
Is Branch Coverage a Good Measure of
Testing Effectiveness?

Yi Wei1, Bertrand Meyer1 and Manuel Oriol2

1 Chair of Software Engineering, ETH Zurich, Switzerland,
{yi.wei, bertrand.meyer}@inf.ethz.ch

2 Department of Computer Science, University of York, United Kindom,
manuel@cs.york.ac.uk

Abstract. Most approaches to testing use branch coverage to decide on the qual-
ity of a given test suite. The intuition is that covering branches relates directly to
uncovering faults. The empirical study reported here applied random testing to
14 Eiffel classes for a total of 2520 hours and recorded the number of uncovered
faults and the branch coverage over time. For the tested classes, (1) random test-
ing reaches 93% branch coverage (2) it exercises almost the same set of branches
every time, (3) it detects different faults from execution to execution, (4) during
the first 10 minutes of testing, while branch coverage increases rapidly, there is a
strong correlation between branch coverage and the number of uncovered faults,
(5) over 50% of the faults are detected at a time where branch coverage hardly
changes, and the correlation between branch coverage and the number of uncov-
ered faults is weak.
These results provide evidence that branch coverage is not a good stopping cri-
terion for random testing. They also show that branch coverage is not a good
indicator for the effectiveness of a test suite.

Keywords: random testing, branch coverage, experimental evaluation

1 Introduction

Various studies[11, 4] show that random testing is an effective way of detecting faults.
Random testing is also attractive because it is easy to implement and widely applicable.
For example, when insufficient information is available to perform systematic testing,
random testing is more practical than any alternative [10]. Many practitioners think
that, to evaluate the effectiveness of a strategy, branch coverage –the percentage of
branches of the program that the test suite exercises – is the criterion of choice. It is
a weaker indicator of test suite quality than other coverage criteria such as predicate
coverage or path coverage [15]. Branch coverage is widely used because of its ease of
implementation and its low overhead on the execution of the program [18] under test. As
an example the European Cooperation for Space Standardization (ECSS) gives 100%
branch coverage as one of the measures to assure the quality of a critical software [6].3

3 Section 6.2.3.2

Many practitioners and researchers dismiss random testing because it only achieves
low branch coverage. We used AutoTest [4], an automatic, random-based testing tool
for Eiffel, to gain insights on three questions: (1) the actual branch coverage achieved
by testing Eiffel classes with AutoTest, (2) whether the achieved branch coverage corre-
lates with the number of bugs found in the code, (3) whether branch coverage is a good
stopping criterion for random testing. Despite the popularity of both random testing and
branch coverage, there is little data available on the topic.

We tested 14 Eiffel classes using our fully automated random testing tool AutoTest
for 2520 hours. AutoTest tested each class in 30 runs with each run 6 hour long. For
each run, we recorded the exercised branches and faults detected over time. The main
results are:

– Random testing reaches 93% branch coverage on average.
– Different test runs with different seeds for the pseudo-random number generator of

the same class exercise almost the same branches, but detect different faults.
– At the beginning of the testing session, branch coverage and faults both increase

dramatically and are strongly correlated.
– 90% of all the exercised branches are exercised in the first 10 minutes. After 10

minutes, the branch coverage level increases slowly. After 30 minutes, branch cov-
erage further increases by only 4%.

– Over 50% of faults are detected after 30 minutes.
– There is a weak correlation between number of faults found and coverage over the
2520 hours of testing.

The main implication of these results is that branch coverage is an inadequate stop-
ping criterion for random testing. As AutoTest conveniently builds test suites randomly
as it tests the code, the branch coverage achieved at any point in time corresponds to
the branch coverage of the test suite built since the beginning of the testing session. Be-
cause there is a strong correlation between faults uncovered and branch coverage when
coverage increases, higher branch coverage implies uncovering more faults. However,
half of the faults can be further discovered with hardly any increase in coverage. This
confirms that branch coverage by itself is not in general a good indicator of the quality
of a test suite.

A package is available online4 containing the source code of the AutoTest tool and
instructions to reproduce the experiment.

Section 2 describes the design of our experiment. Section 3 presents our results.
We discuss the results in Section 4 and the threats to validity in Section 5. We present
related work in Section 6 and conclude in Section 7.

2 Experiment Design

The experiment on which we base our results consists in running automated random
testing sessions of Eiffel classes. We first describe contract-based unit testing for object-
oriented (O–O) programs, then introduce AutoTest, and present the classes under test,
the testing time and the computing infrastructure.

4 http://se.inf.ethz.ch/people/wei/download/branch_coverage.zip

2.1 Contract-Based Unit Testing for O–O Programs

In O–O programs, a unit test can be assimilated to a routine (method) call on an instance
using previously created instances as arguments. Test engineers write unit tests and
check that the result of calls are equal to pre-calculated values. In a Hoare-triple style
this means that a unit test can be modelled as (v, o, o1,... are variables, inito,inito1 ...
expressions that return instances, m the routine called, and v0 a value):

{}o := inito; o1 := inito1 ; ...; v := o.m(o1, ..., on){v = v0}

In a contract-enabled environment, routines are equipped with contracts from the start:

{Pre}o.m(o1, ..., on){Post}

Unit tests can rely on contracts to check the validity of the call. It then consists only of
writing the code to initialize instances that would satisfy the precondition of the routine:

{}o := inito; o1 := inito1 ; ...{Pre}

In this article we use contract-based automated random testing. In such an approach the
testing infrastructure automatically takes care of this last part. In practice, it generates
the sequence of instructions at random and proceeds with the call.

When making a call, if the generated instances do not satisfy the precondition of the
routine, the result of the call is ignored and not counted as a test. After the precondition
is checked, any contract violation or any exception triggered in the actual call then
corresponds to a failure in the program.

As the random testing tool is not able to avoid executing similar test cases, it might
uncover the same failure multiple times. Thus, it maps failures to faults by defining a
fault as a unique triple:

< m, line number of the failure, type of exception >

When tests are executed, branch coverage is calculated in a straightforward manner
as:

Branch Coverage =
Number of exercised branches

Number of branches

2.2 The AutoTest Tool

This section presents a general view of how AutoTest works. More detailed explanations
on AutoTest are available in previous publications [4].

AutoTest is a tool implementing a random testing strategy for Eiffel and is integrated
to EiffelStudio 6.3 [2]. Given a set of classes and a time frame, AutoTest tries to test all
their public routines in the time frame.

To generate test cases for routines in specified classes, AutoTest repeatedly performs
the following three steps:

Select routine. AutoTest maintains the number of times that each routine has been
tested, then it randomly selects one of the least tested routines as the next routine under
test, thus trying to test routines in a fair way.

Prepare objects. To prepare objects needed for calling the selected routine, Au-
toTest distinguishes two cases: basic types and reference types.

For each basic type such as INTEGER, DOUBLE and BOOLEAN, AutoTest main-
tains a predefined value set. For example, for INTEGER, the predefined value set is
0,+/ − 1,+/ − 2,+/ − 10,+/ − 100,maximum and minimum integers. It then
chooses at random either to pick a predefined value or to generate it at random.

AutoTest also maintains an object pool with instances created for all types. When
selecting a value of a reference type, it either tries to create a new instance of a conform-
ing type by calling a constructor at random or it retrieves a conforming value from the
object pool. This allows AutoTest to use old objects that may have had many routines
called on them, resulting in states that would otherwise be unreachable.

Invoke routine under test. Eventually, the routine under test is called with the
selected target object and arguments. The result of the execution, possible exceptions
and its branch coverage information is recorded for later use.

2.3 Experiment Setup

Class selection. We chose the classes under test from the library EiffelBase [1] version
5.6. EiffelBase is production code that provides basic data structures and IO function-
alities. It is used in almost every Eiffel program. The quality of its contracts should
therefore be better than average Eiffel libraries. This is an important point because we
assume the contracts to be correct. In order to increase the representativeness of the test
subjects, we tried to pick classes with various code structure and intended semantics.
Table 1 shows the main metrics for the chosen classes. Note that the branches shown in
Table 1 is the number of testable branches, obtained by subtracting dead branches from
the total number of branches in the corresponding class.

Table 1. Metrics for tested classes

Class LOC Routines Contract assertions Faults Branches Branch Coverage
ACTIVE LIST 2433 157 261 16 222 92%
ARRAY 1263 92 131 23 118 98%
ARRAYED LIST 2251 148 255 22 219 94%
ARRAYED SET 2603 161 297 20 189 96%
ARRAYED STACK 2362 152 264 10 113 96%
BINARY SEARCH TREE 2019 137 143 42 296 83%
BINARY SEARCH TREE SET 1367 89 119 10 123 92%
BINARY TREE 1546 114 127 47 240 85%
FIXED LIST 1924 133 204 23 146 90%
HASH TABLE 1824 137 177 22 177 95%
HEAP PRIORITY QUEUE 1536 103 146 10 133 96%
LINKED CIRCULAR 1928 136 184 37 190 92%
LINKED LIST 1953 115 180 12 238 92%
PART SORTED TWO WAY LIST 2293 129 205 34 248 94%
Average 1950 129 192 23 189 93%
Total 27302 1803 2693 328 2652 93%

Test runs. We tested each class in 30 runs with different seeds with each run 6 hour
long. This supposedly made the test runs long enough so that branch coverage level
reaches a plateau. But we found out that even after 16 hours, random testing is still
capable of exercising some new branches with a very low probability. We chose 6 hour
runs because the branch coverage level already increases very slowly after that, and
because 6 hours corresponds to an overnight testing session.

Computing infrastructure. We conducted the experiment on 9 PCs with Pentium 4
at 3.2GHz, 1GB of RAM, running Linux Red Hat Enterprise 4. The version of AutoTest
used in the experiment is modified to include instrumentation for monitoring the branch
coverage. AutoTest was the only CPU intensive program running during testing.

3 Results

This section presents results that answer five main questions:

1. Is the level of the branch coverage achieved by random testing predictable?
2. Is the branch coverage exercised by random testing similar from one test run to

another?
3. Is the number of faults discovered by random testing predictable?
4. Are the faults uncovered by different test runs similar?
5. Is there a correlation between the level of coverage and the number of faults uncov-

ered?

3.1 Predictability of coverage level

Because AutoTest might not be able to test all branches of a class due to its random
nature, it is unlikely that testing sessions achieve total coverage, or even just constant
results over all tested classes. As an example, it might be extremely difficult to sat-
isfy a complex precondition guarding a routine with such a random approach. Another
example is that the visibility of a routine might not let AutoTest test it freely.

This intuition is confirmed by the results presented in Figure 1 which shows the
median of the branch coverage level for each class over time. The branch coverage
level ranges from 0 to 1. As a first result, we can see that the branch coverage of some
classes reaches a plateau at less than 0.85 while most of them have a plateau at or above
0.9. The thick curve in Figure 1 is the median of medians of the branch coverage level
of all the classes. Over all 14 classes, the branch coverage level achieved after 6 hours
of testing ranges from 0.82 to 0.98. On average, the branch coverage level is 0.93, with
a standard deviation of 0.04, corresponding to 4.67% of the median.

While the maximum coverage is variable from one class to another, the actual evolu-
tion of branch coverage compared to the maximum coverage achieved through random
testing is similar: 93% of all exercised branches are exercised in the first 10 minutes,
96% in 30 minutes, and 97% in the first hour. Section 4 contains an analysis of branches
not exercised.

In short, the branch coverage level achieved by random testing depends on the struc-
ture of the class under test and increases very fast in the first 10 minutes of testing and
then very slowly afterwards.

0 30 60 90 120 150 180 210 240 270 300 330 360
0.5

0.6

0.7

0.8

0.9

1

1.1

Time (minutes)

B
ra

n
ch

 c
o

ve
ra

g
e

le
ve

l

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of medians

Fig. 1. Medians of the branch coverage level for each class over time and their median

3.2 Similarity of coverage

Another important question is whether different test runs for the same class exercise
different branches. Since we are more interested in branches difficult to exercise, the
more specific question is: Do different test runs for the same class leave the same set
of branches not visited? To answer this question, we need to measure the difference
between the sets of branches not visited in two test runs for the same class. We use an
array per testing run, containing a flag for each branch indicating whether it was visited.

To measure the difference between two sets of non-visited branches, it is appropriate
to use the Hamming distance [12]: the number of positions, in two strings of equal
lengths, where symbols differ. For example, the Hamming distance between 1011101
and 1001001 is 2 since the values differ at two positions, 3 and 5.

For the purposes of this study, a branch is said to be “difficult to exercise” if and
only if it has not been exercised at least once through the 30 runs for that class.

The difficult branch coverage vector of a test run for a class with n difficult branches
is a vector of n elements, where the i-th element is a flag for the i-th difficult branch in
that class, with one of the following value: 0, indicating that the corresponding branch
has not been exercised in that test run, or 1, indicating that the corresponding branch
has been exercised in that test run.

The difficult branch coverage distance DBC between two vectors u and v of the a
class with Nb difficult branches is the Hamming distance between them:

DBC =

Nb∑
i=1

ui ⊕ vi

where ui and vi are the values at the i-th position of u and v respectively, and ⊕ is
exclusive or. DBC is in the range between 0 and Nb. The larger the distance, the more
different branches are covered by these two runs.

The difficult branch coverage similarity is defined as:

Nb −DBC

Nb

The intention of the similarity is that the smaller the branch coverage distance, the
higher the similarity and the similarity should range between 0 and 1. The similarity
among k > 2 vectors is calculated as the median of the similarity values between each
two vectors: there are k(k−1)

2 pairs of k vectors, for each pair, a similarity value is
calculated, and the overall similarity is the median of those k(k−1)

2 values.

30 60 90 120 150 180 210 240 270 300 330 360
0.8

0.85

0.9

0.95

1

Time (minutes)

Si
m

ila
ri

ty
 o

f h
ar

d
 t

o
 v

is
it

 b
ra

n
ch

es

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of medians

Fig. 2. The branch coverage similarity for each class over time; their median

Figure 2 shows the difficult branch coverage similarity for each class over time. The
thick curve is the median of the difficult branch coverage similarity over all classes. Fig-
ure 2 reveals that the similarity of difficult branch coverage is already 1 only after a few
minutes of testing, Figure 3 shows the standard deviation of the branch coverage sim-
ilarity for each class. It reveals that the standard deviation of difficult branch coverage
similarity is almost 0.

The high median of similarity means that in general, the set of branches from a
class that are difficult to exercise are very similar from test run to test run (for the
same class), the small standard deviation means that this phenomenon was constantly
observed through all the runs.

30 60 90 120 150 180 210 240 270 300 330 360
−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (minutes)

St
an
d
ar
d
 d
ev
ia
ti
o
n
 o
f s
im
ila
ri
ty

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of stdev

Fig. 3. Standard deviation of the branch coverage similarity for each class over time; their median

The consequence drawn from Figure 2 and Figure 3 is that if a branch is not ex-
ercised by a test run, it is unlikely that it will be exercised by other runs for the same
class. In other words, applying random testing with different seeds to the same class
does not improve branch coverage for that class. Branches not exercised in one run are
not visited in subsequent runs.

3.3 Predictability of number of faults

The question of predictability of the number of faults found by random testing was
already addressed in a previous study [5]. The new results confirm that study and extend
it to longer testing sessions (6-hour sessions rather than 90-minute ones), they are also
using the most recent version of AutoTest which benefits from significant performance
improvements. The median of the number of faults detected for each class over time is
plotted in Figure 4. Note that all the faults found are real faults in a widely used Eiffel
library. This also shows that our testing tool is effective at finding faults. Figure 4 shows
that 54% of the faults are detected in the first 10 minutes, 70% in 30 minutes, and 78%
in 1 hour. About 22% of the faults are detected after 1 hour. This means that after 30
minutes of testing, 70% of the faults have been detected even though only 4% additional
branches have been exercised.

Different classes contain different numbers of faults. To compare fault detection
across different classes, we use the normalized number of faults, obtained by dividing
the number of faults detected by each test run by the total number of faults found in all
test runs for that particular class. The number of normalized faults for a particular test
run represents the percentage of faults found in that test run against all faults that we
know in the class. The medians of the number of the normalized faults detected over

0 30 60 90 120 150 180 210 240 270 300 330 360
0

5

10

15

20

25

30

Time (minutes)

N
u

m
b

e
r

o
f

fa
u

lt
s

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Fig. 4. Medians of the number of faults detected in each class over time

time for each class are shown in Figure 5. The thick curve is the median of the medians
of the number of normalized faults detected over time for all classes.

For most of the classes, the median does not reach 1. This indicates different runs
detect different faults (since median 1 would mean that every run finds the same faults).

3.4 Similarity of faults

As in the case of the branch coverage level, we are interested in the similarity of detected
faults for the same class among test runs. The detected faults are similar when different
test runs find the same faults. Definitions of distances, similarity and fault detection
vector, similar to those of section 3.2, are appropriate.

The fault detection vector of a class in a particular test run is a vector of n elements,
with n being the total number of faults detected for that class over all runs. Because we
do not know the actual number of faults in a class, we can only use the total number of
faults found by AutoTest. Each vector element is 1 if the corresponding fault has been
detected and 0 otherwise.

Given two fault detection vectors r and s for the same class, in which the total
number of found faults is Nf , the fault detection distance Df between r and s is defined
as

Df =

Nf∑
i=1

ri ⊕ si

where ri and si is the value at the i-th position of r and s respectively. Df is in the
range between 0.. Nf .

The fault detection similarity between them is then defined as:

0 30 60 90 120 150 180 210 240 270 300 330 360
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (minutes)

N
u

m
b

e
r

o
f

n
o

rm
a

li
z

e
d

 f
a

u
lt

s

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of medians

Fig. 5. Medians of the normalized number of faults detected for each class over time; their median

Nf −Df

Nf

The fault detection similarity ranges from 0 to 1. The larger the similarity, the more
faults are detected in both test runs or in neither. Fault detection similarity among more
than two vectors is calculated similarly to branch coverage similarity.

Figure 6 shows the similarity of detected faults in different test runs for each class.
The median of the fault detection similarity for all classes (the thick curve) ranges from
0.84 to 0.90. The figure indicates that most of the faults can be detected in every test run,
but (because the median does not reach 1.0) in order to get as many faults as possible,
multiple test runs for that class are necessary. Figure 7 shows the standard deviation of
the fault detection similarity for each class. The median (the thick curve) ranges from
0.07 to 0.05, corresponding to 8% to 5% of the median for all classes.

This implies that most faults are discovered by most testing runs, but several runs
produce better results. The choice of seed has a stronger impact on fault detection than
on branch coverage.

3.5 Correlation between branch coverage and number of faults

Here we take a closer look at the correlation between branch coverage and the number
of detected faults. Although higher coverage does uncover more faults overall, it is
clearly not sufficient an indicator.

To study the correlation between branch coverage level and fault detection ability,
Figure 8 superimposes the median of the branch coverage level and the median of the
normalized number of faults for the tested classes. In the first few minutes of testing,

30 60 90 120 150 180 210 240 270 300 330 360
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (minutes)

F
a

u
lt

 d
e

te
c

ti
o

n
 s

im
il

a
ri

ty

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of medians

Fig. 6. Fault detection similarity for each class over time; their median

when the branch coverage level increases quickly, faults are also found quickly. After
a while, the increase of branch coverage slows down. The speed of fault detection also
decreases, although less dramatically. After 30 minutes, the branch coverage level only
increases slightly, but many faults are detected in that period.

We also calculated the correlation between branch coverage and normalized num-
ber of faults. It varies much from class to class, 0.3 to 0.97 and there seems to be no
common pattern among the tested classes as shown in Figure 9.

The implications of these results are twofold: (1) when coverage increases, faults
discovered increase as well, (2) when coverage stagnates, faults are still found. Thus in-
creasing the branch coverage clearly increases the number of faults found. It is however
clearly not sufficient to have a high value of the branch coverage to assess the quality
of a testing session.

The next section further elaborates on these findings as well as their limitations.

4 Discussion

The results of the previous section provide material for answering three questions:

– Is branch coverage a good stopping criterion for random testing?
– Is it a good measure of testing effectiveness?
– What are the unexercised branches?

4.1 Branch Coverage as Stopping Criterion for Random Testing

Since in general, random testing cannot achieve 100% branch coverage in finite time,
total branch coverage is not a feasible stopping criterion. In practice, the percentage

0 30 60 90 120 150 180 210 240 270 300 330 360

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (minutes)

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
fa

u
lt

 d
e

te
c

ti
o

n
 s

im
il

a
ri

ty

ACTIVE_LIST

ARRAY

ARRAYED_LIST

ARRAYED_SET

ARRAYED_STACK

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE

HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR

LINKED_LIST

PART_SORTED_TWO_WAY_LIST

Median of stdevs

Fig. 7. Standard deviation of the fault detection similarity for each class over time; their median

of code coverage is often used as an adequacy criterion: the higher the percentage,
the more adequate the testing [19]; and testing can be stopped if the generated test
suite reached a certain level of adequacy. In our experiments, after 1 hour, the branch
coverage level hardly increases, so it will be unpractical to extend the testing time until
reaching full coverage. Instead, the only reasonable way to use branch coverage would
be to evaluate the expectation of finding new faults. As shown in the previous section,
the number of faults evolves closely with the coverage only in the first few minutes of
testing. On testing sessions longer than 10 minutes, the correlation degrades. In fact,
about 50% of the faults are found in a period where the branch coverage level hardly
increases any more. This means that branch coverage is not a good predictor for the
number of faults remaining to be found.

The correlation greatly varies from class to class. For some classes such as BI-
NARY SEARCH TREE, the correlation coefficient is 0.98 and the correlation is al-
most linear, but for others such as ARRAYED STACK the correlation is weak (0.3),
especially with longer testing sessions. This variation on the class under test reduces
the precision if branch coverage is used as a stopping criterion.

Random testing also detects different faults in different test runs while it exercises
almost the same branches. This confirms that multiple restarts drastically improves the
number of faults found [5]: to find as many faults as possible, a class should be random-
tested multiple times with different seeds, even if the same branches are exercised every
time.

Our conclusion is that branch coverage alone cannot be used as a stopping criterion
for random testing.

4.2 Branch Coverage as Measure of Testing Effectiveness

To assess branch coverage as a measure of testing effectiveness, one must understand
that running random testing longer is the same as adding new test cases into a test suite.
The reason is that testing for a longer time means that more routine calls are executed on
the class under test. Each routine call is actually the last line of a test case that contains
all previous calls participating to the state of data used in the call (see [14] for a detailed
explanation of test case construction and simplification). To push the analogy further,
testing a class in different runs is the same as providing different test suites for that
class.

Our experiments test production code in which the existing number of faults is un-
known. They do not seed faults in the code but merely tested the discrepancy between
the contracts and the code. As a result, it is not possible to use the ratio of detected
faults against the total number of faults to measure the effectiveness of testing. Instead,
we assess testing effectiveness through two parameters: the number of faults detected
and the speed at which those faults are detected.

Two results show that different faults can be detected at the same level of branch
coverage: (1) in a test run, new faults were detected in a period where branch cover-
age hardly changes; (2) in different test runs for the same class, different faults were
detected while almost the same branches were exercised. In other words, different test
suites satisfying the same branch coverage criterion may detect different faults.

These two observations indicate that test adequacy in terms of branch coverage
level is highly predictable, not only in how many branches are covered, but also in what
the covered branches are. Applying random testing to a class always yields the same
level of branch coverage adequacy. Also, for all the tested classes, the branch coverage
adequacy level stabilizes after some time (1 hour in our case).

Although we do not know how many faults remain in tested classes, it was aston-
ishing to discover that over 50% of found faults only appear in the period when branch
coverage stagnates.

These results provide evidence of the lack of reliability [8] of branch coverage crite-
rion achieved by random testing. Reliability requires that a test criterion always produce
consistent results. In the experiments reported here, this goal requires that two test runs
achieving the same branch coverage of a class should deliver similar numbers of faults.
But the results show that the number of faults found in different test runs will differ
from each other by at least 50%.

What about the speed of fault detection? In the first few minutes of random test-
ing, branch coverage increases quickly, and the number of faults increases accordingly,
with a strong correlation. This means that branch coverage is good in measuring test-
ing effectiveness in the first few minutes. But after a while, the branch coverage level
hardly increases, the fault detection speed also slows down but less dramatically than
the branch coverage level. In fact, many faults are detected in the period where the
branch coverage hardly changes. This means in the later period, branch coverage is not
a good measure for testing effectiveness.

In general, to detect as many faults as possible, branch coverage is necessary but
not sufficient.

4.3 Branches not exercised

We analyzed the 179 branches in all 14 classes that were not exercised in our ex-
periments. Among these branches, there are 116 distinct branches, and 63 duplicated
branches because they appear in inherited routines. Table 2 shows the reasons why cer-
tain branches were not exercised and the percentage of branches not exercised that fall
into that each reason. In Table 2 the categories are as follows:

Table 2. Branches not exercised

Reason % of branches
Branch condition not satisfied 45.6%
Linear constraint not satisfied 12.9%
Call site not exercised 13.7%
Unsatisfiable branches 13.7%
Crash before branch 8.6%
Implementation limitation 2.5%
Concurrent context needed 1.7%

Branch condition not satisfied: branch not exercised because its branch condition
is not met. This is the most common case.

Linear constraint not satisfied: in the branch condition there is a linear constraint,
and they were not satisfied by the random strategy. This is actually a special case of
branch condition, but important on its own because a random strategy usually has great
difficulty satisfying these constraints.

Call site not exercised: no calls of a routine containing the branch were executed.
Unsatisfiable branch: the branch depends on conditions that can never be satisfied.
Fault before branch: there was always a fault found before exercised.
Implementation limitation: branch not exercised because of a limitation of Au-

toTest.
Concurrent context needed: the branch is only exercisable when tested in a con-

current context. But our experiments were conducted in a sequential setting.
Table 2 shows that 58.5% of the branches not exercised fall into the first two reasons

(Branch condition not satisfied, linear constraint not satisfied).
A follow-up question would be how to satisfy these branch conditions. A common

solution to satisfy branch conditions is to use symbolic execution to collect path condi-
tions and propagate them up to the routine entry. Symbolic executors however induce a
large overhead in the general case.

We analyzed branches falling into the first two categories to see how often a sym-
bolic executor would help: in 32.3% of cases, we need a symbolic executor to propagate
path conditions, for the remaining 67.7%, it is only needed to concatenate all dominat-
ing path conditions and select inputs at the routine entry – a linear constraint solver
is needed when there is linear constraint in the concatenated path condition. Even if
in some cases it is not possible to solve the constraints, it seems useful to investigate
further this lead.

For Faults before branch, the faults should either be fixed first or avoided while
testing. For the Implementation limitation and Concurrent context needed categories,
we need to further improve AutoTest.

5 Threats to Validity

Four observations may raise questions about the result.
Representativeness of chosen classes. Despite being chosen from the widely used

Eiffel library EiffelBase and varying in terms of various code metrics and intended
semantics, the chosen classes may not be fully representative of general O–O programs.

Representativeness of AutoTest’s variant of random testing. We tried to keep
the algorithm of AutoTest as general as possible, but other implementations of random
testing may produce different results.

Branch coverage below 100%. We do not know whether the correlation between
branch coverage and number of faults still holds when all branches are exercised. We
consider this very likely, since if we considered the application trimmed of all the
branches that were not visited, we would then achieve 100% branch coverage in most
cases.

Size of test suite. A recent formal analysis [3] of random testing showed that the
number of tests made has a great influence on the results found with random testing. It
might be possible that while our study relies on many more tests than previous ones, we
did not execute enough tests. We consider this unlikely because of the high similarity
of the faults found in the present experiments.

6 Related Work

Intuitively, random testing cannot compete in terms of effectiveness with systematic
testing because it is less likely that randomly selected inputs will be interesting enough
to reveal faults in the program under test. Some studies [17, 16] have shown that random
testing is as effective as some systematic methods such as partition testing. Our results
also showed that random testing is effective: in the experiment, random testing detected
328 faults in 14 classes in EiffelBase library while in the past 3 years, only 28 faults
were reported by users.

Ciupa et al. [5] investigated the predictability of random testing and showed that in
terms of the number of faults detected over time, random testing is predictable. Figure 5
and Figure 6 confirm those results.

Many studies compare branch coverage for assessing the effectiveness of test strate-
gies. With other criteria in. Frankl et al. [7] compared the branch coverage criterion with
the all-uses criterion and concluded that for their programs, all-uses adequate test sets
performs better than branch adequate test sets, and branch adequate test sets do not
perform significantly better than null-adequate test sets, which are test sets containing
randomly selected test cases without any adequacy requirement. The present study fo-
cuses more on the branch coverage level achieved by random testing in a certain amount
of time and the number of faults found in that period.

Hutchins et al. [13] also compared the effectiveness of the branch coverage criterion
and the all-uses criterion. They found that for both criteria, test sets achieving coverage
levels over 90% showed significantly better fault detection than randomly selected test
sets of the same size. This means that a lot of faults could be detected when the cov-
erage level approaches 100%. They also concluded that in terms of effectiveness, there
is no winner between branch coverage and all-uses criterion. Our results on the corre-
lation between the branch coverage level and the number of detected faults also shows
a similar pattern: many faults are detected at higher coverage levels, in our experiment,
however, the branch coverage level did not reach 100%, while in their study, manually
written test sets guaranteed total branch coverage. Also, in their study, programs under
test were seeded with faults, while in our experiment, programs were tested as they are.

Gupta et al. [9] compared the effectiveness (the ability to detect faults) and effi-
ciency (the average cost for detecting a fault) of three code coverage criteria: predicate
coverage, branch coverage and block coverage. They found that predicate coverage is
the most effective but the least efficient, block coverage is the least effective but most
efficient, while branch coverage is between predicate coverage and block coverage in
terms of both effectiveness and efficiency. Their results suggest that branch coverage
is the best among those three criteria for getting better results with moderate testing
efforts.

7 Conclusions and Future Work

This article has shown that the branch coverage level achieved by random testing varies
depending on the structure of the program under test but was very high on the classes
we tested (93% on average). Most of the branches exercised by random testing are
exercised very quickly (in the first 10 minutes of testing) regardless of the class under
test. For the same class, branches exercised in different test runs are almost the same.
Different test runs on the same class detect roughly 10% different faults.

Our results also confirm that branch coverage in general is not a good indicator of
the quality of a test suite. In the experiments, more than 50% of the faults are uncovered
while coverage is at a plateau. Although many studies showed the weakness of branch
coverage, there is little evidence showing that random testing finds new faults while the
branch coverage stagnates.

Our results indicate that branch coverage is not a good stopping criterion for ran-
dom testing. One should test a program in multiple test runs to find as many faults as
possible even though by doing so the branch coverage level will not be increased in
general. Also, one should not stop random testing, even if the branch coverage level
stops increasing or only increases very slowly.

For the continuation of this work, we are investigating how to reach even higher
branch coverage (100% or very close), and how to devise a good stopping criterion for
random testing.

Acknowledgement We thank Ilinca Ciupa, Andreas Leitner, Simon Poulding, and
Stephan van Staden for their insightful comments.

References

1. EiffelBase. Eiffel Software. http://www.eiffel.com/libraries/base.html.
2. EiffelStudio. Eiffel Software. http://www.eiffel.com/.
3. A. Arcuri, M. Iqbal, and L. Briand. Formal analysis of the effectiveness and predictability

of random testing. In Proceedings of the 19th international symposium on Software testing
and analysis, pages 219–230. ACM, 2010.

4. I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental assessment of random testing
for object-oriented software. In Proceedings of the International Symposium on Software
Testing and Analysis 2007 (ISSTA’07), pages 84–94, 2007.

5. I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer. On the predictability of random
tests for object-oriented software. In First International Conference on Software Testing,
Verification, and Validation 2008 (ICST’08), pages 72–81.

6. European Cooperation for Space Coordination. Space product assurance - Software product
assurance, ECSS-Q-ST-80C. ESA Requirements and Standards Division, 2009.

7. P. Frankl and S. Weiss. An experimental comparison of the effectiveness of branch testing
and data flow testing. Software Engineering, IEEE Transactions on, 19(8):774–787, Aug
1993.

8. J. B. Goodenough and S. L. Gerhart. Toward a theory of test data selection. IEEE Trans.
Software Eng., 1(2):156–173, 1975.

9. A. Gupta and P. Jalote. An approach for experimentally evaluating effectiveness and ef-
ficiency of coverage criteria for software testing. Int. J. Softw. Tools Technol. Transf.,
10(2):145–160, 2008.

10. D. Hamlet. When only random testing will do. In RT ’06: Proceedings of the 1st interna-
tional workshop on Random testing, pages 1–9, New York, NY, USA, 2006. ACM.

11. R. Hamlet. Random testing. In Encyclopedia of Software Engineering, pages 970–978.
Wiley, 1994.

12. R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 26(2):147–160, 1950.

13. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effectiveness of
dataflow- and controlflow-based test adequacy criteria. In ICSE ’94: Proceedings of the 16th
international conference on Software engineering, pages 191–200, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press.

14. A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer. Efficient unit test case minimization.
In Proceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE’07), pages 417–420, 2007.

15. G. J. Myers. The Art of Software Testing, 2nd edition. John Wiley and Sons, 2004.
16. S. Ntafos. On random and partition testing. In ISSTA ’98: Proceedings of the 1998 ACM SIG-

SOFT international symposium on Software testing and analysis, pages 42–48, New York,
NY, USA, 1998. ACM.

17. E. Weyuker and B. Jeng. Analyzing partition testing strategies. IEEE Transactions on Soft-
ware Engineering, 17(7):703–711, 1991.

18. Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based testing tools. In AST ’06:
Proceedings of the 2006 international workshop on Automation of software test, pages 99–
103, New York, NY, USA, 2006. ACM.

19. H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM
Comput. Surv., 29(4):366–427, 1997.

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

A
C

T
IV

E
_

L
IS

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

A
R

R
A

Y

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

A
R

R
A

Y
E

D
_

L
IS

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

A
R

R
A

Y
E

D
_

S
E

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

A
R

R
A

Y
E

D
_

S
T

A
C

K

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

B
IN

A
R

Y
_

S
E

A
R

C
H

_
T

R
E

E

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

B
IN

A
R

Y
_

S
E

A
R

C
H

_
T

R
E

E
_

S
E

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

B
IN

A
R

Y
_

T
R

E
E

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

F
IX

E
D

_
L

IS
T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

H
A

S
H

_
T

A
B

L
E

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

H
E

A
P

_
P

R
IO

R
IT

Y
_

Q
U

E
U

E

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

L
IN

K
E

D
_

C
IR

C
U

L
A

R

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

L
IN

K
E

D
_

L
IS

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

0
1

0
0

2
0

0
3

0
0

0

0
.2

0
.4

0
.6

0
.81

P
A

R
T

_
S

O
R

T
E

D
_

T
W

O
_

W
A

Y
_

L
IS

T

T
im

e
 (

m
in

u
te

s)

0
1

0
0

2
0

0
3

0
0

00
.2

0
.4

0
.6

0
.8

1

N
o

rm
a

li
ze

d
 b

ra
n

ch
 c

o
v

e
ra

g
e

N
o

rm
a

li
ze

d
 n

u
m

b
e

r
o

f
fa

u
lt

s

Fig. 8. Median of the branch coverage level and median of the normalized number of faults for
each class over time

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.8
5

A
C
T
IV
E
_
LI
S
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.7
7A
R
R
A
Y

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.5
2

A
R
R
A
Y
E
D
_
LI
S
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.5
8

A
R
R
A
Y
E
D
_
S
E
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.3

A
R
R
A
Y
E
D
_
S
T
A
C
K

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.9
7

B
IN
A
R
Y
_
S
E
A
R
C
H
_
T
R
E
E

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.7
8

B
IN
A
R
Y
_
S
E
A
R
C
H
_
T
R
E
E
_
S
E
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.8

B
IN
A
R
Y
_
T
R
E
E

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.5
8

F
IX
E
D
_
LI
S
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.7
6

H
A
S
H
_
T
A
B
LE

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.6
3

H
E
A
P
_
P
R
IO
R
IT
Y
_
Q
U
E
U
E

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.8
2

LI
N
K
E
D
_
C
IR
C
U
LA
R

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.5
5

LI
N
K
E
D
_
LI
S
T

0
0
.5

1
0

0
.2

0
.4

0
.6

0
.81

r=
0
.8

P
A
R
T
_
S
O
R
T
E
D
_
T
W
O
_
W
A
Y
_
LI
S
T

Y
−
a
xi
s:
 N
o
rm
a
liz
e
d
 n
u
m
b
e
r

 o
f
fa
u
lt
s

X
−
a
xi
s:
 B
ra
n
ch
 c
o
v
e
ra
g
e

 l
e
v
e
l

Fig. 9. Correlation between the branch coverage level and the normalized number of faults for
each class over 360 minutes

