
Demonic Testing of Concurrent Programs

Scott West, Sebastian Nanz, and Bertrand Meyer

ETH Zürich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. Testing presents a daunting challenge for concurrent pro-
grams, as non-deterministic scheduling defeats reproducibility. The prob-
lem is even harder if, rather than testing entire systems, one tries to test
individual components, for example to assess them for thread-safety. We
present demonic testing, a technique combining the tangible results of
unit testing with the rigour of formal rely-guarantee reasoning to pro-
vide deterministic unit testing for concurrent programs. Deterministic
execution is provided by abstracting threads away via rely-guarantee
reasoning, and replacing them with “demonic” sequences of interfering
instructions that drive the program to break invariants. Demonic testing
reuses existing unit tests to drive the routine under test, using the exe-
cution to discover demonic interference. Programs carry contract-based
rely-guarantee style specifications to express what sort of thread inter-
ference should be tolerated. Aiding the demonic testing technique is an
interference synthesis tool we have implemented based on SMT solving.
The technique is shown to find errors in contracted versions of several
benchmark applications.

1 Introduction

The spread of multicore architectures has established concurrent programming
as an increasingly indispensable part of software development, and causes an in-
creasing need for suitable development tools. Of particular importance to indus-
trial applications is support for debugging and testing of concurrent programs;
such support is difficult to provide, however, because of the unpredictability and
irreproducibility of thread scheduling, which makes interference between threads
very difficult to discover. These difficulties have not stopped successful research
into concurrent testing tools, e.g. [12, 23, 19, 14, 25]. The focus of this work is to
address both the difficulty in finding concurrency bugs, while keeping the process
reproducible and modular.

Modularity and reproducibility are, in particular, difficult challenges, as con-
current programs appear to be inherently non-modular and non-deterministic:
independent threads carefully manipulate shared-data to work towards a com-
mon goal (multiplying a matrix, serving a web-page, etc.). To overcome these
challenges, demonic testing as prescribed in this paper takes regular unit-testing
of routines and contracts, such as preconditions, and uses them to determine
whether a routine will fail in a concurrent setting. A high-level visualization can

be seen in Figure 1, where the program-state is exported during testing to a
constraint-based synthesis tool along with a precondition. If the synthesis tool
can violate the precondition with the actions of another thread, this indicates
that the routine is vulnerable to interference.

Fig. 1: Finding dynamic interference

The overall process of demonic testing can be seen in Figure 2. Given a set
of classes and one of their routines s chosen for testing, we perform:

– Class-to-domain transformation: collect all supplier classes for the rou-
tine s, and convert them to an abstract domain description for synthesis
tool.

– Routine instrumentation: instrument the routine s to serialize the state.

These two steps produce a domain description and an instrumented routine
which are passed to the remaining two modules of the system:

– Testing tool This component runs the instrumented version of s with rele-
vant test cases. Test cases may for example be obtained from an automatic
testing tool, such as AutoTest [18].

– DemonL (synthesis) tool This component takes the domain description
as input and dynamic state of s recorded by the testing tool and produces
sequences of interfering actions.

If the demonL tool finds interference for a test case, the interfering instructions
are given. If no such interference can be found then the test succeeds.

An evaluation of the technique shows that it can successfully catch 7 out of
8 selected bugs of the concurrency bug collection [6], which include known bugs
in major applications, such as Apache and MySQL – entirely without threads.
The implementation of the technique is available [11, 7].

The remainder of this paper is structured as follows. In Section 2 an overview
of the approach and a running example are introduced. The overall technique

Fig. 2: Overview of the system architecture

is described in detail in Section 3, including the foundational concepts and the
transformation of classes into the language of the demonL. We evaluate the
technique in Section 4. Discussion on related work follows in Section 5, and we
conclude in Section 6.

2 Example testing run

To provide intuition for the demonic testing technique, this section introduces
the running example.

The technique works with any language that can carry contracts, including
C# (.NET code contracts) [5], Java (JML) [15], D, and Eiffel [17]; in the following
we use the Eiffel syntax. Routine contracts in Eiffel are specifications in the form
of pre- and postconditions as part of require and ensure clauses, respectively.
The old keyword indicates that the value following it will be considered from
the pre-state of the routine execution.

To apply the technique to non-Eiffel programs, a first step of translation into
Eiffel is currently required. This requirement is a property of our current setup,
not an intrinsic limitation of the method of demonic testing introduced in this
article, which can be applied to any language supporting contracts.

Example The Eiffel class IDLE_COUNTER in Figure 3 represents a collection of idle
workers. The idle-counter can increase and decrease the number of idle workers.
The wait_for_idle routine will decrease the number of idle workers if there are
any, otherwise it waits on a condition variable until there are more idle threads.
The objective is to test the routine wait_for_idle for usage in a concurrent
setting.

class IDLE_COUNTER
feature
num_idlers: INTEGER
increment
do . . . end

decrement
require
non_zero: num_idlers > 0

do . . .
ensure
num_idlers = old num_idlers - 1

end
end

wait_for_idle
do
if num_idlers = 0 then
mutex.lock
if num_idlers = 0 then
-- release locks on mutex
-- and wait on condition
non_zero.wait (mutex)

end
mutex.unlock

end
decrement

end

Fig. 3: Work distribution example

Demonic testing uses the dynamic state at a given program point to analyze
statically whether concurrent interference at that point could cause a fault, see
Figure 1. We consider a fault to exist if the next instruction to be executed could
have its precondition violated due to other threads modifying shared state. Part
of the response from the static analysis is a sequence of instructions that would
move the program into a state that would cause a fault. These instructions
represent other threads that may give rise to a failure in the program.

Example While running a unit-test of the wait_for_idle routine in Figure 3,
the tool instruments the routine wait_for_idle with calls to the synthesis tool.
For a given test case, the tool reports whether or not interference could be found
that will lead to a failure of the routine. In this example, the tool reports that
an extra call to decrement immediately before the existing call to decrement
will cause a violation.

There are two ways to respond to a warning by this method: either to modify
the behaviour of the program so that it is not vulnerable to this kind of inter-
ference, or to refine the specification and only allow certain interference. In the
case of Figure 3, synchronization instructions could be introduced to prevent
concurrent access of the shared data.

Example The developer can express that the interference found in Figure 3 does
not occur by limiting the interference that can be generated. For example, the
restriction could be: num_idlers >= old num_idlers. This specification disal-
lows the environment from removing idle workers; upon retesting no violations
are reported.

3 Demonic testing

This section presents the founding concepts and implementation of demonic
testing as well as the approach to handling common synchronization primitives
in a thread-free and modular way.

Demonic testing takes classes annotated with traditional contracts and rely-
specifications and uses static analysis in combination with the state from runtime
to indicate where there may be errors due to concurrent executions.

3.1 Application of rely-guarantee reasoning

The rely-guarantee formalism [13] provides a framework to express and reason
about interference in concurrent programs. The interaction between a compo-
nent and its environment is included in the component’s specification, allowing
compositional reasoning about concurrent programs.

The formalism proposes an extension of the usual Hoare logic specification
(P,Q) of a routine s with precondition P and postcondition Q, to a four-tuple
(P,R,G,Q) which additionally contains a rely-condition R and a guarantee-
condition G. The new conditions are binary predicates on states and describe
the state changes that the environment (other threads) is allowed to make. A
routine s satisfies its specification if, starting in a state satisfying P , under
environmental interference adhering to R, s only makes state changes allowed
by G, and finishes in a state satisfying Q.

The demonic testing approach uses a subset of the rely-guarantee concepts,
namely the rely-conditions and the notion of stability, to specify interference
generation for concurrent programs. The rely-specifications are manually added
to the method under test, expressed as a postcondition with the tag rely. The
rely tag indicates that this is only for demonic testing.

The concept of stability allows us to ascertain whether a routine can operate
correctly in spite of the interference described by the rely-specification. Formally,
the stability of a state-predicate p with respect to a rely-condition R is given as:

stable(p,R) ≡ ∀σ, σ′. p(σ) ∧R(σ, σ′)→ p(σ′)

With the notion of the rely-condition one can express the goal of the testing
strategy in the following terms: given the rely-condition R of a routine s un-
der test, try to create interference that would drive the program to violate the
precondition pre of some call in the body of s.

Example In the running example, we have the following stability formula for the
precondition of decrement:

num idlers(σ(this)) > 0 ∧ num idlers(σ′(this)) ≥ num idlers(σ(this))→
num idlers(σ′(this)) > 0

Demonic testing distinguishes itself from other techniques of program verification
by the usage of a dynamic program state to reduce the need for program speci-
fication. The goal given to the demonL tool is merely the negation of the stable
predicate, ∃σ, σ′. p(σ) ∧ R(σ, σ′) ∧ ¬p(σ′). In demonic testing, this is formula
simplified by two assumptions:

1. that the routine is correct without interference, and

2. that the test-cases driving the routine constitute the inputs on which it is
expected to work correctly.

The first point allows us to assume p(σ), the second allows us to remove σ as a
quantified expression, as it is given by the dynamic state. This leaves solving only
∃σ′. Rσ(σ′) ∧ ¬p(σ′), where Rσ is the rely condition specialized to the concrete
program state. Since the rely condition is specialized, it doesn’t have to handle
cases that never arise in normal program execution; this lowers the amount of
required annotation. Additionally, there is no specification required for typically
difficult to specify cases, such as loop variants and invariants.

3.2 The domain description language

Program synthesis constructs a program that satisfies a given specification.
Demonic testing uses program synthesis to construct interference, actions per-
formed by other threads, which indicates errors in concurrent programs.

Facilitating the demonic testing approach are a language and tool: demonL.
In the same spirit as the verification language Boogie [2], demonL serves as an
intermediate language to express the allowable types of interference. The input
to the tool consists of two parts: a domain and a goal.

The domain language is as follows:

Domain ::= [TypeDecl | ProcDecl]∗
TypeDecl ::= type ident {Decl∗}
Decl ::= ident : ident
ProcDecl ::= ident(Decl∗)[: ident]? Pre? Post?
Pre ::= require TaggedExpr∗

Post ::= ensure TaggedExpr∗

TaggedExpr ::= tag : Expr
Expr ::= op Expr | Expr op Expr | Call
Call ::= ident(Expr∗)

where op can be the common infix and prefix operators, with the addition of an
old prefix operator.

To specify the desired initial and final states the following goal language is
used, sharing the same expression and declaration syntax as the domain format.

Goal ::= Decl∗ InitialState FinalState
InitialState ::= initial Expr∗

FinalState ::= final Expr∗

Example Figure 4 shows a program written in demonL, corresponding to the
class IDLE_COUNTER in Figure 3.

The domain describes the state through data structures, functions on the
state, as well as procedures that transform the state. Procedures and functions
are described with pre- and postconditions. The goal describes the entities in the

type Idle Counter {num idlers: Integer}
increment (this: Idle Counter)

. . .
decrement (this: Idle Counter)

require
non zero: this.num idlers > 0

ensure
this.num idlers = old this.num idlers − 1

Domain specification

this: Idle Counter

initial
not (this = null) and
this.num idlers = 1

final
not (this.num idlers > 0)

Goal specification

Fig. 4: The IDLE_COUNTER class in demonL

system and constraints on the initial state and final state. The final state relates
the initial and goal states through the use of old operator, which references the
values in the initial state.

DemonL constructs an initial state that satisfies the initial constraints, a
series of actions, and a final state that is the result of the actions applied in
order, and also satisfies the final-state constraints.

Example To find the possible interference that could be used to destabilize Fig-
ure 3, the goal specification found in Figure 4 is used. The goal specification
contains the negation of the precondition of the decrement operation, here:
this.num_idlers <= 0. However, if the goal includes the rely-condition restrict-
ing the interference to only non-decreasing effects on the number of idle workers,
then the program is correct under the rely assumption.

final
this.num idlers >= old this.num idlers and
not (this.num idlers > 0)

Again we can see the same shape stability criterion, ∃σ′. Rσ(σ′) ∧ ¬p(σ′).

3.3 Class transformation

We assume an input (Eiffel) class C has three components: Cname, Cattrs, and
Croutines. Cname denotes the name of the class. The attributes of the class, Cattrs,
are denoted by a : t to indicate an attribute a that has type t. Every routine
s in Croutines has a name, denoted by sname. Also, every routine can have a pre-
and postcondition, denoted by spre and spost.

The translation function to convert class files into demonL domains (see
Figure 2) is shown in Table 1. Note that the presentation of this translation
function uses a pattern-matching style, with the function matching arguments
in a top-down fashion.

– Attributes, along with the class name, are transformed into a datatype in
demonL.

trans(C) = {feat(C, f) | f ∈ Cfeatures} ∪ {data(C)}
data(C) = type Cname { Cattrs }

feat(C, f) = fname(args(C, fargs))
require expr(fargs, fpre)
ensure expr(fargs, fpost)

args(C, as) = (this : Cname) :: as

expr(args, x.f(as)) = f(expr(args, x), expr(args, as))
expr(args, e1 op e2) = expr(args, e1) op expr(args, e2)

expr(args, op e) = op expr(args, e)

expr(args, v) =

(
v if v ∈ args

this.v otherwise

Table 1: Translation function

– Routines are transformed using feat directly into demonL procedures with
pre- and postconditions.

The result of a function is denoted by having equality on the Result value, for
example Result = 2 * x. Argument-list transformation of routines and func-
tions explicitly includes the normally implicit self-reference in object-oriented
programs. The translation of expressions is largely straightforward, with the
target of a call moving to the first argument of the call, to coincide with the
argument-list transformation.

Example An example of this translation process can be seen by examining how
Figure 3 is translated to Figure 4.

3.4 Routine instrumentation

As part of the technique, the routine under test must be instrumented (see
Figure 2). The instrumentation augments the program execution so it is able
to encode the dynamic state of the program for demonL. This procedure is
straight-forward.

3.5 The demonL tool

The output of the tool is the sequence of actions, and their arguments, that
bring the program from the initial to the final state. Given the specifications
in Figure 4, this would be a call to decrement. If the underlying SMT solver
reports that the constraints are unsatisfiable, this indicates that no sequence
of actions could be found. To avoid long synthesis times, the tool constructs
sequences bounded by number of instructions and number of unique references
for each user-constructed type.

However, because of the constraint-based nature of the encoding, first the tool
solves the interference problem in a single step with no actions to constrain the

transformation. This is equivalent to a proof of instability. If the tool determines
that interference is possible then it tries to obtain the sequence of actions. If, even
without constraints, it cannot find interference then interference is impossible
no matter the actions or bounds given to the tool. This means that demonL’s
determination of the absence of interference is not limited by the inability of the
tool to construct a sequence of appropriate instructions.

Having an intermediate language and tool offers substantial advantages to
the application of the demonic technique: separating the complexity of encoding
the verification conditions from the task of routine instrumentation, and the
possibility to target more than one source language and and more than a single
solver in the back-end. The current technology choices for demonL are Eiffel as
a source language to be translated to demonL, and Yices [9] as the SMT solver.

DemonL is similar to planning tools. In particular it allows the movement
from an initial state to a final state by a series of actions. However, the specifica-
tion of the initial state and the actions are permitted to be weaker than generally
allowed by planning tools that use languages such as the Planning Domain Def-
inition Language (PDDL) [16]. Where PDDL only allows the effect of an action
to be expressed using certain atomic-terms our tool has no such restriction: any
expression can be used to describe the effect of an action. For example, where a
PDDL domain would require a post-condition such as attribute = 5, demonL
is able to deal with with post-conditions such as attribute > 3. DemonL also
does not assume determinism of the actions. These qualities are important when
representing program specification, which are typically incomplete.

DemonL is available for download from [7].

3.6 Handling synchronization primitives

The use of threads to construct concurrent programs inherently exhibits two
types of effects:

– the necessary, where a thread contributes a result to another thread, and
– the incidental, which are side-effects of necessary actions, and are also mod-

ifications to shared state.

When we consider concurrent applications as a combination of necessary and
incidental effects, the necessary aspect of concurrency can be seen as a depen-
dency, and the incidental aspect can be seen as interference. One thread depends
on another to provide a computational result in a shared memory location. In
threaded programs, these dependencies are made explicit by a mutex’s lock, or
a condition variable’s wait routine.

When unit-testing a class or method, it is common to provide stub methods
or objects in the place of dependencies. For example, a full database connection
may be replaced with one containing only a small fixed selection of data.

Although mutexes, semaphores, and condition variables carry no explicit in-
variants, their usage in programs is almost always accompanied by an implicit
invariant related to a resource. Consequently, they can have meaningful post-
conditions that we can use to create stubs to test concurrent programs without

requiring threads. They merely need to be replaced with normal function calls
that ensure the same postcondition.

Example Assume a simple producer/consumer-style program, such as that given
in Figure 5. The call to cond_var.signal in the produce routine has the pre-
condition that the number of products is greater than zero. The counterpart in
the consume routine, the call to cond_var.wait, has the same post-condition:
product > 0.

produce
do
product := product + 1
if product = 1 then
cond_var.signal

end
end

consume
do
if product = 0 then
cond_var.wait

end
product := product - 1

end

Fig. 5: Producer/consumer coordination

To create a stub for the call to cond_var.wait, replace the implementation
of wait on the condition variable with

wait do product := product + 1 end

The new wait satisfies the invariant for the condition variable, and requires no
other thread to work. The corresponding stub for signal would similarly have
product > 0 as a precondition and an empty body.

4 Experimental evaluation

It is essential for a testing technique to be judged by its reaction to bugs that
occur in real software. For this purpose, we use a selection of bugs from a concur-
rency bug database [26, 6] to determine if demonic testing can detect and help
form fixes for the faults. No particular criteria was used to select bugs from the
database, besides striving for an overall diversity of faults. All experiments were
carried out on an Intel Q6600 2.4GHz with 4GB of RAM.

4.1 Conversion from source programs

All of our test cases are extracted from real projects and translated into Eiffel.
Since well-known concurrent applications with specifications are rare, we slice
the non-essential elements from well-known code then convert it to Eiffel and add
contracts. This is also done to enable the analysis of bugs from many languages,
while minimizing the differences due to language features. To see an example
of this process, the original Apache C-code for the running example is given in
Figure 6. The main differences are the removal of the recycled pool functionality,

and the removal of the explicit return-value checking of concurrency primitive
(locks, condition variable) operations that is typically handled by exceptions in
languages that support them.

apr_status_t ap_queue_info_wait_for_idler
(fd_queue_info_t *queue_info,
apr_pool_t **recycled_pool)

{
apr_status_t rv;
*recycled_pool = NULL;
if (queue_info->idlers == 0) {
rv = apr_thread_mutex_lock(
queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}
if (queue_info->idlers == 0) {
rv = apr_thread_cond_wait(
queue_info->wait_for_idler,

queue_info->idlers_mutex);
if (rv != APR_SUCCESS) {
apr_status_t rv2;

rv2 = apr_thread_mutex_unlock(
queue_info->idlers_mutex);

if (rv2 != APR_SUCCESS) {
return rv2;

}
return rv;

}
}
rv = apr_thread_mutex_unlock(
queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}
}
apr_atomic_dec32(&(queue_info->idlers));

... recycling of data structures
}

Fig. 6: Original wait_for_idle routine from Apache

4.2 Results

Table 2 lists the collection of concurrency bugs that we use to perform our
evaluation; the first seven are from the bug database, with the last being a
well-known Java standard library bug. All bugs have been replicated using the
demonic testing technique, with the exception of MySQL #169, as explained in
the discussion at the end of the section. Inspired by the AutoTest approach, work
initially began using Eiffel as the source language; to broaden the scope of the
evaluation we translated bugs from multiple other languages. These examples
are available for download [7].

The time taken to generate interference, or determine that none exists, was
measured for the bugs that were successfully tested. The average time taken
was 100ms for each request to demonL. This time is different from the times in
Table 2, as each time in the table may include many requests to demonL.

The rest of this section analyzes the effort required to write the necessary
program contracts, the conversion process, and concludes with a discussion of
the notable properties of the technique.

4.3 Annotation complexity

In any approach which requires the addition of specification via program an-
notation, the burden that this annotation places on the programmer is highly
relevant. Although difficult to measure objectively, we place the annotations into
three categories:

Annotation
Program/Bug Bug type LOC Lock Simple Complex Time (s)

1 Apache #21285 Atomicity violation 125 0 4 0 0.982
2 Apache #25520 Data-race 101 0 2 0 0.124
3 Apache #45605 Data-race 227 1 4 0 0.217
4 MySQL #169 Atomicity violation 69 – – – –
5 MySQL #644 Data-race 124 0 3 1 0.939
6 MySQL #791 Data-race 113 0 1 0 0.139
7 pBZip2 Order violation 168 1 1 0 2.289
8 Java Vector Data-race 70 0 2 0 0.032

Table 2: Bug collection

– Lock – a rely-annotation denoting that a lock protects some shared data
from change by another thread.

– Simple – a non-concurrency-related program annotation stating a property
of the program that is either a non-null check for a reference, or a linear
equation.

– Complex – a non-linear expression, or a frame condition that is necessary to
limit the scope of an operation.

Table 2 collects the types of annotations required in the test cases. These are
the types of annotations required for demonic testing to give the correct cause of
the bug in the full program in the cases of Apache, MySQL, and pBZip2. In the
Java vector implementation one of many possible causes is given, as it is part of
a library.

4.4 Discussion

The Apache bug #45605 example is notable due to the the double-check present
in the wait_for_idle routine. Separate tools exist to classify some data-races
as “potentially benign” [20]; the double-check pattern is benign and difficult for
pure data-race checkers to deal with. Demonic testing does not require any sec-
ondary approaches to accomplish this: the determination of benign vs. malignant
data-races is based on the program contracts.

The only bug from our test set which could not be discovered using demonic
testing came from MySQL bug #169. The reason is that the invariant of the
program could not be expressed without either ghost variables or artificially
adding more data.

Incorrectly stated rely conditions will lead to both false-positives and false-
negatives, as these essentially form an axiom of the routine to which they belong.
However, as in Table 2, all rely conditions required were of a very plain type,
merely indicating that a certain lock protects some shared state.

The bounded synthesis done by demonL may affect the results by not con-
sidering interference from sequences of instructions that exceed the bound. How-
ever, this bound concerns the search for instruction sequences; there is also an

initial unbounded-verification that demonL performs to determine the stability
before trying to synthesize interference. The worst case is that the tool is unable
to find the sequence of actions but still reports whether interference is possi-
ble. All bugs our evaluation examined required only single-action interference
to become evident. This suggests that many concurrent bugs manifest them-
selves with little prompting; and that causing errors to present themselves in
threaded executions is difficult due to scheduling rather than maintaining very
complicated invariants.

This experimental method is limited by the number and selection of exam-
ples, it is possible that drawing on a larger pool of examples would offer greater
insight into the properties of demonic testing. However, the small sample size
is mitigated by the wide variety of types of concurrency bugs. Although every
effort was made to make a faithful reproduction of the programs in the tar-
get language, there is the possibility transcription errors while moving between
different programming languages.

5 Related Work

The idea of using routine specifications to discover concurrency errors is not
unique to demonic testing. The Colt tool [24] for Java also uses this approach.
However, their approach is less general, relying hard-coded specification of the
existing Java concurrent collection classes. Demonic testing is more generic as
it works with user-supplied classes and specification, and as well allows finer-
grained control of what constitutes an error through the usage of rely-conditions.

A common practice for testing of concurrent programs is load or stress test-
ing. This frequently proves to be ineffective as in typical testing environments
interleavings might only change marginally from one test run to the other. To
force different interleavings, Edelstein et al. [10] present the ConTest tool, which
combines a technique for deterministic replay of concurrent programs [4] with a
heuristic for varying thread schedules by seeding sleep calls at synchronization
points in the program.

Dynamic model checking [12, 19, 25] provides a more systematic approach by
systematically exploring all possible thread interleavings. The search is stateless
in that it provides a specialized scheduler that runs the program in its real ex-
ecution environment, and hence can avoid storing concrete program states. The
main problem is to overcome state explosion, which makes brute-force exhaustive
search infeasible for large applications. Techniques such as partial order reduc-
tion as employed in the VeriSoft tool (Godefroid [12]) or preemption bounding
(giving priority to schedules with fewer preemptions) in the CHESS tool (Musu-
vathi et al. [19]) can mitigate the effects of state space explosion only to a small
degree. Wang et al. [25] propose a heuristic where ordering constraints learned
from successful runs are used to guide the selection of interleavings for future
runs. All of the above works focus on varying thread interleavings to produce
undesired behaviour. Demonic testing differs from this approach by considering

the routines in a program and finding sequences which lead to the violation of a
program invariant, avoiding an exhaustive search of interleavings.

A number of works use combinations of dynamic and symbolic analyses to
improve testing of concurrent programs. Sen and Agha [23] use a combination
of concrete and symbolic execution, termed concolic execution, to test multi-
threaded Java programs with the tool jCUTE. Symbolic execution produces
input values that guide the concrete execution to alternate paths; concrete exe-
cution guides the symbolic computation along a concrete path to concretize any
values that cannot be handled by a constraint solver. Besides producing alternate
input values, their technique also systematically generates thread schedule vari-
ations such that potentially all causal structures of a concurrent program can be
explored. Sen [22] introduces RaceFuzzer, an algorithm which uses race warnings
from race detection tools to create problematic interleavings during testing in
order to eliminate false positives automatically. Park et al. [21] propose CTrig-
ger, a testing tool to expose atomicity violation bugs. The tool analyzes traces
to find unserializable interleavings then these interleavings are explored during
testing to expose bugs. Kundu, Ganai, and Wang [14] present a framework that
combines conventional testing with symbolic analysis. A test harness invokes the
program with random test values. Concrete traces are relaxed into concurrent
trace programs, which capture all linearizations of events that respect the con-
trol flow of the program. The concurrent trace programs are then symbolically
verified. All these techniques combine in some way the dynamic execution of
programs with symbolic computation and verification, and most closely resem-
ble the work presented in this paper. However, they, like all other related work
shown, are not able to achieve truly modular testing of concurrent software; they
all depend on multithreaded executions or traces.

Contracts have been used successfully in unit testing of sequential soft-
ware [18], where they can provide test oracles and filter inputs for random test-
ing. Araujo et al. [1] evaluate the use of contracts in a concurrent setting, based
on an extension of the JML [15] contract semantics. They found contracts as
test oracles effective in finding and diagnosing concurrency-related faults on an
industrial case study in Java/JML. In contrast to this work, demonic testing
emphasizes the use of contracts also for symbolic analyses, in addition to test
oracles.

Rely-guarantee reasoning has been applied in testing of concurrent programs.
Dingel [8] uses the state exploration tool VeriSoft [12] for rely-guarantee verifi-
cation of C/C++ components. The component code is executed in parallel with
an environment which generates initial states, monitors the component execu-
tion, and generates responses. If a program step is found to violate one of the
guarantees, a flaw is found. Blundell et al. [3] use labelled transition systems to
model the behaviour of components, whereas demonic testing works directly on
source code. Assumptions on the model-level are used as environments in which
individual components are executed. The execution results in traces which are
in turn checked against the guarantees of the model. Failure of a check suggests
an incompatibility between a model and its implementation.

6 Conclusion

Until recently, the testing of concurrent systems has generally been regarded as
inferior to static approaches. The realization that purely static reasoning also
faces problems of scalability or precision when applied to concurrent systems has
led to a more pragmatic assessment, leaving testing its due place, as evidenced
by the approaches reviewed in the previous section.

Unlike many of these approaches, which are only suitable for testing entire
systems, demonic testing can be applied to the important problem of unit test-
ing for concurrent programs. Through its combination of dynamic and symbolic
techniques, demonic testing provides two significant benefits over other propos-
als. First, it leverages available testing tools for sequential programs, which it
uses as an essential part of its architecture. Second, instead of searching the
state space of thread interleavings, demonic testing uses program synthesis as a
constructive means to find problematic thread interference. If a test fails, a test
case and a problematic sequence of interactions is available for analysis.

Acknowledgments

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement no. 291389, the Hasler Foundation,
and ETH (ETHIIRA). Earlier work has also benefited from grants from the
Swiss National Foundation and Microsoft (Multicore award).

References

1. W. Araujo, L. Briand, and Y. Labiche. On the effectiveness of contracts as test or-
acles in the detection and diagnosis of race conditions and deadlocks in concurrent
object-oriented software. In Proc. ESEM’11. IEEE Computer Society, 2011.

2. M. Barnett, B. E. Chang, R. Deline, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Proc. FMCO’05, number
4111 in Lecture Notes in Computer Science, pages 364–387. Springer, 2006.

3. C. Blundell, D. Giannakopoulou, and C. S. Pǎsǎreanu. Assume-guarantee testing.
In Proc. SAVCBS’05. ACM, 2005.

4. J.-D. Choi and H. Srinivasan. Deterministic replay of Java multithreaded applica-
tions. In Proc. SPDT’98, pages 48–59. ACM, 1998.

5. Code contracts. http://research.microsoft.com/en-us/projects/contracts/,
2011.

6. Collection of Concurrency Bugs. http://www.eecs.umich.edu/~jieyu/bugs.

html, 2011.

7. Demonic test case downloads. http://se.inf.ethz.ch/people/west/

demonic-cases/, 2011.

8. J. Dingel. Computer-assisted assume/guarantee reasoning with VeriSoft. In Proc.
ICSE’03, pages 138–148. IEEE Computer Society, 2003.

9. B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
Proc. CAV’08, volume 4144 of Lecture Notes in Computer Science, pages 81–94.
Springer, 2006.

10. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for
testing multi-threaded Java programs. Concurrency and Computation: Practice
and Experience, 15(3-5):485–499, 2003.

11. EVE project. https://svn.eiffel.com/eiffelstudio/branches/eth/eve/,
2011.

12. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc.
POPL’97, pages 174–186. ACM, 1997.

13. C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981.

14. S. Kundu, M. K. Ganai, and C. Wang. Contessa: Concurrency testing augmented
with symbolic analysis. In Proc. CAV’10, volume 6174 of LNCS, pages 127–131.
Springer, 2010.

15. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT Software Engineering Notes,
31:1–38, 2006.

16. D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL: The planning domain definition language. Technical
Report CVC TR-98-003, Yale Center for Computational Vision and Control, 1998.

17. B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, 1997.
18. B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf. Programs that test

themselves. IEEE Computer, 42:46–55, 2009.
19. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding

and reproducing Heisenbugs in concurrent programs. In Proc. OSDI’08, pages 267–
280. USENIX Association, 2008.

20. S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automatically
classifying benign and harmful data racesallusing replay analysis. ACM SIGPLAN
Notices, 42(6):22–31, 2007.

21. S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing atomicity violation bugs from
their hiding places. In Proc. ASPLOS’09, pages 25–36. ACM, 2009.

22. K. Sen. Race directed random testing of concurrent programs. In Proc. PLDI’08,
pages 11–21. ACM, 2008.

23. K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path
model-checking tools. In Proc. CAV’06, volume 4144 of Lecture Notes in Computer
Science, pages 419–423. Springer, 2006.

24. O. Shacham, N. G. Bronson, A. Aiken, M. Sagiv, M. T. Vechev, and E. Yahav.
Testing atomicity of composed concurrent operations. In Proc. OOPSLA’11, pages
51–64, 2011.

25. C. Wang, M. Said, and A. Gupta. Coverage guided systematic concurrency testing.
In Proc. ICSE’11, pages 221–230. ACM, 2011.

26. J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In Proc. ICSA’09, pages 325–336. ACM, 2009.

