (AUT) for query-related issues.

the need to deal (and know) SQL, and to provide a more secure interface
(for example not allowing SQL injection attacks by construction). A partial
trade-off when one does not need to retrieve whole objects but just value
tuple of values is offered by class TUPLE_QUERY.

Token number 10, though occurred to only 2 participants, uncovers a
potential issue with understanding the correct use of genericity: choosing
the right type for the generic parameter. Given that in the experiment this
issue was quite quickly understood and fixed by the two participants, it
probably does not deserve too much attention.

Token number 11 is again about design choices (assigning responsi-
bilities to classes). If one accepts the CRUD_EXECUTOR abstraction, then it
makes sense to have the operations on the database there. Even if the ex-
ecutor abstraction is eliminated, it is the designers’ opinion that these op-
erations would fit best in the REPOSITORY.

Token number 12 highlights that feature QUERY.new_cursor suggests
that a new object is created, while in fact it is not. As the interface of class
ITERABLE, the class from which QUERY is inheriting from, demands to pro-
vide a fresh cursor, this is a problem of the implementation that does not
conform to the specification.

Token number 13 shows that CRUD_EXECUTOR.execute_query accepts
a query as an argument, to then make side effect on the argument itself,
which can considered a slightly unusual programming style.

6.7.3 API usability tokens for class CRUD_EXECUTOR

Table 6.4 shows the results of the experiment with respect to the issues
related to class CRUD_EXECUTOR.

96 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

Token number 1 questions the choice of CRUD_EXECUTOR as an abstrac-
tion name. First, “CRUD” is simply a mysterious acronym to many peo-
ple that are not seasoned database practitioners. Second, it suggests a link
to relational databases which it is not a good idea for an API that aims at
providing uniform access to different kinds of persistence stores. The chal-
lenge is of course which name to choose instead. Some proposals, given
by the participants themselves, were QUERY_EXECUTOR, just EXECUTOR and
even ENTRY_POINT, hinting at the fact that CRUD_EXECUTOR is the ideal en-
try point for accessing the whole library functionality.

Token number 2 points out the fact that 7 participants (28%) were ex-
pecting execute_query to be a function and return the query result. This
kind of pattern is not common in the Eiffel development practice, where
it is preferred to keep commands (modifying the state of an object, in this
case the QUERY passed as an argument) separate from functions that return
a value and are not meant to change the state of objects. The importance of
discussing this issue lies in the fact that it provides an answer to the third
research question mentioned in Section 6.3. This appears to be an exam-
ple in which a design choice like the command-query separation principle
[89] comes with a possible trade-off in terms of usability.

Tokens number 3 to 6 were only mentioned by one participants each.
While two of them are not particularly relevant, tokens number 4 and
5 are worth more discussion. The surprise about the presence of an ex-
plicit update feature (token number 4) was mentioned by a participant
having experience with object-relational mappers. The most sophisticated
ones keep the objects in memory and in the database automatically syn-
chronized. The framework reaches a different trade-off: simplify the im-
plementation and giving a bit more control to developers at the cost of
limiting the number of tasks executed automatically. Token number 5 is
a simple naming issue: the claim is that given that there exists feature
execute_query, it would have been more consistent to have features
named execute_update, execute_insert, and execute_delete instead
of just update, insert, and delete.

6.7.4 API usability tokens for class CRITERION

Table 6.5 shows the raw results of the experiment with respect to the issues
related to class CRITERION.

The main highlight here is the fact that 14 participants (56%) missed
the CRITERION_FACTORY completely. Given that the criteria could be eas-
ily created also without the factory, this is a clear signal of the fact that this
class is a candidate for being eliminated, and its functionality distributed

6.7. DATA ANALYSIS: API USABILITY TOKENS ELICITATION 97

AUT AUT Crud executor-related Participants No.No. tag issues involved
1 Surprise what does CRUD mean? P6, P9, P10, P12, P14, P15, P16, P17, P18, P19, P23 11 (44%)
2 Surprise expecting a result type in feature execute query P7, P14, P15, P19, P21, P23, P24 7 (28%)
3 Missed update feature in CRUD EXECUTOR P11 1 (4%)
4 Surprise An explicit update is needed P5 1 (4%)
5 Surprise why execute query and not execute update? P13 1 (4%)
6 Choice used explicit transactions P22 1 (4%)

Table 6.4: API usability tokens (AUT) for crud executor-related issues.

in the other classes in the criterion tree cluster. Incidentally, this result con-
firms the previous literature about the issues in finding and using factories
mentioned in Section 6.1 and provides an answer to the second research
question mentioned in Section 6.3.

After tokens number 2 and 3, just showing that the participants chose
both the kinds of criteria available, token number 4 signals the difficulty
faced by 9 participants (36%) in understanding what the string arguments
for the PREDEFINED_CRITERION’s constructor should be (see Listing 6.3).
Related to this is token number 7: one participant did not understand that
the string argument attr of feature make was referring to an attribute
name.

class
PREDEFINED_CRITERION

inherit
CRITERION

create
make

feature {NONE} -- Initialization

make (attr, op: STRING; val: ANY)
-- Initialization for ‘Current’

require
correct_operator_and_value: is_valid_combination (op,

val)
do
...

end
...

98 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

AUT AUT Criterion-related Participants No.No. tag issues involved
1 Missed criterion factory P2, P6, P8, P10, P11, P13, P16, P17, P18, P19, P20, P22, P23, P24 14 (56%)
2 Choice predefined criterion P3, P8, P9, P10, P15, P17, P18, P19, P20, P22, P23, P24, P25 13 (52%)
3 Choice agent criterion P1, P2, P5, P6, P11, P12, P13, P14, P16 9 (36%)
4 Choice which strings are operators in predefined criteria? P3, P8, P9, P10, P15, P18, P20, P24, P25 9 (36%)
5 Choice no criterion: queried all objects and then selected P4, P7 2 (8%)
6 Choice [[]] syntax with any of the 2 criteria above P21 1 (4%)
7 Missed Arg. 1 in predefined criterion’s make is attr. name P24 1 (4%)

Table 6.5: API usability tokens (AUT) for criterion-related issues.

end

Listing 6.3: Constructor of class PREDEFINED_CRITERION.

Here there are two issues. One is easily fixed with a better comment
providing also a usage example. The other is to question the usage of
strings when more specific information is needed. While for the first ar-
gument (attribute names) choosing a string is appropriate, the second ar-
gument (the operator) could be a encapsulated in a type. This would mean
moving the checks about the operators validity from runtime (see the pre-
condition) to compile-time, a sure improvement.

Token number 5 refers to the fact that 2 participants chose not to go
through criteria but just query for all the objects and then selecting them
explicitly, a reasonable choice that should be possible in this context.

Finally, token number 6 refers to a specific syntax allowing to mix the
two kinds of criteria (predefined and agent) in a uniform style, and possi-
bly combine them with logical operators. Feedback from the videos con-
firms that the feature was discovered, but judged to be quite cryptic, es-
pecially because there was no usage example, and it is probably not by
chance that only one participants dared to use it.

6.8 Data Analysis: final questionnaire

The questions were open, therefore in the analysis the answers were
fitted into three categories (yes, no, and “sometimes”). Table 6.6 col-
lects the questions of the questionnaire, possibly shortened for compact-
ness of presentation, and the corresponding answers. In analyzing the
answers we will refer to a series of articles by Clarke on the applica-
tion of cognitive dimensions while conducting usability studies at Mi-
crosoft [22, 27, 32, 33, 30, 29, 28, 23, 24, 25, 31, 26].

Most of the participants (80%) answered to question 1 that the abstrac-
tion level proposed by the API was appropriate for the tasks. Some felt that

6.8. DATA ANALYSIS: FINAL QUESTIONNAIRE 99

it was too high-level, because it did not provide a SQL interface. This was
a conscious design choice: provide an object-oriented API that works with
domain objects. If one wishes to write directly SQL against, say, a MySQL
database, other libraries are available, for example EiffelStore [114]. In gen-
eral, the API components can be described as “aggregate”, because the all
the tasks could be accomplished by using the same set of components [22].

In answer to question 2, 72% of the participants though they did not
have to learn many classes to be able to use the API effectively. Three of the
participants thinking they had to learn too many classes had missed the
REPOSITORY_FACTORY entirely, which probably explains their feedback. It
can be concluded that the API supports an incremental and minimal learn-
ing style, because each scenario required a small number of classes and
dependencies to be realized successfully [27].

The answers to question 3 confirm that the API has been designed to
be “local”, that is, all the information the user needs to maintain is repre-
sented in the API itself [32]. As a counter-example, consider an API pro-
viding support for writing two different file formats (binary and XML). If
users have to know which format they need in order to understand which
part of the API to use, then this API is considered “global”, defeating the
front-end API’s designers intentions.

Another result is that most of the participants found the amount of
code required for each task reasonable (question 4). This was certainly one
of the design goals of the front-end API. In terms of cognitive dimensions,
one could say that the work step unit is “local incremental”, because the
code required to accomplish the tasks is contained in one local code block,
and can be written incrementally [33].

The answers to question 5 highlight that most of the participants (68%)
found it easy to evaluate their progress while doing the tasks. This number
could have possibly been higher if there were a facility to clean up the
database from intermediate tests, something that is outside the scope of
the API. In terms of cognitive dimensions, the API supports “progressive
evaluation at the functional chunk level” [30], because users can only stop
and evaluate their progress on a standard database operation like insert,
update or delete only after having performed an additional task, that is
querying the database.

The answers to question 6 highlight the fact that the API was perceived
as providing choices. The choice between the two criteria is probably the
most interesting. Choosing an agent criterion instead of a predefined crite-
rion leads to significative differences in the implementation, which means
that while in general the API exposes a minor and reversible level of pre-
mature commitment, in the case of the criteria the API exposes an irre-

100 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

versible level of premature commitment [29]. This means that most of the
API choices can be easily reverted to try the alternatives, while in the case
of criteria there is a stronger commitment in terms of written code when
choosing a predefined criterion with respect to an agent criterion, and to
replace one with the other requires more work than for the other choices.

The answers to question 7 highlight that 48% of the participants felt
the need to inspect the implementation to use the API. This is clearly go-
ing against the inspiring principles of the front-end API. The most impor-
tant instances noted by the analysis are the meaning of the arguments to
the PREDEFINED_CRITERION’s constructor, the meaning of the default con-
structor for QUERY, and the fact that every operation against the database
happens within an implicit transaction. With respect to the cognitive di-
mensions, the API appears to be in the middle between a “context driven
view” and an “expansive view” of its details [28]. This means that even if
the API exposes enough information to allow users to understand the con-
text they are working with, sometimes users have to inspect the code to get
a more precise understanding. Here the goal of minimal penetrability—
reached when users only need to know about different methods and
classes—has not been fully achieved.

The answers to question 8 reflect the fact that only two participants
used an API class through inheritance. Using inheritance was in this case
neither necessary nor an issue, because Eiffel supports multiple inheri-
tance, in contrast to languages like Java where one has to be very careful
in choosing which class goes to occupy the only inheritance slot available.
For the rest, no particular adaptation was needed, which can be consid-
ered positive with respect to usability for the kind of users the front-end
API targets. In terms of cognitive dimensions, the front-end API does not
support “elaboration” and can mostly be used as is [23].

The answers to question 9 clearly point out at the fact that the API
has a “low viscosity” [24]. This means that users perceive that they can
easily make changes to code written against the API. On the designer’s
side, while it is certainly true that working with another kind of relational
database should not present any surprises, the question of how the API
will adapt to non-relational databases is yet to be explored.

The answers to question 10 reflect the observation that after an initial
relatively hard learning-by-discovery phase, the API lends itself to quick
and effective use, the filtering criteria being probably the only serious ob-
stacle. With respect to the cognitive dimensions, one can say that the API
“exposes core consistency” [25], because it mostly uses the same idioms
for similar goals, with just the partial exception constituted by the criteria.

Most of the participants had comments with respect to the code they

6.8. DATA ANALYSIS: FINAL QUESTIONNAIRE 101

were expecting to see (question 11), and this largely depended on their
previous experience. Most of the remarks went in a direction of asking
for simplification of the API, and have already been mentioned in the
analysis to the previous questions. One refers to the choice of having,
in CRUD_EXECUTOR, a method execute_query and then having methods
update and delete, when execute_update and execute_delete would
have been more consistent. This is clearly a usability issue that needs to be
fixed. In terms of cognitive dimensions, the API can be assessed as “plau-
sible” [31], because the code required to accomplish the goals can be in-
terpreted correctly but does not fully match users’ expectations. One more
observation connects the library design with the evolution concerns that
are an important element of this thesis: the analysis of the videos and the
questionnaire showed that some participants wondered about how it was
possible that they did not have to worry about mapping the objects to the
relational tables. Most of them saw, while having a look at the data they
wrote in the database, that there was a meta-mapping done for them by
the library as described in Section B.3. They therefore understood that with
such a meta-mapping evolving the system by changing the attributes of a
class becomes really easy for developers, because in the standard scenario
they don’t have to do anything at all to migrate the database schema. Of
course such a meta-schema is a trade-off and has an impact on the overall
efficiency in some scenarios, because more joins are necessary on average.

With respect to the answers to question 12, we have already discussed
the possibility of replacing REPOSITORY with DATABASE, and of course
DATABASE with something else, and to rename the unfortunately named
CRUD_EXECUTOR. Another suggestion is to use class CRITERION, which
could be called FILTER, but here which name to prefer is less clear. In
terms of cognitive dimensions, the API has a “plausible” domain corre-
spondence [26], because some of the exposed types only map to the types
expected after describing the mapping.

We have already mentioned in Section 6.4 that the different level of ex-
perience among the participants appears to be an important factor of vari-
ability. Therefore we controlled for it by dividing the participant pool in
two groups according to their experience and analyzing the results again.
The first group contains the 11 participants having a declared experience
with object-oriented applications greater than the median (six years). The
second group contains all the other participants. The data are synthesized
in Table 6.7 and Table 6.8 respectively. While most of the answers confirm
the general trend, it is worth commenting more in detail the answers that
present the most remarkable differences.

The answers to question 2 highlight that all the experienced developers

102 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

No. Question Yes No Sometimes

1 Do you find the API abstraction level appropriate to the tasks? 20 (80%) 5 (20%) 0
2 Do you feel you had to learn many classes and dependencies to solve the tasks? 7 (28%) 18 (72%) 0
3 Do you feel you kept track of information external to the API to solve the tasks? 4 (16%) 21 (84%) 0
4 Does the amount of code required for each task seem about right? 22 (88%) 3 (12%) 0
5 Was it easy is to evaluate your own progress while solving the tasks? 17 (68%) 8 (32%) 0
6 Do you feel you had to choose one way (out of many) to solve a task in the scenario? 0 3 (12%) 22 (88%)
7 Do you feel you had to understand the underlying implementation to use the API? 12 (48%) 13 (52%) 0
8 Did you need to adapt the API to meet your needs? 2 (8%) 23(92%) 0
9 Would you have to change much code to access another database or write another query? 4 (16%) 21 (84%) 0

10 Once you performed the first two tasks, was it easier to perform the remaining tasks? 23 (92%) 2 (8%) 0
11 Does the code required to solve the tasks match your expectations? 4 (16%) 1 (4%) 20 (80%)
12 Do you find that the API types map to the domain concepts in the way you expected? 4 (16%) 0 21 (84%)

Table 6.6: Answers to the final questionnaire.

think that they did not had to learn many classes and dependencies to
solve the tasks, while for 50% of the less experienced developers this was
not the case. In fact, some of them are the ones who missed the repository
factory.

Unsurprisingly, the answers to question 5 confirmed that for experi-
enced developers it was easier to evaluate their own progress while solv-
ing the task.

From the answers to question 6 we learn that all the experienced de-
velopers had the feeling of having choices when programming against the
API, while three of the developers in the other group (21%) thought that
the API did not offer choices. This might be a step in the right direction
for the library design, because the front-end API targets both categories
of users and it is good for less experienced developers to “guess right”
without being fully aware of the available choices.

The answers to question 7 almost reversed (between the two groups)
the percentages of developers that had to understand the implementation
to use the API. Most of the more experienced developers thought they did
not have to, while the opposite was true for the other group.

6.8. DATA ANALYSIS: FINAL QUESTIONNAIRE 103

No. Question Yes No Sometimes

1 Do you find the API abstraction level appropriate to the tasks? 8 (73%) 3 (27%) 0
2 Do you feel you had to learn many classes and dependencies to solve the tasks? 0 11 (100%) 0
3 Do you feel you kept track of information external to the API to solve the tasks? 1 (9%) 10 (91%) 0
4 Does the amount of code required for each task seem about right? 10 (91%) 1 (9%) 0
5 Was it easy is to evaluate your own progress while solving the tasks? 9 (82%) 2 (18%) 0
6 Do you feel you had to choose one way (out of many) to solve a task in the scenario? 0 0 11 (100%)
7 Do you feel you had to understand the underlying implementation to use the API? 4 (36%) 7 (64%) 0
8 Did you need to adapt the API to meet your needs? 2 (18%) 9 (82%) 0
9 Would you have to change much code to access another database or write another query? 2 (18%) 9 (82%) 0
10 Once you performed the first two tasks, was it easier to perform the remaining tasks? 11 (100%) 0 0
11 Does the code required to solve the tasks match your expectations? 1 (9%) 0 10 (91%)
12 Do you find that the API types map to the domain concepts in the way you expected? 9 (1%) 0 10 (91%)

Table 6.7: Answers to the questionnaire: experienced group.

No. Question Yes No Sometimes

1 Do you find the API abstraction level appropriate to the tasks? 12 (86%) 2 (14%) 0
2 Do you feel you had to learn many classes and dependencies to solve the tasks? 7 (50%) 7 (50%) 0
3 Do you feel you kept track of information external to the API to solve the tasks? 3 (21%) 11 (79%) 0
4 Does the amount of code required for each task seem about right? 12 (86%) 2 (14%) 0
5 Was it easy is to evaluate your own progress while solving the tasks? 8 (57%) 6 (43%) 0
6 Do you feel you had to choose one way (out of many) to solve a task in the scenario? 0 3 (21%) 11 (79%)
7 Do you feel you had to understand the underlying implementation to use the API? 8 (57%) 6 (43%) 0
8 Did you need to adapt the API to meet your needs? 0 14(100%) 0
9 Would you have to change much code to access another database or write another query? 2 (14%) 12 (86%) 0
10 Once you performed the first two tasks, was it easier to perform the remaining tasks? 12 (86%) 2 (14%) 0
11 Does the code required to solve the tasks match your expectations? 3 (21%) 1 (8%) 10 (71%)
12 Do you find that the API types map to the domain concepts in the way you expected? 3 (21%) 0 11 (79%)

Table 6.8: Answers to the questionnaire: group with less O-O experience.

104 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

6.9 Lessons learned

The main results can be now expressed as answers to the research ques-
tions mentioned in Section 6.3, and lessons can be learned from the expe-
rience coming from the experiment:

• Which keywords best describe a functionality provided by the API?
The evaluation showed at least one clear example of poor ab-
straction choice: the CRUD_EXECUTOR. In addition, there were some
other names of classes and features in need of being re-assessed,
like REPOSITORY versus DATABASE, CONNECTION, and update versus
execute_update. The problem of CONNECTION in particular is that it
is not supposed to be used by clients, so its visibility should prob-
ably be further restricted and an appropriate comment should be
put in the factory methods of class REPOSITORY_FACTORY. The les-
son learned is to pick consistent names that do not assume too much
knowledge on the developer’s side, and that are as common as pos-
sible without being vague.

• How do developers assess the API with respect to discovering re-
lationships between API types? The most relevant issue discovered
was that CRUD_EXECUTOR is not accessible from the REPOSITORY

class. This was particularly severe because CRUD_EXECUTOR is de
facto the entry point for the API. This result is consistent with the
observations from previous authors [118], stating that discovering
relationships between API types is difficult. Another critical point
was discovering the REPOSITORY_FACTORY. The remaining relation-
ships between the API types were relatively straightforward to fig-
ure out in comparison. The lesson learned is to make the necessary
types accessible from the type from which developers are supposed
to start. The proposed solution involves improving the documenta-
tion of class REPOSITORY to specify that its objects are to be created
using REPOSITORY_FACTORY, and adding in class REPOSITORY a util-
ity method returning an instance of CRUD_EXECUTOR.

• How do developers assess the API with respect to object creation?
Do they find it problematic when public constructors are not avail-
able, but factories are provided instead? One of the two factories,
CRITERION_FACTORY, was mostly ignored, but creating objects of
type CRITERION remained possible and viable without it. The other
factory, REPOSITORY_FACTORY, was more useful but unfortunately
not well documented in class REPOSITORY. Creating and initializing

6.10. THREATS TO VALIDITY 105

correctly REPOSITORY objects without using REPOSITORY_FACTORY

was longer and more demanding, because it required four non-
trivial operations. While the first case seems to confirm the issues
that people encounter in discovering factories already mentioned by
previous authors [53], the second case suggests a way to improve
the situation when a factory is needed: document the factory exis-
tence in the constructor comments and class header comments of the
types for which the factory is needed (in our case REPOSITORY and
its descendants).

• Do developers prefer argumentless constructors to constructors with
arguments? Contrary to what Stylos et al. observed [117], in the case
of class QUERY, no participant had issues with the constructor accept-
ing a criterion as an argument, while 7 participants (28%) had issues
with the argument-less constructor because it was not clear that it
would create a query for all objects of the query generic type.

• Do developers manage to always determine the semantics of the out-
come of a method call? In programming languages like Java methods
returning void can sometimes be confusing because it is not clear to
developers where to look for the expected outcome of the method.
For example, a method could validate a string in a way that returns
void if the validation went well, or that throws an exception if the
validation did not go well. According to Duala-Ekoko and Robil-
lard [52], this design confused developers. In the front-end API, a
similar issue occurs with feature execute_query, where its docu-
mentation comment states that the result of the query is in an at-
tribute of class QUERY of type RESULT_SET. While on the one hand
participants did not find any issue with interpreting the intended
semantics, on the other hand more than one participant claimed to
have “guessed a lot”, and that it worked. This can be interpreted as
the API design presenting somewhat expected behaviors even when
the documentation was not read or not clear.

6.10 Threats to validity

A possible threat to internal validity is that the choice of participants was
far from random. E-mails were sent to persons that were potentially in-
terested in the subject of the experiment, like former Introduction to Pro-
gramming course students and former members of the Chair of Software
Engineering in Zurich. Positive answers came from roughly 40% of them.

106 CHAPTER 6. EVALUATING THE DESIGN OF THE PERSISTENCE API

Most of the people were known to the person conducting the experiment.
This element, which may be seen as introducing some bias, might actu-
ally even have helped during the experiment to make the participants feel
at ease and reduce the stress that would come from thinking about per-
forming badly in front of an unknown person. Another factor mitigating
possible selection bias is that the pool of participants was quite heteroge-
neous with respect to their programming experience.

Absence of Internet access might have influenced the outcome of the
study as well. The reason for such a choice was to reduce the informa-
tional noise and let developers focus on the API itself—class names, class
relationships and API interfaces—while solving the tasks. Besides, how
much developers may benefit from looking for solutions on the web is
controversial [52].

Some of the questions on the questionnaire may be seen as rather sub-
jective. This is certainly a thread to validity, partially mitigated by the fact
that 9 questions (75%) received answers chosen by at least 80% of the par-
ticipants.

Finally, external validity is not too much of concern, because the pur-
pose of the study was to validate one single library, not to generalize the
findings to other libraries.

CHAPTER 7

CONCLUSIONS AND FUTURE
WORK

This chapter summarizes the comprehensive solution this thesis provides
for the evolution of object-oriented systems in need of persisting their ob-
jects. Section 7.2 summarizes the contributions of this thesis by contrasting
them with previous work. Section 7.3 describes future work.

7.1 Tackling the limits of existing approaches

The software development community provides practical but limited so-
lutions to the problem of evolving persistent classes. Such solutions im-
ply that software developers write transformation functions to adapt old
objects to the new classes. Three factors constrain such solutions: a class
schema approach, an invariant-unaware retrieval process, and lack of tool
support. The following subsections highlight how this thesis tackles the
aforementioned constraints.

7.1.1 Multi-version model
The most widely adopted programming languages promote the “class
schema approach” described in Section 2.1. Given an object to retrieve,
the approach compares the object’s class schema available in the retriev-
ing system with the class schema of the stored object. If a mismatch oc-
curs, developers need to code a transformation function to adapt the re-
trieved object to the current, newly created one. This approach does not fit
well long-term evolution scenarios with many possible class schemas, and
can potentially complicate the transformation function, because the func-

108 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

tion needs to react appropriately in presence of multiple retrieving class
schemas.

We address the above issue by acknowledging that there can be many
versions of a certain class, and by providing the infrastructure to deal with
it from the beginning, that is from the very moment in which a new ver-
sion is released. Therefore we integrate support into an Integrated Devel-
opment Environment, elevating class schema evolution to the status of
first-class citizen of the software development realm rather than undesir-
able side effect of the software production activities. The framework can
handle a transformation function for each pair of versions, keeping all the
transformation functions in a specific handler class.

7.1.2 Invariant-safe evolution

Object retrieval can be regarded as “an extralinguistic method for creating
objects” (that is, without using a constructor [14]). This implies that once
restored, and before being used, the object needs to satisfy its class invari-
ant, whether implicitly or explicitly stated. The notion of class invariant
in general, and its use in connection to object persistence in particular, are
not widespread in the current software development community. To make
things more critical there are many lenient retrieval algorithms willing to
accept potentially inconsistent objects into the retrieving system.

We address the above issue by the framework retrieval algorithm. The
persistence library presented in the thesis performs at retrieval time a se-
ries of checks to make sure that appropriate transformation functions ex-
ist and finally that the retrieving class invariant holds. This leads to an
invariant-safe class schema evolution.

7.1.3 Release-time evolution handling

Current software systems rely completely upon developers to provide
support for class schema evolution. In our experience developers write
transformation functions between two versions when they need them, that
is, only when they get a retrieval error. In the scenario in which they are
using lenient retrieval algorithms that accept inconsistent object into the
system, developers may not even immediately realize that the retrieved
data are semantically wrong.

The solution we propose to mitigate the issue is to handle class schema
evolution as early as possible, that is at system release time. A system re-
lease triggers support for the creation of schema evolution handlers, in-
tended to help developers to better focus on possible issues that may arise

7.2. CONCLUSIONS 109

from previous versions of the newly released code, and support for filter-
ing the attributes to be stored.

7.2 Conclusions

This thesis proposes a comprehensive approach to the evolution of object-
oriented applications that persist their objects and need to be able to re-
trieve them in the future. The semantically interconnected parts that work
together for the purpose of mitigating the issues that persistent evolving
software typically presents are the following:

• A formal model for changes in a class schema, resulting from object-
oriented theory and experience.

• A schema evolution tool integrated into an IDE and implementing
the formal model.

• A persistence library integrating the proposed schema evolution ap-
proach and featuring seamless access to different kinds of persis-
tence stores.

• A measure of robustness for the evolution of persistent applications,
devised to understand to what extent they are able to successfully
retrieve previously stored objects.

The analysis of existing and realistic code bases has shown that the theo-
retical model proposed is viable, and that it is also possible to assess how
robust a software system is with respect to its capacity to retrieve previ-
ously stored objects. This is intended to facilitate acceptance of the pro-
posed framework in realistic software projects.

The front-end persistence API, supporting the model by providing an
invariant-safe retrieval algorithm and seamless access to different kinds of
persistence stores, has been validated by an experimental study. The study,
performed with a group of software developers with diverse backgrounds,
has shown that the API is usable in practice in commonplace scenarios
even without consulting external documentation.

This work has potential to increase awareness of the issues connected
to object-oriented class schema evolution and shows one reasonable way
to deal with it.

The tool and the libraries developed as part of the thesis are available
as open source software and integrated into EVE, the research branch of
the EiffelStudio IDE [57].

110 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.3 Future work

We now propose some future work following the contributions high-
lighted in the previous section.

The formal model can benefit from a broader empirical validation:
more studies can be performed on more code repositories, focusing in
particular on object-oriented programming languages other than Java and
Eiffel.

In the study about invariant evolution in Section 4.4.1 we notice that
most of the invariant clauses analyzed are relatively simple. This suggests
that it may be reasonable to investigate the use of tools to automatically
detect invariant strengthening and therefore warn about possible retrieval
errors before they actually happen.

It also seems interesting to consider, in the model of software evolution,
the evolution of the persistence software mechanisms themselves. A first
step is to investigate if the issue is relevant in existing code bases.

The schema evolution tool can be improved by implementing an IDE-
integrated recommendation system aiming at facilitating the discovery of
the API methods and types not directly reachable from the type devel-
opers are currently working with, similarly to what proposed by Duala-
Ekoko and Robillard [51], and re-evaluate the API usability to see if any
difference in usability is detected.

Adapting the tool to existing versioning systems, though out of scope
for this thesis, would certainly help achieving broader validation and ac-
ceptance, and therefore needs to be considered for future work. At the
moment the tool is generating its own version numbers, and has its own
semantics for a system release. In a realistic scenario, the tool might rely
on some software configuration management tool (e.g. CVS, SVN, Mercu-
rial, or GIT) to get version identifiers. This would bring advantages and
disadvantages: on the positive side the configuration management tool
will generate the identifiers for us, while on the negative side every small
change in and outside the class (possibly not related to persistence) will
trigger a new class version identifier. The situation would be improved by
assuming that there is some release management mechanism in place (a
typical example is tags following the semantic versioning [107]).

The mechanism to detect attribute renames can be improved by track-
ing developers’ direct use of a renaming IDE functionality, and by per-
forming some code analysis of the class routines using the attribute candi-
date to a rename. This helps to detect attribute renames with more confi-
dence.

We are improving the front-end API by incorporating the suggestions

7.3. FUTURE WORK 111

resulting from the performed study. It can be interesting to perform an-
other experimental study to see if with a different pool of participants the
results can be replicated.

The back-end API can be extended to support more kinds of relational
databases and NoSQL data stores as well (a CoachDB extension is under
development at the time of writing).

112 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

APPENDIX A

EIFFEL AND DESIGN BY
CONTRACT

While applicability to other programming languages is possible, the exam-
ples, the tools and the libraries implemented as part of this thesis are all
based on the Eiffel language [89]. This chapter provides a brief overview
of the basics of Eiffel and the Design by Contract software development
method, essential to the results presented in the thesis.

A.0.1 Types

Eiffel is a purely object-oriented (O-O) language. It uses static typing and
dynamic binding and supports multiple inheritance and genericity. The
type hierarchy has a common root: class ANY from which all other classes
inherit by default.

Eiffel supports two kinds of types: reference types and expanded types.
An entity declared of a reference type C represents a reference that may
become attached to an instance of type C, while an entity declared of
an expanded type C directly denotes an instance of C. A special case of
expanded types are the basic types (also called “primitive” in other lan-
guages), such as INTEGER, REAL, CHARACTER, and BOOLEAN. The
instances of these types are also objects, but they are implemented through
special compiler support for efficiency reasons. Class NONE, which exists
only in theory, inherits from all reference types, cannot be inherited from
and has only one instance: the special value Void, denoting an unattached
reference, the equivalent of null in other programming languages.

Eiffel does not support routine overloading, so all routines in a class
must have different names.

114 APPENDIX A. EIFFEL AND DESIGN BY CONTRACT

A.0.2 Information hiding
Eiffel does not use keywords to express the export status of features;
rather, it allows the specification of a list of classes to which features are
available. For instance, features exported to classes A and B will be callable
from A, B and their descendants. Hence, features exported to ANY are
available to all classes (the equivalent of the public access modifier in
Java/C#), and features exported to NONE are not callable from outside
their class (the equivalent of the private access modifier in Java/C#).
When no list of classes is specified, the compiler assumes that all the fea-
tures are public, that is, exported to ANY. This is the default.

A.0.3 Code organization
Eiffel does not support namespaces. Classes can be organized in clusters,
which are simple folders that have no scoping effect. Two clusters in a
software system should hence not contain two classes with the same name,
or one of the classes must be renamed or excluded from the system. Within
a class, the language allows a feature clause to help organize features by
semantic categories and to help expressing information hiding.

A.0.4 Terminology
An Eiffel class has a set of features (operations), which can be either rou-
tines or attributes. In Java/C# terminology, features are called “members”
and routines are called “methods”. Eiffel also makes a distinction between
functions (routines returning a result) and procedures (routines that do not
return a result). Objects are created through calls to creation procedures,
known in Java/C# as “constructors”. Creation procedures in Eiffel do
not have to conform to any naming scheme; they are normal procedures,
which acquire the special status of creation procedures by being declared
in the create clause of a class.

Eiffel also distinguishes between commands — features that do not re-
turn a value (procedures), and queries — features that do return a value
(attributes and functions).

Eiffel uses the notions of supplier to denote a routine or class providing
a certain functionality, and client for a routine or class using that function-
ality. Client-supplier and inheritance are the two fundamental relation-
ships between classes.

Eiffel routines and classes can be deferred (or “abstract” in Java/C#
terms). A class having one or several deferred routines must be deferred
itself and cannot be instantiated. A class can be declared deferred even if

115

it does not contain any deferred routines, just for the purpose of making it
impossible to instantiate it.

A.0.5 Design by Contract
Eiffel supports the Design by Contract software development method [90],
through which classes can embed specification checkable at runtime. Con-
tracts are the mechanism allowing this: routine preconditions specify with
the keyword require boolean conditions that must be fulfilled by any
client upon calling the routine; routine postconditions specify with the key-
word ensure boolean conditions that must be fulfilled when the routine
is done executing. Preconditions are thus an obligation for the client, who
has to fulfill them, and a benefit for the supplier, who can count on their
fulfillment; conversely, postconditions are an obligation for the supplier
and a benefit for the client. Postconditions can contain the old keyword.
This keyword can be applied to any expression and denotes the value of
the expression on routine entry. The most important kind of contract for
persistence is the class invariant, specified with the keyword invariant.
Class invariants are boolean conditions that must hold whenever an in-
stance of the class is in a visible state, that is, after the execution of a cre-
ation procedure and before and after the execution of exported routines.
A class is responsible for satisfying its own invariant.

Routine pre- and postconditions and class invariants should be written
already in the design phase of the software system and are part of the
interface of the class. Eiffel also supports other kinds of assertions:

• Loop invariants: conditions that must hold before and after each ex-
ecution of the loop body.

• Loop variants: integer expressions that must always be non-negative
and must be decreased by each execution of the loop body.

• check assertions: conditions that can appear inside routine bodies,
expressing properties that must hold when the execution reaches
that point; these are similar to the assert statements in languages
with a C-derived syntax.

Calling functions from assertions is allowed and greatly increases the
expressiveness of Eiffel contracts, but it also introduces the possibility of
side effects in contract evaluations.

Any Eiffel assertion can be preceded by a tag, followed by a colon, as in
balance_positive: balance > 0, where balance is an integer variable
in scope.

116 APPENDIX A. EIFFEL AND DESIGN BY CONTRACT

Runtime contract checking can be enabled or disabled. It is enabled
typically during the development phases of a software system and (par-
tially) disabled in production mode, due to its performance penalty. Con-
tract violations are signaled at runtime through exceptions, and signal the
presence of bugs.

The support for Design by Contract in Eiffel is essential to the use of
executable specification by programmers in this language. This is made
clear by a study [19] which shows that Eiffel classes contain more asser-
tions than classes written in programming languages that don’t support
Design by Contract. In the classes examined in the study, 97% of asser-
tions were located in contracts rather than in inline assertions.

Eiffel was the first language to support Design by Contract in this form.
Since then, many other languages natively contain or have introduced fea-
tures supporting executable contracts in the form of pre- and postcondi-
tions and class invariants; among them, some of the best known are JML
[85], Spec# [11], C# [58] and D [88].

A.0.6 Void Safety
A program is void safe if it has no void dereferencing errors. A void (or
null) dereferencing error happens when the operation x.f() fails because
the target object x denotes a void reference at execution time [93]. Since re-
lease 6.1 (2007) the Eiffel language has incorporated the void safety mech-
anism into the compiler, requiring developers to indicate, for every at-
tribute, local variable or function result type, whether it can accept void
values (keyword detachable) or not (keyword attached). It is possible
to select a default, so that only one of the two keywords is necessary.

One rule concerns assignment and argument passing: if the target is
attached, the source must be attached too. If the target is detachable,
the source can be either attached or detachable. Another rule states that
an attribute declared as attached should be attached to an object before
any creation feature of the class terminates, otherwise the compiler will
signal an error. Finally, in the cases in which we are sure that there is an
object attached to a detachable variable ref_A, the assignment can be
done within an object test, that will guarantee the attachment as illustrated
below.

if attached {B} ref_A as x then
-- do something with x, now certainly of type B

end

Listing A.1: Object test.

APPENDIX B

THE PERSISTENCE LIBRARY’S
BACKEND IMPLEMENTATION

The back-end API provides a way to interact with the more advanced
framework functionalities and the repository implementations.

The deferred class REPOSITORY is the gate from the front-end to the
back-end, provides the highest level of abstraction of persistence opera-
tions and works with plain Eiffel objects. This means that to provide per-
sistence services the framework does not require any specific annotation
from developers.

This appendix describes in Sections B.1 and B.2 the details of the im-
plementation of the Object-Relational Mapping (ORM) layer of the frame-
work, which contributes significantly to abstract the database away from
the object-oriented application. Section B.3 describes how we automati-
cally generate the database schema. Section B.4 describes the library sup-
port for transactions and errors. Section B.5 illustrates the library’s support
for additional relational databases, custom ORM mappings, non-relational
stores, and other extensions.

B.1 The ORM layer: from REPOSITORY to BACKEND

Class RELATIONAL_REPOSITORY has the responsibility to decompose the
object graph of each object coming from the front-end into object-parts,
for example attributes and collections. Each part is then mapped to its
relational counterpart and sent to the BACKEND class. The deferred class
BACKEND only deals with one object graph part at once, and it is responsi-
ble to map it to the actual persistence mechanism. The ORM layer lies be-

118 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

tween the RELATIONAL_REPOSITORY and the BACKEND. As said previously,
the RELATIONAL_REPOSITORY class has the responsibility to decompose
the object graph of each object coming from the front-end into object parts.
The decomposition (see Figure B.1) is designed to support different object-

<<deferred>>

OBJECT_GRAPH_PART

< < d e f e r r e d > >

SIMPLE_PART

< < d e f e r r e d > >

COMPLEX_PART

SINGLE__OBJECT_PART

BASIC_ATTRIBUTE_PART

 < < d e f e r r e d > >

COLLECTION_PART

OBJECT_COLLECTION_PART

OBJECT_GRAPH_ROOT

RELATIONAL_COLLECTION_PART

Figure B.1: OBJECT_GRAPH_PART hierarchy

relational mapping techniques, because each object part is easily mapped
to a relational database. The set of classes used to represent an object graph
and to prepare a write operation in the BACKEND is described below:

• OBJECT_GRAPH_ROOT: represents the root of the object graph.

• BASIC_ATTRIBUTE_PART: represents an object of a basic type.

• OBJECT_COLLECTION_PART: represents a collection to be stored in an
object-oriented fashion.

• RELATIONAL_COLLECTION_PART: represents a collection to be stored
in a relational fashion.

B.1. THE ORM LAYER: FROM REPOSITORY TO BACKEND 119

• SINGLE_OBJECT_PART: represents an object that is neither a basic
type nor a collection.

The classes described above interact with the main classes in the ORM
layer, described below (see also Figure B.2):

<<deferred>>

SQL_DATABASE

 MYSQL_DATABASE SQLITE_DATABASE

GENERIC_LAYOUT_

SQL_BACKEND

< < d e f e r r e d > >

BACKEND

 RELATIONAL_

REPOSITORY

 < < d e f e r r e d > >

REPOSITORY

 WRITE_EXECUTOR

 RETRIEVAL_

MANAGER

 WRITE_PLANNER

 OBJECT_GRAPH_

BUILDER

< < d e f e r r e d > >

COLLECTION_
HANDLER

Figure B.2: The Object-to-Relational API important classes.

• OBJECT_GRAPH_BUILDER, responsible to create the explicit object
graph representation.

120 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

• WRITE_PLANNER, responsible to generate a total order on all write
operations, taking care of the dependency issues.

• WRITE_EXECUTOR, responsible to perform the single write operations
against the back-end.

• RETRIEVAL_MANAGER, responsible for building objects from the parts
obtained from the backend, and responsible for loading the entire
object graph.

• COLLECTION_HANDLER, responsible to add collection handling sup-
port to the basic ORM layer. The actual support is implemented in
its descendants.

To better explain how the ORM classes described above interact with
each other, Figure B.3 shows how inserting and retrieving objects works
using a UML collaboration diagram.

repo: RELATIONAL_REPOSITORY

disassembler: OBJECT_GRAPH_BUILDER

operation: WRITE_PLANNER

executor: WRITE_EXECUTOR

2: set_object_graph

3: generate_plan

4: perform_operations

backend: BACKEND

4.1: insert

retriever: RETRIEVAL_MANAGER

1: execute_disassembly

5: setup_query

5.1: retrieve

Figure B.3: Inserting and retrieving objects using RELA-
TIONAL REPOSITORY.

Finally, to clarify the data flow it may be useful to further describe what
happens to an object when being stored by the ORM layer:

B.1. THE ORM LAYER: FROM REPOSITORY TO BACKEND 121

1. The RELATIONAL_REPOSITORY passes the object to the
OBJECT_GRAPH_BUILDER.

2. The OBJECT_GRAPH_BUILDER creates the corresponding object graph
and passes the OBJECT_GRAPH_ROOT to the WRITE_PLANNER.

3. The WRITE_PLANNER creates a LIST [OBJECT_GRAPH_PART] and
passes it to the WRITE_EXECUTOR.

4. The WRITE_EXECUTOR separately invokes write operations on the
back-end for each element of LIST [OBJECT_GRAPH_PART], for ex-
ample for each basic type and collection.

Object retrieval is comparatively simpler: the
RELATIONAL_REPOSITORY passes a query object to the
RETRIEVAL_MANAGER, which handles the communication with the
BACKEND to retrieve the object parts and put them together to reconstruct
the object(s) and give it back to the RELATIONAL_REPOSITORY.

B.1.1 Collection handling
Collections are important in an object-relational mapping scenario, be-
cause they are mapped as relations (1:M or M:N) in the back-end.
The framework offers support for custom collections. In particular, de-
veloper can implement support for their own collections by inherit-
ing from PS_COLLECTION_HANDLER [COLLECTION_TYPE -> ITERABLE [

detachable ANY]], where the constrained generic parameter requires the
collection type to be iterable.

The framework supports two types of collections:

• RELATIONAL_COLLECTION_PART fits well the scenario in which there
is a typical database layout, with tables for every single class and
collections stored in one of two ways:

– Collections stored within the table of the referenced object as
1:M-Relations (see Figure B.4). These collections are not for-
warded to the backend. Instead, each item in the collection gets
a new dependency, expressed with a foreign key to the collec-
tion owner.

– Collections stored inside their own table as M:N-Relations (see
Figure B.5). While these collections depend on both the collec-
tion owner and all the items the collection references, each col-
lection owner does not depend on the collection itself. This is

122 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

because to insert a single row in an M:N-relation associative ta-
ble we need two foreign keys, one to an owner and the other to
a collection item. In other words, by using an associative table
a M:N-Relation is transformed into two one-to-many-relations
(1:M and 1:N).

• OBJECT_COLLECTION_PART is intended for a scenario in which there
is a separate table storing the collections, each with their own pri-
mary key value, while the collection owner is using this key as a
foreign key (see Figure B.6). In this case the owner of the collection
object depends on the collection, and the collection depends on all
the items it references.

Employee works in Department
M 1

Figure B.4: An ER-model where a RELATIONAL_COLLECTION_PART with
1:M mapping can be used.

Doctor cures Patient
M N

Figure B.5: An ER-model where a RELATIONAL_COLLECTION_PART with
M:N mapping can be used.

Professor gives Lecture list has Lecture
1 1 1 N

Figure B.6: An ER-model where an OBJECT_COLLECTION_PART can be
used.

Knowing about classes RELATIONAL_COLLECTION_PART and
OBJECT_COLLECTION_PART is not important for the framework user
when using one of the predefined back-ends. It becomes essential if in
need of extending the framework to a specific database layout.

B.1. THE ORM LAYER: FROM REPOSITORY TO BACKEND 123

B.1.2 Handling object references
A running object-oriented application is represented in memory by means
of a graph, where objects are vertexes and references are (directed) edges
(see Figure B.7).

CHILD

CHILD

STRING
"Poldo"

INTEGER
3 8

father

mother

name

p 1

age

STRING
"Lapo"name

INTEGER
7 8

age

father

Void

mother

Void

CHILD

mother

STRING
"Lisa"name

INTEGER
7 0

age

father

Void Void

Figure B.7: An object graph in main memory.

We now define a few concepts connected to an application graph, use-
ful for the remainder of the section to understand how the framework han-
dles object graphs, and to explain what kind of flexibility the framework
offers:

• “Global” application graph: the object graph of an entire application
in memory.

124 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

• An object Y is “reachable” from another object X if there is a path
betweenX and Y in the graph, or equivalently if Y is in the transitive
closure of X .

• The “object graph of an objectX” is the subgraph of the global object
graph containing the transitive closure of X .

• The “level” of an object Y contained in the object graph of X is the
length (number of arcs) of the shortest path from X to Y .

We will now use the definitions above to see where the framework
stores the object graph settings and how it lets developers adjust the de-
faults, typically to tweak the framework’s performance.

The most relevant class in this context is OBJECT_GRAPH_SETTINGS,
containing a distinct depth attribute for each CRUD operation, each sepa-
rately settable:

• insert_depth

• query_depth

• update_depth

• delete_depth

A depth value of 1 (the minimum) means that only the “basic” types
(numeric types, boolean types, and strings) are considered (loaded, in-
serted, updated or deleted), but no referenced object is considered (see
Figure B.8).

A depth of 2 means that, in addition to the basic types, also all the ref-
erenced objects are considered, but not further objects referenced by them
in turn, and so on. By saying that an object reference is “not considered”
we mean that it will point to Void. If we set depth 2, all the graph in the
previous figures will be considered.

The special depth value Object_graph_depth_infinite means that
an object has to be loaded completely instead.

The framework default values are Object_graph_depth_infinite

for inserting and reading objects, and a value of 1 for update_depth and
delete_depth. These default values can be overwritten for a whole repos-
itory by means of feature default_object_graph_settings in class
REPOSITORY.

Assuming to have the default values for object graph settings, if we
look at Figure B.8 and want to invoke a delete on object p1, the objects

B.1. THE ORM LAYER: FROM REPOSITORY TO BACKEND 125

CHILD

CHILD

STRING
"Poldo"

INTEGER
3 8

father

mother

name

p 1

age

STRING
"Lapo"name

INTEGER
7 8

age

father

Void

mother

Void

CHILD

mother

STRING
"Lisa"name

INTEGER
7 0

age

father

Void Void

Figure B.8: The previous object graph at depth 1 (grey nodes are not con-
sidered).

referenced by father and mother will not be deleted because the default
value for delete_depth is 1.

This is consistent with the general framework rule that a CRUD opera-
tion will only consider an object when the level(object) < depth condition
holds.

In the case of the delete in the previous example, the only object satis-
fying the condition above is the root, because the root has a level of 0 and
the default value for delete_depth is 1. The situation illustrated in the
previous example can be generalized by saying that when an object satis-
fies the condition depth = level+ 1, all the basic attributes of the object are

126 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

considered, but its references only get considered if the referenced objects
are already persistent, in other words if their corresponding object values
are already in memory (likely from a previous operation). If this is not the
case, then these references will point to Void.

The obvious caveat of setting the depth parameters is that it can cause
an application to have objects that do not have all the attributes fully
loaded in memory, and so one cannot completely rely on them. On the pos-
itive side, in Eiffel it is always possible to enforce class invariants checks,
so semantically invalid objects would never be accepted in the software
system.

Finally, there are other settings in class OBJECT_GRAPH_SETTINGS there
are worth mentioning:

• is_update_during_insert_enabled asks if an object should be
updated, if it is already in the database and it is referenced by a new
object (default: no).

• custom_update_depth_during_insert allows to set the depth for
an update of an object, which is found during an insert and it is al-
ready in the database (default: update_depth).

• is_insert_during_update_enabled asks if the framework should
automatically insert objects which are not present in the database
and found during an update (default: yes).

• custom_insert_depth_during_update allows to set the depth for
an insert of an object, which is found during an update, but it is not
present in the database (default: insert_depth).

B.2 The ORM layer: from BACKEND to the database

In Figure B.9 we see the lowest level of framework abstractions.
Here is a brief description of the most important classes:

• SQL_DATABASE represents an SQL database. The two implementa-
tions that come together with the framework as MYSQL_DATABASE

and SQLITE_DATABASE.

• SQL_CONNECTION represents a single connection, used to wrap and
forward SQL statements to the database, and to provide back
an iteration cursor of SQL_ROWs. The two implementations that
come together with the framework as MYSQL_CONNECTION and
SQLITE_CONNECTION.

B.2. THE ORM LAYER: FROM BACKEND TO THE DATABASE 127

<<deferred>>

SQL_DATABASE

 MYSQL_

DATABASE

SQLITE_

DATABASE

GENERIC_LAYOUT_

SQL_BACKEND

< < d e f e r r e d > >

BACKEND

<<deferred>>

SQL_CONNECTION

<<deferred>>

SQL_ROW

METADATA_TABLES_
MANAGER

MY_SQL_ROW SQLITE_ROWMY_SQL_

CONNECTION

SQLITE_

CONNECTION

< < d e f e r r e d > >

GENERIC_LAYOUT_

SQL_STRINGS

MYSQL_

STRINGS

SQLITE_

STRINGS

Figure B.9: From BACKEND to the databases.

• SQL_ROW represents a single row in the result of an SQL query. The
two implementations that come together with the framework as
MYSQL_ROW and SQLITE_ROW.

• GENERIC_LAYOUT_SQL_STRINGS represents SQL strings across
databases. Different string implementations for specific databases
are kept in descendants like MYSQL_STRINGS and SQLITE_STRINGS.

• GENERIC_LAYOUT_SQL_BACKEND is at the heart of the object-
relational mapping framework capabilities (see Section B.3).

• METADATA_TABLES_MANAGER is responsible for reading from and
writing to the metadata database tables representing classes and at-
tributes (see Section B.3).

• OBJECT_IDENTIFICATION_MANAGER maintains a weak reference to
each object that has been retrieved or inserted before, and assigns
a repository-wide unique object_identifier to it.

128 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

• KEY_POID_TABLE maps the objects identified by the
object_identifier to the primary key of the corresponding
entry in the database.

B.3 Automatically generating the database
schema

While class BACKEND’s implementations are not restricted to relational
databases, we are now focusing on class GENERIC_LAYOUT_SQL_BACKEND,
because it provides the most interesting challenges. This is the place where
the actual mapping to a relational database is implemented, and it has to
do with the kind of database layout chosen, which in turn is one of the
most important design choices of the framework.

Given that in this framework we give priority to flexibility, extensibility
and a smooth schema evolution, we decided to go, as a default (meaning
when no pre-existing database layout is in place) for a schema in which
the framework creates and handles meta-tables (see also [2]). The idea is
pretty straightforward: the database layout is based upon class metadata,
so there will be a table ”class”, containing the class names, a table ”at-
tribute” containing the attribute names , a table ”value” containing the
attribute values and so on. In Figure B.10 there is an ER-model showing a
simplified view of the database model.

value attributeid attribute

classid

class

objectidvalue

attributeid name

classid

name

1 N

N

1

Figure B.10: The ER-Model of the generic database layout.

B.3. AUTOMATICALLY GENERATING THE DATABASE SCHEMA 129

From the ER-model it should be clear that there are certain class at-
tribute changes that are handled automatically by the framework, without
need to modify the ORM layer code:

• A class added can be handled by adding a tuple in the table corre-
sponding to the ”class” entity.

• A class removed can be handled by removing a tuple in the table
corresponding to the ”class” entity.

• A class renamed can be handled by adding a tuple with the new
name in the table corresponding to the ”class” entity and then re-
moving the tuple with the old name.

• An attribute added can be handled by adding a tuple in the table
corresponding to the ”attribute” entity.

• An attribute removed can be handled by removing a tuple in the
table corresponding to the ”attribute” entity.

• An attribute renamed can be handled by adding a tuple with the
new name in the table corresponding to the ”attribute” entity and
then removing the tuple with the old name.

• An attribute that changed type can be handled by changing the ”clas-
sid” in its tuple.

While class GENERIC_LAYOUT_SQL_BACKEND is responsible
for read and write operations on the “value” meta-table, class
METADATA_TABLES_MANAGER is responsible for read and write opera-
tions on the “class” and “attribute” meta-tables. Of course these tables
will be created if they do not exist in the database.

The information class GENERIC_LAYOUT_SQL_BACKEND needs to write
a tuple in table “value” is the following:

• The primary key “objectid” (stored in the KEY_POID_TABLE or gen-
erated automatically during an insert).

• The “attributeid” (a foreign key provided by
METADATA_TABLES_MANAGER).

• The attribute value (provided by SINGLE_OBJECT_PART).

130 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

The information class METADATA_TABLES_MANAGER needs to write in ta-
bles “class” and “attribute” is generated when needed (“classid” and “at-
tributeid”), or obtained using the introspection facilities of the program-
ming language (class name and attribute name).

For example, to retrieve all attribute values of a class:

• METADATA_TABLES_MANAGER provides the class primary key.

• METADATA_TABLES_MANAGER provides the attributes primary keys.

• A predefined SQL query retrieves the corresponding value for each
attribute using the above attribute key and class key.

• The result is finally sorted according to the “objectid”, so that the
attributes of the same object are grouped together.

B.4 Framework support for transactions and er-
rors

Transactions are ubiquitous in the framework. Every CRUD operation in-
voked by the front-end is wrapped automatically in an implicit transac-
tion, and it is also possible to handle transactions explicitly and program-
matically by using the available features in class CRUD_EXECUTOR:

• insert_within_transaction (an_object: ANY; transaction

: TRANSACTION)

• execute_query_within_transaction (a_query:

OBJECT_QUERY [ANY]; transaction: TRANSACTION)

• update_within_transaction (an_object: ANY; transaction

: TRANSACTION)

• delete_within_transaction (an_object: ANY; transaction

: TRANSACTION)

For example one could decide to rollback the transaction at a certain
point of execution by invoking feature rollback in class TRANSACTION.

The back-end is also very aware of transactions, because it is interfac-
ing the actual database and needs to be able, for example, to handle the
ACID (Atomicity Consistency Isolation Durability) properties. The frame-
work supports the four standard transaction isolation levels found in al-
most every database system:

B.4. FRAMEWORK SUPPORT FOR TRANSACTIONS AND ERRORS 131

• Read Uncommitted

• Read Committed

• Repeatable Read

• Serializable

The different levels are defined in class
TRANSACTION_ISOLATION_LEVEL, and the default transaction isola-
tion level is defined by the current back-end.

The other responsibility of class TRANSACTION is error propagation.
The framework makes a distinction between irrecoverable errors (like a
dropped connection or a database integrity constraint violation) and re-
coverable errors (like a conflict between two transactions). For irrecover-
able errors the default behavior is to rollback the current transaction and
raise an exception. As the exception propagates upwards, every layer in
the backend has a chance to take the appropriate steps in an attempt to
bring the library back to a consistent state, typically using the error infor-
mation stored in the transaction itself. For recoverable errors, the default
behavior is to attempt to recover from the error, for example retrying a
certain operation. The framework does not raise an exception in this case.

The framework maps database-specific error messages to its own rep-
resentation for errors, which is a hierarchy of classes rooted at ERROR. Fig-
ure B.11 illustrates part of the hierarchy:

<<deferred>>

ERROR

CONNECTION_

ERROR

TRANSACTION_

CONFLICT

ACCESS_RIGHT_

VIOLATION

VERSION_

MISMATCH

INTERNAL_

ERROR

GENERAL_

ERROR

Figure B.11: Partial error class hierarchy.

To handle errors in a convenient way, the framework also offers
ERROR_VISITOR, a utility class that developers can inherit from to imple-
ment their own “visitors” to react in the most appropriate way to the var-
ious errors (for the visitor design pattern see [66]).

132 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

B.5 Framework extension points

The framework has been designed with extensibility in mind. Apart from
the automatic support for class and attribute changes seen in Section B.3,
developers can also extend the framework by using some predefined ex-
tension points. The following subsections describe how to add support
for an additional relational database, additional ORM mappings, non-
relational databases, and for cross-implementation extensions.

B.5.1 Supporting an additional relational database
Providing support for a custom relational back-end (say Oracle) is rela-
tively simple. If the kind of object-relational meta-mapping the framework
described in Section B.3 is satisfying, then all developers need to do is writ-
ing the implementations for four new classes:

• ORACLE_DATABASE, which will inherit from the framework class
SQL_DATABASE, will handle the specific way in which the Oracle
database interacts with the software applications.

• ORACLE_STRINGS, which will inherit from the framework class
GENERIC_LAYOUT_SQL_STRINGS, will contain the SQL command
strings specific to an Oracle database.

• ORACLE_CONNECTION, which will inherit from the framework class
SQL_CONNECTION, will wrap and manage a connection to an Oracle
database.

• ORACLE_ROW, which will inherit from the framework class SQL_ROW,
will handle the Oracle result rows.

The rest of the framework should stay unchanged.

B.5.2 Supporting additional ORM mappings
If developers need to adapt to an existing relational database schema in-
stead of relying on the meta-schema the framework offers, then they have
to write your own class that inherits from BACKEND, and implement an-
other class that inherits from COLLECTION_HANDLERS to handle the map-
ping of all the collections that need it.

To outline the simplicity of the approach, we will show via some source
code examples how to do it. We will use two simple domain classes: class
PERSON (see Figure 5.1), and class ITEM:

B.5. FRAMEWORK EXTENSION POINTS 133

class
ITEM

feature -- Status

value: INTEGER
-- The value of current item.

-- Remainder omitted.

end

Listing B.1: Domain class ITEM

Let’s suppose that the database schema is the one illustrated in Fig-
ure B.12. In the database, table Items has a foreign key owner to table
Persons.

Person owner Item

person pk

name

item pk

value

1 N

Figure B.12: ER-Model for persons and items.

One of the two classes to code is a specific collection handler for
LINKED_LIST, whose instances are mapped as a 1:M relationship. Fig-
ure B.2 shows the code of class LINKED_LIST_HANDLER which inher-
its from the generic framework class PS_COLLECTION_HANDLER [G].
The value of the generic parameter is the collection to handle:
PS_COLLECTION_HANDLER [LINKED_LIST [detachable ANY]]. Notice
that elements of the linked list can be of any type, and even void. This
is because the framework is fully void-safe, which means that the com-
piler enforces that no exceptions caused by a void reference can happen.
To achieve this, it is necessary to explicitly declare that a certain reference
could be possibly void.

class
LINKED_LIST_HANDLER

134 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

inherit
PS_COLLECTION_HANDLER [LINKED_LIST [detachable ANY]]

feature -- Queries

is_relationally_mapped (collection, owner_type:
TYPE_METADATA): BOOLEAN

-- Is ‘collection’ mapped as a 1:N or M:N - Relation?
do
Result:= True

end

is_mapped_as_1_to_N (collection, owner_type:
TYPE_METADATA): BOOLEAN

-- Is ‘collection’ mapped as a 1:N - Relation?
do
Result:= True

end

feature -- Basic Operations

build_relational_collection (collection_type:
TYPE_METADATA; objects: LIST[detachable ANY]):
LINKED_LIST[detachable ANY]

-- Build a new LINKED_LIST.
do
create Result.make
Result.append (objects)

end

end

Listing B.2: The collection handler for LINKED_LIST

The implementation of the second needed class , CUSTOM_BACKEND, will
inherit from the framework class BACKEND, and will appropriately handle
the insertion and retrieval of PERSON and ITEM objects into the database.

In this case the object-relational mapping layer of the framework adds
an attribute with name items_owned to the ITEM object. This is the default
behavior for 1:M relations as described previously.

class
PERSON

feature -- Status

B.5. FRAMEWORK EXTENSION POINTS 135

name: STRING
-- Name of current person.

age: INTEGER
-- Age of current person.

items_owned: LINKED_LIST [ITEM]
-- Added by the ORM framework layer.

-- Remainder omitted.
end

Listing B.3: Domain class PERSON extended by the ORM

The implementation of feature insert (an_object:

SINGLE_OBJECT_PART; a_transaction: TRANSACTION) will have
to check if the object passed is a PERSON object. If this is the case it will
generate SQL to insert the person name and add an entry representing a
primary key Persons into the PS_KEY_POID_TABLE. If the object passed
is an ITEM object instead, it will generate SQL to insert the item value, the
item owner as a foreign key and again an entry representing a primary
key for Items into the PS_KEY_POID_TABLE.

For the retrieval operation, the process is similar: developers have
to implement feature retrieve_relational_collection, and select the
needed values from the appropriate table.

B.5.3 Supporting non-relational databases
Implementing support for a non-relational database, say a NoSQL
database, can be achieved by first creating two new classes: one inheriting
from REPOSITORY, and the other from BACKEND. The mapping layer will
need to be programmed explicitly, but it will be relatively simpler than the
ORM we have described in the previous sections, because many NoSQL
data stores—like key-value data stores and document data stores—tend to
have a design that is more similar to an object-oriented application with
respect to a relational database.

B.5.4 Cross-implementation extensions
Apart from providing a custom, specific back-end, there are some features
that the framework is designed to support. They are cross-implementation
extensions, so once implemented, they will impact the whole framework.

136 APPENDIX B. THE PERSISTENCE LIBRARY’S BACKEND IMPLEMENTATION

They include:

• Custom attribute filtering: it is normal, in some scenarios, to require
that certain attributes carrying temporary information are not stored.
There is no need to mark the attributes as non-persistent, as some
programming languages do, because the framework builds its own
representation of the object graph, and so one can operate at that
level. The solution will therefore include removing the unwanted at-
tributes from the object graph decomposition discussed in Section
B.1, and in particular from class OBJECT_GRAPH_PART. Of course dur-
ing retrieval one needs to provide a reasonable default as well.

• Object caching: the framework comes with class
IN_MEMORY_DATABASE, that apart from being used as an in-memory
database for testing, it can also be used alongside the current
backend to cache objects and therefore minimize the actual accesses
to external databases.

• Adding support for class schema evolution has been relatively easy,
again thanks to the flexibility of the BACKEND abstraction. The most
important framework class is VERSION_HANDLER that inherits from
BACKEND. This class adds a version attribute to all inserted objects,
and checks the object versions during retrieval.

APPENDIX C

GRAPHS

This appendix illustrates the behavior of class invariants for the 8 Eiffel
projects analyzed in Section 4.4.2. For each project, the different colored
lines signal what happened to the invariants of the classes to whom at-
tributes have been added or removed. As a consequence of at least one
attribute added or removed, an invariant could stay the same, become
stronger or become weaker. More specifically, each graph’s legend lists:

• +A same: at least one attribute added, invariant stays the same.

• + A strong: at least one attribute added, invariant becomes stronger.

• + A weak: at least one attribute added, invariant becomes weaker.

• - A same: at least one attribute removed, invariant stays the same.

• - A strong: at least one attribute removed, invariant becomes
stronger.

• - A weak: at least one attribute removed, invariant becomes weaker.

138 APPENDIX C. GRAPHS

0 50 100 150 200 250 300

0
5

10
15

AutoTest: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.1: AutoTest project: weakening and strengthening of class invari-
ant when adding or removing attributes.

139

0 200 400 600 800 1000 1200

0
2

4
6

8
10

12
14

EiffelBase: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.2: EiffelBase project: weakening and strengthening of class in-
variant when adding or removing attributes.

140 APPENDIX C. GRAPHS

0 50 100 150 200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

EiffelProgramAnalysis: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.3: Eiffel Program Analysis project: weakening and strengthening
of class invariant when adding or removing attributes.

141

0 100 200 300 400 500 600

0.
0

0.
5

1.
0

1.
5

2.
0

GoboKernel: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.4: Gobo Kernel project: weakening and strengthening of class in-
variant when adding or removing attributes.

142 APPENDIX C. GRAPHS

0 50 100 150 200 250

0
5

10
15

GoboStructure: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.5: Gobo Structure project: weakening and strengthening of class
invariant when adding or removing attributes.

143

0 20 40 60 80 100 120

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

GoboTime: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.6: Gobo Time project: weakening and strengthening of class in-
variant when adding or removing attributes.

144 APPENDIX C. GRAPHS

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GoboUtility: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.7: Gobo Utility project: weakening and strengthening of class in-
variant when adding or removing attributes.

145

0 200 400 600 800

0
2

4
6

8
10

12

GoboXML: Weakening and strengthening of class invariants

revision

cl

as
se

s

+A same
+A strong
+A weak
−A same
−A strong
−A weak

Figure C.8: Gobo XML project: weakening and strengthening of class in-
variant when adding or removing attributes.

146 APPENDIX C. GRAPHS

BIBLIOGRAPHY

[1] Deepak Advani, Youssef Hassoun, and Steve Counsell. Extracting
refactoring trends from open-source software and a possible solu-
tion to the ’related refactoring’ conundrum. In SAC, pages 1713–
1720, 2006.

[2] Scott Ambler. Mapping objects to relational databases: O/r
mapping in detail. http://www.agiledata.org/essays/
mappingObjects.html, 2010. Last visited: 5.08.2012.

[3] Malcolm P. Atkinson. Persistence and java - a balancing act. In Ob-
jects and Databases, pages 1–31, 2000.

[4] Malcom P. Atkinson. Programming languages and databases. In
VLDB, pages 408–419, 1978.

[5] Malcom P. Atkinson and Mick Jordan. A review of the rationale and
architectures of pjama: a durable, flexible, evolvable and scalable
orthogonally persistent programming platform. Technical Report
SMLI TR-2000-90, Sun Microsystems Laboratories Technical Report,
2000.

[6] Malcom P. Atkinson and R. Morrison. Orthogonally persistent object
systems. VLDB Journal, 4(3):319–401, 1995.

[7] Various authors. Schema evolution benchmark. http://
schemaevolution.org/. Last visited: 22.07.2012.

[8] B. Mathiske B. Lewis and N. Gafter. Architecture of the pevm:
A high-performance orthogonally persistent java virtual machine.
Technical Report TR-2000-93, Sun Microsystems Laboratories Tech-
nical Report, 2000.

http://www.agiledata.org/essays/mappingObjects.html
http://www.agiledata.org/essays/mappingObjects.html
http://schemaevolution.org/
http://schemaevolution.org/

148 BIBLIOGRAPHY

[9] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth. Se-
mantics and implementation of schema evolution in object-oriented
databases. In SIGMOD Conference, pages 311–322, 1987.

[10] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller,
Wolfram Schulte, and Herman Venter. Specification and verification:
the spec# experience. Commun. ACM, 54(6):81–91, 2011.

[11] Mike Barnett, K. Rustam M. Leino, and Wolfram Schulte. The spec#
programming system: An overview. In CASSIS 2004, in Springer
LNCS, volume 3362, 2004.

[12] Gavin M. Bierman, Matthew J. Parkinson, and James Noble. Up-
gradej: Incremental typechecking for class upgrades. In ECOOP,
pages 235–259, 2008.

[13] Alan F. Blackwell, Carol Britton, Anna Louise Cox, Thomas R. G.
Green, Corin A. Gurr, Gada F. Kadoda, Maria Kutar, Martin Loomes,
Chrystopher L. Nehaniv, Marian Petre, Chris Roast, Chris Roe, Allan
Wong, and R. Michael Young. Cognitive dimensions of notations:
Design tools for cognitive technology. In Cognitive Technology, pages
325–341, 2001.

[14] J. Bloch. Effective Java. Prentice Hall, 2001.

[15] Daniel Bonniot. Type safety in nice. http://nice.
sourceforge.net/safety.html, 2012. Last visited: 10.09.2012.

[16] M. Ted Boren and Judith Ramey. Thinking aloud: reconciling the-
ory and practice. IEEE Transactions on Professional Communication,
43(3):261–278, 2000.

[17] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-
Hue Moh, and Steven Richman. Lazy modular upgrades in per-
sistent object stores. In OOPSLA, pages 403–417, 2003.

[18] R. G. G. Cattell. The Object Data Standard: ODMG 3.0. Morgan Kauf-
mann, 2000.

[19] Patrice Chalin. Are practitioners writing contracts? Springer LNCS,
4157:100–113, 2006.

[20] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Automating co-evolution in model-driven engineering.
In EDOC, pages 222–231, 2008.

http://nice.sourceforge.net/safety.html
http://nice.sourceforge.net/safety.html

BIBLIOGRAPHY 149

[21] Steven Clarke. Measuring api usability. http://www.drdobbs.
com/windows/measuring-api-usability/184405654, 2004.
Last visited: 15.10.2012.

[22] Steven Clarke. Using the cognitive dimensions - abstrac-
tion level. http://blogs.msdn.com/b/stevencl/archive/
2003/11/14/57065.aspx, 2004. Last visited: 15.10.2012.

[23] Steven Clarke. Using the cognitive dimensions - api elabora-
tion. http://blogs.msdn.com/b/stevencl/archive/2004/
02/27/81317.aspx, 2004. Last visited: 15.10.2012.

[24] Steven Clarke. Using the cognitive dimensions - api viscos-
ity. http://blogs.msdn.com/b/stevencl/archive/2004/
03/10/87652.aspx, 2004. Last visited: 15.10.2012.

[25] Steven Clarke. Using the cognitive dimensions - consistency.
http://blogs.msdn.com/b/stevencl/archive/2004/03/
17/91626.aspx, 2004. Last visited: 15.10.2012.

[26] Steven Clarke. Using the cognitive dimensions - domain corre-
spondence. http://blogs.msdn.com/b/stevencl/archive/
2004/05/17/133439.aspx, 2004. Last visited: 15.10.2012.

[27] Steven Clarke. Using the cognitive dimensions - learn-
ing style. http://blogs.msdn.com/b/stevencl/archive/
2003/11/24/57079.aspx, 2004. Last visited: 15.10.2012.

[28] Steven Clarke. Using the cognitive dimensions - penetrabil-
ity. http://blogs.msdn.com/b/stevencl/archive/2004/
02/13/72646.aspx, 2004. Last visited: 15.10.2012.

[29] Steven Clarke. Using the cognitive dimensions - premature com-
mitment. http://blogs.msdn.com/b/stevencl/archive/
2004/01/22/61859.aspx, 2004. Last visited: 15.10.2012.

[30] Steven Clarke. Using the cognitive dimensions - progressive evalua-
tion. http://blogs.msdn.com/b/stevencl/archive/2003/
12/22/45143.aspx, 2004. Last visited: 15.10.2012.

[31] Steven Clarke. Using the cognitive dimensions - role expres-
siveness. http://blogs.msdn.com/b/stevencl/archive/
2004/04/23/119147.aspx, 2004. Last visited: 15.10.2012.

http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://www.drdobbs.com/windows/measuring-api-usability/184405654
http://blogs.msdn.com/b/stevencl/archive/2003/11/14/57065.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/11/14/57065.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/02/27/81317.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/02/27/81317.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/03/10/87652.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/03/10/87652.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/03/17/91626.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/03/17/91626.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/05/17/133439.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/05/17/133439.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/11/24/57079.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/11/24/57079.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/02/13/72646.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/02/13/72646.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/01/22/61859.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/01/22/61859.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/12/22/45143.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/12/22/45143.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/04/23/119147.aspx
http://blogs.msdn.com/b/stevencl/archive/2004/04/23/119147.aspx

150 BIBLIOGRAPHY

[32] Steven Clarke. Using the cognitive dimensions - working frame-
work. http://blogs.msdn.com/b/stevencl/archive/
2003/12/03/57112.aspx, 2004. Last visited: 15.10.2012.

[33] Steven Clarke. Using the cognitive dimensions -work step unit.
http://blogs.msdn.com/b/stevencl/archive/2003/12/
22/45142.aspx, 2004. Last visited: 15.10.2012.

[34] ECMA committee TC39-TG4. Ecma international standard: Eiffel
analysis, design and programming language. Technical Report 367,
ECMA committee TC39-TG4, 2005.

[35] Microsoft Corporation. Object internals visualization in microsoft
debugger. http://msdn.microsoft.com/en-us/library/
zayyhzts.aspx, 2012. Last visited: 19.09.2012.

[36] Oracle Corporation. Java version history. http://www.oracle.
com/technetwork/java/archive-139210.html, 2012. Last
visited: 25.09.2012.

[37] TechSmith Corporation. Camtasia screen recording and video edit-
ing software. http://www.techsmith.com/camtasia.html,
2012. Last visited: 9.09.2012.

[38] Versant Corporation. Db4o documentation. http://community.
versant.com/documentation.aspx, 2012. Last visited:
4.08.2012.

[39] Versant Corporation. Versant object database fundamentals man-
ual. http://www.versant.com/pdf/VODFundamentals.pdf,
2012. Last visited: 5.10.2012.

[40] Zope Corporation. Zope application server. http://www.zope.
org/the-world-of-zope, 2012. Last visited: 5.10.2012.

[41] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful
database schema evolution: the prism workbench. Proc. VLDB En-
dow., 1:761–772, 2008.

[42] Krzysztof Cwalina and Brad Abrams. Framework Design Guidelines:
Conventions, Idioms, and Patterns for Reusable .NET Libraries (2nd Edi-
tion). Addison-Wesley Professional, 2008.

http://blogs.msdn.com/b/stevencl/archive/2003/12/03/57112.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/12/03/57112.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/12/22/45142.aspx
http://blogs.msdn.com/b/stevencl/archive/2003/12/22/45142.aspx
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx
http://msdn.microsoft.com/en-us/library/zayyhzts.aspx
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.oracle.com/technetwork/java/archive-139210.html
http://www.techsmith.com/camtasia.html
http://community.versant.com/documentation.aspx
http://community.versant.com/documentation.aspx
http://www.versant.com/pdf/VODFundamentals.pdf
http://www.zope.org/the-world-of-zope
http://www.zope.org/the-world-of-zope

BIBLIOGRAPHY 151

[43] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. Bidirectional transforma-
tions: A cross-discipline perspective. In ICMT, pages 260–283, 2009.

[44] Jason Dagit, Joseph Lawrance, Christoph Neumann, Margaret M.
Burnett, Ronald A. Metoyer, and Sam Adams. Using cognitive di-
mensions: Advice from the trenches. J. Vis. Lang. Comput., 17(4):302–
327, 2006.

[45] Marco D’Ambros, Harald Gall, Michele Lanza, and Martin Pinzger.
Analysing software repositories to understand software evolution.
In Software Evolution, pages 37–67. Springer, 2008.

[46] C. Date. Introduction to Database Systems. Addison Wesley, 8 edition,
2003.

[47] Kilian Sprotte David Lichteblau, Hans Hübner and Manuel Oden-
dahl. Bknr lisp application environment. http://bknr.net/
html/home.html, 2008. Last visited: 5.10.2012.

[48] Cecilia Delgado, José Samos, and Manuel Torres. Primitive opera-
tions for schema evolution in odmg databases. In OOIS, pages 226–
237, 2003.

[49] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen.
Refactoring-aware configuration management for object-oriented
programs. In ICSE, pages 427–436, 2007.

[50] Mikhail Dmitriev. Safe class and data evolution in long-lived java
applications. Technical Report SMLI TR-2001-98, Sun Microsystems
Laboratories Technical Report, 2001.

[51] Ekwa Duala-Ekoko and Martin P. Robillard. Using structure-based
recommendations to facilitate discoverability in apis. In Proceedings
of the 25th European Conference on Object-Oriented Programming, pages
79–104, July 2011.

[52] Ekwa Duala-Ekoko and Martin P. Robillard. Asking and answer-
ing questions about unfamiliar apis: An exploratory study. In ICSE,
pages 266–276, 2012.

[53] Brian Ellis, Jeffrey Stylos, and Brad A. Myers. The factory pattern in
api design: A usability evaluation. In ICSE, pages 302–312, 2007.

http://bknr.net/html/home.html
http://bknr.net/html/home.html

152 BIBLIOGRAPHY

[54] K. Anders Ericsson and Herbert A. SImon. Protocol Analysis: Verbal
Reports as Data. MTT Press, 1984.

[55] H.-Christian Estler, Marco Piccioni, Carlo A. Furia, and Martin Nor-
dio. How specifications change and why you should care. Submit-
ted to ICSE 2013.

[56] H.-Christian Estler, Marco Piccioni, Carlo A. Furia, and Martin Nor-
dio. Experimental data: Contracts evolution. http://se.inf.
ethz.ch/data/coat/, 2012. Last visited: 20.08.2012.

[57] Chair of Software Engineering ETH Zürich. Eiffel verification en-
vironment (eve). https://trac.inf.ethz.ch/trac/meyer/
eve/wiki/WikiStart, 2012. Last visited: 19.09.2012.

[58] Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Em-
bedded contract languages. In SAC, pages 2103–2110. ACM, 2010.

[59] Jean-Rémy Falleri, Marianne Huchard, Mathieu Lafourcade, and
Clémentine Nebut. Metamodel matching for automatic model trans-
formation generation. In MoDELS, pages 326–340, 2008.

[60] Beat Fluri and Harald Gall. Classifying change types for qualifying
change couplings. In ICPC, pages 35–45, 2006.

[61] Beat Fluri, Michael Würsch, and Harald Gall. Do code and com-
ments co-evolve? on the relation between source code and comment
changes. In WCRE, pages 70–79. IEEE, 2007.

[62] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald Gall.
Change distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng., 33(11):725–743, 2007.

[63] Apache Foundation. Apache tomcat source code. http://svn.
apache.org/viewvc/tomcat/, 2012. Last visited: 25.09.2012.

[64] Python Software Foundation. Python object serialization. http://
docs.python.org/library/pickle.html, 2012. Last visited:
13.08.2012.

[65] Enrico Franconi, Fabio Grandi, and Federica Mandreoli. Schema
evolution and versioning: A logical and computational characteri-
sation. In FMLDO, pages 85–99, 2000.

http://se.inf.ethz.ch/data/coat/
http://se.inf.ethz.ch/data/coat/
https://trac.inf.ethz.ch/trac/meyer/eve/wiki/WikiStart
https://trac.inf.ethz.ch/trac/meyer/eve/wiki/WikiStart
http://svn.apache.org/viewvc/tomcat/
http://svn.apache.org/viewvc/tomcat/
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html

BIBLIOGRAPHY 153

[66] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994.

[67] GemStone. Gemstone/s 64 bit programming guide. http:
//www.gemstone.com/docs/GemStoneS/GemStone64Bit/
2.4.4.3/GS64-ProgGuide-2.4.pdf, 2009. Last visited:
22.07.2012.

[68] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification, 3rd Edition. Addison Wesley, 2005.

[69] Paul W. P. J. Grefen and Peter M. G. Apers. Integrity control in rela-
tional database systems - an overview. Data Knowl. Eng., 10:187–223,
1993.

[70] Boris Gruschko, Dimitrios S. Kolovos, and Richard F. Paige. Towards
synchronizing models with evolving metamodels. In MODSE, 2007.

[71] William G. J. Halfond and Alessandro Orso. Detection and pre-
vention of sql injection attacks. In Malware Detection, pages 85–109.
Springer, 2007.

[72] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Jürgens. Au-
tomatability of coupled evolution of metamodels and models in
practice. In MoDELS, pages 645–659, 2008.

[73] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmet-
ric lenses. In ACM SIGPLAN–SIGACT Symposium on Principles of
Programming Languages (POPL), Austin, Texas, 2011.

[74] David Hovemeyer and William Pugh. Finding more null pointer
bugs, but not too many. In PASTE, pages 9–14, 2007.

[75] Hans Hübner. Schema evolution made easy. http://netzhansa.
blogspot.com/2008/08/schema-evolution-made-easy.
html, 2008. Last visited: 5.10.2012.

[76] Apple Inc. Archives and serializations. http://developer.
apple.com/library/ios/#DOCUMENTATION/Cocoa/
Conceptual/Archiving/Archiving.html#//apple_ref/
doc/uid/10000047-SW1, 2010. Last visited: 13.08.2012.

http://www.gemstone.com/docs/GemStoneS/GemStone64Bit/2.4.4.3/GS64-ProgGuide-2.4.pdf
http://www.gemstone.com/docs/GemStoneS/GemStone64Bit/2.4.4.3/GS64-ProgGuide-2.4.pdf
http://www.gemstone.com/docs/GemStoneS/GemStone64Bit/2.4.4.3/GS64-ProgGuide-2.4.pdf
http://netzhansa.blogspot.com/2008/08/schema-evolution-made-easy.html
http://netzhansa.blogspot.com/2008/08/schema-evolution-made-easy.html
http://netzhansa.blogspot.com/2008/08/schema-evolution-made-easy.html
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/Archiving/Archiving.html#//apple_ref/doc/uid/10000047-SW1
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/Archiving/Archiving.html#//apple_ref/doc/uid/10000047-SW1
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/Archiving/Archiving.html#//apple_ref/doc/uid/10000047-SW1
http://developer.apple.com/library/ios/#DOCUMENTATION/Cocoa/Conceptual/Archiving/Archiving.html#//apple_ref/doc/uid/10000047-SW1

154 BIBLIOGRAPHY

[77] Apple Inc. Class clusters. http://developer.apple.
com/library/ios/#documentation/Cocoa/Conceptual/
CocoaFundamentals/CocoaObjects/CocoaObjects.html#
//apple_ref/doc/uid/TP40002974-CH4-SW34, 2010. Last
visited: 7.08.2012.

[78] Apple Inc. Cocoa design patterns. http://developer.
apple.com/library/ios/#documentation/Cocoa/
Conceptual/CocoaFundamentals/CocoaDesignPatterns/
CocoaDesignPatterns.html#//apple_ref/doc/uid/
TP40002974-CH6-SW6, 2010. Last visited: 7.08.2012.

[79] JetBrains. @nullable and @notnull annotations in intel-
lij idea. http://www.jetbrains.com/idea/webhelp/
nullable-and-notnull-annotations.html, 2012. Last
visited: 10.09.2012.

[80] Mick Jordan. A comparative study of persistence mechanisms for
the java platform. Technical Report TR-2004-136, Sun Microsystems
Laboratories Technical Report, 2004.

[81] Alan Curtis Kay. Source: The wiki way: Quick collaboration on the
web, bo leuf, ward cunningham. http://en.wikiquote.org/
wiki/Alan_Kay, 2001. Last visited: 6.08.2012.

[82] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical in-
vestigation into the role of API-level refactorings during software
evolution. In ICSE, pages 151–160. ACM, 2011.

[83] Andrew Ko, Brad Myers, and Htet H. Aung. Six learning barriers in
end-user programming systems. In Proceedings of Visual Languages
and Human Centric Computing, pages 199–206, 2004.

[84] Sven-Eric Lautemann. An introduction to schema versioning in
oodbms. In DEXA Workshop, pages 132–139, 1996.

[85] Gary T. Leavens, Baker Albert L., and Ruby Clyde. Preliminary de-
sign of jml: a behavioral interface specification language for java.
SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

[86] Barbara Staudt Lerner. A model for compound type changes en-
countered in schema evolution. ACM Trans. Database Syst., 25(1):83–
127, 2000.

http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaObjects/CocoaObjects.html#//apple_ref/doc/uid/TP40002974-CH4-SW34
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaObjects/CocoaObjects.html#//apple_ref/doc/uid/TP40002974-CH4-SW34
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaObjects/CocoaObjects.html#//apple_ref/doc/uid/TP40002974-CH4-SW34
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaObjects/CocoaObjects.html#//apple_ref/doc/uid/TP40002974-CH4-SW34
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW6
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW6
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW6
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW6
http://developer.apple.com/library/ios/#documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/CocoaDesignPatterns.html#//apple_ref/doc/uid/TP40002974-CH6-SW6
http://www.jetbrains.com/idea/webhelp/nullable-and-notnull-annotations.html
http://www.jetbrains.com/idea/webhelp/nullable-and-notnull-annotations.html
http://en.wikiquote.org/wiki/Alan_Kay
http://en.wikiquote.org/wiki/Alan_Kay

BIBLIOGRAPHY 155

[87] Bertrand Meyer Marco Piccioni, Manuel Oriol. Schema evolution
data for java and eiffel. http://tinyurl.com/ESCHER-data,
2012. Last visited: 25.09.2012.

[88] Digital Mars. Contract programming. http://dlang.org/dbc.html,
2012.

[89] B. Meyer. Object Oriented Software Construction. Prentice Hall PTR, 2
edition, 1997.

[90] Bertrand Meyer. Applying ”design by contract”. IEEE Computer,
25(10):40–51, 1992.

[91] Bertrand Meyer. Reusable Software: The Base Object-Oriented Compo-
nent Libraries. Prentice Hall, 1994.

[92] Bertrand Meyer. Conversions in an object-oriented language with
inheritance. JOOP (Journal of Object-Oriented Programming), 13(9):28–
31, 2001.

[93] Bertrand Meyer. Attached types and their application to three open
problems of object-oriented programming. In ECOOP, pages 1–32,
2005.

[94] P. Milne. Using xmlencoder. http://www.oracle.com/
technetwork/java/persistence4-140124.html. Last vis-
ited: 5.10.2012.

[95] Tova Milo and Sagit Zohar. Using schema matching to simplify het-
erogeneous data translation. In VLDB, pages 122–133, 1998.

[96] Simon R. Monk and Ian Sommerville. Schema evolution in oodbs
using class versioning. SIGMOD Record, 22(3):16–22, 1993.

[97] Iulian Neamtiu, Michael W. Hicks, Gareth Stoyle, and Manuel Oriol.
Practical dynamic software updating for c. In PLDI, pages 72–83,
2006.

[98] Martin Odersky. Scala docs: The option class. http://www.
scala-lang.org/api/current/scala/Option.html, 2012.
Last visited: 10.09.2012.

[99] University of Maryland. Checkfornull annotation in findbugs static
analysis tool. http://findbugs.sourceforge.net/manual/
annotations.html, 2012. Last visited: 10.09.2012.

http://tinyurl.com/ESCHER-data
http://www.oracle.com/technetwork/java/persistence4-140124.html
http://www.oracle.com/technetwork/java/persistence4-140124.html
http://www.scala-lang.org/api/current/scala/Option.html
http://www.scala-lang.org/api/current/scala/Option.html
http://findbugs.sourceforge.net/manual/annotations.html
http://findbugs.sourceforge.net/manual/annotations.html

156 BIBLIOGRAPHY

[100] University of Maryland. Findbugs static analysis tool. http://
findbugs.sourceforge.net/manual/annotations.html,
2012. Last visited: 10.09.2012.

[101] Chair of Software Engineering ETH Zurich. Introduction to pro-
gramming course web page. http://se.inf.ethz.ch/, 2012.
Last visited: 9.10.2012.

[102] Oracle. Java serialization specification. http://download.
oracle.com/javase/6/docs/platform/serialization/
spec/version.html#6519. Last visited: 22.07.2012.

[103] Oracle. Edition-based redefinition. http://www.oracle.
com/technetwork/database/features/availability/
edition-based-redefinition-1-133045.pdf, 2009. Last
visited: 22.07.2012.

[104] J. Paterson, S. Edlich, H. Hörning, and R. Hörning. The Definitive
Guide to db4o. Apress, 2006.

[105] Marco Piccioni. Invariant evolution data for eiffel: an exploratory
study. http://tinyurl.com/cmnjfyh, 2012. Last visited:
13.11.2012.

[106] Marco Piccioni, Manuel Oriol, and Bertrand Meyer. Ide-integrated
support for schema evolution in object-oriented applications. In
RAM-SE, pages 27–36, 2007.

[107] Tom Preston-Werner. Semantic versioning 2.0. http://semver.org/,
2012.

[108] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001.

[109] Martin P. Robillard. What makes APIs hard to learn? Answers from
developers. IEEE Software, 26(6):26–34, 2009.

[110] Roman Schmocker. A better eiffelstore library. ETH Bachelor Thesis,
2012.

[111] Teseo Schneider. Escher: Eiffel schema evolution support. ETH
Bachelor Thesis, 2008.

http://findbugs.sourceforge.net/manual/annotations.html
http://findbugs.sourceforge.net/manual/annotations.html
http://se.inf.ethz.ch/
http://download.oracle.com/javase/6/docs/platform/serialization/spec/version.html#6519
http://download.oracle.com/javase/6/docs/platform/serialization/spec/version.html#6519
http://download.oracle.com/javase/6/docs/platform/serialization/spec/version.html#6519
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://tinyurl.com/cmnjfyh

BIBLIOGRAPHY 157

[112] Andrea H. Skarra and Stanley B. Zdonik. The management of
changing types in an object-oriented database. In OOPSLA, pages
483–495, 1986.

[113] DbVis Software. Dbvisualizer. http://www.dbvis.com/, 2012.
Last visited: 19.09.2012.

[114] Eiffel Software. Eiffelstore data access library.
http://www.eiffel.com/libraries/store.html, 2012.

[115] Eiffel Software. Eiffelstudio svn repository. https://svn.
eiffel.com/eiffelstudio/, 2012. Last visited: 31.08.2012.

[116] TIOBE Software. Tiobe index. http://www.tiobe.com/index.
php/content/paperinfo/tpci/tpci_definition.htm,
2012. Last visited: 4.08.2012.

[117] Jeffrey Stylos and Steven Clarke. Usability implications of requiring
parameters in objects’ constructors. In 29th International Conference
in Software Engineering, pages 529–539, 2007.

[118] Jeffrey Stylos and Brad A. Myers. The implications of method place-
ment on api learnability. In 16th International Symposium on Founda-
tions of Software Engineering, pages 105–112, 2008.

[119] Guido Wachsmuth. Metamodel adaptation and model co-
adaptation. In ECOOP, pages 600–624, 2007.

[120] Michael Würsch, Giacomo Ghezzi, Matthias Hert, Gerald Reif, and
Harald Gall. Seon: A pyramid of ontologies for software evolution
and its applications. Computing, pages 1–31, 2012.

[121] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen.
Mining software repositories to study co-evolution of production
and test code. In ICST, pages 220 –229, 2008.

http://www.dbvis.com/
https://svn.eiffel.com/eiffelstudio/
https://svn.eiffel.com/eiffelstudio/
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm

CURRICULUM VITAE

General information
Name: Marco Piccioni
Date of birth: July 7, 1965
Nationality: Italian
Web page: http://se.inf.ethz.ch/people/piccioni
E-mail address: marco.piccioni@inf.ethz.ch

Education and career history
• October 2006 - December 2012: Research Assistant and, from Septem-

ber 2008, PhD student at the Chair of Software Engineering, ETH
Zurich (Swiss Federal Institute of Technology Zurich)

• July 1996 - September 2006: Technical Trainer and Software Engineer
at Sistemi Informativi S.p.A. (an IBM company)

Certificates and diplomas
• Master degree in Economics at Università L. Bocconi, Milano (1994)

• Laurea degree in Mathematics at Università degli Studi di Roma La
Sapienza (1993)

• Cambridge Certificate of Proficiency in English (1998)

Publications
• Piccioni, M., Oriol, M., Meyer, B.: “Class Schema Evolution for Per-

sistent Object-Oriented Software: Model, Empirical Study, and Au-
tomated Support”, accepted for publication by IEEE journal: Trans-
actions on Software Engineering (TSE), November 2011.

http://se.inf.ethz.ch/people/piccioni

• Piccioni, M., Oriol, M., Meyer, B., Schneider T.: “An IDE-based, inte-
grated solution to Schema Evolution of Object-Oriented Software”,
ASE 2009: 24th IEEE/ACM International Conference on Automatic
Software Engineering, (Auckland, New Zealand), November 2009.

• Jin R., Piccioni, M.: “Eiffel for .NET Binding for db4o”, ICOODB
2008: First International Conference on Object Databases, (Berlin,
Germany), March 2008.

• Piccioni, M., Meyer, B.: “The Allure and Risks of a Deployable Soft-
ware Engineering Project: Experiences with Both Local and Dis-
tributed Development”, Proceedings of CSSE&T 2008: 21st IEEE-CS
Conference on Software Engineering Education and Training 2008,
(Charleston, South Carolina, USA), April 2008.

• Piccioni, M., Oriol, M., Meyer, B.: “IDE-integrated Support for
Schema Evolution in Object-Oriented Applications”, Proceedings of
RAM-SE 2007: 4th ECOOP’2007 Workshop on Reflection, AOP and
Meta-Data for Software Evolution, (Berlin, Germany), August 2007.

Languages
• Italian — native

• English — advanced (working language)

• German — basic

	Overview
	Main results
	A case of object-oriented schema evolution
	Structure

	Related Work
	The class schema approach
	The multi-version approach
	Schema evolution in relational databases
	Other approaches to schema evolution
	Summary of contributions with respect to previous work

	Evolving Persistent Applications: a Model
	Syntax for classes
	Schema modification operators
	The attribute not changed schema modification operator
	The attribute added schema modification operator
	The attribute renamed schema modification operator
	The attribute type changed schema modification operator
	The attribute removed schema modification operator
	The Attribute made attached schema modification operator

	Completeness
	Concrete transformation syntax and object transformers
	Heuristics for class schema evolution
	A measure of robustness to evolution for persistent object-oriented applications

	How Software Evolution Affects Persistence: Empirical Evidence
	Persistence-affecting changes in Java
	Analyzing java.util
	The persistence evolution robustness of java.util
	Analyzing the Apache Tomcat code base

	Persistence-affecting changes in Eiffel
	Eiffel libraries changes
	Analyzing the EiffelStudio code base

	Evaluating the persistence model on the Java and Eiffel repositories
	The Evolution of class invariants in connection with persistence
	An exploratory study on class invariant evolution
	More results on class invariant evolution

	Threats to validity

	Tools and Libraries for Evolving Persistent Apps
	IDE support
	Schema evolution IDE support
	Serialization support: an object browser GUI

	Code generation
	The persistence library implementation
	Front-end API
	The retrieval algorithm

	Evaluating the Design of the Persistence API
	Evaluation guidelines
	Empirical answers to API questions: example results from previous studies
	Research questions
	Participants
	Study setup
	Data collection protocol
	Data analysis: API usability tokens elicitation
	API usability tokens for class REPOSITORY
	API usability tokens for class QUERY
	API usability tokens for class CRUDEXECUTOR
	API usability tokens for class CRITERION

	Data Analysis: final questionnaire
	Lessons learned
	Threats to validity

	Conclusions and Future Work
	Tackling the limits of existing approaches
	Multi-version model
	Invariant-safe evolution
	Release-time evolution handling

	Conclusions
	Future work

	Eiffel and Design by Contract
	Types
	Information hiding
	Code organization
	Terminology
	Design by Contract
	Void Safety

	The Persistence Library's Backend implementation
	The ORM layer: from !REPOSITORY! to !BACKEND!
	Collection handling
	Handling object references

	The ORM layer: from BACKEND to the database
	Automatically generating the database schema
	Framework support for transactions and errors
	Framework extension points
	Supporting an additional relational database
	Supporting additional ORM mappings
	Supporting non-relational databases
	Cross-implementation extensions

	Graphs

