
DISS. ETH NO. 22101

Correctness and Execution of
Concurrent Object-Oriented

Programs

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES OF ETH ZURICH

(DR. SC. ETH ZURICH)

presented by
SCOTT GREGORY WEST

Master of Science, McMaster University, Canada

born on
December 5th, 1983

citizen of
Canada

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Dr. Sebastian Nanz, co-examiner

Prof. Dr. Jonathan Ostroff, co-examiner
Prof. Dr. Mauro Pezzè, co-examiner

2014

Acknowledgements

This work is the product of long days and nights, and was only made possible by
the help and support of numerous people in my life.

First I must thank my parents, Gina and Garry, who have always encouraged
me and given me the support and encouragement to pursue my goals. Without
them I could have never started this journey, let alone completed it. I also greatly
appreciate the wisdom and support of my grandparents, Charles, Mary, and
Barbara.

Wolfram Kahl, who first got me started on the idea of continuing in academia
and provided a perfect start to the process by supervising my Masters thesis, has
my deepest appreciation.

There are numerous people around me who have supported me over the
years: Marco P., Benjamin, Marco T., Claudia, Michela, Chris, Georgiana, Carlo,
Martin, Max, Cristiano, Jason, Stephan, Mischael, Juri, Jiwon, Andrey, and
Alexey.

The relationship I have with my office-mates, Nadia and Christian, is one of
the things that I will treasure most from this time. I couldn’t have hoped for a
more perfect pair of people to work with every day.

Sebastian, who has always been there to advise and ever-so-gently guide me
throughout the thesis, deserves much thanks for his patience, hard work, and
support over the years.

I would also like to thank Bertrand Meyer, who gave me the chance to come
to ETH Zürich. This was a fantastic opportunity and I will always be grateful
for the guidance and support he has given (and the occasional European history
lesson); he always encouraged me to aim higher, something I will not forget.

I thank the external examiners who took the time to read and evaluate my
thesis: Jonathan Ostroff and Mauro Pezzè. Their time and valuable input is
greatly appreciated.

Lastly, I must thank my caring and beautiful wife Nancy. She moved to
Switzerland to be with me while I studied, provided support and help in the
harder times, and reminded me not to be complacent when things were easier.
She gave me exactly what I needed, when I needed it, and I will always remember
and appreciate that.

Funding. This work was partially supported by the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC Grant agreement no. 291389, the Hasler Foundation, ETH (ETHIIRA), the
Swiss National Foundation, and Microsoft (Multicore award).

i

ii

Contents

1 Introduction 1
1.1 Approach . 2
1.2 Contributions . 3
1.3 Organization . 4

2 Background 5
2.1 Object-oriented programming 5
2.2 Specifications and contracts . 6
2.3 Eiffel . 7
2.4 Threaded model . 7
2.5 SCOOP model . 9
2.6 Types of concurrency bugs . 12

I Correctness 15

3 Static deadlock detection 17
3.1 Deadlocks in SCOOP . 18

3.1.1 Types and handlers . 19
3.1.2 Locking through calls 19
3.1.3 Example . 19

3.2 Locking operational semantics 20
3.2.1 Syntax . 20
3.2.2 Locking semantics . 21

3.3 Ensuring deadlock freedom . 24
3.3.1 Annotation language . 25
3.3.2 Well-formed programs 26
3.3.3 Deadlock freedom . 29
3.3.4 Reducing annotations 30
3.3.5 Evaluation . 31

3.4 Tool . 32
3.5 Coq proof . 33
3.6 Related work . 39
3.7 Conclusion . 40

4 Testing of programs with contracts 43
4.1 Premise and overview . 43

4.1.1 Overview . 45
4.1.2 Example . 46

4.2 Demonic testing . 48
4.2.1 Application of rely-guarantee reasoning 48

iii

4.2.2 Class transformation . 49
4.2.3 Routine instrumentation 50
4.2.4 Handling synchronization primitives 50

4.3 Applying demonic testing to SCOOP 52
4.3.1 Specializing demonic testing 52
4.3.2 How SCOOP makes it easier 53
4.3.3 Handling wait conditions 54

4.4 DemonL . 54
4.4.1 The domain description language 55
4.4.2 Interference as satisfiability 56
4.4.3 The tool . 60

4.5 Experimental evaluation . 61
4.5.1 Conversion from source programs 61
4.5.2 Results . 61
4.5.3 Annotation complexity 63
4.5.4 Discussion . 63

4.6 Related Work . 64
4.7 Conclusion . 66

II Execution 67

5 Efficient SCOOP 69
5.1 The SCOOP execution model 70

5.1.1 Reasoning guarantees 70
5.1.2 A näıve implementation 70
5.1.3 Issues with blocking . 71

5.2 A model with less locking . 71
5.2.1 A family of models . 74
5.2.2 Deadlock behaviour in different family members 75
5.2.3 Multiple handler reservations 77

5.3 Compiling SCOOP/Qs programs 79
5.3.1 SCOOP/Qs calling convention 79
5.3.2 Request processing . 79
5.3.3 Client requests . 80
5.3.4 Wait conditions . 82
5.3.5 Multi-reservation separate blocks 83
5.3.6 Removing redundant synchronization 84

5.4 Qs run-time design . 87
5.4.1 Task layer . 87
5.4.2 Schedulable task layer 89
5.4.3 Handler layer . 91
5.4.4 EVE run-time comparison 92

5.5 Related work . 95
5.6 Conclusion . 97

iv

6 Evaluation and comparison 99
6.1 Benchmarking . 99

6.1.1 Parallel . 100
6.1.2 Concurrent . 100
6.1.3 Setup . 101

6.2 Optimization comparison . 101
6.2.1 Parallel . 101
6.2.2 Concurrent . 105
6.2.3 Summary . 106

6.3 Implementation comparison . 107
6.3.1 Parallel . 107
6.3.2 Concurrent . 110
6.3.3 Summary . 111

6.4 Language comparison . 111
6.4.1 Parallel benchmarks . 113
6.4.2 Concurrent benchmarks 115
6.4.3 Summary . 117

6.5 Related work . 117
6.6 Conclusion . 119

7 Conclusion 121
7.1 Deadlock . 121
7.2 Concurrent Testing . 121
7.3 Execution . 122
7.4 Evaluation . 122
7.5 Summary . 122
7.6 Future work . 123

v

vi

Abstract

There is often a drive to produce efficient programs; efficient programs finish
sooner, and can accommodate more advanced features with the extra processing
time. Modern hardware makes the use of concurrency to improve efficiency a
natural decision. However, to construct a correct concurrent program, one must
constantly be aware of the entire system: which threads are modifying which
variables, which resources are associated with which locks, and which order locks
are taken in. And all of it is non-deterministic. The tension between correctness
and efficiency makes concurrent programming a challenging endeavour.

This dissertation addresses correctness issues that are found in concurrent
programs and ensures that the execution is efficient so that it is competitive
with other, less safe, approaches. For this work, the chosen base language is
SCOOP, an extension of the Eiffel programming language. SCOOP is an existing
approach that uses the type system to ensure that data races are eliminated.
Eiffel pioneered the inclusion of pre- and postconditions as executable parts
of the program. The work focuses on three major aspects: the elimination of
deadlocks via type checking, the discovery of atomicity violations by repeatable
and modular testing, and lastly the enhancement of the SCOOP semantics in a
way that allows improved performance through applying specific optimizations
at compile and run time.

The existing guarantee of data race freedom is extended through the type
system to also include deadlock freedom. This is done by adding annotations to
routines that specify what will be locked in the body of the routine, as well as
a specification of local order relation that the routine assumes. If the locks are
taken as they are specified in the order relation then the Coffman condition of
no “cyclical waiting” is satisfied and no deadlock can occur. The type system is
formalized in the Coq proof assistant and the core property of deadlock freedom
is proven. Additionally, an implementation of the type checker is provided along
with inference rules to alleviate the annotation burden, and shown to work on a
SCOOP web server application.

Although data race freedom is provided by SCOOP, it is still vulnerable to
high-level data races and atomicity violations. To address this, a new technique,
demonic testing, enables portions of concurrent systems to be tested determin-
istically, and in isolation, given that appropriate annotations are provided that
describe the interference from the environment. The dynamic state from the
program is fed to a new reasoning tool, demonL. The demonL tool and language
use an SMT solver as a back end to efficiently find sequences of actions from
other threads that would cause a fault in the routine under test. The demonic
testing technique is then validated by drawing on a number of examples from
a collection of representative concurrency bugs from well known applications
(Apache, Firefox, etc.).

The final component of the work is a performance analysis of the semantics

vii

of the base language, SCOOP. Several refinements of the SCOOP semantics
are proposed that enable greater performance. The semantic refinements are
complemented by static analysis to discover and eliminate unnecessary operations
and increase performance further, as well as low level run-time optimizations that
contribute greatly to the efficiency of the execution. All of the above techniques
are combined in a compiler and run-time called SCOOP/Qs which is a fresh
implementation of the SCOOP model, and also many ideas are incorporated in
the research branch of the EiffelStudio IDE, EVE. The techniques are evaluated
on 11 benchmark programs, and compared against 4 other languages (C++, Go,
Haskell, and Erlang) to validate the efficacy of the approach. The improvement
of SCOOP/Qs over the existing EiffelStudio implementation of SCOOP averages
two orders of magnitude.

These techniques target the major problems of concurrent programming,
deadlock and atomicity violations, combined with providing data race freedom
in an efficient manner. It is only by analyzing and addressing correctness issues
and designing execution techniques that an effective concurrent programming
approach can be constructed.

viii

Zusammenfassung

Effiziente Programme zu erstellen ist oft von grossem Interesse; effiziente Pro-
gramme werden schneller ausgeführt und die gewonnene Zeit kann für eine Er-
weiterung ihrer Funktionalität aufgewendet werden. Moderne Hardware macht
die Verwendung von Nebenläufigkeit zur Effizienzsteigerung selbstverständlich.
Um ein korrektes nebenläufiges Programm zu konstruieren, muss man sich je-
doch ständig des gesamten Systems bewusst sein: welche Threads modifizieren
welche Variablen, welche Ressourcen sind mit welchen Locks assoziiert, und in
welcher Reihenfolge müssen Locks angefordert werden. Und all dies ist nicht-
deterministisch. Das Spannungsverhältnis zwischen Korrektheit und Effizienz
macht nebenläufige Programmierung zu einer anspruchsvollen Aufgabe.

Diese Dissertation befasst sich mit Korrektheitsproblemen in nebenläufigen
Programmen und stellt eine effiziente Ausführung sicher, um mit anderen, weni-
ger sicheren Ansätzen konkurrenzfähig zu sein. Die in dieser Arbeit gewählte
Ausgangssprache ist SCOOP, eine Erweiterung der Programmiersprache Eiffel.
SCOOP ist ein bestehender Ansatz, der das Typsystem verwendet, um die Elimi-
nierung von Data Races sicherzustellen. Eiffel ist ein Vorreiter der Verwendung
von Vor- und Nachbedingungen als ausführbare Programmteile. Die Arbeit kon-
zentriert sich auf drei Hauptaspekte: die Eliminierung von Deadlocks durch
Typüberprüfung, die Erkennung von Atomicity Violations durch reproduzier-
bares und modulares Testen, und schliesslich die Verbesserung der Semantik
von SCOOP, um eine Effizienzsteigerung durch die Anwendung spezifischer
Optimierungen zur Übersetzungs- und Laufzeit zu erreichen.

Die bestehende Garantie der Data-Race-Freiheit wird durch das Typsystem
um Abwesenheit von Deadlock-Freiheit erweitert. Dies wird durch Annotationen
von Routinen erreicht, die spezifizieren, welche Locks im Rumpf der Routine
angefordert werden, als auch von welcher lokalen Ordnungsrelation die Rou-
tine ausgeht. Falls die Locks in der von der Ordnungsrelation spezifizierten
Reihenfolge angefordert werden, dann wird die zyklische Wartebedingung von
Coffman gebrochen und Deadlocks können nicht auftreten. Das Typsystem wird
mit Hilfe des Theorembeweisers Coq formalisiert und die zentrale Eigenschaft
der Deadlock-Freiheit bewiesen. Eine Implementierung des Typüberprüfers
sowie Inferenz-Regeln zur Reduzierung der Menge der Annotationen werden
bereitgestellt und am Beispiel eines SCOOP-Webservers demonstriert.

Obwohl Data-Race-Freiheit durch SCOOP sichergestellt ist, bleibt die
Gefährdung durch High-Level Data Races und Atomicity Violations bestehen. Um
dem zu begegnen, macht es ein neues Verfahren (Demonic Testing) möglich, Tei-
le eines nebenläufigen Systems deterministisch und in Isolation zu testen, sofern
entsprechende Annotationen bereitgestellt werden, die Interferenzen der Umge-
bung beschreiben. Der dynamische Zustand des Programms wird einem neuen
Werkzeug (demonL) übergeben. Das Werkzeug und die assoziierte Sprache
verwenden einen SMT-Solver als Backend, um effizient diejenigen Befehlsabfol-

ix

gen anderer Threads zu finden, die einen Fehler in der zu prüfenden Routine
hervorrufen würden. Demonic Testing wird mithilfe von Beispielen validiert,
die einer Sammlung von Nebenläufigkeitsfehlern in bekannten Anwendungen
(Apache, Firefox etc.) entnommen sind.

Der letzte Teil der Arbeit ist eine Effizienzanalyse der Semantik der Ausgangs-
sprache SCOOP. Mehrere Verbesserungen der Semantik von SCOOP werden
vorgeschlagen, um grössere Effizienz zu ermöglichen. Die semantischen Ver-
besserungen werden durch eine statische Analyse ergänzt, um unnötige Ope-
rationen zu entdecken und zu eliminieren und die Leistungsfähigkeit weiter
zu verbessern; zusätzlich tragen Laufzeit-Optimierungen stark zur Effizienz der
Ausführung bei. Alle genannten Verfahren werden in einem Übersetzer und
einer Laufzeitumgebung namens SCOOP/Qs vereint, die eine Neuimplemen-
tierung des SCOOP-Modells darstellen; weiterhin werden viele Ideen in EVE,
der Forschungsversion der EiffelStudio IDE, integriert. Die Verfahren werden
mithilfe von 11 Benchmark-Programmen evaluiert und mit 4 weiteren Sprachen
(C++, Go, Haskell, und Erlang) verglichen, um die Effektivität des Ansatzes zu
validieren. Die Leistungsverbesserung von SCOOP/Qs gegenüber der bestehen-
den EiffelStudio-Implementierung von SCOOP beträgt im Durchschnitt zwei
Grössenordnungen.

Diese Verfahren behandeln die Hauptprobleme der nebenläufigen Program-
mierung, Deadlocks und Atomicity Violations, zusammen mit einer effizienten
Sicherstellung der Data-Race-Freiheit. Ein erfolgreicher Ansatz für nebenläufige
Programmierung muss sowohl auf der Analyse und Behandlung von Korrektheits-
problemen als auch auf dem Design von Ausführungsverfahren beruhen.

x

Chapter

1

Introduction

Writing concurrent programs is not a new problem, the field has been studied
for decades. However, the environment in which concurrent programs are being
written has changed drastically in recent years. It was never the case before that
the average person would have more than one processor in their computer. Now
people carry more than one processor in their pocket.

The ubiquity of concurrent programming drives the need for better techniques
for managing the complexity of the development process. The measure of success
for any software project is simply: does this software fulfill it’s functional and
non-functional requirements. To fulfill the functional requirements, a program
must produce the correct outputs.

In a concurrent program this means the program must be free of data races
and atomicity violations. However, the execution of preemptive concurrent
programs is non-deterministic. Therefore, determining that a concurrent program
produces the correct output is very difficult since the output is at the mercy of
the scheduler; one execution may be correct, and the next may not be. This
also means that critical errors may lie dormant in software that was previously
thought to be well tested, but just hadn’t hit a schedule that revealed the bug
yet.

Additionally, the program must make progress. Again in a concurrent context,
this means it must not deadlock. The same problem of non-determinism affects
deadlock, and the execution order of a program is important to determine if a
program deadlocks or not. Deadlocks typically occur in multithreaded systems
when different threads acquire critical sections in conflicting orders. This is a
difficult to detect problem because the root cause is typically not evident from
the thread that has deadlocked, but one must rather examine the other threads
in the system to find which has violated the order of critical section acquisition.

A typical non-functional requirement for a concurrent program is to be effi-
cient, or rather a non-functional requirement of efficiency often necessitates a
concurrent program. One critical performance problem in concurrent programs
is that programs that share data must do so carefully, for example using critical
sections. If the section is highly contended, this leads to a double performance
penalty: not only does the thread have to wait to enter the critical section, it
must switch to a waiting mode, an operation incurs a context switch requiring
additional processor resources to suspend and reactivate another thread.

Therefore, there is a particular kind of tension between the necessity of
concurrent programming to achieve greater speed, and the difficulties that
constructing those programs encounter. Any technique that aims to ensure
correctness cannot be considered independently from execution efficiency; and
one cannot gain efficiency by sacrificing critical execution guarantees such that
achieving correctness is made too difficult. Balancing these considerations is at
the heart of research in concurrent programming.

1

1.1. APPROACH2

1.1 Approach
This dissertation’s main goal is to develop a comprehensive solution for making
concurrent programming more approachable, by addressing both correctness
and execution efficiency concerns. The major correctness issues are the existence
of deadlock as a result of resource acquisition, data races when two threads
modify a shared resource without protection, and atomicity violations as a result
of insufficient control of a resource. The execution model for an approach may
directly prohibit some classes of errors, so the major impediments to efficient
execution have to be discovered by semantic analysis and benchmarking. From
this, the goal is further refined into three sub-goals

• Extend the type system by providing rules that will ensure a concurrent
system remains free of deadlocks.

• Test concurrent programs for data races and atomicity violations through
a modular and reproducible mechanism using executable specifications
(contracts).

• Ensure the reasoning and safety guarantees that are provided by the execu-
tion model while maintaining acceptable performance.

These claims each provide a fundamental component of a complete approach to
raising the quality of concurrent programs.

Since the objective of this work is to show a comprehensive approach to
concurrent programming, by considering both correctness and execution, it
is natural to have a common programming language upon which to base the
contributions. This allows the results to be consolidated and compared against
a single frame of reference, making those results more understandable and
cohesive. Additionally, the language should represent a paradigm which is well
known and often used, and would ideally have good support for executable
specifications. For this purpose, the SCOOP language1 is used, an extension to
the object-oriented Eiffel programming language. Eiffel was the first to include
contracts as part of the language.

There is a pattern in programming language design to take common errors
and make them either difficult or impossible via technical improvements and
restrictions imposed by the programming language. This can be seen in the use
of structured programming techniques to make control flow more understand-
able [28, 13], and automatic memory management [63] so that resources do
not have to be explicitly managed. Such language-based safety aides are not
widely used for concurrent programming. However, SCOOP is a language that
eliminates the existence of data races, and thus is a suitable base upon which to
extend and build new techniques.

Building on SCOOP, which already uses the type system to distinguish far
references [69], it is natural to extend the type system to provide even more
execution guarantees. One way to prevent deadlock is to prohibit cycles in the
locking graph [22]. Since this is a rather straightforward and uniform property

1SCOOP is actually a programming model based on Eiffel, rather than a language unto itself. The
term language is used here because it does not cause confusion and allows comparison with other
languages.

CHAPTER 1. INTRODUCTION 3

for a program to have, it is a candidate to be a property that the type system may
ensure, as typically type systems ensure simple consistency properties.

The elimination of data races, a very important component of constructing
correct concurrent programs, does not guarantee that a program will not en-
counter logical consistency errors due to non-deterministic thread interleavings.
These atomicity violations are a more complicated property of a program, and are
defined in terms of the invariants that are specific to a particular program. For
this reason, testing for atomicity violations is a suitable approach, as testing uses
the definitions in the program to determine correctness, and tests are necessarily
defined using the functions and routines provided by a specific program. Using a
language which supports contracts is also essential here as it provides a way to
precisely communicate the notion of what an error is.

Providing techniques to ensure the correctness must be balanced with the cost
of such techniques at run-time, since a very common goal of using concurrent
execution is to increase performance. Since the balancing act is between the
correctness guarantees and the extra work necessary to attain them, the approach
to ensuring efficient execution must include an analysis of how the guarantees
are ensured by the semantics of the language. However, this is only the first half
of the job, the second half is to implement the semantics efficiently and to trim
any unnecessary overhead down as much as possible.

1.2 Contributions
The above goals are achieved by producing several contributions to the state
of the art. In particular, in the areas of deadlock freedom, concurrent test-
ing, and the efficient execution of a concurrent object-oriented language while
maintaining data race freedom.

Deadlock freedom. Deadlock freedom is achieved statically by a modification
of the SCOOP type system. The modified type system tracks resource usage
and ensures that every time a new handler is requested to apply a method it
does so in a way that is consistent with all the other handlers in the system.
Consistent in this case means corresponding to the same partial order. The
locking behaviour of SCOOP programs is formalized in an operational semantics
and the restrictions of well-typed programs is proven to ensure deadlock freedom
during the execution according to the semantics. A tool checks the validity of
programs in the type system and also infers program annotations to reduce the
burden placed on the programmer. The core aspects of the proof of soundness
are formalized and proven in the Coq proof assistant.

Concurrent testing. demonL is a testing technique which assumes the worst
will happen in a given concurrent program. It uses the information present in a
contracted program to construct a domain of actions that can occur at any point
in time. This domain of actions is then utilized at run-time to take the state and
discover sequences of actions from the domain that could cause a precondition
violation. This draws on the ideas of rely-guarantee reasoning. A symbolic
reasoning tool, demonL, is constructed and uses an SMT solver to reason about
the interference that may occur given a particular initial state and a particular
domain of actions. This allows both data races and atomicity violations to be

1.3. ORGANIZATION4

detected, and since demonL is deterministic, the tests are repeatable and can
even be driven by existing unit tests. The technique is evaluated on different
classes of concurrency bugs from well known projects, with good detection rates
and execution times to demonL to synthesize interference.

Efficient execution of SCOOP. The data race guarantees that SCOOP provides
and existing semantics are first analyzed to discover new optimization opportu-
nities. Based on this, a modified SCOOP semantics is developed that can achieve
greater performance. A fresh SCOOP compiler, run-time, and specific optimiza-
tions, together referred to as SCOOP/Qs, are implemented to test the efficacy of
the semantic changes, low-level run-time techniques, and optimization oppor-
tunities. The same techniques are integrated, where possible, in the research
branch, EVE, of the EiffelStudio run-time. Executing the modified SCOOP model
on a variety of a wide variety of benchmark programs verifies the effectiveness of
the techniques. When the techniques are implemented in EVE, the performance
increases by an order of magnitude over EiffelStudio. The customized SCOOP/Qs
implementation attains a speedup of two orders of magnitude over EiffelStu-
dio. Other popular concurrent programming languages are also included in the
comparison to give a better and more accurate picture of what performance one
should expect from different approaches to concurrency with different safety
guarantees. SCOOP/Qs is found to be the overall fastest of the languages that
provide data race freedom.

1.3 Organization
The common background for all of the work is given in Chapter 2. This includes
the concepts of object-oriented programming, program specification and con-
tracts, the Eiffel language, how threading systems work, and also an explanation
of the SCOOP model. Chapter 2 also defines the different types of concurrency
bugs.

The approach to preventing deadlock in SCOOP programs is given in Chap-
ter 3. This includes a formalization of the SCOOP semantics focusing on the
locking behaviour, a proof sketch of correctness, and also a formal proof of the
core aspects of the technique.

Demonic testing, an approach which uses advanced reasoning tools to con-
struct interference, is described in Chapter 4. The chapter additionally provides
an explanation of the demonL tool and language, as well as how it is translated
into a satisfaction for the Yices SMT solver to process.

Chapter 5 gives a modified SCOOP semantics, SCOOP/Qs. The relation
between the semantic and compilation and run-time is explored, along with
justifications for the different design decisions made for each of these aspects of
the SCOOP/Qs approach.

For validation of the technique, Chapter 6 provides extensive benchmarks
comparison optimizations, language variants, and compares entirely different
languages with regards to performance on concurrent and parallel tasks.

Chapter 7 draws conclusions of the work.

Chapter

2
Background

This chapter outlines the key concepts that underlie this work. This includes a
definition of object-oriented programming, program specifications and contracts,
the threaded concurrency model, the Eiffel and SCOOP languages, and different
kinds of concurrency bugs. It is important to have a grasp of these concepts to
have a more full understanding of the rest of the thesis.

2.1 Object-oriented programming
There are many languages that are considered to be “object-oriented”. To avoid
confusion, the definition of object-oriented used for this work is taken from
Pierce [84]. An object-oriented language allows:

Multiple representations An object determines what code is executed when
invoking a method on it (dynamic dispatch). In contrast, an abstract data
type (ADT) has only a single implementation.

Encapsulation An object hides its internal representation, manipulation occurs
by invoking methods on the object. ADTs are similar in this regard.

Subtyping An object’s type is determined by its interface, the list of names and
types of its methods. Any superset of an interface is likewise an interface,
and any object implementing that super-interface will be a subtype of an
object implementing the sub-interface. This is because any operation that
can be called on the sub-interface can be called on the super-interface,
so objects with the super-interface can substitute for ones with the sub-
interface.

Inheritance Inheritance is a mechanism to reuse interfaces and implementa-
tions. Often this is done via classes and subclassing is used to reuse a
class’ implementation. Methods can also be overridden during subclassing,
providing for new (refined) behaviours.

Open recursion There is often a special variable called Current or this, that
gives the ability for superclasses to invoke (via dynamic dispatch) subclass
implementations of the superclass’ interface.

These properties relate to software qualities which are desirable. Subtyping
increases code reuse by allowing client code to operate on any object that has a
subtype relation with the static types it expects. Dynamic dispatch allows this
same client code to produce different results according to each subtype it is
passed. Inheritance is another mechanism for code reuse, this time for the sup-
plier instead of the client; class implementations can not only be reused, but also

5

2.2. SPECIFICATIONS AND CONTRACTS6

extended using inheritance. Encapsulation allows for information hiding [81],
meaning lower coupling between classes or modules.

Often, there is an invariant associated with a class that must always hold.
However, it is not always be possible for the class’ methods to maintain the class
invariant by themselves. For example, the invariant of a hash table requires that
the hash codes of the stored keys do not change, else the location of the key
will no longer associate properly to the key’s hash code. If the keys are mutable
objects, then the rest of the system must not manipulate any of the key-objects
in a way which causes their hash codes to change.

2.2 Specifications and contracts

Software specifications are a way of defining how software should behave. A
common method of specifying software is to affix preconditions, postconditions,
and other invariants to the system. Preconditions describe what must hold
immediately before a group of statements. Postconditions describe what the
routine must ensure as a resulting state after it has completed.

These specifications are combined with Hoare-style axiomatic semantics [42]
to reason about program correctness. Verification tools such as VCC, Jessie,
Boogie, and Verifast (using separation logic [86]) use this method to prove
that a program’s implementation corresponds to its specification. There are
languages, such as JML [56] and ACSL [6], that formally describe how to write
these specifications. The basic scheme to denote the specification for a program
element s is {P} s {Q}, where P is the precondition and Q is the postcondition.
For example, the schema for assignment in Hoare logic is

{P [E/x]} x := E {P}

expressing that if x in the expression P can be replaced by E in the prestate,
then P holds in the poststate of the statement x := E. Given the instantiation of
the schema

{x+ 1 > 4} x := x+ 1 {x > 4}

it must be that x > 3 in the prestate to satisfy condition that x > 4 in the
poststate.

Design by Contract [66] refers to the usage of executable preconditions,
postconditions, and class invariants. The invariants are compiled and executed
at run-time, triggering an error if they violated. The technique is used to help
ensure software quality by both stating the requirements in the program text, and
also providing constant feedback during execution as to whether the invariants
hold.

Although first appearing in Eiffel, this technique has seen usage in other
languages as well, such as in D [1] with built-in support. Other languages, such
as C# with Code Contracts [21], C++, Groovy, Java, Perl, Python, and others,
offer contracts through a library. In the end, the objective is to put the code’s
specification the code, and have it checked at run-time to ensure that the two
correspond.

CHAPTER 2. BACKGROUND 7

2.3 Eiffel
Eiffel [65] is an object-oriented programming language and was the first language
to introduce contracts. It offers multiple inheritance and generics as modelling
and software reuse mechanisms.

The syntax typically easy to understand without much explanation, using full
words as keywords. Types are denoted using x: T to declare that the entity x is
of type T.

Routine contracts in Eiffel are specifications in the form of pre- and postcon-
ditions as part of require and ensure clauses, respectively. The old keyword
indicates that the value following it will be considered from the pre-state of the
routine execution.

2.4 Threaded model
Threading is by far the most dominant model of concurrency. It is the default
model in C, C#, C++, Java, Objective-C, Python, languages which cover much
of the software written today. Each thread is identified by an independent call
stack, set of registers, and thread state. This enables each thread to make calls,
use local storage from the stack, and change its thread state (running, waiting,
etc) without interference from other threads. A program is identified by a shared
heap, and at least one associated thread. The global state, the process’ shared
heap and any state existing outside the process, is shared between threads.
Typically it is the modification of global state that makes threaded programming
difficult: careless modifications to the global state by one thread can violate the
assumptions another thread has made about the same state. Threads can be
implemented in different ways.

The Linux kernel’s approach to threading is used here to demonstrate how
threads may be implemented in an operating system. Linux Kernel Develop-
ment [59] states that Linux threads and processes share an implementation. Both
processes and threads are created by calling the clone system call, allocating and
initializing the task_struct structure to represent the new thread of execution.
The task_struct contains most of the important task information, such as:

flags different properties that the thread has, such as being running with super
privileges or not being called from exec.

mm virtual memory information. This can be used to separate memory spaces
such as the separation seen between separate processes, or to share memory
spaces as is the case with threads running in the same process.

files file descriptor information. Much like the virtual memory information, this
can either be used to share or distinguish the ownership of file handles for
each task.

status the current status of the thread, the standard options being
one of TASK_RUNNING, TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE,
TASK_ZOMBIE, or TASK_STOPPED

With this representation, the differences between thread or process creation
are just the options given to clone. One set of options will allocate new file

2.4. THREADED MODEL8

(Un) Inter-
ruptible

Running
Running (but
not currently)

Process
started

Process
finished

Preempted

Rescheduled
AwokenWaiting

Figure 2.1: Linux task state diagram.

descriptor and memory mapping information to create a process, the other will
copy this information from the creating process and thus share file and memory
spaces.

The list of all tasks is held in the kernel, and the kernel is responsible for
switching between the tasks according to some policy. There are different
scheduling policies, the current Linux default is the CFS (Completely Fair Sched-
uler). The basic responsibility for a scheduler is to decide when one task has had
enough time on the CPU and to choose the next task to execute.

Figure 2.1 shows the task state-transition diagram for the Linux kernel. When
created, a task is added to the list of tasks. Initially, it is runnable but not yet
running. The state field does not distinguish if a task is currently running or
not, both are marked as TASK_RUNNING. The distinction is made by whether
the task is in the list of runnable tasks or not. The task can also be moved
to the TASK_INTERRUPTIBLE state, for example if it tries and fails to acquire a
mutex. If the mutex is then released, the task may be awoken and moved to the
TASK_RUNNING state and added to the runnable tasks list. A non-waiting task may
also be moved to the runnable list if the scheduler has decided it has run long
enough and another task should be given some CPU time. Likewise, in the future
it will be rescheduled and removed from the runnable list.

A task is in the TASK_STOPPED state if it has been sent a signal to stop.
Debuggers use this signal to stop currently running applications so the developer
can examine their state; it can also be triggered explicitly using a program
like kill. The TASK_ZOMBIE is used to indicate a task that stopped but not yet
collected by the task manager. Tasks will remain in this state until their parent
either receives the notification that the task has stopped, or notified the kernel

CHAPTER 2. BACKGROUND 9

that it does not want to know about such information. After this is known, all data
related to the task will be freed by the kernel. TASK_STOPPED and TASK_ZOMBIE,
do not appear in Figure 2.1, as they are not part of the basic life cycle of a task,
but they do complete the explanation of the Linux task management system.

2.5 SCOOP model
SCOOP (Simple Concurrent Object Oriented Programming) is an extension to
the Eiffel language. First appearing in [67], and later refined in [78] and [70],
SCOOP’s addition to Eiffel consists of a single keyword: separate. The separate
keyword plays dual roles as both a type modifier and a new type of block instruc-
tion (like if or check instructions). As a modified type, the type separate C
denotes the set of objects that may execute their methods concurrently with other
objects. To exclude the possibility of data races, a client may only interact with a
separate object when that separate object is controlled. separate objects are
only controlled when they appear as arguments to a routine or to a separate
block, as in Figure 2.2. In previous work [67, 78], separate objects could only
be controlled by appearing as arguments to a routine, this work introduces the
separate block as a convenience to save writing new routines every time objects
need to be controlled.

Example 1 It is best to first look at an example to build an intuition for how
SCOOP programs work. In Figure 2.2 there are two SCOOP programs running in
parallel. Supposing that x is the same object in each thread, there are only two

separate x
do

x.foo()
a := long_comp()
x.bar()

end

Thread 1

separate x
do

x.bar()
b := short_comp()
c := x.baz()

end

Thread 2

Figure 2.2: A simple SCOOP program

possible interleavings of operations on x:

• x.foo(), x.bar(), x.bar(), x.baz() or

• x.bar(), x.baz(), x.foo(), x.bar()

However, in contrast to synchronized blocks in Java, separate blocks control
access to shared memory by controlling the concurrent actions that can act
on that shared memory. For example, in both threads, the calls on x are per-
formed asynchronously, thus for Thread 1, x.foo() can execute in parallel with
long_comp(). However, it cannot be executed in parallel with x.bar() as they
have the same target, x. SCOOP has another basic operation, the query, that
provides synchronous calls. It is so called because the sender expects an answer
from the other thread; this is the case with the c := x.baz() operation, where
Thread 2 waits for x.baz() to complete before storing the result in c. Using the

2.5. SCOOP MODEL10

traditional SCOOP rules the separate blocks in Figure 2.2 would have to be
separate functions:

r1 (x: separate X)
do

x.foo()
. . .

end

The SCOOP model associates every object with a thread of execution, called
its handler.1 There can be many objects associated to a single handler, but every
object has exactly one handler. In Figure 2.2, x has a handler that takes requests
from Threads 1 and 2. Some treatments of SCOOP, such as [78], define a type
expression x.handler to denote the handler of object x, although this has not
been included in any current implementation of the SCOOP model.

A client must register its desire to log requests on any handler that it will
subsequently make calls on. This is normally done when a routine has separate
arguments; the client will register with all handlers of the separate arguments
when the routine is called. A second syntax is also used in this work, namely the
separate block syntax. The semantics of a separate block are the same as the
SCOOP-specific parts of the semantics of a routine call. The client threads are
deregistered at the end of the separate block in Figure 2.2, just as it happens at
the end of a routine with separate arguments.

There are both asynchronous and synchronous calls that can be logged on
a handler. An asynchronous call is one where the routine that is logged has no
result. Since there is no result, the client cannot inspect the effect of the call
except by logging a query afterwards. Queries (methods that return a result)
are synchronous. Since the client may want to use the value returned by the
query in a computation it must wait for the handler to compute this value before
continuing.

Queries with separate targets can also be used in the precondition of routines
(also in the separate blocks). When separate queries occur in a precondition
they are transformed into wait conditions. A wait condition will not proceed into
the body of the routine (separate block) until it evaluates to true. When control
passes into the body of the routine, the body can assume the wait condition is
true and the target is reserved (i.e., no other calls could make it false in the
meantime).

Example 2 Given a separate BUFFER[INTEGER], a routine to extract an ele-
ment from the buffer must consider that the buffer may be empty. In such a
situation, it would use a wait condition as in

extract(b: separate BUFFER[INTEGER])
require

not b.is_empty
do

...
end

1The term processor was used in prior literature on SCOOP to refer to this concept. handler was
also used previously, and replaces the uses of processor in this work to avoid the ambiguity of the
term processor.

CHAPTER 2. BACKGROUND 11

to wait until the buffer had an element. SCOOP guarantees that the body of the
routine can then extract at least one element.

The SCOOP type system is a relative type system. If a class C has a query,
f with the static result type D, and f is called on a target of type separate C
then this will not return D, but rather separate D. Since the return type is
non-separate, this means it resides on the same handler as the target. However,
if the target is separate relative to the caller, then the result of the query must
also be separate relative to the caller, because it is “with” the target. This
transformation prevents separate objects from being stored in non-separate
references. The relation between the target type and return types are given in
Table 2.1.

Result
non-separate separate

Target
non-separate non-separate separate

separate separate separate

Table 2.1: Result type transformation

When data flows from clients to handlers, as arguments to separate calls, a
similar transformation has to be made. Again, this is to preserve the soundness
of the type system. The actual arguments of the call are transformed as shown in
Table 2.2, the transformation is done based on the formal argument and target
types. Bottom (⊥) appears in the case where the target is separate but the

Formal argument
non-separate separate

Target
non-separate non-separate separate

separate ⊥ separate

Table 2.2: Actual argument type transformation

formal argument is non-separate. The type system cannot distinguish between
handlers, so there is no way to guarantee that the actual argument given would
belong to the same handler as the target. Because of this, no type can satisfy
it; in essence this is a typing error. Expanded types (INTEGER, REAL, etc) are
immune to type translation as their semantics is to be copied entirely when sent
(received) to (from) a handler.

The SCOOP model is similar to message passing models, such as the Actor
model [40]. What distinguishes SCOOP from languages like Erlang [4] is that
the threads have more control over the order in which the receiver will process
the messages. When multiple processes each send multiple messages to a single
receiver in Erlang, the sending processes do not know the order of processing of
their messages (as they may be interleaved with messages from other processes).
In SCOOP, since each thread registers with the receiver, the messages from
a single separate block to its handler will be processed in order, without any
interleaving.

This ordering gives the programmer the ability to reason about concurrent
programs in a sequential way within the separate blocks. To be precise, pre/-
postcondition reasoning can be applied to the separate objects protected by

2.6. TYPES OF CONCURRENCY BUGS12

the separate block, even though the actions are being executed in parallel.
separate objects are marked as such by the type system, and one may only call
methods on a separate object if it is protected by a separate block. Since the
calls that the client wants to log are only applied by the handler, this rules out the
possibility of low-level data races. However, high-level data races and liveness
are not guaranteed by the SCOOP model.

Formalizations of the SCOOP model take different approaches, Ostroff et
al. [79] define a SCOOP virtual machine (SVM), Brooke et al. [15] use Com-
municating Sequential Processes (CSP), and Morandi et al. [73] define a com-
prehensive operational semantics and use the Maude term-rewriting system to
explore the behaviour of the model.

2.6 Types of concurrency bugs
Concurrent programs introduce a unique set of bugs that cannot arise in a
sequential setting. In Foundations of Multithreaded, Parallel, and Distributed
Programming [2] safety and liveness, the properties that state that nothing bad
ever happens (safety), and something good eventually happens (liveness), are
compared to functional correctness and termination, respectively.

Data races. If at least two threads access the same memory location, and at
least one thread issues a write to that location, and the operations are not ordered
by some synchronization mechanism (such as a mutex), then this is a data race.
Data races are one of the most basic types of concurrency errors in the sense
that they represent the default way of accessing memory in a shared memory
multithreaded program.

Deadlock. The typical way to achieve exclusive access to a resource is to use
a mutex or other synchronization primitive. By design, these primitives block
the progress of the other threads while a given thread has exclusive access to
the resource. If there is a group of threads that are each waiting to acquire a
resource that another member in the group already has, then there is a cyclical
dependency among the threads in the group. The result of this is that none of
the threads can make progress; this is called deadlock. Deadlock prevents a basic
liveness property, that processes always terminate, from being satisfied.

Atomicity violations. Errors are still possible even when synchronization is
used to provide freedom from data races. Synchronization is often used to
provide mutual exclusion to some shared resources for a finite amount of time.
However, sometimes the mutual exclusion does not last long enough to guarantee
correct operation, i.e., a mutex is released, after which time it is re-acquired with
the assumption that nothing has changed since the previous release. When this
happens it is called an atomicity violation.

Order violations. There are programs that have several threads where it is
assumed that one thread always runs certain operations before another thread.
For example, it could be that a worker thread must complete a job before the main

CHAPTER 2. BACKGROUND 13

thread uses the result. An order violation occurs when dependent operations
occur out of sequence.

Studies show [60] that most (97%) non-deadlock, non-data race bugs are ei-
ther atomicity or order violations. The absence of data races, deadlock, atomicity
and order violations are all safety properties of a concurrent system.

2.6. TYPES OF CONCURRENCY BUGS14

Part I: Correctness

15

Chapter

3 Static deadlock
detection

The type system is the first line of defence in program correctness. The typical
static type system allows properties about the program to be stated and checked
at compile time. Generally these properties are relatively simple, although they
can also be much more elaborate as in the use of dependently typed languages
such as Agda, Epigram, Idris, and Coq, however such systems take much more
effort to produce programs that type-check. There is a balance to be struck
between the expressive power of the type system and the effort required to
satisfy the type checker. This chapter shows that the absence of deadlocks, since
it can be stated as only a moderately complex property, can be ensured statically
through an extension to SCOOP’s type system.

The problem of deadlock in concurrent systems can also be handled, dynami-
cally, at run-time. Research into concurrent programming has provided a set of
tools, e.g. [53, 90, 27, 14], for addressing the data races and deadlocks that arise
from incorrect use of synchronization. However, dynamic approaches represent
a reactive approach to finding deadlocks, where this work advocates a proactive,
preventative, approach.

Of course the situations in which deadlock can arise are connected to the
execution model of the underlying programming language. For SCOOP, the
mechanism that guarantees data race freedom, handler reservation, is the same
mechanism that can cause deadlocks, because the existing operational seman-
tics [78] mandates the use of locks to achieve exclusive access to the handlers.
In Figure 3.1, through the call to d1, a is locked by the call to g (a) in the body
of f, and b is locked by the call to h (b) in the body of the routine g, so in the
(empty) body of h, locks on the handlers of both a and b are held. The program
in Figure 3.1 may deadlock; d1 and d2 lock a and b from MAIN in the opposite
order.

On one hand, the handler reservation mechanism simplifies reasoning about
concurrent programs because it eliminates data races. On the other hand, SCOOP
offers little protection against deadlocks, a property shared with many concurrent
programming languages, that may arise due to misuse of the handler reservation
mechanism.

The proposed approach extends the SCOOP type system by enriching the
routine interface specifications to establish an intended order in which handlers
can be reserved. Although the type system is extended, it retains its modularity,
thus the resulting deadlock prevention technique is also modular. It is important
that these extensions to the type system actually guarantee that the program is
free of deadlock; the technique is proven to work by first formalizing the SCOOP
locking behaviour in a structural operations semantics. A proof of soundness
then uses the operational semantics to show that at every program step deadlock
freedom is preserved. The core of this proof is formalized in the Coq proof
assistant to ensure the validity of the soundness reasoning. The technique

17

3.1. DEADLOCKS IN SCOOP18

class DEADLOCK
create set
feature

x, y : separate S

f
do

g (x)
end

g (a : separate S)
do

h (y)
end

h (b : separate S)
do
end

set (a_x, a_y : separate S)
do

x := a_x
y := a_y

end
end

class MAIN
feature

a, b : separate S

run(d1,d2: separate DEADLOCK)
do

d1.f
d2.f

end

make
local

d1, d2 : separate DEADLOCK
do

create a
create b
create d1.set (a, b)
create d2.set (b, a)

run (d1, d2)
end

end

Figure 3.1: SCOOP deadlock example

has been implemented in a type checker and applied to a simple web server
programmed in SCOOP.

Other work in this area such as deadlock freedom for active objects in
Java [50] provides less versatile structures (trees vs. orders). Techniques of
similar power [14], however, are not applied to an underlying language that
guarantees other correctness guarantees such as data race freedom. Lastly, other
partial operational semantics [79] only consider liveness properties in the light
of model checking, which may not scale to larger programs.

Section 3.1 gives an overview of how deadlocks arise in SCOOP and how
they can be detected both dynamically and statically. Section 3.2 provides a
formalization of SCOOP’s locking semantics. Section 3.3 describes the deadlock
prevention scheme and prove that well-formed programs cannot deadlock. Sec-
tion 3.5 provides a mechanized proof of the core argument that the technique
is sound. Section 3.6 compares the related work and Section 3.7 contains a
discussion of the approach.

3.1 Deadlocks in SCOOP

When a SCOOP program deadlocks, it is tied to the order in which handler
reservations are made between different calls or different separate blocks.
It is instructive to look at the key aspects informally first to understand the
mechanisms that work to create deadlocks, then to see a case where a real
deadlock may arise.

CHAPTER 3. STATIC DEADLOCK DETECTION 19

3.1.1 Types and handlers
A variable x is declared of separate type

x : separate X

then at creation of x with the statement

create x

a new handler p is created in addition to an object o of type X, and the handler of
o is set to p. The declaration x: separate X just means that x is an object which
may be on any handler. The type system presented in SCOOP’07 [78] allows the
types of separate objects to be made more precise by indicating exactly which
handler an object is on. Given the following,

x : separate <p> X
y : separate <p> Y

at run-time when the objects are constructed, the same handler, p, would be
responsible for both x and y. The handler annotations have class-scope if applied
to attributes of the class, and routine-scope if applied to local variables of a
routine. Handler tags are not currently in the SCOOP implementation provided in
EiffelStudio. This deadlock prevention approach resurrects this type annotation
as it allows handlers to have a representation at the type level, and thus they can
appear in other predicates, which will be required.

3.1.2 Locking through calls
As outlined in Section 2.5, a client must first reserve a handler before logging
calls on that handler. However, the mechanism that actually guarantees this
reservation was only mentioned briefly in this chapter.

The assurance that the calls are processed by the handler without interleaving
from other clients has is provided in the existing SCOOP model [78] by asso-
ciating a lock with every handler, and taking that lock when a reservation is
needed. This lock is held for the duration of the call that reserved the handler,
and released at the end of the call’s body. In Figure 3.1 the body of the feature f
contains the command g(x), the locking behaviour described above would be
seen here, as this call is invoked, requesting and locking the object x.

This gives the basic locking behaviour of SCOOP programs, and from here it
is possible to see where deadlocks can arise.

3.1.3 Example
When encountering handler reservation f (x), where x has a separate type,
first the lock on x is requested, and if/when it is available it may be given the
client requesting it. A deadlock state, based on waiting for resource availability
as in [22], can be identified

• dynamically: construct a “waits-for” relation; if an element is related to
itself in the transitive closure of such a relation, then the system is in a
deadlock state. In the setting of SCOOP, the “waits-for” relation contains
an association between between handlers p and q iff some other handler
has a lock on p and is requesting q.

3.2. LOCKING OPERATIONAL SEMANTICS20

• statically (conservative): arrange the handler tags into a partial order.
When the text of the program indicates a lock is taken, verify that it is
less than all the other locks that could have been taken at this point. The
program text may require some annotations establishing which locks have
already been taken. This is essentially a way to ensure that the dynamic
case never arises when the program is run.

These two schemes can be applied to Figure 3.1. Reasoning using the dynamic
scheme, an instance of class DEADLOCK will lock its attributes x and y in some
order when its routine f is called. In class MAIN, two instances d1 and d2 of
DEADLOCK are initialized with two separate objects x and y, however their order
is reversed between the two instances. By executing run, the routine calls d1.f
and d2.f are executed asynchronously, according to the semantics of calls on
separate objects d1 and d2 outlined above.

As a result of executing d1.f, the call g(x) is invoked. As x is an argument
to the routine g, the run-time locks x for the duration of the call, as prescribed
by the semantics for controlled objects outlined above. In particular, x will still
be locked when the call h(y) is invoked, requesting a lock on y. The concurrent
execution of d2.f has an analogous locking behaviour, but since d1 and d2 have
opposite views of x and y, the locking order is reversed. Hence the calls may
ultimately form a cyclical locking pattern, resulting in a deadlock.

To reason statically about the same sequence of calls, one notices that the
order of calls can be conservatively approximated by examining the program text,
and observing which routines subsequently call other routines. In the case of
Figure 3.1, calling the feature f will (for a general routine, may) always require
that the handler of x is locked, followed by y. This information can be used
statically at the call sites of d1.f and d2.f to determine that their concurrent
execution could lead to a deadlock state.

3.2 Locking operational semantics

To understand how to construct deadlock-free programs, a clear notion of what
a program is must be given. This section presents a partial syntax and semantics
that focuses on the locking behaviour of the SCOOP model. Trimming away
the parts of the model that do not concern locking allows one to more clearly
understand the problem.

3.2.1 Syntax
This section describes the abstract syntax of SCOOP programs. This abstract
SCOOP syntax uses the set Tag to denote handler tags, and normally uses
p, q, r ∈ Tag, etc. as example handler tags. Handler tags are the syntactic
representations of an actual handler that will be used by the type system. There
is also the set Name which are just routine identifiers, often f ∈ Name is used as
an example instance.

The basic component of a SCOOP program is an expression. The expressions
syntax is

e ::= [p]
∣∣ skip

∣∣ create(p)
∣∣ e · f(ẽ)

∣∣ e; e
∣∣ lock p̃ e

CHAPTER 3. STATIC DEADLOCK DETECTION 21

The notation ẽ denotes a sequence of expressions e1, . . . , en, and similarly p̃
denotes a sequence of handlers. Sometimes these sequences are treated as sets
where no confusion arises, i.e. ẽ =

⋃
i=1,...,n{ei}. The existence of a function

that maps expressions to their handlers, tagP : Expr → Tag, is assumed to be
given, and tagsP is the same function except lifted to map over sequences of
expressions.

[p] represents a value on a handler. The value itself is not mentioned as the
locking behaviour of SCOOP does not depend on particular values, but rather
on the handler where those values reside. Sequential expression composition
is denoted by e1; e2. The expression skip has no effect, and is the left identity
of sequential composition. A new handler with tag p is created using create(p),
again the actual value or object that is created is abstracted away. Calling a
routine f on a target t, with a list of arguments ã is represented by t · f(ã). A
sequence ẽ = e1, . . . , en where all expressions are fully evaluated (i.e. ei = [pi]
for i = 1, . . . , n) is denoted by [ẽ].

The last syntactical element, lock, is not a part of the syntax that can be
written explicitly in a program. lock can only arise as a result of intermediate
steps in a program’s execution. lock p̃ e represents the locks on p̃ taken as a result
of a separate call; e represents the body of the routine call.

The separate block is not included in this syntax because it is nearly identical
to a routine call and thus would only serve to go against the goal of this treatment
to trim away unnecessary details. Additionally instructions such as if, loop,
rescue and check are not handled explicitly as they are compositions of the
above syntax elements.

Having the expression definition, a program P is a mapping of names to
routines

P ∈ Program = Name → Routine

where a routine rtn is a tuple of the form

rtn ∈ Routine = Tag∗ × Expr

and for convenience the projections of this tuple can be named as

rtn = (rtn ~as, rtnbody)

The component rtn ~as is the sequence of formal arguments of the routine. Since
the actual values, and by extension their specific types, do not influence locking,
only the handler component (Tag) of a type is used. The rtnbody component is
the body of the routine, and is an expression.

This treatment of the SCOOP syntax and programs focuses on the locking
behaviour of SCOOP programs as given by the routine call. By only allowing the
subset of the full SCOOP syntax necessary to lock, and therefore deadlock, the
syntax will give rise to a more focused analysis of deadlock behaviour.

3.2.2 Locking semantics
Given the above syntax and structure of SCOOP programs, this section defines
the semantics of how locks are requested and taken in the SCOOP model. This is
forms the basis for the reasoning about how deadlocks arise and how they are
prevented.

3.2. LOCKING OPERATIONAL SEMANTICS22

At run-time, a program P gives rise to a process P which is described by the
following syntax:

P ::= p :: e
∣∣ P | P

A process is therefore either an expression e located on a handler p, or a parallel
composition of processes. The idea is that a program starts with the initial call
f0 on an initial handler p0 as p0 :: f0, and will give rise to more parallel threads
(as the result of create expressions) as the execution proceeds. A structural
equivalence ≡ over processes specifies the commutativity and associativity of the
| operator; the formal definition of ≡ is standard and not given here. The handler
tags are unique within processes, i.e. there cannot be a process p :: e | q :: e′ | Q
such that p = q. This property is preserved by handler creation, which is the
only operation that can introduce a new parallel composition of processes. The
expression p ∈ P , where p is a handler and P is a process, is true if and only if
the handler p is one of the handlers in the process P .

Processes operate on a state only containing locks and requests. Formally, a
lock state L is a pair of mappings (Ll, Lr) of the following type:

L ∈ LockState =
(
Tag → ℘(Tag)

)
×
(
Tag → ℘(Tag)

)
Here, Ll is a mapping from a client handler (tag) to a set of handlers, representing
the handlers that a client handler currently locks. Similarly, Lr is also a mapping
from a client handler to a set of handlers. However, Lr represents the handlers
that a client handler is requesting, not the ones that it has already obtained.
Representing the locks and requests this way allows this model to use the same
terms as those used in the Coffman deadlock definition [22]. The domain
of L is defined as the union of the domains of its components, dom(L) =
dom(Ll)∪ dom(Lr). The notation Ll[p 7→ T] denotes a point-wise update to the
map. The update is such that the resulting mapping returns T at point p of its
domain and is unchanged otherwise at all other points.

The semantics specifies rewrite rules over processes and lock states in the
style of a structural operational semantics with transitions of the form

P ` (P,L)→ (P ′, L′)

This means that given a program P, providing a mapping from routine names
to their bodies, the process P evolves in one step to P ′ and transforms locking
state L to L′ also in this one step.

With this background information, the semantic rules relating to locking
in SCOOP programs in Table 3.1 can be explained. The creation of a new
handler q by client p gives rise to a new parallel handler located at q. If the
handler already exists, then this has no effect. These behaviours are expressed
in the CREATE1 and CREATE2 rules. For routine target and argument evaluation:
EVALTRG and EVALARG enforce that targets are fully evaluated before arguments
are evaluated. In EVALARG, the arrow� represents performing a single rewrite
step on a sequence of expressions. To reorder the constituent handlers of a
program during rewriting, the EQUIV rule is available. The rule SEQ allows one
step to be performed on the left side of a sequential composition, and SKIP carries
its intuitive meaning.

Once the target and arguments of a call are both fully evaluated, the call can
be invoked. The LOGCALL rule is for logging asynchronous calls, and moves the

CHAPTER 3. STATIC DEADLOCK DETECTION 23

CREATE1
q 6∈ (p :: skip | Q)

P `(p :: create(q) | Q, L)→
(p :: skip | q :: skip | Q, L)

CREATE2
q ∈ (p :: skip | Q)

P `(p :: create(q) | Q, L)→
(p :: skip | Q, L)

EVALTRG
P `(p :: t | Q, L)→

(p :: t′ | Q′, L′)
P `(p :: t · f(ã) | Q, L)→

(p :: t′ · f(ã) | Q′, L′)

EVALARG
P `(p :: ã | Q, L) �

(p :: ã′ | Q′, L′)
P `(p :: [q] · f(ã) | Q, L)→

(p :: [q] · f(ã′) | Q′, L′)

SKIP

P `(p :: skip; e | Q, L)→
(p :: e | Q, L)

SEQSTEP
P `(p :: e1 | Q, L)→

(p :: e′1 | Q
′, L′)

P `(p :: e1; e2 | Q, L)→
(p :: e′1; e2 | Q′, L′)

EQUIV
P ≡ Q Q′ ≡ P ′

P ` (Q, L)→ (Q′, L′)
P `(P, L)→

(P ′, L′)

LOGCALL
p 6= q

P `(p :: [q] · f([ã]) | q :: e | Q, L)→
(p :: skip | q :: e; [q] · f([ã]) | Q′, L)

CALLLOCK
ã′ = P(f)arg b = P(f)body[ã/ã′]

∀p, Ll(p) ∩ Lr(p) = ∅ L′r = Lr[p 7→ ∅]
L′l = Ll[p 7→ Lr(p) ∪ Ll(p)]
P `(p :: [p] · f([ã]) | Q, L)→

(p :: lock (Lr(p)) b | Q′, L′)

REQLOCKS
need = ã− (Ll(p) ∪ {p})

L′r = Lr[p 7→ need] L′l = Ll

P `(p :: [p] · f([ã]) | Q, L)→
(p :: [p] · f([ã]) | Q, L′)

LOCKSTEP
P ` (p :: e | Q, L)→ (p :: e′ | Q′, L′)

P `(p :: lock p̃ e | Q, L)→
(p :: lock p̃ e′ | Q′, L′)

UNLOCK
L′l = Ll[p 7→ Ll(p)− p̃] L′r = Lr

e = skip ∨ e = [v]
P `(p :: lock p̃ e | Q, L)→

(p :: e | Q, L′)

Table 3.1: SCOOP Rewrite Rules

call to the target handler, to be executed after the current tasks of the target
handler. The caller proceeds without waiting. Recall that the notation [ã] to
describe a fully evaluated sequence of expressions.

When a call is already on its target handler, either because it was moved
there by its client, or because it is a non-separate call, the required locks must
be requested. This behaviour is specified in REQLOCKS. Only the locks that are
not already held by the client (need in the rule) are requested, and this includes
the lock of the client itself.

Once the requests have been made the client must wait, as specified in
CALLLOCK, until no other handler holds any of the required resources. Once
the locks are available, they are transferred to the lock set of the client. The
client’s expression is rewritten from the call to the internal lock expression with
the the body of the call with the arguments instantiated as its own body. The
locks that were just taken are also present as the first component of the lock
expression. This will allow just those locks to be later released. Here the notation
P(f)body[ã/ã′] expresses the substitution of the actual arguments ã for the formal
arguments ã′ = P(f)arg within the body P(f)body of routine f . In the previous
two rules, the sequence of values [ã] = [p1], . . . , [pn] is reinterpreted as a set.

Once the body of a routine is wrapped in the lock syntax, it has to be actually
executed. To do this, the LOCKSTEP rule allows a lock expression to progress if
the inner part can progress independently in the same state.

Lastly, once the inner part of the lock expression has finished, it can let go of

3.3. ENSURING DEADLOCK FREEDOM24

p r1 r2 Ll Lr

[p] · run([r1], [r2]); e′ skip skip {p 7→ ∅} {p 7→ ∅}

SEQSTEP and REQLOCKS are applied on p

[p] · run([r1], [r2]); e′ skip skip {p 7→ ∅} {p 7→ {r1, r2}}

SEQSTEP and CALLLOCK are applied on p

lock [r1, r2] ([r1] · f; [r2] · f) skip skip {p 7→ {r1, r2}} {p 7→ ∅}

SEQSTEP, LOCKSTEP, and LOGCALL are applied on p

lock [r1, r2] ([r2] · f)) skip; [r1] · f skip {p 7→ {r1, r2}} {p 7→ ∅}

Figure 3.2: Execution derivation for deadlock example in Figure 3.1. Each
column is either a processor (p, r1, r2) or a component of the state (Ll, Lr).

the locks that it holds. An expression that is finished is either a skip expression
or a handler value, [v]. Recall that p̃ is only the set of locks that were not already
held when the call was initially made, so revoking these locks will not revoke
any locks that were held before the call was made.

Note that the lock-passing mechanism present in some SCOOP implementa-
tions is not modelled by this semantics.

Example 3 To illustrate the use of the rewrite rules, they are applied to Fig-
ure 3.1. System execution starts with a call make on an initial handler p. An
execution step of the body of make is shown, demonstrating an application of
CREATE1 on the instruction create x:

(p :: create(q); e | Q,L)→ (p :: e | q :: skip | Q,L)

Here, assume that the handler tag of the local variable x is q and can be obtained
with a mapping tag : Name → Tag.

The other create-statements will give rise to more concurrent processes.
Finally, the routine run is called, under the assumption that tag(d1) = r1 and
tag(d2) = r2 to get the derivation in Figure 3.2. Here, ignoring the STEP rules for
a moment, the first rewrite comes fromREQLOCKS and shows that the handlers
of d1 and d2 are added to the request set of p. The second rewrite is performed
according to the CALLLOCK rule, and shows that the requested locks (which are
available, in this example) are taken by adding them to p’s set of held locks. The
last step is an application of rule LOGCALL and shows how an asynchronous call
is transferred to its handler. Discussion of rules SKIP, SEQSTEP, and LOCKSTEP is
omitted as they do not provide any further insight on this example.

3.3 Ensuring deadlock freedom
Having the syntax and semantics, a static approach to ensuring that a program
is free of deadlocks can be defined. The first step in this process is to choose a
fundamental property that will, in turn, guarantee an absence of deadlocks in the
execution of the program. Of the Coffman deadlock conditions, the only one that

CHAPTER 3. STATIC DEADLOCK DETECTION 25

can be reasonably provided is that no cycles exist in the lock graph. To guarantee
that this property does not exist the problem is phrased in terms of partial orders,
which through transitivity and anti-symmetry translates to acyclicity. This section
describes how this property is expressed in routine interfaces, what a well-formed
expression is, and proves that well-formed expressions ensure that a program is
deadlock-free when executed via the semantics in Section 3.2.2.

3.3.1 Annotation language
At the class level, annotations of the following form are allowed:

classHeader ::= class ident
∣∣ class ident <p(, p)∗>

A class can thus be parameterized with the handler tags it is using. This is just an
extension of the idea of formal generic parameters, except for separate handler
types, and provides a way to introduce handler variables. Consider Figure 3.3
for example, the class DEADLOCK has formal generic parameters xp and yp, which
introduces these handler variables in the body of the class.

An instance is declared as follows:

d : DEADLOCK <p, q>

This entity, d, based on class DEADLOCK instantiates xp and yp with p and q. This
mechanism allows uses the familiar generic mechanism for code reuse to be
extended to the deadlock freedom annotations, meaning that clients can reuse
the same classes more readily by instantiating them with different handlers.

The preconditions of routines represent the required ordering of handlers,
expressed using the following syntax (note that the non-strict ordering symbol
replaces the strict ordering symbol in the program text to make it easier to type,
however the interpretation should remain non-strict in all cases)

req ::= ε
∣∣ require p < p(, p < p)∗

For example, in Figure 3.3, the routine g is annotated to express that the handler
yp, which will be locked as a result of the execution of the body of g, is below
handler xp, which is locked by calling g.

The interface of a routine also states the set of locks that may be taken during
the execution of the routine body.

ens ::= ε
∣∣ lock p(, p)∗

For example, the lock clause of routine f in Figure 3.3 expresses that x’s handler,
xp, may be taken by executing the body of f, as the call g(x) will lock this
handler.

This expanded syntax also then modifies the representation of the interfaces
as they are stored in the program. In particular, the routine specification is
expanded to accommodate the annotation language as follows:

rtn ∈ Routine = ℘(Tag × Tag)× Tag∗ ×℘(Tag)× Expr

and the named expansion of the components of this type is:

rtn = (rtn≤, rtn ~as, rtnlocks , rtnbody)

3.3. ENSURING DEADLOCK FREEDOM26

class DEADLOCK <xp, yp>

feature
x : separate <xp> S
y : separate <yp> S

f
require

yp < xp
lock

xp
do

g (x)
end

g (a : separate <xp> S)
require

yp < xp

lock
yp

do
h (y)

end

h (b : separate <yp> S)
do
end

set (a_x : separate <xp> S;
a_y : separate <yp> S)

do
x := a_x
y := a_y

end
end

Figure 3.3: Annotated DEADLOCK class

The component rtn≤, corresponding to programmer provided require anno-
tations as in Section 3.3.1, is a relation on handler tags, describing the partial
order on handlers required by the routine. The set of locks that may be taken as
the result of executing the body of the routine is given by rtnlocks , correspond-
ing to lock; this is the other programmer-provided annotation. The remaining
components are as they were previously.

In Figure 3.3 g’s interface requires that yp < xp. Due to the construction of
the two deadlock variables, d1 and d2, in Figure 3.1, there is a contradiction in
the stated ordering of the handlers. Recall that d1 and d2 are constructed like so:

create d1.set (x, y)
create d2.set (y, x)

which means their types are actually:

d1: DEADLOCK <ap, bp>
d2: DEADLOCK <bp, ap>

given that ap is the handler of object a and bp is the handler of object b. Therefore
the handler variables xp and yp are instantiated differently in d1 and d2. However,
this difference itself causes no problem. An annotated MAIN class is shown in
Figure 3.4.

The problem arises through the calls to f in the body of run. It is here that the
requirements on the routines interfaces come into conflict. To be precise: d1.f
requires that yp < xp and d2.f requires xp < yp. These cannot be mutually
satisfied unless xp = yp. If this is not the case then it is impossible to annotate
MAIN from Figure 3.1 such that it can satisfy the well-formedness predicate
coming next.

3.3.2 Well-formed programs
The scheme for ensuring that a program is well-formed ensures that there exists,
for each routine, a consistent handler ordering (through rtn≤). Additionally, it

CHAPTER 3. STATIC DEADLOCK DETECTION 27

class MAIN <ap, bp>
feature

x: separate <ap> S
y: separate <bp> S

run (d1: separate DEADLOCK <ap,
bp>

d2: separate DEADLOCK <bp,
ap>)

do
d1.f
d2.f

end

make
local

d1: separate DEADLOCK <ap,
bp>

d2: separate DEADLOCK <bp,
ap>
do

create a
create b
create d1.set (a, b)
create d2.set (b, a)
run (d1, d2)

end
ebd

Figure 3.4: Annotated MAIN class

ensures that locks are declared (rtnlocks) properly, and within the scope of these
declared locks the callee’s locks (rtn′locks instantiated by its arguments) do not
lose any of the knowledge that the declared locks are held. The well-formedness
property of a program relies on every routine being well-formed:

wfProgramP = ∀rtn ∈ range(P).wfRoutineP(rtn)

A well-formed routine must ensure that the relation specified in its interface is
an order (first clause) and that the routine body is consistent with this order
(second clause):

wfRoutineP(rtn) = isOrder(rtn≤) ∧wfExprP(rtn≤, rtnlocks , rtnbody)

The well-formedness of expressions is therefore specified in terms of both the
order of the routine that contains the given expression, and also the locks that
the routine declares:

wfExprP(≤, lks, lock p̃ e) = False
wfExprP(≤, lks, [p]) = True
wfExprP(≤, lks, skip) = True
wfExprP(≤, lks, create(p)) = True
wfExprP(≤, lks, e1; e2) = wfExprP(≤, lks, e1) ∧wfExprP(≤, lks, e2)
wfExprP(≤, lks, t · f(ã)) =

(1) inst≤ ⊆ ≤ ∧
(2) ∀a ∈ ã. wfExprP(≤, lks, a) ∧
(3) ∀a ∈ ã. tagP(a) ≤ tagP(t) ∧
(4) wfLevelsP(≤, inst , lks, ã)

where inst = P(f)[ã/P(f) ~as]

The cases of values, skip, and create are always well-formed because they
involve no locking of handlers. Sequential composition of expressions must
guarantee that both the first and second component of the composition are
well-formed under the same order and lock set.

Call expressions are the most intricate case as this is where deadlocks can
arise in SCOOP. A call t · f(ã) must satisfy the following properties:

3.3. ENSURING DEADLOCK FREEDOM28

1. Order consistency – the order that the interface of f defines is consistent
with the order of the caller, ≤.

2. Well-formed arguments – each argument expression must be individually
well-formed. This is analogous to the sequential composition case.

3. Target before arguments – The order must express that the target of the
call is locked before (i.e., is greater than) each argument.

4. Well-formed levels – This guarantees that the call will only lock things that
are in the lock set (as defined by the surrounding routine), and that the
new locks are all “less than” the lock set.

Further, the “well-formed levels” property is formalized as:

wfLevelsP(≤, inst , lks, ã) = ((inst locks ×lks) ⊆≤) ∧ (tagsP(ã) ⊆ lks)

The first clause of wfLevels has all associations between the declared locks of
the call and the context locks related by the context order relation. In other
words, this states that each declared lock of a call must be less than all of the
context-locks, so that the execution only locks “down” the partial order. Since
a routine may have no arguments and still lock some handlers in its body we
compare context-locks against the lock clause, and not the arguments. The
second clause states that if a routine does have arguments, then these arguments
must be a subset of the lock clause, for consistency.

Example 4 The following shows the evaluation of the predicate wfExpr on the
call of the routine g in the body of routine f from Figure 3.3. To make the
example more varied, assume that the argument [xp] and the corresponding lock
of g are replaced by [zp].

Let ord = {(yp, xp), (xp, t)}∗, where R∗ is the reflexive transitive closure
operator. As (xp, t) ∈ ord and inst≤ = ord, the predicate is satisfied:

wfExpr(ord, {xp}, [t] · g([xp])) =
(xp, t) ∈ ord
∧ wfExprP(ord, {xp}, [xp]))
∧ inst≤ ⊆ ord
∧ wfLevels({(yp, xp), (xp, t)}, inst , {xp}, {xp})

The following facts about the interface of the routine g and the instantiation with
the argument xp are also used:

P(g) = ({(yp, zp), (zp, t)}∗, [zp], {zp})
inst = P(g)[[xp]/[zp]] = (ord, [xp], {xp})

and that the predicate wfLevels is satisfied because values are well-formed, and
(xp, xp) is in the order (reflexivity).

wfLevels(ord, inst , {xp}, [xp]) = ({xp} × {xp}) ⊆ ord ∧ tagsP([xp]) ⊆ {xp}

CHAPTER 3. STATIC DEADLOCK DETECTION 29

CALLLOCK

L′b(p) = (flocks [ã/ã′]) : Lb(p)
L′≤ = (L≤ ∪ (f≤[ã/ã′]))∗ . . .

. . .

UNLOCK

Lb(p) = b : L′b(p) . . .

. . .

Table 3.2: Instrumented rules

3.3.3 Deadlock freedom
Intuitively, this technique ensures that there exists a global ordering for every
well-formed program, and also that during the execution of a program each
handler obeys an order in which to take locks. Deadlock-freedom follows from
the fact that the acyclicity of the locking state is preserved under any execution
step.

This approach, as mentioned, formalizes these ideas by building on the
notion of the lock graph from [22]. The reasoning does not show directly that
the rewriting the operational semantics cannot get “stuck” due to lock requests;
this property follows from the satisfaction of the acyclical lock-graph property
from the Coffman conditions. Translated to the SCOOP model a locking graph
has handlers (resources) as nodes. There is an edge (p, q) in the graph if some
client has locked handler p while requesting handler q. A locking-state L induces
a locking-graph relation graph (L) as follows:

graph (L) =
(⋃

p∈dom(L) Lr(p)× Ll(p)
)∗

In this formalization of a lock graph, each handler p contributes some sub-graph
which are combined for all handlers through the large union operator, and then
the reflexive transitive closure is taken.

While the lock state L contains enough information to specify and detect
when deadlock occurs, it does not have enough information to prove that the
well-formedness conditions stated previously will guarantee that no cycles occur
in the graph. Therefore, the lock state L is augmented with some extra “ghost”
state which will record information during the execution of the program. These
new pieces of state are: a lock-barrier Lb : Tag → (℘(Tag))∗ and a run-time
ordering L≤ ∈ ℘(Tag × Tag). The lock barrier represents the stack of sets of
upper bounds on the locks that may be requested, the stack follows the execution
stack as calls are made. The run-time ordering is the ordering which is built
up during execution. For the sake of the proof, the locking semantics has to be
instrumented with these concepts. The minimal additions to the semantics are
shown in Table 3.2. The essential behaviour is that when a new call is made the
a new “barrier” is pushed onto the stack of lock barriers, and popped off when
the call returns. Additionally, when new calls are made the run-time ordering is
updated with that of the call’s instantiated interface. These new pieces of data
let the proof verify that the order is maintained.

With this extra information, the following property, sound , is proved invariant
under execution. The predicate states that the run-time ordering L≤ is indeed a
partial order, that the locking barrier is respected, and that the locking graph is

3.3. ENSURING DEADLOCK FREEDOM30

acyclic.

sound (L) = isOrder(L≤) (1)
∧ ∀p ∈ dom(L). top(Lb(p))× Ll(p) ⊆ L≤ (2)
∧ graph (L) ⊆ L≤ (3)

Here, top denotes the first element of a sequence.

Theorem 1 Given a well-formed program P and an instrumented rewrite rule
P ` (P,L)→ (P ′, L′), sound (L) implies sound (L′).

Briefly, the third clause is of primary concern; if the locking-graph (graph(L)) is
a subset of an order, then it must be acyclic. Since L≤ is an order, thus acyclic,
so is its inverse.

The initial two clauses support this goal, with the first establishing that
as the program executes the relation that is specified piece-wise in the routine
annotations is indeed an order. This fact follows from the definition of wfRoutine
and the instantiation of the routines in the first clause of the call-case of wfExpr.

The second clause of sound states that the new upper-bound on locks is
below all other locks that have already been acquired by the client p. The proof
of this property is garnered from the Cartesian product in the wfLevels predicate,
which imposes that when locks are taken, they are less than every lock taken by
the surrounding procedure. When function calls are nested, these transitively
combine to ensure that locks requested by a client p are less than all other locks
currently held by that client. So, whenever locks are taken, they are “below”
the currently held locks, and this is the essential property that proves the third
clause.

3.3.4 Reducing annotations
Annotation burden is an important aspect of any technique which asks the user
to provide extra information about the program. In an effort to reduce the
annotation burden, two main sources of annotations are identified:

• Necessary annotations that are required because of the well-formedness
rules.

• “Leaky” annotations that describe handlers that should be invisible outside
the routine.

A “leaky” annotation would be something like,

foo <p> -- p is a handler variable
local

x : separate <p> C
do

create x -- creates x on handler p
bar (x) -- locks and uses x

-- assume p is unused past
-- this point

lock
p

end

CHAPTER 3. STATIC DEADLOCK DETECTION 31

This routine requires that all calls to foo supply a handler p and must also make
sure that p is in the callers lock set. Such a situation means that all specifications
that involve p have to be copied up through the call stacks. Now, the assumption
here is that p is unused outside of foo (although clearly bar uses it).

To reduce the annotation burden, these two problems have to be addressed.
The first problem is addressed by adding the necessary annotations to a routine
based on its body. This is done in phases, one for order information, and
another for lock set information. To reconstruct order information, the following
reconstruction is done for every call,

reconOrd(t · f(~as), ord) = ord ∪ (t < ~as) ∪ f<

accumulating the ord result and adding it to the order for the surrounding
routine.

Likewise, reconstructing lock set information is performed by using

reconLks(t · f(~as), lks) = lks ∪ tags ~as

which collects all locks taken in the body of a routine and adds them to the lock
set of the calling routine.

To reduce the instances of “leaky” annotations, declarations of handlers are
allowed to be local to a particular routine. Using this in the previously leaky
routine results in the following:

foo
local

<p> -- p is a local handler
-- variable

x : separate <p> C
do

create x -- creates x on handler p
bar (x) -- locks and uses x

-- p cannot be used past
-- this point

end

Now the handler p is local to the routine. This also makes p implicitly part of
the lock set, although it will not be visible there from outside the routine so the
lock set is left blank here. Additionally, since it is local, it cannot leak outside
the routine (i.e., by hiding it in another object), and any attempt to do so will
cause an unbound handler variable error at compile time. Because it doesn’t leak
outside the routine, this means that callers of foo will not have to reason about
or cooperate with p because they do not and can not know about it.

3.3.5 Evaluation
To evaluate the effectiveness of the deadlock approach presented here, it was
applied to an example application. The application is a simple web server that
is able to respond to basic GET requests from a client with static web pages.
The server is limited to providing just successful (200) and file not found (404)
responses, and serving from a local filesystem.

3.4. TOOL32

The server was shown to be deadlock free by the deadlock tool implementing
the approach proposed in this work. However, in any approach which requires
that annotations be added to a program, it is informative to examine what the
annotation burden is, i.e., how many annotations are required for a given amount
of code. Table 3.3 gives a breakdown of the lines of code, annotations required,

Class Lines Locks Order Over. I-Locks I-Order I-Over.
APPLICATION 45 2 5 16% 0 1 2%
HTTP_200 55 2 0 4% 1 0 2%
HTTP_404 27 1 0 4% 0 0 0%
HTTP_REQUEST 45 0 0 0% 0 0 0%
HTTP_RESPONSE 41 0 0 0% 0 0 0%
MIME_GUESSER 72 0 0 0% 0 0 0%
REQUEST_HANDLER 103 2 2 4% 0 0 0%
Total 398 7 7 4% 1 1 0.5%

Table 3.3: Classes and annotation measurements

and overhead per module in the server. It also gives the annotations requried
when the the locks and orders are inferred using the reconstruction algorithm.
Two types of annotations are measured, annotations that specify what locks are
taken and also which orders had to be specified. The totals are also listed, and
the server only required 4% of its lines to be annotations to prove deadlock
freedom. When the annotations are inferred, the overhead falls to 0.5%.

To get a better impression of the annotations that were used, Figure 3.5
shows a snippet of the requeset handling function. The only part that has to be
stated is that the socket (hidden in the RESPONSE object) will be locked, and it
is “less than” the current process (dot). These annotations can also be inferred
when using the annotation reconstruction scheme.

This evaluation is limited to the concurrency patterns that could be revealed
through the web server application. There are other patterns which are not
evaluated, though this does show that the technique can be applied to a useful
concurrent application.

3.4 Tool
This static technique has been implemented in a prototype tool, written in
Haskell, and available from [104].

Haskell was chosen as the implementation language to match the math-
mematical nature of the routine annotations, as they are either order relations
or lock sets. Since Haskell makes immutible structures and pure functions the
default, this reduced the possibility for errors to occur in the implementation via
accidental mutation.

Due to this, the implementation of the well-formedness checks corresponds
nearly directly to the mathematical description. Of course, some modification is
necessary to propegate type errors in the Eiffel source that is being checked up
to the top level to report.

Additionally, a GUI is implemented to make the interaction easier by providing
graphical feedback when orders are violated. The expected order is presented

CHAPTER 3. STATIC DEADLOCK DETECTION 33

req (sock : separate <s> NET_SOCK)
require

s < dot
local

last : STRING
http_req : HTTP_REQUEST

do
create http_req.make ()

from
read_line (sock)

until
last.is_equal (cr)

loop
http_req.add_field (last)
read_line (sock)

end

process_request (http_req)
lock

p
end

Figure 3.5: HTTP request processing

in a graph beside the actual order so the discrepency can be more easily seen;
layout is provided by the GraphViz tool.

3.5 Coq proof

This section describes a proof that a program which passes type-checking for the
deadlock prevention scheme really will not deadlock.

The proof is contained in its own Section, used to encapsulate parameters
and hypotheses. Section Config.

Parameter Name : Set.

Expressions. Expressions are either a value ok p, skip, a routine call, sequen-
tial composition, or a lock that cannot be written in the program, but serves as a
mechanism to mark within the program expressions how many locks have been
taken (lock depth). These represent a more restricted syntax, but capture the
essence of basic SCOOP programs through the call and lock constructors.

Inductive expr: Type :=
| ok (p: HandTag): expr
| skip: expr
| call (target: HandTag) (f : Name) (args: list HandTag): expr
| lock (lks : HandSet) (e: expr): expr
| seqc (e1 e2: expr): expr.

For display ;; is used as an alternative infix notation for seqc.

3.5. COQ PROOF34

Notation ”e1 ;; e2” := (seqc e1 e2)
(at level 90, right associativity): core scope.

Programs. A function entry is a combination of:

• the body, which is just an expression

• the locks that are allowed to be taken in the body

• and the sub-order that the function will use

This represents the annotations that allow us to reason about deadlock
freedom. These are the “locks” set and “require” order for the given function.

Record func entry : Type :=
{ func body: expr;

func allowed: HandSet ;
func ord : HandRel

}.
A program is a mapping from names to function entries. This will allow the

call expressions to be interpreted by replacing their names with their bodies

Notation ”’program’” := (Name→ func entry).

The proof is parameterized both in the program that is being considered,
and the order relation that will be used to determine that the locking order is
correct.

Parameter P: program.
Parameter ord: HandRel.
Hypothesis is order: HandOrder ord.

Convenient short hand notations for the allowed locks and body of a given
function name.

Definition allowed (f : Name) := func allowed (P f).
Definition body (f : Name) := func body (P f).

Well-formedness. A well formed expression (one that passes type checking)
can be constructed in many ways. This uses an inductive predicate to encode the
type checking rules. It is a relation between a set of handlers that are allowed to
be locked, and an expression.

Inductive WfExpr: HandSet→ expr→ Prop :=

An ok expression is immediately well formed
| WfOk (a: HandSet) (p: HandTag) : WfExpr a (ok p)

The do-nothing operation, skip, is also well formed in all contexts.
| WfSkip (a: HandSet): WfExpr a skip

The sequential composition of two expressions is not as the above two, but
only requires that each subexpression be well formed with respect to the same
set of allowable locks.

CHAPTER 3. STATIC DEADLOCK DETECTION 35

| WfSeq (a: HandSet) (e1 e2: expr)
(WfE1: WfExpr a e1) (WfE2: WfExpr a e2):

WfExpr a (e1 ;; e2)

A call is when locking occurs, so one would expect that describing that a well
formed call is the most interesting case. In particular it demands that the locks
to be taken, the arguments to the call, are a subset of those that are allowed to
be taken. Additionally, it requires that the body of the call is well formed. This is
not strictly required, because it is assumed that the program as a whole is well
formed, but makes later induction proofs easier to state this here.

The last requirements are that the relation between the allowed locks and the
locks that the new call declares as being allowed form a less-than relationship,
and that this relationship is consistent with the global order.

This will later allow a proof on stacks of sets of locks that have a pair-wise
less-than relationship.
| WfCall (lks a a’ : HandSet) target f args

(ArgsInAllow: !args! ⊆ a)
(WfBody: WfExpr (allowed f) (body f))
(AllowedLess: (allowed f × a) v func ord (P f))
(SubOrder: func ord (P f) v ord):

WfExpr a (call target f args).

The lack of a constructor for a lock expression is to indicate that lock cannot
occur in the text of a well formed program. Execution can (and does) introduce
lock expressions though. Also, a well formed call demands that the body is well
formed. This is a simplification that helps with proofs that use induction over
well formed expression terms.

It is a simplificaition because the whole program is assumed to only contain
well formed bodies (well formed function entries).

Hypothesis wfProg: ∀ f , WfExpr (allowed f) (body f).

Processes. A configuration is a list of individual handler configurations. The
handler configurations contain the handler tag, the current expression that is
being evaluated, a list of sets of handler tags that represent a stack of allowable
handlers to take locks from, and lastly a list of sets of handler tags that represent
the actual locks taken.

The two lists of sets of handlers are not present in the actual execution model,
but they are tracked here because the proof needs some information that is not
present in the model. They are essentially “ghost” state as they do not influence
the execution of the model, they just along for the ride.

Inductive config: Type :=
| EmptyConfig : config
| ConsConfig : HandTag→ list HandSet→ list HandSet→ expr→ config→ config.

A more convenient notation is used for configurations that makes them easier
to read and more like the initial notation in the non-mechanized semantics.
Notation ”(p , A , LK) :: e” :=

(ConsConfig p A LK e EmptyConfig)
(at level 0, e at level 70).

Notation ”(p , A , LK) :: e — Q” :=

3.5. COQ PROOF36

(ConsConfig p A LK e Q)
(at level 0, e at level 70, right associativity).

Operational semantics. The execution type defines the operation semantics
of the program by induction. This inductive type forms a homogeneous relation
between a pairs of configurations and sets of locked handlers.

Inductive Execution : config→ HandSet→ config→ HandSet→ Type :=

Skip composed with an expression simply writes away without modifying any
of the normal or ghost state.
| SkipR :

∀ p A LK e Q L,
` ((p, A, LK) :: (skip ;; e) | Q, L)⇒ ((p, A, LK) :: e | Q, L)

If the first component of a sequential can be rewritten in isolation resulting
in new state, then its composition can be rewritten with the second componennt
being unaffected.
| Seq :

∀ p A A’ LK LK’ e1 e1’ e2 Q Q’ L L’,
` ((p, A, LK) :: e1 | Q, L)⇒ ((p, A’, LK’) :: e1’ | Q’, L’)→
` ((p, A, LK) :: (e1 ;; e2) | Q, L)⇒ ((p, A’, LK’) :: (e1’ ;; e2) | Q’, L’)

Executing a call requires locks to be taken. Since this proof does not prove
progress directly, but only via the Coffman conditions on ordering, whether they
are currently taken or not doesn’t really matter.

This rule introduces the lock expression that normally does not appear in a
user-written program.

Note that the locks that the function f declares as allowable now go on the
allow stack, and the newly locked arguments go on the lock stack.
| TakeLocks:

∀ p Q L LK A target f args,
` ((p, A, LK) :: call target f args | Q, L)⇒

((p, allowed f :: A, (!args!) :: LK) :: lock (!args!) (body f) | Q, L)

The body of the lock can make progress while the lock is taken, this is the
way executing a program under a lock is modeled. Much like the sequential
composition operation, if the inner component of the lock expression can take a
step, then the whole expression can move forward.
| LockStep :

∀ p A A’ LK LK’ Q Q’ L L’ lks e e’,
` ((p, A, LK) :: e | Q, L)⇒ ((p, A’, LK’) :: e’ | Q’, L’)→
` ((p, A, LK) :: lock lks e | Q, L)⇒ ((p, A’, LK’) :: lock lks e’ | Q’, L’)

When the body of the lock finally completes the lock expression can be
removed. The completion of the body is indicated by the expression inside lock
being skip.
| LockPop :

∀ p a A l LK Q L lks,
` ((p, a :: A, l :: LK) :: lock lks skip | Q, L)⇒

CHAPTER 3. STATIC DEADLOCK DETECTION 37

((p, A, LK) :: skip | Q, L)
where ”—- (C , L) ==¿ (C’ , L’)” := (Execution C L C’ L’).

Auxilary lemmas. This property of an expression merely proves if a given
expression has a lock subexpression somewhere.
Inductive HasLocks: expr→ Prop :=
| HLLock: ∀ e lks, HasLocks (lock lks e)
| HLSeq: ∀ e1 e2, HasLocks e1 ∨ HasLocks e2→ HasLocks (e1 ;; e2).

A useful property to have is that an expression only contains locks in the left
part of sequential compositions. This means that any given expression only has
descending chain of lock expressions, and that chain is the in the first component
of sequential compositions.

This property allows reasoning on the depth of locks as it relates to what is
in the stack of locks and allowable locks.

Inductive OnlyLeftLocks: expr→ Prop :=
| OLLOk: ∀ p, OnlyLeftLocks (ok p)
| OLLSkip: OnlyLeftLocks skip
| OLLCall: ∀ target f args, OnlyLeftLocks (call target f args)
| OLLSeq: ∀ e1 e2, OnlyLeftLocks e1→ ¬ HasLocks e2→

OnlyLeftLocks (e1 ;; e2)
| OLLLock: ∀ e lks, OnlyLeftLocks e→ OnlyLeftLocks (lock lks e).

lockDepth is just a recursive function that will be used to measure how many
locks descend down the left side of an expression.

Fixpoint lockDepth (e: expr): nat :=
match e with
| lock e’ ⇒ 1 + lockDepth e’
| e1 ;; e2⇒ lockDepth e1
| ⇒ 0

end.

To conduct the proof, there has to be an elaborated idea of a well-formed
expressions. In particular, it must account for a wellformed lock expression.

The StackWf inductive type fills this gap, and to do this it makes use of the
stack of allowable locks and already taken locks, in addition to the expression.
Inductive StackWf : list HandSet→ list HandSet→ expr→ Prop :=

The ok and skip expressions are still trivially allowed.
| StkOk : ∀ A LK p, StackWf A LK (ok p)
| StkSkip : ∀ A LK, StackWf A LK skip

Sequential compositiion has become slightly more complicated. This is
because the well-formedness must now account for the entire stack of locks, and
it must know how much of the stack will be gone by the time second part of
the composition, e2, is encountered. This amount is known, however, because
it is just the number of lock expressions contained within the first part of the
composition. Therefore, e2 must be still be consistent when those locks are
popped off the stack (through skipn on the stack) and that is expressed by the
WfE2 proof.

3.5. COQ PROOF38

| StkSeq A LK e1 e2
(WfE1: StackWf A LK e1)
(WfE2: StackWf (skipn (lockDepth e1) A)

(skipn (lockDepth e1) LK) e2):
StackWf A LK (e1 ;; e2)

A call is StackWf if the top of the stack of allowable locks can ensure the well-
formedness of the call. Again the body being well-formed is essentially included
to make induction proofs easier, though it could be derived.
| StkCall (a: HandSet) A LK target f args

(WfBody: StackWf (allowed f :: nil) (!args! :: nil) (body f))
(WfCall: WfExpr a (call target f args)):

StackWf (a :: A) LK (call target f args)

A lock is well formed with regards to the stacks if its body is well formed with
respect to the same stacks.
| StkLock l A LK e (StkE: StackWf A LK e):

StackWf A LK (lock l e) .

Two other simple properties that describe the consistency of the stack of
allowable and taken locks are needed.

The first is that the stacks of locks are ordered with respect to the given
ordering. This means that the locks at the top of the stack are “less than” than
the locks immediately preceding the top. This basically forms the stack into
layers of handlers, where the handlers in one layer are less than the layer above
it.

Inductive OrdList : list HandSet→ Prop :=
| OLNil : OrdList nil
| OLSingle : ∀ x, OrdList (x :: nil)
| OLCons : ∀ x y l, x × y v ord→ OrdList (y :: l)→

OrdList (x :: y :: l) .

The second property is that stacks of locks that are allowed to be taken and
the locks that are taken must be in a pair-wise “less than” relation. This means
that the handlers at the top of the allowed stack must be less than all the locks
at the top of the locked stack. The stack below each of these must also have the
same relation, this allows consistency as the locks are pushed and popped off.

Inductive LessLists: list HandSet→ list HandSet→ Prop :=
| LLNil : ∀ A, LessLists nil A
| LLCons : ∀ a A l LK, a × l v ord→ LessLists LK A→

LessLists (l :: LK) (a :: A) .

Soundness. A sound configuration the key property that should be maintained
across steps in the operational semantics.

Inductive Sound : config→ Prop :=
Empty configurations can’t go wrong.
| SoundEmpty : Sound EmptyConfig

If a configuration is non-empty, then it has to maintain the stack wellformedness
of the expression with relation to the taken locks and the allowable locks.

CHAPTER 3. STATIC DEADLOCK DETECTION 39

Additionally, it must ensure that the taken locks and allowable locks are
ordered lists, and that the allowable locks are always “less than” the taken
locks. These properties are the heart of the proof, they directly give the Coffman
condition that requested locks (those at the top of the allows stack) are always
less than all of the taken locks.

The OnlyLeftLocks property is also required as a kind of sanity check on the
execution.
| SoundCons

p Q e A LK
(StkLks: StackWf A LK e)
(OrdAllows: OrdList A)
(OrdLocks: OrdList LK)
(LessPair: LessLists LK A)
(OnlyLeft: OnlyLeftLocks e)
(SndQ: Sound Q):
Sound (ConsConfig p A LK e Q) .

The preservation property that should be maintained is the following, which
states if a starting configuration is sound, then after making a step it is still sound.
Since sound implies the absence of cyclical locking, the Coffman condition is
satisfied after every step of the execution. Note that soundness here only depends
on the configuration, not the state as it did in Theorem 1. This is because for the
purposes of the proof, a lot of this information was moved into the configuration
because this binds it more closely to the handler. Otherwise one must always look-
up and update the locks and requests in the state, which is a more cumbersome
arrangement for the proof. This is not a fundamental change from Theorem 1,
the extra information has just moved closer to where it is used.

Lemma soundness L L’ (C C’: config)
(Snd: Sound C)
(Step: ` (C, L)⇒ (C’, L’)):
Sound C’.

End Config.

This proof is a mechanically checked version of the informal proof sketch
given previously. It shows the steps required to reason about the core of the
deadlock freedom work, and provides a strong assurance than they are sound
rules.

This can also be the starting point for more full proofs of the system, and
even other properties of the SCOOP language which would complement the work
on executable operational semantics by Morandi et al. [73].

3.6 Related work
The problem of describing, detecting, and preventing deadlocks in concurrent
systems has spawned research based on a variety of approaches. Necessary
conditions for a deadlock to occur have been described in a seminal work by
Coffman et al. [22].

Dynamic techniques can be used to detect deadlocks, e.g. using techniques
such as those presented by Bensalem et al. [7]. The fundamental approach in this

3.7. CONCLUSION40

work is to instrument the program and use this run-time locking information to
detect locking cycles. The benefit is that this technique can be less conservative
than the present approach, but it is based on actual program traces, and the
results are, therefore, not sound.

Static techniques rely on programmer annotations to indicate a partial order
among the program’s locks, and statically check whether this order is abided by;
this general idea is also the basis of the present approach. Korty [53] proposed
a Lint-like tool for detecting deadlocks in programs with semaphores, however
without soundness guarantees. Extended static checking for Modula-3 [27] and
Java [33] uses program specifications in the style of Eiffel [67], from which
verification conditions are generated and checked with an automatic theorem
prover. Warnings are provided for various program errors, including deadlock.
Being based on Eiffel-style specifications, annotations in this work are similar
to this scheme. However, no soundness guarantees are given whereas this work
guarantees deadlock-freedom for well-formed programs. Jacobs et al. [43] also
generate verification conditions for annotated programs, and guarantee deadlock-
freedom for programs verified with a static checker. In contrast to this work, they
use a programming model for Java-like languages which is very different from
SCOOP, and do not provide a rigorous formal locking semantics.

A number of static approaches to deadlock prevention are based on type
systems, in particular using ownership types [20]. Boyapati et al. [14] have
introduced the ability, as in this work, to create a directed acyclic graph, well-
order, or tree to represent the underlying partial order. In contrast to this
approach, the deadlock prevention scheme in the present thesis makes it possible
to declare locking orders in a routine-local manner, which allows for a finer-
grained modularity.

The present work distinguishes itself from the above approaches in that it
has a higher-level concurrency model, not based on traditional threads, and thus
has a coarser-grained locking behaviour.

Using a model similar to SCOOP, Kerfoot et al. [50] use types to ensure
deadlock freedom for active objects [55]. Ownership types impose a hierarchy
on active objects, but the variety of ownership-structures that are permitted
are limited. Only trees are allowed, where the present approach can support a
general directed acyclic graph. Ostroff et al. [79] develop a partial operational
semantics for SCOOP, and consider liveness properties of programs in the context
of model checking. While the approach can detect deadlocks, it is not a goal
of the work to be a modular approach, thus it is doubtful that it would scale to
large programs. Additionally, as it requires model checking, which is typically
bounded, it can only provide sound results up to that bound. Kobayashi [52]
gives π-calculus a type system that is able to infer and verify deadlock properties
about a program. It gives a versatile approach that is even able to reason
about recursive processes. However, the present work targets a new model
of computation that is more immediately amenable to traditional imperative
programming.

3.7 Conclusion
This deadlock freedom technique includes a static method for deadlock preven-
tion in SCOOP. The model supports reasoning about deadlock well, as lock

CHAPTER 3. STATIC DEADLOCK DETECTION 41

acquisition and release are related to routine invocation and return. This allows
the annotations to be attached to the interface of routines, facilitating modular
(per-routine) proofs of correctness. This aspect is essential in practice as it is
easier to reason about deadlock when it is assured that local changes will not
affect the overall result. An implementation of the scheme is available, and has
been successfully applied to the example of a web server written in SCOOP.

Adding a deadlock prevention technique for SCOOP removes a critical defi-
ciency of this particular model, but the results also provide important general
lessons learned. While sound and scalable programming models for concurrency
are overdue, the divide between formally driven language developments (such
as process calculi) and concurrent programming language design still seems to
be large. This work showcases how one may bridge this gap by using formal
reasoning to derive techniques that can be applied to practical programming
languages.

Additionally, this technique is a step towards increasing the confidence in
SCOOP programs. A correctness property is proven for programs by using the
type system to express and check that only non-deadlocking programs can be
written.

A portion of this work has been featured and published at ICFEM 2010 [105].

3.7. CONCLUSION42

Chapter

4 Testing of programs
with contracts

There are some properties of programs that are more costly to ensure than others.
Type checking is an inexpensive way (in terms of time) to verify simple properties.
More complicated properties, however, may be too expensive to verify rigorously.
Testing fits in these cases where some assurance of correctness is required but
the cost of a proof is too great.

Therefore, it is important to have good testing techniques in the development
of concurrent software as well as sequential. Such techniques difficult to provide,
however, due to the unpredictable and irreproducible nature of thread scheduling,
which makes interference between threads very difficult to discover. These
difficulties have not stopped successful research into concurrent testing tools,
e.g. [36, 94, 74, 54, 100]. It is also important that a technique have some
sympathy for the typical development process. In particular, that developers may
be only working on a small part of a large system. In such a case, testing the
pieces in isolation is very important, typically using stub and mock objects to
reduce dependencies.

Attaining modularity and reproducibility in concurrent testing is difficult, as
concurrent programs appear to be inherently non-modular and non-deterministic.
The focus of this work is to address the difficulty in finding concurrency bugs,
while keeping the process reproducible and modular.

Demonic testing is a new approach to solving these problems that combines
contracts and other invariants from classes with advanced reasoning tools. This
combination enables concurrent tests to be reproducible by “stubbing out” the
other threads and replacing them with a reasoning engine. This helps to ensure
the correctness of concurrent programs by making the testing process deter-
ministic. Section 4.1 presents the underlying premise of demonic testing, an
overview of the approach and introduces a running example. The entire testing
method is described in detail in Section 4.2, including the foundational concepts
and the translation of classes into the language of the supporting demonL tool.
Section 4.3 shows how demonic testing is easily instantiated to test SCOOP
programs. Section 4.4 gives a description of demonL and a formalization of how
it works by translation to the Yices SMT solver. The technique is evaluated in
Section 4.5. Discussion on related work follows in Section 4.6, and Section 4.7
concludes.

4.1 Premise and overview
One way to think about how concurrent programs execute is to take independent
threads of control and interleave their actions in a global view of the system.
This is how most operational semantics, like the one in Chapter 3, model the
independent actions of programs that execute in parallel. For example, if one
thread executes routine t1 while another thread executes routine t2 concurrently.

43

4.1. PREMISE AND OVERVIEW44

Figure 4.1a shows a simple example of this (edges are only there to indicate
“context switching” to another thread), where t2 could actually cause an atomicity
violation or data race relevant to t1. If the objective is to test t1 in isolation,

t1
do

f

g
end

t2
do

i1
i2
i3
i4

end

(a) Interleaving threads

t1
do

f

g
end

?

(b) Modularizing threads

Figure 4.1: Actual and desired thread interactions, edges indicate “context
switches”.

then somehow t2 has to be removed. However, clearly just removing t2 isn’t
useful: this approach would find no concurrency bugs. t2 has to be replaced
with something, visualized in Figure 4.1b. Keeping in mind that the goal is to
find concurrency bugs in the execution of t1, the design of a replacement for t2
must:

1. have a definition of what an error is, and

2. have a definition of what a feasible schedule is, and

3. provide a schedule that will cause the error from (1) and fits the constraints
of (2).

If the missing part in Figure 4.1b can do these things, then it can provide a
schedule which will drive the program to a failing state. For example, searching
for a bug in Figure 4.1a one assumes the program state after the execution of f
is acceptable, and upon t1 resuming before g’s execution, it is failing because of
the actions of t2. However, such an interleaving is only one of many, and these
many interleavings present two problems for testing:

1. the interleavings are possibly exponential in the size of the program, and

2. they are unpredictable and some interleavings are more common than
others, so finding the interleaving that leads to a fault is difficult.

This work proposes demonic testing, a technique combining program con-
tracts with unit-testing. The demonic testing technique uses a purely logical
description of system, extracted from the program contracts. The contracts are
used to both define what an error is and what constitutes a feasible schedule.
With this information, demonic testing then generates a schedule of operations
which would drive the program to a fault. Software Testing and Analysis: Process,
Principles, and Techniques [83] suggests that the costs of formal reasoning, in
terms of devising the appropriate program invariants and proofs, can be balanced

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 45

by using hybrid techniques. Demonic testing is such a hybrid technique that
combines testing and symbolic state exploration. The basic demonic testing
interaction can be seen in Figure 4.2. The program state after the execution of f

t1
do

f

g
end

i1
i2
i3
i4

demon

state

preg

Figure 4.2: Demonic testing generating interference from the state and contracts.
Solid edges represent the sequence of actions which would cause a fault, dashed
edges represent the testing process.

and the precondition of the routine g are fed into a little “demon” generates a
sequence of actions (i1, e2, e3, e4) that would brings the state after f to violate
the precondition of g. Demonic testing repeats this procedure for every program
point in a routine under test. In other words, demonic testing uses the program’s
notion of correctness to define an error in a concurrent setting, rather than the
language’s definition of correctness (i.e., do not dereference null) as is done in
tools such as ConMem [111].

4.1.1 Overview
Looking more closely at the high-level description of the demonic testing process,
some architectural decisions need to be made. The technique operates on the
state of the program and the written contracts, and these two pieces are used by
the “demon” to find buggy schedules. Demonic testing homogenizes these two
pieces by working on only logical definitions.

The “demon” requires a way to interpret the contracts. For example, what
does it mean for a list to be non-empty (not list.is_empty)? To do this,
demonic testing uses the postcondition of is_empty, along with a fixed interpre-
tation of not. The interpretation of an expression is therefore a combination of
the postconditions of the program’s functions and built-in interpretations of the
common arithmetic and logical operators. The collection of all relevant program
functions and operations is known as the domain. Also, since the dynamic state of
the program is used, it has to be extracted and converted to this logical language.

With these requirements in mind, several processing steps must take place.
Figure 4.3 shows a complete overview of the demonic testing process. Given a
set of classes and one of their routines s to test, demonic testing must perform:

• Class-to-domain transformation: collect all supplier classes for the rou-
tine s, and convert them to a domain description for the “demon”.

• Routine instrumentation: instrument the routine s to serialize the state
and send it to the “demon” for analysis.

4.1. PREMISE AND OVERVIEW46

Source
files

Instru
-mented
source

Domain
description

DemonL
tool

Testing
tool

SMT
solver

3

7

Class-to-domain
transformation

Routine instru-
mentation

Figure 4.3: Overview of the system architecture

These two steps produce a domain description and an instrumented routine which
are passed to the remaining two modules of the system:

• DemonL tool This component is the “demon”. It takes the domain de-
scription and the state as input and produces a schedule (sequence) of
interfering actions.

• Testing tool This component runs the instrumented version of s with test
cases. Test cases may for example be obtained from an automatic testing
tool, such as AutoTest [68] or previously written unit tests.

If the demonL tool finds interference for a test case, the interfering instructions
are given and the test fails. If no such interference can be found then the test
succeeds.

An evaluation of the technique shows that it can successfully catch 7 out of 8
selected bugs of the concurrency bug collection [23], which include known bugs
in major applications, such as Apache and MySQL – entirely without threads.
The implementation of the technique is available [32, 102].

4.1.2 Example
To provide intuition for the demonic testing technique, this section introduces a
running example.

The technique works with any language; contracts are required, but they
can be embedded in comments as is done with JML [56] and ACSL [6], or as
a domain-specific language, as with C# and .NET Code Contracts [21]. Lan-
guages that include contracts as first citizens include D [1] and Eiffel [67]. To
demonstrate the technique, the implementation uses Eiffel as its source language,
although it can be similarly applied to any language with contracts.

Example 5 The Eiffel class IDLE_COUNTER in Figure 4.4 represents the number
of idle workers in the system. IDLE_COUNTER can increase and decrease the
number of idle workers. The wait_for_idle routine decreases the number of
idle workers if there are any, otherwise it waits on a condition variable until
there are more idle workers.

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 47

class IDLE_COUNTER
feature

num_idlers: INTEGER

increment
do . . .
end

decrement
require

non_zero: num_idlers > 0
do . . .
ensure

num_idlers=old num_idlers-1
end

wait_for_idle
do

if num_idlers = 0 then
mutex.lock
if num_idlers = 0 then

-- release mutex and
-- wait
non_zero.wait (mutex)

end
mutex.unlock

end

decrement
end

Figure 4.4: Work distribution example

Demonic testing uses the state at a given program point during execution to
statically determine whether concurrent interference at that point could cause
a fault. A fault exists if the next instruction to be executed could have its
precondition violated due to other threads modifying shared state. The output of
demonL is a sequence of instructions that would move the program into a state
that would cause a fault. These instructions represent interference from another
thread that give rise to a fault. For example, in Figure 4.2 the state after f, when
manipulated by calling e1, e2, e3, e4, in order results in the precondition of g
being violated.

Example 6 While running a unit-test of the wait_for_idle routine in Fig-
ure 4.4, the tool instruments the routine wait_for_idle with calls to the syn-
thesis tool at every program point. This would change the last instructions of
wait_for_idle to be:

wait_for_idle
do

. . .
end

demonL (state, pre_decrement, rely_true)
decrement

end

This makes a call out to demonL with the state, the precondition of decrement
and another parameter which is explained shortly. For a given test case, the tool
reports whether or not interference could be found that will lead to a failure of
the routine. In this example, the tool reports that an extra call to decrement
immediately before the existing call to decrement will cause a violation.

There are two ways to respond to a warning produced by this method: either
to modify the behaviour of the program so that it is not vulnerable to this kind
of interference, or to refine the specification and only allow certain interference.

4.2. DEMONIC TESTING48

In the case of Figure 4.4, synchronization instructions could be introduced to
prevent concurrent access of the shared data.

Example 7 The developer can express that the interference found in Example 6
for Figure 4.4 does not occur by limiting the interference that can be generated.
For example, the restriction could be:

num_idlers >= old num_idlers

Demonic testing currently uses a specially tagged postcondition to specify this
restriction. Using this postcondition would make the end of the wait_for_idle
routine:

wait_for_idle
do

. . .
end

demonL (state, pre_decrement, rely_condition)
decrement

ensure
rely: num_idlers >= old num_idlers

end

This special “rely condition” is incorporated into the call to demonL, limiting
what it can generate for interference. Precisely, this rely condition disallows
the environment from removing idle workers, implying that two threads cannot
call this routine concurrently. The actual implementation has a master thread
that is the only thread to call this routine, so the condition is satisfied by the
implementation. The tool reports no violations when retesting the routine with
this updated specification.

4.2 Demonic testing
This section presents the founding concepts and implementation of demonic
testing as well as the approach to handling common synchronization primitives
in a thread-free and modular way.

Recall that demonic testing takes classes annotated with traditional contracts
and rely-specifications and uses static analysis in combination with the state from
run-time to indicate where there may be errors due to concurrent executions.

4.2.1 Application of rely-guarantee reasoning
The rely-guarantee formalism [45] provides a framework to express and reason
about interference in concurrent programs. The interaction between a compo-
nent and its environment is included in the component’s specification, allowing
compositional reasoning about concurrent programs.

The formalism proposes an extension of the usual Hoare logic specification
{P} s {Q} to {P,R} s {G,Q}, which additionally contains a rely-condition R
and a guarantee-condition G. The new conditions are binary predicates on states
and describe the state changes that the environment (other threads) is allowed
to make. A program s satisfies its specification if, starting in a state satisfying

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 49

P , under environmental interference adhering to R, s only makes state changes
allowed by G, and finishes in a state satisfying Q.

The demonic testing approach uses a subset of the rely-guarantee concepts,
namely the rely-conditions and the notion of stability, to specify interference
generation for concurrent programs. The rely-specifications are manually added
to the method under test, expressed as a postcondition with the tag rely. The
rely tag indicates that this is only for demonic testing.

Stability is a definition of whether a routine can operate correctly in spite of
the interference described by the rely-specification. Formally, the stability of a
state-predicate p with respect to a rely-condition R is given as:

stable(p,R) ≡ ∀σ, σ′. p(σ) ∧R(σ, σ′)→ p(σ′)

With the notion of the rely-condition one can express the goal of the testing
strategy in the following terms: given the rely-condition R of a routine s under
test, try to create interference that would drive the program to violate the
precondition pre of some call in the body of s.

Example 8 In the running example, the following stability formula relates to
the precondition of decrement:

num idlers(σ(this)) > 0 ∧ num idlers(σ′(this)) ≥ num idlers(σ(this))→
num idlers(σ′(this)) > 0

Demonic testing distinguishes itself from other techniques of program verification
by the usage of a dynamic program state to reduce the need for program specifi-
cation. The goal given to the demonL tool is merely the negation of the stable
predicate, ∃σ, σ′. p(σ) ∧ R(σ, σ′) ∧ ¬p(σ′). In demonic testing, this is formula
simplified by:

1. assuming that the routine is correct without interference, and

2. only evaluating it on the test-cases that drive the routine.

The first point allows us to assume p(σ), the second allows us to remove σ as a
quantified expression, as it is given by the dynamic state. This leaves solving only
∃σ′. Rσ(σ′) ∧ ¬p(σ′), where Rσ is the rely condition specialized to the concrete
program state. Since the rely condition is specialized, it doesn’t have to handle
cases that never arise in normal program execution; this lowers the amount of
required annotation. Additionally, there is no specification required for typically
difficult to specify cases, such as loop variants and invariants.

4.2.2 Class transformation
An input (Eiffel) class C has three components: Cname, Cattrs, and Croutines. Cname
denotes the name of the class. The attributes of the class, Cattrs, are denoted by
a : t to indicate an attribute a that has type t. Every routine s in Croutines has a
name, denoted by sname. Also, every routine can have a pre- and postcondition,
denoted by spre and spost.

The translation function to convert class files into demonL domains (see
Figure 4.3) is shown in Table 4.1. Note that the presentation of this translation
function uses a pattern-matching style, with the function matching arguments in
a top-down fashion.

4.2. DEMONIC TESTING50

trans(C) = {feat(C, f) | f ∈ Cfeatures} ∪ {struct(C)}
struct(C) = type Cname { Cattrs }
feat(C, f) = fname(args(C, fargs))

require expr(fargs, fpre)
ensure expr(fargs, fpost)

args(C, ~as) = (this : Cname) :: ~as
expr(args, x.f(~as)) = f(expr(args, x), expr(args, ~as))
expr(args, e1 op e2) = expr(args, e1) op expr(args, e2)
expr(args, op e) = op expr(args, e)

expr(args, v) =
{
v if v ∈ args
this.v otherwise

Table 4.1: Translation function

• Attributes, along with the class name, are transformed into a data-type in
demonL.

• Routines are transformed using feat directly into demonL procedures with
pre- and postconditions.

The result of a function is denoted by having equality on the Result value, for ex-
ample Result = 2 * x. Argument-list transformation of routines and functions
explicitly includes the normally implicit self-reference in object-oriented pro-
grams. The translation of expressions is largely straightforward, with the target
of a call moving to the first argument of the call, to coincide with the argument-
list transformation. The translation doesn’t treat inline creation expressions if
they exist in pre or postconditions.

4.2.3 Routine instrumentation
As part of the technique, the routine under test must be instrumented (see
Figure 4.3). The instrumentation augments the program execution so it is able
to encode the dynamic state of the program for demonL. This is done by taking
the available state from the Current variable, local variables, and the arguments
to the instrumented routine and using reflection to serialize their contents. The
current simple instrumentation strategy is to insert these calls at every program
point, for the current state and next correctness condition. The correctness
condition can either be a precondition, expression from a check instruction, or
a postcondition. Figure 4.5 gives an example of the various cases. One can see
that the rely condition is the same in every execution because it is a property of
the other threads in the system, thus this will not change as the execution of the
routine under test proceeds.

4.2.4 Handling synchronization primitives
The use of threads to construct concurrent programs inherently exhibits two
types of effects:

• the necessary, where a thread contributes a result to another thread, and

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 51

t1
do

demonL (state, pre_f, rely_condition)
f

demonL (state, pre_g, rely_condition)
g

demonL (state, check_expr, rely_condition)
check expr end

demonL (state, post_expr, rely_condition)
ensure

rely: rely_condition
post: postcondition_expr

end

Figure 4.5: demonL instrumentation example

• the incidental, which are side-effects of necessary actions, and are also
modifications to shared state.

When considering concurrent applications as a combination of necessary
and incidental effects, the necessary aspect of concurrency can be seen as a
dependency, and the incidental aspect can be seen as interference. One thread
depends on another to provide a computational result in a shared memory
location. In threaded programs, these dependencies are made explicit by a
mutex’s lock, or a condition variable’s wait routine.

When unit-testing a class or method, it is common to provide stub methods
or objects in the place of dependencies. For example, a full database connection
may be replaced with one containing only a small fixed selection of data.

Although mutexes, semaphores, and condition variables carry no explicit
invariants, their usage in programs is almost always accompanied by an implicit
invariant related to a resource. Consequently, they can have meaningful post-
conditions that can be used to create stubs to test concurrent programs without
requiring threads. They merely need to be replaced with normal function calls
that ensure the same postcondition.

Example 9 Assume a simple producer/consumer-style program, such as that
given in Figure 4.6. The call to cond_var.signal in the produce routine has the
precondition that the number of products is greater than zero. The counterpart
in the consume routine, the call to cond_var.wait, has the same post-condition:
product > 0.

To create a stub for the call to cond_var.wait, replace the implementation of
wait on the condition variable with the one found in Figure 4.7. The new wait
satisfies the invariant for the condition variable, and requires no other thread to
work. The corresponding stub for signal would similarly have product > 0 as
a precondition and an empty body.

4.3. APPLYING DEMONIC TESTING TO SCOOP52

produce
do

product := product + 1

if product = 1 then
cond_var.signal

end
end

consume
do

if product = 0 then
cond_var.wait

end

product := product - 1
end

Figure 4.6: Producer/consumer coordination

wait
do

product := product + 1
end

Figure 4.7: Example wait replacement

4.3 Applying demonic testing to SCOOP
Demonic testing, not being restricted to only detect data-races, can detect atom-
icity, order, and other kinds of violations if they are indicated by violating a
precondition.

Although data-races are not possible in the SCOOP model, the other problems
can still exist. To trigger an atomicity violation in SCOOP a client makes an
assumption on the state of a handler’s object after releasing control of the
handler/object. Figure 4.8 shows how this may happen: a shared counter c is
decremented after knowing that the count is at least 2, then decremented again.
The decrement operation has a precondition that the count does not go below 0.
The program in Figure 4.8, however, does not retain control of c and thus it may
be that another thread decrements c between the wait_decr and just_decr.
This will mean that the c.decrement call in just_decr will throw an exception.

4.3.1 Specializing demonic testing
Since SCOOP has guarantees that prevent data races it is possible to cut down on
the complexity of the rely conditions in many cases. In particular, when an object
is controlled then it cannot be the subject of external interference. Therefore,
the default demonic testing approach must be modified slightly to account for
this change in semantics. This can be done in one of two ways, by modifying the
rely conditions or changing demonL.

Rely. The rely conditions can be automatically changed to enforce that the
controlled arguments to do not change. In particular, if R is the programmer-
written rely condition, then the SCOOP-specific rely condition is R ∧∀c ∈ cs.
c.is_equal(old c), where cs are all the controlled objects. The advantage to
this approach is that no modifications have to be done to the demonL tool. The
disadvantage is that is somewhat susceptible to the implementation of is_equal,

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 53

wait_decr (c: separate COUNTER)
require

c.value > 1
do

c.decrement
end

just_decr (c: separate COUNTER)
do

c.decrement
end

(a) Waiting and immediate decrements to c

c: separate COUNTER

decr_twice
do

-- c.value is at least 1
-- after this call
wait_decr (c)

-- However, another decrement
-- may occur from another
-- client before this call
just_decr (c)

end

(b) Client code that may fail

Figure 4.8: Atomicity violation in SCOOP

which may not always obey the Leibniz rule that x = y → f(x) = f(y); in other
words: equal things cannot be distinguished. This property is important because
demonL will just maintain that the is_equal notion of equality holds. If equal
things can be distinguished, then demonL is free to change those parts that fall
“outside” the is_equal definition. For example, if is_equal defined in a pair
of numbers only compared the first component, then demonL would be free to
change the second component.

demonL. If demonL is changed to accommodate this interpretation of the rely
condition, then it would involve both changing the goal language to include
a new field to specify unchanging objects, and the translation mechanism to
transfer this knowledge to the SMT solver. The benefit of the approach is that
there is a possibility for the SMT solver to encode these conditions more efficiently
than if it has to rely on the specification of a is_equal query. However, it is a
much more invasive change.

The approach that is taken is the first: use the rely condition to encode the
controlled arguments in SCOOP. This makes for a more flexible process, as it
reuses what is already there.

4.3.2 How SCOOP makes it easier
As mentioned previously, every controlled object effectively becomes “immune”
to interference. This is fortunate, because all non-separate objects and all
separate objects that are arguments to a routine or a separate block are con-
trolled. Phrased another way, the only things that have to be mentioned in a rely
condition are those that are separate and not visibly controlled.

For example, there are different ways to fix Figure 4.8. One way is to update
the rely condition to reflect the global behaviour of the program. This approach
is shown in Figure 4.9a. Such a fix is possible, although it may not be ideal if
the rely-condition does not truly reflect the global behaviour of the program.
However, in SCOOP, one can also use Figure 4.9b which brings the shared

4.4. DEMONL54

c: separate COUNTER
decr_twice

do
-- c.value is at least 1
-- after this call
wait_decr (c)

-- The rely condition
-- prevents interference
just_decr (c)

ensure
rely: c.value >= old c.value

end

(a) Specification fix for decr_twice

decr_twice (c: separate COUNTER)
require

c.value > 1
do

-- c.value is at least 1
-- after this call
wait_decr (c)

-- The guarantees still
-- carry over here because
-- ‘c’ is controlled
just_decr (c)

end

(b) Controlled fix for decr_twice

Figure 4.9: Fixing via specification and control SCOOP

separate object c under the control of the decr_twice routine. The second
fix has the nice property that it no longer relies on the global behaviour of the
program, it will always be a valid fix, because it changes the semantics of the
program to exclude the atomicity violation. In a traditional threaded program
this could be attained by the use of the mutex, although the mutex would have
no direct connection to the data being manipulated. The mutex would have
to be associated to the data by manually indicating this relationship in the rely
condition.

4.3.3 Handling wait conditions
As with the case of regular threaded programs, there is an issue with testing
that sometimes a routine must not only be resilient to the interference generated
by other threads, but it may actually require those threads to do something to
make progress. Usually this is expressed through a condition variable or other
communication mechanism. In the threaded case the solution is to strive for
minimal dependencies on other system components through the use of mock or
stub objects.

The same approach should be used for SCOOP programs on uncontrolled
wait-conditions. Since they are uncontrolled, the behaviour of the program
should be to pause until they are satisfied. However, obviously in a setting where
all objects are on the same handler, the precondition would just fail normally
because the handler is controlled. This is why those preconditions should operate
in a “stubbed” mode where instead of being an evaluation of program state, they
drive the program state to being satisfied.

4.4 DemonL

Program synthesis constructs a program that satisfies a given specification. De-
monic testing uses program synthesis to construct interference, where the pro-

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 55

type Idle Counter {num idlers: Integer}
increment (this: Idle Counter)
. . .

decrement (this: Idle Counter)
require

non zero: this.num idlers > 0
ensure

this.num idlers = old this.num idlers 1

(a) Domain specification

this: Idle Counter

initial
not (this = null) and
this.num idlers = 1

final
not (this.num idlers > 0)

(b) Goal specification

Figure 4.10: The IDLE_COUNTER class in demonL

gram that is synthesized represents another thread that causes errors in the
current thread.

4.4.1 The domain description language
Facilitating the demonic testing approach are a language and tool: demonL. In
the same spirit as the verification language Boogie [5], demonL serves as an
intermediate language to express the allowable types of interference. The input
to the tool consists of two parts: a domain and a goal.

The domain language is as follows:

Domain ::= [TypeDecl | ProcDecl]∗
TypeDecl ::= type ident {Decl∗}
Decl ::= ident : ident
ProcDecl ::= ident(Decl∗)[: ident]? Pre? Post?
Pre ::= require TaggedExpr∗
Post ::= ensure TaggedExpr∗
TaggedExpr ::= tag : Expr
Expr ::= op Expr | Expr op Expr | Call
Call ::= ident(Expr∗)

where op can be the common infix and prefix operators, with the addition of an
old prefix operator.

The following goal language specifies the initial and final states that the
planner must transition between. It shares the same expression and declaration
syntax as the domain format.

Goal ::= Decl∗ InitialState FinalState
InitialState ::= initial Expr∗
FinalState ::= final Expr∗

Example 10 Figure 4.10 contains two demonL files that are required perform
synthesis. Figure 4.10a shows the translation of the class IDLE_COUNTER (Fig-
ure 4.4) to the domain language. Figure 4.10b displays an associated goal
specification, which uses the actions and definitions given in the domain.

The domain describes the state through data structures, functions on the
state, as well as actions that transform the state. Actions and functions are

4.4. DEMONL56

described with pre- and postconditions. The goal declares the entities in the
system and the constraints on the initial state and final state of those entities.
The final state relates the initial and goal states through the use of old operator,
which references the values in the initial state.

From a given pair of domain and goal file, demonL constructs an initial state
that satisfies the initial constraints, a final state that satisfies the final constraints,
and a series of actions whose pre- and postconditions are satisfied in the initial,
final, and any intermediate states.

Example 11 To find the possible interference that could be used to destabilize
Figure 4.4, the goal specification found in Figure 4.10 is used. The goal speci-
fication contains the negation of the precondition of the decrement operation,
here: this.num_idlers <= 0. However, if the goal includes the rely-condition
restricting the interference to only non-decreasing effects on the number of idle
workers, then the program is correct under the rely assumption:

final
this.num idlers >= old this.num idlers and
not (this.num idlers > 0)

This expression has the same structure as the stability criterion,

∃σ′. Rσ(σ′) ∧ ¬p(σ′)

where

Rσ(σ′) = σ′(this).num idlers ≥ σ(this).num idlers

and

p(σ′) = σ′(this).num idlers > 0.

4.4.2 Interference as satisfiability
The construction of the imperatively-styled planning tool, demonL, was un-
dertaken to provide two features: handling of incomplete postconditions and
to make a domain language available that is more suitable for modelling the
data/routine structure of imperative programs. Current work loosening the
requirements on action effects [88, 101, 25] does not offer the flexibility de-
manded by many programming specifications. In addition to more expressivity,
the demonL language also allows C-style structures to be defined, to further offer
a domain language that is suitable for more direct translation from imperative
languages.

Originally, this work was based on a traditional planning tool for encoding
the assertions from the programming language. However, this approach was not
expressive enough to represent typical specifications. To address this, demonL
encodes planning as a satisfiability problem [47] to be decided by an SMT-based
reasoning tool.

The encoding of the demonL and goal as a satisfiability problem is given by
the compile function. It works on a 5-tuple of program inputs: the domain
types D, functions F , actions A, initial-state I, and goal-state G. Although they
are presented together here, the initial- and goal-states reside in the goal file,

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 57

and the types, functions, and actions are contained in the domain file.

compile(D,F,A, I,G) =
types(D) ∧
tags(A) ∧
frame(D) ∧
function(F) ∧
actions(A) ∧
initial(D,F, I) ∧
goal(D,F,G)

A common scheme in the formula is to range over a time index. This allows the
actions to relate the pre- and post-state, and also to precisely specify the number
of steps between the initial and final states.

Types The first aspect of the translation is to encode the information from the
domain’s types, capturing the fact that each value of a type is: distinct, typed,
and has a notion of equality. To do this, each data-type from the domain is
converted into an n-element enumerated type. For example, for a type T , the
enumeration would have the distinct values v1,T , v2,T , . . . , vn,T , To enforce the
distinct property, the auxiliary predicate distinct ensures that each value of a
type is not equal to any other value.

distinctTypes(D) , distinct(
⋃
T∈D
{v1,T , v2,T , . . . , vn,T })

Additionally isTypeT defines a family of type-check predicates: isTypeT (v) ,
v1,T = v ∨ v2,T = v ∨ . . .∨ vn,T = v. Lastly, each type gives an equality predicate,
which compares two objects of a type, at two different time indices.

equalities(D) ,
∧
T∈D

eqT = λ i j v1 v2.
∧

f∈Tfields

Tf (i, v1) = Tf (j, v2)

The equality predicates generated are important to express what does and does
not change as a result of a particular action. demonL models structures as a set of
functions, fields that operate on types, each representing a field of the structure.

The following expression is the full the restrictions on types, namely that the
values are distinct and the structural equality for all the data-types:

types(D) , distinctTypes(D) ∧ equalities(D)

Action Tags The first step is to generate a tag for every action. This tag will be
used to identify which action occurred at what time. The tags transformation,
like the types one, generates unique values for action tags.

tags(A) , distinct({taga | a ∈ A})

Framing As every action may have some effect, every action must stipulate
what it changes and what it does not. This is accomplished through a time-
indexed predicate that asserts which fields of objects remain the same. It takes
a time index i and a predicate P . For every value v, if predicate P (v) is true,

4.4. DEMONL58

then v’s attributes are allowed to change. Otherwise, v must not change between
time-steps i and i+ 1. As with the equalities, these frame predicates belong to
a family, indexed by each type in the domain. All of the type-based frames are
combined into a single frame condition that is used by actions

frame(D) , innerFrame = λ P i. ∀ v∧
T∈D

isTypeT (v) ∧ ¬P (v)→ eqT (i, i+ 1, v, v)

Actions Actions require some bookkeeping when they are translated, as they
must encode the frame, tag assignment, and state modifications, via the postcon-
dition.

actionSet(A) ,
∧
a∈A

aname =

λ i aargs. actionFrame(i, a) ∧ actionAt(i) = taga∧
expr(apre, i, i) ∧ expr(apost , i, i+ 1)

The actionFrame provides an action-specific frame that will be expressed in
terms of the innerFrame predicate. The tag for the action is asserted to occur
at time i through the actionAt function. Finally, the precondition is asserted
to be true at i through expr and the postcondition relates the states at i and
i + 1. The arguments to the expr translation give the time indices to use for
old and non-old expressions, respectively. The old modifier expresses that the
expression that follows is evaluated in the pre-state of the action.

To handle action frames, the idea of weak-equality is required. Weak-equality
is equality on objects, except for the fields in F ,

weakEq(e, F, v, i) , e = v →
∧

f∈Tfields−F

Tf (i, e) = Tf (i+ 1, v)

Using this, a frame-predicate can be defined to be given to innerFrame. This
frame-predicate collects all the relevant frames for the postcondition of the action,
using the notion of weak-equality.

collectFrame(i, a) , λv .
∧

(e,F)∈accessexpr (apost)

weakEq(e, F, v, i)

The accessexpr function collects the expressions where the outermost syntax is a
field access: those of the shape x.f . For example, accessexpr(x.f +x.g = y.m) =
{(x, {f, g}), (y, {m})}. The collectFrame predicate describes when an object
should remain unchanged by an action. It does this by asserting that if an object
is the same as one of the ones in the action’s postcondition, then only the fields
that are mentioned in the postcondition can change.

Lastly, the collected frame-predicate is given with the time-index to the
innerFrame predicate. This gives the frame for a particular action a and time-
index i.

actionFrame(i, a) , innerFrame(collectFrame(i, a), i)

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 59

Functions The translation of domain functions is fairly straight-forward. Their
translation is a simplified version of the one used for actions, owing to the
fact that functions are pure in demonL and thus do not require extra framing
predicates. Therefore, in this encoding functions are really just an expression
involving the time-indexed attributes of the function’s arguments. The post-
conditions of functions must be of the form Result = e.

function(F) ,
∧
f∈F

fname = λi, ~asf. expr(fpost , i, i)

Finally, these pieces have to be combined to allow the SMT solver to build
a path from the initial state to the goal state. This is done through an action
predicate,

actions(A) , action = λ i.
∨
a∈A

a(i, args) ∧ actionSet(A)

Each action describes the constraints placed on predicates at index i and i+ 1.
These are then used in a contiguous conjunction of the form

∧
i∈0..n−1 action(i).

Here, args are free variables the SMT solver will instantiate as arguments to the
action. This is the primary expression for the SMT solver to satisfy, ensuring that
an action occurs at every step, and that a state can be constructed that satisfies
the pre and postcondition of every action.

Initial and final state The initial state, which must be a list of Boolean expres-
sions, is translated using expr(e, 0, 0) for each expression e. Similarly, the goal
state is translated using the same technique, but the time indices are set to 0 and
n. As with translating post-conditions, this allows goal states to refer to values at
both the initial and final time indices, through the use of old.

As of yet, other fundamental planning optimizations such as graph analysis [9,
48] are not included, as the primary focus of the work was to provide a domain
language that is closer to the language of contracts that is found in typical
programs.

Example Figure 4.11 shows an example demonL domain for a simple counter.

type Counter {num: Integer}

is empty (c: Counter): Boolean
ensure Result = (c.num = 0)

decr (c: Counter)
require c.num > 0
ensure c.num = old c.num 1

x: Counter
initial x.num = 2
final x.num < 1

Figure 4.11: A simple counter

4.4. DEMONL60

The counter that can be decremented and queried to see if it is empty (equal to
zero).

The result of translating Figure 4.11 to SMT is given in Figure 4.12. The last

v1,Counter 6= v2,Counter ∧ v2,Counter 6= v3,Counter ∧ v3,Counter 6= v1,Counter
∧ eqCounter = λ i j v1 v2. Counternum(i, v1) = Counternum(j, v2)
∧ tagincr 6= tagdecr

∧

innerFrame =λ P i. ∀o. ¬P (o)
→∀v. (v = v1,Counter ∨ v = v2,Counter ∨ v = v3,Counter)
→eqCounter(i, i+ 1, o, v)

∧ is empty = λ i c. Counternum(i, c) = 0

∧

decr = λ i c . innerFrame(λ v. c = v → True, i)

∧actionAt(i) = tagdecr
∧Counternum(i, c) > 0
∧Counternum(i+ 1, c) = Counternum(i, c)− 1

∧ action = λ i. decr(i, decrArg1 (i))
∧ isTypeT (x)
∧ Counternum(0, x) = 2 ∧ Counternum(2, x) < 1
∧ action(0) ∧ action(1)

Figure 4.12: Translation of counter example

three lines of the translation correspond to the type declarations, initial and final
states. The remaining top-portion of the translation contains the data, functions,
and action definitions from the domain.

4.4.3 The tool
The output of the tool is the sequence of actions, and their arguments, that
bring the program from the initial to the final state. Given the specifications in
Figure 4.10, this would be a call to decrement. If the underlying SMT solver
reports that the constraints are unsatisfiable, this indicates that no sequence
of actions could be found. To avoid long synthesis times, the tool constructs
sequences bounded by number of instructions and number of unique references
for each user-constructed type.

However, because of the constraint-based nature of the encoding, first the tool
solves the interference problem in a single step with no actions to constrain the
transformation. If it finds that the initial/final state constraints are unsatisfiable
with no actions to further constrain them, then this is a proof that no interference
can occur. If the constraints are satisfiable, then the tool tries to obtain the
sequence of actions. This means that in demonL the number of actions in the
interference do not affect the determination of if interference is impossible. If
the tool says it is impossible, it is impossible for the given rely condition, and
initial and final state. In short, there are essentially three answers that demonL
can give:

no interference for the given rely condition and initial/final states.

interference is possible, and here are a sequence of actions which will cause
it.

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 61

interference may be possible, but the actions which give rise to it could not be
found. This is either because the bound on the sequence length of actions
is too low or there are no actions in the system which can interfere.

Having an intermediate language and tool offers substantial advantages to
the application of the demonic technique: separating the complexity of encoding
the verification conditions from the task of routine instrumentation, and the
possibility to target more than one source language and and more than a single
solver in the back-end. The current technology choices for demonL are Eiffel as
a source language to be translated to demonL, and Yices [30] as the SMT solver.

demonL is similar to planning tools. In particular it allows the movement from
an initial state to a final state by a series of actions. However, the specification of
the initial state and the actions are permitted to be weaker than generally allowed
by planning tools that use languages such as the Planning Domain Definition
Language (PDDL) [64]. Where PDDL only allows the effect of an action to
be expressed using certain atomic-terms demonL has no such restriction: any
expression can be used to describe the effect of an action. For example, where a
PDDL domain would require a post-condition such as attribute = 5, demonL
is able to deal with with post-conditions such as attribute > 3. demonL also
does not assume determinism of the actions. These qualities are important when
representing program specification, which are typically incomplete.

demonL is available for download from [102].

4.5 Experimental evaluation
It is essential for a testing technique to be judged by its reaction to bugs that
occur in real software. For this purpose, a selection of bugs from a concurrency
bug database [110, 23] are used to determine if demonic testing can detect and
help form fixes for the faults. No particular criteria was used to select bugs from
the database, besides striving for an overall diversity of faults. All experiments
were carried out on an Intel Q6600 2.4GHz with 4GB of RAM.

4.5.1 Conversion from source programs
All of the test cases are extracted from real projects and translated into Eiffel.
Since well-known concurrent applications with specifications are rare, the non-
essential elements are removed from well-known code then it is converted to
Eiffel and contracts are added. This is also done to enable the analysis of bugs
from many languages, while minimizing the differences due to language features.
To see an example of this process, the original Apache C-code for the running
example is given in Figure 4.13. The main differences are the removal of the
recycled pool functionality, and the removal of the explicit return-value checking
of concurrency primitive (locks, condition variable) operations that is typically
handled by exceptions in languages that support them.

4.5.2 Results
Table 4.2 lists the collection of concurrency bugs that are used to perform the
evaluation; the first seven are from the bug database, with the last being a
well-known Java standard library bug. All bugs have been replicated using the

4.5. EXPERIMENTAL EVALUATION62

apr_status_t ap_queue_info_wait_for_idler
(fd_queue_info_t *queue_info,
apr_pool_t **recycled_pool)

{
apr_status_t rv;
*recycled_pool = NULL;
if (queue_info->idlers == 0) {

rv = apr_thread_mutex_lock(queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}

if (queue_info->idlers == 0) {
rv = apr_thread_cond_wait(queue_info->wait_for_idler,

queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
apr_status_t rv2;

rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);

if (rv2 != APR_SUCCESS) {
return rv2;

}

return rv;
}

}

rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);

if (rv != APR_SUCCESS) {
return rv;

}
}

apr_atomic_dec32(&(queue_info->idlers));

... recycling of data structures
}

Figure 4.13: Original wait_for_idle routine from Apache

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 63

demonic testing technique, with the exception of MySQL #169, as explained in
the discussion at the end of the section. Inspired by the AutoTest approach, work
initially began using Eiffel as the source language; to broaden the scope of the
evaluation bugs were translated from multiple other languages. These examples
are available for download [102].

Annotation
Program/Bug Bug type LOC Lock Simple Complex Time(s)

1 Apache #21285 Atomicity 125 0 4 0 0.982
2 Apache #25520 Data-race 101 0 2 0 0.124
3 Apache #45605 Data-race 227 1 4 0 0.217
4 MySQL #169 Atomicity 69 – – – –
5 MySQL #644 Data-race 124 0 3 1 0.939
6 MySQL #791 Data-race 113 0 1 0 0.139
7 pBZip2 Order 168 1 1 0 2.289
8 Java Vector Data-race 70 0 2 0 0.032

Table 4.2: Bug collection

The time taken to generate interference, or determine that none exists, was
measured for the bugs that were successfully tested. The average time taken
was 100ms for each request to demonL. This time is different from the times in
Table 4.2, as each time in the table may include many requests to demonL.

4.5.3 Annotation complexity
In any approach which requires the addition of specification via program anno-
tation, the burden that this annotation places on the programmer is a relevant
consideration. Although difficult to measure objectively, the annotations are
placed into three categories:

• Lock – a rely-annotation denoting that a lock protects some shared data
from change by another thread.

• Simple – a non-concurrency-related program annotation stating a property
of the program that is either a non-null check for a reference, or a linear
equation.

• Complex – a non-linear expression, or a frame condition that is necessary
to limit the scope of an operation.

Table 4.2 collects the types of annotations required in the test cases. These
are the types of annotations required for demonic testing to give the correct
cause of the bug in the full program in the cases of Apache, MySQL, and pBZip2.
In the Java vector implementation one of many possible causes is given, as it is
part of a library.

4.5.4 Discussion
The Apache bug #45605 example is notable due to the the double-check present
in the wait_for_idle routine. Separate tools exist to classify some data-races
as “potentially benign” [77]; the double-check pattern is benign and difficult
for pure data-race checkers to deal with. Demonic testing does not require

4.6. RELATED WORK64

any secondary approaches to accomplish this: the determination of benign vs.
malignant data-races is based on the program contracts.

The only bug from the test set which could not be discovered using demonic
testing came from MySQL bug #169. The reason is that the invariant of the
program could not be expressed without either ghost variables or artificially
adding more data.

Incorrectly stated rely conditions will lead to both false-positives and false-
negatives, as these are assumed to be true in the routine where they are defined.
However, as in Table 4.2, all rely conditions required were quite simple, indicating
that a certain lock protects some shared state.

The bounded synthesis done by demonL may affect the results by not consider-
ing interference from sequences of instructions that exceed the bound. However,
this bound concerns the search for instruction sequences; there is also an initial
unbounded-verification that demonL performs to determine the stability before
trying to synthesize interference. The worst case is that the tool is unable to find
the sequence of actions but still reports whether interference is possible. All bugs
our evaluation examined required only interference of a single action to manifest
themselves. This suggests that many concurrent bugs manifest themselves with
little prompting; and that causing errors to present themselves in threaded exe-
cutions is difficult due to scheduling rather than maintaining very complicated
invariants.

The evaluation is limited by the number and selection of examples, it is
possible that drawing on a larger pool of examples would offer greater insight into
the properties of demonic testing. However, the small sample size is mitigated by
the wide variety of types of concurrency bugs. Although every effort was made
to make a faithful reproduction of the programs in the target language, there is
the possibility transcription errors while moving between different programming
languages.

4.6 Related Work
The idea of using routine specifications to discover concurrency errors is not
unique to demonic testing. The Colt tool [95] for Java also uses this approach.
However, their approach is less general, relying on hard-coded specification
of the existing Java concurrent collection classes. Demonic testing is more
generic as it works with user-supplied classes and specification, and as well
allows finer-grained control of what constitutes an error through the usage of
rely-conditions.

A common practice for testing of concurrent programs is load or stress test-
ing. This frequently proves to be ineffective as in typical testing environments
interleavings might only change marginally from one test run to the other. To
force different interleavings, Edelstein et al. [31] present the ConTest tool, which
combines a technique for deterministic replay of concurrent programs [19] with
a heuristic for varying thread schedules by seeding sleep calls at synchronization
points in the program.

Dynamic model checking [36, 74, 100] provides a more systematic approach
by systematically exploring all possible thread interleavings. The search is
stateless in that it provides a specialized scheduler that runs the program in
its real execution environment, and hence can avoid storing concrete program

CHAPTER 4. TESTING OF PROGRAMS WITH CONTRACTS 65

states. The main problem is to overcome state explosion, which makes brute-
force exhaustive search infeasible for large applications. Techniques such as
partial order reduction as employed in the VeriSoft tool (Godefroid [36]) or
preemption bounding (giving priority to schedules with fewer preemptions) in
the CHESS tool (Musuvathi et al. [74]) can mitigate the effects of state space
explosion only to a small degree. Wang et al. [100] propose a heuristic where
ordering constraints learned from successful runs are used to guide the selection
of interleavings for future runs. All of the above works focus on varying thread
interleavings to produce undesired behaviour. Demonic testing differs from this
approach by considering the routines in a program and finding sequences which
lead to the violation of a program invariant, avoiding an exhaustive search of
interleavings.

AutoBlackTest [62], while not directed at concurrent testing, is similar to
the demonic testing in that sequences are constructed from a library of actions,
although differs in that the actions are chosen to maximize general state-space
exploration, and do not work towards finding any particular faults as demonic
testing does.

A number of works use combinations of dynamic and symbolic analyses to
improve testing of concurrent programs. Sen and Agha [94] use a combination
of concrete and symbolic execution, termed concolic execution, to test multi-
threaded Java programs with the tool jCUTE. Symbolic execution produces input
values that guide the concrete execution to alternate paths; concrete execution
guides the symbolic computation along a concrete path to concretize any values
that cannot be handled by a constraint solver. Besides producing alternate input
values, their technique also systematically generates thread schedule variations
such that potentially all causal structures of a concurrent program can be ex-
plored. Sen [93] introduces RaceFuzzer, an algorithm which uses race warnings
from race detection tools to create problematic interleavings during testing in
order to eliminate false positives automatically. Park et al. [80] propose CTrigger,
a testing tool to expose atomicity violation bugs. The tool analyzes traces to
find unserializable interleavings then these interleavings are explored during
testing to expose bugs. Kundu, Ganai, and Wang [54] present a framework that
combines conventional testing with symbolic analysis. A test harness invokes the
program with random test values. Concrete traces are relaxed into concurrent
trace programs, which capture all linearizations of events that respect the con-
trol flow of the program. The concurrent trace programs are then symbolically
verified. All these techniques combine in some way the dynamic execution of
programs with symbolic computation and verification, and most closely resemble
the work presented in this work. However, they, like all other related work
shown, are not able to achieve truly modular testing of concurrent software; they
all depend on multithreaded executions or traces.

Contracts have been used successfully in unit testing of sequential soft-
ware [68], where they can provide test oracles and filter inputs for random
testing. Araujo et al. [3] evaluate the use of contracts in a concurrent setting,
based on an extension of the JML [56] contract semantics. They found contracts
as test oracles effective in finding and diagnosing concurrency-related faults on
an industrial case study in Java/JML. In contrast to this work, demonic testing
emphasizes the use of contracts also for symbolic analyses, in addition to test
oracles.

Rely-guarantee reasoning has been applied in testing of concurrent programs.

4.7. CONCLUSION66

Dingel [29] uses the state exploration tool VeriSoft [36] for rely-guarantee
verification of C/C++ components. The component code is executed in parallel
with an environment which generates initial states, monitors the component
execution, and generates responses. If a program step is found to violate one of
the guarantees, a flaw is found. Blundell et al. [12] use labelled transition systems
to model the behaviour of components, whereas demonic testing works directly
on source code. Assumptions on the model-level are used as environments in
which individual components are executed. The execution results in traces which
are in turn checked against the guarantees of the model. Failure of a check
suggests an incompatibility between a model and its implementation.

4.7 Conclusion
The testing of concurrent systems has generally been regarded as inferior to static
approaches as a method of increasing the level of correctness. The realization
that purely static reasoning also faces problems of scalability or precision when
applied to concurrent systems has led to a more pragmatic assessment, leaving
testing its due place, as evidenced by the approaches reviewed in the previous
section.

Unlike many of these approaches, which are only suitable for testing entire
systems, demonic testing addresses the important problem of unit testing for con-
current programs. Through its combination of dynamic and symbolic techniques,
demonic testing provides two significant benefits over other proposals. First, it
makes use of the available testing tools and existing tests for sequential programs.
Second, instead of searching the state space of thread interleavings, demonic
testing uses program synthesis as a constructive means to find problematic thread
interference. If a test fails, a test case and a problematic sequence of interactions
is available for analysis.

The availability of contracts in Eiffel makes this a natural setting in which to
provide demonic testing. The data race freedom of SCOOP also forms a valuable
base upon which to build the technique, as it shows that it is not only valuable
as a race detection technique but, in fact, also is suitable to detect atomicity
violations in cases where races either do not, or can not, exist.

This work has been published, in part, at ICFEM 2012 [106].

Part II: Execution

67

Chapter

5

Efficient SCOOP

Programming languages and libraries that help programmers write concurrent
programs are the subject of intensive research. Increasingly, special attention
is paid to developing approaches that provide certain execution guarantees;
they support the programmer in avoiding delicate concurrency errors such as
data races or deadlocks. For example, languages such as Erlang [4] and others
based on the Actor model [40] avoid data races by a pure message-passing
approach; languages such as Haskell [82] are based on Software Transactional
Memory [96], avoiding some of the pitfalls associated with traditional locks.

Providing these guarantees can, however, be at odds with attaining good
performance. Pure message-passing approaches face the difficulty of how to
transfer data efficiently between actors; and optimistic approaches to shared
memory access, such as transactional memory, have to deal with recording,
committing, and rolling back changes to memory. For this reason, execution
strategies have to be developed that preserve the performance of the language
while maintaining the strong execution guarantees of the model.

SCOOP places restrictions on the way concurrent programs execute, thereby
gaining more reasoning capabilities but also introducing potential performance
bottlenecks. To improve the performance of SCOOP programs while maintaining
the core of the execution guarantees, this work introduces a new execution model
called SCOOP/Qs1. First, a formulation of the SCOOP semantics is given. One
which admits more concurrent behaviour than the existing formalizations [70],
while still providing the reasoning guarantees. On this basis, lower-level imple-
mentation techniques are developed to make the scheduling and interactions
between threads efficient. These techniques are applied both in an advanced pro-
totype implementation [103], as well as incorporated into the research branch
of the production EiffelStudio compiler [17], the reference compiler for SCOOP
programs.

Section 5.1 examines the existing SCOOP model in terms of the high level
guarantees that it provides, and how much concurrency a näıve model provides.
Section 5.2 proposes a new semantics for handler reservation that enables greater
amounts of concurrency, shows it as a member of a larger family of SCOOP se-
mantics, and shows how deadlock behaviour changes between different members
of the family of semantics. Section 5.3 shows how to compile efficiently using
the SCOOP/Qs model. Section 5.4 explains the internal design of the concur-
rency run-time library for SCOOP/Qs. These techniques are applied both in
an advanced prototype implementation [103], as well as incorporated into the
research branch of the production EiffelStudio compiler [17], the reference
compiler for SCOOP programs. The differences in the independent SCOOP/Qs
run-time and the one built into EiffelStudio are also described. Section 5.5

1Qs is pronounced “queues”, as queues feature prominently in the new approach; the run-time
and compiler associated with Qs is called Quicksilver, available from [103].

69

5.1. THE SCOOP EXECUTION MODEL70

h

c0

c1c2c3

Figure 5.1: Normal handler implementation

discusses related work, and finally Section 5.6 concludes.

5.1 The SCOOP execution model
The key motivation behind SCOOP [78] is providing a concurrent programming
model that allows the same kinds of reasoning techniques that sequential models
enjoy. In particular, SCOOP aims to provide areas of code where pre/postcondi-
tion reasoning exists between independent threads. To do this, SCOOP allows
one to mark sections of code where, although threads are operating concurrently,
data races are excluded entirely.

5.1.1 Reasoning guarantees
There are a few key reasoning guarantees that an implementation of SCOOP
must provide:

1. Regular calls (non-separate) calls and primitive instructions (assignment,
etc.) execute immediately and are synchronous.

2. Calls to another handler, x, within the body of a separate x block will be
executed in the order they are logged, and there will be no intervening
calls logged from other clients.

3. The postcondition of calls to a set of non-Current handlers xs, arising from
the calls logged within the body of a separate xs block can be assumed
together if the next client to lock any x ∈ xs locks all of xs.

The effect of rule 1 is that normal sequential reasoning is applied to calls that
are issued by the client, to the client. Rule 2 implies that calls that are made
from the client to the handler are applied in order, thus the client can and must
apply pre-/postcondition reasoning from one call it has made to the next. Rule
3 states that to both give and receive reasoning guarantees that relate multiple
handlers the handlers must be reserved together.

5.1.2 A näıve implementation
The original SCOOP operational semantics [78] mandated the use of a lock
to ensure that pre/postcondition reasoning could be applied by a client on its
calls to a handler. One can visualize this as the client c0 placing the calls in a
queue for the handler h to dequeue and process, as in Figure 5.1. The other
clients (c1, c2, c3) that may want to access the handler’s queue must wait until
the current client is finished.

CHAPTER 5. EFFICIENT SCOOP 71

The lock-based model of SCOOP satisfies the reasoning guarantees by using
locks to make sure that there is only ever one client that can add calls to a
handler’s work queue. The guarantees for multiple handlers can be reserved
simply by taking the locks in a predefined order.

5.1.3 Issues with blocking
SCOOP, when implemented using locks, has the disadvantage that the basic
operation required to make use of concurrent execution, reserving a handler,
requires a blocking operation. This has two major effects: it is easier to run
into deadlock because locks are everywhere and, because locks ensure mutual
exclusion, it puts more clients to sleep while they wait to acquire the handler,
even if they only want to send the handler requests, not receive any answers.

5.2 A model with less locking
The first SCOOP guarantee is easy to achieve, it is simply how sequential pro-
grams operate. To understand how to implement SCOOP efficiently, it is impor-
tant to concentrate on the second guarantee. This guarantee states that requests
from a particular client are processed in the order they are sent, disallowing
interleaving requests from other clients. Non-interference of different clients
can be achieved by giving each client their own private area (a queue) in which
to place their requests. Each client then just shares this private queue with the
handler to which it wants to send requests.

Syntax. The following syntax of expressions e is used to describe the execution
model.

e ::= separate x e e | call(x, f) | query(x, f) |
yield h | wait h | release h e | end | skip | if e e e

Note that separate blocks and call and query requests model instructions of
SCOOP programs, whereas the expressions wait, release, end, yield, skip, and,
if are only used to model the runtime behaviour. In particular, expressions
wait and release describe the synchronization to wait for the result after a query,
expression end models the end of a group of requests, yield models wait-condition
behaviour, and skip models no behaviour.

Operational semantics. Figure 5.2 and Figure 5.3 specify an operational se-
mantics2 that conforms to the SCOOP guarantees. Figure 5.2 describes the rules
that are specific to the SCOOP model, and Figure 5.3 describe those rules which
are more general (sequencing, parallel composition, if). It is described using
inference rules for transitions of the form P ⇒ Q, where P and Q are parallel
compositions of handlers. The || operator is commutative and associative to
facilitate appropriate reordering of handlers.

The basic representation of a handler is a triple (h, qh, e) of its identity h,
request queue qh, and the current program it is executing, s. A request queue
is a list of handler-tagged private queues, and is thus really a queue-of-queues.

2 The operational semantics shown in Chapter 3 examines the locking behaviour of SCOOP
programs, where the one presently being described focuses on the way calls are transferred from
clients to handlers.

5.2. A MODEL WITH LESS LOCKING72

SEPARATE

proceed = e; call(x, end)
retry = call(x, end); yield x; separate x w e

(h, qh, separate x w e) || (x, qx, t) ⇒
(h, qh, if e proceed retry) || (x, qx + [h 7→ []] , t)

YIELD
y 6= h

(h, qh, yield x) || (x, [y 7→ ys] + zs, t) ⇒
(h, qh, skip) || (x, [y 7→ ys] + zs, t)

CALL
(h, qh, call(x, f)) || (x, qx, t) ⇒
(h, qh, skip) || (x, qx [h 7→ qx[h] + [f]] , t)

QUERY
(h, qh, query(x, f)) || (x, qx, t) ⇒
(h, qh, wait x) || (x, qx [h 7→ qx[h] + [release h f]] , t)

RELEASESTEP
(h, xs, e) ⇒ (h, xs, e′)

(h, xs, release h e) ⇒ (h, xs, release h e′)

SYNC
(h, qh, wait x) || (x, qx, release h bvc) ⇒
(h, qh, bvc) || (x, qx, skip)

RUN
(h, [x 7→ [e] + es] + ys, skip) ⇒
(h, [x 7→ ss] + ys, e)

END
(h, [x 7→ []] + ys, end) ⇒
(h, ys, skip)

Figure 5.2: Inference rules of SCOOP/Qs

Private queues of a client handler c can be looked-up qh[c], and can be updated
qh[c 7→ l], where l is the new list to associate with the handler h. Both lookup and
updating work on the last occurrence of c, which is important as this is the one
that the client modifies. The queue can also be decomposed structurally, with
[x 7→ s] + ys meaning that the head of the queue is from client x with private
queue s, and ys is the rest of the structure (possibly empty). So although the
private queues in the queue-of-queues can be accessed and modified in any order,
they are inserted and removed in first-in-first-out order.

Figure 5.2 shows separate blocks (the rule SEPARATE), the two different
kinds of requests (CALL, QUERY, SYNC rules), how a client retries a wait condition
(YIELD), and how the handlers process these requests (RUN, REQUESTSTEP, and
END rules). The rules from Figure 5.3 are defined in the standard way.

In the rule SEPARATE, clients insert their private queue at the end of the
handler’s request queue. This operation occurs at the beginning of a separate
block. This registers them with the handler, who will eventually process the
requests in it. The fact that a handler only processes one private queue at a time
ensures that the reasoning guarantees are maintained. If the wait-condition is
trivial (e is the constant True), then the body of the separate block is entered
without waiting. Since supplier’s handler-triple consist only of variables, and

CHAPTER 5. EFFICIENT SCOOP 73

SEQ
(h, xs, e1) ⇒ (h, xs, e′1)

(h, xs, e1 ; e2) ⇒ (h, xs, e′1 ; e2)
SEQSKIP

(h, xs, skip; e2) ⇒ (h, xs, e2)

IFSTEP
(h, xs, c) ⇒ (h, xs, c′)

(h, xs, if c e1 e2) ⇒ (h, xs, if c′ e1 e2)

IFTRUE
(h, xs, if bTruec e1 e2) ⇒
(h, xs, e1)

IFFALSE
(h, xs, if bFalsec e1 e2) ⇒
(h, xs, e2)

PARSTEP1
P ⇒ P ′

P || Q ⇒ P ′ || Q
PARSTEP2

Q ⇒ Q′

P || Q ⇒ P || Q′

ONESTEP
P ⇒ Q

P ⇒∗ Q
MANYSTEP

P ⇒∗ P ′ P ′ ⇒∗ Q

P ⇒∗ Q

Figure 5.3: Standard rules

variables will match anything, there are no restrictions on what state the supplier
has to be in for this rule to apply. Also, the client appends a call(x, end) action
after the separate block body to signal that the supplier x can take requests
from other clients. When e is non-trivial, it is evaluated until it is a value and the
program either re-evaluates the separate construct (again, possibly waiting), or
enters the body of the block.

Executing wait conditions is something that can be done näıvely: repeatedly
reserve, reevaluate the condition, and give up the reservation on the handler.
Unfortunately in this simple approach, a client can be placed next to itself in
the handler’s queue-of-queues. This is unnecessary because the queries are
assumed to be pure, and thus if the condition was not true the first time the
client evaluated it, it will not be true now. This can be avoided if the semantics
can be constructed to disallow placing a handler that has just finished a wait
condition next to itself in the handler’s queue-of-queues. This is what occurs in
the YIELD rule.

The SCOOP/Qs semantics, in contrast to the original lock-based SCOOP
semantics, uses multiple queues that can all be accessed and enqueued into
simultaneously by clients. Figure 5.4 visualizes this behaviour. In the figure, the

c0

h

c1c2

Figure 5.4: Handler implementation based on queue of queues

outer gray boxes are nodes in the queue-of-queues, and the inner green boxes
are nodes in the private queues. This nested queueing maintains the reasoning
guarantees while still allowing all clients to enqueue asynchronous calls without

5.2. A MODEL WITH LESS LOCKING74

waiting.
In rule CALL, the call action is non-blocking: it asynchronously appends the

requested method f to the end of the appropriate client’s private queue.
Rule QUERY, requesting a query execution, however, does require blocking

as it must wait for the result of the function application. This is modelled by
sending the query request and introducing a pair of actions which can only step
forward together: the wait/release pair. There is only one rule (SYNC) that can
rewrite sync into a value, bvc, and release into a skip expression. This rule only
applies when the client is currently evaluating sync and the handler is evaluating
release with the second argument evaluated to a value. The RELEASESTEP rule
evaluates the second argument of a release expression until it is able to be sent
back to the client.

Each handler processes its request queue in the following way: in rule RUN, if
the handler is idle (executing skip) then it will examine the request queue. If the
request queue’s first entry (a private queue) is non-empty, then the first action is
taken out of that private queue and placed in the program part of the handler to
execute. If the request queue is empty, or it contains an empty private queue as
its first entry, then the thread does nothing. In rule END, the thread finishes one
private queue and switches to the next when it encounters the end expression,
which was placed by the owner of the outgoing private queue when it finished
executing its separate block (rule SEPARATE).

For simplicity, the semantics in Figure 5.2 do not support reserving more than
one handler per separate block. This is not an inherent limitation, the SEPARATE

rule would become two rules, a rule that reserves the each handler in a list, and
a base case that detects when all handlers are reserved and moves to processing
the wait-condition. The YIELD rule and yield expression also expand to include a
set of handlers to wait on, rather than just a single handler.

5.2.1 A family of models
The SCOOP/Qs operation semantics does not also describe the exact behaviour
of the existing SCOOP semantics. The most obvious of which is the non-blocking
reservation of handlers in SCOOP/Qs, because it only amounts to enqueueing a
private queue in the queue-of-queues. To describe both models, the operational
rules presented in Figure 5.2 have to be modified.

To use a single operational semantics to describe both the existing and the
SCOOP/Qs behaviour, the queue-of-queues and the private queues must be able
to set bounds on how many items they can each hold. The exact modifications
to the rules can be seen in Figure 5.5. The additional parameters to the rules are
M and N , representing the upper limit on the number of elements (this could
also be interpreted as the total size of all elements, if measured in bytes instead
of elements) allowed the private queues and queue-of-queues, respectively. The
existing SCOOP implementation would be a member of this semantic family with
M =∞ and N = 1, representing that a handler will only ever have the private
queue of an single client in its queue-of-queues. This also corresponds to the
semantics in Chapter 3, and the results from there still apply to the M =∞ and
N = 1 family member. More permissive implementations may try to set M =∞
and N =∞, which are the parameters used in SCOOP/Qs.

These bounds are not only a theoretical concern, they also reflect the realities
of implementing a distributed computation model like SCOOP. In particular, be-

CHAPTER 5. EFFICIENT SCOOP 75

SEPARATE

proceed = e; call(x, end)
retry = call(x, end); yield x; separate x w e

|qx| < N

(h, qh, separate x w e) || (x, qx, t) ⇒
(h, qh, if e proceed retry) || (x, qx + [h 7→ []] , t)

CALL’
|qx[h]| < M

(h, qh, call(x, f)) || (x, qx, t) ⇒
(h, qh, skip) || (x, qx [h 7→ qx[h] + [f]] , t)

QUERY’
|qx[h]| < M

(h, qh, query(x, f)) || (x, qx, t) ⇒
(h, qh, wait x) || (x, qx [h 7→ qx[h] + [release h f]] , t)

Figure 5.5: Generalized SCOOP/Qs rules

tween a client sending a request and a handler dequeueing and processing it, the
request must be stored. The storage is not free, and in some circumstances there
may be limitations imposed by external sources, i.e., the outgoing packet buffer
of the kernel’s network queue. The current SCOOP/Qs run-time implementation
currently uses M,N =∞.

5.2.2 Deadlock behaviour in different family members
The SCOOP/Qs semantics (M = ∞ and N = ∞) represents a change in pro-
gram execution that can influence correctness. In particular, since the original
semantics (M = ∞, N = 1) of handler acquisition was blocking, programs
could deadlock merely trying to acquire handlers. For example, the program in
Figure 5.6 will deadlock under some schedules when using the original seman-

separate x
do

separate y
do

x.foo()
y.bar()

end
end

Client 1

separate y
do

separate x
do

x.foo()
y.bar()

end
end

Client 2

Figure 5.6: Possible deadlock situation

tics. This is due to the inconsistent locking order3 of x and y. However, in the
SCOOP/Qs execution model this example cannot deadlock because there are
no longer any blocking operations: both clients can simultaneously reserve the
handlers x and y, and log asynchronous calls on them.

The same reduction in deadlocks is not present with the inclusion of queries,
though. The presence of queries introduces a dependency between the handler
and client where the client must be at the top of the handler’s queue-of-queues

3 Preventing this manner of deadlock is discussed in Chapter 3.

5.2. A MODEL WITH LESS LOCKING76

for the query to return (sync finishes). This introduces the possibility for deadlock
again. Figure 5.7 shows a program, in the same style as Figure 5.6, that may
deadlock. This program will deadlock in both the M = ∞, N = 1 model as

separate x
do

x.query()
separate y

do
y.query()
x.foo()
y.bar()

end
end

Client 1

separate y
do

y.query()
separate x

do
x.query()
x.foo()
y.bar()

end
end

Client 2

Figure 5.7: New deadlock situation

well as the M =∞, N =∞ model because in both cases the clients must wait
until their private queues calls are first x’s (resp. y’s) queue-of-queues before
proceeding past the x.query expression. Since the ordering of these waits are
not between the two clients, there is the possibility for deadlock.

The SCOOP/Qs model does not even represent a strict reduction in deadlock-
ing executions. There are programs where the M = ∞, N = 1 model will not
deadlock, but the M =∞, N =∞ model will deadlock. Figure 5.8 shows such
a program. This program deadlocks in the N = ∞ case because any number

separate z
do

separate x
do

x.query()
separate y

do
y.query()
x.foo()
y.bar()

end
end

end
Client 1

separate z
do

separate y
do

y.query()
separate x

do
x.query()
x.foo()
y.bar()

end
end

end
Client 2

Figure 5.8: Deadlocking program in N =∞ but not in N = 1

of clients may simultaneously proceed into the separate z block, which then
engages in the classic deadlock situation shown in Figure 5.7. This behaviour
even occurs when N = 2. However, in the case where N = 1, only one client
can be in the body of the separate z at a time. Whichever client is in the body
therefore has no dependency problems acquiring and having its query executed
by the handlers of x and y. Therefore, there can be no deadlock in Figure 5.8
when N = 1.

Table 5.1 highlights the major design choices that can be made when selecting

CHAPTER 5. EFFICIENT SCOOP 77

M N Behaviour
∞ ∞ Clients are assured that locking a handler and logging

asynchronous calls will not ever block.
C ∞ Client can only have a C async call active at a time, but

will always be able to lock a supplier without blocking.
However, the client can reason about how many calls they
log, so can control C locally.

∞ C Client can log all calls asynchronously, but can only C
clients can log calls on a handler at a time. This means
that global information must be used to determine if the
system will block and where.

C1 C2 The client can only log C1 calls, and only C2 clients can
lock a handler simultaneously. This combines the proper-
ties of the above two cases.

Table 5.1: SCOOP-semantics family members

a member from the family of semantics. The basic choice is between allowing an
unbounded queue length or to set some limit, C <∞.

SCOOP/Qs makes it possible to construct fully deadlock free programs by
abiding by a very simple rule, one that could even be checked automatically:

Only make asynchronous calls.

This is entirely feasible considering that all Erlang programs are written in this
way, as Erlang has no synchronous messaging mechanism (that is not to say that
Erlang programs guarantee liveness).

Previously, even programs that made only asynchronous calls could still
deadlock due to the blocking arising from handler reservation. The introduction
of non-blocking handler reservations makes it possible for programs that only use
asynchronous calls to be guaranteed that they are completely free of deadlock.

5.2.3 Multiple handler reservations
The separate block as shown so far only reserved a single handler. It is also
possible to reserve multiple handlers at the same time to ensure that the objects
from those handlers stay related in the appropriate way.

Inspect, for example, the programs in Figure 5.9. One might expect that

separate x
do

separate y
do

x.setColour (Red)
y.setColour (Red)

end
end

separate x
do

separate y
do

x.setColour (Blue)
y.setColour (Blue)

end
end

Figure 5.9: Nested reservations

5.2. A MODEL WITH LESS LOCKING78

in such a program that no matter which thread goes first, that there would be
an invariant that x.colour = y.colour whenever a thread has both x and y’s
handlers reserved. This invariant is true in a locking model of handler reser-
vation because while holding the lock on x’s queue the other client cannot
attain a lock on y’s queue for the duration that the lock on x is held. However,
this is not true with the queue-of-queues model because the nesting of reserva-
tions does not imply blocking. Thus, there is no guarantee that while thread
1 has attained its reservation in x’s queue-of-queues, that thread 2 does not
grab a place on y’s queue-of-queues before thread 1 does. Thus, x may have
[[setColour(Red)], [setColour(Blue)]] as its queue-of-queues and y may have
[[setColour(Blue)], [setColour(Red)]]. This means that after both handlers have
finished processing all the calls x.colour = Blue and y.colour = Red.

However, there is a method of attaining the desired property in both SCOOP
and SCOOP/Qs. That is to simply use the multiple reservation separate blocks.
This is the recommended way in SCOOP of reserving multiple handlers as it
eliminates the danger of deadlock due to reserving handlers in an order that
would lead to mutual dependencies on the locks. The same ordering guarantees
that maintained the desired cross-handler invariant previously is the also the
same that leads to deadlock. Figure 5.10 shows how to rewrite the example
in Figure 5.9 to use multiple reservation separate blocks. Written in this way,

separate x y
do

x.setColour (Red)
y.setColour (Red)

end

separate x y
do

x.setColour (Blue)
y.setColour (Blue)

end

Figure 5.10: Multiple reservations

when executed under either SCOOP or SCOOP/Qs the program will neither
deadlock nor exhibit an execution where x.colour /= y.colour.

The modification to the SEPARATE rule to support this is straight-forward.
First one defines an update function that updates a handler if it is in the set X.

resOne(X, h, (x, qx, t)) =
{

(x, qx + [h 7→ []] , t) if x ∈ X
(x, qx, t) if x /∈ X

Then this is applied over the parallel composition of all handlers.
resMany(X, h, P || Q) = resMany(X, h, P) || resMany(X, h, Q)
resMany(X, h, (x, qx, t)) = resOne(X, h, (x, qx, t))

Lastly, a function describes that each handler in the set (represented here by a
list so it can be traversed) is sent an end message.

endMany(x :: xs) = call(x, end); endMany(xs)
endMany([]) = skip

These functions combine to define a generalized SEPARATE rule that can reserve
multiple handlers atomically.

SEPARATE

P ′ = resMany(X, h, P)
ends = endMany(X)

(h, qh, separate X s) || P ⇒
(h, qh, s; ends) || P ′

CHAPTER 5. EFFICIENT SCOOP 79

5.3 Compiling SCOOP/Qs programs
The semantics described in Section 5.2 are used to implement a compiler and
run-time for SCOOP programs. The operational semantics gives rise to notable
run-time performance and implementation properties. SCOOP/Qs pays particular
attention in moving the implementation from a synchronization-heavy model to
one which reduces the amount of blocking.

The implementation of SCOOP/Qs follows the semantic description in Sec-
tion 5.2 as closely as possible, including the small operational simplifications.
The run-time is written in C, the compiler is written in Haskell and targets
the LLVM framework [58] to take advantage of the lower level optimizations
that are available. Using LLVM is a necessary choice for this work because it is
important to compare with other, quite mature, languages and the comparison
shouldn’t focus on obvious shortcomings. It is also built for extension by means of
adding optimization passes, which this work takes advantage of. The SCOOP/Qs
compiler, run-time, and benchmarks are available from GitHub [103].

The run-time is broken into 3 layers: task switching, lightweight threads, and
handlers. Some of the optimizations described in this section take place at the
handler layer, but there are also some that use the other two layers as well to
optimize scheduling.

5.3.1 SCOOP/Qs calling convention
There are two distinct pieces to a a SCOOP/Qs separate object, one is the actual
object, which represents the program data, and the other is the object’s handler,
the entity which has to be asked for permission to access the object. To efficiently
make separate calls, finding the handler for an object must be accessible very
quickly. To achieve this, SCOOP/Qs has a convention that when a routine is
compiled, the target of the routine will a pair of the target object and its handler.
This is similar to how the implicit first argument of object-oriented routines is the
Current or this object. Non-Current separate objects follow a similar pattern,
they are represented as a tuple of object and handler reference.

Non-separate objects are not represented as a pair, they are represented
just as they normally would be. This means that the Current handler must be
carefully passed around when calls are made so that if a non-separate object
wants to make a call to a separate-object, the appropriate handler to make the
request from is always available.

5.3.2 Request processing
The RUN and END rules describe all of the queue management facilities that
a handler has to perform. This correspondence is shown in the high-level
implementation of the main handler-loop given in Figure 5.11.

The structure of the handler’s loop directly corresponds to the data struc-
ture implementation (a queue of queues). One can see that private queues are
continually taken from the outer queue, where the dequeue operation returns
a Boolean result. False corresponds to no more work (indicating the handler
can shut down), not that the queue is empty as may be in a non-blocking queue
implementation. For each private queue that is received, calls are repeatedly de-
queued out of it and executed until false is returned from the dequeue operation,

5.3. COMPILING SCOOP/QS PROGRAMS80

// RUN rule, when there is a private queue
// available
while (qoq.dequeue (&private_queue))

{
// if dequeue returns true:
// RUN rule; process calls from
// this queue.
// otherwise:
// END rule; switch to the next
// private queue
while (private_queue.dequeue (&call))

{
execute_call (call);

}
}

Figure 5.11: Main handler-loop

indicating that the END rule has been triggered, and the client presently does not
wish to log more requests.

Note that the arrangement of clients and handlers follows a particular pattern
when the queue-of-queues pattern is used. Namely, that each handler first
reserves a position in the queue-of-queues: each queue-of-queues has many
clients trying to gain access, but only one handler removing the private queues.
This is a typical multiple-producer single-consumer arrangement, so an efficient
lock-free queue specialized for this case can be used to implement the queue-
of-queues. Similarly, once the private queue has been dequeued by the handler
the communication is then single-producer single-consumer; the client enqueues
calls, the handler dequeues and executes them. Again an efficient queue can be
constructed to especially handle this case. These optimizations are important
as they are directly on the critical path of all operations between clients and
handlers.

5.3.3 Client requests
The handler-loop implementation, above, resides in the run-time library. The
client-side is where the compilation and run-time system meet. In particular, the
compiler must emit code for the client to package and enqueue requests for the
handler, and handle waiting for the results of separate queries.

When a client reserves a single handler with separate h do <body> end, this
corresponds to the code shown in Figure 5.12. The client gets a private queue
h_p for the desired handler h, represented in the SEPARATE rule by the private
queue appearing on the handler’s queue-of-queues. This private queue can either
be freshly created or taken from a cache of queues, to improve execution speed.
It then enqueues this new private queue on the queue-of-queues for the handler,
which means the private queue is now ready to log calls on in the body. Finally,
corresponding to reaching the end of the separate block, the special call denoting
the end of the requests on the private queue is enqueued for the handler.

Inside the body of the separate block, there will typically be many calls

CHAPTER 5. EFFICIENT SCOOP 81

private_queue* h_p = client.queue_for (h);

// SEPARATE rule, adding an empty queue
// to the queue of queues
h.qoq.enqueue (h_p);

<compiled body>

// SEPARATE rule, compiler adds the
// code to enqueue the END marker
h_p.enqueue (END);

Figure 5.12: A compiled separate block

to the handler. The asynchronous calls are packaged by the client using the
libffi library [57]. libffi is a high-level interface to various calling conventions;
SCOOP/Qs uses it as a way to manage the details of the type and number of
arguments, as well as result storage handling. This packaged call is then put into
the proper private queue for the desired handler. This can be seen in Figure 5.13,
the enqueue operation relating directly to the CALL rule. Packaging the call

arg_types[0] = &ffi_type_pointer;
arg_values[0] = &arg;
ffi_prep_cif(ffi_call, FFI_DEFAULT_ABI, 1,

&ffi_type_void, arg_types);

// CALL rule, showing the setup via libffi.
h_p.enqueue(call_new(ffi_call, 1, arg_values));

Figure 5.13: Enqueueing an asynchronous call

entails setting up the call interface (cif) with the appropriate argument and
return types with ffi_prep_cif, and then storing the actual arguments for later
application by the handler. Note that the allocation of arguments and argument
types for the call cannot be done on the client’s stack because the call may be
processed by the handler after the client’s stack frame has been popped.

For efficiency reasons, a different strategy is used for synchronous calls
(queries). This is because packaging a call involves allocating memory, packing
structures properly, and then the handler must decode it when received. In short:
this takes longer than a regular function call. In the asynchronous case these
steps are required because the execution of the call must be done in parallel with
the client’s operations. However, for synchronous calls this is no longer the case:
the client will be waiting for a reply from the supplier when the supplier finishes
executing the query. To address this performance concern, for shared-memory
systems, the QUERY rule is changed to the following:

(h, qh, query(x, f)) || (x, qx, t)⇒
(h, qh,wait x; f) || (x, qx [h 7→ qx[h] + [release h]] , t)

5.3. COMPILING SCOOP/QS PROGRAMS82

Note that the execution of the call f is shifted to the client, after the syn-
chronization with the handler has occurred. This does not change the execution
behaviour because, as in the original rule, all calls on the handler are processed
before the query and the client does not proceed to log more calls until the
query has finished executing. As can be seen from Figure 5.14, the old rule first

<packing same as async>
ffi_call(&ffi_call, f,

&result, 0);
// QUERY rule
h_p.enqueue(ffi_call);
// SYNC rule
h_p.sync();

(a) Generated code for initial SYNC rule.

// New QUERY rule
h_p.enqueue(SYNC);
// SYNC rule
h_p.sync();
// New QUERY rule
result = f();

(b) Generated code for modified SYNC rule.

Figure 5.14: Executing a query f

generates the call, sends it to the handler, and then synchronizes (Figure 5.14a),
these actions come from the combination of the QUERY and SYNC rule. The new
rule just performs the call after synchronization occurs (Figure 5.14b). This
approach offers three main benefits:

• there is no memory allocation required,

• no encoding/decoding of the call is required, and

• which call is being made is known statically.

The last item is important to the underlying optimizer. The LLVM framework
now statically knows what call is being made, enabling more optimizations. This
isn’t the case when asynchronous calls are packaged as a function pointer and
arguments: that information is lost for the compiler.

A final scheduling optimization is related to the use of the sync operation:
when a sync operation is sent, the client’s thread context is sent with the operation
to the handler. When the handler encounters the sync, it uses this context to
switch immediately to the client. This prevents the lightweight threads from
needlessly going to the scheduler. Such an optimization is safe because after
sending the sync request to the handler the client must wait. Therefore the
handler can have no requests pending after the sync request, because the client
is the only entity that can put them there, and it is waiting on the handler.

5.3.4 Wait conditions
The final piece of compiling SCOOP/Qs programs is to process the wait conditions.
An example of this situation is given in Figure 5.15. The require clause is
compiled the same as any query call that a client would want to make on a
handler: the handler is reserved, the sync is issued, the query is executed. The
difference comes after the evaluation of the query: if the condition is true, then
control passes to the body of the separate block. If the condition is false, then
the protocol in Figure 5.16 is used. This means that the client will wait until

CHAPTER 5. EFFICIENT SCOOP 83

separate x
require

x > 0
do

...
end

Figure 5.15: A wait condition

// Unlock so others can use the handler
unlock(h_p);

// Wait for the wake-up
yield_until_notify(h_p);

Figure 5.16: Waiting for a change

awoken by a signal from the handler. However, when awoken the client will
check the previous client and only continue if it is different.

The handler loop from Figure 5.11 has to be modified to record the previously
finished client and notify any waiters. The modifications, given in Figure 5.17,
follow the private queue processing loop.

while (private_queue.dequeue (&call))
{

execute_call (call);
}

last_client = private_queue.client;

yielders.notify();

Figure 5.17: Modified main handler-loop for yielding clients

5.3.5 Multi-reservation separate blocks
The code that must be generated for the multi-reservation separate block differs
slightly from the single-reservation case which is optimized due to it being a
simpler operation. One can see in Figure 5.18 that some of the complexity is
pushed into the client run-time library. The run-time maintains structures that
allow the multiple handlers to be stored. The interface between the compiled
code and run-time consists of marking the start of a new set of reservations with
new_reservations, adding a handler with add_handler, and finally reserving
all the handlers atomically with reserve_handlers. After this point the client
can fetch the private queues that were just reserved freely, and they do not
need to be inserted into the handler’s queue-of-queues because the reservation
mechanism has already done that. Signalling the end of the private queue is
done as before.

5.3. COMPILING SCOOP/QS PROGRAMS84

client.new_reservations ();
client.add_handler (h1);
client.add_handler (h2);
client.reserve_handlers();

private_queue* h1_p = client.queue_for (h1);
private_queue* h2_p = client.queue_for (h2);

<compiled body>

h1_p.enqueue (END);
h2_p.enqueue (END);

Figure 5.18: A compiled 2-reservation separate block

5.3.6 Removing redundant synchronization
The SCOOP model essentially prevents data races by mandating that one must
access (read and write) separate areas of memory through its respective handler.
Due to this, a common SCOOP idiom is that memory is often copied back and
forth between handlers when a local copy is desired for speed reasons. One
example of this is sending data to a worker for further asynchronous process-
ing. When copying data in SCOOP there are essentially two options: push or
pull. Either the data is copied via routines that asynchronously push data to a
separate target, or the data is synchronously pulled by the client that wants it
using queries. Even though the first option appears to enable more concurrency
because it is asynchronous, it often isn’t the case. Consider sending an array one
integer at a time: this involves reading the integer from the client, packaging
the call that will set the integer on the handler, sending the call, then applying
the call. The speed advantage of utilizing more than one core is dwarfed by the
huge cost of issuing the call. Also, the second option (synchronous pull) tends to
be more natural, as the client knows how and where to reconstruct the data.

Therefore it is natural to make queries as efficient as possible. This was par-
tially addressed using the approach in the previous section, using sync operations
and executing the query on the client. There is a further enhancement that can
be made to this approach, which is eliding unnecessary sync calls. A sync call
is not necessary if the previous call to the desired handler was also a sync call;
basically if the handler is already “synced” it doesn’t need to be re“synced”.

This elision happens in two ways: either by dynamically recording the synced
status in the run-time and ignoring sync operations on handlers that have already
been synced, or statically by performing a static analysis.

Dynamic avoidance

The dynamic method keeps the synced status in the private queue structure.
When a sync call is made on a private queue, nothing happens if the queue is
already synchronized; the call merely returns and the synced status is unaffected.
If the queue is not currently synced, the sync message is sent to the handler as
usual and when it returns the synced flag is set in the handler reflecting that the
handler is processing this private queue, but the queue is empty.

CHAPTER 5. EFFICIENT SCOOP 85

Static removal

The static analysis starts by traversing the control flow graph (CFG). It annotates
every basic block, basic blocks being sequences of basic instructions, with a set
of handlers that are synchronized by the end of the block. This set of handlers
is called the sync-set. The traversal of a function’s basic blocks can be seen in
Figure 5.19. Each block acts as a sync-set transformer, adding and removing

while changed 6= ∅
b ∈ changed, changed := changed −{b}
common :=

⋂
b.predecessors.sync set

if b.sync set 6= UpdateSync (b, common)
b.sync set := UpdateSync (b, common)
changed := changed ∪ b.successors

Figure 5.19: Sync-set calculation for a function

handlers from the set. As an initial input, the intersection of the sync-sets of all
the block’s predecessors is used. The traversal continues until every basic blocks’
sync-set has stopped changing.

Of course this only says how the blocks are traversed, not how a given block’s
sync set is calculated given the instruction in that block. This is described in
the update_sync function, shown in Figure 5.20. Each type of instruction is

UpdateSync (b, synced):
for inst ∈ b

h := HandlerOf(inst)
synced := synced ∪ {h} if inst is a sync operation

synced− {h} if inst is asynchronous
∅ if inst has side effects
synced otherwise

return synced

Figure 5.20: Sync-set calculation for a block

handled differently: synchronization calls add the target handler to the sync-set,
asynchronous calls remove those handlers (and anything they may be aliased to),
and arbitrary calls clear the sync-set entirely. Obviously this final case is quite
severe, as it has to be, because a call could subsequently issue asynchronous
calls on all the handlers currently in the sync-set. This can be mitigated by not
clearing the sync-set for functions which are marked with the readonly and
readnone flags. LLVM will automatically add these flags when it can determine
that they hold.

The static analysis operates on LLVM bit-code, and is implemented as a
standard LLVM pass (outside of the base compiler). Keeping the pass outside of
the base SCOOP/Qscompiler has the advantage that it separates the generation
of code from the analysis and transformation of the generated control flow graph.

5.3. COMPILING SCOOP/QS PROGRAMS86

Example

The effect of the sync coalescing pass can be seen in Figure 5.21. This program

h p.sync()
x[i] := a[i]

h p.sync()

{}

True False

{}

h p.sync()

{}

B1

B2

B3

(a) A simple loop before the sync-coalescing
pass.

x[i] := a[i]

h p.sync()

{h p}

True False

{h p}

{h p}

B1

B2

B3

(b) After sync-coalescing sync-sets label
edges.

Figure 5.21: Sync-coalescing pass

has three blocks, with sync operations in each one. Before the sync-coalescing
pass, in Figure 5.21a, the client is reading values out of a handler’s array, for
which a näıve code generator will produce a sync before every array read. Fig-
ure 5.21b shows the results of the sync-coalescing pass in such a situation. The
sync-sets are shown explicitly on the edges out of each block. In this case there
are no calls that may invalidate a sync-set, so the handler h_p appears on all
edges. The result of this is that the sync calls in blocks B2 and B3 can be removed.
Removing sync calls in the body of a loop can greatly increase performance. Note
that even though the sync call in the body of B2 was removed, h_p still appears
on B2’s outgoing edges because B2 doesn’t invalidate the synchronization on h_p
by issuing an asynchronous call.

It is not always possible, however, to remove the sync operations, even when
the handler is apparently unaffected. Consider Figure 5.22, where there is
an additional call to i_p.enqueue(r), in Figure 5.22a. Enqueueing a call is an
asynchronous activity, but it occurs on a different handler variable. This is not
enough, though, to conclude the handler h_p is unaffected, as these are only
variables and could be aliased to one another. Meaning they effectively be the
same handler. This means that at the end of the B2 block the outgoing edges
are labelled, visible in in Figure 5.22b, with neither h_p or i_p. If more aliasing
information is given to the compiler then it is possible that this ambiguity can be
resolved and h_p can be added to the sync-set for the block.

The static analysis is important as it goes further towards getting SCOOP
out of the way of the optimization passes. In the end, the final implementation

CHAPTER 5. EFFICIENT SCOOP 87

h p.sync()
x[i] := a[i]
i p.enqueue(r)

h p.sync()

{}

True False

{}

h p.sync()

{}

B1

B2

B3

(a) A simple loop with an extra asyn-
chronous call on i.

h p.sync()
x[i] := a[i]
i p.enqueue(r)

h p.sync()

{h p}

True False

{}

h p.sync()

{}

B1

B2

B3

(b) Handlers h_p and i_p may be aliased:
no coalescing.

Figure 5.22: Ineffective sync-coalescing pass

uses both the static and dynamic approaches. The static analysis is used when it
can be, but it is necessarily conservative. For the cases where the static analysis
keeps an unnecessary sync operation around, the dynamic check will eliminate
the round-trip to the handler.

5.4 Qs run-time design

The implementation of the SCOOP/Qs run-time is organized into layers. Each
layer builds on the layer beneath it. This organization was essential to keep the
construction of the run-time an approachable activity. The layers also have their
own tests that help localize any faults that may appear in the implementation.

The layers can be seen in Figure 5.23.

5.4.1 Task layer
The task layer of the Qs run-time provides basic functionality for task creation
and switching. It does not offer any concurrent execution, but allows concurrent
execution to be constructed by higher layers.

Contexts

A context in the task layer is the representation of a task’s execution information.
It consists of any registers that have to be saved, as well as the stack frame
pointer. There are operations to

5.4. QS RUN-TIME DESIGN88

Task

Schedulable task

Handler

Application

Figure 5.23: Layers of Qs runtime implementation

save store the current register contents and stack so that the context may be
resumed later.

resume resume the given context. This operation does not return, as it immedi-
ately transfers to the context.

set next set the context to switch to if the current context exits. This is useful
to define a cleanup routine.

Contexts are currently implemented internally using jmpbuf and the associated
siglongjmp and sigsetjmp routines, as it is the most accessible implementation
of such a context-saving module. More efficient implementations would still be
possible under the context interface, but so far the context switching mechanism
has not been identified as a bottleneck to performance.

Tasks

Tasks are a combination of context and state. The context allows computation
to be suspended and resumed, where the state indicates if the task is waiting,
running, or runnable. There are also states to represent transition between
states, such as transition-to-waiting. The transitional states are used to indicate
when the task is transitioning between states, which is important when tasks
are running concurrently and the responsibilities for task movements are not
centralized. In this case, it may be that as a task is transitioning to the waiting
state it is dequeued and asked to wake up again. The task must not be in both
a wait queue and in a run queue. The Linux kernel uses a similar mechanism,
although it does not use transitional states, it uses an on_cpu flag to denote if
the task is still being processed, which can be used to derive if a task is still
transitioning its state to waiting. The Qs runtime uses explicit transitional states
to provide a more explicit representation of the system state.

The task states are similar to those in the Linux threading model, but more
explicit with the inclusion of a runnable and transitional states. The transitions
between states can be seen in Figure 5.24.

CHAPTER 5. EFFICIENT SCOOP 89

Running

→
Runnable Runnable

→
Waiting Waiting

→
Finished FinishedTask started

Figure 5.24: Task state transition diagram

5.4.2 Schedulable task layer
The schedulable task layer is responsible for the scheduling of tasks. To do
this it introduces executors, global operations, schedulable tasks, and basic
synchronization primitives.

Executor

The executor is a local scheduler that is responsible for holding a list of tasks
that are to be scheduled. These tasks are held in a lock-free deque, otherwise
known as a work stealing queue. The executor will first try to schedule tasks in
its own work queue, if its own queue is empty, it asks the global data for other
executors and will try to steal from their work queues, if possible. If this also
fails, it waits on the global work queue for more tasks. Note that only the tasks
that belong to executor can push work into its work stealing queue, although
any other task or executor can steal from it.

The executor is itself a task, and thus works on the same principles as other
tasks. The distinguishing feature of an executor as a task is that it never exists in
any task queues: no sleep-queues, run-queues, wait-queues. It is the target of a
task switch when a task yields, which they do periodically.

Schedulable tasks

Schedulable tasks are an extension of the tasks in the “vanilla” task layer. They
are able to interact with the executors and the global synchronization information.
Schedulable tasks are additionally responsible for performing the state transitions
on other schedulable tasks that may be incoming.

5.4. QS RUN-TIME DESIGN90

This represents a fundamental design of the SCOOP/Qs runtime: that schedu-
lable tasks are able to attempt to schedule other tasks themselves, without
encountering any operating system locks, or context switching to the executor. If
this fails (i.e., no tasks are available), then the responsibility of scheduling the
task is given to the executor which will wait if necessary.

Global operations

There are operations that operate on global data. These are required to coordi-
nate executors with one another, and also for the basic start-up and shutdown of
the SCOOP/Qs run-time.

create executors create a given number of executors at program start-up.

join executors wait for all executors to finish. This is used in the setup routine
for a program so that the program only ends when all executors have
finished processing tasks.

signal work signal that tasks are available in the global work queue or in the
work queue of an executor.

wait for work used by executors to wait for new runnable tasks to be available
in either the global queue or a work stealing queue of another executor.

enqueue runnable enqueue a new runnable task in the global run queue.

try dequeue runnable a non-blocking operation that tries to dequeue tasks
from the global run queue.

Synchronization primitives

Since this layer introduces preemptive concurrency, it is beneficial to take the
unit of concurrency, the schedulable task, and reconstruct basic synchronization
primitives in terms of the multitasking operations provided by this layer. Re-
implementing these common synchronization primitives has two benefits:

1. it simplifies the implementation of some basic operations because they do
not have to manually schedule themselves,

2. it avoids the use of “heavy” operating system primitives which, if they block,
would occupy an entire executor and it would be unavailable to execute
more tasks.

Even though the highest layer (SCOOP code) will not use these primitives,
they are essential to the implementation for both abstraction and performance
reasons.

There are two primitives available, the mutex and the condition variable.
Other primitives could be added as required, although as of yet there has been
no need identified within the runtime implementation for anything beside these
primitives.

CHAPTER 5. EFFICIENT SCOOP 91

5.4.3 Handler layer
Private queues

The private queue structure enables communication between the client and
handler. It has few, but important, operations:

new Constructs a new private queue. Its only argument is the handler with
which it is supposed to communicate. Private queues are not created
directly, but only when a client asks for a new private queue for a given
handler. Clients contain a cache of handler so that a new private queue
does not have to be created every time. This requires an extra lookup in a
hash-table, but this cost is generally less than constructing a new private
queue.

The client of the private queue is not stored, it is only known implicitly as
the private queue will be in the cache of its respective client.

The code generation and run-time must be cautious to make sure only
a single client uses the private queue, which is why whenever a private
queue is needed the client uses its private queue cache.

lock enqueue this private queue in the handler’s queue-of-queues.

unlock enqueue a message in the private queue that tells the handler that this
private queue is done for the moment.

sync send a sync message to the handler and wait for a response.

dequeue used by the handler to ask for a new message from this queue.

is synced a query which will say if the client is currently synced with the supplier.
This is stored as a Boolean flag, remembering if the last operation was a
sync.

new reservations Mark the beginning of a new set of reservations, yet to be
added.

add handler Adds a handler to the set of reservations.

reserve handlers Actually reserves the set of reservations. This uses spinlocks
on the handlers to assure mutual exclusion.

Also, since private queues only ever have a single thread enqueueing message
and a single thread dequeueing, then it falls into the single-producer single-
consumer pattern (SPSC). This allows the usage of a specialized data structure:
the SPSC lock-free queue. SPSC lock-free queues are more specialized than the
general case of multiple-producer multiple-consumer (MPMC), which means they
are only correct in situations where SPSC applies. For this loss in flexibility, they
gain in efficiency. In particular, on x86 architectures they can be implemented
without any assembly-level lock instructions, which is the implementation that is
used in SCOOP/Qs.

The multiple handler reservation is currently implemented using spinlocks.
However, since enqueueing in the queue-of-queues has a very efficient imple-
mentation on shared-memory systems (a single atomic exchange operation, plus
one or two regular memory read/write operations) this could be a candidate to
be rewritten using software or hardware transactional memory.

5.4. QS RUN-TIME DESIGN92

Queue-of-queues

Each handler owns a unique queue-of-queues, which no other handler will
dequeue calls out of. The queue-of-queues follow a multiple-producer single-
consumer discipline, which again means that a specialized lock-free queue im-
plementation is used for efficiency. Queue-of-queue structure is even simpler
than the private queue because it does not require the ability to remember if it is
synchronized with any clients, nor does it have to remember its handler or any
of its clients.

Handler

The handler is the main actor in the SCOOP model. Handlers enqueue private
queues, into which they will later log calls, into other handler’s queue-of-queues.
Likewise when idle they look in their own queue-of-queues for new private
queues which have to be processed. Therefore, every handler must contain a
queue-of-queues.

However, to support the full SCOOP capabilities, other support structures are
needed. The existence of wait-conditions requires handlers to have a notification
mechanism when the state of the handler’s owned objects may have changed. To
achieve this, the handler also has a mutex, condition variable, and a reference to
the last client that the handler executed requests for. All together, these allow the
implementation of a notification system that will allow a client to wait for change
notification from a handler, but not be notified of its own queries. When finished
processing a private queue, the handler will set the last client variable and signal
the condition variable. Those waiting on the handler will awake and check that
the last client variable is not them, and if so try to execute their separate query
again. The client continues to wait if the last client variable still refers to them.

The operations in the lifetime of a handler are visualized as a state transition
diagram, appearing in Figure 5.25. A handler starts out its life receiving private
queues from its queue-of-queues. When a private queue is available, it is taken
and calls received from the private queue. Each call is then applied and the
handler continues this process of taking calls and applying them until the end
of the private queue is encountered. The end of the queue is not symbolized by
the private queue being empty, but rather is a special message that will be sent
through the private queue. When the private queue is finished, the handler will
notify other clients that may be waiting on it that its state may have changed and
they should retry their wait-conditions. After this, it returns to processing from
its queue-of-queues until it is told to shut down, which is an externally initiated
event. This shutdown can occur manually as in the SCOOP/Qs prototype, or by
the garbage collector when it determines the handler is no longer needed.

5.4.4 EVE run-time comparison
The techniques presented for SCOOP/Qs have also been integrated into the
research branch of the EiffelStudio IDE and compiler. This implementation
expands on the semantics in Section 5.2 to include reserving and yielding on
multiple handlers, rather than the single-handler version that was used in the
simplified semantics. There is an implementation of the SCOOP run-time already
in production; this section compares implementation differences between the

CHAPTER 5. EFFICIENT SCOOP 93

Process
queue-of-
queues

Process
private
queue

Apply callNotify
waiters

Handler
starts

Handler
finishes

Figure 5.25: Handler state transition diagram

production SCOOP run-time and the run-time crafted for EiffelStudio using
SCOOP/Qs techniques.

Core implementation differences

The SCOOP run-time used in the production EiffelStudio compiler is written
mostly in Eiffel itself. This has advantages, such as a garbage collector and
memory safety. However, depending on the program, during execution the
facilities provided by the run-time may be called very many times. Because
of this, the EVE/Qs run-time is written in C++ instead of Eiffel. This decision
contributes to the efficiency of the EVE/Qs run-time.

Additionally, the SCOOP/Qs run-time uses lightweight threads. The EiffelStu-
dio system, instead, uses system threads (i.e., POSIX threads). The system thread
SCOOP implementation in EiffelStudio has two main disadvantages: the cost of
context switching is comparatively high due to the system threads, and the use
of thread local storage to store handler context data means that it is harder to
differentiate between handler and thread.

Compatibility

The EVE/Qs run-time is nearly a drop in replacement for the existing EiffelStudio
run-time, with two basic exceptions. The first exception is the handling of wait-
conditions, which in the EiffelStudio run-time are periodically re-evaluated to
see if the result had changed, and in EVE/Qs this is not done because the choice
of timeout offers only another parameter to tweak. In addition, the situations
where this lack of timeout becomes noticeable is when the precondition relies on
the passing of time, or the execution of the precondition itself, to become true.

5.4. QS RUN-TIME DESIGN94

Neither of these situations are supported by the EVE/Qs run-time. However, one
may argue that these can either be designed around (for example using a timer
to trigger the condition explicitly rather than implicitly), or are bad designs to
begin with.

The interface of EVE/Qs is mostly compatible with that of EiffelStudio. As
EiffelStudio compiles down into C, this means that the same C code is gener-
ated whether the stock run-time or EVE/Qs run-time is used. The difference
is hidden in the common C header files which can switch between the two
implementations given different C compiler flags (defining different constants
for the pre-processor). This means that supporting both code paths is easily
accomplished; the choice of run-time can be made with a compilation switch.

Allocation difficulties

One of the largest hurdles to overcome in making the EVE/Qs implementation
perform better than the existing solution is the implementation of the EiffelStudio
memory management system. The memory allocator and collection system
is heavily guarded by mutexes. Unfortunately, these mutexes are global and
are required for even the most basic SCOOP operations, such as when clients
package the function pointer and arguments to log calls for a handler. One of
the important improvements of EVE/Qs was to fall back on the system malloc
implementation to allocate these structures.

However, since these structures may pack away references to objects allocated
by the normal run-time, they must be traversed during garbage collection. If these
structures were not traversed, then the collection may miss references to live
objects. Due to this, the EVE/Qs includes marking routine that is conditionally
called during the standard garbage collection cycle which will make sure that
any references that are “hidden” in the EVE/Qs run-time are made known to the
stock Eiffel run-time.

These allocations also occur when setting up return points for exception
handling. Exception handling happens in the EVE/Qs run-time when a handler
executes a call on behalf of a client. If that call throws an exception, the handler
must record it for later reporting back to the client. Since the stock Eiffel
run-time’s exception catching mechanisms require memory allocations (and
these allocations take a global lock), this is another performance bottleneck.
Unfortunately, a solution to avoid this allocation has not yet been found.

The introduction of a more modern garbage collection system for EiffelStudio
would alleviate these concerns and obviate the need for the, currently necessary,
mitigation mechanisms.

Impersonation

One of the fundamental optimizations, client-side query execution, requires
additional mechanisms in the Eiffel run-time to work properly. The issue is that
when a client runs a query instead of the handler, that query still has to believe
it is being executed by the handler. In the SCOOP/Qs run-time this is trivial
because the handler context is passed around explicitly and the client-side query
execution merely has to pass the appropriate handler’s context to the query.
However, in EiffelStudio the SCOOP context is kept in thread local storage. This
means that the handler context is bound to the thread, and it client must update

CHAPTER 5. EFFICIENT SCOOP 95

the thread local storage to reflect with handler’s context before the client-side
query is called, and restore its own context after the call finishes. This reduces
the simplicity of the optimization when compared with the approach that is taken
in the SCOOP/Qs run-time.

5.5 Related work
Finding run-time and compiler optimizations is a vital research goal when de-
veloping programming approaches for concurrency and parallelism. While ap-
proaches in this area are based on a broad variety of concepts, and in this respect
each require different solutions, this work profited from insights and discussions
of a number of related works.

For the SCOOP model there are different approaches to improve the perfor-
mance of execution. One approach called passive processors [72] turns separate
objects into simple lock-protected objects, their handler no longer processes the
calls and leaves it to the client. This mechanism is like a manually enabled
instance of client-side query execution, but can also enable client-side routine
execution. Additionally an approach which divides arrays among multiple han-
dlers [92] allows for competitive workloads on arrays. This is done by disabling
the SCOOP data race freedom guarantees for some library routines which will
divide up parts of the array so they do not have to be copied explicitly from
one handler to another. This is similar, although done at a lower level, to [49].
SCOOP/Qs, to contrast with array slicing, does not revoke any data race freedom
guarantees.

Cilk [10] is an approach to multi-threaded parallel programming based on a
run-time system that provides load balancing using dynamic scheduling through
work stealing. Work stealing [11] assumes the scheduling forms a directed
acyclic graph. In contrast, SCOOP/Qs tolerates some cyclic schedules through
the use of queues. Since SCOOP/Qs use queues, handler A can log work on
handler B while handler B logs work on A, as long as they do not issue queries
on one another (forcing a join edge). Also, SCOOP/Qs is not strict: edges go
into handlers from the outside, other than at spawn; this is actually the normal
case when logging calls. Although Cilk has been extended into Cilk++ [34],
this does not indicate a significant uptake of object-oriented concepts to ensure
correctness properties such as race freedom.

X10 [18] is an object-oriented language for high performance computing
based on the partitioned global address space model, which aims to combine dis-
tributed memory programming techniques with the data referencing advantages
in shared-memory systems. Although there is a mechanism to ensure local atom-
icity through the keyword atomic, it is opt-in, and as such admits racy programs
by default. The async blocks allow computations to run on different address
spaces, but there is no way for the caller to ensure consistency between async
blocks directed to the same address space. The help-first stealing discipline [39]
in X10 offers that the spawned task is left to be stolen, while the worker first
executes the continuation; this is in contrast to Cilk’s work-first strategy where
the spawned task is executed first. The help-first strategy has benefits as it avoids
the necessity of the thieves synchronizing. This only applies because the thefts
in a finish block in X10 are serialized in work-first, whereas they are not for
help-first. This technique would not be directly applicable to SCOOP/Qs because

5.5. RELATED WORK96

SCOOP/Qs waits only on the result of a single handler.
Aida [61] is an execution model that, like SCOOP, associates threads of

control with portions of the heap. The technique is implemented on top of
Habanero-Java [16], an extension of the X10 implementation for Java. When
there is contention for a particular heap location, the “loser” rolls back its heap
modifications, suspends, and appends itself (delegates) to the run queue of
the winner, effectively turning two concurrent tasks into a single one. This is
fundamentally different from the SCOOP model, which also has isolated heaps,
but allows interaction between threads of control, and even provides reason-
ing guarantees on this interaction. Therefore the underlying mechanisms are
fundamentally different, where Aida requires efficient heap ownership and con-
flict resolution via a parallel union-find algorithm, SCOOP/Qs requires efficient
communication which is attained via novel and nested uses of specialized queue
structures. Otello [113] extends the isolation found in Aida to include support
for nested tasks.

Another object-oriented approach which, like SCOOP, associates threads of
execution with areas of the heap is JCoBox [91]. It also makes the distinction
(similar to separate) between references that are local and those that are re-
mote, although this can only be applied per-class, not per-object as in SCOOP.
Each CoBox contains a queue for incoming asynchronous calls, though the rea-
soning guarantees are weaker for JCoBox, so this structure can be simple. The
synchronous calls in JCoBox are also executed locally, but no dynamic or static
method to reduce communication, ensuring data race freedom, is performed.

Kilim [97] is a framework that supports the implementation of Actor-based
approaches in Java. It improves message-passing performance by treating mes-
sages differently from other Java objects, in that they are free of internal aliases
and owned by at most one Actor at a time. The messages arrive via explicitly
declared mailboxes in the objects, which also do not provide the reasoning guar-
antees between messages that the SCOOP model provides. The Kilim mailboxes
have, therefore, a more simplistic behaviour compared to the queue-of-queues
approach in SCOOP/Qs. Kilim also sets new standards in creating lightweight
threads, which are not tied to kernel resources, thereby providing scalability
and low context switching costs. SCOOP implementations have previously been
based on operating system threads, and using lightweight threads in SCOOP/Qs
offers similar improvements in scalability as observed by Kilim.

Kilim is extended with ownership-based memory isolation [37] for mes-
sages to reduce the amount of unnecessary copying. Although not strictly a
message-based model, SCOOP/Qs may be able to apply this technique to so-
called expanded classes, which are more like standard C structures, and are
presently copied when used as arguments to separate calls.

The above is summarized by stating whether they offer guards (protection
against races) and delegation (ability for one entity to give work to another).

• No guarding, no delegation – Cilk/Cilk++.

• Partial guarding, delegation – X10 allows delegation as the only way for
one place to modify another. However, a place can asynchronously modify
itself through the same mechanism, thus there may be races within a place.

• Guarding, protective delegation – Aida and Otello extend X10 with the
ability to resolve races by rolling back changes and reducing the amount of

CHAPTER 5. EFFICIENT SCOOP 97

concurrent execution.

• Guarding, delegation – JCoBox and Kilim both have different approaches to
the actor/active object model. This implies strict guarding and delegation
of actions.

• Guarding, enhanced delegation – SCOOP follows the actor approach, but
then also offers enhanced delegation by allowing clients to maintain pre/-
postcondition reasoning with the handlers that they are delegating to.

5.6 Conclusion
This work focuses on SCOOP/Qs, an efficient execution model and implementa-
tion for the SCOOP concurrency model. As many other programming models that
ensure strong safety guarantees, SCOOP introduces restrictions on program exe-
cutions, which can become performance bottlenecks when implemented naively,
standing in the way of practicality and more widespread adoption. The key to
the present approach is a reexamination of the SCOOP guarantees, allowing
one to explore a larger design space for run-time and compiler optimizations.
In particular, it enabled the removal of much of the need for synchronization
between threads, thereby providing more opportunities for concurrency.

The underlying techniques used in SCOOP/Qs are an efficient way to offer
temporary control of one active object, or actor, over another. As such the
technique could also be used in approaches like JCoBox [91] or Kilim [97] to
provide more structured interactions between entities.

The overall approach given here, without the detailed run-time design dis-
cussion, is also available from [107].

5.6. CONCLUSION98

Chapter

6 Evaluation and
comparison

To provide confidence that the design and implementation of SCOOP/Qs re-
ally provide increased performance, the performance must be measured. This
evaluation aims to thoroughly explore the performance characteristics of the
SCOOP/Qs techniques. To do this, SCOOP/Qs is evaluated on a variety of
benchmark programs, and is compared in different ways. The comparisons are:

optimization the basic implementation is controlled and the optimizations that
are used are compared

implementation different implementations of the SCOOP language are com-
pared

language different languages are compared on the benchmarks

These comparisons work from the most specific (optimization) to the most
general (language). This style allows for a great deal of insight into the specific
and general characteristics of the SCOOP/Qs approach.

Section 6.1 gives an overview of the general categories of programs that are
benchmarked, the specific benchmark programs, and the testing procedure. Sec-
tion 6.2 shows the effect of applying different SCOOP/Qs optimization techniques
on the performance. Section 6.3 compares against the existing EiffelStudio imple-
mentation against the implementation of the ideas in EVE (EiffelStudio’s research
branch), and also a fresh implementation that can do more aggressive optimiza-
tion. Section 6.4 shows the performance of SCOOP/Qs along side a broad variety
of other paradigms and languages for parallel and concurrent programming –
C++/TBB, Go, Haskell, and Erlang – demonstrating competitiveness of SCOOP/Qs
in a wider context. Section 6.5 gives a review of other benchmarking techniques,
and Section 6.6 concludes.

6.1 Benchmarking
Properly evaluating a core run-time mechanism, such as SCOOP/Qs, requires
that it be used in a diverse assortment of situations. With this in mind, we
categorize the benchmarks that will be used into two main groups:

• parallel: problems where concurrency is not part of the functional specifi-
cation, but can be used to speed up the execution.

• concurrent: problems which are defined by their concurrent behaviour.

The first work type, parallel, is often a data processing task, where multiple
threads each process part of a large data set to decrease the total running time.
The second type of work, concurrent, is more about the coordination between
the threads of control. Here, the concurrency is part of the system’s specification,
such as a server handling multiple clients simultaneously.

99

6.1. BENCHMARKING100

6.1.1 Parallel
The benchmark programs selected for the parallel problems come from the
Cowichan problem set [109]. They focus on numerical processing and working
over large arrays and matrices. The programs include:

• randmat: randomly generate a matrix of size nr.

• thresh: pick the top p% of a matrix of size nr and construct a mask.

• winnow: apply a mask to a matrix of size nr, sorting the elements that
passed the mask based on their value and position, and taking only nw
from that sorted list.

• outer: constructing a matrix and vector based off a list of points.

• product: matrix-vector product.

These benchmarks can be sequentially composed together, the output of one
becoming the input to the next, to form a chain. This chain is more complex
and sizable than the individual and gives a more diverse picture of a language’s
parallel performance.

6.1.2 Concurrent
The concurrent problems focus on the interaction of different independent
threads with each other. Three benchmarks represent different interaction pat-
terns:

• mutex: n threads all compete for access to a single resource, the threads
do not depend on each other.

• prodcons: n producers and n consumers each operate on a shared queue;
the queue has no upper limit so producers do not depend on consumers,
but consumers must wait until the queue is non-empty to make progress.

• condition: n “odd” and n “even” workers increment a variable from an odd
(even) to an even (odd) number. Each group depends on the other to make
progress.

All of the above are repeated for m iterations. Finally to this two concurrency
benchmarks from the Computer Language Benchmarks Game [24] are added:

• threadring: threads pass a token around a ring in sequence until the token
has been passed nt times.

• chameneos: colour changing “chameneos” mate and change their colours
depending on who they mate with. This is done nc times.

The combination of these parallel and concurrent benchmarks gives us a balanced
view of the performance characteristics of the approach.

CHAPTER 6. EVALUATION AND COMPARISON 101

6.1.3 Setup
All benchmarks were performed 20 times on a Intel Xeon Processor E7-4830
server (4 × 2.13 GHz, each with 8 cores; 32 physical cores total) with 256 GB
of RAM, running Red Hat Enterprise Linux Server release 6.3. Language and
compiler versions used were: gcc-4.8.1, go-1.1.2, ghc-7.6.3, erlang-R16B01.
For the parallel benchmarks, the problem sizes used are nr = 10,000, p = 1
and nw = 10,000; for the concurrent benchmarks n = 32, m = 20,000, nt =
600,000, and nc = 5,000,000.

6.2 Optimization comparison
SCOOP/Qs is a collection of different techniques to optimize the execution of
SCOOP programs. It is important to understand what exactly the effect, if any,
each optimization has on making the execution faster. This knowledge can be
used to decide if a particularly complicated optimization is worth the cost of
refined implementation and maintenance.

Here the impacts of the optimizations outlined in Section 5.3 and Section 5.4
are examined. The following optimization configurations are examined in depth:

• Applying no optimizations (None).

• Dynamically coalescing sync operations by recording and checking the
synchronization status in the runtime (Dynamic), as in Section 5.3.6.

• Statically determining unnecessary sync operations and removing them in
a compiler pass (Static), as in Section 5.3.6.

• Usage of the queue-of-queues and private queues as a handler/client com-
munication abstraction (QoQ), as seen in the semantic model given in
Section 3.2.

• Applying all of the above SCOOP/Qs optimizations (All).

• Using all optimizations, and in addition using Thread-Caching Malloc
(TCMalloc) [98] (All/TC). TCMalloc is built to be especially efficient
when multiple threads are all allocating, which happens very often in
the SCOOP/Qs runtime for queue slots and closures. TCMalloc is not an
optimization contributed by this work, rather the contribution is recogniz-
ing that concurrent memory allocation may be a bottleneck. This is the
configuration used later when comparing implementations and languages.

These configurations are compared to evaluate if and when the optimization is
most effective.

6.2.1 Parallel
The idiomatic way to transfer data in SCOOP/Qs is to have the client pull
data from the handler. This happens in the Cowichan problems often, as the
underlying data structures are almost exclusively large arrays and the data in the
arrays must be distributed to and from workers. This is important background
for understanding the optimization comparison below.

6.2. OPTIMIZATION COMPARISON102

chain outer

product randmat

thresh winnow

0.0

2.5

5.0

7.5

0

20

40

60

0

20

40

60

0

20

40

60

0

40

80

120

0

30

60

90

120

NoneDyn.StaticQoQ All All/TC NoneDyn.StaticQoQ All All/TC

NoneDyn.StaticQoQ All All/TC NoneDyn.StaticQoQ All All/TC

NoneDyn.StaticQoQ All All/TC NoneDyn.StaticQoQ All All/TC
Variant

T
im

e
(s

)

Computation time Communication time

Figure 6.1: Comparison of SCOOP/Qs optimizations on parallel benchmarks
with 32 cores

Execution time. Figure 6.1 displays the both the computation and commu-
nication time. Computation time is the time spent calculating the result, and
the communication time is the difference between this and the total time. The
communication time measures the time processors spend waiting for one another
and sending data back and forth. From Figure 6.1, it is clear that communication
time is a dominating factor in general for the SCOOP programs. It is particularly
bad for the None and QoQ optimizations, and, compared to those, relatively
good for the others. This implies that a large portion of the time is spent sending
and waiting for data via queries, which the Dynamic and Static optimizations
reduce greatly. This has slightly less of an effect on the chain benchmark because
this benchmark communicates less than the others because many of the stages
of work are fused together so the data stays on the workers longer.

The difference between having no reduction in the number of sync calls
(None, QoQ) and employing some reduction technique (Dynamic, Static, All,
All/TC) is that the latter is at least 10 times faster (chain), around 100 times
faster (thresh, winnow, outer, product, randmat).

Additionally, since many of the access patterns in these benchmarks are
very structured (nested loops for copying matrices), the Static removal of sync
operations is significantly more effective than the dynamic removal. This is
because, seen when examining the generated assembly code, the static removal
allows such tight-copy loops to use vectorized instructions (such as SIMD) that

CHAPTER 6. EVALUATION AND COMPARISON 103

● ● ●● ●● ● ●●●●●

●●●
●● ● ●● ●●●●

●●
●●●● ●●●

● ●●

chain outer

product randmat

thresh winnow

2.5

5.0

7.5

2.5

5.0

7.5

2.5

5.0

7.5

2 4 8 16 32 2 4 8 16 32
Benchmark

S
pe

ed
up

Variant

● None

Dyn.

Static

QoQ

All

All/TC

Figure 6.2: Comparison of optimizations on parallel benchmarks’ scaling

result in code that looks like a straight memory copy operation such as in memcpy.

Although having less of a reduction, the QoQ optimization also improves
performance slightly (about because it is able to keep the processors running
more concurrently. The improvement is typically about 26% over None.

The geometric means of all benchmarks for each configuration are All/TC
(1.32s), All (1.33s), Static (1.35s), Dynamic (1.90s), QoQ (38.91s), and None
(49.14s). One notes by looking All and All/TC that although effective by itself,
QoQ does not contribute greatly once Static sync reduction is used.

Multicore scaling. The scaling behaviour in Figure 6.2 basically comes in two
flavours: those with some form of sync coalescing and those without. When some
sync reduction mechanism is used some speedup can be seen when increasing
the number of cores, although it is clearly not always very large. The best
scaling is the chain benchmark which has the least amount of communication
and it scales up to 9× at 32 cores. The scaling performance of every Cowichan
problem without sync coalescing exhibits a slowdown as the cores increase. This
slowdown is typically about 1.5× at 32 cores. This is not entirely surprising as
the threads are constantly switching from handler to client trying to get large
amounts of data back and forth. Table 6.1 shows the exact times for each number
of cores tested.

6.2. OPTIMIZATION COMPARISON104

Task Optim. 1 2 4 8 16 32
chain None 5.38 5.95 7.32 7.34 7.66 8.47
chain Dyn. 5.37 2.89 1.59 1.01 0.73 0.68
chain Static 5.36 2.86 1.57 0.97 0.68 0.63
chain QoQ 5.38 5.37 5.47 5.65 5.99 6.67
chain All 5.38 2.85 1.57 0.96 0.67 0.59
chain All/TC 5.38 2.85 1.58 0.96 0.66 0.60
outer None 36.96 52.86 65.20 67.45 55.72 57.55
outer Dyn. 2.97 2.08 1.61 1.38 1.29 1.27
outer Static 2.55 1.63 1.18 0.96 0.92 0.94
outer QoQ 31.26 44.12 45.34 50.23 45.66 46.76
outer All 2.53 1.60 1.15 0.92 0.88 0.88
outer All/TC 2.53 1.64 1.18 0.94 0.90 0.91
product None 35.69 52.21 64.99 67.21 57.20 57.81
product Dyn. 1.91 1.78 1.72 1.72 1.73 1.81
product Static 1.44 1.31 1.25 1.23 1.25 1.34
product QoQ 30.21 43.40 45.68 52.42 45.83 47.10
product All 1.43 1.31 1.25 1.23 1.25 1.35
product All/TC 1.45 1.32 1.26 1.25 1.27 1.36
randmat None 34.08 51.58 67.09 67.55 55.96 56.73
randmat Dyn. 1.14 0.85 0.71 0.64 0.62 0.65
randmat Static 0.71 0.42 0.28 0.22 0.20 0.22
randmat QoQ 28.75 42.66 46.05 48.91 45.36 47.07
randmat All 0.71 0.43 0.28 0.22 0.20 0.22
randmat All/TC 0.72 0.44 0.30 0.23 0.21 0.24
thresh None 74.11 108.51 134.72 136.61 117.49 123.14
thresh Dyn. 4.37 3.50 3.12 2.92 2.89 3.37
thresh Static 3.57 2.69 2.27 2.08 2.10 2.51
thresh QoQ 59.68 88.17 91.91 99.88 92.40 94.54
thresh All 3.66 2.72 2.27 2.09 2.11 2.40
thresh All/TC 3.68 2.74 2.28 2.11 2.12 2.30
winnow None 70.15 105.04 132.83 133.52 114.13 116.33
winnow Dyn. 5.99 4.62 3.95 3.62 3.51 3.55
winnow Static 5.13 3.74 3.08 2.75 2.66 2.72
winnow QoQ 59.84 88.82 91.55 101.12 92.49 95.14
winnow All 5.10 3.71 3.04 2.70 2.57 2.58
winnow All/TC 5.12 3.73 3.05 2.72 2.59 2.59

Table 6.1: Times (in seconds) with optimizations applied on parallel benchmarks

CHAPTER 6. EVALUATION AND COMPARISON 105

chameneos condition

mutex prodcons

threadring

0

5

10

15

20

0

1

2

3

0.0

0.3

0.6

0.9

1.2

0

1

2

0

5

10

15

20

NoneDyn. StaticQoQ All All/TC NoneDyn. StaticQoQ All All/TC

NoneDyn. StaticQoQ All All/TC NoneDyn. StaticQoQ All All/TC

NoneDyn. StaticQoQ All All/TC
Variant

T
im

e
(s

)

Figure 6.3: Comparison of SCOOP/Qs optimizations on concurrent benchmarks

6.2.2 Concurrent
The effect of the different optimizations on the concurrent problems can be seen
in Figure 6.3. One notes that the relative effectiveness of the sync reduction
optimizations and the QoQ optimization, compared to None, have swapped
places. While the QoQ optimization had an improvement of about 26% on the
parallel benchmarks, the effect is slightly greater for the concurrency benchmarks
with an improvement of 60%. The increase in performance can be attributed
to the better utilization of available processing capabilities resulting from less
blocking in the underlying semantics. When using QoQ there are also fewer
context switches, since the private queues require only one context switch to
wait for a query to return. When not using the queue-of-queues a client could
wait three times: first for the lock on the handler, then the handler must wait
for the client to log its query, then the client must wait again for the handler to
return the query.

Instead now the sync reduction optimizations, Dynamic and Static, now
have an average improvement of 25% over None. This is a significant improve-
ment; however the concurrency benchmarks do not benefit as greatly from this
optimization as the parallel benchmarks do. The sync reduction in particular
does not factor greatly into the mutex and condition benchmarks. In the case of
mutex syncs are not used at all, and in the case of condition they are only used a
little, and the other overheads of scheduling drown out any improvements.

The threadring benchmark is particularly interesting as it shows one case

6.2. OPTIMIZATION COMPARISON106

Task None Dyn. Static QoQ All All/TC
chameneos 21.93 10.99 10.80 14.08 4.76 4.19
condition 3.13 3.04 3.02 1.52 1.54 1.46
mutex 1.10 1.12 1.08 0.69 0.68 0.14
prodcons 2.76 2.45 2.41 1.97 1.59 0.88
threadring 21.74 16.17 16.09 14.54 5.24 5.08

Table 6.2: Times (in seconds) with optimizations applied on concurrent bench-
marks

where the improvements seen in All and All/TC are not the sum of the im-
provements in the other optimizations. Each of the sync reduction and QoQ
optimizations reduce the running time by about 5s, but when they are combined
the running time drops by 15s. This may be due to the sync coalescing making
for shorter reservation times on the handler, and the QoQ optimization allowing
for more concurrency, meaning in the end there is less overall contention.

Lastly, the use of TCMalloc in the All/TC configuration helps the prodcons
and mutex significantly. prodcons improves by 2× and mutex sees more than a 4×
improvement. These have highly asynchronous behaviours where some workers
are constantly logging asynchronous calls which requires rapid small memory
allocations on different threads, and TCMalloc helps with exactly this use case.

The geometric mean of all the concurrent benchmarks are All/TC (1.31s),
All (2.11s), QoQ (3.36s), Static (4.24s), Dynamic (4.30s), and None (5.38s).
The full results are visible in Table 6.2.

6.2.3 Summary
Each optimization has particular situations in which it brings the most benefit:

• QoQ is best on coordination tasks but is not as useful for query-heavy
workloads.

• Dynamic sync-coalescing is absolutely essential tasks with many queries,
and shows a good improvement on the concurrent workloads.

• Static sync-coalescing is primarily effective on very structured query usages,
beating even Dynamic in such situations. Similar to Dynamic it also
improves concurrency benchmarks nicely.

• All/TC shows that memory allocation can be a bottleneck due to many
small allocations from different threads; TCMalloc helps address this bot-
tleneck.

The geometric mean of all benchmarks is 16.26s for no optimizations, 11.43s for
QoQ, 2.86s for Dynamic sync-coalescing, 2.39s for Static sync-coalescing, 1.68s
with all optimizations, and 1.31 with all optimizations and using TCMalloc.

The net effect is that the final SCOOP/Qs runtime is ∼12× faster than the
basic runtime. A comparison of all geometric means for concurrent and parallel
workloads is given in Table 6.3

CHAPTER 6. EVALUATION AND COMPARISON 107

Task None Dyn. Static QoQ All All/TC
Parallel 49.14 1.90 1.35 38.91 1.33 1.32
Concurrent 5.38 4.30 4.24 3.36 2.11 1.31
Both 16.26 2.86 2.39 11.43 1.68 1.31

Table 6.3: Geometric means (in seconds) benchmarks with optimizations

6.3 Implementation comparison
The Qs execution approach is validated with two separate implementations, the
SCOOP/Qs implementation and the EVE/Qs implementation. The SCOOP/Qs
implementation has the benefit of being a fresh start, and represents what is
possible when the entire compilation and run-time approach can be tailored
exactly to meet SCOOP’s needs. The EVE/Qs implementation does not have
this luxury, and must be compatible with the existing EiffelStudio run-time and
compilation approach.

6.3.1 Parallel
As explained in Section 5.4.4, the EVE/Qs run-time shares the queue-of-queues
model with SCOOP/Qs, as well as the dynamic avoidance of sync operations.
Section 6.2 shows that dynamic removal of sync operations greatly reduces
the execution time of the parallel benchmarks, and lowers the communication
overhead significantly.

Execution time. The effect of sync operation removal can also be seen in the
reduction in total execution time for the EVE/Qs implementation, shown in
Figure 6.4. As with the comparison of individual optimizations, chain does not

chain outer product

randmat thresh winnow

0

50

100

150

0

250

500

750

0

200

400

600

800

0

200

400

600

800

0

500

1000

1500

2000

2500

0

500

1000

ES EVE/Qs Qs ES EVE/Qs Qs ES EVE/Qs Qs

ES EVE/Qs Qs ES EVE/Qs Qs ES EVE/Qs Qs
Language

T
im

e
(s

)

Figure 6.4: Parallel comparison at 32 cores with EiffelStudio, EVE/Qs and Qs

have the same magnitude of improvement because it has less communication

6.3. IMPLEMENTATION COMPARISON108

overhead than the other parallel benchmarks. The performance of EVE/Qs
is about an order of magnitude slower than SCOOP/Qs, mostly due to the
compilation and execution approach of Eiffel programs (not just SCOOP) as done
by the EiffelStudio compiler and run-time. In particular, the garbage collection
scheme used in EiffelStudio requires that the address of the traceable stack
variables (such as arrays) are stored in a secondary stack. This secondary stack
will be used during the marking phase of garbage collection. The reason this
is a problem is because taking the address of a stack variable limits what the
underlying optimizer can do because suddenly those variables could be modified
out of view of the current function that the optimizer is working on, and the
optimizer has to assume that bad things do happen. This is especially important
when there’s a tight loop that works on an array of integer values, as in the
Cowichan problems, because the optimizer can often do a lot to improve the
performance through vectorization. Because of this, it is not seen as essential to
implement the Static sync removal optimization, as the optimizer wouldn’t be
able to use this information effectively in any case.

Multicore scaling. In addition to the low absolute performance, the scaling
characteristics of EiffelStudio’s SCOOP implementation are also not what would
be expected. In particular, the single-core performance is constrained. This can
be seen in Figure 6.5 in the jump from 2-core execution to 4-core execution in the

●●

●

●
●

●

●

●

● ●

● ●

● ● ●●●
●

● ●●
● ● ●

●
●
● ●

● ● ●●●
●

●
●

chain outer

product randmat

thresh winnow

0

10

20

30

0

10

20

30

0

10

20

30

2 4 8 16 32 2 4 8 16 32
Benchmark

S
pe

ed
up

Language

● ES

EVE/Qs

Qs

Figure 6.5: Parallel speedup comparison with EiffelStudio, EVE/Qs and Qs

chain benchmark. This increase should be at most double, but for EiffelStudio

CHAPTER 6. EVALUATION AND COMPARISON 109

it is over 25x greater. This cannot be due to the additional resources allocated
to perform the computation of the benchmark, even allowing for cache effects.
Rather it must be that the additional computational resources help overcome the
inherent inefficiency in EiffelStudio’s SCOOP runtime.

Profiling reveals that most of the time is spent in the loop that applies calls
and notifies clients. Also mutrace [85], a mutex and condition variable profiling
tool, reports that when run under 2 cores, the time spent waiting on condition
variables in the chain benchmark is about 75.0s 1. When running the same
benchmark with 3 cores, the time drops by an order of magnitude, down to
6.5s spent waiting on condition variables. This data suggests, although it is not
conclusive, that since the handler is running more slowly the clients are context
switching more as they wait for the query result to arrive. When the number of
cores is increased, there are more resources for the clients and handler, thus the
handler can more readily process incoming calls and the clients do not context
switch as often as a result.

As the number of cores continue to increase, the performance degrades again
(in all parallel benchmarks) for the EiffelStudio implementation. It is not clear
why this occurs, although it is possible that the effect is the same as with the
None optimization and there is a lot of context switching. However the effect
here is much more pronounced that in the None case. These effects are not seen
in the EVE/Qs or SCOOP/Qs implementations as they both have some form of
sync reduction mechanism. Table 6.4 displays the times for each approach for
each number of cores used.

Task Impl. 1 2 4 8 16 32
chain ES 2088.56 2 2088.56 80.28 75.69 135.65 165.84
chain EVE/Qs 40.11 35.01 31.51 29.75 29.56 29.62
chain Qs 5.36 2.86 1.60 0.98 0.68 0.57
outer ES 1424.82 229.49 232.13 235.19 743.51 865.28
outer EVE/Qs 13.92 12.24 11.18 11.21 11.32 11.39
outer Qs 2.55 1.62 1.16 0.93 0.87 0.86
product ES 1148.16 694.85 307.99 306.02 455.02 777.05
product EVE/Qs 10.00 9.73 9.74 9.75 9.76 9.77
product Qs 1.44 1.31 1.25 1.23 1.24 1.31
randmat ES 718.37 287.85 341.30 315.25 675.46 838.30
randmat EVE/Qs 10.60 10.45 10.78 10.77 10.88 10.84
randmat Qs 0.72 0.44 0.29 0.22 0.20 0.19
thresh ES 2092.66 764.67 829.01 827.09 1837.08 2405.55
thresh EVE/Qs 30.57 29.93 29.73 29.72 29.96 30.13
thresh Qs 3.57 2.71 2.28 2.09 2.10 2.16
winnow ES 1557.49 830.03 411.66 416.53 917.25 1392.29
winnow EVE/Qs 19.47 12.33 12.72 12.74 12.74 12.81
winnow Qs 5.09 3.71 3.03 2.68 2.52 2.45

Table 6.4: Precise times (in seconds) for parallel benchmark of EiffelStudio,
EVE/Qs, and SCOOP/Qs

The geometric means of times for all parallel benchmarks give an average

1This profiling was not done on the benchmarking machine, which was difficult to get mutrace
working on.

2This test would not run to completion so the time is copied from the 2-core case.

6.3. IMPLEMENTATION COMPARISON110

Task EiffelStudio EVE/Qs SCOOP/Qs
chameneos 97.55 51.51 4.19
condition 205.88 35.60 1.46
mutex 2.31 0.90 0.14
prodcons 120.64 25.62 0.88
threadring 468.71 112.19 5.08

Table 6.5: Precise times (in seconds) for concurrency benchmark of EiffelStudio,
EVE/Qs, and SCOOP/Qs

runtime of 580.54s for EiffelStudio, 15.94s for EVE/Qs, and 1.32s for SCOOP/Qs.
There is at least an order of magnitude between each of the implementations.

6.3.2 Concurrent
Unlike the parallel benchmarks, the concurrent benchmarks do not contain
performance irregularities. Additionally, Figure 6.6 shows that the performance
of EiffelStudio and EVE/Qs is much closer in the concurrent benchmarks. EVE/Qs

chameneos condition mutex

prodcons threadring

0

25

50

75

100

0

50

100

150

200

0.0

0.5

1.0

1.5

2.0

0

25

50

75

100

125

0

100

200

300

400

ES EVE/Qs Qs ES EVE/Qs Qs ES EVE/Qs Qs

ES EVE/Qs Qs ES EVE/Qs Qs
Language

T
im

e
(s

)

Figure 6.6: Concurrent comparison with EiffelStudio, EVE/Qs and Qs

is still faster, in all cases, than EiffelStudio, although not by nearly as much as
with the parallel benchmarks.

This indicates the EiffelStudio run-time is more tailored to programs that fol-
low a concurrent pattern and do not transmit as much data between handlers, as
in the parallel benchmarks. Table 6.5 shows the precise times of the benchmarks.
The geometric means, again, tell the general story: the difference between Eif-
felStudio and EVE/Qs is no longer an order of magnitude, but a constant of
about 3x. Concretely, the geometric mean for EiffelStudio is 75.54s, EVE/Qs has
21.66s, and Qs takes 1.31s. The order of magnitude difference between Qs and

CHAPTER 6. EVALUATION AND COMPARISON 111

EVE/Qs remains, again due the fundamental inefficiencies in the non-SCOOP
part of the EiffelStudio run-time, which EVE/Qs also uses. Section 5.4.4 shows
that one of these is the use of locks in all allocations in EiffelStudio’s memory
allocator, which is even used to allocate shadow-stack frames for the garbage
collection at the start of every routine. SCOOP/Qs also uses lightweight threads
which reduces the thread-switching overhead, which is also a factor in both the
concurrent and parallel benchmarks.

6.3.3 Summary
The geometric means of each benchmark set for each language are given in
Table 6.6. The geometric means of both problem sets is also given, from which

Task EiffelStudio EVE/Qs SCOOP/Qs
Parallel 580.54 15.94 1.32
Concurrent 75.54 21.66 1.31
Both 209.41 18.58 1.31

Table 6.6: Geometric means of times (in seconds) for EiffelStudio, EVE/Qs,
SCOOP/Qs in different benchmark sets, and combined.

one can see that overall trend continues: EVE/Qs is an order of magnitude faster
than EiffelStudio’s SCOOP implementation. Additionally SCOOP/Qs is still an
order of magnitude faster than EVE/Qs, and two orders of magnitude faster than
EiffelStudio.

6.4 Language comparison
Comparing languages controls the fewest number of variables: the optimizations
are different, the implementations are different, and the semantics of the lan-
guage vary widely. The only thing that remains the same are the benchmarks
that are tested. The purpose of such a comparison is to understand the different
trade-offs that come with language choices.

The comparison languages should: be currently used, well-known, have
mature implementations, and represent a variety of different underlying design
choices. For the purposes of the evaluation, this means that the evaluation should
select from different programming paradigms, different approaches to shared
memory, different concurrency safety guarantees, and different threading imple-
mentations. With this in mind, the selected languages are: C++/TBB (Threading
Building Blocks) [51], Erlang [4], Go [35], and Haskell [82]. This selection
attempts to combine a reasonable number of the facets outlined above to give a
complete picture.

C++/TBB. The inclusion of C++ represents the kind of “traditional” approach
to concurrency that uses regular threads and shared memory. TBB is a library
containing many functions, in the context of these benchmarks it is used to
aid the implementation of the parallel benchmarks. In particular TBB contains
routines that map over an array in parallel, and also can reduce an array in
parallel given an associative operator. TBB is not used for the concurrency

6.4. LANGUAGE COMPARISON112

benchmarks, as those are either taken from the Shootout Game’s repository or
use simpler primitives like mutexes and condition variables.

Go. Go is a recent language from Google, modelling its style of concurrency
after CSP by including channels for communication between threads. However,
Go still allows the usage of shared memory and is thus still susceptible to data
races. Go is differentiated from C++/TBB in that it uses light-weight threads as
opposed to operating system threads.

Erlang. Erlang is a functional language developed by Ericsson that is designed
for highly concurrent systems. It disallows data races by having isolated processes
that communicate purely through sending and receiving messages to each other.
Erlang has no sharing between different processes: when data is sent between
processes it is copied in its entirety. Additionally, it uses light-weight threads as
the underlying threading mechanism.

Haskell. As purely functional language, Haskell requires that actions that may
change the state be indicated in the type of the action. In particular this allows
approaches like STM to be used in a safe way, by mandating that transactional
variables are never modified outside of an atomic region. This property is used in
the implementations of the concurrency benchmarks programs to provide data
race freedom. The parallel benchmarks use the Repa library and the par function
to provide data race freedom. Repa allows high-level descriptions of array and
matrix operations to be executed safely in parallel. The par function operates
as an advisory to the Haskell run-time that its arguments may be evaluated in
parallel; par cannot introduce data races because it is a pure function.

Table 6.7 makes the diversity of properties clear. The Races column says if

Language Races Threads Paradigm Memory Approach
C++/TBB possible OS Imperative Shared Skeletons/threads

Go possible light Imperative Shared Goroutines/Channels
Haskell none light Functional STM STM/Repa
Erlang none light Functional Non-shared Actors

SCOOP/Qs none light O-O Non-shared Active Objects

Table 6.7: Language characteristics

races are possible, Threads reports what kind of threading is used in the imple-
mentation, Paradigm describes the language paradigm, Memory refers to how
memory is shared between threads, and Approach is the underlying approach to
concurrency that the language uses and what is used in the construction of the
benchmark programs.

Note that the implementations of the C++, Go, and Erlang parallel bench-
marks were reviewed by external experts. This lessens the risk that some error
was made in the implementations by not knowing enough about the paradigm
to be effective. The implementations, along with usability and performance
comparisons can be found in [76, 75].

CHAPTER 6. EVALUATION AND COMPARISON 113

chain outer

product randmat

thresh winnow

0

5

10

15

0.0

2.5

5.0

7.5

0

3

6

9

12

0
1
2
3
4
5

0.0
2.5
5.0
7.5

10.0
12.5

0
5

10
15
20
25

Qs Erl. Hask. C++ Go Qs Erl. Hask. C++ Go

Qs Erl. Hask. C++ Go Qs Erl. Hask. C++ Go

Qs Erl. Hask. C++ Go Qs Erl. Hask. C++ Go
Language

T
im

e
(s

)
Computation time Communication time

Figure 6.7: Execution times of parallel tasks on different languages, executed on
32 cores

6.4.1 Parallel benchmarks
The parallel benchmarks are meant to measure how well a language can handle
taking a particular program and scaling it given more computational resources
(cores). Note that it is common in the Erlang and SCOOP/Qs implementations
of the Cowichan problems that a significant amount of time is spent sharing
results among the threads. Therefore, to more clearly see the effect of different
optimizations, and to separate computational effects from communication effects,
the time spent computing versus the time spent communicating the results is
distinguished.

Execution time. The graph of performance with 32 cores is given in Figure 6.7.
As with SCOOP/Qs, to give a more clear picture of the performance characteristics
of Erlang, the computation and the communication time are also distinguished
here. One can see that SCOOP/Qs and Erlang both spend a majority of their time
in communication, with the exception of the chain problem, which has much less
communication between the workers. It is useful to consider both the total and
the computation time: in non-benchmark style problems it is more likely that
the workloads fall somewhere in the middle. For example, the chain problem,
which is the composition of the other smaller benchmarks, does not suffer from
nearly the same communication burden as they do.

Erlang has unfavourable performance results compared to the other lan-

6.4. LANGUAGE COMPARISON114

●

●
●

●
●

●

●●● ●
●●

● ●●● ●●
● ●

●
●

●●

●●● ●● ● ●● ●● ●●

chain outer

product randmat

thresh winnow

0

10

20

30

0

10

20

30

0

10

20

30

2 4 8 16 32 2 4 8 16 32
Benchmark

S
pe

ed
up

Language

● Qs

Erl.

Hask.

C++

Go

Qs (comp.)

Erl. (comp.)

Figure 6.8: Speedup over single-core performance, up to 32 cores

guages. Due to Erlang’s data representation (forces to use linked lists to represent
matrices) and its execution model (cannot use the HiPE-optimized builds [41]
with the multithreaded run-time), it generally falls far behind the other ap-
proaches, even Haskell and SCOOP/Qs.

Besides Erlang, the other languages are more closely grouped. The geometric
means for total time are, in increasing order: C++/TBB (0.32s), Go (0.57s),
Haskell (0.89s), SCOOP/Qs (1.32s), and Erlang (18.07s). For computation-only
time, the order is: SCOOP/Qs (0.28s), C++/TBB (0.32s), Go (0.57s), Haskell
(0.89s) and Erlang (4.32s).

Note that this puts SCOOP/Qs first because many of the cache effects are
removed due to the predistribution of the data before the timing starts. This is
only included as a sanity test, to show that the lower-bound for the SCOOP/Qs
implementation is competitive with the other approaches.

Multicore scaling. The other aspect that is investigated is the speedup of the
benchmarks across 32 cores. In Figure 6.8 one can see the performance of
the various languages on the different problems. One can additionally see that
on chain, most languages manage to achieve a speedup of around 5x. Go is
the exception, and runs into problems past 8 cores. This was also an effect
that was seen in a previous language comparison study [76] from which the
implementation was taken; the implementation was also reviewed by a key Go
developer in the study. Erlang also sees a performance degradation, though only

CHAPTER 6. EVALUATION AND COMPARISON 115

chameneos condition

mutex prodcons

threadring

0

20

40

60

0

10

20

0

2

4

6

0.0

2.5

5.0

7.5

0

20

40

60

Qs Erl. Hask. C++ Go Qs Erl. Hask. C++ Go

Qs Erl. Hask. C++ Go Qs Erl. Hask. C++ Go

Qs Erl. Hask. C++ Go
Language

T
im

e
(s

)

Figure 6.9: Execution times of concurrent tasks on different languages

past 16 cores.
Also of note is the performance of Haskell on the randmat benchmark. This is

one of the few benchmarks where Repa could not be effectively used due to the
nature of the problem, so the basic par-based concurrency primitives are used.
The basic strategy has chunks of the output array constructed in parallel, then
concatenated together. The concatenation is sequential, however, putting a limit
on the maximum speedup; using the ThreadScope [108] performance reporting
tool, it was clear that the stop-the-world garbage collector was intervening too
often. The last unexpected result was the inability for the Erlang version of the
winnow program to speedup past about 2-3x. This was examined in detail but no
cause could be found. Precise timing data can be found in Table 6.8.

6.4.2 Concurrent benchmarks
The concurrent programming tasks are compared in Figure 6.9 and exact times
in Table 6.9.

Haskell tends to perform the worst, which is likely due to the use of STM,
which incurs an extra level of bookkeeping on every operation. Erlang performs
better, but in general lags behind the other approaches. C++/TBB tends to be
the fastest, except in the condition and threadring benchmarks, which are both
essentially single-threaded; they are designed to test context switching overhead
in various forms. Go does quite well uniformly, never the fastest, but never
the slowest. Lastly, SCOOP/Qs performs mostly in line with C++/TBB and Go,

6.4. LANGUAGE COMPARISON116

Threads
Task Language 1 2 4 8 16 32
chain Qs 5.36 2.86 1.60 0.98 0.68 0.57
chain Erlang 120.59 69.00 32.06 18.48 13.23 16.01
chain Haskell 13.78 7.71 4.62 3.30 2.74 2.94
chain C++ 5.57 2.76 1.42 0.76 0.43 0.32
chain Go 7.39 4.09 2.39 1.79 1.93 2.60
chain Qs (comp.) 5.30 2.70 1.40 0.75 0.42 0.26
chain Erlang (comp.) 119.68 68.13 30.93 17.75 12.63 15.15
outer Qs 2.55 1.62 1.16 0.93 0.87 0.86
outer Erlang 61.57 38.21 21.19 17.57 11.67 8.05
outer Haskell 5.49 2.76 1.40 0.74 0.41 0.36
outer C++ 1.59 0.83 0.42 0.23 0.15 0.14
outer Go 2.47 1.44 0.84 0.57 0.60 0.67
outer Qs (comp.) 1.84 0.92 0.47 0.23 0.12 0.06
outer Erlang (comp.) 40.66 22.54 10.45 6.05 3.12 2.52
product Qs 1.44 1.31 1.25 1.23 1.24 1.31
product Erlang 15.89 13.94 12.66 12.08 11.82 11.33
product Haskell 0.45 0.25 0.16 0.11 0.11 0.15
product C++ 0.44 0.23 0.13 0.09 0.08 0.12
product Go 0.76 0.46 0.29 0.19 0.15 0.13
product Qs (comp.) 0.28 0.14 0.07 0.04 0.02 0.01
product Erlang (comp.) 3.35 1.95 0.90 0.45 0.24 0.15
randmat Qs 0.72 0.44 0.29 0.22 0.20 0.19
randmat Erlang 30.93 18.01 10.20 5.77 4.05 4.14
randmat Haskell 0.68 0.43 0.36 0.44 0.62 1.03
randmat C++ 0.44 0.23 0.13 0.08 0.06 0.08
randmat Go 0.78 0.43 0.24 0.14 0.09 0.08
randmat Qs (comp.) 0.58 0.30 0.15 0.08 0.05 0.03
randmat Erlang (comp.) 20.69 11.26 5.63 2.99 1.73 1.50
thresh Qs 3.57 2.71 2.28 2.09 2.10 2.16
thresh Erlang 31.82 22.35 17.77 14.48 12.88 11.96
thresh Haskell 1.56 0.96 0.69 0.55 0.51 0.50
thresh C++ 1.00 0.66 0.34 0.18 0.12 0.11
thresh Go 0.95 0.60 0.37 0.22 0.17 0.17
thresh Qs (comp.) 1.76 0.89 0.51 0.31 0.16 0.08
thresh Erlang (comp.) 19.30 10.74 5.97 2.77 1.47 0.89
winnow Qs 5.09 3.71 3.03 2.68 2.52 2.45
winnow Erlang 31.03 26.02 25.04 24.75 24.38 23.95
winnow Haskell 5.43 2.77 1.42 0.80 0.48 0.52
winnow C++ 2.04 1.03 0.53 0.29 0.18 0.15
winnow Go 2.47 1.29 0.71 0.46 0.32 0.28
winnow Qs (comp.) 2.76 1.40 0.70 0.35 0.18 0.10
winnow Erlang (comp.) 4.06 2.58 1.84 1.46 1.29 1.24

Table 6.8: Parallel benchmark times (in seconds)

CHAPTER 6. EVALUATION AND COMPARISON 117

Task SCOOP/Qs Erlang Haskell C++ Go
chameneos 4.19 8.20 62.45 0.32 2.23
condition 1.46 2.14 24.83 15.97 5.91
mutex 0.14 6.11 0.86 0.14 0.17
prodcons 0.88 8.82 3.48 0.40 0.66
threadring 5.08 3.33 58.58 34.12 13.73

Table 6.9: Concurrent benchmark times (in seconds)

however it is the fastest in the condition benchmark. In increasing order of
geometric means: SCOOP/Qs (1.31s), C++/TBB (1.57s), Go (1.82s), Erlang
(5.01s), and Haskell (12.20s).

6.4.3 Summary
This evaluation presents a wide variety of approaches to concurrency and situates
SCOOP/Qs among them. In particular, SCOOP/Qs is the fastest language over
all problems on the concurrency benchmarks, beating even C++. Note, however,
that neither Go nor C++/TBB offers any of the guarantees of SCOOP/Qs, and
SCOOP/Qs offers more guarantees than Erlang, and roughly the same guarantees
as Haskell (through transactional memory).

For parallel problems, SCOOP/Qs ranks 4th owning mostly to the communica-
tion overhead of the language. The chain benchmark indicates the performance of
computational tasks that are not dominated by communication, and SCOOP/Qs
is only beat by C++ on that benchmark. SCOOP/Qs outpaces Erlang in all cases,
and can provide reasonable performance comparable with the other approaches,
while still providing more guarantees in the execution model.

Table 6.10 shows the geometric means for each benchmark set and the
combined mean for all problems per language.

Benchmark SCOOP/Qs Erlang Haskell C++ Go
Parallel 1.32 18.07 0.89 0.32 0.57
Concurrent 1.31 5.01 12.20 1.57 1.82
Both 1.31 9.51 3.30 0.71 1.02

Table 6.10: Geometric means of times (in seconds) for languages in different
benchmark sets, and combined.

6.5 Related work
Blackburn et al. [8] provide a comprehensive analysis of benchmark construction,
and the associated pitfalls, while proposing the DaCapo benchmark suite as an
improvement over the existing SPEC Java benchmark. However, much of the
advice is specific to environments which have a JIT compiler or a runtime, and
thus more specific than this work.

In [87], Richards et al. develop an automated technique for benchmark
construction. It collects traces of Javascript executions from existing websites to
model relevant real world behaviour. These traces are used to generate programs

6.5. RELATED WORK118

representing the traces, which can mimic the non-functional characteristics
of the original JavaScript program. This work is specific to the JavaScript
language, does not consider concurrent programs, and highlights workloads that
are important for JavaScript run-times. The goal of having a more structured
benchmark process, although not mechanized, is also sought after in this thesis,

Kalibera et al. [46] propose that concurrent benchmarks should be measure
other things than just runtime. To better understand what benchmarks are ac-
tually testing the performance of, they record read, write, memory allocation,
and monitor acquisition operations. This enables them to examine details such
as how much contended locking occurs and how much cache invalidation may
happen, although they do not examine the hardware effects directly. They then
analyze operation patterns under different time periods and situations, and
are able to effectively perform a post-mortem analysis of the DaCapo bench-
mark suite’s concurrent application workloads. Such fine grained measurements
would also be interesting in the different comparisons between optimizations,
implementations, and languages.

Guerraoui et al. [38] also aim to take a look at benchmarking software
transactional memory (STM) implementations. Like [46] it bases much of its
analysis not in specific benchmarks but rather focuses on shared read/write
behaviour. It proposes the use of data graphs for STM implementations to
traverse and modify in a variety of ways. These different graphs and workloads
then exercise various data access patterns (read-heavy, write-heavy, read/write).
This approach bears a slight resemblance to ours in the usage of a variety
of structured benchmark workloads, but they are not composable, and they
technique is specific to testing STM implementations.

A performance bug study by Jin et al. [44] randomly surveyed 109 perfor-
mance bugs from open source programs. Of the 109 bugs, 31 were introduced
by developers not being aware of the performance implications of a feature or
API. One example of this was a lock being taken inside a library function, this
performance bug would not be visible in single-threaded execution. Findings
such as this suggest the need for a way to re-examine existing benchmark prac-
tices, in particular to start combining benchmarks in situations that were not
originally considered, i.e. running operations in parallel.

Zhang and Seltzer [112] propose a vector of microbenchmarks for primitive
operations (calls, arithmetic, etc.). This vector is then combined (dot-product)
with a vector characterizing a particular application’s usage of these primitive
operations. This separation of measurement and importance is interesting and
may provide a more structured way to evaluate benchmarks in particular contexts
where different performance characteristics are required.

A wide array of tests on multicore Java performance characteristics were
conducted by Sartor and Eeckhout [89]. The experiments were of a wide and in-
teresting variety, examining the effect of frequency scaling and thread migrations
on a variety of benchmarks from the DaCapo benchmark suite.

In [99] Turon proposes a new concurrent programming method, and rein-
forces the validity of the method with benchmarks. Four different benchmarks
are used, mostly based on well known data structures, and each test exists in
two modes: high and low contention. The goal of providing different workloads
is similar to the two categories of benchmarks that are used to evaluate the
SCOOP/Qs work.

CHAPTER 6. EVALUATION AND COMPARISON 119

6.6 Conclusion
This evaluation has shown the performance properties of the SCOOP/Qs exe-
cution model. Beginning with the most specific, optimizations that are specific
SCOOP/Qs are compared to gauge their effectiveness on different workloads.
This has shown that the two main optimizations sync reduction and the queue-
of-queues model for handlers both contribute to increasing SCOOP performance.
These improve performance by 12× on average over the basic implementation.

Secondly, the same ideas are used in the implementation of the Qs run-time
inside the EVE research branch of EiffelStudio to show that they are effective
even outside of the ideal SCOOP/Qs implementation. They are shown to increase
the performance over the EiffelStudio implementation by an order of magnitude,
and the SCOOP/Qs implementation an order of magnitude over EVE/Qs.

Finally comparing SCOOP/Qs against other well known languages/paradigms
with well-tested implementations shows the overall suitability of the model.
SCOOP/Qs is the fastest on the concurrency benchmarks, and overall is the
fastest from the languages that offer data race freedom.

The entire evaluation provides a deep analysis of the performance character-
istics of the SCOOP/Qs ideas in a broad array of situations, and comparing many
different aspects.

6.6. CONCLUSION120

Chapter

7

Conclusion

Throughout this thesis, there has been a focus on providing both correctness and
execution efficiency for concurrent object-oriented programs. This is shown by
the research advances that work to improve the efficiency and correctness in a
concurrent programming model.

The common thread underlying the work is the object-oriented concurrent
programming language, SCOOP. This language forms a structure upon which
many of the important advances are made, and allows the different contributions
to be compared and contrasted under within a single frame of reference. Its
disciplined approach to concurrent programming also enables the techniques
that comprise this work.

7.1 Deadlock
The structured approach to ensuring mutual exclusion through the reservation
of separate handlers is one example. Having built in structure enables the
creation of a type system which eliminates the occurrence of deadlock due to
the reservation of handlers. The type system extension that the work proposes
allows the programmer to be free of deadlocks and can even be augmented with
simple inference mechanisms to lessen the annotation burden. The benefits
of the system are shown by applying it to the example of a web server, and
demonstrates an annotation overhead on this example of of 4%, dropping to
0.5% when the lock set and order inference algorithm is used. The quality of
the system is reinforced by a mechanized proof of soundness in the Coq proof
assistant. These properties provide evidence that the technique is both usable
and correct.

7.2 Concurrent Testing
There are many properties, though, that are not as easily expressed in the type
system, at least not without significant effort on the part of the programmer. For
these cases, testing is a natural solution, as it provides a method to highlight,
specify and verify important functional properties. In the context of SCOOP,
a language that contains built-in support for contracts, this leads towards a
technique that can take advantage of such program specifications. The demonic
testing work combines specifications with the dynamic state of the program
during unit testing to create a testing method that can test concurrent programs
in a concurrent setting while maintaining determinism and modularity. In
particular, demonic testing can detect the existence of data races (if the language
allows for them) and also atomicity violations in the case of SCOOP. Demonic
testing’s reasoning engine, demonL, allows interference to be generated on the

121

7.3. EXECUTION122

fly, representing the errors that could be caused by other threads in the system.
demonL is built on top of the abilities provided SMT solvers. This technique is
applied bugs from well known, large, applications such as Apache and Firefox,
and is found to offer good detection abilities and testing times.

7.3 Execution

Deadlock and atomicity violations address termination and functional correct-
ness issues that may arise in SCOOP programs. One problem that does not
arise in SCOOP are data races, but ensuring that data races do not occur incurs
a run-time cost. The SCOOP/Qs work analyzes the existing guarantees that
SCOOP provides and proposes an alternative execution model that, while still
providing these guarantees, can be implemented more efficiently and thus ad-
dresses one of the major reasons for constructing a concurrent program: speed.
The SCOOP/Qs semantics also reduce the possibility for deadlock by propos-
ing a handler reservation mechanism that does not block. Modifications to the
execution model are carried through to the run-time and compilation process,
proposing implementation-level optimizations as well as a compiler optimization
pass, resulting in a fresh implementation of the SCOOP language. The techniques
are also incorporated into the EVE project, based on the commercial EiffelStudio
IDE.

7.4 Evaluation

The SCOOP/Qs model is shown to be highly effective at reducing the execu-
tion time required for SCOOP programs, improving the performance one and
two orders of magnitude as more SCOOP/Qs optimizations are employed. A
comprehensive evaluation shows where each optimization technique demon-
strates its strength, with the major optimizations being sync reduction and the
queue-of-queues approach to call logging together providing an order of mag-
nitude speedup over a basic implementation. The different approaches taken
in different SCOOP implementations is also compared, showing that EVE/Qs
and SCOOP/Qs are one and two orders of magnitude faster than the current
EiffelStudio implementation. Lastly, SCOOP/Qs is compared against other well
known languages that all employ different execution approaches (C++, Go, Erlang,
Haskell). SCOOP/Qs is found to be the fastest on the concurrent benchmarks
out of all languages, and fastest on average among the race-free languages.

7.5 Summary

This thesis addresses the major concerns of correctness and execution efficiency,
and shows how to attain enable greater assurance of functional correctness and
faster execution speed. These aspects are targeted to provide a comprehensive
approach to improving the state concurrent programming.

CHAPTER 7. CONCLUSION 123

7.6 Future work
Deadlock. Although the deadlock freedom scheme presented in Chapter 3
offers features which lessen the annotation burden, this could be taken further.
In particular, the technique could try to use a Damas-Milner [26] type reconstruc-
tion approach to also infer the generic handlers of routines and classes, which
currently must be given manually.

Additionally, the proof of the core soundness guarantees covers an important
but incomplete part of the SCOOP semantics. This could be extended to model
the full SCOOP semantics as opposed to the more limited operation semantics
that is in the proof currently. A full proof of the property would provide a greater
degree of assurance of soundness for the technique. Filling out the semantic
formalization in Coq, based on the existing proof, would also provide a useful
starting point for other proofs of execution guarantees that SCOOP aims to
provide, such as data race freedom and fairness of some operations.

Lastly, the overall approach to guaranteeing deadlock freedom could be
refined to take into account the changes in the SCOOP/Qs model, in particular
that locking no longer happens when a call is made with separate arguments.
Since the only unbounded blocking calls are queries in SCOOP/Qs, the new
technique would only have to worry about locking order when queries are made;
only when a query is made would there be a waits-for edge in the locking graph.

Concurrent Testing. The approach to testing concurrent programs in Chapter 4
replaces the actual interference from external threads with “logical interference”
via a logical description of what interference could arise. However, the effective-
ness of this relies on the quality of the rely condition, and also on the precision
of the postconditions of routines in the domain. False positives result from
inaccurate rely-conditions and loose postconditions, thus a secondary filter could
be implemented that takes the proposed interference generated by demonL and
actually runs the sequence to determine if it is a real error. This could be done
in an independent run to the testing run so that if a false positive is detected it
would not affect other tests.

Although drawing on the ideas of rely-guarantee reasoning, the demonic test-
ing process currently does not support stating or checking guarantee conditions.
Guarantee checking would add another degree of safety and would come in two
parts

1. Checking the guarantees are respected by those that state them; checking
would be limited to a run-time prestate/poststate after every instruction.

2. Verifying (statically) that the rely and guarantee specifications of a particu-
lar thread consistent. Take two threads executing in parallel

{P,R}t1||t2{G,Q}

where R and G are global rely and guarantee specifications, and the per-
thread rely and guarantee specifications are (R1, G1) and (R2, G2). For
these to composes properly in parallel, these specifications must satisfy:

R ∨G2 ⇒ R1 ∧R ∨G1 ⇒ R2 ∧G1 ∧G2 ⇒ G

7.6. FUTURE WORK124

Execution. The SCOOP/Qs execution model given in Chapter 5 consists of
three parts, an operational semantics, a compiler with specific optimizations,
and an efficient run-time implementation. However, as a prototype it is always
in need of more and larger examples to show its suitability and also its rough
edges. Work has already begun on a SCOOP/Qs HTTP server, which is showing
promise but to fulfill that promise should be further developed.

The recent inclusion of an IO manager (a thread which schedules IO opera-
tions for lightweight threads), now adds the possibility to implement distributed
separate objects. This would substantiate the SCOOP/Qs design that uses inde-
pendent interaction between handlers through private queues, as this strongly
resembles communication over a network. However, not all existing optimiza-
tions would be valid, such as client-side query execution which assumes a shared
memory space, and would have to be re-examined.

Additionally, there is currently no garbage collection system for SCOOP/Qs,
something that would be useful to have, and the SCOOP/Qs run-time provides
an efficient starting point from which to construct a concurrent garbage collector
specific to the SCOOP model.

Lastly, given the showing in the parallel benchmarks, it is clear that SCOOP is
not strongly suited for these workloads. SCOOP/Qs, as the most efficient SCOOP
implementation, is therefore a natural place to investigate techniques to allow for
safe shared-memory computation by analyzing and changing the semantic model
of the SCOOP language. One way would be to introduce a way for handlers to
give ownership of some of their data to another handler to process. Such an
approach would require adding a linear type system

Benchmarking. Chapter 6 shows a broad array of measurements of SCOOP/Qs
and other languages and implementations. To make SCOOP more readily compa-
rable to other languages, it would be useful to expand the number and variety of
benchmarks. These could include more of the concurrent/parallel benchmarks
from [24], or other standard benchmark algorithms such as fast Fourier transform
and successive over-relaxation.

Internally, the benchmarks in the evaluation are used to discover workloads
that are slower than other languages and prompt an examination of why. The
task of finding why something is slow, however, is not always simple. It requires
debugging performance using standard tools which are not aware of the run-
time structure of SCOOP/Qs programs. Therefore, as a way to better explain
performance results, it would be useful to have a profiling technique specific
to the SCOOP/Qs run-time much as was done in [71], but also at a lower level
where the level of abstraction is in terms of run-time, not SCOOP, operations.

Bibliography

[1] Andrei Alexandrescu. The D Programming Language. Addison-Wesley, 1st
edition, 2010.

[2] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison-Wesley, 2000.

[3] Wladimir Araujo, Lionel Briand, and Yvan Labiche. On the effectiveness of
contracts as test oracles in the detection and diagnosis of race conditions
and deadlocks in concurrent object-oriented software. In Proceedings
of the International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2011.

[4] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-
current programming in Erlang. Prentice Hall, Hertfordshire, UK, 2nd
edition, 1996.

[5] Mike Barnett, Boryuh Evan Chang, Robert Deline, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Proceedings of the International Symposium on Formal
Methods for Components and Objects, number 4111 in Lecture Notes in
Computer Science, pages 364–387. Springer, 2005.

[6] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Ben-
jamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI C Specifica-
tion Language (V1.8), March 2014.

[7] Saddek Bensalem, Jean-Claude Fernandez, Klaus Havelund, and Laurent
Mounier. Confirmation of deadlock potentials detected by runtime anal-
ysis. In Proceedings of the Workshop on Parallel and Distributed Systems:
Testing, Analysis, and Debugging, pages 41–50. ACM, 2006.

[8] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria
Jump, Han Lee, J. Eliot, B. Moss, Aashish Phansalkar, Darko Stefanovic,
Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
DaCapo benchmarks: Java benchmarking development and analysis. In
Proceedings of the ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages and Applications, pages 169–190.
ACM Press, 2006.

[9] Avrim L. Blum and Merrick L. Furst. Fast planning through planning
graph analysis. Artificial Intelligence, 90(1):1636–1642, 1995.

125

BIBLIOGRAPHY126

[10] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multi-
threaded runtime system. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 207–216, New
York, NY, USA, 1995. ACM.

[11] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded
computations by work stealing. In Proceedings of the Annual Symposium
on Foundations of Computer Science, pages 356–368. IEEE, 1994.

[12] Colin Blundell, Dimitra Giannakopoulou, and Corina S. Pǎsǎreanu.
Assume-guarantee testing. In Proceedings of the Workshop on Specifi-
cation and Verification of Component-Based Systems. ACM, 2005.

[13] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, turing machines
and languages with only two formation rules. Communications of the
ACM, 9(5):366–371, May 1966.

[14] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: preventing data races and deadlocks. In Pro-
ceedings of the ACM SIGPLAN International Conference on Object Oriented
Programming Systems, Languages, and Applications, pages 211–230. ACM,
2002.

[15] Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. A CSP model of
Eiffels SCOOP. Formal Aspects of Computing, 19(4):487–512, 2007.

[16] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-
Java: The new adventures of old X10. In Proceedings of the International
Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools, pages 51–61. ACM, 2011.

[17] Chair of Software Engineering, ETH. EVE (Eiffel Verification Environ-
ment). http://se.inf.ethz.ch/research/eve/, March 2014.

[18] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: an object-oriented approach to non-uniform cluster computing.
In Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems, Languages, and Applications, pages 519–
538, New York, NY, USA, 2005. ACM.

[19] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of Java
multithreaded applications. In Proceedings of the SIGMETRICS Symposium
on Parallel and Distributed Tools, pages 48–59. ACM, 1998.

[20] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. ACM SIGPLAN Notices, 33(10):48–64, 1998.

[21] Code contracts. http://research.microsoft.com/en-us/projects/
contracts/, 2011.

[22] Edward G. Coffman, Michael Elphick, and Arie Shoshani. System dead-
locks. ACM Computing Surveys, 3(2):67–78, 1971.

http://se.inf.ethz.ch/research/eve/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/

BIBLIOGRAPHY 127

[23] Collection of Concurrency Bugs. http://www.eecs.umich.edu/˜jieyu/
bugs.html, 2011.

[24] Computer Language Benchmarks Game. http://shootout.alioth.
debian.org/, 2013.

[25] Patrick R. Conrad, Julie A. Shah, and Brian C. Williams. Flexible execu-
tion of plans with choice. In Proceedings of the International Conference
on Automated Planning and Scheduling, 2009.

[26] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 207–212, New York, NY, USA,
1982. ACM.

[27] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report 159, Compaq SRC, 1998.

[28] Edsger W. Dijkstra. Letters to the editor: Go to statement considered
harmful. Communications of the ACM, 11(3):147–148, March 1968.

[29] Juergen Dingel. Computer-assisted assume/guarantee reasoning with
VeriSoft. In Proceedings of the International Conference on Software Engi-
neering, pages 138–148. IEEE Computer Society, 2003.

[30] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-
arithmetic solver for DPLL(T). In Proceedings of the International Con-
ference on Computer Aided Verification, volume 4144 of Lecture Notes in
Computer Science, pages 81–94. Springer, 2006.

[31] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and
Shmuel Ur. Framework for testing multi-threaded Java programs. Con-
currency and Computation: Practice and Experience, 15(3-5):485–499,
2003.

[32] EVE project. https://svn.eiffel.com/eiffelstudio/branches/eth/
eve/, 2011.

[33] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B. Saxe, and Raymie Stata. Extended static checking for Java. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 234–245. ACM, 2002.

[34] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-
Berlin. Reducers and other Cilk++ hyperobjects. In Proceedings of the
of ACM Symposium on Parallelism in Algorithms and Architectures, pages
79–90, New York, NY, USA, 2009. ACM.

[35] Go programming language. http://golang.org/, 2013.

[36] Patrice Godefroid. Model checking for programming languages using
VeriSoft. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 174–186. ACM, 1997.

http://www.eecs.umich.edu/~jieyu/bugs.html
http://www.eecs.umich.edu/~jieyu/bugs.html
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
https://svn.eiffel.com/eiffelstudio/branches/eth/eve/
https://svn.eiffel.com/eiffelstudio/branches/eth/eve/
http://golang.org/

BIBLIOGRAPHY128

[37] Olivier Gruber and Fabienne Boyer. Ownership-based isolation for con-
current actors on multi-core machines. In Proceedings of the European
Conference on Object-Oriented Programming, volume 7920, pages 281–301.
Springer, July 2013.

[38] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: a bench-
mark for software transactional memory. In Proceedings of the European
Conference on Computer Systems, pages 315–324. ACM, 2007.

[39] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first
and help-first scheduling policies for async-finish task parallelism. In Pro-
ceedings of the International Parallel and Distributed Processing Symposium,
pages 1–12. IEEE, 2009.

[40] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular Actor
formalism for artificial intelligence. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 235–245, San Francisco,
CA, USA, 1973.

[41] HiPE reference manual. http://erlang.org/doc/apps/hipe/, 2013.

[42] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, October 1969.

[43] Bart Jacobs, Jans Smans, Frank Piessens, and Wolfram Schulte. A statically
verifiable programming model for concurrent object-oriented programs.
In Proceedings of the International Conference on Formal Engineering Meth-
ods, volume 4260 of Lecture Notes in Computer Science, pages 420–439.
Springer, 2006.

[44] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and detecting real-world performance bugs. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 77–88. ACM, 2012.

[45] Cliff B. Jones. Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981.

[46] Tomas Kalibera, Matthew Mole, Richard Jones, and Jan Vitek. A black-box
approach to understanding concurrency in DaCapo. In Proceedings of the
ACM SIGPLAN International Conference on Object Oriented Programming
Systems, Languages, and Applications. ACM, October 2012.

[47] Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of
the European Conference on Artificial Intelligence, pages 359–363. Wiley,
1992.

[48] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based
planning. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 318–325. Morgan Kaufmann, 1999.

[49] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon
Peyton Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel
arrays in Haskell. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, pages 261–272. ACM, 2010.

http://erlang.org/doc/apps/hipe/

BIBLIOGRAPHY 129

[50] Eric Kerfoot, Steve McKeever, and Faraz Torshizi. Deadlock freedom
through object ownership. In Proceedings of the International Workshop
on Aliasing Confinement and Ownership in ObjectOriented Programming,
pages 1–8. ACM, 2009.

[51] Wooyoung Kim and Michael Voss. Multicore desktop programming with
Intel Threading Building Blocks. IEEE Software, 28(1):23–31, 2011.

[52] Naoki Kobayashi. A new type system for deadlock-free processes. In
Proceedings of the International Conference on Concurrency Theory, pages
233–247. Springer-Verlag, 2006.

[53] Joseph A. Korty. Sema: A lint-like tool for analyzing semaphore usage
in a multithreaded UNIX kernel. In Proceedings of the USENIX Winter
Technical Conference, 1989.

[54] Sudipta Kundu, Malay K. Ganai, and Chao Wang. Contessa: Concurrency
testing augmented with symbolic analysis. In Proceedings of the Interna-
tional Conference on Computer Aided Verification, volume 6174 of Lecture
Notes in Computer Science, pages 127–131. Springer, 2010.

[55] R. Greg Lavender and Douglas C. Schmidt. Active object: an object
behavioral pattern for concurrent programming. In Pattern languages of
program design, pages 483–499. Addison-Wesley, 1996.

[56] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of
JML: A behavioral interface specification language for Java. Technical
report, July 19 1999.

[57] libffi. http:://sourcware.org/libffi/, March 2014.

[58] LLVM. http:://www.llvm.org, March 2014.

[59] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd
edition, 2010.

[60] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning
from mistakes: A comprehensive study on real world concurrency bug
characteristics. ACM SIGPLAN Notices, 43(3):329–339, 2008.

[61] Roberto Lublinerman, Jisheng Zhao, Zoran Budimlić, Swarat Chaudhuri,
and Vivek Sarkar. Delegated isolation. In Proceedings of the ACM SIG-
PLAN International Conference on Object Oriented Programming Systems,
Languages, and Applications, pages 885–902. ACM, 2011.

[62] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro.
AutoBlackTest: Automatic black-box testing of interactive applications.
In Proceedings of the IEEE International Conference on Software Testing,
Verification and Validation, pages 81–90, 2012.

[63] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM, 3(4):184–
195, 1960.

http:://sourcware.org/libffi/
http:://www.llvm.org

BIBLIOGRAPHY130

[64] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL: The
planning domain definition language. Technical Report CVC TR-98-003,
Yale Center for Computational Vision and Control, 1998.

[65] Bertrand Meyer. Eiffel: programming for reusability and extendibility.
ACM Sigplan Notices, 22(2):85–94, 1987.

[66] Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–51,
October 1992.

[67] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
2nd edition, 1997.

[68] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and
Emmanuel Stapf. Programs that test themselves. IEEE Computer, 42:46–
55, 2009.

[69] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006.

[70] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. A formal
reference for SCOOP. In Empirical Software Engineering and Verification,
volume 7007 of Lecture Notes in Computer Science, pages 89–157. Springer,
2012.

[71] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Perfor-
mance analysis of SCOOP programs. Journal of Systems and Software,
85(11):2519–2530, 2012.

[72] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Safe and
efficient data sharing for message-passing concurrency. In Proceedings
of the International Conference on Coordination Models and Languages,
Lecture Notes in Computer Science. Springer, 2014. To appear.

[73] Benjamin Morandi, Mischael Schill, Sebastian Nanz, and Bertrand Meyer.
Prototyping a concurrency model. In Proceedings of the International
Conference on Application of Concurrency to System Design, pages 177–186.
IEEE, 2013.

[74] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and repro-
ducing Heisenbugs in concurrent programs. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, pages 267–
280. USENIX Association, 2008.

[75] Sebastian Nanz, Scott West, and Kaue Soares da Silveira. Examining
the expert gap in parallel programming. In Proceedings of the European
Conference on Parallel Processing. Springer, 2013.

[76] Sebastian Nanz, Scott West, Kaue Soares da Silveira, and Bertrand Meyer.
Benchmarking usability and performance of multicore languages. In Pro-
ceedings of the International Symposium on Empirical Software Engineering
and Measurement. ACM, 2013.

BIBLIOGRAPHY 131

[77] Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards,
and Brad Calder. Automatically classifying benign and harmful data races
using replay analysis. ACM SIGPLAN Notices, 42(6):22–31, 2007.

[78] Piotr Nienaltowski. Practical framework for contract-based concurrent
object-oriented programming. PhD thesis, ETH Zurich, 2007.

[79] Jonathan S. Ostroff, Faraz Torshizi, Hai Feng Huang, and Bernd
Schoeller. Beyond contracts for concurrency. Formal Aspects of Com-
puting, 21(4):319–346, 2009.

[80] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing atomicity
violation bugs from their hiding places. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 25–36. ACM, 2009.

[81] David L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, December
1972.

[82] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 295–308, New York, NY, USA,
1996. ACM.

[83] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[84] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
Cambridge, MA, USA, 2002.

[85] Lennart Poettering. mutrace. http://0pointer.de/blog/projects/
mutrace.html, May 2014.

[86] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the IEEE Symposium on Logic in Computer
Science, pages 55–74, 2002.

[87] Gregor Richards, Andreas Gal, Brendan Eich, and Jan Vitek. Automated
construction of JavaScript benchmarks. In Proceedings of the ACM SIG-
PLAN International Conference on Object Oriented Programming Systems,
Languages, and Applications, pages 677–694. ACM, 2011.

[88] Jussi Rintanen. Heuristics for planning with SAT and expressive action
definitions. In Proceedings of the International Conference on Automated
Planning and Scheduling. AAAI, 2011.

[89] Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded Java
application performance on multicore hardware. In Proceedings of the
ACM SIGPLAN International Conference on Object Oriented Programming
Systems, Languages, and Applications, pages 281–296. ACM, 2012.

[90] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems, 15(4):391–411, 1997.

http://0pointer.de/blog/projects/mutrace.html
http://0pointer.de/blog/projects/mutrace.html

BIBLIOGRAPHY132

[91] Jan Schäfer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active
objects to concurrent components. In Proceedings of the European Confer-
ence on Object-Oriented Programming, pages 275–299, Berlin, Heidelberg,
2010. Springer-Verlag.

[92] Mischael Schill, Sebastian Nanz, and Bertrand Meyer. Handling par-
allelism in a concurrency model. In Proceedings of the International
Conference on Multicore Software Engineering, Performance, and Tools, vol-
ume 8063 of Lecture Notes in Computer Science, pages 37–48. Springer,
2013.

[93] Koushik Sen. Race directed random testing of concurrent programs. In
Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 11–21. ACM, 2008.

[94] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit testing and
explicit path model-checking tools. In Proceedings of the International
Conference on Computer Aided Verification, volume 4144 of Lecture Notes
in Computer Science, pages 419–423. Springer, 2006.

[95] Ohad Shacham, Nathan Grasso Bronson, Alex Aiken, Mooly Sagiv, Mar-
tin T. Vechev, and Eran Yahav. Testing atomicity of composed concurrent
operations. In Proceedings of the ACM SIGPLAN International Conference
on Object Oriented Programming Systems, Languages, and Applications,
pages 51–64, 2011.

[96] Nir Shavit and Dan Touitou. Software transactional memory. In Proceed-
ings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 204–213, New York, NY, USA, 1995. ACM.

[97] Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for Java.
In Proceedings of the European Conference on Object-Oriented Programming,
pages 104–128, Berlin, Heidelberg, 2008. Springer-Verlag.

[98] TCMalloc. http://goog-perftools.sourceforge.net/doc/tcmalloc.
html, May 2014.

[99] Aaron Turon. Reagents: expressing and composing fine-grained concur-
rency. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 157–168. ACM, 2012.

[100] Chao Wang, Mahmoud Said, and Aarti Gupta. Coverage guided systematic
concurrency testing. In Proceedings of the International Conference on
Software Engineering, pages 221–230. ACM, 2011.

[101] Christopher Weber and Daniel Bryce. Planning and acting in incomplete
domains. In Proceedings of the International Conference on Automated
Planning and Scheduling. AAAI, 2011.

[102] Scott West. Demonic test cases. http://se.inf.ethz.ch/people/west/
demonic-cases/, 2011.

[103] Scott West. Quicksilver, an implementation of the SCOOP/Qs model.
https://github.com/scottgw/quicksilver, March 2014.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://se.inf.ethz.ch/people/west/demonic-cases/
http://se.inf.ethz.ch/people/west/demonic-cases/
https://github.com/scottgw/quicksilver

[104] Scott West. SCOOP deadlock tool. http://github.com/scottgw/
scoop-deadlock, 2014.

[105] Scott West, Sebastian Nanz, and Bertrand Meyer. A modular scheme
for deadlock prevention in an object-oriented programming model. In
Proceedings of the International Conference on Formal Engineering Methods,
pages 597–612, 2010.

[106] Scott West, Sebastian Nanz, and Bertrand Meyer. Demonic testing of
concurrent programs. In Proceedings of the International Conference on
Formal Engineering Methods, Lecture Notes in Computer Science. Springer,
2012.

[107] Scott West, Sebastian Nanz, and Bertrand Meyer. Efficient and rea-
sonable object-oriented concurrency. Computing Research Repository,
abs/1405.7153, 2014.

[108] Kyle B. Wheeler and Douglas Thain. Visualizing massively multithreaded
applications with ThreadScope. Concurrency and Computation: Practice
and Experience, 22(1):45–67, January 2010.

[109] Gregory V. Wilson and R. Bruce Irvin. Assessing and comparing the
usability of parallel programming systems. Technical Report CSRI-321,
University of Toronto, 1995.

[110] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In Proceedings of the International Sym-
posium on Computer Architecture, pages 325–336. ACM, 2009.

[111] Wei Zhang, Chong Sun, and Shan Lu. Conmem: detecting severe con-
currency bugs through an effect-oriented approach. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 179–192, 2010.

[112] Xiaolan Zhang and Margo Seltzer. HBench: Java: An application-specific
benchmarking framework for Java virtual machines. In ACM Java Grande,
pages 62–70. ACM Press, 2000.

[113] Jisheng Zhao, Roberto Lublinerman, Zoran Budimlić, Swarat Chaudhuri,
and Vivek Sarkar. Isolation for nested task parallelism. In Proceedings of
the ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems, Languages, and Applications, pages 571–588. ACM, 2013.

http://github.com/scottgw/scoop-deadlock
http://github.com/scottgw/scoop-deadlock

Curriculum vitæ

General information

Name: Scott West
Date of birth: December 5, 1983
Nationality: Canadian
Web page: http://se.inf.ethz.ch/people/west/
E-mail: scott.west@inf.ethz.ch

Education
February 2009 - present ETH Zürich

PhD student in the Chair of Software Engineering, supervised by Prof. Dr.
Bertrand Meyer.

May 2007 - December 2008 McMaster University
Masters in Computer Science, supervised by Prof. Dr. Wolfram Kahl.

September 2002 - April 2007 McMaster University
Bachelor in Software Engineering and Society.

Publications

To Run What No One Has Run Before: Executing an Intermediate Verification
Language, with Nadia Polikarpova, Carlo A. Furia: RV 2013

Benchmarking Usability and Performance of Multicore Languages, with Sebastian
Nanz, Kaue Soares Da Silveira, Bertrand Meyer: ESEM 2013.

Examining the Expert Gap in Parallel Programming, with Sebastian Nanz, Kaue
Soares Da Silveira: Euro-Par 2013.

Concurrent Object-Oriented Development with Behavioral Design Patterns, with
Benjamin Morandi, Sebastian Nanz, Hassan Gomaa: ECSA 2013.

Demonic Testing of Concurrent Programs, with Sebastian Nanz, Bertrand Meyer:
ICFEM 2012.

A Modular Scheme for Deadlock Prevention in an Object-Oriented Programming
Model, with Sebastian Nanz, Bertrand Meyer: ICFEM 2010.

135

http://se.inf.ethz.ch/people/west/
scott.west@inf.ethz.ch

Deriving Concurrent Control Software from Behavioral Specifications, with Ganesh
Ramanathan, Benjamin Morandi, Sebastian Nanz, Bertrand Meyer: IROS 2010.

A Generic Graph Transformation, Visualisation, and Editing Framework in Haskell,
with Wolfram Kahl: GT-VMT 2009.

Languages
• English (native)

• German (beginner)

• French (beginner)

• Chinese (beginner)

	Introduction
	Approach
	Contributions
	Organization

	Background
	Object-oriented programming
	Specifications and contracts
	Eiffel
	Threaded model
	SCOOP model
	Types of concurrency bugs

	I Correctness
	Static deadlock detection
	Deadlocks in SCOOP
	Types and handlers
	Locking through calls
	Example

	Locking operational semantics
	Syntax
	Locking semantics

	Ensuring deadlock freedom
	Annotation language
	Well-formed programs
	Deadlock freedom
	Reducing annotations
	Evaluation

	Tool
	Coq proof
	Related work
	Conclusion

	Testing of programs with contracts
	Premise and overview
	Overview
	Example

	Demonic testing
	Application of rely-guarantee reasoning
	Class transformation
	Routine instrumentation
	Handling synchronization primitives

	Applying demonic testing to SCOOP
	Specializing demonic testing
	How SCOOP makes it easier
	Handling wait conditions

	DemonL
	The domain description language
	Interference as satisfiability
	The tool

	Experimental evaluation
	Conversion from source programs
	Results
	Annotation complexity
	Discussion

	Related Work
	Conclusion

	II Execution
	Efficient SCOOP
	The SCOOP execution model
	Reasoning guarantees
	A naïve implementation
	Issues with blocking

	A model with less locking
	A family of models
	Deadlock behaviour in different family members
	Multiple handler reservations

	Compiling SCOOP/Qs programs
	SCOOP/Qs calling convention
	Request processing
	Client requests
	Wait conditions
	Multi-reservation separate blocks
	Removing redundant synchronization

	Qs run-time design
	Task layer
	Schedulable task layer
	Handler layer
	EVE run-time comparison

	Related work
	Conclusion

	Evaluation and comparison
	Benchmarking
	Parallel
	Concurrent
	Setup

	Optimization comparison
	Parallel
	Concurrent
	Summary

	Implementation comparison
	Parallel
	Concurrent
	Summary

	Language comparison
	Parallel benchmarks
	Concurrent benchmarks
	Summary

	Related work
	Conclusion

	Conclusion
	Deadlock
	Concurrent Testing
	Execution
	Evaluation
	Summary
	Future work

