
Satisfying Test Preconditions
through Guided Object Selection

Yi Wei, Serge Gebhardt, Bertrand
Meyer and Manuel Oriol

ETH Zürich

Automated unit testing

2

Test case execution Result validationInput generation

Preconditions Postconditions

Contracts

Oracle

Input filter

Design by Contract

put (v: G; i: INTEGER_32)

-- From DS_ARRAYED_LIST

-- Add `v' at `i'-th position.
require

extendible: extendible (1)

valid_index: 1 <= i and i <= (count + 1)

-- Implementation
ensure

one_more: count = old count + 1
inserted: item (i) = v

3

Contract-based random testing

4

Precondition

Routine

Postcondition

Input filter

Oracle

Random input generation:

• Primitive values: random selection

• Objects: constructor calls + other (state-changing) methods

Original random testing strategy – the or-strategy

5

The or-strategy

Sample test cases

Select next routine to test

Select objects randomly

Invoke routine

create {LINKED_LIST [INTEGER] } v1.make

v2 := 1

v3 := 125

v4 := v1.has (v3)

v1.wipe_out

v5 := v1.count

v1.extend (v2)

v1
v2

v3

v4

v5

Object pool

The issue of generating precondition satisfying tests

A random based testing tool implemented in such scheme has

difficulty in generating valid test cases for precondition-

equipped routines:

• Some routines are left untested.

• The testing tool may keep generating invalid test cases,
instead of performing effective testing.

6

What kinds of preconditions are difficult to satisfy?

remove_right_cursor (a_cursor: DS_ARRAYED_LIST_CURSOR)
-- Remove item to right of `a_cursor' position.
-- Move any cursors at this position forth.

require

not_empty: not is_empty
cursor_not_void: a_cursor /= Void
valid_cursor: valid_cursor (a_cursor)
not_after: not a_cursor.after
not_last: not a_cursor.is_last

7

At the beginning of the 50th minute, there are 356 list objects and
192 cursor objects, but only 5 out of 68,352 list-cursor combinations
satisfied the precondition, the probability of a correct selection is 0.007% .

What kinds of preconditions are difficult to satisfy?

prune (n: INTEGER_32; i: INTEGER_32)
-- Remove `n' items at and after `i'-th position.

require
valid_index: 1 <= i and i <= count
valid_n: 0 <= n and n <= (count - i + 1)

ensure
new_count: count = old count - n

8

This occurs often in preconditions

Guided object selection – the ps-strategy

Observation

9

• The or-strategy can create objects satisfying many preconditions

• Needs to select those objects more effectively

• Keep track of which objects satisfy certain precondition predicates

• To test a routine, select precondition-satisfying objects with
a higher probability

• Use linear constraint solver

Solution: the precondition satisfaction strategy (ps-strategy)

Comparison between the or-strategy and the ps-strategy

10

Select next routine to test

Select objects randomly

Invoke routine

Pr

Select precondition-
satisfying objects from

predicate evaluation pool

Select next routine to test

Select objects
randomly

Invoke routine

Update predicate
evaluation pool

The or-strategy The ps-strategy

Object selection guided by predicate evaluation pool (V-pool)

The V-pool keeps track of objects satisfying certain

precondition predicates; those objects can be used to

generate valid test cases.

11

not_empty

cursor_not_void

valid_cursor

not_after

not_last

l1

l1, c1

l2

l2, c2

c1 c2 c3

c1c2

c3 c2

l1
l2 l3

c1
c2

c3

l4

o1 p1 …

…

V-pool object pool

Updating the predicate evaluation pool

After every passing test case

evaluate relevant predicates on last used objects, and add
precondition-satisfying object combinations to the V-pool.

After every invalid test case:

remove the object combination causing the precondition
violation at the specific predicate from the V-pool.

12

Grow the V-pool as much as possible

Correct inconsistency lazily

After every passing test case…
replace_at_cursor (v: G; a_cursor: CURSOR)

-- Replace item at `a_cursor' position by `v'.

require

cursor_not_void: a_cursor /= Void

valid_cursor: valid_cursor (a_cursor)

not_off: not a_cursor.off

13

not_off

l, c

cursor_not_void c

valid_cursor

c

c := l.new_cursor

l.force_last (v1)

c.go_i_th (1)

l.wipe_out

l.replace_at_cursor (v3, c)

The V-pool contains snapshots of the
relations among objects, this information
may become inconsistent as testing
proceeds.

…

After every invalid test case…
replace_at_cursor (v: G; a_cursor: CURSOR)

-- Replace item at `a_cursor' position by `v'.

require

cursor_not_void: a_cursor /= Void

valid_cursor: valid_cursor (a_cursor)

not_off: not a_cursor.off

14

not_off

l, c

cursor_not_void c

valid_cursor

c

c := l.new_cursor

l.force_last (v1)

c.go_i_th (1)

l.wipe_out

l.replace_at_cursor (v3, c)

What is the success rate of test cases
generated by the ps-strategy?

…

> 60% (cf. or-strategy: < 10%)

For linear constraints

prune (n: INTEGER_32; i: INTEGER_32)

-- Remove `n' items at and after `i'-th position.

require

valid_index: 1 <= i and i <= count
valid_n: 0 <= n and n <= (count - i + 1)

ensure

new_count: count = old count - n

15

lpsolve is used to generate a
minimal and a maximal solution

• Randomly select one value from the range

• Slightly biased on border values and potentially interesting values

• Solutions are cached

Optimization

16

Pr

Select precondition-
satisfying objects from

predicate valuation pool

Select next routine to test

Select objects
randomly

Invoke routine

Update predicate
valuation pool

Always enforcing precondition
satisfaction slows down the
test process by (50~70%), without
benefits:

• did not test more routines

• found much fewer faults

Turn precondition satisfaction
on only from time to time

Evaluation

ps-strategy vs. or-strategy

17

Evaluation overview

• How many more routines are tested by the ps-strategy?

• How often are routines tested by the ps-strategy?

• How many more faults are detected by the ps-strategy?

• How fast is the ps-strategy?

18

Experimental setup

• 92 classes of EiffelBase and Gobo libraries
– widely used in production software

– different data structures: lists, arrays, trees, stacks, and a regex lexer

• Arranged into 57 strongly-related test groups
– based on dependency between classes

– introduces more diversity in the object pool

• 30 test runs per group of 1 hour each, for both the or- and ps-
strategies

• 3,420 hours of testing

19

How many more routines are tested by the ps-strategy?

• A hard routine is one for which or-strategy failed to generate a valid test
case for at least 90% of the time.

• But misses 1% of those tested by or-strategy.
20

59%

81%

or-strategy ps-strategy

Coverage of hard routines

ps-strategy covers 56%
of the routines missed

by or-strategy

How often are routines tested by the ps-strategy?

• Over 3.5 times as many valid test cases overall
21

Some routines
become much
easier to test

Others remain
difficult to test

How many more faults are detected by the ps-strategy?

22

28 groups 19 groups 10 groups

More faults detected by
ps-strategy

More faults detected by
or-strategy

Same number of faults
detected by both

strategies

Fault coverage by each strategy

Almost 10% increase in the number of detected faults overall.

23

15%

6%

79%

ps-strategy or-strategy both strategies

Fault coverage by each strategy

• Different class groups perform differently well

24

Test case generation speed

25

0.03%
overhead

Fastest

Slowest

Routines still untested by the ps-strategy

• Strategy-unrelated (51%)

– Preconditions are hardcoded as unsatisfiable

– Preconditions require a different environment (e.g. .NET)

• Strategy-related (49%)

– Satisfying combinations are never created (bad luck)

– Satisfying combinations are damaged before usage

– Test runs are not long enough

26

Limitations to generalization

• The chosen classes are mostly data structures and might not be
representative for all O-O programs.

• One-hour test runs might be too short, the number of faults does not
reach a plateau.

27

Conclusion: ps-strategy vs. or-strategy

• How many more routines are tested by the ps-strategy?

– The ps-strategy tests 56% of the routines missed by the
or-strategy.

• How often are routines tested by the ps-strategy?

– The ps-strategy tests routines over 3.5 times as often.

• How many more faults are detected by the ps-strategy?

– The ps-strategy finds 10% more faults than the or-strategy.

• How fast is the ps-strategy?

– The ps-strategy has negligible overhead (a mere 0.03%).

28

Questions

29

Importance of speed

• More valid test cases
⇒ more diversified object pool
⇒ greater chances of finding faults

• Tried two other variations:

– Iterating through all objects in the pool,
overhead >50% (even with optimizations)

– Always enforcing precondition satisfaction,
big overhead

30

Success rate of the ps-strategy

• varies from as low as 20% to as high as 99%
• mostly over 40%
• generally decreasing because hard routines are favored

31

Distribution of fault detection

32

Optimization

As a tradeoff, the precondition satisfaction is only turned on
for routine r from time to time:

t: time relative to the starting of the test run when r is last tested.
d: duration of the test run until now.
C: a constant, set to 0.8 in our experiments

Benefits:
• Routines are tested often
• Routines are tested throughout the whole testing run

33

(,) 1r

t
P t d C

d

t

dStart

Fault detection probability

• What is the probability of a strategy to detect a given fault in a
single test run?

• The higher the probability, the less runs are needed to detect
that fault.

• Fault Detection Probability of fault f using strategy s:

- N(f, s): number of test runs in which f was detected under strategy s

- R: number of test run per class group

34

D(f ,s)
N(f ,s)

R

Fault detection probability: behavior of both strategies

• Very similar behavior between both strategies

• But does not mean that the probability is the same under both strategies 35

Fault detection probability: ps-strategy vs. or-strategy

• ps-strategy does a better job at finding faults systematically 36

D(f, ps) – D(f, or)

37% 39% 24%

More probable to be
detected by ps-strategy

More probable to be
detected by or-strategy

Detected equally often
by both strategies

