
Object Classification based on a Geometric Grammar
with a Range Camera

Jiwon Shin, Stefan G̈achter, Ahad Harati, Ćedric Pradalier, and Roland Siegwart
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Abstract— This paper proposes an object classification frame-
work based on a geometric grammar aimed for mobile robotic
applications. The paper first discusses the geometric grammar
as a compact representation form for object categories with
primitive parts as its constituent elements. The paper then
discusses the object classification implemented as parsing of
primitive parts. In particular, two approaches are discussed
that constrain the search space in order to render the parsing
of the primitive parts practical. The two approaches are
experimentally verified, first, for a generic object category of
chair applied to real range images acquired with a range
camera mounted on a mobile robot and, second, for multiple
generic object categories applied to synthetic range images. The
experimental results show the practicability of the framework.

I. I NTRODUCTION

Two recent trends in technology and research are first,
the advent of a novel type of range camera to capture 3D
scenes [1], and second, the regained interest to solve the
classification problem with object geometry, in particular,
object structure [2], [3]. Object structure has been recognized
as a strong characteristic for classification [4]. However,due
to the lack of a reliable, compact, and affordable range image
sensor, most of the algorithms and systems relied on object
structure information extracted from 2D images. The novel
type of range camera bears the potential to be compact and
affordable as they are based on well-established technologies.
The two trends have yet little converged despite of the
necessity of object classification in human-robot interaction.

Structural variability within an object category may be
well explained using a geometric grammar, especially a prob-
abilistic one which can incorporate uncertain and incomplete
measurements. In such an approach, object classification is
reduced to detection of object parts and verification of the
geometric relations among them. Since robust detection of
complex object parts is as difficult as object classification
itself, the representation of the overall structure of parts is
reduced to cuboids, which are independent of appearance
and easier to detect in point clouds.

With a grammar, objects can be represented in a hierar-
chical, recursive manner. The hierarchy can start at feature
level and end at scene level, enabling not only object but
also place classification, as demanded in mobile robotics [5].
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Important is to include geometry in such a hierarchy. Classi-
fication based on object geometry has been introduced in the
beginning of the computer vision era [6] and as soon as 3D
range sensors became available. Such early approaches are
discussed in [7], [8]. Furthermore, a grammar as a compact
representation method1 for object classification has been rec-
ognized for a long time [10]. Still, image parsing approaches
have been applied mainly to 2D intensity images. Recent
approaches concentrate on the comprehensive probabilistic
formulation of the image parsing problem and the learning
involved [10], [9]. This work explores the potentials of a
grammar-based classification approach for 3D range images
with an emphasis on practical solutions for mobile robotics.

The paper continues with a brief review of related work
in Section II. Section III introduces a geometric grammar
based representation for object classification. In SectionIV,
two different parsing approaches are discussed. Section V
presents experimental results for a single object categoryon
real range images and for multiple object categories on syn-
thetic range images. The paper concludes with Section VI.

II. RELATED WORK

The application of grammars as a representation method
for object classification in 3D has been introduced by [9].
The work proposes a probabilistic geometric grammar in
which geometric information about parts and their relations
is represented using multivariate normal distributions. In this
work, the probabilistic geometric grammar is defined by an
AND-OR graph as in [10], which uses this representation
to parse 2D intensity images according to a stochastic
grammar. Most previous work has applied grammar-based
approaches to intensity images. However, a grammar-like
approach applied to 3D range images captured with a laser
scanner, is presented in [11]. The mentioned work derives
the parse tree from functional constraints. The present work
uses 3D range images as well but differs from the cited
ones in that the parsing is seen as a geometric constraint
search, as discussed in [12], in context of object recognition.
Therefore, the goal and contribution of this paper is to
combine different approaches into a practical solution for
object classification aimed for mobile robotic applications
with sensory information provided by a range camera.

1The compactness of the representation is especially evidentin learning,
where compared to other approaches, smaller training sets areneeded [9].
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Fig. 1. An example of anOR category.

III. O BJECTREPRESENTATION

We adopt a parts-based object representation because
many artificial as well as natural objects are composed of
parts. This representation allows the parts to be modeled
independently of the viewpoint, while incorporating missing
or occluded parts. Further, decomposing an object into its
parts enables a larger number of structurally similar objects
to be grouped together. In this work, objects are decomposed
hierarchically and are represented by a grammar.

A grammar defines the possible sequences of symbols
that constitute valid statements in a given language. The
verification of validity of a sequence is called parsing.
Formally, a grammarG = (T,N, S,R) consists of a set
of terminalsT and non-terminalsN , a start variableS ∈ N ,
and a set of production rulesR : S → T , S → N , N → N ,
and N → T . In this work, a formal grammarG describes
which possible constellations of primitive parts constitute a
valid object. Parsing is then classification, the verification
if a given part constellation matches with a certain object
category. The terminalsT of the grammar are primitive parts,
which can be any suitable descriptor. Here, primitive parts
are physical parts abstracted as cuboids. For instance, a chair
leg is represented by a stick-like cuboid. The non-terminals
N are groups of primitive parts such aschair back, which
is a collection of back and support pieces. The start variable
S is a generic object category such aschair.

For parts detection, we employ an incremental detection
algorithm presented in [13]. The parts detector extracts only
the primitive parts not the relationship between parts. For
example, both a leg underneath and a back support above
a chair seat are simply two stick-like parts. Therefore, a
context-free grammar2, which treats all parts without con-
textual information, is appropriate. The production rulesof
the grammar can be represented by anAND-OR graph, which
encodes all possible parse trees of the grammar and therefore,
all structural information of an object category.

In an AND-OR graph, anOR-node codes the structural
variability within an object category. Figure 1 depicts an
example of such a category. A stool with four legs, three
legs, or one axle are all valid variations ofstool. Thus,
an OR-node captures an object category with more than
one acceptable constellation of parts. AnAND-node encodes
generalization of different object categories using partial
similarity in the structure. TheAND relationship combines
different constellations of parts to obtain a more complex

2Actually, context is necessary to perform the object classification, but
the contextual information is not encoded in the production rules, as it is the
case for a context-sensitive grammar. Instead, they are additional constraints.
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Fig. 2. An example ofAND categories.

constellation. In Figure 2, the category ofstool with a back
constructschair. Similarly, armchair is derived fromchair.

Due to uncertainty and incompleteness of the sensor data,
the detected primitive parts have a limited confidence mea-
sure. Hence, the parameters for primitive parts – in this work,
a cuboid defined by the center point and the span lengths
– are modeled as random variables. The relations between
the primitive parts – in this work, the Euclidean distance
between the center points – are also modeled as random
variables. Since each object is represented by geometric parts
and relations in a probabilistic manner, the grammar is called
a probabilistic geometric grammar [14].

A probabilistic geometric grammar is related to a stochas-
tic attribute grammar, a known object representation method
in computer vision.3 An attribute grammar augments the ter-
minals and non-terminals with attributes to define constraints
for the production rules. Here, the attributes are center points
and span lengths of the primitive parts, where distances
between center points are used in the production rules. In a
stochastic grammar, each production rule is augmented with
a-priori defined or learned probability, which represents an
a-priori knowledge on the object categories. However, since
the object categories under investigation depend on the appli-
cation, for example, office versus hospital, we assume noa-
priori knowledge. Therefore, the probabilities of production
rules in theAND-OR graph are not modeled explicitly.

IV. OBJECTCLASSIFICATION

Object classification is implemented as parsing of detected
primitive parts, where each object category is described by
a probabilistic geometric grammar. The difficulty of parsing
an object is that unlike human languages, object parts have
no natural order. For instance, there is no particular order
in which the four legs of a stool should be processed.
Important is their structural relations. Therefore, to reduce
complexity, it is necessary to constrain the search for valid
parts constellations. The following discusses two constrained
search methods – a generalized Hough transform (GHT) and
a joint compatibility test (JCT). A general discussion on these
methods can be found in [12]. Both methods build on a set of
classified primitive parts provided by a parts detector, which
localizes and classifies potential parts in a sequence of 3D
range images [13].

3A short review of the various types of grammars can be found in [15].



JCBB The joint compatibility branch and bound test for
object parsing given a set of classified primitive parts.

Data: Detected partsD and modeled object partsO

Input: Current compatibility hypothesisH, which is a
set of pairings of detected and modeled parts, and the
current indexi to the detected parts under investigation

Output: The best compatibility hypothesisB found

Procedure:
I ← |D|
J ← |O|
if i > I then

if |H| ≥ |B| and
overall score(H) > overall score(B) then
B ← H

end
else

Di ∈ D
for j = 1 to J do

Oj ∈ O
if relation match(H,Di, Oj) then

pair ← {i, j}
JCBB (H ∪ pair, i + 1)

end
end
if |H|+ I − i ≥ |B| then

JCBB (H, i + 1)
end

end

A. Generalized Hough Transform

In the first approach, the parsing is initialized by a voting
scheme and then executed from the initial node of the parse
tree in a top-down order. The details of the approach can be
found in [16]. Here, a brief summary is given. The voting
scheme is a probabilistic GHT adapted from the implicit
shape model [3], which consists of a set of object specific
parts and the corresponding votes for the relative locations of
the reference point with respect to the parts. The set of votes
can be regarded as a spatial discrete probability distribution
reflecting the learned knowledge of the relative locations.
In this work, the probability distribution is approximated
by a Normal distribution. Each classified primitive part
casts its votes for the reference point, and once the voting
is completed, the local maxima indicate potential object
locations, equivalent to non-terminal nodes of a parse tree.
The parsing is completed by verifying the part constellation
according to the object category definition starting from the
initial guess. Hence, the voting scheme constrains the search
to a limited number of branches in the parse tree.

The GHT is limited in the following ways. First, the
approach does not limit the number of parts that can belong
to an object. Any primitive part within an acceptable distance
of the reference point votes as a part of the object. For
example, if there are five leg parts within the correct distance

of the object reference point, then all five parts are associated
with the chair. Second, it limits sharing of different part types
of similar structure. For example, a leg and a back support
look similar, but because the relation of a leg to the reference
point of the chair is different from that of a back support, they
must have two different representations. Third, the approach
does not contain any hierarchy, thus, for each new object
category, the relations have to be relearned from scratch.
The JCT can handle the three explained cases.

B. Joint Compatibility Test

The second approach is based on a constrained search
in an interpretation tree. The search is actively guided
during the parsing, not just at the initialization as the
GHT. Object recognition as a constrained search problem
has been widely explored, see for example [17]. Here, the
search is constrained using the joint compatibility branchand
bound algorithm [18]. The algorithm was initially designed
to handle data association in simultaneous localization and
mapping. In this work, assigning the detected primitive parts
to the modeled object parts can be seen as a data association
problem. An interpretation tree represents all possible cor-
respondences between the detected primitive parts and the
modeled object parts. The JCT traverses the interpretation
tree in search for the hypothesis that includes the largest
number of jointly compatible pairings of primitive parts and
the model, see algorithmJCBB. The implementation used
here relies on two evaluations: part matching and relation
matching. The part matching determines if a detected part
can be an instance of an object part, which is already realized
in the parts detection phase. The relation matching examines
the arrangement of the detected parts against the relations
modeled by the grammar, where the quality of the matching
is expressed by a score.

The parsing begins by selecting a seed partD0 from the
set of detected primitive partsD, and pairing it with an
appropriate4 object partO0 from the set of object partsO of
the grammar, to initiate a compatibility hypothesisH0. Then,
another partD1 ∈ D \ {D0} is selected and is paired with
O1 ∈ O\{O0}. If no appropriateO1 exists,D1 is discarded.
If it does, the relation betweenD0 andD1 is tested against
all possible relations betweenO0 and O1. If matched, the
pair is added toH0. If not, D1 is discarded andO1 is freed.
A third partD2 ∈ D\{D0,D1} is selected and is accepted if
its relations to all the parts already inH0 are preserved. The
process continues until all parts inD have been tested against
H0. The parsing is repeated with different seed parts, and the
hypothesis that yields the highest match score is selected.
Thus, the depth of the search in a branch of the tree is
bounded by the best available hypothesis, and the branching
is controlled by the best available relation matching. The
branch and bound aspect of the algorithm is in its ability
to choose which hypotheses to grow or to discard without
evaluating all possible correspondences.

4If D0 is a stick-like cuboid, then it can only be paired with a stick-like
O0 such as a chair leg or back support.



The relation matching score is based on aχ2 test of the
Mahalanobis distance to account for the uncertainty of parts.
Parts of high variance are discarded. We use the distance
between the center points as the relations. Other relations
such as angle can also be used. Objects are assumed to be in
their natural upright pose. Thus, the distance components in
z direction are treated independently ofx and y to ensure
the preservation of vertical relations between parts while
enabling invariance inx and y. The relation matching score
r is derived from the Mahalanobis distanced as

r = exp(−λ d), (1)

whereλ = 0.5 is a design parameter included to generate
a probabilistic measure. The part matching scorep is equal
to the detection probability provided by the parts detector.
The part and relation matching are expressed as likelihoods
to handle the varying number of parts and relations during
the parsing. Assuming statistical independence among parts
and relations, the total matching scoret for a hypothesis is

t =
∑

i∈parts

log
pi

P0

+
∑

j∈relations

log
ri

R0

, (2)

where P0 = 0.5 and R0 = 0.5 are the part and relation
scores for the null hypothesis. Finding the best hypothesisis
then equal to maximizing this sum of log-likelihood ratios.

Multiple occurrence of objects are detected by running
the parser repeatedly and removing the primitive parts of
the best hypothesis fromD at each iteration. For intra-class
variations, the highest overall matching score is selected
among all possible variations. Partial inter-class similarity
is handled by growing the overall score until the detected
primitive parts match the object model. For example, a stool
is searched first, then from the remaining primitive parts, a
back to form a chair. The relation matching between the stool
and the back results in the overall score for the chair.

V. RESULTS

The two parsing approaches are verified experimentally to
demonstrate their practicability. The parsing is first tested on
real data from an indoor environment for a generic object
category ofchair. Then, the parsing is tested for a more
complex but simulated scenario to examine its capability of
classifying multiple object categories.

A. Single Generic Object Class

The setup consists of two chairs in front of a dining
table and a coffee table on the right of them as depicted
in Figure 3(a). The scene is captured using a SR-2 range
camera [1] mounted on a robot. Primitive parts are detected
incrementally using the method described in [13] and classi-
fied as objects at every frame. In total, five data sets of 450
to 720 frames are acquired, each set with different robot
trajectory, type of chairs, and distances between objects.
Figure 3(b) is an example (No. 2 in Tab. I) of primitive
parts detected in a sequence of 550 range images. During the
detection process, some physical parts are undetected, some

(a) First Experimental Setup

(b) Detected Primitive Parts

(c) Detected Objects

Fig. 3. (a) Setup of the first experiment (Setup of No. 2 in Tab. I). The
robot travels first toward the wooden chair on the left and then turns slowly
toward the coffee table on the right, while visiting the red chair in the
center of the scene. Snapshot of the detected primitive parts(b) before and
(c) after the object classification. The depicted parts are aselection of all
the parts detected and classified in the whole sequence. Stick-like parts are
depicted in blue, bar-like parts in green, and plate-like parts in red. Three
point clouds out of the whole sequence are added for clarity.

TABLE I

Generalized Hough Transform Joint Compatibility Test

No. Detection Rate Precision Detection Rate Precision

1 97.0 % 100 % 99.5 % 100 %
2 96.6 % 100 % 98.6 % 84.8 %
3 84.5 % 63.8 % 51.3 % 53.8 %
4 92.9 % 83.0 % 61.5 % 36.8 %
5 90.0 % 100 % 99.0 % 84.8 %

are detected incorrectly, and some, which do not belong to
the object under investigation, are detected. Thus, the parsers
have to cope with missing, incorrect, and clutter parts.

Figure 4 shows the grammar forchair. The JCT approach
makes use of the entire parse tree, whereas the GHT one
does not consider the two stick-like parts ofback because it
requires different part definitions for the different functional
parts, as explained in Section IV-A. The GHT approach
requires at least three parts that belong tochair to initialize
the parsing; the JCT approach requires at least three parts
for stool and at least one part forback.



Chair

Back Stool

Fig. 4. The single category grammar used for testing.OR relations are
indicated bydashed lines.AND relations are indicated bysolid lines. Object
categories are indicated bybold fonts.

Table I summarizes the results of classifying the five test
sets. An example (No. 2 in Tab. I) of two correctly classified
chairs using the GHT approach is depicted in Figure 3(c).
The performance of the parsers are measured by the detection
rate and precision.5 Overall, the two approaches perform sim-
ilarly well. Both have over 90 % detection rate and over 85 %
precision for the first, second, and fifth data set. (Because
a minimum number of primitive parts is required for the
classification, the precision can reach 100 % here.) The drop
in precision for the third and fourth set indicates that the
object classification can fail for certain scene configurations.
Such a drop can be caused by wrongly classified clutter or
by neighboring primitive parts that misguide the parser. The
detection rate drops as low as 50 % for the JCT approach
because frequent misclassification of the coffee table legs
with the legs of the nearby chair left too few chair parts for
it to be classified. Such misclassification was much rarer for
the GHT approach because it is more conservative. But, this
advantage can reduce the flexibility to design the grammar as
discussed in Section IV-A. Thus, the classification approach
is extended to multiple object categories in order to analyze
generalizability of the JCT approach.

B. Multiple Generic Object Classes

Because the current hardware setup with the range camera
is not yet reliable enough to extract primitive parts for a
larger set of various object categories with the algorithm
proposed in [13], the experiment is run in a simulated
environment. The simulated environment is designed in
Blender and tested in Morsel, a 3D simulation software
based on Panda3D. The range sensor is attached to a robot
and scans the environment with a field-of-view of 180◦

horizontally and 90◦ vertically with 1◦ angular resolution.
The grammar used for the experiment, shown in Figure 5, has
three generic object categories: chair, bench, and table. (The
parts are omitted for clarity.)Chair is a hierarchical category
composed ofback and stool. Twelve objects are sampled –
seven chairs, two stools, two tables, and one bench – with
different shape and structure as shown in Figure 6(a).

Since the focus is not the parts detection, the object parts
are color-coded to ease the parts localization and classifica-
tion. The parts are detected by clustering the point cloud by

5If P is the actual number,TP the number of correctly classified andFP
the number of falsely classified objects, then the detection rate isTP/P and
the precision isTP/(TP + FP) over the whole sequences.

Bench

Table

Dining Table Coffee Table

Chair

Back Stool

Stool

(Four Legs)

Ottoman Stool

(One Axle)

Fig. 5. The multiple categories grammar used for testing.Dashed lines
indicate OR relations andsolid lines, AND relations.Bold fonts indicate
object categories.

(a) Second Experimental Setup

(b) Detected Objects

Fig. 6. (a) Setup of the simulated environment. The robot enters the scene
from the lower left corner, travels toward the center and returns in a big
loop to the starting point. (b) Snapshot right after the parser classified the
objects. Parts that are classified as belonging to an object are displayed as
cuboids in shade of gray. Whiter color indicates a higher matchscore for
the object class. The object categories are displayed in text.
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Chair (S4L) 55 6 – 30 4 – – – – 36
Chair (O) – 13 – – 10 – – – – 6
Chair (S1A) – – – – – – – – – 6
Stool (4L) – – – 19 – – – – – 15
Ottoman – – – – 9 – – – – 10
Stool (1A) – – – – – – – – – –
Table (C) – – – – – – 17 – 3 1
Table (D) – – – – – – – – – 4
Bench – – – – – – 1 – 8 –
Not Object 3 – – 1 – – – – – –

color and computing a bounding-box for each cluster. The
detected cuboids are classified into the appropriate primitive
part types based on its color and size. The part probability
is set according to the number of points per bounding-box.

A sequence of 108 frames are acquired while the robot
is traveling through the simulation environment. Each frame
contains an average of 23 extracted primitive parts from an
average of 5 objects. The primitive parts are parsed with
the JCT approach using the grammar defined in Figure 5.
Figure 6(b) depicts a snapshot6 right after the parser classi-
fied the objects. The performance is analyzed by counting,
for each frame, the number of objects the parser could po-
tentially classify, the correctly and falsely classified objects,
and the missed objects. The result for all generic object
categories is: 171 true positives, 8 false positives, and 78
false negatives. Details are in Table II. The column indicates
the nominal object categories, and the row is the different
object categories issue of the classification. The parser isable
to classify all objects except the dining table and the single
axle chair. Sincechair is derived fromstool, actual chairs are
often taken as stools when the back parts are undetected. This
explains the comparably large number of misclassification in
this category. Furthermore, there is only a small difference
between a four-legged stool and a ottoman – the latter
has shorter legs but a thicker seat than the former. Many
objects are not detected because objects are often observed
partially, which results in geometrically incorrect primitive
parts. Compared to the best cases of Section V-A, the
detection rate ofchair is lower at 67 % while the precision
is of similar degree at 97 %. This shows that with increased
scene complexity, the reliable detection of primitive parts and
its correct classification become more challenging. However,
given a sufficient number of geometrically correct parts, the
parser is able to classify the primitive parts correctly.

VI. CONCLUSION

This paper presented an object classification framework
based on a geometric grammar aimed for mobile robotic

6The paper is accompanied by a video showing the parser in action.

applications. It employs a parts-based geometric grammar
where a parts detector provides the primitive parts. For effi-
cient parsing, two constrained search methods are discussed.
They are experimentally verified, first, for a generic object
category of chair applied to real range images and second,
for multiple generic object categories applied to synthetic
range images. The results show that the parsers are capable of
grouping together structurally-different objects of the same
object category while distinguishing structurally-similar ob-
jects of different object categories apart. In addition, the
approaches can handle clutter, missing, and uncertain parts.

There are two directions of improvement for the frame-
work. First, to apply the framework on objects without
distinctive structure, it is necessary to represent the parts and
their relations in a more general form. Machine learning can
be used to determine the most important parts and relations
for a given object. Second, the framework can be extended
to place classification, where object classification plays an
important role. The hierarchical nature of a grammar can
enable a seamless transition from one to the other, increasing
the spatial awareness of mobile robots.
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