Is Coverage a Good Measure of Testing Effectiveness?

An Assessment Using Branch Coverage and Random Testing

Yi Wei Manuel Oriol
Chair of Software Engineering Dept. of Computer Science
ETH Zurich University of York

CH-8092 Zurich, Switzerland
yi.wei@inf.ethz.ch

ABSTRACT

Most approaches to testing use branch coverage to decideeon t
quality of a given test suite. The intuition is that covertmgnches
relates directly to uncovering faults. In this article wegent an
empirical study that applied random testingltbEiffel classes for
a total 0f2520 hours and recorded the number of uncovered faults
and the branch coverage over time. Our results show thatn (1)
the tested classes, random testing reac¢t#d$ branch coverage
(2) it exercises almost the same set of branches every tBhét, (
detects different faults from time to time, (4) during thesffilO
minutes of testing while branch coverage increases rapidére
is a strong correlation between branch coverage and theewofb
uncovered faults, (5) ovei0% of the faults are detected at a time
where branch coverage hardly changes and the correlatioeée
branch coverage and the number of uncovered faults is weak.
These results provide evidence that branch coverage isyuatch
stopping criterion for random testing. They also show thrahbh
coverage is not a good indicator for the effectiveness oftsigite.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and debugging, Test cov-
erage of code, Testing tools

General Terms
Measurement, Experimentation

Keywords

random testing, branch coverage, experimental evaluation

1. INTRODUCTION

Various studies [16, 28, 23, 17, 4] show that random tessng i
an effective way of detecting faults. Random testing is als@c-
tive because it is easy to implement and widely applicabler F
example, when insufficient information is available to perd sys-
tematic testing, random testing is more practical than dteyrea-
tive [15]. A question often asked about random testing idbtiaach

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

YO10 5DD, United Kingdom
manuel@cs.york.ac.uk

Bertrand Meyer
Chair of Software Engineering
ETH Zurich
CH-8092 Zurich, Switzerland
bertrand.meyer@inf.ethz.ch

coverage it achieves. The assumption is: the higher thebreov-
erage achieved by a test suite, the higher the number offault
uncovers.

Branch coverage of a test suite is the percentage of bra¢hes
the program that the test suite exercises. As advocated by My
ers [22], it is a weaker indicator of the quality of a test sutan
other coverage criteria such as predicate coverage or p&#r-c
age. Although weak, branch coverage is widely used becdiitse o
ease of implementation and its low overhead on the execuwfion
the program [29] under test.

This article presents an extensive study of the branch ageer
that random testing achieves over time and its correlatiivi thre
number of faults uncovered. Despite the popularity of bath-r
dom testing and branch coverage, there is little data dolailen
the topic. We tested4 Eiffel classes using our random testing
tool for 2520 hours. It tested each class 30 sessions with each
sessiors hour long. The testing sessions are fully automated and
consists of a single run of AutoTest [4, 5, 20], a random mestdol
for Eiffel. For each test run, we recorded the exercised dites
and detected faults over time. The main results of the stuelyaa
follows:

e Random testing reach®8% of the branch coverage on av-
erage.

o Different test runs with different seeds for the pseudo oamd
number generator of the same class exercise almost the same
branches, but detect different faults.

e Atthe beginning of the testing session, both branch coeerag
and faults dramatically increase and they are stronglyeeorr
lated.

e 90% of all the exercised branches are exercised in the first
10 minutes. Afterl0 minutes, the branch coverage level in-
creases slowly. AfteBO minutes, branch coverage further
increases by only%.

e Over50% of faults are detected aft@&0 minutes while the
branch coverage level hardly increases after this time.

e There is a weak correlation between number of faults found
and the coverage over tR620 hours of testing.

The main implication of these results is that branch coweiag
an inadequate stopping criteria for random testing. As Aesb
conveniently builds test suites randomly as it tests theecolde
branch coverage achieved at any point in time correspontseto
branch coverage of the test suite built since the beginnfrifpeo
testing session. Because there is a strong correlatioreketfaults
uncovered and branch coverage when the coverage incraages,

branch coverage implies uncovering more faults. Becausle wi
very little if any added coveragé% of the faults can be further
discovered, and given that the correlation between the pumob
faults uncovered and the branch coverage is weak, this nikans
branch coverage by itself is not a good indicator of the dyali a
test suite in general.

A package is available onliheontaining the source code of the
AutoTest tool and instructions to reproduce the experiment

Section 2 describes the design of our experiment. Section 3
presents our results. We discuss the results in Section 4hend
threats to validity in Section 5. We present related work ét-S
tion 6 and conclude in Section 7.

2. EXPERIMENT DESIGN

The experiment on which we base our results consists of run-
ning automated random testing sessions of Eiffel classesfirdt
describe contract-based unit testing for O—O program, thieo-
duce AutoTest, and eventually present the classes undgetging
time and computing infrastructure.

2.1 Contract-Based Unit Testing for O—O Pro-
grams

In O-O programs, a unit test can be assimilated to a method
call on an instance using previously created instancegasents.
Test engineers write unit tests and check that the resulltsf are
equal to pre-calculated values. In a Hoare-triple style theans
that a unit test can be modelled asd, o1,... are variablesnit,,inito, ...
expressions that return instances,the method called, and, a
value):

{}o :=inito; 01 1= inito,;...;v := 0.m(01, ..., 0n){v = vo }

In a contract-enabled environment, methods are equippibccamn-
tracts from the start:

{Pre}o.m(o1,...,0n){Post}

Unit tests can rely on contracts to check the validity of th#.c
It then consists only in writing the code to initialize instas that
would satisfy the precondition of the method:

{}o :=inito; 01 := inito, ;...{ Pre}

In this article we use contract-based automated randorngesh
such an approach the testing infrastructure automatitailys care
of this last part. In practice, it generates the sequenagstiictions
at random and proceeds with the call.

When making a call, if the generated instances do not chexk th
precondition of the method, the result of the call is ignoraéter
the precondition is checked, any contract violation or axgep-
tion triggered in the actual call then corresponds to a ffailo the
program.

As the random testing tool is not able to avoid executinglgimi
test cases, it might uncover the same failure multiple tinTéws,
it maps failures to faults by defining a fault as a triple:

< m,line number of the error,type of exception >

2.2 The AutoTest Tool

This section presents a general view of how AutoTest works.
Note that more detailed explanations on AutoTest are alailia
previous publications [4].

lhttp://se.inf.ethz. ch/peopl e/ wei/ downl oad/
branch_cover age. zi p

AutoTest is a tool implementing a random testing strategy fo
Eiffel integrated in EiffelStudio 6.3 [3]. Given a set of skes and
a time frame, AutoTest tries to test all their public methodthe
time frame.

To generate test cases for methods in specified classeslestto
repeatedly performs the following three steps:

Select method: AutoTest maintains the number of times thet e
method has been tested, then it randomly selects one of the
least tested methods as the next method under test, thus try-
ing to test methods in a fair way.

Prepare objects: To prepare objects needed for callingetbeted
method, AutoTest distinguishes two cases: basic types and
reference types.

For a basic type such as INTEGER, DOUBLE and BOOLEAN,
AutoTest maintains a predefined value set. For example,
for INTEGER, the predefined value setls+/ — 1,+/ —
2,+/-10, +/—100, maximum andminimum integers.

It then chooses at random either to pick a predefined value or
to generate it at random.

AutoTest also maintains an object pool with instances cre-
ated for all types. When selecting a value of a reference type
it either tries to create a new instance of a conforming type b
calling a constructor at random or it retrieves a confroming
value from the object pool. This allows AutoTest to use old
objects that may have had many methods called on them, re-
sulting in states that would otherwise be unreachable.

Invoke method under test: Eventually, the method underisest
called with the selected target object and arguments. The
result of the execution, possible exceptions and its branch
coverage information is recorded for later use.

2.3 Experiment Setup

Class selectionWe chose the classes under test from the library
EiffelBase [2] version 5.6. EiffelBase is production cotattpro-
vides basic data structures and 10 functionalities. It mduis al-
most every Eiffel program, so the quality of its contractewgt be
better than average Eiffel libraries. This is an importawinp be-
cause as described in section 2.1, we assume the preserstateont
are correct. In order to increase the representativenetee dést
subjects, we tried to pick classes with various code stracamd
intended semantics. Table 1 shows the main metrics for thgerh
classes. Note that the branches shown in Table 1 is the nuvhber
testable branches, obtained by subtracting dead brandragtie
total number of branches in the corresponding class.

Test runs. We tested each class 30 runs with different seeds
with each ruré hour long. This supposedly made the test runs long
enough so that branch coverage level reaches a plateau. 68ut w
found out that even aftelr6 hours, random testing is still capable
of exercising some new branches with a very low probabilitie
chose6 hour runs because the branch coverage level already in-
creases very slowly after that, and becaisigours corresponds to
an overnight testing session.

Computing infrastructure. We conducted the experiment on 9
PCs with Pentium 4 at 3.2GHz, 1GB of RAM, running Linux Red
Hat Enterprise 4. The version of AutoTest in EiffelStudi8 Gsed
in the experiment is modified to include instrumentationdi@anch
coverage monitoring. AutoTest was the only CPU intensive pr
gram running during testing.

3. RESULTS

Table 1: Metrics for tested classes

Class LOC Methods Contractassertions Faults Branches cBf@average
ACTIVE_LIST 2433 157 261 16 222 92%
ARRAY 1263 92 131 23 118 98%
ARRAYED_LIST 2251 148 255 22 219 94%
ARRAYED_SET 2603 161 297 20 189 96%
ARRAYED_STACK 2362 152 264 10 113 96%
BINARY_SEARCH_TREE 2019 137 143 42 296 83%
BINARY_SEARCH_TREE_SET 1367 89 119 10 123 92%
BINARY_TREE 1546 114 127 47 240 85%
FIXED_LIST 1924 133 204 23 146 90%
HASH_TABLE 1824 137 177 22 177 95%
HEAP_PRIORITY_QUEUE 1536 103 146 10 133 96%
LINKED_CIRCULAR 1928 136 184 37 190 92%
LINKED_LIST 1953 115 180 12 238 92%
PART_SORTED_TWO_WAY_LIST 2293 129 205 34 248 94%
Average 1950 129 192 23 189 93
Total 27302 1803 2693 328 2652 93

This section presents results that answer the five followiagm
questions:

1. Is the level of the branch coverage achieved by random test

ing predictable?

. Is the branch coverage exercised by random testing simila
from one test run to another?

. Is the number of faults discovered by random testing pre-
dictable?

. Are the faults uncovered by different test runs similar?

. Is there a correlation between the level of coverage aad th
number of faults uncovered?

3.1 Predictability of coverage level

Because AutoTest might not be able to test all branches afsa cl
due to its random nature, it is very unlikely that testingssass
achieve total coverage, let alone constant results ovetesied
classes. As an example, it might be extremely difficult tas§at
a complex precondition guarding a method with such a randsm a
proach. Another example is that the visibility of a routingght
not let AutoTest test it freely. The branch coverage lewa#litis
calculated in a straightforward manner as:

Number of exercised branches

Number of branches in that class

This intuition is confirmed by the results presented in Féglr
which shows the median of the branch coverage level for elask ¢
over time. The branch coverage level ranges ffbim 1. As a first
result, we can see that the branch coverage of some classbese
a plateau at less than85 while most of them have a plateau at or
above0.9. The thick curve in Figure 1 is the median of medians of
the branch coverage level of all the classes. Overatilasses, the
branch coverage level achieved afidrours of testing ranges from
0.82t0 0.98. On average, the branch coverage levél. &2, with a
standard deviation df.04, corresponding td.67% of the median.

While the maximum coverage is variable from one class to an-
other, the actual evolution of branch coverage comparduktoiax-
imum coverage achieved through random testing is very aimil
93% of all exercised branches are exercised in the fidbgninutes,
96% are exercised iB0 minutes, and7% are exercised in the first
hour. Section 4 contains an analysis of branches not eeecis

ACTIVE_LIST

ARRAY

ARRAYED_LIST
ARRAYED_SET
ARRAYED_STACK
BINARY_SEARCH_TREE
BINARY_SEARCH_TREE_SET

BINARY_TREE
FIXED_LIST

HASH_TABLE
HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR
LINKED_LIST
PART_SORTED_TWO_WAY_LIST
Median of medians

°
o

°
®

Branch coverage level

°
<

06

05

30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

0

Figure 1: Medians of the branch coverage level for each class
over time and their median

In short, the branch coverage level achieved by randommtgsti
depends on the structure of the class under test and it sBesea
very fast in the firstt0 minutes of testing and then very slowly
afterwards.

3.2 Similarity of coverage

Another important question is whether different test runsliie
same class exercise different branches. Since we are ntere in
ested in branches which are difficult to exercise, we raisedjties-
tion: Do different test runs for the same class leave the sanef
branches unexercised? To answer the latter question, wktaee
measure the difference between the sets of unexercisediasin
two test runs for the same class. We use an array per tessng se
sion, containing a flag for each branch, indicating whetherais
visited or not.

To measure the difference of two sets of unexercised branche
we use the Hamming distance [18]. For two strings of equajtien
the Hamming distance between them is the number of positions
at which the corresponding symbols are different. For examp
the Hamming distance between stringl1101 and 1001001 is 2
because the number of positions with different values is@ ttiird
and the fifth position).

Because we only focused on the branches difficult to exercise

we defined the notion of difficult branches as: A branch in asla
is difficult to exercise if and only if it has not been exercisd least
once through th80 runs for that class.
Thedifficult branch coverage vectaf a test run for a class with
n difficult branches is a vector of elements, where the i-th ele-
ment is a flag for the i-th difficult branch in that class, witheo
of the following value: 0, indicating that the corresporgiliranch
has not been exercised in that test run, or 1, indicatingttigator-
responding branch has been exercised in that test run.
Thebranch coverage distanc® g between two vectors and
v of the a class withV, difficult branches is the Hamming distance
between them:

N
Dpc :Zui@vi

i=1
whereu; andw; is the value at théth position ofu andv respec-
tively, and® means xor operationD ¢ is in the range between

0 andN,. The larger the distance, the more different branches are

covered by these two runs.
Thebranch coverage similaritis defined as:

Ny — Dpe
Ny
The intention of the similarity is that the smaller the briaov-
erage distance, the higher the similarity and the simylasfitould
range betwee® and1. The similarity amongc > 2 vectors is
calculated as the median of the similarity values betweeh amo

vectors: there aré“-1) pairs ofk vectors, for each pair, a simi-
larity value is calculated, and the overall similarity ig tmedian of
those2™-1) values.

ACTIVE_LIST

ARRAY

ARRAYED_LIST
ARRAYED_SET
ARRAYED_STACK
BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET
BINARY_TREE

FIXED_LIST

HASH_TABLE
HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR
LINKED_LIST
PART_SORTED_TWO_WAY_LIST
Median of medians

o
b

e
©

Similarity of hard to visit branches

°
&

08

30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

Figure 2: The branch coverage similarity for each class over
time; their median

The difficult branch coverage similarity for each class dirae
is plotted in Figure 2. The thick curve in Figure 2 is the madif
the branch coverage similarity over all classes. Figureddvstthe
standard deviation of the branch coverage similarity fahezdass.
Figure 2 shows that the similarity of difficult branch covgeais
already1 only after a few minutes of testing, and Figure 3 shows
that the standard deviation of difficult branch coveragélaitity is
almosto.

The high median of similarity means that in general, the $et o
branches from a class that are difficult to exercise are \efifss
from test run to test run (for the same class), the small stahd

0.5
ACTIVE_LIST

ARRAY
ARRAYED_LIST

ARRAYED_SET

04 ARRAYED_STACK
BINARY_SEARCH_TREE
BINARY_SEARCH_TREE_SET

BINARY_TREE

FIXED_LIST

HASH_TABLE
HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR
LINKED_LIST
PART_SORTED_TWO_WAY_LIST
Median of stdev

03

0.2

o1 |

Standard deviation of similarity

-0.1
30 60 90 120 150 180 210 240 270 300 330 360

Time (minutes)

Figure 3: Standard deviation of the branch coverage similaity
for each class over time; their median

deviation means that this phenomenon was constantly aiberv
through all the runs.

The consequence drawn from Figure 2 and Figure 3 is that if
a branch is not exercised by a test run, it is unlikely thatilt w
be exercised by other runs for the same class. In other wbyds,
applying random testing with different seeds to the sanesdaes
not help to improve branch coverage of that class. Unexxcis
branches will stay unexercised.

3.3 Predictability of number of faults

30

ACTIVE_LIST
— ARRAY
ARRAYED_LIST
— ARRAYED_SET
ARRAYED_STACK
— BINARY_SEARCH_TREE
— BINARY_SEARCH_TREE_SET
— BINARY_TREE
—— FIXED_LIST
—— HASH_TABLE
— HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR
— LINKED_LIST
—— PART_SORTED_TWO_WAY_LIST

Number of faults

i

|
|
I

0 P T S S PR
0 30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

Figure 4: Medians of the number of faults detected in each clss
over time

The question of predictability of number of faults was athga
addressed in a previous study [6]. Our results confirm thatyst
and extend itto much longer testing sessions (6-hour sesgather
than 90-minute ones), they are also using the most recesiowver
of AutoTest that underwent significant performance impnogsts.
The median of the number of faults detected for each class ove
time is plotted in Figure 4. Note that all the faults found ezal
faults in a widely used Eiffel library. This also shows that ¢est-
ing tool is effective in finding faults. Figure 4 shows th&t% of
the faults are detected in the fifi minutes,70% are detected in
30 minutes, andr8% are detected il hour. About22% of the
faults are detected aftdr hour. This means afte30 minutes of
testing,70% of the faults are detected although orlfi additional
branches are exercised.

ACTIVE_LIST
— ARRAY
ARRAYED_LIST
— ARRAYED_SET
ARRAYED_STACK
— BINARY_SEARCH_TREE
— BINARY_SEARCH_TREE_SET
— BINARY_TREE
— FIXED_LIST
— HASH_TABLE
— HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR
— LINKED_LIST
— PART_SORTED_TWO_WAY_LIST
= Median of medians

S o
I

o
o

o
=

o
o

Number of normalized faults
o
G

o
N}

o

0
0 30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

Figure 5: Medians of the normalized number of faults detectd
for each class over time; their median

Different classes contain different number of faults. |desrto
compare fault detection across different classes, we eseamal-
ized number of faults, obtained by dividing the number ofitcau
detected by each test run by the total number of faults fooradli
test runs for that particular class. The number of normelfaelts
for a particular test run represents the percentage offéalind in
that test run against all faults that we know in the class. Mkdi-
ans of the number of the normalized faults detected over tome
each class are shown in Figure 5. The thick curve in Figurelieis
median of the medians of the number of normalized faultsotiede
over time for all classes.

For most of the classes, the median of the normalized nunfber o
faults does not reachat the end of testing, indicating that different

runs detect different faults. Because if every test run folass

found the same number of faults, the number of normalizelisfau

for those runs should be

3.4 Similarity of faults

Ny —Dy
Ny
The fault detection similarity ranges frofnto 1. The larger the
similarity, the more faults are detected in both test runmarei-
ther. Fault detection similarity among more than two vestiar
calculated similarly to branch coverage similarity.

Figure 6 shows the similarity of detected faults in differest
runs for each class. The median of the fault detection siityilfor
all classes (the thick curve in Figure 6) ranges fréy to 0.90.
As can be seen in Figure 6, most of the faults can be detectad in
ery test run, but (because the median does not reach 1.0 dlén or
to get as many faults as possible, multiple test runs fordlass are
necessary. Figure 7 shows the standard deviation of thiediatglc-
tion similarity for each class. The median of the standardati®on
of the fault detection similarity (the thick curve in Figurgranges
from 0.07 to 0.05, corresponding t&% to 5% of the median of
fault detection similarity for all classes.

This implies that most faults are discovered by most testing,
but several runs produce better results. Seeds have a &triomg
pact on fault detection than on branch coverage.

11
ACTIVE_LIST

— ARRAY
ARRAYED_LIST

—— ARRAYED_SET
ARRAYED_STACK

09 . — BINARY_SEARCH_TREE
¥ I I ! — BINARY_SEARCH_TREE_SET
| [I — BINARY_TREE
08 — FIXED_LIST
[F“ | | — HASH_TABLE
J‘—“_A — HEAP_PRIORITY_QUEUE

LINKED_CIRCULAR
— LINKED_LIST
—— PART_SORTED_TWO_WAY_LIST
= Median of medians

e
<
1

o
>

Fault detection similarity

0.5

30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

Figure 6: Fault detection similarity for each class over ting;

As in the case of the branch coverage level, we are interestediheir median

in the similarity of detected faults for the same class amimsg
runs. The detected faults are similar when different tess ffind
the same faults. Similarly to section 3.2 we introduce thdtfa
detection vector, distances and similarity.

The Fault detection vectoof a class in a particular test run is a
vector ofn elements, withn being the total number of faults de-
tected for that class over all runs. Because we do not know the

actual number of faults in a class, we can only use the totabau
of faults that are found by AutoTest for that class as an edton.
Each element in the vector has one of the following valuemdl
cating that the corresponding fault is not detected in thisigular
run, or 1, indicating that the corresponding fault is degdct

Given two fault detection vectorsand s for the same class, in
which the total number of found faults i§¢, the fault detection
distanceD; between- ands is defined as

N
Df = ZTZ' D s;
i=1

wherer; ands; is the value at thé-th position ofr ands respec-
tively, and@® means xor operationDy; is in the range between 0
andNy.

Thefault detection similaritypetween them is then defined as:

03
| ACTIVE_LIST

— ARRAY
ARRAYED_LIST

I ——— ARRAYED_SET
ARRAYED_STACK

— BINARY_SEARCH_TREE

— BINARY_SEARCH_TREE_SET

— BINARY_TREE

— FIXED_LIST

— HASH_TABLE

— HEAP_PRIORITY_QUEUE
LINKED_CIRCULAR

— LINKED_LIST

— PART_SORTED_TWO_WAY_LIST

= Median of stdevs

o
)
o

S
[N

e
a

o
=3 e
& =

o

Standard deviation of fault detection similarity

0 30 60 90 120 150 180 210 240 270 300 330 360
Time (minutes)

Figure 7: Standard deviation of the fault detection similarity
for each class over time; their median

3.5 Correlation between branch coverage and
number of faults

ACTIVE_LIST ARRAY ARRAYED_LIST ARRAYED_SET ARRAYED_STACK

0.8 0.8 0.8 0.8 0.8 . 08 F 0.8 0.8 08
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
04 04 04 04 0.4 04 04 0.4 0.4 04

02 0.2 0.2 0.2 0.2 02 02 0.2 0.2 02

|

o o o o
0 100 200 300 o 100 200 300 [100 200 300 0 100 200 300 [100 200 300
Time (minutes) Time (minutes) Time (minutes) Time (minutes) Time (minutes)

BINARY_SEARCH_TREE BINARY_SEARCH_TREE_SET BINARY_TREE FIXED_LIST HASH_TABLE
1 1 1 1 1 1 1 1 1 1
08|/ 0.8 0.8 i? 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
04 (0.4 0.4 0.4 0.4 04 04 0.4 0.4

0.2 0.2 0.2 02

)

0.2 0.2 0.2 0.2 0.2
o 0 [0 0o [o [0 [
[100 200 300 o 100 200 300 [100 200 300 [100 200 300 0 100 200 300
Time (minutes) Time (minutes) Time (minutes) Time (minutes) Time (minutes)
HEAP_PRIORITY_QUEUE LINKED_CIRCULAR LINKED_LIST PART_SORTED_TWO_WAY_LIST
1 1 1 1 1 1 1 1
0.8 0.8 08t/ 0.8 0.8 0.8 0.8 0.8 Normalized branch coverage
mmm N ormalized number of faults
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
04 04 04 04 04 04 04 04
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0 0 o 0 0 0 0 0
0 100 200 300 o 100 200 300 0 100 200 300 0 100 200 300
Time (minutes) Time (minutes) Time (minutes) Time (minutes)

Figure 8: Median of the branch coverage level and median of te normalized number of faults for each class over time

4. DISCUSSION

As previously written, the correlation between branch cage The results of the previous section enable us to answer tee th
and number of faults is something that is usually taken fantgd. following main questions:
Here we take a closer look at it, and it seems that it is notear cl
as one might expect. While it is true that a higher coveragesyi e Is branch coverage a good stopping criterion for randorm test
higher number of faults, it is clearly not sufficient as anidadbor. ing?

In order to study the correlation between branch coveragsd le
and fault detection ability, the median of the branch cogeravel e Is branch coverage a good measure of the testing effective-
and the median of the normalized number of faults for thestest ness?
classes are superimposed in Figure 8. Figure 8 shows thhagein t
first few minutes of testing when the branch coverage level in e What are the unexercised branches?

creases quickly, faults are also found quickly. After a whihe
increase of the branch coverage slows down. The speed btifaul 4.1 Branch Coverage as Stopping Criterion for
tection also decreases, although less dramatically theibridnch Random Testing

coverage level. AfteBO minutes, the branch coverage level only
increases slightly, but during that period, many faultsdetected.

The correlation between the branch coverage level and the no
malized number of faults and for each class across all testisl
shown in Figure 9. Each subgraph shows the value of the corre-
lation coefficientr. The correlation between the branch coverage
level and the normalized number of faults shows a positiveeta-
tion, but varies much from class to class, froré to 0.97 and there
seems to be no common pattern among the tested classes.

The implications of these results are twofold: (1) when cage
increases, faults discovered increase as well, (2) wheerage
stagnates, faults are still found. Thus increasing thedbraov-
erage clearly increases the number of faults found. It isavew
clearly not sufficient to have a high value of the branch cagerto
assess the quality of a testing session.

The next section further elaborates on these findings asasell
their limitations.

Since in general, random testing cannot achie®@% branch
coverage in finite time, total branch coverage is certaiolyanfea-
sible stopping criterion. In practice, the percentage afecoover-
age is often used as an adequacy criterion, the greater tbenpe
age, the more adequate the testing [30], and testing camppest
if the generated test suite reached certain level of adgqubr
our experiments, after hour, the branch coverage level hardly in-
creases, so it will be unpractical to extend the testing timté full
coverage is reached. Instead, the only reasonable way twarseh
coverage would be to evaluate the expectation of finding aeits.

As shown in the previous section, the number of faults onghas
closely with the branch coverage level in the first few misubé
testing. On testing sessions longer tH@rmminutes, the correlation
between number of faults and branch coverage degradesctin fa
about50% of the faults are found in the period where the branch
coverage level hardly increases. This means that brandragey

is not a good predictor for the number of faults remaining ¢o b
found.

ACTIVE_LIST ARRAY

0.8 r=0.85 0.8 r=0.77 0.8 r=0.52

0.6 0.6 0.6

04 04 0.4

0.2

0.2 0.2

ARRAYED_LIST

ARRAYED_SET ARRAYED_STACK

0.8 r=0.58 0.8

0.6 0.6

0.4

0.4

0.2 0.2

0 0 - - 0
0 05 1 0 05

o

0.5

BINARY_SEARCH_TREE

BINARY_SEARCH_TREE_SET
1 1 -

0.8 r=0.97 0.8 r=0.78 — 0.8 r=0.8

= —— 06

0.6 0.6

0.4 [0.4

04

0.2 0.2 0.2

BINARY_TREE

0.5 0 0.5 1

FIXED_LIST HASH_TABLE

0.8 r=0.58 0.8 r=0.76

0.6 0.6

0.4 0.4

ic

0.2 0.2

0 0

0.5 0.5

o

HEAP_PRIORITY_QUEUE LINKED_CIRCULAR

0.8 r=0.63 0.8 r=0.82 0.8 r=0.55

0.6 0.6 0.6

04 0.4 0.4

0.2 0.2 0.2

LINKED_LIST

0.5

0 0.5 1 0

PART_SORTED_TWO_WAY_LIST
1

0.8

X—axis: Branch coverage
level

0.6

Y-axis: Normalized number
of faults

0.4

0.2

0.5 1 0 0.5

0.5 1

o

Figure 9: Correlation between the branch coverage level anthe normalized number of faults for each class over 360 minws

in two ways: (the number of) faults that are detected andpked
at which those faults are detected.

Two results show that different faults can be detected agahee
level of branch coverage: (1) in a test run, new faults weteated
in a period where branch coverage hardly changes; (2) ierdiff

The correlation between the branch coverage level and time nu
ber of detected faults greatly varies from class to class.sbme
classes such as BINARY_SEARCH_TREE, the correlation coeffi
cient is0.98 and the scatter graph shows the correlation is almost
linear, but for other classes such as ARRAYED_STACK, the cor

relation is weak {.3), especially for longer testing sessions. This
variation on the class under test reduces the precisioaiifdbr cov-
erage is used as a stopping criterion.

Random testing also detects different faults in differest tuns
while it exercises almost the same branches. This confiras th
multiple restarts improve drastically the number of fatdtsnd [6]:
in order to find as many faults as possible, a class shouldio®na
tested multiple times with different seeds, even thoughstimme
branches are exercised every time.

ent test runs for the same class, different faults were thtethile
almost the same branches were exercised. In other wordest-dif
ent tests suites satisfying the same branch coverageianiteray
detects different faults.

These two observations indicate that the degree of tesuadgq
in terms of branch coverage level is highly predictable, oy
in how many branches are covered, but also in what the covered
branches are. Put another way, when applying random testiag
class, the same level of branch coverage adequacy is alwhigved.

Thus branch coverage alone cannot be used as a stopping criteAlso, for all the tested classes, the branch coverage adgdgnel

rion for random testing.

4.2 Branch Coverage as Measure of Testing
Effectiveness

As a preamble, it is important to understand that running ran
dom testing longer is the same as adding new test cases iesb a t
suite. The reason is that testing for a longer time meanabag
method calls are executed on the class under test. Eachareitio
is actually the last line of a test case that contains alliptevcalls
participating to the state of data used in the call (see [@0hfde-
tailed explanation of test case construction and simptiboj To
push further the analogy, testing a class in different rarisé same
as providing different test suites for that class.

Our experiments tested production code in which the exjstin
number of faults is unknown. As a result, we cannot use the rat
of detected faults against the total number of faults to meathe
effectiveness of testing. Instead, we measure testingtefémess

stabilized after some time (1 hour in our case), which meaan e
continue the testing for a much longer time, the branch emer
level would not going to be increased.

But when looked at the testing effectiveness in terms of rermb
of found faults, random testing can continue find new faultem
the branch coverage level is not increasing. Although we ato n
know how many faults are to be found in those tested classes, t
fact that ove0% of new faults were found in the period when the
branch coverage level stagnates is not neglectable.

These results provided evidence of the lack of reliabillig][of
branch coverage criterion achieved by random testing.aBiity
requires that a test criterion always produce consistentit®e In
the context of our experiments, reliability requires that test runs
achieving the same branch coverage of a class should dsimer
lar number of faults. But our results show that the numbeaolt$
from different test runs will differ from each other by at $&0%.

In terms of speed of fault detection, we can only considef ran

Table 2: Unexercised branches

Reason % of branches
Branch condition not satisfied 45.6%
Linear constraint not satisfied 12.9%
Call site not exercised 13.7%
Unsatisfiable branches 13.7%
Crash before branch 8.6%
Implementation limitation 2.5%
Concurrent context needed 1.7%

dom testing. In the first few minutes of random testing, ttenbh
coverage level increases quickly, and the number of fautteases
accordingly. There is a strong correlation between the rausrob
faults found and the coverage during that period. This mézets
branch coverage is good in measuring testing effectiveimetse
first few minutes. But after a while, the branch coveragelleve
hardly increases, the fault detection speed also slows domviess
dramatically than the branch coverage level. In fact, manit$ are
detected in the period where the branch coverage hardlygelsan
This means in the later period, branch coverage is not a g&ad m
sure for testing effectiveness.

In general, to detect as many faults as possible, branchragee
is necessary but not sufficient.

4.3 Unexercised branches

We analyzed thd 79 branches in alll4 classes that were not
exercised in our experiments. Among these branches, there a
116 distinct branches, an@3 duplicated branches because they
appear in inherited methods. Table 2 shows the reasons why ce
tain branches were not exercised and the percentage ofraisd
branches that fall into that each reason. In Table 2 the ortsy
are as follows:

Branch condition not satisfied means that those branchesmweér
exercised because their branch condition is not met. This is
the most common case.

Linear constraint not satisfied means that in the branchitond
there is a linear constraint, and they were not satisfied &y th
random strategy. Actually, linear constraint is a specialec
of branch condition, but we think it is an important category
because a random strategy usually has great difficulty-satis
fying these constraints.

Call site not exercised means that the call site of a method co
taining the unexercised branches were not executed.

these branch conditions. A common solution to satisfy draom-
ditions is to use symbolic execution to collect path condisi un-
der which certain statement can be executed and propagspattn
conditions up to the method entry so particular inputs cagedver-
ated. However, symbolic executors often entails a greaptexity
and they usually come with a large overhead. We analyzedthos
unexercised branches falling into the first two reasons é¢ohssv
often a symbolic executor is needed:33% of cases, a symbolic
executor to propagate path conditions is needed, for thé Te&%,
simply concatenate all dominating path conditions andcsete
puts at the method entry satisfying the concatenated paititomn
would suffice to exercise those branches (a linear conssalner

is needed when there is linear constraint in the concaténmtth
condition). Of course, there is no guarantee that certandires
will be exercised by doing this (for example, it is possilblattthere

is no object satisfying the concatenated path conditionHertest-
ing strategy to choose from), but it may direct the testimgtegy
more effectively in exercising more branches. Also, by ddinis,

it is possible to reduce the number of unexercised inGh# site
not exercisedategory because if the branch containing the call sit
of a method is exercised, the branches in side the calledatieth
may be exercised als67.7% is high enough not to be ignored, so
we think this method is worthy trying.

For those unexercised branches in Hagllt before branclcate-
gory, the faults must be fixed first and then retest the claagag
For branches in themplementation limitatiomndConcurrent con-
text neededategories, we can enhance the AutoTest tool to support
the creation of agents and to support testing in a concuenevit
ronment.

5. THREATS TO VALIDITY

We detail mainly five threats to validity for our results.

First, although the classes under test in our experimerframe
the widely used Eiffel library EiffelBase and they vary imrtes of
various code metrics and intended semantics, we make nwo clai
regarding theirepresentativenessf O—O programs in general.

Second, AutoTest is one implementation of a random testing
strategy. It uses a pseudo-random number generator, andao
some interesting values for primitive types such as inegenals
and characters with some probability. We tried to keep tige-al
rithm of AutoTest as general as possible, tiliter implementations
of random testingnay produce different results.

Third, the heuristics used in mapping from failures to fawfiostly
assume the correctness of contracts: a precondition Mplan
method entry identifies the caller of that method as faulig a
postcondition violation on method exit identifies the metlitself
as faulty. This may cause AutoTest to miss some faults becaus

Unsatisfiable branches means that the branch checks on-condiif the contracts of a method are not correct callers mightaion

tions that will never be satisfied because the condition can
never be true.

Fault before branch means that there was always a fault foend
fore those unexercised branches, interrupting the exacuti

Implementation limitation means that because of the litiviteof
the AutoTest tool, those branches were not exercised.

faults that are unnoticed. Unfortunately, in case of a @mttviola-
tion, deciding whether it is because of a wrong contract of@engy
implementation cannot be done automatically. To limit tték,
we chose classes from the EiffelBase library, whose cotstiae
used and reviewed by many programmers during a long period of
time. After testing, we manually inspected the faults thratsug-
gested by the heuristic, and in all the cases, the faulty odeih
correctly identified. The fact that AutoTest relies on cants as

Concurrent context needed means that those branches gre onltest oracle does not limit its applicability to languagethwiit con-

exercisable when tested in a concurrent context. But our ex-
periments were conducted in a sequential setting.

Table 2 shows thad8.5% of the unexercised branches fall into
the first two reasonsBfanch condition not satisfied, linear con-
straint not satisfieyl A following question would be how to satisfy

tracts because when AutoTest runs on Eiffel classes wittinnen
contract monitoring turned off (essentially equals to Easses
without contracts), it can catch faults due to exceptiomeiothan
contract violation, for example, null pointer dereferengidivision
by zero, system level error. However, without contractcgpiag
what a class is supposed to do, an automatic testing toolaamly

found low level faults. According to our experiend#% of the
faults found by AutoTest are contract related.

Fourth, in the experiment, classes are tested in isolati@ach
test run. This means that in each test run, only methods fhan t
particular class under test are tested directly (methoels titansi-
tively call will be tested indirectly). The result may befdifent if
the library is tested as a whole, meaning that all classes fre
library are tested together.

Last, for all classes, theranch coverage level is beloW)0%,
due to the limitations of the random testing strategy andwhg
branch coverage is calculated. We do not know if the coialat
between the branch coverage level and the number of faillts st
holds when all branches are exercised. Also, we only hawe dat
on faults detected by random testing, we don’t know how many
faults are still undetected in the chosen classes even ifuhger
of faults found by random testing is much higher in generahth
manual testing [5].

6. RELATED WORK

Intuitively, random testing cannot compete in terms of @ffe-
ness with systematic testing because it is less likely gradomly
selected inputs will be interesting enough to reveal faaltee pro-
gram under test. However, some studies [16, 28, 23] havershow
that random testing is as effective as some systematic mietuzh
as partition testing. Our results also showed that randstinteis
effective: in the experiment, random testing detec8l faults in
14 classes in EiffelBase library while in the pasyears, only28
faults were reported by users.

The advantage of cheap implementation and easy appligabili
makes random testing attractive. It has been used in tegpieat-
ing systems [21, 9], as well as O—O programs [7, 8, 25, 24, 26].

Ciupa et al. [6] investigated the predictability of randassting
and showed that in terms of the number of faults detectedtomer
random testing is predictable, meaning that different fianghe
same class will detects roughly the same number of faultdevh
terms of the kind of faults, random testing is unpredictabiean-
ing that different runs for the same class detects diffekerds of
faults. Figure 5 and Figure 6 confirm their results.

The branch coverage criterion for measuring testing siyaté-
fectiveness is compared with other criteria in many studieankl
et al. [10] compared the branch coverage criterion with theses
criterion and concluded that for their programs under tbtyses
adequate test sets performs better than branch adequasetss
and branch adequate test sets do not perform significanttgrbe
than null-adequate test sets, which are test sets corgaeniidomly
selected test cases without any adequacy requirement.dEfiezd
the effectiveness of an adequacy criterion to be the prohathiat
a test set selected randomly according to that adequa®yriorit
will expose an error. Based on this definition, they evaldidtanch
coverage effectiveness in test sets as small as possitdar gtudy,
we are more interested the branch coverage level achieveahby
dom testing in a certain amount of time and the number of gault
found in that period.

Hutchins et al. [19] also compared the effectiveness of thadh
coverage criterion and the all-uses criterion. They fourat for
both criteria, test sets achieving coverage levels over S6&wed
significantly better fault detection than randomly selddest sets
of the same size. This means that a lot of faults could be tigtec
when the coverage level approaches 100%. They also comclude
that in terms of effectiveness, there is no winner betweamdir
coverage and all-uses criterion. Our results on the cdivelde-
tween the branch coverage level and the number of deteatéid fa
also shows a similar pattern that many faults are detectbidjlaer

coverage levels, in our experiment, however, the branckrage
level did not reachi00%, while in their study, manually written
test sets guaranteed total branch coverage. Also, in ttuely,goro-
grams under test were seeded with faults, while in our expent,
programs were tested as they are.

Gupta et al. [13] compared the effectiveness (the abilitddeo
tect faults) and efficiency (the average cost for detectifeghi) of
three code coverage criteria: predicate coverage, brandrage
and block coverage. They found that predicate coverage imtst
effective but the least efficient, block coverage is thetledfec-
tive but most efficient, while branch coverage is betweedipate
coverage and block coverage in terms of both effectivenesefi-
ciency. Their results suggest that branch coverage is steab®ong
those three criteria for getting better results with motietasting
efforts.

Many methods have been proposed to maximize branch cover-
age, many of which are based on random testing or use random
testing in an initial phase. Gupta et al. [14] presented dhotkto
dynamically switch to a path that offers relatively lesdgesce to
generation of an input to force execution to reach an unesedc
branch. DART [11] combined random testing and symbolic exe-
cution to achieve path coverage. Pex [27] also uses syméxdic
cution to achieve high branch coverage. Our experimentigedy
results showing how random testing performs in terms of diran
coverage, it can be used as a benchmark in evaluating theestha
ment of those branch coverage maximizing methods.

7. CONCLUSIONS AND FUTURE WORK

We have assessed how random testing performs in terms aftbran
coverage. Our results show that the branch coverage |elvighad
by random testing varies depending on the structure of thgram
under test, but on average, is very hig%). Within the branches
that are exercised by random testing, most of them are aeerci
very quickly (in the firstl0 minutes of testing) regardless of the
class under test. For the same class, branches exerciséféiard
test runs are almost the same. In terms of fault detectidiereint
test runs for the same class will detect roughdys different faults.
Over50% of the faults are detected in the period when branch cov-
erage hardly changes.

Our results indicate that branch coverage is not a good stgpp
criterion for random testing. One should test a program iftipie
test runs to find as many faults as possible even though bydoin
so the branch coverage level will not be increased in genatso,
one should not stop random testing when the branch covezagk |
stops increasing or only increases very slowly.

Another deduction from our results is that branch coverage i
general is not a good indicator of the quality of a test suiteour
experiments, more tha@®% of the faults are uncovered while cov-
erage is at a plateau. Although many studies showed thatloran
coverage is weak, we found little evidence showing a randzst: t
ing strategy continues finding faults when the branch c@esstag-
nates.

Future work includes investigating how to reach even hignanch
coverage (100%) as well as to analyze the reasons for ndtingac
total coverage.

AcknowledgementWe thank llinca Ciupa, Andreas Leitner, Si-
mon Poulding, and Stephan van Staden for their insightfoi-co
ments.

8. REFERENCES

[1] ECMA-367 Eiffel: Analysis, Design and Programming
Language, 2nd Edition.

http://ww. ecma- i nternational.org/
publ i cati ons/ st andards/ Ecma- 367. ht m

[2] EiffelBase. Eiffel Softwareht t p:

//ww. ei ffel.conlibraries/base.htmnl.

[3] EiffelStudio. Eiffel Software.

http://ww.eiffel.conl.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimehta

assessment of random testing for object-oriented softimare
Proceedings of the International Symposium on Software
Testing and Analysis 2007 (ISSTA'O@ages 84-94, 2007.

[5] I. Ciupa, B. Meyer, M. Oriol, and A. Pretschner. Finding

faults: Manual testing vs. random+ testing vs. user reports
In 19th International Symposium on Software Reliability
Engineering (ISSRE’'08pages 157-166.

[6] I. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Maye

On the predictability of random tests for object-oriented
software. InFirst International Conference on Software
Testing, Verification, and Validation 2008 (ICST'0gages
72-81.

[7] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic

robustness tester for jav@oftw. Pract. Exper.
34(11):1025-1050, 2004.

[8] C. Csallner and Y. Smaragdakis. Dsd-crasher: a hybrid

analysis tool for bug finding. IISSTA '06: Proceedings of
the 2006 international symposium on Software testing and
analysis pages 245-254. ACM, 2006.

[9] J. E. Forrester and B. P. Miller. An empirical study of the

robustness of windows nt applications using random testing
In WSS’00: Proceedings of the 4th conference on USENIX
Windows Systems Symposjyrages 6—6, Berkeley, CA,

USA, 2000. USENIX Association.

[10] P. Frankl and S. Weiss. An experimental comparison ef th

effectiveness of branch testing and data flow testing.
Software Engineering, IEEE Transactions on
19(8):774-787, Aug 1993.

[11] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed

automated random testing. BRLDI '05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementatippages 213-223, New York, NY,
USA, 2005. ACM.

[12] J. B. Goodenough and S. L. Gerhart. Toward a theory of tes

data selectionEEE Trans. Software Engl(2):156-173,
1975.

[13] A. Gupta and P. Jalote. An approach for experimentally

evaluating effectiveness and efficiency of coverage daiter
for software testinglnt. J. Softw. Tools Technol. Transf.
10(2):145-160, 2008.

[14] N. Gupta, A. Mathur, and M. Soffa. Generating test data f

branch coveragédutomated Software Engineering, 2000.
Proceedings ASE 2000. The Fifteenth IEEE International
Conference onpages 219-228, 2000.

[15] D. Hamlet. When only random testing will do. RiT '06:

Proceedings of the 1st international workshop on Random
testing pages 1-9, New York, NY, USA, 2006. ACM.

[16] D. Hamlet and R. Taylor. Partition testing does not irsp

confidencelEEE Trans. Softw. Eng16(12):1402-1411,
1990.

[17] R. Hamlet. Random testing. EBncyclopedia of Software

Engineering pages 970-978. Wiley, 1994.

[18] R. W. Hamming. Error detecting and error correctingend

The Bell System Technical Journab(2):147-160, 1950.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criterial 08E '94:
Proceedings of the 16th international conference on
Software engineeringages 191-200, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

A. Leitner, M. Oriol, A. Zeller, . Ciupa, and B. Meyer.
Efficient unit test case minimization. FProceedings of the
22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE'Oages 417-420, November
2007.

B. P. Miller, L. Fredriksen, and B. So. An empirical syuof
the reliability of unix utilities.Commun. ACM

33(12):32-44, 1990.

G. J. MyersThe Art of Software Testing, 2nd editicfohn
Wiley and Sons, 2004.

S. Ntafos. On random and partition testingl88TA '98:
Proceedings of the 1998 ACM SIGSOFT international
symposium on Software testing and analységes 42-48,
New York, NY, USA, 1998. ACM.

C. Oriat. Jartege: A tool for random generation of uedts
for java classes. IQuality of Software Architectures and
Software Quality, First International Conference on the
Quality of Software Architectures, QoSA 2005 and Second
International Workshop on Software Quality, SOQUA 2005
pages 242-256, 2005.

C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. ECOOP 2005 —
Object-Oriented Programming, 19th European Conference
pages 504-527, Glasgow, Scotland, July 27—-29, 2005.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generatiodCIBE '07:
Proceedings of the 29th International Conference on
Software Engineeringpages 75-84, Washington, DC, USA,
2007. IEEE Computer Society.

N. Tillmann and J. de Halleux. Pex-white box test getiera
for .net. InTests and Proofs, Second International
Conference(TAP'08pages 134-153, 2008.

E. Weyuker and B. Jeng. Analyzing partition testing
strategieslEEE Transactions on Software Engineering
17(7):703-711, 1991.

Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based
testing tools. IPAST '06: Proceedings of the 2006
international workshop on Automation of software test
pages 99-103, New York, NY, USA, 2006. ACM.

H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequa@®CM Comput. Sury29(4):366-427,
1997.

