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Abstract

Can we reuse some of the huge code-base developed in C to take advan-
tage of modern programming language features such as type safety, object-
orientation, and contracts? This dissertation presents a source-to-source
translation and object-oriented reengineering of C code into Eiffel, a mod-
ern object-oriented programming language, and the supporting tool C2Eif.
The migration is completely automatic and supports the entire C language
(ANSI, as well as many GNU C Compiler extensions) as used in practice,
including pointer arithmetic, usage of native system libraries and inlined as-
sembly code. Eiffel programs are created exhibiting elements of good object-
oriented design, such as low coupling and high cohesion of classes, and proper
encapsulation. The programs also leverage advanced features such as inher-
itance, contracts, and exceptions to achieve a better usability and a clearer
design. Our experiments show that C2Eif can handle C applications and
libraries of significant size (such as vim and libgsl), as well as challenging
benchmarks such as the GCC torture tests. The produced Eiffel code is func-
tionally equivalent to the original C code, and takes advantage of some of
Eiffel’s features to produce safe and easy-to-debug programs.

We have also investigated the related problem of automatically translating
source code between different modern environments, in particular from Java
to Eiffel. The translation has been formalized in order to increase confidence
in its correctness, and the usability of the supporting tool J2Eif has been
evaluated on four programs of varying complexity.
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Zusammenfassung

Ist es möglich einen Teil der riesigen in C entwickelten Code-Basis wieder-
zuverwenden um die Vorteile von modernen Programmiersprachen wie Typ-
sicherheit, Objektorientierung und Verträge nutzen zu können? Diese Dis-
sertation präsentiert eine Quelltext-zu-Quelltext Übersetzung und objektori-
entierte Umstrukturierung von C Code nach Eiffel, eine moderne objektori-
entierte Programmiersprache, und das unterstützende Tool C2Eif. Die Mi-
gration ist völlig automatisch und unterstüzt die gesamte C Sprache (ANSI
sowie viele GNU C Compiler Erweiterungen) wie sie in der Praxis verwendet
wird, einschliesslich Zeigerarithmetik, der Benutzung von nativen System-
Bibliotheken und Inline-Assembler-Code. Eiffel Programme werden erstellt
die Elemente von gutem objektorientiertem Design besitzen wie lose Kopp-
lung und starke Bindung von Klassen und geeignete Kapselung. Die Pro-
gramme setzen auch fortschrittliche Merkmale ein wie Vererbung, Verträge
und Ausnahmen um eine bessere Benutzerfreundlichkeit und ein klareres De-
sign zu erreichen. Unsere Experimente zeigen dass C2Eif C Anwendungen
und Bibliotheken von signifikanter Grösse (wie z.B. vim und libgsl) sowie
anspruchsvolle Benchmarks wie die GCC Folter Tests bearbeiten kann. Der
erzeugte Eiffel Quelltext ist funktional äquivalent zu dem ursprünglichen C
Quelltext und nutzt einige Eigenschaften von Eiffel um sichere und einfach
zu korrigierende Programme zu erstellen.

Wir haben ebenfalls das ähnliche Problem einer automatischen Quelltext-
zu-Quelltext Übersetzung zwischen verschiedenen modernen Sprachen unter-
sucht, namentlich von Java zu Eiffel. Die Übersetzung wurde formalisiert um
das Vertrauen in die Korrektheit zu erhöhen und die Benutzbarkeit des un-
terstützenden Tools J2Eif wurde an vier Programmen mit unterschiedlicher
Komplexität getestet.
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Chapter 1

Overview and Main Results

1.1 Motivation

Programming languages have significantly evolved since the original design
of C in the 1970’s as a “system implementation language” [40] for the Unix
operating system. C was a high-level language by the standards of the time,
but it is decidedly low-level compared to modern programming paradigms, as
it lacks advanced features—static type safety, encapsulation, inheritance, and
contracts [28], to mention just a few—that impact programmers productivity
as well as software quality and maintainability.

Given the huge availability of high-quality C programs, an automatic
technique to translate C into object-oriented code has a major potential
practical impact: reusing legacy code in modern environments.

1.2 Overview

This dissertation is part of the research effort of improving existing ap-
proaches for legacy code migration, proposing new ones and evaluating them.
The basis for this work is C2Eif: a fully automatic migration framework for
C. It implements a source-to-source translation and object-oriented reengi-
neering into the Eiffel programming language.

Whenever possible, C2Eif translates C language constructs into equiva-
lent Eiffel constructs; this is the case for functions (called routines in Eiffel),
variables, statements, expressions, loops, and basic types with arithmetic
operations. In cases where direct counterparts are not available, the tool
offers simulations using existing constructs and library support. For in-
stance, jump statements (break, continue, return and goto) are simulated
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using structured control flow and auxiliary variables. Library support is
offered for pointers: they get translated into instances of a generic library
class CE_POINTER [G], which supports the full C pointer functionality. C
structs are translated into Eiffel classes, which inherit from a library class
CE_CLASS. Using reflection, this class provides means to convert its in-
stance into an object with the exact memory layout prescribed by the C
struct, which is necessary for pointer arithmetic and interoperability with
precompiled C libraries.

Object-oriented reengineering extracts elements of good design present in
high-quality C code and expresses them through object-oriented constructs
and concepts. Reengineering in C2Eif consists of four steps exploiting such
implicit design elements: (1) source file analysis creates classes and popu-
lates them based on the decomposition of code into source files, (2) function
signature analysis reassigns routines to classes they work on, (3) call graph
analysis reassigns class members (called features in Eiffel) to classes where
they are exclusively used, (4) inheritance analysis creates inheritance rela-
tionships among classes based on their attributes. In addition to these core
elements of object-oriented design, contracts and exceptions —high-level fea-
tures often present in object-oriented languages— are also introduced, based
on GNU C Compiler (GCC) annotations, requirements on the input of func-
tions, and usages of the setjmp library.

Our work is not the first attempt to support object-oriented translation.
Porting procedural programs to a modern programming paradigm is a recur-
ring industrial practice. A survey of related work, which we present in Chap-
ter 2, shows, however, that previous approaches have limitations in terms of
comprehensiveness, automation, applicability to real code, and quality of the
translation. In contrast, our approach constitutes a significant contribution
with the following distinguishing characteristics.

• The translation is fully automatic and implemented in a freely available
tool, C2Eif. Users only need to provide an input C project; C2Eif
outputs an object-oriented Eiffel program that can be compiled and
executed.

• C2Eif does not stop at the core features but extends over the often
difficult “last mile”: it covers the entire C language as used in practice.
Examples include pointer arithmetic, calls to pre-compiled C libraries
(e.g., for I/O), inlined assembly, and unrestricted branch instructions
including goto and setjmp/longjmp.

• The technique and the tool have been applied to real software of con-
siderable size. An extensive evaluation on 13 open-source programs (in-
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cluding the editor vim and the math library libgsl) demonstrates that
our translation produces object-oriented code with high level of encap-
sulation and introduces inheritance, contracts, and exceptions where
appropriate.

• The translation is correct by construction: it does not use potentially
unsound refactorings, and thus the generated programs exhibit the
same functional behavior as the source programs.

1.3 Outline
The rest of this dissertation is organized as follows. Chapter 2 contains an
overview of the state of the art in legacy code migration, discussing the work
that is most closely related to the contributions of this dissertation. Chapter 3
describes the way C2Eif bridges the language barrier and creates function-
ally correct translations. Chapter 4 is devoted to AutoOO: a part of C2Eif,
which reengineers programs to achieve high-quality object-oriented designs.
Chapter 5 concentrates on translations between modern programming lan-
guages and presents J2Eif: a fully automatic source-to-source translator of
Java into Eiffel. Finally, Chapter 6 draws conclusions and lists directions for
future research.
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Chapter 2

State of the Art

There are two main approaches to reusing source code written in a “foreign”
language inside a different “host” language: creating wrappers for the com-
ponents written in the foreign language; and translating foreign source code
into functionally equivalent host code. Table 2.1 provides an overview of the
advantages and disadvantages of the two approaches in terms of:

• Code quality: does the resulting code exhibit proper design and style;
is it easy to understand and maintain?

• Correctness: is the translated program guaranteed to be functionally
equivalent to the source program?

• Effort: is the approach cost-effective?

The next sections discuss the comparison in more detail and present addi-
tional issues of reusing source code of different languages.

Wrapping Translation
manual automatic manual automatic

Code Quality − − + ?
Correctness + + − ?
Effort − + −− +

Table 2.1: Comparison of code reuse approaches; +/−/? stands for
positive/negative/tool-dependent.
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2.1 Wrapping foreign code

Wrappers enable reuse of foreign implementations through the API of bridge
libraries. This approach (e.g., [8, 7, 41]) does not modify the foreign code,
whose functionality is therefore not altered; moreover, the complete foreign
language is supported. On the other hand, types of data that can be retrieved
through the bridging API are often restricted to a simple subset common to
the host and the foreign language (e.g., primitive types).

We judge the resulting code quality of the wrapping approach negatively:
using several languages within the same software system hinders understand-
ability and requires programmers to be fluent in all of them. Maintenance
is also problematic because debugging is complicated by the use of multiple
runtime environments.

Correctness, on the other hand, is generally not a problem since the for-
eign code is reused without modifications. There is a risk of introducing
errors in the interface code (if the wrapping is performed manually), but the
amount and complexity of this code is usually insignificant compared to the
wrapped code, and consequently, the errors are less severe.

The approach is relatively low-effort, except that manual wrapping can
be quite tedious.

2.2 Translating foreign code

Industrial practices have long encompassed manual migration of legacy code.
Several semi-automated tools exist that help translate code written in legacy
programming languages such as old versions of COBOL [49, 29], PL/IX [19],
Fortran-77 [1, 46], and K&R C [53]. Further work in this area proposes us-
ing domain-specific knowledge [14] as well as testing and visualization tech-
niques [39] to help develop the translations.

Some translators focus on the adaptation of code into an extension (su-
perset) of the original language. Examples include the migration of legacy
code to object-oriented code, such as Cobol to OO-Cobol [35, 43, 52], Ada to
Ada95 [47], and C to C++ [20, 54]. Some of these efforts go beyond the mere
hosting of the original code, and introduce refactorings that take advantage
of the object-oriented paradigm. Most of these refactorings are, however,
limited to restructuring modules into classes.

Ephedra [25, 23] is a tool that translates legacy C to Java. It first trans-
lates K&R C to ANSI C; then, it maps data types and type casts; finally,
it translate the C source code to Java. Ephedra handles a significant subset
of C, but it does not translate frequently used features such as unrestricted
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gotos, external pre-compiled libraries, and inlined assembly code. A case
study evaluating Ephedra [26] involved three small programs: the implemen-
tation of fprintf, a monopoly game (about 3 KLOC), and two graph layout
algorithms. The study reports that the source programs had to be manually
adapted to be processable by Ephedra.

Other tools, proprietary or open-source, that translate C (and C++)
to Java or C# include: Convert2Java [2], C2J++ [50], C2J [37], and
C++2Java and C++2C# [48]. Table 2.2 contains a comparison of all cur-
rently available translators, showing:

• The target language.

• Whether the tool is completely automatic, that is, whether it generates
translations that are ready for compilation.

• Whether the tool is available for download and usable; in some cases
we could only find a paper describing the tool, but were not able to
obtain an implementation that would work on a standard machine.

• An assessment (subjective to a certain extent) of the readability of the
resulting code. In particular, we took into account if the translated code
is sufficiently similar to the C source, to be readily understandable by a
programmer familiar with the latter. We judged C2J negatively on this
point because the tool stores all program data in a single global array
in order to support pointer arithmetic. Not only is this detrimental to
readability, but also circumvents type checking in the Java translation.

• Whether the tool supports arbitrary calls to external libraries, full
pointer arithmetic, unrestricted gotos, and inlined assembly code.
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Ephedra Java no no + no no no no
Convert2Java Java no no + no no no no
C2J++ Java no no + no no no no
C2J Java no yes − no yes no no
C++2Java Java no yes + no no no no
C++2C# C# no yes + no no no no

Table 2.2: Tools translating C to O-O languages.

None of the existing tools support all features of C listed in the last four
columns of Table 2.2. Accurate translation of these features is hard to get
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right; however, it is necessary for fully automatic migration of real-world C
programs. A recent comparative evaluation covering a wide range of tools
for legacy system reengineering [31] points to similar limitations that prevent
achieving complete automation.

With manual translation, the resulting code quality is the biggest advan-
tage. Assuming a careful reimplementation with a proper design as intended
by the target language, the resulting code will have the best possible read-
ability and will be easy to maintain. This comes at the expense of all other
points though: the process is labour-intensive and time-consuming; it pro-
vides no correctness guarantees, and effectively forfeits years of testing and
fixing errors in the name of code quality.

Using an automatic translation tool, on the other hand, is inexpensive
and fast, but the achieved correctness and code quality depend on the tool.
As demonstrated in Table 2.2, comprehensive and fully automatic translation
tools are still beyond the state of the art.

2.3 Object-Oriented Reengineering
Reusing source code from a foreign language often implies a paradigm shift.
In recent years, the most widespread example of such a shift has been reengi-
neering of procedural code into object-oriented code.

Among the broad literature on reengineering for modern systems, we
identified ten approaches that target specifically object orientation. Table 2.3
summarizes their main features, listing:

• The source and the target languages (not applicable to generic method-
ologies).

• Whether tool support is available.

• Whether the approach is completely automatic, that is, it does not
require any user input other than the source procedural program.

• Whether the approach supports the full source language or only a sub-
set thereof.

• Whether the approach has been empirically evaluated on real programs;
if available, the table indicates the size of the programs used in the
evaluation.

• Whether the approach performs class identification, that is, if it groups
attributes and routines into classes.
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Gall [14] methodology no no – yes yes ? no
Jacobson [18] methodology no no – yes yes no –
Livadas [22] C–C++ yes no no no yes yes no
Kontogiannis [20] C–C++ yes no ? 10KL yes ? yes
Frakes [13] C–C++ yes no no 2KL yes ? no
Fanta [11] C++–C++ yes no no 120KL yes ? no
Newcomb [35] Cobol–OOSM yes yes no 168KL yes ? no
Mossienko [29] Cobol–Java yes no no 25KL yes no no
Sneed [45] Cobol–Java yes yes no 200KL yes ? no
Sneed [42] PL/I–Java yes yes no 10KL yes ? no

Table 2.3: Comparison of approaches to O-O reengineering.

limitations
Gall [14] requires assistance of human expert
Jacobson [18] only defines a process; three case studies from industry
Livadas [22] prototype implementation; no support for pointers
Kontogiannis [20] sound reengineering for only about 36% of the source code
Frakes [13] translation may change the behavior; requires expert judgement
Fanta [11] requires expert judgement
Newcomb [35] only a model is generated, no program code
Mossienko [29] only partial automation; translation may change the behavior
Sneed [45] domain-specific translation
Sneed [42] domain-specific translation

Table 2.4: Overview of limitations.

• Whether the reengineering technique introduces object-oriented fea-
tures, such as instance routines (as opposed to class routines, which
should have a restricted role in object orientation) and inheritance.

Table 2.4 summarizes the limitations of the approaches.
Only [35] and [45] report evaluation on code bases of significant size. The

reengineering in [35], however, produces OOSM (hierarchical object-oriented
state machine) models; mapping OOSM to an executable object-oriented
language is not covered. [45] reports that some manual corrections of the
automatically generated Java code were necessary during the translation of
the code base, although these manual interventions were later implemented
as an extension of the translator. In any case, [45] only targets applications
from a specific domain and does not support the full input language; the
authors of [45] expect that tackling new applications will require extending
the tool.

As evidenced by Table 2.3, no comprehensive and fully automatic solution
is currently available in the area of object-oriented reengineering.
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2.4 Summary and Conclusions
In this chapter, we presented the two main approaches for reusing source code
written in a foreign language within a different host language, namely wrap-
ping and translation. Moreover, we discussed object-oriented reengineering,
which is often necessary given the wide adoption of object-oriented features
in modern programming languages and the procedural nature of legacy lan-
guages. We summarized the state of research in these areas and listed the
advantages and disadvantages of the two code reuse approaches.

In conclusion, automatic translation of legacy code, including object-
oriented reengineering where applicable, has clear advantages over the other
approaches — provided tools are available that create correct, high-quality
code. The present work is an attempt to advance the state of the art by
developing such a tool; the results of the effort are presented in the following
chapters.



Chapter 3

C to Eiffel Translation

3.1 Introduction

This chapter describes a fully automatic translation of C programs into Eiffel,
an object-oriented programming language, together with a tool C2Eif, which
implements the translation. While the most common approaches to re-use
C code in other host languages are based on “foreign function APIs”, source-
to-source translation solves a different problem, and has some distinctive
benefits: the translated code can take full advantage of the high-level nature
of the target language and of its safer runtime.

Main features of C2Eif. Translating C to a high-level object-oriented
language is challenging because it requires adapting to a more abstract mem-
ory representation, a tighter type system, and a sophisticated runtime that
is not directly accessible. There have been previous attempts to translate C
into an object-oriented language (see the survey in Section 2.2). A limitation
of the resulting tools is that they hardly handle the trickier or specialized
parts of the C language [9], which are tempting to dismiss as unimportant
“corner cases”, but figure prominently in real-world programs; examples in-
clude calls to pre-compiled C libraries (e.g., for I/O), inlined assembly, and
unrestricted branch instructions including setjmp and longjmp.

One of the distinctive features of the present work is that it does not
stop at the core features but extends over the often difficult “last mile”: it
covers the entire C language as used in practice. The completeness of the
translation scheme is attested by the set of example programs to which the
translation was successfully applied, as described in Section 3.4, including
major applications such as the vim editor (276 KLOC), major libraries such
as libgsl (238 KLOC), and the challenging “torture” tests for the GCC C
compiler.



12 CHAPTER 3. C TO EIFFEL TRANSLATION

C2Eif is available at http://se.inf.ethz.ch/research/c2eif. The
webpage includes C2Eif’s sources, pre-compiled binaries, source and bina-
ries of all translated programs of Table 3.1, and a user guide.

Sections 3.2–3.3 describe the distinctive features of the translation: it
supports the complete C language (including pointer arithmetic, unrestricted
branch instructions, and function pointers) with its native system libraries; it
complies with ANSI C as well as many GNU C Compiler extensions through
the CIL framework [32]; it is fully automatic, and it handles complete applica-
tions and libraries of significant size; the generated Eiffel code is functionally
equivalent to the original C code (as demonstrated by running thorough test
suites), and takes advantage of some advanced features, such as classes and
contracts, to facilitate debugging of programming mistakes.

In our experiments, C2Eif translated completely automatically over
900,000 lines of C code from real-world applications, libraries, and

testsuites, producing functionally equivalent1 Eiffel code.

Safer code. Translating C code to Eiffel with C2Eif is quite useful to
reuse C programs in a modern environment, but it also implies several valu-
able side-benefits—demonstrated in Section 3.4. First, the translated code
blends well with hand-written Eiffel code because it is not a mere translitera-
tion from C; it is thus modifiable with Eiffel’s native tools and environments
(EiffelStudio and related analysis and verification tools). Second, the trans-
lation automatically introduces simple contracts, which help detect recurring
mistakes such as out-of-bound array access or null-pointer dereferencing. To
demonstrate this, Section 3.4.4 discusses how we easily discovered a few un-
known bugs in widely used C programs (such as libgmp) just by translating
them into Eiffel and running standard tests. While the purpose of C2Eif is
not to debug C programs, the source of errors is usually more evident when
executing programs translated in Eiffel—either because a contract violation
occurs, or because the Eiffel program fails sooner, before the effects of the
error propagate to unrelated portions of the code. The translated C code
also benefits from the tighter Eiffel runtime, so that certain buffer overflow
errors are harder to exploit than in native C environments. Thus, Eiffel code
generated by C2Eif is often safer and easy to maintain and debug.

3.2 Overview and Architecture
C2Eif is a compiler with graphical user interface that translates C programs
to Eiffel programs. The translation is a complete Eiffel program that repli-

1As per standard regression testsuites and general usage.

http://se.inf.ethz.ch/research/c2eif
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cates the functionality of the C source program. C2Eif is implemented in
Eiffel.

C application
or library CIL C file

Eiffel
application or

library
Binary

Helper
Classes

CIL C2Eif Eiffel
Compiler

Figure 3.1: Translation with C2Eif.

High-level view. Figure 3.1 shows the overall picture of how C2Eif
works. C2Eif inputs C projects (applications or libraries) processed with
the C Intermediate Language (CIL) framework. CIL [32] is a C front-end
that simplifies programs written in ANSI C or using the GNU C Compiler
extensions into a restricted subset of C amenable to program transformations;
for example, there is only one form of loop in CIL. Using CIL input to C2Eif
ensures complete support of the whole set of C statements, without having
to deal with each of them explicitly. C2Eif then translates CIL programs to
Eiffel projects consisting of collections of classes that rely on a small set of
Eiffel helper classes (described below). Such projects can be compiled with
any standard Eiffel compiler.

Incremental translation. C2Eif implements a translation T from CIL
C to Eiffel as a series T1, . . . , Tn of successive incremental transformations
on the Abstract Syntax Tree. Every transformation Ti targets exactly one
language aspect (for example, loops or inlined assembly code) and produces
a program in an intermediate language Li which is a mixture of C and Eiffel
constructs: the code progressively morphs from C to Eiffel code. The current
implementation uses around 44 such transformations (i.e., n = 44). Combin-
ing several simple transformations improves the decoupling among different
language constructs and facilitates reuse (e.g., to implement a translator of C
to Java) and debugging: the intermediate programs are easily understandable
by programmers familiar with both C and Eiffel.

Helper classes. The core of the translation from C to Eiffel must ensure
that Eiffel applications have access to objects with the same capabilities as
their counterparts in C; for example, an Eiffel class that translates a C struct
has to support field access and every other operation defined on structs.
Conversely, C external pre-compiled code may also have to access the Eiffel
representations of C constructs; for example, the Eiffel translation of a C
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program calling printf to print a local string variable str of type char∗ must
grant printf access to the Eiffel object that translates str, in conformance
with C’s conventions on strings. To meet these requirements, C2Eif includes
a limited number of hand-written helper Eiffel classes that bridge the Eiffel
and C environments; their names are prefixed by CE for C and Eiffel. Rather
than directly replicating or wrapping commonly used external libraries (such
as stdio and stdlib), the helper classes target C fundamental language
features and in particular types and type constructors. This approach works
with any external library, even non-standard ones, and is easier to maintain
because it involves only a limited number of classes. We now give a concise
description of the most important helper classes; Section 3.3 shows detailed
examples of their usage.

• CE_POINTER [G] represents C pointers of any type through the
generic parameterG. It includes features to perform full-fledged pointer
arithmetic and to get pointer representations that C can access but the
Eiffel’s runtime will not modify (in particular, the garbage collector
will not modify pointed addresses nor relocate memory areas).

• CE_CLASS defines the basic interface of Eiffel classes that correspond
to C unions and structs. It includes features that return instances
of class CE_POINTER pointing to a memory representation of the
structure that C can access.

• CE_ARRAY [G] extends CE_POINTER and provides consistent array
access to both C and Eiffel (according to their respective conventions).
It includes contracts that check for out-of-bound access.

• CE_ROUTINE represents function pointers. It supports calls to Eiffel
routines through agents—Eiffel’s construct for function objects (clo-
sures or delegates in other languages)—and calls to (and callbacks
from) external C functions through raw function pointers.

• CE_VA_LIST supports variadic functions, using Eiffel class TUPLE
(sequences of elements of heterogeneous type) to store a variable num-
ber of arguments. It offers an Eiffel interface that extends the standard
C’s (declared in stdarg.h), as well as output in a format accessible by
external C code.

3.3 Translating C to Eiffel
This section presents the major components of the translation T from C to
Eiffel implemented in C2Eif, and illustrates the general rules with a number
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of small examples. The presentation breaks T down into several components
that target different language aspects (for example, TTD maps C type dec-
larations to Eiffel classes); these components mirror the incremental trans-
formations Ti of C2Eif (mentioned in Section 3.2) but occasionally overlook
inessential details for greater presentation clarity.

Section 3.3.6 then gives a short overview of all actual translation steps as
currently implemented in the supporting tool C2Eif.

External functions in Eiffel. Eiffel code translated from C normally
includes calls to external C pre-compiled functions, whose actual arguments
correspond to objects in the Eiffel runtime. This feature relies on the
external Eiffel language construct: Eiffel routines can be declared as
external and directly execute C code embedded as Eiffel strings2 or call
functions declared in header files. For example, the following Eiffel routine
sin_twice returns twice the sine of its argument by calling the C library
function sin (declared in math.h):

sin_twice (arg: REAL_32): REAL_32
external

C inline use <math.h>
alias

return 2 * sin($arg);
end

Calls using external can exchange arguments between the Eiffel and the C
runtimes only for a limited set of primitive type: numeric types (that have
the same underlying machine representation in Eiffel and C) and instances of
the Eiffel system class POINTER that corresponds to raw untyped C pointers
(not germane to Eiffel’s pointer representation, unlike CE_POINTER). In
the sin_twice example, argument arg of numeric type REAL_32 is passed
to the C runtime as $arg. Every helper class (described in Section 3.2)
includes an attribute c_pointer of type POINTER that offers access to a
C-conforming representation usable in external calls.

3.3.1 Types and Type Constructors
C declarations T v of a variable v of type T become Eiffel declarations
v :TTY(T), where TTY is the mapping from C types to Eiffel classes described
in this section.

Numeric types. C numeric types correspond to Eiffel classes INTEGER
(signed integers), NATURAL (unsigned integers), REAL (floating point num-

2For readability, we will omit quotes in external strings.
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bers) with the appropriate bit-size as follows3:

C type T Eiffel class TTY(T )
char INTEGER_8

short int INTEGER_16
int, long int INTEGER_32
long long int INTEGER_64

float REAL_32
double REAL_64

long double REAL_96

Unsigned variants follow the same size conventions as signed integers but for
class NATURAL; for example TTY(unsigned short int) is NATURAL_16.

Pointers. Pointer types are translated using class CE_POINTER [G]
with the generic parameter G instantiated with the pointed type:

TTY(T ∗) = CE_POINTER [TTY(T)]

with the convention that TTY(void) maps to Eiffel class ANY, ancestor to
every other class (Object in Java). The definition works recursively for mul-
tiple indirections; for example, CE_POINTER[CE_POINTER[REAL_32]]
stands for TTY(float ∗∗).

Function pointers. Function pointers are translated to Eiffel using class
CE_ROUTINE:

TTY(T0 (∗) (T1, ...,Tn)) = CE_ROUTINE

CE_ROUTINE inherits from CE_POINTER [ANY], hence it behaves as a
generic pointer, but it specializes it with references to agents that wrap the
functions pointed to; Section 3.3.2 describes this mechanism.

Arrays. Array types are translated to Eiffel using class CE_ARRAY[G]
with the generic parameterG instantiated with the array base type: TTY(T [n])
= CE_ARRAY[TTY(T)]. The size parameter n, if present, does not af-
fect the declaration, but initializations of array variables use it (see Sec-
tion 3.3.2). Multi-dimensional arrays are defined recursively as arrays of
arrays: TTY(T [n1][n2]...[nm]) is then CE_ARRAY[TTY(T[n2]...[nm])].

Enumerations. For every enum type E defined or used, the transla-
tion introduces an Eiffel class E defined by the translation TTD (for type
definition):

3We implemented class REAL_96 specifically to support long double on Linux ma-
chines.
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TTD(enum E {v1 = k1, . . . , vm = km}) = class E feature
v1: INTEGER_32 =k1; . . . ; vm: INTEGER_32 =km end

Class E has as many attributes as the enum type has values, and each at-
tribute is an integer that receives the corresponding value in the enumeration.
Every C variable of type E also becomes an integer variable in Eiffel (that is,
TTY(enum E ) = INTEGER_32), and class E is only used to assign constant
values according to the enum naming scheme.

Structs and unions. For every compound struct type S defined or used,
the translation introduces an Eiffel class S:

class S inherit CE_CLASS feature TF(T1 v1) . . . TF(Tm vm) end
for TTD(struct S {T1 v1; . . . ;Tm vm}). Correspondingly, TTY(S)= S; that is, vari-
ables of type S become references of class S in Eiffel. The translation TF(T v)
of each field v of the struct S introduces an attribute of the appropriate type
in class S, and a setter routine set_v that also updates the underlying C
representation of v:

v: TTY(T) assign set_v −− declares ‘set_v’ as the setter of v

set_v (a_v: TTY(T))
do

v := a_v
update_memory_field ("v")

end

Class CE_CLASS, of which S is a subclass, implements update_memory_
field using reflection, so that the underlying C representation is created and
updated dynamically only when needed during execution (for example, to
pass a struct instance to a native C library), thus avoiding any data dupli-
cation overhead whenever possible.

The translation of union types follows the same lines as that of structs,
with the only difference that classes translating unions generate the under-
lying C representation in any case upon initialization, even if the union is
not passed to the C runtime; calls to update_memory_field update all at-
tributes of the class to reflect the correct memory value. We found this to
be a reasonable compromise between performance and complexity of mem-
ory management of union types where, unlike structs, fields share the same
memory space.

Example 1 Consider a C struct car that contains an integer field plate_num
and a string field brand:
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typedef struct {
unsigned int plate_num;
char ∗brand;

} car;

The translation TTD introduces a class CAR as follows:

class
CAR

inherit
CE_CLASS

feature

plate_num: NATURAL_32 assign set_plate_num

brand: CE_POINTER [INTEGER_8] assign set_brand

set_plate_num (a_plate_num: NATURAL_32)
do

plate_num := a_plate_num
update_memory_field ("plate_num")

end

set_brand (a_brand: CE_POINTER [INTEGER_8])
do

brand := a_brand
update_memory_field ("brand")

end

end

3.3.2 Variable Initialization and Usage
Initialization. Eiffel variable declarations v : C only allocate memory for
a reference to objects of class C, and initialize it to Void (null in Java).
The only exceptions are, once again, numeric types: a declaration such as
n: INTEGER_64 reserves memory for a 64-bit integer and initializes it to
zero. Therefore, every C local variable declaration T v of a variable v of type T
may also produce an initialization, consisting of calls to creation procedures
(constructors in Java) of the corresponding helper classes, as specified by the
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declaration mapping TDE:

TDE(T v;) =


v : TTY(T ) (NT)
v : TTY(T ); create v.make(�n1, . . . , nm�) (AT)
v : TTY(T ); create v.make (OT)

where definition (NT) applies if T is a numeric type; (AT) applies if T is an
array type S[n1],. . ., [nm]; and (OT) applies otherwise. The creation proce-
dure make of CE_ARRAY takes a sequence of integer values to allocate the
right amount of memory for each array dimension; for example int a[2][3] is
initialized by create a.make(�2, 3�).

Memory management. Helper classes are regular Eiffel classes, there-
fore the Eiffel garbage collector disposes instances when they are no longer
referenced (for example, when a local variable gets out of scope). Upon col-
lection, the dispose finalizer routines of the helper classes ensure that the C
memory representations are also appropriately deallocated; for example, the
finalizer of CE_ARRAY frees the array memory area by calling free on the
attribute c_pointer.

To replicate the usage of malloc and free, we offer wrapper routines that
emulate the syntax and functionalities of their C homonym functions, but
operate on CE_POINTER: they get raw C pointers by external calls to C
library functions, convert them to CE_POINTER, and record the dynamic
information about allocated memory size. The latter is used to check that
successive usages conform to the declared size (see Section 3.4.4). Finally,
the creation procedure make_cast of the helper classes can convert a generic
pointer returned by malloc to the proper pointed type, according to the
following translation scheme:

C code Translated Eiffel code
T∗ p; p: CE_POINTER[TTY(T)]
p = (T ∗)malloc(sizeof(T)); create p.make_cast (malloc (σ(T)))
free(p); free(p)

where σ is an encoding of the size information.
Variable usage. The translation of variable usage is straightforward:

variable reads in expressions are replicated verbatim, and C assignments
(=) become Eiffel assignments (:=); the latter is, for classes translating C
structs and unions, CE_ARRAY, and CE_POINTER, syntactic sugar for
calls to setter routines that achieve the desired effect. The only exceptions
occur when implicit type conversions in C must become explicit in Eiffel,
which may spoil the readability of the translated code but is necessary with
strong typing. For example, the C assignment cr = ’s’—assigning charac-
ter constant ’s’ to variable cr of type char—becomes the Eiffel assignment
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cr := (’s’).code.to_integer_8 that encodes ’s’ with the proper representa-
tion.

Variable address. Whenever the address &v of a C variable v of type
T is taken, v is translated as an array of unit size and type T: TDE(T v) =
TDE(T v[1]), and every usage of v is adapted accordingly: &v becomes just
v, and occurrences of v in expressions become ∗v. This little hack makes it
possible to have Eiffel assignments translate C assignment uniformly; other-
wise, usages of v should have different translations according to whether the
information about v’s memory location is copied around (with &) or not.

Dereferencing, pointer arithmetic. The helper class CE_POINTER
features a query item that translates dereferencing (∗) of C pointers. Pointer
arithmetic is translated verbatim, because class CE_POINTER overloads
the arithmetic operators to be aliases of proper underlying pointer manipu-
lations, so that an expression such as p + 3 in Eiffel, for references p of type
CE_POINTER, hides the explicit expression c_pointer + 3 ∗ element_size.

Example 2 Consider a double pointer variable carsp with target type car (de-
fined in Example 1), and an integer variable num. The following C code frag-
ment declares the variables, reserves space for carsp to point to an array of
num consecutive cars, and lets another variable p point to the third element
of the array.

car ∗∗carsp;
int num;
car ∗p;
∗carsp = malloc(num ∗ sizeof(car));
p = ∗carsp + 2;

The Eiffel translation of the code fragment is as follows (notice the implicit
conversions that become explicit in the calls).

carsp: CE_POINTER [CE_POINTER [CAR]]
num: INTEGER_32
p: CE_POINTER [CAR]
carsp.item := create {CE_POINTER [CAR]}.make_cast (malloc (

num.to_natural_32 ∗
(create {CAR}.make).structure_size.to_natural_32

))
p := carsp.item + 2

Using function pointers. Class CE_ROUTINE, which translates C
function pointers, is usable both in the Eiffel and in the C environment
(see Figure 3.2). On the Eiffel side, its instances wrap Eiffel routines us-
ing agents—Eiffel’s mechanism for function objects. A private attribute
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routine references objects of type ROUTINE [ANY, TUPLE], an Eiffel sys-
tem class that corresponds to agents wrapping routines with any number of
arguments and argument types stored in a tuple. Thus, Eiffel code can use
the agent mechanism to create instances of class ROUTINE. For example,
if foo denotes a routine of the current class and fp has type CE_ROUTINE,
create fp.make_agent (agent foo) makes fp’s attribute routine point to foo.
On the C side, when function pointers are directly created from C pointers
(e.g., references to external C functions), CE_ROUTINE behaves as a wrap-
per of raw C function pointers, and dynamically creates invocations to the
pointed functions using the library libffi [12].

The Eiffel interface to CE_ROUTINE will then translate calls to wrapped
functions into either agent invocations or external calls with libffi accord-
ing to how the class has been instantiated. Assume, for example, that fp is
an object of class CE_ROUTINE that wraps a procedure with one integer
argument. If fp has been created with an Eiffel agent foo as above, calling
fp.call ([42]) wraps the call foo (42) (edge 1 in Figure 3.2); if, instead, fp only
maintains a raw C function pointer, the same instruction fp.call ([42]) creates
a native C call using libffi (edge 2 in Figure 3.2).

Eiffel C1:agent

2:libffi

3:libffi

Figure 3.2: Calls through function pointers.

The services of class CE_ROUTINE behave as an adapter between the
procedural and object-oriented representation of routines: the signatures of
C functions must change when they are translated to Eiffel routines, because
routines in object-oriented languages include references to a target object
as implicit first argument. Calls from external C code to Eiffel routines are
therefore intercepted at runtime with libffi callbacks (edge 3 in Figure 3.2)
and dynamically converted to suitable agent invocations.

3.3.3 Control Flow

This section discusses the translation TCF of instructions directing the control
flow. Sequential composition, conditionals, and loops are quite similar
in C and Eiffel:
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TCF(I1 ; I2) = T(I1) ; T(I2)
TCF(if (c) {TB} else {EB}) = if T(c)

then T(TB) else T(EB) end
TCF(while (c) {LB}) = from until not T(c)

loop T(LB) end
Jumps. Eiffel enforces structured programming, hence it lacks control-

flow breaking instructions such as C’s goto, break, continue, return. The
translation TCF eliminates them along the lines of the global version—using
Harel’s terminology [16]—of the structured programming theorem. Every C
function foo using goto determines a list of instructions s0, s1, . . . ,sn, where
each si is a maximal sequential block of instructions, with no labels after the
first instruction or jumps before the last one. TCF translates foo’s body into
a single loop over an auxiliary integer variable pc that emulates a program
counter :

TCF(〈s0, s1, . . . , sn〉) =



from pc := 0 until pc = −1 loop
inspect pc
when 0 then T(s0) ; upd(pc)
when 1 then T(s1) ; upd(pc)
...
when n then T(sn) ; upd(pc)
end
end

pc is initially zero; every iteration of the loop body executes spc for the current
value of pc, and then updates pc (upd(pc)) to determine the next instruction
to be executed: blocks ending with jumps modify pc directly, other blocks
increment it by one, and exit blocks set it to −1, which makes the overall
loop terminate (whenever the original function terminates).

This translation supports all control-flow breaking instructions, and in
particular continue, break, and return, which are special cases of goto. TCF,
however, improves the readability in these special cases by directly using
auxiliary Boolean flag variables (with the same names as the instruction
they replace) that are tested in the translated exit conditions and achieve
the same effect with smaller changes to the code structure.
For example,

while (n > 0) {
if (n == 3) break;
n−−;

}

becomes:
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from
until

break or not n >0
loop

if n = 3 then
break := True

end
if not break then

n := n − 1
end

end

Functions. Function definitions and calls directly translate to routine
definitions and calls in Eiffel:

TCF(T0 foo (T1a1, . . . , Tnan){ B }) =
foo(a1 : TTY(T1); . . . ; an : TTY(Tn)) : TTY(T0) do T(B) end

TCF(foo (e1, . . . , en)) = foo (T(e1), . . . , T(en))

When T0 is void, “: TTY(T0)” is omitted in Eiffel.
Translations of variadic function definitions use the Eiffel TUPLE class:

TCF(T0 var (T1a1, . . . , Tnan, . . .)) =
var (args: TUPLE[a1 : TTY(T1); . . . ; an :TTY(Tn)]): TTY(T0)

Eiffel’s type system prescribes that every (n + m)-TUPLE with types
[T1, . . . , Tn, Tn+1, . . . , Tn+m], m ≥ 0, conforms to any shorter n-TUPLE with
[T1, . . . , Tn]. Therefore, calls to variadic functions can use longer tuples to
accommodate the additional optional arguments:

TCF(var (e1, . . . , en, en+1, . . . , en+m)) =
var ([T(e1), . . . , T(en), T(en+1), . . . , T(en+m)])

We can access arguments in a TUPLE either with standard Eiffel syntax, or
using the helper class CE_VA_LIST. With standard syntax, args.ai refers to
the required argument with name ai, 1 ≤ i ≤ n, and args.TTY(Tk)_item(k)
refers to the k-th argument ak, for any 1 ≤ k ≤ n (required) or k > n
(optional), where TTY(Tk) is ak’s type. Alternatively, CE_VA_LIST pro-
vides a uniform interface to both Eiffel and C that accesses argument lists
sequentially, replicating and interoperable with stdarg’s:

argp: CE_VA_LIST
create argp.make (args, n+1)
e1 := argp.TTY(Tn+1)_item −− first optional argument an+1

e2 := argp.TTY(Tn+2)_item −− second optional argument an+2

...
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Continuing the running Examples 1–2, consider a function init_cars that
takes a pointer carsp to an array of cars, an integer num, and num pairs of
integers and strings, and initializes the array pointed by carsp with num cars
with the plate numbers and brands given in the optional arguments.

void init_cars(car ∗∗carsp, int num, ...) {
va_list argp;
car ∗ccar;
int n;
∗carsp = malloc(num ∗ sizeof(car));
ccar = ∗carsp;
va_start(argp, num);
for(n = num ; n > 0; n−−) {

ccar→plate_num = va_arg(argp, unsigned int);
ccar→brand = va_arg(argp, char∗);
ccar++;

}
}

The translation T of init_cars is as follows.

init_cars (args: TUPLE [
carsp: CE_POINTER [CE_POINTER [CAR]];
num: INTEGER_32])

local
argp: CE_VA_LIST
ccar: CE_POINTER [CAR]
n: INTEGER_32

do
args.carsp.item := create {CE_POINTER [CAR]}.make_cast (

malloc (
num.to_natural_32 ∗
(create {CAR}.make).structure_size.to_natural_32

))
ccar := args.carsp.item
create argp.make (args, 3)
n := num
from until not n >0 loop

ccar.item.plate_num := argp.natural_32_item
ccar.item.brand := (create {CE_POINTER [INTEGER_8]}.

make_cast (argp.pointer_item))
ccar := ccar + 1
n := n − 1

end
end
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Long jumps. The C library setjmp provides the functions setjmp and
longjmp to save an arbitrary return point and jump back to it across func-
tion call boundaries. The wrapping mechanism used for external functions
(see Section 3.3.4) does not work to replicate long jumps, because the return
values saved by setjmp wrapped as an external function are no longer valid
after execution leaves the wrapper. Therefore, C2Eif translates setjmp and
longjmp by means of the helper class CE_EXCEPTION. As the name sug-
gests, CE_EXCEPTION uses Eiffel’s exception propagation mechanism to
go back in the call stack to the allocation frame of the function that called
setjmp. There, translated goto instructions jump to the specific point saved
with setjmp within the function body.

3.3.4 Object-Oriented Encapsulation
Externals. For every included system header header.h, T defines a class

HEADER with wrappers for all external functions and variables declared in
header.h. The wrappers are routines using the Eiffel external mechanism
and performing the necessary conversions between the Eiffel and the C run-
times. In particular, external functions using only numeric types, which are
interoperable between C and Eiffel, directly map to wrapper routines; for
example, exit in stdlib.h is:

exit (status: INTEGER_32)
external

C inline use <stdlib.h>
alias

exit($status);
end

When external functions involve types using helper classes in Eiffel, a routine
passes the underlying C representation to the external calls; for example,
fclose in stdio.h generates:

fclose (stream: CE_POINTER [ANY]): INTEGER_32
do

Result := c_fclose (stream.c_pointer)
end

c_fclose (stream: POINTER): INTEGER_32
external

C inline use <stdio.h>
alias

return fclose($stream);
end
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In some complex cases—typically, with variadic external functions—the
wrapper can only assemble the actual call on the fly at runtime. This is
done using CE_ROUTINE; for example, printf is wrapped as:

printf (args: TUPLE [format: CE_POINTER[INTEGER_8]]):
INTEGER_32
do

Result := (create {CE_ROUTINE}.make_shared (c_printf)).
integer_32_item (args)

end

c_printf: POINTER
external

C inline use <stdio.h>
alias

return &printf;
end

The translation can also inline assembly code, using the same mecha-
nisms as external function calls.

Globals. For every source file source.c, T defines a class SOURCE
that includes translations of all function definitions (as routines) and global
variables (as attributes) in source.c. Class SOURCE also inherits from
the translation of each system header file that source.c includes, in order
to gain access to required external functions and variables. For example, if
foo.c includes stdio.h, FOO is declared as class FOO inherit STDIO.

3.3.5 Formatted Output Optimization
Library function printf is the standard C output function, which prints val-
ues according to format strings passed as input. Eiffel offers the command
Io.put_string to print plain strings to standard output, and type-specific for-
matter classes (e.g., FORMAT_INTEGER) to convert numeric types into
formatted strings. With the goal of making the translated code as close as
possible to standard Eiffel, C2Eif replaces calls to printf with equivalent invo-
cations of Io.put_string and the formatters when possible: whenever printf’s
returned value is not used, and the format string is a constant literal (or only
one argument is passed to printf, hence the string is meant to be interpreted
verbatim). In these situations, C2Eif parses literal format strings to translate
them into equivalent calls to Io.put_string. If this process finds a mismatch
between a format specifier and the type of the corresponding argument to
printf, it issues a warning. In these cases, and in all other situations where
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direct usage of put_string is not possible, C2Eif falls back to use wrapped
calls to the external printf function. The tool supports the same optimizations
for the variants of printf such as fprintf.

3.3.6 Overview of the Translation Steps
In this section we give an overview of all translation steps as currently imple-
mented in the supporting tool C2Eif. Each step is implemented in a separate
class; below we give the class name, the description of its purpose and a sim-
ple example, where appropriate. While most of the steps perform successive
incremental translations on the AST, a few compute information required in
later steps.

The order of the steps was defined in an “ad hoc” manner during the
development of C2Eif. The basic principle is to apply simplifying and uni-
fying transformations (e.g. removing typedefs or adapting increment and
decrement) as early as possible, so that the following steps don’t have to
deal with special cases. The detailed order, however, was subject to constant
adaptation.

A theoretical foundation for incremental transformation ordering would
be of great value since this is a common problem I have encountered not only
in this thesis with C2Eif and J2Eif, but also in projects in industry.

1. SOURCE_LOADER creates an AST from the provided CIL C file.

2. TYPEDEF_REMOVER removes typedef declarations and replaces
typedef types with their basic C types:

typedef unsigned int size_t;
size_t count;

→ unsigned int count;

3. ENUM_TYPE_TRANSFORMER changes declarations with enum
types to use the corresponding C basic type (int or unsigned int) and
replaces number literals cast to an enum type (mostly introduced by
CIL) with the corresponding enum field name:

C CIL C2Eif

enum day d =
saturday;

enum day d =
(enum day)0;

unsigned int d =
saturday;

See Section 3.3.1.

4. FORWARD_DECLARATIONS_REMOVER removes all forward dec-
larations.

5. BINDING_ADDER computes declaration and type bindings for ex-
pressions.
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6. INCREMENT_DECREMENT_TRANSFORMER changes increment
and decrement expressions to the corresponding regular assignments
(CIL moved expressions with side-effects to independent statements):

i++; → i = i + 1;

7. SIZEOF_TRANSFORMER transforms sizeof() expressions to the
equivalent Eiffel counterparts:

sizeof(int) → {PLATFORM}.Integer_32_bytes

8. FLUSH_TRANSFORMER transforms flush() calls to the Eiffel stan-
dard library counterparts:

fflush(stdout);
fflush(stderr);

→ Io.standard_default.flush
Io.error.flush

See Section 3.4.3.

9. CIL_CHAR_TRANSFORMER reverts CILs char[] initialization adap-
tions to use regular string literals:

C CIL C2Eif

char s[] = "ab";

char s[3] = {
(char)’a’,
(char)’b’,
(char )’\000’

};

char s[3] = "ab\000";

10. CIL_POINTER_ACCESS_TRANSFORMER reverts CILs pointer
access adaptions to more readable array style accesses:

C CIL C2Eif
s[1] ∗(s + 1) s[1]

11. ASSIGNMENT_TRANSFORMER transforms all assignment variants
to the standard assignment:

i ∗= 3; → i = i ∗ 3;

12. POINTER_ACCESS_INDEX_TRANSFORMER ensures that the in-
dex for pointer accesses is of type int:

unsigned int ui = 1;
char ∗s = "abc";
printf("%c\n", s[ui]);

→
unsigned int ui = 1;
char ∗s = "abc";
printf("%c\n", s[(int)ui]);

13. ARITHMETIC_OPERATION_TRANSFORMER adapts arithmetic
operations not directly supported by Eiffel to supported ones:

unsigned int ui = 1;
ui = −ui;

→ unsigned int ui = 1;
ui = (unsigned int)−(int)ui;
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14. CAST_REMOVER removes unnecessary casts (mostly introduced by
CIL):

C CIL C2Eif

char ∗s =
"abc";

char ∗s =
(char ∗)"abc";

char ∗s =
"abc";

15. POINTER_TRANSFORMER adapts pointer operations to feature
calls as required in the Eiffel code:

void ∗p1 = ...;
void ∗p2 = ...;
bool b = (p1 == p2);

→
void ∗p1 = ...;
void ∗p2 = ...;
bool b = (p1.is_equal (p2));

16. CAST_TRANSFORMER transforms C casts to Eiffel casts:
(int)1.2 → (1.2).truncated_to_integer

17. PRINTF_TRANSFORMER transforms printf() calls to the Eiffel li-
brary conterparts where possible:

printf("Version: %d\n",
VERSION);

→ Io.put_string ("Version: " +
VERSION.out + "\n");

See Section 3.3.5.

18. STD_STREAM_TRANSFORMER replaces stdin, stdout and stderr with
their Eiffel equivalent:

stdin
stdout
stderr

→
Io.input.file_pointer
Io.output.file_pointer
Io.error.file_pointer

19. LITERAL_TRANSFORMER adapts C literals to Eiffel literals where
necessary:

"\t\r\n" → "%T%R%N"

20. BOOLEAN_TRANSFORMER transforms all conditional expressions
into boolean expressions:

if(1){ ... } → if((1).to_boolean){ ... }

21. PARAMETER_ASSIGNMENT_TRANSFORMER removes assign-
ments to formal parameters, using auxiliary local variables instead:

void foo(int i) {
i = 1;

}
→

void foo(int a_i) {
int l_i = a_i;
l_i = 1;

}
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22. ASSEMBLER_TRANSFORMER moves inline assembly code into sep-
arate functions (in Eiffel they become inline C code with inline assem-
bly) and adds calls to them:

void foo() {
int src = 123;
int dest;
asm ("mov %1, %0":

"=r" (dest) :
"r" (src));

}

→

void foo() {
int src = 123;
int dest;
asm1(&dest, &src);

}

void asm1(int ∗dest_p, int ∗src_p) {
int dest = ∗dest_p;
int src = ∗src_p;

asm ("mov %1, %0" :
"=r" (dest) :
"r" (src));

∗dest_p = dest;
∗src_p = src;

}

23. VARIABLE_ADDRESS_TRANSFORMER turns variables, whose ad-
dress are taken, to one-element arrays:

void foo() {
int i = 23;
int ∗ip = &i;
printf("%d %d", i, ∗ip);

}

→

void foo() {
int i[1] = {23};
int ∗ip = i;
Io.put_string ((∗i).out + " " +

(∗ip).out);
}

See Section 3.3.2.

24. ADDRESS_OPERATOR_TRANSFORMER adapts the address-of
operator in cases that are not directly supported in Eiffel:

&foo[bar] → foo + bar

25. BREAK_CONTINUE_RETURN_TRANSFORMER transforms the
break, continue and return statements to equivalent code using a com-
bination of boolean flags and conditional statements. See Section 3.3.3.

26. LONGJMP_TRANSFORMER transforms setjmp() and longjmp() to a
combination of exceptions and gotos. See Section 3.3.3.

27. SWITCH_TRANSFORMER transforms C switch statements to Eiffel
inspect statements with gotos:
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switch(i) {
case 1: printf("1");
case 2: printf("2"); break;
default: printf("3");

}

→

inspect i
when 1 then
goto state1;

when 2 then
goto state2;

else
goto state3;

end

state1:
Io.put_string ("1");

state2:
Io.put_string ("2");
goto state4;

state3:
Io.put_string ("3");

state4:

28. GOTO_TRANSFORMER transforms goto statements to equivalent
Eiffel code. See Section 3.3.3.

29. VARARG_TRANSFORMER transforms functions with variable argu-
ments into routines taking one TUPLE argument. See Section 3.3.3.

30. ALLOCA_TRANSFORMER transforms alloca() calls to use a helper
class provided by C2Eif.

31. BUILTIN_TRANSFORMER handles some exotic GCC builtin func-
tions. E.g. removing __builtin_prefetch calls.

32. EXPRESSION_AS_INSTRUCTION_TRANSFORMER adds a call
to do_nothing at the end of every expression used as an instruction:

printf(s1, s2); → printf(s1, s2).do_nothing;

33. EXPANDED_TRANSFORMER restores expanded (copy-by-value)
behavior of structs and va_lists by cloning them where necessary; this
is required since structs and va_lists are translated into reference types:

struct person p1 = {"Taco", 30};
struct person p2 = p1;

→ struct person p1 = {"Taco", 30};
struct person p2 = p1.twin;

34. CFG_CREATOR computes the control flow graph for the original C
code.

35. EIFFEL_CFG_CREATOR computes the control flow graph for the
Eiffel code (which might be different due to transformations of jump
statements).
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36. CALL_GRAPH_CREATOR computes the call graph.

37. UNUSED_SYSTEM_FEATURES_REMOVER removes unused sys-
tem features (found by analyzing the call graph).

38. CLASSES_START prepares the source code for the creation of classes;
sets class prefixes to avoid conflicting names.

39. CLASS_CREATOR creates classes based on the original C source files.
See Section 3.3.4.

40. CLASSES_FINISH finishes up class creation; adds superclasses based
on features used from the system interface. See Section 3.3.4.

41. CIL_TEMP_VARIABLE_REMOVER removes temporary variables
introduced by CIL which were not needed in C2Eif transformations:

C CIL C2Eif

printf("%d\n",
printf("a"));

int tmp = printf("a");
printf("%d\n", tmp);

Io.put_string (
printf("a").out +
"%N");

42. IDENTIFIER_TRANSFORMER transforms names of fields, variables
and functions to adhere to the Eiffel namespace and keyword con-
straints.

43. INLINER allows functions to be inlined as C source code instead of
being translated to Eiffel (if this feature is activated in C2Eif).

44. EIFFEL_FILE_WRITER creates the Eiffel project (project classes,
system interface classes, configuration files, C2Eif helper classes and
libraries).

3.4 Evaluation and Discussion
This section evaluates the translation T and its implementation in C2Eif
with 13 programs and 4 testsuites.

3.4.1 Correct Behavior
Table 3.1 shows the results of translating 13 open-source C programs and a
testsuite into Eiffel with C2Eif, running on a GNU/Linux box (kernel 2.6.37)
with a 2.66 GHz Intel dual-core CPU and 8 GB of RAM, GCC 4.5.1, CIL
1.3.7, EiffelStudio 7.1.8. For each application, library, and testsuite Table 3.1
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Size (LOCS) #Eiffel Time Binary size
CIL Eiffel classes (s) (MB)

hello world 8 15 1 1 1.3
micro httpd 565 1,934 16 1 1.5
xeyes 1,463 10,661 78 1 1.8
less 16,955 22,545 75 5 2.6
wget 46,528 57,702 183 25 4.5
links 70,980 100,815 211 33 13.9
vim 276,635 395,094 663 144 24.2
libSDL_mixer 7,812 11,553 47 3 –
libmongoDB 7,966 10,341 43 3 –
libpcre 18,220 24,885 38 14 –
libcurl 37,836 65,070 289 18 –
libgmp 61,442 79,971 370 21 –
libgsl 238,080 344,115 978 85 –
gcc (torture) 147,545 256,246 2,569 79 1,576
Total 932,035 1,380,947 5,561 433 1,626

Table 3.1: Translation of 13 open-source programs and a testsuite.

reports: (1) the size (in lines of code) of the CIL version of the C code and
of the translated Eiffel code; (2) the number of Eiffel classes created; (3) the
time (in seconds) spent by C2Eif to perform the source-to-source translation
(not including compilation from Eiffel source to binary); (4) the size of the
binaries (in MBytes) generated by EiffelStudio.4

The 13 programs include 7 applications and 6 libraries; most of them
are widely-used in Linux and other “*nix” distributions. hello world is the
only toy application, which is however useful as baseline of translating from C
to Eiffel with C2Eif. The other applications are: micro httpd 12dec2005, a
minimal HTTP server; xeyes 1.0.1, a widget for the X Windows System that
shows two googly eyes following the cursor movements; less 382-1, a text
terminal pager; wget 1.12, a command-line utility to retrieve content from
the web; links 1.00, a simple web browser; vim 7.3, a powerful text editor.
The libraries are: libSDL_mixer 1.2, an audio playback library; libmongoDB
0.6, a library to access MongoDB databases; libpcre 8.31, for regular ex-
pressions; libcurl 7.21.2, a URL-based transfer library supporting protocols
such as FTP and HTTP; libgmp 5.0.1, for arbitrary-precision arithmetic;
libgsl 1.14, a powerful numerical library. The gcc “torture tests” are short
but semantically complex pieces of C code, used as regression tests for the
GCC compiler.

We ran extensive trials on the translated programs to verify that they
behave as in their original C version, hence validating the correctness of the
translation T and its implementation in C2Eif. In addition to informal us-

4We do not give a binary size for libraries, because EiffelStudio cannot compile them
without a client.
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Execution time (s) Max % CPU Max MB RAM
C T E C T E C T E

hello world 0 0 0 0 30 30 1.3 5.5 5.3
micro httpd 5 37 46 99 99 99 2.3 7.8 5.6
wget 16 16 – 22 22 – 4.4 69 –
libcurl 199 212 – – – – – – –
libgmp 44 728 – – – – – – –
libgsl 25 1501 – – – – – – –
gcc (torture) 0 5 – – – – – – –

Table 3.2: Performance comparison for 3 applications and 4 testsuites.

age, we performed systematic performance tests for some of the applications
(described below), and ran standard testsuites on the three biggest libraries.
libcurl comes with a client application and a testsuite of 583 tests de-
fined in XML and executed by a Perl script calling the client; libgmp and
libgsl respectively include testsuites of 145 and 46 tests, consisting of client
C code using the libraries. All tests execute and pass on both the C and the
translated Eiffel versions of the libraries, with the same logged output. For
libcurl, C2Eif translated the library and the client application. For libgmp
and libgsl, it translated the test cases as well as the libraries.

The gcc torture testsuite includes 1116 tests; the GCC version we used
fails 4 of them; CIL (which depends on GCC) fails another 110 tests among
the 1112 that GCC passes; finally, C2Eif (which depends on CIL) passes
989 (nearly 99%) and fails 13 of the 1002 tests passed by CIL. Given the
challenging nature of the torture testsuite, this result is strong evidence that
C2Eif handles the complete C language used in practice, and produces correct
translations.

The 13 torture tests failing after translation to Eiffel target the following
unsupported features. One test reads an int from a va_list (variadic function
list of arguments) that actually stores a struct whose first field is a double;
the Eiffel type-system does not allow this, and inspection suggests that it is
probably a copy-paste error rather than a feature. Two tests exercise GCC-
specific optimizations, which are immaterial after translation to Eiffel. Six
tests target exotic GCC built-in functions, such as builtin_frame_address; one
test performs explicit function alignment; and three rely on special bitfield
operations.

3.4.2 Performance

Table 3.2 shows the result of trials that analyze the performance of six of the
programs, plus the GCC torture testsuite, running on the same system as in
Table 3.1. For each program or testsuite, Table 3.2 reports the execution time
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(in seconds), the maximum percentage of CPU and the maximum amount of
RAM (in MBytes) used while running. The table compares the performance
of the original C versions (column C) against the Eiffel translations with
C2Eif (column T), and, for the simpler examples, against manually written
Eiffel implementations (column E) that transliterate the original C imple-
mentations using the closest Eiffel constructs (for example, putchar becomes
Io.put_character) with as little changes as possible to the code structure.
Maximum CPU and RAM usages are immaterial for the libraries and for
the GCC testsuite, because their execution consisted of a large number of
separate calls.

The performance of hello world demonstrates the base overhead, in
terms of CPU and memory usage, of the default Eiffel runtime (objects,
automatic memory management, and contract checking—which can however
be disabled for applications where sheer performance is more important than
having additional checks).

The test with micro httpd consisted in serving the local download of a
174 MB file (the Eclipse IDE); this test boils down to a very long sequence
(approximately 200 million iterations) of inputting a character from file and
outputting it to standard output. The translated Eiffel version incurs a
significant overhead with respect to the original C version, but it is faster than
the manually written Eiffel implementation. This might be due to feature
lookups in Eiffel or to the less optimized implementation of Eiffel’s character
services. As a side note, we did the same exercise of manually transliterating
micro httpd using Java’s standard libraries; this Java translation ran the
download example in 170 seconds, using up to 99% of CPU and 150 MB of
RAM.

The test with wget downloaded the same 174 MB Eclipse package over
the SWITCH Swiss network backbone. The bottleneck is the network band-
width, hence differences in performance are negligible, except for memory
consumption, which is higher in Eiffel due to garbage collection (memory
is deallocated only when necessary, hence the maximum memory usage is
higher in operational conditions).

The test with libcurl consisted in running all 583 tests from the standard
testsuite mentioned before. The total runtime is comparable in translated
Eiffel and C.

The tests with libgmp and libgsl ran their respective standard test-
suites. The overall slow-down seems significant, but a closer look shows that
the large majority of tests run in comparable time in C and Eiffel: 30% of the
libgmp tests take up over 95% of the running time; and 26% of the libgsl
tests take up almost 99% of the time. The GCC torture tests incur only a
moderate slow-down, concentrated in 3 tests that take 97% of the time. In all
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these experiments, the tests responsible for the conspicuous slow-down tar-
get operations that execute slightly slower in the translated Eiffel than in the
native C (e.g., accessing a struct field) and repeat it a huge number of times,
so that the basic slow-down increases many-fold. These bottlenecks are an
issue only in a small fraction of the tests and could be removed manually in
the translation.

Finally, the interactive applications (xeyes, less, links, and vim) run
smoothly with good responsiveness, comparable to their original implemen-
tations.

In all, the performance overhead in switching from C to Eiffel signifi-
cantly varies with the program type but, even when it is noticeable, it does
not preclude the usability of the translated application or library in normal
conditions (as opposed to the behavior in a few specific test cases).

3.4.3 Readability and Usability
This section shows more examples of code generated by C2Eif to demonstrate
its readability and usability.

The first example is the translation of function send_error in micro httpd,
which prints an error report formatted in HTML. We give the Eiffel transla-
tion below; readers familiar with C can easily figure out the behavior of the
original C implementation, and Eiffel programmers will appreciate the usage
of standard library services (e.g., put_string) to print strings and flush the
output buffer.

send_error (
a_status: INTEGER_32;
a_title: CE_POINTER [INTEGER_8];
a_extra_header: CE_POINTER [INTEGER_8];
a_text: CE_POINTER [INTEGER_8]

)
do

send_headers (a_status, a_title, a_extra_header, ce_string ("text/html"), −1,
−1)

Io.put_string ("<html><head><title>" + a_status.out + " " + eif_string (
a_title) + "</title></head>%N<body bgcolor=%"#cc9999%"><h4>" +
a_status.out + " " + eif_string (a_title) + "</h4>%N")

Io.put_string (eif_string (a_text) + "%N")
Io.put_string ("<hr>%N<address><a href=%"http://www.acme.com/software

/micro_httpd/%">micro_httpd</a></address>%N</body></html>%N
")

Io.standard_default.flush
exit (1)

end
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The second example demonstrates the usability of the translated libcurl.
Consider a simple client class PRINT_SOURCE_SEHOME, which prints
the source code of the home page at http://se.inf.ethz.ch. This is an
implementation using libcurl translated with C2Eif:

−− Using libcurl translated with C2Eif:
class

PRINT_SOURCE_SEHOME

inherit
LIBCURL_CONSTANTS

create
make

feature

make
local

l_curl_easy: P_EASY_STATIC
l_curl_handle: CE_POINTER [ANY]
l_result: NATURAL_32

do
create l_curl_easy
l_curl_handle := l_curl_easy.curl_easy_init
l_curl_easy.curl_easy_setopt ([l_curl_handle, Curlopt_url,

ce_string ("se.inf.ethz.ch")]).do_nothing
l_result := l_curl_easy.curl_easy_perform (l_curl_handle)
l_curl_easy.curl_easy_cleanup (l_curl_handle)

end

end

EiffelStudio includes a manually encoded library that wraps libcurl.
The following is an implementation of class PRINT_SOURCE_SEHOME
that uses the manually wrapped library. Notice the similarity in structure
and form between the two implementations; the second one is even slightly
more complex, because it needs a conditional to check that the dynamically
linked library is reachable at runtime, whereas the first implementation (us-
ing C2Eif) does not depend on external libraries since libcurl has been
translated to regular Eiffel.

http://se.inf.ethz.ch


38 CHAPTER 3. C TO EIFFEL TRANSLATION

−− Using EiffelStudio’s libcurl wrapper:
class

PRINT_SOURCE_SEHOME

inherit
CURL_OPT_CONSTANTS

create
make

feature

make
local

l_curl_easy: CURL_EASY_EXTERNALS
l_curl_handle: POINTER
l_result: INTEGER_32

do
create l_curl_easy
if l_curl_easy.is_dynamic_library_exists then

l_curl_handle := l_curl_easy.init
l_curl_easy.setopt_string (l_curl_handle, Curlopt_url, "se

.inf.ethz.ch")
l_result := l_curl_easy.perform (l_curl_handle)
l_curl_easy.cleanup (l_curl_handle)

else
Io.error.put_string ("cURL library not found.%N")

end
end

end

3.4.4 Safety and Debuggability

What are the benefits of automatically porting C code to Eiffel? One obvious
advantage is the reusability of the huge C code base. This section demon-
strates that the higher-level features of Eiffel can bring other benefits, in
terms of improved safety and easier debugging of applications automatically
generated using C2Eif.

Uncontrolled format string is a well-known vulnerability [6] of C’s
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printf library function, which permits malicious clients to access data in the
stack by supplying special format strings. Consider for example the C pro-
gram:

int main (int argc, char ∗ argv[]) {
char ∗secret = "This is secret!";
if (argc > 1) printf(argv[1]);
return 0;

}

If we call it with ./example "{Stack: %x%x%x%x%x%x} -> %s", we get the output
{stack: 0b7[. . .]469} -> This is secret!, which reveals the local string secret. The
safe way to achieve the intended behavior is printf ("%s", argv[1]) instead of
printf (argv[1]), so that the input string is interpreted literally.

What is the behavior of code vulnerable to uncontrolled format strings,
when translated to Eiffel with C2Eif? In simple printf uses with just one
argument as in the example, the translation replaces calls to printf with calls
to Eiffel’s Io.put_string, which prints strings verbatim without interpreting
them; therefore, the translated code is not vulnerable in these cases. The
replacement was possible in 65% of all the printf calls in the programs of Ta-
ble 3.1. C2Eif translates more complex uses of printf (for example, with more
than one argument and no literal format string such as printf (argv[1], argv[2]))
into wrapped calls to the external printf function, hence the vulnerability still
exists. However, it is less extensive or more difficult to exploit in Eiffel:
primitive types (such as numeric types) are stored on the stack in Eiffel as
they are in C, but Eiffel’s bulkier runtime typically stores them farther up
the stack, hence longer and more complex format strings must be supplied
to reach the stack data (for instance, a variation of the example with secret
requires 386 %x in the format string to reach local variables). On the other
hand, non-primitive types (such as strings and structs) are wrapped by Eiffel
classes in C2Eif, which are stored in the heap, hence unreachable directly by
reaching stack data. In these cases, the vulnerability vanishes in the Eiffel
translation.

Debugging format strings. C2Eif also parses literal format strings
passed to printf and detects type mismatches between format specifiers and
actual arguments. This analysis, necessary when moving from C to a lan-
guage with a stronger type system, helps debug incorrect and potentially
unsafe uses of format strings. Indeed, a mismatch detected while running
the 145 libgmp tests revealed a real error in the library’s implementation of
macro TESTS_REPS:

char ∗envval, ∗end; /∗ ... ∗/
long repfactor = strtol(envval, &end, 0);
if(∗end || repfactor ≤ 0) fprintf (stderr, "Invalid repfactor: %s.\n", repfactor);
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String envval should have been passed to fprintf instead of long repfactor. GCC
with standard compilation options does not detect this error, which may
produce garbage or even crash the program at runtime. Interestingly, ver-
sion 5.0.2 of libgmp patches the code in the wrong way, changing the format
specifier %s into %ld. This is still incorrect because when envval does not
encode a valid “repfactor”, the outcome of the conversion into long is un-
predictable. Finally, notice that C2Eif may also report false positives, such
as long v = "Hello!"; printf("%s", v) which is acceptable (though probably not
commendable) usage.

Out-of-bound error detection. C arrays translate to instances of class
CE_ARRAY (see Section 3.3.1), which includes contracts that signal out-
of-bound accesses to the array content. Therefore, out-of-bound errors are
much easier to detect in Eiffel applications using components translated with
C2Eif. Simply by translating and running the libgmp testsuite, we found an
off-by-one error causing out-of-bound access (our patch is included in the
latest library version); the error does not manifest itself when running the
original C version. More generally, contracts help detect the precise location
of array access errors. Consider, for example:
/∗ 1 ∗/ int ∗ buf = (int ∗) malloc(sizeof (long long int) ∗ 10);
/∗ 2 ∗/ buf = buf − 10;
/∗ 3 ∗/ buf = buf + 29;
/∗ 4 ∗/ ∗buf = 'a'; buf++;
/∗ 5 ∗/ ∗buf = 'b';

buf is an array that stores 20 elements of type int (which has half the size of
long long int). The error is on line 5, when buf points to position 20, out of
the array bounds; line 2 is instead OK: buf points to an invalid location, but
it is not written to. This program executes without errors in C; the Eiffel
translation, instead, stops exactly at line 5 and signals an out-of-bound access
to buf.

Array bound checking may be disabled, which is necessary in borderline
situations where out-of-bound accesses do not crash because they assume a
precise memory layout. For example, links and vim use statements of the
form block ∗p = (block ∗)malloc(sizeof(struct block)+ len), with len > 0, to allocate
struct datatypes of the form struct block { /∗... ∗/char b[1]; }. In this case, p
points to a struct with room for 1 + len characters in p→b; the instruction
p→b[len]=‘i’ is then executed correctly in C, but the Eiffel translation assumes
p→b has the statically declared size 1, hence it stops with an error. Another
borderline situation is with multi-dimensional arrays, such as double a[2][3].
An iteration over a’s six elements with double ∗p = &a[0][0] translated to Eiffel
fails to go past the third element, because it sees a[0][0] as the first element
of an array of length 3 (followed by another array of the same length). A
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simple cast double ∗ p = (double∗)a achieves the desired result without fooling
the compiler, hence it works without errors also in translated code. These
situations are examples of unsafe programming more often than not.

More safety in Eiffel. Our experiments found another bug in libgmp,
where function gmp_sprintf_final had three formal input arguments, but was
only called with one actual through a function pointer. Inspection suggests
it is a copy-paste error of the other function gmp_sprintf_reps. The Eiffel
version found the mismatch when calling the routine and reported a contract
violation. Easily finding such bugs demonstrates the positive side-effects of
translating widely-used C programs into a tighter, higher-level language.

3.4.5 Maintainability
A tool such as C2Eif, which provides automatic translation between lan-
guages, is applicable in different contexts within general software mainte-
nance and evolution processes. This section discusses some of these applica-
tions and how suitable C2Eif can be for each of them.

Reuse in clients. The first, most natural application is using C2Eif to
automatically reuse large C code-bases in Eiffel. This is not merely a pos-
sibility, but something extremely valuable for Eiffel, whose user community
is quite small compared to those of other mainstream languages such as C,
Java, or C++. Since we released C2Eif to the public as open-source, we have
been receiving several requests from the community to produce Eiffel versions
of C libraries whose functionalities are sorely missed in Eiffel, and whose na-
tive implementation would require a substantial effort to get to software of
quality comparable to the widely tested and used C implementations. This
was the case, in particular, of libSDL_mixer, libmongoDB, and libpcre,
whose automatic translations created using C2Eif were requested from the
community and are now being used in Eiffel applications. We are also aware
of some Eiffel programmers directly trying to use C2Eif to translate useful
C libraries and deploy them in their own software.

This form of reuse mainly entails writing Eiffel client code that accesses
translated C components. Supporting it requires tools that handle the full C
language as used in practice, and that produce translated APIs understand-
able and usable with a programming style sufficiently close to what is the
norm in Eiffel, without requiring in-depth understanding of the C conven-
tions.

When a C library undergoes maintenance, the introduced changes have
the same impact on the C and on the Eiffel clients of the library. In particular,
if the changes to the library do not break client compatibility (that is, the
API does not change), one should simply run C2Eif again on the new library
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version and replace it in the Eiffel projects that depends on it. If the API
changes, clients may have to change too, independent of the language they
are written in.

Evolution of translated libraries. Once a program is translated from
C to Eiffel, one may decide it has become part of the Eiffel ecosystem, and
hence it will undergo maintenance and evolution as any other piece of Eiffel
code. In this scenario, C2Eif provides an immediately applicable solution to
port C code to Eiffel, whereas the ensuing maintenance effort is distributed
over an entire lifecycle and devoted to improve the automatic translation
(for example, removing the application-dependent performance bottlenecks
highlighted in Section 3.4.2) and completely conforming it to the Eiffel style.

Such maintenance of translations is the easier the closer the generated
code follows Eiffel conventions and, more generally, the object-oriented
paradigm. Providing a convincing empirical evaluation of the readability and
maintainability of the code generated by C2Eif (not just from the perspective
of writing client applications) is beyond the scope of the present work. No-
tice, however, that C2Eif already follows numerous Eiffel conventions such as
for the names of classes, types, and local variables, which might look verbose
to hard-core C programmers but are de rigueur in Eiffel. Follow-up work,
which we discuss in Chapter 4, has targeted the object-oriented reengineer-
ing of C2Eif translations. In all, while the translations produced by C2Eif
still retain some “C flavor”, we believe they are overall understandable and
modifiable in Eiffel with reasonable effort.

Two-way propagation of changes. One more maintenance scenario
occurs if one wants to be able to independently modify a C program and
its translation to Eiffel, while still being able to propagate the changes pro-
duced in each to the counterpart. For example, this scenario applies if a C
library is being extended with new functionality, while its Eiffel translation
produced by C2Eif undergoes refactoring to optimize it to the Eiffel environ-
ment. This scenario is the most challenging of those discussed in this section;
it poses problems similar to those of merging different development branches
of the same project. While merge conflicts are still a bane of collaborative
development, modern version control systems (such as Git or Mercurial) have
evolved to provide powerful support to ease the process of conflict reconcil-
iation. Thus, they could be very useful also in combination with automatic
translators such as C2Eif to be able to integrate changes in C with other
changes in Eiffel.



3.5. RELATED WORK 43

3.4.6 Limitations
The only significant limitations of the translation T implemented in C2Eif
in supporting C programs originate in the introduction of strong typing:
programming practices that implicitly rely on a certain memory layout may
not work in C applications translated to Eiffel. Section 3.4.4 mentioned
some examples in the context of array manipulation (where, however, the
checks on the Eiffel side can be disabled). Another example is a function
int trick (int a, int b) that returns its second argument through a pointer to
the stack, with the instructions int ∗p = &a; return ∗(p+1). C2Eif’s translation
assumes p points to a single integer cell and cannot guarantee that b is stored
in the next cell.

Furthermore, the GCC torture testsuite highlighted a few exotic GCC fea-
tures currently unsupported by C2Eif (Section 3.4.1), which may be handled
in future work.

3.5 Related Work

We have presented a survey of the legacy code migration field; in Section 2.1
for wrapping foreign code and in Section 2.2 for translating foreign code.
C2Eif is a considerable contribution to the field of automatic foreign code
translation and can also be used to automatically wrap foreign code.

Automatically translating foreign code. Adding C2Eif to Table 2.2
shows the advantages over other solutions for the C programming language:
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Ephedra Java no no + no no no no
Convert2Java Java no no + no no no no
C2J++ Java no no + no no no no
C2J Java no yes − no yes no no
C++2Java Java no yes + no no no no
C++2C# C# no yes + no no no no
C2Eif Eiffel yes yes + yes yes yes yes

Table 3.3: Tools translating C to O-O languages.

A limitation of other solutions is that they are not automatic and hardly
handle the trickier or specialized parts of the C language, which are tempting
to dismiss as unimportant “corner cases”, but figure prominently in real-
world programs. C2Eif on the other hand is completely automatic, covers
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the entire C language as used in practice and has been tested on programs
of considerable size.

Automatically wrapping foreign code. As presented in Section 3.3.4,
C2Eif can automatically create wrappers for external functions and variables
to access pre-compiled C libraries (e.g., for I/O). C2Eif can therefore also be
used to automatically create wrappers for foreign code. Instead of processing
the source code of a library with C2Eif to get a translation, it is sufficient to
just process the header files of that library to get a wrapper.

Safer C. Many techniques exist aimed at ameliorating the safety of ex-
isting C code; for example, detection of format string vulnerability [5], out-
of-bound array accesses and other memory errors [38, 34], or type errors [33].
C2Eif has a different scope, as it offers improved safety and debuggability
as side-benefits of automatically porting C programs to Eiffel. This shares
a little similarity with Ellison and Rosu’s formal executable semantics of
C [9], which also finds errors in C program as a “side effect” of a rigorous
translation.

3.6 Summary
This chapter presented a complete translation of C programs into Eiffel, and
its implementation in a freely available tool C2Eif. Experiments showed that
C2Eif correctly translates complete applications and libraries of significant
size, and takes advantage of some of Eiffel’s advanced features to produce
safer code.



Chapter 4

Object-Oriented
Reengineering

4.1 Introduction

The reasons behind the widespread adoption of object-oriented program-
ming languages have to be found in the powerful mechanisms they provide,
which help design and implement clear, robust, flexible, and maintainable
programs. Classes, for example, are modular constructs that support strong
encapsulation, which makes for components with high cohesion and low cou-
pling; inheritance and polymorphism make classes extensible, thus promot-
ing flexible reuse of implementations; exceptions can handle inter-procedural
behavior without polluting functional and modular decomposition; and con-
tracts seamlessly integrate specification and code, and support abstract yet
expressive designs.

Competent programmers, however, try to achieve the same design goals—
encapsulation, extensibility, and so on—even when they are implementing in
a programming language that does not offer object-oriented features. A
developer adopting the C programming language, for example, will use files
as primitive modules collecting structs and functions operating on them; will
implement exception handling through a disciplined use of setjmp and longjmp;
will use conditional checks and defensive programming to define valid calling
contexts in a way somewhat similar to preconditions.

This chapter presents a novel technique, and a supporting tool AutoOO,
that extracts such implicit design elements from C programs and uses them
to build reengineered object-oriented programs.

While AutoOO translates C to Eiffel, the very same reengineering tech-
niques are applicable to other object-oriented programming languages.
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Figure 4.1: Object-oriented reengineering with C2Eif and AutoOO.

C2Eif and AutoOO. The tool AutoOO builds on top of C2Eif, discussed
in Chapter 3. Figure 4.1 shows how C2Eif and AutoOO are combined in a
toolchain that goes from procedural C input to object-oriented Eiffel output.
The C source program is processed by CIL [32], which simplifies some C
constructs (for example, there is only one type of loop in CIL); C2Eif trans-
lates the CIL output into a procedural Eiffel program; AutoOO processes the
C2Eif output, introduces the transformations described in Sections 4.3 and
4.4, and outputs the reengineered object-oriented Eiffel programs that can
be compiled.

In other words, C2Eif produces Eiffel code functionally equivalent to C
but without any object-oriented reengineering. AutoOO implements the
novel technique described in this chapter to extract high-quality object-
oriented designs from procedural code; it relies on C2Eif only to produce
a raw translation of C into Eiffel.

From the user perspective, AutoOO and C2Eif are the same tool since
AutoOO has been added to the user inferface of C2Eif.

Outline. In the rest of the chapter, Section 4.2 defines the goals of Au-
toOO reengineering, how they are assessed, and the design principles fol-
lowed. Section 4.3 discusses how AutoOO introduces elements of object-
oriented design—in particular, how it populates classes. Section 4.4 discusses
how it introduces contracts and exceptions. Section 4.5 presents the evalua-
tion of the correctness, scalability, and performance of AutoOO based on 10
reengineered applications and libraries. Section 4.6 reviews the fundamental
aspects of the object-oriented design style introduced by AutoOO and how
they make for usable reengineered programs. Section 4.7 discusses the cur-
rent limitations of AutoOO. Section 4.8 reviews related work and compares
AutoOO against existing tools and approaches to object-oriented reengineer-
ing.
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4.2 O-O Reengineering: Goals, Principles, and
Evaluation

The overall goal of AutoOO reengineering is expressing the design implicit in
procedural programs using constructs and properties of the object-oriented
paradigm. For example, we restructure and encapsulate the code into classes
that achieve a high cohesion and low coupling, we make use of inheritance
to reuse code, and so on.

While reengineering in its most general meaning—the reconstruction of
“a system in a new form” [3]—may also introduce new functionality or mu-
tate the existing one (for example, with corrective maintenance), the present
work tries not to deviate from the original intentions of developers as re-
flected in the procedural implementations. For example, we do not introduce
exceptions unless the original program defines some form of inter-procedural
execution path. We adopt a conservative approach because we want a reengi-
neering technique that:

• is completely automatic, not just a collection of good practices and
engineering guidelines;

• always produces correct reengineerings, that is programs that are func-
tionally equivalent to the original procedural programs.

Improving and extending software are important tasks, but largely orthog-
onal to our specific goals and requiring disparate techniques. For example,
there are serviceable tools to infer specifications from code (to mention just
a few: [10, 21, 51]) which can be applied atop our reengineering technique to
get better code specification automatically; but including them in our work
would weaken the main focus of the contribution.

The rest of this section presents other specific goals of AutoOO and how
we assess them.

Case studies. The evaluation of AutoOO, described in the following sec-
tions, targets 10 of the open-source programs used for C2Eif in Table 3.1,
totalling 750 KLOC (see Section 3.4 for details). The 10 programs include 7
applications – hello world, micro httpd, xeyes, less, wget, links, and
vim – and 3 libraries – libcurl, libgmp, and libgsl. Section 4.5 discusses
more details about the programs used in the experiments.

Correctness, scalability, and performance. In addition to systematic
interactive usage, we assess correctness of the reengineering produced by Au-
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toOO by running the standard regression test-suites available with the pro-
grams, hereby verifying that the output is the same in C and Eiffel. We also
consider the translation time taken by AutoOO to guarantee that it scales
up; and the performance of the Eiffel reengineered program to ensure that it
does not incur a slowdown that severely compromises usability. Section 4.5
discusses these correctness and performance results.

Object-oriented design. AutoOO creates an object-oriented program
consisting of a collection of classes; each class aggregates data definitions
(attributes) and functions operating on them (routines). Section 4.3 presents
the technique that extracts object-oriented design; we evaluate the quality of
the object-oriented design produced by AutoOO with the following measures:

• Soundness : we manually inspected 43% of all classes produced by Au-
toOO (all projects but vim and libgsl) and we determined how many
routines belong to the correct class, that is are indeed routines operat-
ing on the attributes of the class.

• Coupling and cohesion: the coupling of a class is measured as the ratio:
number of accesses to features of other classes / number of accesses to
features of the same class. When this ratio is low (less than 1 in the
best cases), it shows that classes are loosely coupled and with high
cohesion.1

• Information hiding is measured as the ratio of private to public features.
A high ratio indicates that classes make good usage of information
hiding for encapsulation.

• Instance vs. class features : the ratio of instance to class features (called
static members in Java) gives an idea of the “object-orientedness” of a
design. A high ratio indicates a really object oriented design, as it
makes limited usage of “global” class attributes and routines.

• Inheritance: we manually inspected all uses of inheritance introduced
by AutoOO and we determined how many correctly define substitutable
heir classes.

Contracts and exceptions. In addition to the core elements of object-
oriented design, AutoOO also introduces high-level features often present in
object-oriented languages: contracts and exceptions. AutoOO clearly distin-
guishes the purpose of contracts vs. exceptions.

1Cohesion is normally defined as the dual of coupling.
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1. source files 12,445 0 3,628 5,337 – 8.87 – 0.33 0
(0%) (60%) 1.54

2. function signature 7,724 4,721 3,628 5,337 94% 2.33 – 0.88 0
(38%) (60%) 1.20

3. call graph 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 0
(47%) (68%) 1.06

4. inheritance 6,471 5,974 2,881 6,084 96% 2.00 0.12 1.12 4
(47%) (68%) 1.06

Table 4.1: Object-oriented design metrics after each reengineering step ap-
plied to the 10 case study programs.

• Contracts replace annotations (not part of ANSI C but available as
GCC extensions) and encode simple requirements on a function’s input
and guarantees on its output; they are discussed in Section 4.4.1.

• Exceptions replicate the behavior of setjmp and longjmp which divert
the structured control flow in exceptional cases across functions and
modules; they are discussed in Section 4.4.2.

4.3 Object-Oriented Design

AutoOO produces object-oriented designs that consist of collections of
classes. The generated classes are of two kinds with different purposes:

• a datatype class combines the data definitions translating some C type
definition (struct or union) with a collection of instance routines trans-
lating C functions operating on the type.

• a bundle class collects global variables and global functions present in
some C source file and makes them available to clients as class features.

Only datatype classes are germane to object-oriented design, which empha-
sizes proper encapsulation of data definitions with the operations defined on
them; bundle classes, however, are still necessary to collect elements that
do not clearly belong exclusively to any datatype, such as globals shared by
multiple clients. Thus, bundle classes are a safe fall-back that keeps the orig-
inal modular units (the source files) instead of forcing potentially unsound
refactoring.
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Corresponding to their roles, datatype classes contain mainly “proper”
instance features (Section 4.3.3 discusses the exceptions), whereas bundle
classes contain only class features (also called static). Note that Eiffel does
not offer a direct counterpart to Java’s static mechanism; equivalent seman-
tics for a routine can be achieved by placing it into a stateless class and using
a fresh instance of that class as a target for every call (see an example in
Figure 4.3). We therefore use the term “class routine” in the Eiffel context
to refer to a routine of such a stateless class.

AutoOO generates datatype and bundle classes in four steps:

1. Source file analysis creates the bundle classes and populates them based
on the content of source files; it creates a datatype class for each struc-
tured type definition (struct or union). This step is a part of the basic
translation performed by C2Eif.

2. Function signature analysis refactors routines from bundle to datatype
classes, moving operations closer to the data definition they work on.

3. Call graph analysis refactors features from bundle to datatype classes,
and shuffles routines among datatype classes, moving features to classes
where they are exclusively used.

4. Inheritance analysis creates inheritance relationships between datatype
classes based on their attributes.

The following subsections 4.3.1–4.3.4 describe the steps in detail with exam-
ples.

Table 4.1 reports how the various metrics mentioned in Section 4.2 change
as we apply the four steps to the 10 case study programs. For each reengi-
neering step, Table 4.1 reports:

• The number of bundle and datatype features2 created, partitioned in
routines and attributes.

• The percentage of sound datatype routines.3 A routine m of a datatype
class T—that contains the data definition of a struct T or union T—is
sound if manual analysis confirms that m implements an operation
whose primary purpose is modifying or querying instances of T.

• The average (median) coupling of classes, where the coupling of a class
T (with respect to the rest of the system) is defined as follows. An

2A bundle (or datatype) feature is a feature of a bundle (or datatype) class.
3Evaluated on all projects but vim and libgsl, as discussed in Section 4.2.
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access is the read or write of an attribute, or a routine call; an access
in the body of a routine m of T is in if it refers to a feature of T
other than m; it is out if it refers to a feature of a class other than
T. When counting accesses in a routine m we ignore duplicates: if
m’s body calls r more than once, we only count it as one access. T’s
coupling is the ratio of out to in accesses of all its features. For each
step, Table 4.1 reports two values of coupling; the value on top puts
all classes of all programs together (hence larger projects dominate),
while the bottom value computes medians per programs and then the
median across programs.

• The hiding of classes, measured as the ratio of private to public features.

• The ratio of instance to class features.

• The number of classes defined using inheritance.

The rest of this section will discuss the figures shown in Table 4.1 to
demonstrate how each reengineering step improves these object-oriented de-
sign metrics.

4.3.1 Source File Analysis
For each source file F.c in the program, the first reengineering step creates a
bundle class F and populates it with translations of all the global variables
and function definitions found in F.c. For each definition of a structured
type T in F.c, the first step also creates a datatype class T that contains
T ’s components as attributes. AutoOO only has to consider structured type
definitions using struct or union; atomic type definitions and enums are han-
dled in the initial processing by C2Eif. Since AutoOO’s reengineering treats
the two kinds of structured type declarations uniformly, we only deal with
structs in the following to streamline the presentation; the handling of unions
follows easily.

For example, when processing the C source file in Figure 4.2, the first
step generates the datatype class PERSON:

class
PERSON

feature
age: INTEGER
sex: BOOLEAN

end
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int majority_age = 18;

struct person {
int age;
bool sex;

};

void set_age(struct person ∗p, int new_age) {
if(new_age≤ 0) return;
p→age = new_age;

}

bool overage(int age) {
return (age >majority_age);

}

bool is_adult(struct person ∗p) {
return overage(p→age);

}

Figure 4.2: C source file PersonHandler.c.

and the bundle class PERSON_HANDLER:

class
PERSON_HANDLER

feature
majority_age: STATIC [INTEGER]

once
Result.item := 18

end

set_age (p: POINTER [PERSON]; new_age: INTEGER)
local

return: BOOLEAN
do

if new_age≤0 then
return := True

end
if not return then

p.item.age := new_age
end

end
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overage (age: INTEGER): BOOLEAN
do

Result := (age >majority_age.item)
end

is_adult (p: POINTER [PERSON]): BOOLEAN
do

Result := overage (p.item.age)
end

end

Source file analysis sets up the dual bundle/datatype design and defines
the classes of the system. The result is still far from good object-oriented
design as the datatype classes are just empty containers mapping structs
one-to-one, and in fact we have no hiding and a low instance/class feature
ratio (the only instance features are the datatype attributes).

The overall coupling (first row in Table 4.1) is also quite high after step 1.
This does not come as a surprise: because all routines are located in bundle
classes, every read or write of a struct field from the original C code be-
comes an out access. The proliferation of out accesses is especially evident
in libgmp, where the majority of modules have only out accesses. In gen-
eral, coupling is higher for libraries in our experiments; this may indicate
that coupling for library code should be measured differently, for example by
considering the library in connection with a client. In any case, this is not
a problem for our evaluation: the value of coupling after step 1 is merely a
baseline that corresponds to purely procedural design; our goal is to measure
how this value changes as we apply the next reengineering steps.

4.3.2 Function Signature Analysis

The second reengineering step moves routines from bundle to datatype
classes according to their signature, with the intent of having data and rou-
tines operating on them in the same class.

Consider a routine m of bundle class M with signature t0 m (t1 p1,
t2 p2,. . .,tn pn), for n ≥ 0. An argument pk of m is data-bound if its type
tk = T∗ (pointer to T), where T is a datatype class. When a routine has
more than one such argument, we consider only the first one in signature
order. A data-bound argument pk is globally used by m if it is accessed (read
or written) at least once along every path of m’s control flow graph, except
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possibly for argument handling paths. An argument handling path is a path
guarded by a condition that involves some argument ph, with h 6= k, and
terminated by a return.

For each routinem of a bundle classM that has a data-bound argument pk
of type tk = T∗ which is globally used, the second reengineering step moves
m into the datatype class T and changes its signature—which becomes non-
static and drops argument pk—and its body—which refers to pk implicitly
as Current (called this in Java). Accordingly, m’s body may have to adjust
other references to features of M that are now in a different class; also any
call to m has to be adjusted following its new signature.

Continuing the example of Figure 4.2, the second reengineering step deter-
mines that set_age and is_adult can be refactored: argument p is data-bound
and globally used in both routines (with the first instruction in set_age being
an argument handling path). Hence, the two routines are moved from class
PERSON_HANDLER to class PERSON which becomes:

class
PERSON

feature
age: INTEGER

sex: BOOLEAN

set_age (new_age: INTEGER)
local

return: BOOLEAN
do

if new_age≤0 then
return := True

end
if not return then

age := new_age
end

end

is_adult: BOOLEAN
do

Result := (create {PERSON_HANDLER}).overage (age)
end

end



4.3. OBJECT-ORIENTED DESIGN 55

Function signature analysis introduces fundamental elements of object-
oriented design. As reported in Table 4.1, manual inspection reveals that
94% of the routines moved to datatype classes are indeed operations on that
type; this means that 97% of the features of datatype classes (attributes plus
sound routines) are refactored correctly. Remember that our definition of
soundness refers to design, not to correct behavior: even the 6% = 100% −
94% “unsound” routines behave correctly as in the original C programs, even
if they are arguably not allocated to the best class. Inspection also reveals
some common causes of unsound refactorings. Some functions use a generic
pointer (type void∗) as first argument, and then cast it to a specific struct∗
in the code; and in a few cases the pointer arguments are simply not reliable
indicators of data dependence or are in the wrong order (more details below).

Coupling drastically reduces after step 2, because many routines that
access attributes of datatype classes are now located inside those classes. This
dominates over the increase in out accesses to bundle features from within the
routines moved to datatype classes, also introduced by step 2. In particular,
function signature analysis mitigates the high coupling we measured in the
libraries. Finally, many routines have become instance routines, with an
overall instance/class ratio of 0.88.

How restrictive is the choice to consider only the first data-bound argu-
ment to a datatype class for deciding where to move routines? For example,
if the code in Figure 4.2 had another function void do_birthday(struct person ∗p,
struct log ∗l) that increases p’s age and writes to the log pointed to by l, should
we move do_birthday to datatype class log instead of person? The empirical
evidence we collected suggests that our heuristics are generally not restric-
tive: we manually analyzed all 77 functions with multiple arguments of type
“pointer to struct” in the case study programs and found only 3 cases where
the “sound” refactoring would target an argument other than the first.

Another feature of function signature analysis as it is implemented in
AutoOO is the choice to ignore routines with an argument p whose type t
corresponds to a struct, but that is passed by copy (in other words, whose
original type in C is t rather than t∗); we found 131 such cases among the
programs of Table 4.2 and only 56 (43%) of them would have generated a
sound refactoring. In all, we preferred not to consider arguments passed by
copy because it would lead to unsound refactoring in the majority of cases;
a more sophisticated analysis of this aspect belongs to future work.

Finally, the refactoring requirement that a data-bound argument must
be globally used is not necessary, in most cases, to achieve soundness, but
dropping it would introduce incorrect translations that change the behavior
of the program in some cases. In fact, a function with an argument not
used globally includes valid executions where the argument is allowed to be
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Void (known as null in C and Java); therefore, it cannot become an instance
routine which always has an implicit non-Void target Current.

As an interesting observation about the application of reengineering to
the programs of Table 4.2, we found that 40% of the routines moved to
datatype classes in step 2 have a name that includes the datatype class name
as prefix. For example, the routines operating on a datatype class hash_table
in wget are named hash_table_get, hash_table_put, and so on. This suggests
that, in the best cases, even purely syntactic information carries significant
design choices. AutoOO takes advantage of this finding and removes such
prefixes to increase the readability of the created code (see also the client
example in Section 4.6).

4.3.3 Call Graph Analysis
The third reengineering step moves more features to datatype classes accord-
ing to where the features are used, with the intent of encapsulating “utility”
features together with the datatype definitions that use them exclusively.

Consider a feature n of any class N that is accessed (read, written, or
called) only in a datatype class T. For each such feature n, the third reengi-
neering step moves n into the datatype class T. If n is an instance routine or
a class routine, it becomes an instance routine; if it is a class attribute, it re-
mains a class attribute to preserve the original semantics of static attributes
corresponding to global C variables (this is the only case where we add class
features to datatype classes). Features moved to datatype classes in this
step also become private, since they are not used outside the class they are
moved to. Since moving a feature out of a class changes the global call graph,
AutoOO performs the third reengineering step iteratively: it starts with the
feature n with the largest number of accesses, and updates the call graph
after every refactoring move, recalculating the set of candidate features for
the next move.

Continuing the example of Figure 4.2, assume that routine overage of bun-
dle class PERSON_HANDLER is only called by is_adult in datatype class
PERSON, and that attributemajority_age is instead read also by other mod-
ules. Then, AutoOO moves overage to PERSON where it becomes non-static
and private:

overage (age: INTEGER): BOOLEAN
do

Result := (age >(create {PERSON_HANDLER}).
majority_age.item)

end
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The attribute majority_age stays unchanged in class PERSON_HANDLER.
As reported in Table 4.1, call graph analysis refines the object-oriented

design and introduces hiding when possible, that is for 12% of the features.
Even if there are 2,290 private features, these are localized in only 139 classes,
hence the average hiding per class is low (3% mean). Coupling decreases once
more, as a result of moving utility routines to the class where they are used.
The percentage of sound refactored routines increases to 96%; overall, 98%
of the datatype features are refactored correctly. Step 3 also makes instance
features the majority (53% of all features, or 1.12 instance feature per class
feature).

Under the conservative approach taken by AutoOO, which creates func-
tionally equivalent code, we judge that the values of hiding, coupling, and
instance/class features reached after steps 1–3 strike a fairly good balance
between introducing object-oriented features and preserving the original de-
sign as not to harm understandability due to unsound features in classes of
the reengineered application. The example in Section 4.6 reinforces these
conclusions from a user’s perspective.

4.3.4 Inheritance Analysis
The fourth reengineering step introduces inheritance in order to make existing
subtyping relationships between datatype classes explicit. The approach is
similar to what has been suggested in [24]; in the original C code subtyping
surfaces in the form of casts between different struct pointer types. Because
the language does not provide any way to make one struct type conform to
another, modelling subtyping in C requires frequent upcasting (conversion
from a subtype to a supertype) as well as downcasting (from a supertype to
a subtype). Inheritance analysis finds such casting patterns and establishes
inheritance relationships between the involved types.

Consider two type declarations in the source C program:

struct r { t1 a1; t2 a2; . . . ; tm am; };
struct s { u1 b1; u2 b2; . . . ; un bn; };

We say that type s is cast to type r if there exists, anywhere in the program’s
code, a cast of the form (struct r∗) e with e an expression of type struct s∗.
We say that type s extends type r if n > m4 and, for all 1 ≤ i ≤ m, the types
ti and ui are equivalent. For every such types r and s such that s extends r
and s is cast to r, r is cast to s, or both, the fourth reengineering step makes
the datatype class for s inherit from r. Using a rename clause to rename

4The case n = m could be also supported but would rarely be useful with the programs
tried so far.
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attributes with different names, s becomes:

class
S

inherit
R

rename
a1 as b1,
a2 as b2,
. . .
am as bn

end

feature

bm+1 : um+1

. . .

bn : un

−− Rest of the class unchanged.

end

Notice that AutoOO bases inheritance analysis on type information only, not
on attribute names. Therefore, it requires renaming of attributes in general;
implementing this feature in Java or similar languages, where renaming is
not possible, would require some workaround (or simply dropping inheritance
when renaming is required).

Continuing the example of Figure 4.2, assume another struct declaration
is struct student { int age; bool sex; int gpa; } and that, somewhere in the pro-
gram, a variable of type person ∗ is cast to (student ∗). Then, datatype class
STUDENT becomes:

class
STUDENT

inherit
PERSON

feature
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gpa: INTEGER

−− ...

end

While AutoOO identified 1,875 pairs t1, t2 of types where t1 extends t2,
and 96 pairs where t1 is cast to t2, only 4 pairs satisfy both requirements.
Hence, the introduction of inheritance in our experiments is limited to 4
classes (2 in each of xeyes and less). This is largely a consequence of
the original C design where extensions of structs along these lines are infre-
quent, combined with the constraint that our reengineering create function-
ally equivalent code and be automatic. All few uses of inheritance AutoOO
identified are, however, sound, in that the resulting types are real subtypes
that satisfy the substitution principle. In contrast, manual inspection reveals
that none of the other 92 = 96− 4 pairs of cast types determine classes that
are related by inheritance. Introducing inheritance for the other 1,871 pairs
solely based on one type extending the other is most likely unsound without
additional evidence. Many structs, for example, are collections of integer
fields, but they model semantically disparate notions that are not advisable
to combine. The other metrics in Table 4.1 do not change after inheritance
analysis, assuming we count attributes in the flattened classes.

Interestingly, the two instances of inheritance we found in less use re-
naming to define lists as simplified header elements. For example:

struct element_list {
struct element ∗first;

};

struct element {
struct element ∗next;
char ∗content;

};

The two types are indeed compatible, and the renaming makes the code
easier to understand even without comments.

4.4 Contracts and Exceptions

AutoOO introduces contracts and exceptions to improve the readability of
the classes generated in the reengineering. Section 4.4.1 explains how Au-
toOO builds contracts from compiler-specific function annotations and from
simple implicit properties of pointers found by static analysis. Section 4.4.2
discusses how exceptions can capture the semantics of longjmp.
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4.4.1 Contracts
Contracts are simple formal specification elements embedded in the program
code that use the same syntax as Boolean expressions and are checked at
runtime. AutoOO constructs two common kinds of contracts that annotate
routines, namely preconditions and postconditions. A routine’s precondition
(introduced by require) is a predicate that must hold whenever the routine
is called; it is the caller’s responsibility to establish the routine’s precondi-
tion before calling it. A routine’s postcondition (introduced by ensure) is a
predicate that must hold whenever the routine terminates; it is the routine’s
body responsibility to guarantee the postcondition upon termination.

AutoOO creates contracts from two information sources commonly avail-
able in C programs:

• GCC function attributes;

• globally used pointer arguments.

Based on these, AutoOO added 3,773 precondition clauses and 13 postcon-
dition clauses to the programs in Table 4.2.

GCC function attributes The GCC compiler supports special function
annotations with the keyword __attribute__. GCC can use these anno-
tations during static analysis for code optimization and to produce warn-
ings if the attributes are found to be violated. Among the many annota-
tions supported—most of which are relevant only for code optimization, such
as whether a function should be inlined—AutoOO constructs preconditions
from the attribute nonnull and postconditions from the attribute noreturn.
The former specifies which of a function’s arguments are required to be non-
Void; the latter marks functions that never return (for example, the system
function exit). For each routine m (t1 p1, . . . , tm pm) corresponding to a C func-
tion with attribute nonnull (i1, . . . , in), with n ≥ 0 and 1 ≤ i1, . . . , in ≤ m
denoting arguments of m by position, AutoOO adds to m the precondition

require
pi1 6=Void
pi2 6=Void
. . .
pin 6=Void

that the arguments pi1 , . . . , pin be non-Void. For each routine m correspond-
ing to a C function with attribute noreturn, AutoOO adds to m the postcon-
dition ensure False that would be violated if m ever terminates.

Extending the example of Figure 4.2, the function:
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__attribute__(( nonnull(2), noreturn ))
void kill(struct person ∗p, struct person ∗q) {

/∗...∗/
printf("A person is killed at age %d", q→age);
exit(1);

}

gets the following signature after reengineering (assuming the first argument
becomes Current):

kill (q: POINTER [PERSON])
require

q 6=Void
ensure

False
end

GCC function attributes determined 266 precondition and 13 postcondi-
tion clauses in the programs of Table 4.2.

Globally used pointers Section 4.3.2 defined the notion of globally used
argument: an argument that is accessed (read or written) at least once
along every path in a routine’s body. Based on the same notions, for each
pointer argument p of a routine m that is globally used in m on all paths
(including argument-handling paths), AutoOO adds to m the precondition
require p 6=Void that p be non-Void. The precondition does not change the
behavior of the routine: if m were called with p = Void, m would eventually
crash in every execution when accessing a Void reference, and hence p 6=Void
is a necessary condition for m to correctly execute.

Through globally used pointer analysis, AutoOO introduced 3,507 pre-
condition clauses in the programs of Table 4.2.

Defensive programming is a programming style that tries to detect vio-
lations of implicit preconditions and takes countermeasures to continue ex-
ecution without crashes. For example, when function set_age in Figure 4.2
is called with a non-positive new_age, it returns without changing p’s age
attribute, thus avoiding corrupting it with an invalid value. While defen-
sive programming and programming with contracts have similar objectives—
defining necessary conditions for correct execution—they achieve them in
very different ways: while contracts clearly specify the semantics of interfaces
and assign responsibilities for correct execution, defensive programming just
tries to communicate failures while working around them. This fundamen-
tal difference is the reason why we do not use contracts to replace instances
of defensive programming when reengineering: doing so would change the
behavior of programs. In the case of set_age, for example, a precondition
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require new_age >0 would cause the program to terminate with an error when-
ever the precondition is violated, whereas the C implementation continues
execution without effects. In addition, C functions often use integer return
arguments as error codes to report the outcome of a procedure call; introduc-
ing contracts would make clients incapable of accessing those codes in case
of error.

Relaxed contracts for memory allocation The GCC distribution we
used in the experiments provides __attribute__ annotations (see Section
4.4.1) also for system libraries. In particular, the memory allocation functions
memcpy and memmove:

__attribute__ (( nonnull (1, 2) ))
extern void ∗memcpy(void ∗dest, const void ∗src, size_t n);

__attribute__ (( nonnull (1, 2) ))
extern void ∗memmove(void ∗dest, const void ∗src, size_t n);

require that their pointer arguments dest and src be non-Void. By running the
reengineering produced by AutoOO, we found that this requirement is often
spuriously violated at runtime: when the functions are called with the third
argument n equal to 0, they return without accessing either dest or src, which
can therefore safely be Void. Correspondingly, AutoOO builds the contracts
for these functions a bit differently:

require
n >0 implies (dest 6=Void and src 6=Void)

that is dest and src must be non-Void only if n is non-zero. This inconsistency
in GCC’s annotations does not have direct effects at runtime in C because
annotations are not checked. We ignore whether it might have other subtle
undesirable consequences as the compiler may use the incorrect information
to optimize binaries.

4.4.2 Exceptions
Object-oriented programming languages normally include dedicated mecha-
nisms for handling exceptional situations that may occur during execution.
While error handling is possible also in procedural languages such as C, where
it is typically implemented with functions returning special error codes, ex-
ceptions in object-oriented languages are more powerful because they can
traverse the call stack searching for a suitable handler; this makes it possi-
ble to easily cross the routine and class boundaries in exceptional situations,
without need to introduce a complex design that harms the natural modular
decomposition effective in all non-exceptional situations.
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Size (LOCS) Translation Binary
Procedural (C) O-O (Eiffel) # classes (s) size (MB)

hello world 8 15 1 1 1.1
micro httpd 565 1,983 16 1 1.3
xeyes 1,463 10,665 77 1 1.6
less 16,955 22,709 75 5 2.3
wget 46,528 61,040 178 24 4.1
links 70,980 108,726 227 31 12.5
vim 276,635 414,988 669 138 22.6
libcurl 37,836 70,413 272 17 –
libgmp 61,442 82,379 223 20 –
libgsl 238,080 378,025 729 81 –
Total 750,492 1,150,943 2,467 319 45.5

Table 4.2: Reengineering of 10 open-source programs.

C programmers can explicitly implement a similar mechanism that jumps
across function boundaries with the library functions setjmp (save an arbitrary
return point) and longjmp (jump back to it). C2Eif detects usages of these
library functions and renders them using exceptions. The technical details
of the translation can be found in Section 3.3.3. From the point of view of
the reengineering, however, the translation expresses the complex semantics
of longjmp naturally through the familiar exception handling mechanism.

6 usages of longjmp have been found in the programs of Table 4.2, which
have been replaced with exceptions.

We did not make a more extensive usage of exceptions, for example for
replacing return error codes. In many cases, it would have complicated the
object-oriented design and slowed down the program, without significant
benefits. A fine-grained analysis of the instances of defensive programming,
with the goal of selecting viable candidates that can be usefully translated
through exceptions, belongs to future work.

4.5 Correctness, Scalability, and Performance
In addition to the metrics of object-oriented design displayed in Table 4.1
and discussed in the previous sections, we evaluated the behavior of the
reengineering produced by AutoOO on the 10 programs in Table 4.2; the
same programs as already used for the evaluation of C2Eif (see Table 3.1).
All the experiments ran on the same system.

The reengineering of each program proceeds as previously shown in Fig-
ure 4.1, with the end-to-end process (from C source to object-oriented Eiffel
output) being push-button.

For each program used in our evaluation, Table 4.2 reports: the size of
the source procedural program in C (after processing by CIL); the size of
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the reengineered object-oriented program in Eiffel output by AutoOO; the
number of classes generated by the reengineering; the source-to-source time
taken by the reengineering (including both C2Eif’s translation and AutoOO’s
reengineering, but excluding compilation of Eiffel output to binary); the size
of the binary after compiling the Eiffel output with EiffelStudio5.

Correctness In all cases, the output of AutoOO successfully compiles with
EiffelStudio without need for any adjustment or modification. After compila-
tion, we ran extensive trials on the compiled reengineered programs to verify
that they behave as in their original C version. We performed some standard
usage sessions with the interactive applications (xeyes, less, links, and
vim) and verified that they behave as expected and they are usable interac-
tively. We also performed systematic usability tests for the other applications
(hello world, micro httpd, and wget) which can be used for batch pro-
cessing; and ran standard regression testsuites on the libraries. All usability
and regression tests execute and pass on both the C and the translated Eiffel
versions of the programs, with the same logged output.

Scalability of the reengineering process is demonstrated by the moderate
translation times (second to last column in Table 4.2) taken by AutoOO:
overall, reengineering 750 KLOC of C code into 1.1 MLOC of Eiffel code
took less than six minutes.

Performance We compared the performance of AutoOO’s reengineered
output against C2Eif’s non-reengineered output for the non-interactive ap-
plications and libraries of Table 4.2. The performance is nearly identical in
C2Eif and AutoOO for all programs but the libgsl testsuite, which even
executed 1.33 times faster in the reengineered AutoOO version. This shows
that the object-oriented reengineering produced by AutoOO improves the
design without overhead with respect to a bare non-reengineered translation.
The basic performance overhead of switching from C to Eiffel significantly
varies with the program type but, even when it is pronounced, it does not
preclude the usability of the translated application or library in standard
conditions. These conclusions carry over to programs reengineered with Au-
toOO, and every optimization introduced in the basic translation provided
by C2Eif will automatically result, at the end of the tool chain, in faster
reengineered applications.

5In EiffelStudio, libraries cannot be compiled without a client.
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4.6 Discussion: Created Object-Oriented Style
All object-oriented designs produced by AutoOO deploy a collection of classes
partitioned into bundle and datatype classes, as we explained in Section 4.3.
While this prevents a more varied gamut of designs from emerging as a result
of the automatic reengineering, in our experience it does not seem to hamper
the readability and usability of the reengineered programs, as we now briefly
demonstrate with a real-world example. We attribute this largely to the fact
that AutoOO produces sound reengineering in most cases, and programs with
correct behavior in all cases. Therefore, the straightforward output design is
understandable by programmers familiar with the application domain, who
can naturally extend or modify it to introduce new functionality or a more
refined design.

We have distributed to the Eiffel developers community a number of
widely used C libraries translated with AutoOO. One of them is MongoDB,
a document-oriented (non-relational) database.6 Consider a client applica-
tion that uses MongoDB’s API to open a connection with a database and
retrieve and print all documents in a collection tutorial.people. Following the
API tutorial, this could be written in C as shown in Figure 4.3 on the left. A
client using the MongoDB library translated and reengineered by AutoOO
would instead use the syntax shown in Figure 4.3 on the right.

On the one hand, the two programs in Figure 4.3 are structurally similar,
which entails that users familiar with the C version of MongoDB will have
no problem switching to its object-oriented counterpart, and would still be
able to understand the C documentation in the new context. On the other
hand, the program on the right nicely conforms to the object-oriented idiom:
variable definitions are replaced by object creations (lines 6 and 11); and
function calls become instance routine calls (lines 7, 12, 16, and 22). Routine
names are even more succinct, because they lose the prefixes “mongo_” and
“mongo_cursor_” unnecessary in the object-oriented version where the type of
the target object conveys the same information more clearly.

The only departure from traditional object-oriented style is the call to
the cursor destruction function on line 18, which remains a static routine call
with identical signature. AutoOO did not turn it into an instance routine
because its implementation can be called on null pointers, in which case it
returns without any effect:

int mongo_cursor_destroy(mongo_cursor ∗cursor) {
if(!cursor) return 0;
/∗ ... ∗/

}

6http://www.mongodb.org/display/DOCS/C+Language+Center

http://www.mongodb.org/display/DOCS/C+Language+Center
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1
2
3
4
5 // connect to database
6 mongo conn[1];
7 int status = mongo_connect(conn,
8 "127.0.0.1", 27017);
9

10 // iterate over database content
11 mongo_cursor cursor[1];
12 mongo_cursor_init(cursor, conn,
13 "tutorial.people");
14 while(mongo_cursor_next(cursor)
15 == MONGO_OK) {
16 bson_print(&cursor→current);
17 }
18 mongo_cursor_destroy(
19 &cursor);
20
21 // disconnect from database
22 mongo_destroy(conn);

conn: MONGO
status: INTEGER
cursor: MONGO_CURSOR

−− connect to database
create conn
status := conn.connect (

"127.0.0.1", 27017)

−− iterate over database content
create cursor
cursor.init (conn.address,

"tutorial.people")
from until cursor.next 6=Mongo_ok
loop

cursor.current.print
end
(create {MONGO_S}).mongo_cursor_destroy (

cursor.address)

−− disconnect from database
conn.destroy

Figure 4.3: A MongoDB client application written in C (left) and the same
application written for the AutoOO translation of MongoDB (right).

As discussed in Section 4.3.2, AutoOO does not reengineer such functions
because the target of an object-oriented call is not allowed to be Void. In such
cases, users may still decide that it is safe to refactor by hand such examples;
in any case, the AutoOO translation provides a proper reengineering of most
of the library functionalities.

4.7 Limitations

By and large, the evaluation with the programs of Table 4.2 demonstrates
that AutoOO is a scalable technique applicable to programs of considerable
size and producing good-quality object-oriented designs automatically.

All the limitations of our reengineering technique follow the decision to be
conservative, that is not to change the behavior in any case, to only extract
design information already present in the C programs, and to only introduce
refactorings with empirically demonstrated high success rates, in terms of
accurately capturing design elements. For example, Section 4.3.2 discussed
how a refactoring based on struct arguments passed by copy would lead to
less than 50% of sound refactorings, while we normally aim at success rates
over 90%.
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Gall [14] methodology no no – yes yes ? no
Jacobson [18] methodology no no – yes yes no –
Livadas [22] C–C++ yes no no no yes yes no
Kontogiannis [20] C–C++ yes no ? 10KL yes ? yes
Frakes [13] C–C++ yes no no 2KL yes ? no
Fanta [11] C++–C++ yes no no 120KL yes ? no
Newcomb [35] Cobol–OOSM yes yes no 168KL yes ? no
Mossienko [29] Cobol–Java yes no no 25KL yes no no
Sneed [45] Cobol–Java yes yes no 200KL yes ? no
Sneed [42] PL/I–Java yes yes no 10KL yes ? no
AutoOO C–Eiffel yes yes yes 750KL yes yes yes

Table 4.3: Comparison of approaches to O-O reengineering.

While these requirements make it possible to have a robust and fully
automatic technique, they may also be limiting in some specific cases where
users are willing to push the reengineering, accepting the risk of having to
revise the output of AutoOO before using it.

Formal correctness proofs. Another limitation of our work is the lack of
formal correctness proofs of the basic C translation and of the reengineering
steps. While the evaluation (discussed in Section 4.5) extensively tested
the translated applications without finding any unexpected behavior—which
gives us good confidence in the robustness of the results—this still falls short
of a fully formal approach such as [9].

4.8 Related Work

Reengineering [3] is a common practice—and an expensive activity [44]—
in professional software development. Given the wide adoption of languages
with object-oriented features, object-oriented reengineering is frequently nec-
essary.

Section 2.3 presented a survey of the existing approaches in the field;
Table 4.3 compares those approaches with AutoOO. A direct detailed com-
parison on specific object-oriented features is difficult to obtain as several of
these works focus on some aspects of the reengineering but provide few con-
crete details about other aspects or about how the reengineering is performed
on real code. Also, since AutoOO is currently the only publicly available tool
(denoted by the small caps yes), we couldn’t try the other approaches our-
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selves. This is the reason for the presence of “?” in the table, especially in
the column “instance routines”, corresponding to cases where we could not
figure out the details of how routines are refactored. In light of the evidence
collected (or lack thereof), it is fair to say that identifying instance routines
automatically without expert judgement is an open challenge; and so are
full source language support and complete automation. These features are a
novel contribution of AutoOO.

4.9 Summary and Conclusions
In this chapter we presented a new, completely automatic approach to object-
oriented reengineering of C programs. The supporting tool, AutoOO, scales
to applications and libraries of significant size, and produces reengineered
object-oriented programs that are directly compilable and usable with the
same behavior as the source C programs. The reengineered object-oriented
designs produced by AutoOO encapsulate attributes and routines operating
on them with a high degree of soundness—thus lowering coupling and in-
creasing cohesion—and make judicious usage of inheritance, contracts, and
exceptions to improve the quality of the object-oriented design.

Software reengineering techniques come in many flavours and serve a va-
riety of purposes, such as improving design, maintainability, or performance.
All those techniques – and in particular fully automatic ones – involve a
trade-off between the extent of the reengineering and the correctness of the
resulting code. We took a conservative approach, requiring that the reengi-
neered code be functionally equivalent to the original, which makes our tech-
nique applicable to realistic software of significant size, at the cost of limiting
the extent of possible code improvements.



Chapter 5

Java to Eiffel Translation

In addition to the translation of procedural C source code into object-oriented
Eiffel source code, we have also investigated the related problem of auto-
matically translating source code between different modern object-oriented
environments, in particular from Java to Eiffel. The results of this effort are
presented in this chapter.

5.1 Introduction

Reusability is an important software engineering concept actively advocated
for the last forty years. While reusability has been addressed for systems im-
plemented using the same programming language, it does not usually handle
interoperability with different programming languages. This chapter presents
a solution for the reuse of Java code within Eiffel programs based on a source-
to-source translation from Java to Eiffel.

The translation is implemented in the freely available tool J2Eif [17]; it
provides Eiffel replacements for the components of the Java runtime envi-
ronment, including Java Native Interface services and reflection mechanisms.
Since Eiffel compiles to native code, a valuable by-product of J2Eif is the
possibility of compiling Java applications to native code.

While Eiffel and Java are both object-oriented languages, the translation
of one into the other is tricky because superficially similar constructs, such
as those for exception handling, often have very different semantics. In fact,
correctness is arguably the main challenge of source-to-source translation:
Section 5.3 formalizes the most delicate aspects of the translation to describe
how they have been tackled and to give confidence in the correctness of the
translation.
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Our experiments demonstrate the practical usability of the translation
scheme and its implementation, and record the performance slow-down com-
pared to custom-made Eiffel applications: automatic translations of java.util
data structures, java.io services, and SWT applications can be re-used as Eiffel
programs, with the same functionalities as their original Java implementa-
tions.

Section 5.2 gives an overview of the architecture of J2Eif; Section 5.3
describes the translation in detail; Section 5.4 evaluates the implementation
with four experiments and points out its major limitations; Section 5.5 dis-
cusses related work.

5.2 Design Principles

J2Eif [17] is a stand-alone compiler with graphical user interface that trans-
lates Java programs to Eiffel programs. The translation is a complete Eiffel
program which replicates the functionalities of the Java source program by
including replacements of the Java runtime environment (most notably, the
Java Native Interface and reflection mechanisms). J2Eif is implemented in
Java.

Java 
Program 
Source 
Code

Eiffel 
Program 
Source 
CodeJava 

Libraries 
Source 
Code

JRE
Library
 Source 
Code

Native 
Libraries

Eiffel 
Compiler .exe

Helper
Classes

J2Eif

T1 T2 Tn

Figure 5.1: High-level view of J2Eif.
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High-level view.

Figure 5.1 shows the high-level usage of J2Eif. To translate a Java program,
the user provides the source code of the program, its Java dependencies, as
well as any external native libraries referenced by the program. J2Eif pro-
duces Eiffel source code that can be compiled by an Eiffel compiler such as
EiffelStudio. Native libraries called by native methods in Java are then di-
rectly called from Eiffel. While J2Eif can compile the complete code of the
Java Runtime Environment (JRE) library source, it comes with a precom-
piled version which drastically reduces the overall compilation time.

Translation.

J2Eif implements a mapping T : Java → Eiffel of Java code into Eiffel code.
Both languages follow the object-oriented paradigm and hence share several
notions such as objects, classes, methods, and exceptions. Nonetheless, the
precise semantics of each notion often differs between the two languages.
Section 5.3 describes all the aspects taken into account by the translation
and focuses on its particularly delicate features by formalizing them.

J2Eif implements the translation T as a series T1, . . . , Tn of successive
incremental transformations on the Abstract Syntax Tree. Every transfor-
mation Ti takes care of exactly one language construct that needs adaptation
and produces a program in an intermediate language Li which is a mixture
of Java and Eiffel constructs: the code progressively morphs from Java to
Eiffel code.

T ≡ Tn ◦ · · · ◦ T1, where


T1 : Java → L1

T2 : L1 → L2

· · ·
Tn : Ln−1 → Eiffel

The current implementation uses 35 such transformations (i.e., n = 35).
Combining small transformations has some advantages: several of the indi-
vidual transformations are straightforward to implement and all are simple
to maintain; it facilitates reuse when building other translations (for example
into a language other than Eiffel); the intermediate programs generated are
readable and easily reviewable by programmers familiar with Java and Eiffel.

5.3 Translating Java to Eiffel
This section describes the salient features of the translation T from Java
to Eiffel, grouped by topic. Eiffel and Java often use different names for
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Java Eiffel
class class

abstract/interface deferred
concrete effective
exception exception

Java Eiffel
member feature
field attribute

method routine
constructor creation procedure

Table 5.1: Object-oriented terminology in Java and Eiffel.

comparable object-oriented concepts; to avoid ambiguities, the present chap-
ter mentions both terms, whenever possible without affecting readability,
and uses only the appropriate one when discussing language-specific aspects.
Table 5.1 lists the Java and Eiffel names of fundamental object-oriented con-
cepts.

5.3.1 Language Features
We formalize some components of T by breaking it down into simpler func-
tions denoted by ∇; these functions are a convenient way to formalize T and,
in general, different than the transformations Ti discussed in Section 5.2; the
end of the present section sketches an example of differences between ∇’s
and Ti’s. The following presentation ignores the renaming scheme, discussed
separately (Section 5.3.4), and occasionally overlooks inessential syntactic
details. The syntax of Eiffel’s exception handling adheres to the working
draft 20.1 of the ECMA Standard 367; adapting it to work with the syntax
currently supported is trivial.

Classes and interfaces.

A Java program is defined by a collection of classes and interfaces; the func-
tion ∇C maps a single Java class or interface into an Eiffel class or deferred
(abstract) class.

T (C1, ..., Cn) = ∇C(C1), . . . ,∇C(Cn)
∇C(class name extend {body}) = class name ∇I(extend) ∇B(body) end
∇D(interface name extend {body}) = deferred class name ∇I(extend) ∇iB(body) end
where name is a class name; extend is a Java inheritance clause; and body a Java class body.

∇I translates Java inheritance clauses (extends and implements) into Eiffel
inherit clauses. The translation relies on two helper classes:

• JAVA_PARENT is ancestor to every translated class, to which it provides
helper routines for various services such as access to the native interface,
exceptions, integer arithmetic (integer division, modulo, and shifting
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have different semantics in Java and Eiffel), strings. The rest of this
section describes some of these services in more detail.

• JAVA_INTERFACE_PARENT is ancestor to every translated interface.

Java generic classes and interfaces may have complex constraints which
cannot be translated directly into Eiffel constraints on generics. T handles
usages of genericity with the same approach used by the Java compiler: it
erases the generic constraints in the translation but enforces the intended
semantics with explicit type casts added where needed.

Members (features).

∇B and ∇iB respectively translate Java class and interface bodies into Eiffel
code. The basic idea is to translate Java fields and (abstract) methods respec-
tively into Eiffel attributes and (deferred) routines. A few features of Java,
however, have no clear Eiffel counterpart and require a more sophisticated
approach:

• Anonymous classes are given an automatically generated name.

• Arguments and attributes in Java by default can be assigned to, unlike
in Eiffel where arguments are read-only and modifying attributes re-
quires setter methods. To handle these differences, the translation T
introduces a helper generic class JAVA_VARIABLE [G]. Instances of this
class replace Java variables; assignments to arguments and attributes
in Java are translated to suitable calls to the routines in the helper
class.

• Constructor chaining is made explicit with calls to super.

• Field hiding is rendered by the naming scheme introduced by T (Sec-
tion 5.3.4).

• Field initializations and initializers are added explicitly to every con-
structor.

• Inner classes are extracted into stand-alone classes, which can access
the same outer members (features) as the original inner classes.

• JavaDoc comments are ignored.

• Static members. Eiffel’s once routines can be invoked only if they belong
to effective (not deferred) classes; this falls short of Java’s semantics
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for static members of abstract classes. For each Java class C, the trans-
lation T introduces a class C_STATIC which contains all of C ’s static
members and is inherited by the translation of C; multiple inheritance
accommodates such helper classes. C_STATIC is always declared as ef-
fective (not deferred), so that static members are always accessible in
the translation as once routines.

• Vararg arguments are replaced by arguments of type array.

• Visibility. Eiffel’s visibility model is different from Java’s, as it requires,
in particular, to list all names of classes that can access a non-public
member. T avoids this issue by translating every member into a public
Eiffel feature.

Instructions.

∇M maps Java method bodies to Eiffel routine bodies. As expected, ∇M

is compositional: ∇M(inst1 ; inst2) = ∇M(inst1) ; ∇M(inst2), hence it is
sufficient to describe how ∇M translates Java instructions into Eiffel. The
translation of many standard instructions is straightforward; for example, the
Java conditional if (cond){doThen} else {doElse} becomes the Eiffel conditional
if ∇E(cond) then ∇M (doThen) else ∇M (doElse) end, where∇E maps Java expres-
sions to equivalent Eiffel expressions. The following presents the translation
of the constructs which differ the most in the two languages.

Loops. Loops are not straightforward to translate because Eiffel does not
provide control-flow breaking instructions (such as break), present in Java.
Correspondingly, the translation of while loops relies on an auxiliary func-
tion ∇W : JavaInstruction×{>,⊥} → EiffelInstruction which replicates the
semantics in presence of break (with t ∈ {>,⊥}):
∇M (while (stayIn) {body}) = from breakFlag := False

until not ∇E(stayIn) or breakFlag
loop ∇W (body, ⊥) end

∇W (break, t) = breakFlag := True

∇W (inst1 ; inst2, t) =

{
∇W (inst1, t) ; ∇W (inst2, >) if inst1 contains break
∇W (inst1, t) ; ∇W (inst2, t) if inst1 doesn’t contain break

∇W (atomicInst, >) = if not breakFlag then ∇M (atomicInst) end
∇W (atomicInst, ⊥) = ∇M (atomicInst)

The break instruction becomes, in Eiffel, an assignment of True to a fresh
boolean flag breakFlag, specific to each loop. Every instruction within the loop
body which follows a break is then guarded by the condition not breakFlag and
the loop is exited when the flag is set to True. Other types of loops (for,
do..while, foreach) and control-flow breaking instructions (continue, return)
are translated similarly.
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Exceptions. Both Java and Eiffel offer exceptions, but with very different
semantics and usage. The major differences are:

• Exception handlers are associated with routines in Eiffel (rescue block)
and with arbitrary, possibly nested, blocks in Java (try..catch blocks).

• The usage of control-flow breaking instructions (e.g., break) in Java’s
try..finally blocks complicates the propagation mechanism of exceptions
[30].

The function ∇M translates Java’s try..catch blocks into Eiffel’s agents (sim-
ilar to closures, function objects, or delegates) with rescue blocks, so that
exception handling is block-specific and can be nested in Eiffel as it is in
Java:
∇M (try {doTry} catch (t e) {doCatch}) = skipFlag := False

(agent (args)
do
if not skipFlag then
∇M (doTry)

end
rescue
if e.conforms_to (∇T (t)) then
∇M (doCatch)
Retry := True
skipFlag := True

else
Retry := False

end
end).call

∇M (throw exp) = (create {EXCEPTION}).raise(∇E(exp))

The agent’s body contains the translation of Java’s try block. If execut-
ing it raises an exception, the invocation of raise on a fresh exception object
transfers control to the rescue block. The rescue’s body executes the transla-
tion of the catch block only if the type of the exception raised matches that
declared in the catch (∇T translates Java types to appropriate Eiffel types,
see Section 5.3.2). Executing the catch block may raise another exception;
then, another invocation of raise would transfer control to the appropriate
outer rescue block: the propagation of exceptions works similarly in Eiffel
and Java. On the contrary, the semantics of Eiffel and Java diverge when
the rescue/catch block terminates without exceptions. Java’s semantics pre-
scribes that the computation continues normally, while, in Eiffel, the compu-
tation propagates the exception (if Retry is False) or transfers control back to
the beginning of the agent’s body (if Retry is True). The translation ∇M sets
Retry to False if catch’s exception type is incompatible with the exception
raised, thus propagating the exception. Otherwise, the rescue block sets Retry
and the fresh boolean flag skipFlag to True: control is transferred back to the
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agent’s body, which is however just skipped because skipFlag = True, so that
the computation continues normally after the agent without propagating any
exception.

An exception raised in a try..finally block is normally propagated after
executing the finally; the presence of control-flow breaking instructions in
the finally block, however, cancels the propagation. For example, the code
block:

b=2;
while(true) {

try {
throw new Exception();

} finally {
b++;
break;

}
}
b++;

terminates normally (without exception) with a value of 4 for the variable b.
The translation ∇M renders such behaviors with a technique similar to

the Java compiler: it duplicates the instructions in the finally block, once for
normal termination and once for exceptional termination:

∇M (try {doTry} finally {doFinally}) = skipFlag := False
(agent (args)
do
if not skipFlag then
∇M (doTry)
∇M (doFinally)

end
rescue
∇M (doFinally)
if breakFlag then
Retry := True
skipFlag := True

end
end).call

A break sets breakFlag and, at the end of the rescue block, Retry and skipFlag;
as a result, the computation continues without exception propagation. Other
control-flow breaking instructions are translated similarly.

Other instructions. The translation of a few other constructs is worth
discussing.

• Assertions. Java’s assert exp raises an exception if exp evaluates to false,
whereas a failed check exp end in Eiffel sends a signal to the runtime
which terminates execution or invokes the debugger. Java’s assertions
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are therefore translated to:
if not exp then ∇M(throw (new AssertionError ())) end

• Block locals are moved to the beginning of the current method; the
naming scheme (Section 5.3.4) prevents name clashes.

• Calls to parent’s methods. Eiffel’s Precursor can only invoke the par-
ent’s version of the overridden routine currently executed, not any fea-
ture of the parent. The translation T augments every method with an
extra boolean argument predecessor and calls Precursor when invoked
with predecessor set to True; this accommodates any usage of super:

∇B(type method(args) {body}) = method (args ; predecessor: BOOLEAN): ∇T (type)
do
if predecessor then
Precursor (args, False)

else
∇M (body)

end
end

∇E(method(exp)) = method (∇E(exp), False)
∇E(super.method(exp)) = method (∇E(exp), True)

• Casting and type conversions are adapted to Eiffel with the services
provided by the helper class JAVA_TYPE_HELPER.

• Expressions used as instructions are wrapped into the helper routine
dev_null (a: ANY): ∇M(exp) = dev_null (∇E (exp)).

• Switch statements become if..elseif..else blocks in Eiffel, nested within
a loop to support fall-through.

How J2Eif implements T .

As a single example of how the implementation of T deviates from the for-
mal presentation, consider J2Eif’s translation of exception-handling blocks
try{doTry} catch(t e){doCatch} finally{doFinally}:

skipFlag := False
rethrowFlag := False
(agent (args)

do
if not skipFlag then
∇M (doTry)

else
if e.conforms_to (∇T (t)) then
∇M (doCatch)

else
rethrowFlag := True

end
end
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skipFlag := True
∇M (doFinally)
if rethrowFlag and not breakFlag then

(create {EXCEPTION}).raise
end

rescue
if not skipFlag then

skipFlag := True
Retry := True

end
end).call

This translation applies uniformly to all exception-handling code and avoids
duplication of the finally block, hence the agent’s body structure is more
similar to the Java source. The formalization ∇M above, however, allows
for a more focused presentation and lends itself to easier formal reasoning
(see Section 5.4.1). A correctness proof of the implementation could then
establish that ∇M and the implementation J2Eif describe translations with
the same semantics.

5.3.2 Built-in Types
The naming scheme (Section 5.3.4) handles references to classes and inter-
faces as types; primitive types and some other type constructors are discussed
here.

• Primitive types with the same machine size are available in both Java
and Eiffel: Java’s boolean, char, byte, short, int, long, float, and double
exactly correspond to Eiffel’s BOOLEAN, CHARACTER_32, INTEGER_8,
INTEGER_16, INTEGER_32, INTEGER_64, REAL_32, and REAL_64.

• Arrays in Java become instances of Eiffel’s helper class JAVA_ARRAY,
which inherits from the standard EiffelBase ARRAY class and completes
it with all missing Java operations.

• Annotations and enumerations are syntactic sugar for interfaces and
classes respectively extending java.lang.annotation.Annotation and java.lang.
Enum.

5.3.3 Runtime and Native Interface
This section describes how J2Eif replicates, in Eiffel, JRE’s functionalities.

Reflection.

Compared to Java, Eiffel has only limited support for reflection and dynamic
loading. The translation T ignores dynamic loading and includes all classes
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required by the system for compilation. The translation itself also generates
reflection data about every class translated and adds it to the produced
Eiffel classes; the data includes information about the parent class, fields,
and methods, and is stored as objects of the helper class JAVA_CLASS. For
example, T generates the routine get_class for JAVA_LANG_STRING_STATIC,
the Eiffel counterpart to the static component of java.lang.String, as follows:

get_class: JAVA_CLASS
once ("PROCESS")

create Result.make ("java.lang.String")
Result.set_superclass (create {JAVA_LANG_OBJECT_STATIC})
Result.fields.extend (["count" field data])
Result.fields.extend (["value" field data])
...
Result.methods.extend (["equals" method data]))
...

end

Concurrency.

J2Eif includes a modified translation of java.lang.Thread which inherits from
the Eiffel THREAD class and maps Java threads’ functionalities to Eiffel
threads; for example, the method start() becomes a call to the routine launch
of class THREAD. java.lang.Thread is the only JRE library class which required
a slightly ad hoc translation; all other classes follow the general scheme pre-
sented in the present chapter.

Java’s synchronized methods work on the implicit monitor associated
with the current object. The translation to Eiffel adds a mutex attribute to
every class which requires synchronization, and explicit locks and unlocks at
the entrance and exit of every translated synchronized method:

∇B(synchronized type method(args){body}) = method (args): ∇T (type)
do

mutex.lock
∇M (body)
mutex.unlock

end

Native interface.

Java Native Interface (JNI) supports calls between pre-compiled libraries
and Java applications. JNI is completely independent of the rest of the
Java runtime: a C struct includes, as function pointers, all references to
native methods available through the JNI. Since Eiffel includes an extensive
support to call external C code through the CECIL library, replicating JNI’s
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functionalities in J2Eif is straightforward. The helper class JAVA_PARENT—
accessible in every translated class—offers access to a struct JNIEnv, which
contains function pointers to suitable functions wrapping the native code
with CECIL constructs. This way, the Eiffel compiler is able to link the
native implementations to the rest of the generated binary.

This mechanism works for all native JRE libraries except for the Java
Virtual Machine (jvm.dll or jvm.so), which is specific to the implementation
(OpenJDK in our case) and had to be partially re-implemented for usage
within J2Eif. The current version includes new implementations of most
JVM-specific services, such as JVM_FindPrimitiveClass to support reflection or
JVM_ArrayCopy to duplicate array data structures, and verbatim replicates
the original implementation of all native methods which are not JVM-specific
(such as JVM_CurrentTimeMillis which reads the system clock). The experi-
ments in Section 5.4 demonstrate that the current JVM support in J2Eif is
extensive and sufficient to translate correctly many Java applications.

Garbage collector.

The Eiffel garbage collector is used without modifications; the marshalling
mechanism can also collect JNI-maintained instances.

5.3.4 Naming
The goal of the renaming scheme introduced in the translation T is three-
fold: to conform to Eiffel’s naming rules, to make the translation as readable
as possible (i.e., to avoid cumbersome names), and to ensure that there are
no name clashes due to different conventions in the two languages (for exam-
ple, Eiffel is completely case-insensitive and does not allow in-class method
overload).

To formalize the naming scheme, consider the functions η, φ, and λ:

• η normalizes a name by successively (1) replacing all “_” with “_1”,
(2) replacing all “.” with “_”, and (3) changing all characters to
uppercase—for example, η(java.lang.String) is JAVA_LANG_STRING;

• φ(n) denotes the fully-qualified name of the item n—for example,
φ(String) is, in most contexts, java.lang.String;

• λ(v) is an integer denoting the nesting depth of the block where v is
declared—in the method void foo(int a){int b; for(int c=0;...)...} for exam-
ple, it is λ(a) = 0, λ(b) = 1, λ(c) = 2.
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Then, the functions ∆C ,∆F ,∆M ,∆L respectively define the renaming scheme
for class/interface, field, method, and local name; they are defined as follows,
where ⊕ denotes string concatenation, “className” refers to the name of the
class of the current entity, and ε is the empty string.

∆C(className) = η(φ(className))
∆F (fieldName) = “field” ⊕ λ(fieldName) ⊕ “_” ⊕ fieldName ⊕ “_” ⊕ ∆C(className)
∆L(localName) = “local” ⊕ λ(localName) ⊕ “_” ⊕ localName
∆M (className(args)) = “make_” ⊕ ∆A(args) ⊕ ∆C(className)
∆M (methodName(args)) = “method_” ⊕ methodName ⊕ ∆A(args)

∆A(t1 n1, . . . , tm nm) =

{
ε if m = 0

“from_” ⊕ δ(t1)⊕ . . .⊕ δ(tm) if m > 0

δ(t) =

{
“p” ⊕ t if t is a primitive type
t otherwise

The naming scheme renames classes to include their fully qualified name. It
labels fields and appends to their name their nesting depth (higher than
one for nested classes) and the class they belong to; similarly, it labels
locals and includes their nesting depth in the name. It pre-pends “make”
to constructors—whose name in Java coincides with the class name—and
“method” to other methods. To translate overloaded methods, it includes a
textual description of the method’s argument types to the renamed name,
according to function ∆A; an extra p distinguishes primitive types from their
boxed counterparts (e.g., int and java.lang.Integer). Such naming scheme for
methods does not use the fully qualified name of argument types. This
favors the readability of the names translated over certainty of avoiding
name clashes: a class may still overload a method with arguments of dif-
ferent type but sharing the same unqualified name (e.g., java.util.List and
org.eclipse.Swt.Widgets.List). This, however, is extremely unlikely to occur in
practice, hence the chosen trade-off is reasonable.

5.4 Evaluation
This section briefly discusses the correctness of the translation T (Section
5.4.1); evaluates the usability of its implementation J2Eif with four case
studies (Section 5.4.2); and concludes with a discussion of open issues (Sec-
tion 5.4.3).

5.4.1 Correctness of the Translation
While the formalization of T in the previous sections is not complete and
overlooks some details, it is useful to present the translation clearly, and it
even helped the authors find a few errors in the implementation when its
results did not match the formal model. Assuming an operational semantics
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for Java and Eiffel (see [36]), one can also reason about the components of
T formalized in Section 5.3 and increase the confidence in the correctness of
the translation. This section gives an idea of how to do it; a more accurate
analysis would leverage a proof assistant to ensure that all details are taken
care of appropriately.

The operational semantics defines the effect of every instruction I on the
program state: σ I−→ σ′ denotes that executing I on a state σ transforms the
state to σ′. The states σ, σ′ may also include information about exceptions
and non-terminating computations. While a Java and an Eiffel state are in
general different, because they refer to distinct execution models, it is possi-
ble to define an equivalence relation ' that holds for states sharing the same
“abstract” values [36], which can be directly compared. With these conven-
tions, it is possible to prove correctness of the formalized translation: the
effect of executing a translated Eiffel instruction on the Eiffel state replicates
the effect of executing the original Java instruction on the corresponding Java
state. Formally, the correctness of the translation of a Java instruction I is
stated as: “For every Java state σJ and Eiffel state σE such that σJ ' σE, if
σJ

I−→ σ′J and σE
∇M (I)−−−−→ σ′E then σ′J ' σ′E.”

The proof for the the Java blockB: try {doTry} catch (t e) {doCatch}, trans-
lated to ∇M(B) as shown on page 75, is now sketched. A state σ is split
into two components σ = 〈v, e〉, where e is ! when an exception is pending
and ? otherwise. The proof works by structural induction on B; all numeric
references are to Nordio’s operational semantics [36, Chap. 3]; for brevity,
consider only one inductive case.

• doTry raises an exception handled by doCatch: 〈vJ , ?〉
doTry−−−→ 〈v′J , !〉, the

type τ of the exception raised conforms to t, and 〈v′J , !〉
doCatch−−−−→ 〈v′′J , e〉,

hence 〈vJ , ?〉
B−→ 〈v′′J , e〉 by (3.12.4). Then, both 〈vE, ?〉

∇M (doTry)−−−−−−→ 〈v′E, !〉
and 〈v′E, !〉

∇M (doCatch)−−−−−−−−→ 〈v′′E, e′〉 hold by induction hypothesis, for some
v′E ' v′J , v′′E ' v′′J , and e′ ' e. Also, e.conforms_to (∇T (t)) evaluates to

false on the state v′E. In all, 〈vE, ?〉
∇M (B)−−−−→ 〈v′′E, e′〉 by (3.10) and the

rule for if..then.

5.4.2 Experiments
Table 5.2 shows the results of four experiments run with J2Eif on a Windows
Vista machine with a 2.66 GHz Intel dual-core CPU and 4 GB of mem-
ory. Each experiment consists in the translation of a program (stand-alone
application or library). Table 5.2 reports: (1) the size in lines of code of
the source (J for Java) and transformed program (E for Eiffel); (2) the size
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Size (locs) #Classes Time Binary Size #Required
J E J E (sec.) (MB) Classes

HelloWorld 5 92 1 2 1 65 1,208
SWT snippet 34 313 1 6 47 88 1,208 (317)
java.util.∗ 51,745 91,162 49 426 7 65 1,175
java.io tests 11,509 28,052 123 302 6 65 1,225

Table 5.2: Experimental results.

in number of classes; (3) the source-to-source translation time (in seconds),
which does not include the compilation from Eiffel source to binary; (4) the
size (in MBytes) of the binaries generated by EiffelStudio; (5) the number of
dependent classes needed for the compilation (the SWT snippet entry also
reports the number of SWT classes in parentheses). The rest of the section
discusses the experiments in more detail.

HelloWorld. The HelloWorld example is useful to estimate the minimal
number of dependencies included in a stand-alone application in order to
emulate the Java runtime. The size of 65 MB is the smallest footprint of any
application generated with J2Eif.

SWT snippet. The SWT snippet generates a window with a browsable
calendar and a clock. While simple, the example demonstrates that J2Eif
correctly translates GUI applications and replicates their behavior: this en-
ables Eiffel programmers to include in their programs services from libraries
such as SWT.

java.util.∗ classes. Table 5.3 reports the results of performance experiments
on some of the translated versions of the 49 data structure classes in java.util.
For each Java class with an equivalent data structure in EiffelBase, we per-
formed tests which add 100 elements to the data structure and then perform
10000 removals of an element which is immediately re-inserted. Table 5.3
compares the time (in ms) to run the test using the translated Java classes
(column 2) to the performance with the native EiffelBase classes (column 4).

The overhead introduced by some features of the translation adds up in
the tests and generates the significant overall slow-down shown in Table 5.3.
The features that most slowed down the translated code are: (1) the indi-
rect access to fields via the JAVA_VARIABLE class; (2) the more structured
(and slower) translation of control-flow breaking instructions; (3) the han-
dling of exceptions with agents (whose usage is as expensive as a method
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Java class Translated Java time Eiffel class Eiffel time Slowdown
ArrayList 582 ARRAYED_LIST 139 4.2
Vector 620 ARRAYED_LIST 139 4.5
HashMap 1,740 HASH_TABLE 58 30
Hashtable 1,402 HASH_TABLE 58 24.2
LinkedList 560 LINKED_LIST 94 6
Stack 543 ARRAYED_STACK 26 20.9

Table 5.3: Performance of translated java.util classes.

Overall Average time Slowdown
time (s) per test (ms)

Java 4 5 1
Eiffel 9 11 2.2

Table 5.4: Performance in the java.io test suite.

call). Applications that do not heavily exercise data structures (such as GUI
applications) are not significantly affected and do not incur a nearly as high
overhead.

java.io test suite. The part of the Mauve test suite [27] focusing on test-
ing input/output services consists of 102 classes defining 812 tests. The tests
with J2Eif excluded 10 of these classes (and the corresponding 33 tests) be-
cause they relied on unsupported features (see Section 5.4.3). The functional
behavior of the tests is identical in Java and in the Eiffel translation: both
runs fail 25 tests and pass 754. Table 5.4 compares the performance of the
test suite with Java against its Eiffel translation; we consider the two-fold
slowdown usable and reasonable—at least in a first implementation of J2Eif.

5.4.3 Limitations
There is a limited number of features which J2Eif does not handle adequately;
ameliorating them belongs to future work.

• Unicode strings. J2Eif only supports the ASCII character set; Unicode
support in Eiffel is quite recent.

• Serialization mechanisms are not mapped adequately to Eiffel’s.

• Dynamic loading mechanisms are not rendered in Eiffel; this restricts
the applicability of J2Eif for applications heavily depending on this
mechanism, such as J2Eif itself which builds on the Eclipse framework.
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• Soft, weak, and phantom references are not supported, because similar
notions are currently not available in the Eiffel language.

• Readability. While the naming scheme tries to strike a good balance
between readability and correctness, the generated code may still be
less pleasant to read than in a standard Eiffel implementation.

• Size of compiled code. The generated binaries are generally large. A
finer-grained analysis of the dependencies may reduce the JRE compo-
nents that need to be included in the compilation.

5.5 Related Work
As far as fully automatic translations are concerned, compilation from a high-
level language to a low-level language (such as assembly or byte-code) is of
course a widespread technology. The translation of a high-level language
into another high-level language with different features—such as the one
performed by J2Eif—is much less common; the closest results have been in
the rewriting of domain-specific languages, such as TXL [4], into general-
purpose languages.

Google web toolkit [15] (GWT) includes a project involving translation of
Java into JavaScript code. The translation supports running Java on top of
JavaScript, but its primary aims do not include readability and modifiability
of the code generated, unlike the present chapter’s translation. Another rel-
evant difference is that GWT’s translation lacks any formalization and even
the informal documentation does not detail which features are not perfectly
replicated by the translation. The documentation warns the users that “sub-
tle differences” may exist,1 but only recommends testing as a way to discover
them.

5.6 Summary
This chapter presented a translation of Java programs into Eiffel, and its
implementation in the freely available tool J2Eif [17]. The translation has
been formalized in order to increase confidence in its correctness, and the
usability of J2Eif has been evaluated on a set of four programs of varying
complexity.

1http://code.google.com/webtoolkit/doc/latest/tutorial/JUnit.html

http://code.google.com/webtoolkit/doc/latest/tutorial/JUnit.html
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Chapter 6

Conclusions

This dissertation includes multiple contributions to the state of the art in
programming language translation and object-oriented reengineering. We
have developed a technique for automatic migration of program source code
from C, a legacy programming language, into Eiffel, a modern object-oriented
environment. The technique has been implemented in a freely available tool
C2Eif.

We have also proposed an approach to object-oriented reengineering of C
programs, which we implemented as a C2Eif extension, called AutoOO. We
confirmed the soundness and practicality of both techniques with an extensive
evaluation on a number of real-world applications and libraries, including the
editor vim and the math library libgsl. Our translation produces object-
oriented code with high level of encapsulation and introduces inheritance,
contracts, and exceptions where appropriate.

Lastly, we have investigated the feasibility of translating code between
modern object-oriented environments and developed J2Eif: a fully automatic
translator from Java into Eiffel.

There are two major differences between the present work and existing
approaches to code migration and object-oriented reengineering. First, our
translation process is completely automatic: it produces ready-to-compile,
functionally equivalent target code, without any human intervention. Second,
our tools and techniques support the full source language: they do not shy
away from the trickier aspects of the translation and reengineering – be it
pointer arithmetic, calls to external libraries or creation of instance routines
– which makes them applicable to real-world code.
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6.1 Future Work
The main focus of the dissertation has been to investigate to what extent
a fully automatic translation can be achieved. While we paid considerable
attention to generating readable and understandable code, we believe there
is still potential for improvement in this area.

Our technique for object-oriented reengineering might be overly conser-
vative in some cases. We do not perform a refactoring unless it is guaranteed
to preserve the program behavior and is expected, with high confidence, to
be sound. Future work should investigate the cases where this approach is
too restrictive and extend the reengineering to code elements (such as bundle
classes) that are currently kept unmodified.
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