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Abstract— This paper proposes an object classification frame-  Important is to include geometry in such a hierarchy. Classi
work based on a geometric grammar aimed for mobile robotic  fication based on object geometry has been introduced in the
applications. The paper first discusses the geometric grammar beginning of the computer vision era [6] and as soon as 3D

as a compact representation form for object categories with b ilable. Such | h
primitive parts as its constituent elements. The paper then range sensors became available. such early approaches are

discusses the object classification implemented as parsing of discussed in [7], [8]. Furthermore, a grammar as a compact
primitive parts. In particular, two approaches are discussed representation methédor object classification has been rec-
that constrai.n. the search space in order to render the parsing ognized for a long time [10]. Still, image parsing approache
of the primitive parts practical. The two approaches are pave peen applied mainly to 2D intensity images. Recent

experimentally verified, first, for a generic object category of . e
chair applied to real range images acquired with a range approaches concentrate on the comprehensive probabilisti

camera mounted on a mobile robot and, second, for multiple formulation of the image parsing problem and the learning

generic object categories applied to synthetic range images. The involved [10], [9]. This work explores the potentials of a

experimental results show the practicability of the framework. grammar-based classification approach for 3D range images

with an emphasis on practical solutions for mobile robotics
The paper continues with a brief review of related work

) _in Section II. Section Il introduces a geometric grammar
Two recent trends in technology and research are fir ased representation for object classification. In Sedifn

the advent of a novel type of range camera to capture 3 o different parsing approaches are discussed. Section V

scenes [1], and second, the regained interest to solve sents experimental results for a single object category

cla_ssification problem With object geometry, in payticularreal range images and for multiple object categories on syn-
object structure [2], [3,]' iject strut_:t.ure. has been recagh thetic range images. The paper concludes with Section VI.
as a strong characteristic for classification [4]. Howedeg

to the lack of a reliable, compact, and affordable range @nag Il. RELATED WORK
sensor, most of the algorithms and systems relied on objectThe application of grammars as a representation method
structure information extracted from 2D images. The novebr object classification in 3D has been introduced by [9].
type of range camera bears the potential to be compact alte work proposes a probabilistic geometric grammar in
affordable as they are based on well-established techieslog which geometric information about parts and their relagion
The two trends have yet little converged despite of thg represented using multivariate normal distributionsthiis
necessity of object classification in human-robot intéoact  work, the probabilistic geometric grammar is defined by an
Structural variability within an object category may beAND-OR graph as in [10], which uses this representation
well explained using a geometric grammar, especially aprolo parse 2D intensity images according to a stochastic
abilistic one which can incorporate uncertain and incomeple grammar. Most previous work has applied grammar-based
measurements. In such an approach, object classificationajgproaches to intensity images. However, a grammar-like
reduced to detection of object parts and verification of thapproach applied to 3D range images captured with a laser
geometric relations among them. Since robust detection s€anner, is presented in [11]. The mentioned work derives
complex object parts is as difficult as object classificatiothe parse tree from functional constraints. The presenk wor
itself, the representation of the overall structure of past uses 3D range images as well but differs from the cited
reduced to cuboids, which are independent of appearangges in that the parsing is seen as a geometric constraint
and easier to detect in point clouds. search, as discussed in [12], in context of object recagmiti
With a grammar, objects can be represented in a hierarherefore, the goal and contribution of this paper is to
chical, recursive manner. The hierarchy can start at featucombine different approaches into a practical solution for
level and end at scene level, enabling not only object buibject classification aimed for mobile robotic applicaton
also place classification, as demanded in mobile robotics [Swith sensory information provided by a range camera.

I. INTRODUCTION

This work was partially supported by the EC under the FP6083350 1The compactness of the representation is especially eviddearning,
robots@home project. where compared to other approaches, smaller training setseaded [9].
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Fig. 1. An example of aiOR category.
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IIl. OBJECTREPRESENTATION

We adopt a parts-based object representation because Fig. 2. An example ofAND categories.
many artificial as well as natural objects are composed of
parts. This representation allows the parts to be modeled
independently of the viewpoint, while incorporating migsi constellation. In Figure 2, the category &bol with a back
or occluded parts. Further, decomposing an object into i@nstructschair. Similarly, armchair is derived fromchair.
parts enables a larger number of structurally similar dbjec Due to uncertainty and incompleteness of the sensor data,
to be grouped together. In this work, objects are decompostte detected primitive parts have a limited confidence mea-
hierarchically and are represented by a grammar. sure. Hence, the parameters for primitive parts — in thikywor
A grammar defines the possible sequences of symbdiscuboid defined by the center point and the span lengths
that constitute valid statements in a given language. Theare modeled as random variables. The relations between
verification of validity of a sequence is called parsingthe primitive parts — in this work, the Euclidean distance
Formally, a grammaiG = (T, N, S, R) consists of a set between the center points — are also modeled as random
of terminalsT” and non-terminalsV, a start variables ¢ v, Vvariables. Since each object is represented by geomette pa
and a set of production ruleg : § — T, S — N, N — N, and relations in a probabilistic manner, the grammar iedall
and N — T. In this work, a formal gramma€ describes @ Probabilistic geometric grammar [14].
which possible constellations of primitive parts conséta A Probabilistic geometric grammar is related to a stochas-
valid object. Parsing is then classification, the verifati fiC attribute grammar, a known object representation netho
if a given part constellation matches with a certain objedf Computer visior?. An attribute grammar augments the ter-
category. The terminalg of the grammar are primitive parts, Minals and non-terminals with attributes to define constsai
which can be any suitable descriptor. Here, primitive part®r the production rules. Here, the attributes are centertpo
are physical parts abstracted as cuboids. For instancaiia cttnd span lengths of the primitive parts, where distances
leg is represented by a stick-like cuboid. The non-ternsinaP€tween center points are used in the production rules. In a
N are groups of primitive parts such asair back, which ~ stochastic grammar, each production rule is augmented with
is a collection of back and support pieces. The start vagiabf-Priori defined or learned probability, which represents an
S is a generic object category such cgir. a-priori knowledge on the object categories. However, since
For parts detection, we employ an incremental detectidfi€ Object categories under investigation depend on thie-app
algorithm presented in [13]. The parts detector extraclg oncation, for example, office versus hospital, we assume-no
the primitive parts not the relationship between parts. Fd¥iori .knowledge. Therefore, the probabilities of productlon
example, both a leg underneath and a back support abd¥#es in theAND-CR graph are not modeled explicitly.
a chair seat are simply .two stick-like parts. _Therefore, a IV. OBJECTCLASSIFICATION
context-free grammay which treats all parts without con- ] S )
textual information, is appropriate. The production rutés .Opj_ect classification is |mpIer_nented as parsing of d_etected
the grammar can be represented byA\D-OR graph, which primitive 'p.ar'ts, where t_aach object categqry is descrlbeq by
encodes all possible parse trees of the grammar and therefdt Probabilistic geometric grammar. The difficulty of pagsin
all structural information of an object category. an object is that unllke_ human Ianguages, objec_t parts have
In an AND-OR graph, anOR-node codes the structural no nafcural order. For instance, there is no particular order
variability within an object category. Figure 1 depicts ar" which t_he fo.ur legs of a St(_)OI should be processed.
example of such a category. A stool with four legs, threémportan.t is the|r structural relat|ons.. Therefore, touesl _
legs, or one axle are all valid variations sfool. Thus, complexity, it is necessary to gonstraln the search 'fordvall
an OR-node captures an object category with more thaRarts constellations. The follpwmg discusses two coirgtth
one acceptable constellation of parts. AKD-node encodes S€arch methods —a generalized Hough transform (GHT) and
generalization of different object categories using parti ajoint compat|b|lltytest. (JCT). A general d|scus§|on oesé
similarity in the structure. TheAND relationship combines Methods can be found in [12]. Both methods build on a set of

different constellations of parts to obtain a more compleglassified primitive parts provided by a parts detector,chhi
localizes and classifies potential parts in a sequence of 3D

2actually, context is necessary to perform the object cfasstion, but fange images [13].
the contextual information is not encoded in the productidas;, as it is the
case for a context-sensitive grammar. Instead, they areé@ugliconstraints. 3A short review of the various types of grammars can be found %j. [1

Arm




JCBB The joint compatibility branch and bound test for of the object reference point, then all five parts are astatia
object parsing given a set of classified primitive parts.  with the chair. Second, it limits sharing of different pampés

of similar structure. For example, a leg and a back support
look similar, but because the relation of a leg to the refegen
Input: Current compatibility hypothesi&(, which is a point of the chair is different from that of a back supporgyth
set of pairings of detected and modeled parts, and the must have two different representations. Third, the apgroa
current index: to the detected parts under investigation does not contain any hierarchy, thus, for each new object

Output: The best compatibility hypothesi8 found category, the relations have to be relearned from scratch.
The JCT can handle the three explained cases.

Data: Detected part® and modeled object part9

Procedure:
I —|D| B. Joint Compatibility Test
i{j>|?‘then . The ;econd approach is based on a const'rained ;earch
if || > |B| and in an mterpreta’_uon tree._ The search is gctl\_/ely guided
overall_score(H) > overall_score(B) then during th_e parsmg,_not just at the !n|t|aI|zat|on as the
| B—H GHT. Object recognition as a constrained search problem
end has been widely explored, see for example [17]. Here, the
else search is constrained using the joint compatibility braact
D; €D bound algorithm [18]. The algorithm was initially designed
for j=1to J do to handle data association in simultaneous localizatiath an
0; €0 mapping. In this work, assigning the detected primitivetpar
if relation-match(H, D;,O;) then to the modeled object parts can be seen as a data association
pair — {i, j} problem. An interpretation tree represents all possible co
JCBB (H U pair,i+1) respondences between the detected primitive parts and the
end modeled object parts. The JCT traverses the interpretation
end tree in search for the hypothesis that includes the largest
if [H]+1—i>[B| then number of jointly compatible pairings of primitive partsdan
| JCBB (H,i+1) the model, see algorithddCBB. The implementation used
de”d here relies on two evaluations: part matching and relation
en

matching. The part matching determines if a detected part
can be an instance of an object part, which is already rehlize
in the parts detection phase. The relation matching examine
A. Generalized Hough Transform the arrangement of the detected parts against the relations

) L . modeled by the grammar, where the quality of the matching
In the first approach, the parsing is initialized by a votingg expressed by a score.

scheme and then executed from the initial node of the parseryq parsing begins by selecting a seed fagtfrom the
tree in a top-down order. The details of the approach can t%%t of detected primitive part®, and pairing it with an

found in .[16]' Here, a b_rief summary is given. The_VOtingappropriaté object partO, from the set of object part® of
scheme is a probabilistic GHT adapted from the implicif, grammar, to initiate a compatibility hypothesis. Then,

shape model [3], which consists of a set of object Specm&nother partD; € D\ {D,} is selected and is paired with
parts and the corresponding votes for the relative locatadn 0, € O\ {Oy). If no appropriate), exists,D; is discarded.

the reference point with res.pect' o the parts. The S?t O,BVOtﬁ it does, the relation betweeb, and D, is tested against
can be regarded as a spatial discrete probability distoibut all possible relations betweefl, and O;. If matched, the

reflecting the learned knowledge of the relative Iocation%air is added tdH,. If not, D, is discarded and, is freed.

In this work, th? p_rob_ability distributio.n. s ap.pr(_)ximatedAthird part Dy € D\{Dy, D, } is selected and is accepted if
by a .Normal distribution. Each clgssn‘led primitivé partyq vo|ations to all the parts already Hf, are preserved. The
pasts its votes for the reference p.om't, and once .the Vc,)t"ﬂﬂocess continues until all partsIhhave been tested against
IS co_mpleted,_the local maxima indicate potential obje o- The parsing is repeated with different seed parts, and the
Iocatlons,_ eq_uwalent to non-terrr_un_al nodes of a parse t_reﬁypothesis that yields the highest match score is selected.
The parsing is completed by verifying the part consteltiory, s the depth of the search in a branch of the tree is

gc_qording to the object category definition start_ing frora th bounded by the best available hypothesis, and the branching
|n|t|allggess. Hence, the voting sqheme constrains the:lsearis controlled by the best available relation matching. The
to a limited number of branches in the parse tree. branch and bound aspect of the algorithm is in its ability

The GHT is limited in the following ways. First, the 4 choose which hypotheses to grow or to discard without
approach does not limit the number of parts that can belor@/aluating all possible correspondences.

to an object. Any primitive part within an acceptable dis&n
of the ref.erence pOII’?t votes as a .pgrt of the ObJe.Ct' I:Or“lf Dy is a stick-like cuboid, then it can only be paired with a stiikle
example, if there are five leg parts within the correct disgan O, such as a chair leg or back support.




The relation matching score is based or“atest of the
Mahalanobis distance to account for the uncertainty ofspart
Parts of high variance are discarded. We use the distance
between the center points as the relations. Other relations
such as angle can also be used. Objects are assumed to be in
their natural upright pose. Thus, the distance components i
z direction are treated independently xfandy to ensure
the preservation of vertical relations between parts while
enabling invariance ix andy. The relation matching score
r is derived from the Mahalanobis distané¢eas

r =exp(—\d), (1)

where A = 0.5 is a design parameter included to generate

a probabilistic measure. The part matching sgoiis equal

to the detection probability provided by the parts detector

The part and relation matching are expressed as likelihoods
to handle the varying number of parts and relations during

the parsing. Assuming statistical independence among part
and relations, the total matching scdréor a hypothesis is

t= Z log%-i- Z IOgI%, (2

i€Eparts j€Erelations

where P, = 0.5 and Ry = 0.5 are the part and relation

scores for the null hypothesis. Finding the best hypothssis

then equal to maximizing this sum of log-likelihood ratios.
Multiple occurrence of objects are detected by running () Detected Objects

the parser repeatedly and removing the primitive parts of

the best hypothesis frorf? at each iteration. For intra-class rig. 3. (a) Setup of the first experiment (Setup of No. 2 in TabThe

variations, the highest overall matching score is selecteobot travels first toward the wooden chair on the left andh thens slowly

mon 1 ible variations. Partial inter-cl iriti toward the coffee table on the right, while visiting the reaaic in the
among afl poss ble variations. Partial inter-class s mya nter of the scene. Snapshot of the detected primitive fi@rtsefore and

. . . c
IS _hgrjdled by growing the _Overa” score until the deteCteff) after the object classification. The depicted parts aselaction of all
primitive parts match the object model. For example, a stodie parts detected and classified in the whole sequencé:Iiecparts are

is searched first, then from the remaining primitive parts, éePiCteId ig blue, tf’a[]'"kehp”l‘”s in green, and gljatg'!jkﬁsfm. red. Three
. . . int clouds out of the whole sequence are added for clarity.

back to form a chair. The relation matching between the stobf . v

and the back results in the overall score for the chair. TABLE |

V. RESULT
SULTS Generalized Hough Transform Joint Compatibility Test

The two parsing approaches are verified experimentally to
demonstrate their practicability. The parsing is firstedsin

Detection Rate Precision Detection Rate  Precision

| data f ind 4 ¢ ic obi 97.0% 100% 99.5% 100%
real data from an indoor environment for a generic object ; 96.6 % 100% 98.6 % 84.8%
category ofchair. Then, the parsing is tested for a more 3 84.5% 63.8% 51.3% 53.8%
complex but simulated scenario to examine its capability of 4 92.9% 83.0% 61.5% 36.8%

5 90.0% 100% 99.0% 84.8%

classifying multiple object categories.

A. Single Generic Object Class

The setup consists of two chairs in front of a diningare detected incorrectly, and some, which do not belong to
table and a coffee table on the right of them as depictefie object under investigation, are detected. Thus, theepar
in Figure 3(a). The scene is captured using a SR-2 randj@ve to cope with missing, incorrect, and clutter parts.
camera [1] mounted on a robot. Primitive parts are detected Figure 4 shows the grammar folair. The JCT approach
incrementally using the method described in [13] and classinakes use of the entire parse tree, whereas the GHT one
fied as objects at every frame. In total, five data sets of 45fbes not consider the two stick-like partshaick because it
to 720 frames are acquired, each set with different roboequires different part definitions for the different fuiocial
trajectory, type of chairs, and distances between objecisarts, as explained in Section IV-A. The GHT approach
Figure 3(b) is an example (No. 2 in Tab. 1) of primitive requires at least three parts that belongtiair to initialize
parts detected in a sequence of 550 range images. During the parsing; the JCT approach requires at least three parts
detection process, some physical parts are undetecte@, sdior stool and at least one part fdrack.
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Fig. 4. The single category grammar used for testiog.relations are o~
indicated bydashed lines. AND relations are indicated bsolid lines. Object - ~ 1 -
categories are indicated Ibpld fonts. - / ~
Dining Table // Coffee Table
/
Table | summarizes the results of classifying the five test ’
sets. An example (No. 2 in Tab. 1) of two correctly classified Chair

chairs using the GHT approach is depicted in Figure 3(c). /\

The performance of the parsers are measured by the detection

. . Back Stool
rate and precisioh Overall, the two approaches perform sim- Py
ilarly well. Both have over 90 % detection rate and over 85 % e
precision for the first, second, and fifth data set. (Because
a minimum number of primitive parts is required for the
classification, the precision can reach 100 % here.) The drop
in precision for the third and fourth set indicates that the&ig. 5. The multiple categories grammar used for testDashed lines
object classification can fail for certain scene configorai ind_icate(]? rel_ations andsolid lines, AND relations. Bold fonts indicate

. object categories.

Such a drop can be caused by wrongly classified clutter or
by neighboring primitive parts that misguide the parsere Th
detection rate drops as low as 50% for the JCT approach
because frequent misclassification of the coffee table legs
with the legs of the nearby chair left too few chair parts for
it to be classified. Such misclassification was much rarer for
the GHT approach because it is more conservative. But, this
advantage can reduce the flexibility to design the grammar as
discussed in Section IV-A. Thus, the classification appnoac
is extended to multiple object categories in order to aralyz
generalizability of the JCT approach.

~

Stool Ottoman Stool
(Four Legs) (One Axle)

B. Multiple Generic Object Classes (a) Second Experimental Setup

Because the current hardware setup with the range camera
is not yet reliable enough to extract primitive parts for a
larger set of various object categories with the algorithm
proposed in [13], the experiment is run in a simulated
environment. The simulated environment is designed in
Blender and tested in Morsel, a 3D simulation software
based on Panda3D. The range sensor is attached to a robot
and scans the environment with a field-of-view of 180
horizontally and 90 vertically with 1° angular resolution.
The grammar used for the experiment, shown in Figure 5, has
three generic object categories: chair, bench, and tabfe (
parts are omitted for clarityChair is a hierarchical category
composed oback and stool. Twelve objects are sampled —
seven chairs, two stools, two tables, and one bench — with (b) Detected Objects
different shape and structure as shown in Figure 6(a).

Since the focus is not the parts detection, the object parfg. 6. (a) Setup of the simulated environment. The robot eriter scene

_ At e from the lower left corner, travels toward the center andirret in a big
are color-coded to ease the parts localization and C|EB-SIfI({00p to the starting point. (b) Snapshot right after the gadassified the

tion. The parts are detected by clustering the point cloud Rypjects. Parts that are classified as belonging to an objeatisplayed as
cuboids in shade of gray. Whiter color indicates a higher matare for
5If P is the actual numbefP the number of correctly classified af®  the object class. The object categories are displayed in tex
the number of falsely classified objects, then the detecttmisTP/P and
the precision isTP/(TP + FP) over the whole sequences.
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Chair (S1A) - - - - - - - - - s
Stool (4L) - - - 19 - - - - - 15
Ottoman - - - - 9 - - - - 10
Stool (1A) - - - = - - - - - -
Table (C) - - - - - - 17 - 3 1
Table (D) N
Bench - - - - - - 1 - 8 -
Not Object 3 - - 1 - - - - - -

applications. It employs a parts-based geometric grammar
where a parts detector provides the primitive parts. For effi
cient parsing, two constrained search methods are distusse
They are experimentally verified, first, for a generic object
category of chair applied to real range images and second,
for multiple generic object categories applied to syntheti
range images. The results show that the parsers are cagpable o
grouping together structurally-different objects of thrame
object category while distinguishing structurally-siamilob-
jects of different object categories apart. In additiore th
approaches can handle clutter, missing, and uncertais.part
There are two directions of improvement for the frame-
work. First, to apply the framework on objects without
distinctive structure, it is necessary to represent thesard
their relations in a more general form. Machine learning can
be used to determine the most important parts and relations
for a given object. Second, the framework can be extended

color and computing a bounding-box for each cluster. Th&#® place classification, where object classification plays a

detected cuboids are classified into the appropriate pvienit important role. The hierarchical nature of a grammar can
part types based on its color and size. The part probabilignable a seamless transition from one to the other, incrgasi

is set according to the number of points per bounding-boxhe spatial awareness of mobile robots.

A sequence of 108 frames are acquired while the robot
is traveling through the simulation environment. Each feam
contains an average of 23 extracted primitive parts from a %
average of 5 objects. The primitive parts are parsed wit
the JCT approach using the grammar defined in Figure 53]
Figure 6(b) depicts a snapshatght after the parser classi-
fied the objects. The performance is analyzed by countingy;
for each frame, the number of objects the parser could po-
tentially classify, the correctly and falsely classifiedeats, (5]
and the missed objects. The result for all generic object
categories is: 171 true positives, 8 false positives, and 78]
false negatives. Details are in Table Il. The column indisat
the nominal object categories, and the row is the differeny
object categories issue of the classification. The parsdsles
to classify all objects except the dining table and the sing| (8]
axle chair. Sincehair is derived fromstool, actual chairs are g
often taken as stools when the back parts are undetectex. Thi
explains the comparably large number of misclassification i[10]
this category. Furthermore, there is only a small diffeeenc
between a four-legged stool and a ottoman — the latté¥]
has shorter legs but a thicker seat than the former. Many
objects are not detected because objects are often obseryeq
partially, which results in geometrically incorrect prie
parts. Compared to the best cases of Section V-A, tH&!
detection rate othair is lower at 67 % while the precision
is of similar degree at 97 %. This shows that with increaseid4]
scene complexity, the reliable detection of primitive pamd [15]
its correct classification become more challenging. Howeve
given a sufficient number of geometrically correct partg, th

parser is able to classify the primitive parts correctly. (16]

VI. CONCLUSION [17]

This paper presented an object classification framework
based on a geometric grammar aimed for mobile roboties]

6The paper is accompanied by a video showing the parser innactio
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