
Contents From: Handbook of Requirements and Business Analysis, by
Bertrand Meyer, Springer, 2022. © Bertrand Meyer, 2022.

See book page at requirements.bertrandmeyer.com.
PREFACE VII

The material vii
Obstacles to quality viii
Descriptive and prescriptive viii
A balanced view x
Key ideas xi
Geek and non-geek xiii
The author’s experiences behind this handbook xiii
Bibliographical notes and further reading xv
Acknowledgments xv
Credits xviii

CONTENTS XIX

1 REQUIREMENTS: BASIC CONCEPTS AND DEFINITIONS 1

1.1 Dimensions of requirements engineering 1
1.1.1 Universe of discourse: the four PEGS 1
1.1.2 Distinguishing system and environment 2
1.1.3 The organizations involved 2
1.1.4 Stakeholders 3

1.2 Defining requirements 4
1.2.1 Properties 4
1.2.2 Statements 4
1.2.3 Relevance 5
1.2.4 Requirement 5
1.2.5 Requirements engineering, business analysis 6

1.3 Kinds of requirements element 6
1.4 Requirements affecting goals 6

1.4.1 Goal 6
1.4.2 Special case: obstacle 6

1.5 Requirements on the project 8
1.5.1 Task 8
1.5.2 Product 8

1.6 Requirements on the system 8
1.6.1 Behavior 8
1.6.2 Special cases: functional and non-functional requirements 8
1.6.3 Special cases: examples (scenarios) 8

CONTENTSxx
1.7 Requirements on the environment 9
1.7.1 Constraint 9
1.7.2 Special cases of constraints: business rule, physical rule, engineering decision 9
1.7.3 Assumption 9
1.7.4 Distinguishing between constraints and assumptions 10
1.7.5 Effect 10
1.7.6 Invariant 10

1.8 Requirements applying to all dimensions 11
1.8.1 Component 11
1.8.2 Responsibility 11
1.8.3 Limit 11
1.8.4 Special case: role 11

1.9 Special requirements elements 12
1.9.1 Silence 12
1.9.2 Noise 12
1.9.3 Special case: hint 12
1.9.4 Metarequirement 13
1.9.5 Special case: justification 13

1.10 The people behind requirements 13
1.10.1 Categories of stakeholders 13
1.10.2 Who produces requirements? 16

1.11 Why perform requirements? 17
1-E Exercises 18

Bibliographical notes and further reading 19
Terminology note: verification and validation 20

2 REQUIREMENTS: GENERAL PRINCIPLES 21
2.1 What role for requirements? 21

2.1.1 The need for requirements 21
2.1.2 The role of requirements 22
2.1.3 The nature of requirements 22
2.1.4 The evolution of requirements 23
2.1.5 The place of requirements in the project lifecycle 25
2.1.6 The form of requirements 26
2.1.7 Outcomes of requirements 27

2.2 Human aspects 28
2.2.1 Stakeholders 28
2.2.2 Authors 28

2.3 Requirements elicitation and production 29
2.4 Requirements management 30
2.5 Requirements quality 31
2.6 Other principles 32
2-E Exercises 33
Bibliographical notes and further reading 33

CONTENTS xxi
3 STANDARD PLAN FOR REQUIREMENTS 35

3.1 Overall structure 35
3.2 Front and back matter 36
3.3 Using the plan 36

3.3.1 Forms of requirements conforming to the Standard Plan 36
3.3.2 Customizing the plan 37
3.3.3 Mutual references 37

3.4 The Goals book 38
3.5 The Environment book 40
3.6 The System book 42
3.7 The Project book 43
3.8 Minimum requirements 45
3-E Exercises 45

Bibliographical notes and further reading 46
4 REQUIREMENTS QUALITY AND VERIFICATION 47

4.1 Correct 48
4.1.1 About correctness 48
4.1.2 Ensuring correctness 48
4.1.3 Assessing correctness 48
4.1.4 Parts of the Standard Plan particularly relevant to assessing correctness 49

4.2 Justified 49
4.2.1 About justifiability 49
4.2.2 Ensuring justifiability 50
4.2.3 Assessing justifiability 50
4.2.4 Parts of the Standard Plan particularly relevant to assessing justifiability 51

4.3 Complete 51
4.4 Consistent 52

4.4.1 About consistency 52
4.4.2 Ensuring consistency 52
4.4.3 Assessing consistency 53
4.4.4 Parts of the Standard Plan particularly relevant to assessing consistency 53

4.5 Unambiguous 54
4.5.1 About non-ambiguity 54
4.5.2 Ensuring non-ambiguity 54
4.5.3 Assessing non-ambiguity 54
4.5.4 Parts of the Standard Plan particularly relevant to assessing non-ambiguity 54

4.6 Feasible 55
4.6.1 About feasibility 55
4.6.2 Ensuring feasibility 55
4.6.3 Assessing feasibility 56
4.6.4 Parts of the Standard Plan particularly relevant to assessing feasibility 56

CONTENTSxxii
4.7 Abstract 56
4.7.1 About abstractness 56
4.7.2 The difficulty of abstracting 57
4.7.3 Overspecification 59
4.7.4 Design and implementation hints 59
4.7.5 Beware of use cases 60
4.7.6 Ensuring abstractness 60
4.7.7 Assessing abstractness 60
4.7.8 Parts of the Standard Plan particularly relevant to assessing abstractness 60

4.8 Traceable 61
4.8.1 About traceability 61
4.8.2 Ensuring traceability 61
4.8.3 Assessing traceability 62
4.8.4 Parts of the Standard Plan particularly relevant to assessing traceability 62

4.9 Delimited 62
4.9.1 About delimitation 62
4.9.2 Ensuring delimitation 63
4.9.3 Assessing delimitation 63
4.9.4 Parts of the Standard Plan particularly relevant to assessing delimitation 63

4.10 Readable 63
4.10.1 About readability 63
4.10.2 Ensuring readability 64
4.10.3 Assessing readability 64
4.10.4 Parts of the Standard Plan particularly relevant to assessing readability 65

4.11 Modifiable 65
4.11.1 About modifiability 65
4.11.2 Ensuring modifiability 65
4.11.3 Assessing modifiability 65
4.11.4 Parts of the Standard Plan particularly relevant to assessing modifiability 65

4.12 Verifiable 66
4.12.1 About verifiability 66
4.12.2 Ensuring verifiability 66
4.12.3 Assessing (“verifying”) verifiability 66
4.12.4 Parts of the Standard Plan particularly relevant to assessing verifiability 66

4.13 Prioritized 67
4.13.1 About prioritization 67
4.13.2 Ensuring prioritization 67
4.13.3 Assessing prioritization 67
4.13.4 Parts of the Standard Plan particularly relevant to assessing prioritization 67

4.14 Endorsed 68
4.14.1 About endorsement 68
4.14.2 Ensuring endorsement 68
4.14.3 Assessing endorsement 68
4.14.4 Parts of the Standard Plan particularly relevant to assessing endorsement 68

4-E Exercises 69
Bibliographical notes and further reading 70

CONTENTS xxiii
5 HOW TO WRITE REQUIREMENTS 71

5.1 When and where to write requirements 71

5.2 The seven sins of the specifier 72
5.2.1 The Sins list 72
5.2.2 Noise and silence 73
5.2.3 Remorse 73
5.2.4 Falsehood 74
5.2.5 Synonyms 74
5.2.6 Etcetera lists 74

5.3 Repetition 75

5.4 Binding and explanatory text 77

5.5 Notations for requirements 79
5.5.1 Natural language 79
5.5.2 Graphical notations 80
5.5.3 Formal notations 82
5.5.4 Tabular notations 83
5.5.5 Combining notations 84

5.6 Some examples: bad, less bad, good 85
5.6.1 “Provide status messages” 85
5.6.2 The flashing editor 86
5.6.3 Always an error report? 86
5.6.4 Words to avoid 87

5.7 Style rules for natural-language requirements 88
5.7.1 General guidelines 88
5.7.2 Use correct spelling and grammar 89
5.7.3 Use simple language 90
5.7.4 Identify every part 90
5.7.5 Be consistent 91
5.7.6 Be prescriptive 91

5.8 The TBD rule 92

5.9 Documenting goals 93

5.10 The seven sins: a classic example 93
5.10.1 A simple specification 94
5.10.2 A detailed description 95
5.10.3 More ambiguity! 100
5.10.4 Lessons from the example 101
5.10.5 OK, but can we do better? 102

5-E Exercises 102

Bibliographical notes and further reading 103

CONTENTSxxiv
6 HOW TO GATHER REQUIREMENTS 105

6.1 Planning and documenting the process 105

6.2 The role of stakeholders 105

6.3 Sources other than stakeholders 106

6.4 The glossary 107

6.4.1 Clarify the terminology 108
6.4.2 Kidnapped words 108
6.4.3 Acronyms 109

6.5 Assessing stakeholders 109

6.6 Making business analysts and domain experts work together 111

6.7 Biases, interviews and workshops 112

6.8 Conducting effective interviews 113

6.8.1 Setting up and conducting an interview 113
6.8.2 Interview reports 114

6.9 Conducting effective workshops 114

6.9.1 Why workshops help 114
6.9.2 When to run workshops 115
6.9.3 Planning a workshop 115
6.9.4 Running a workshop 116
6.9.5 After the workshop 117

6.10 Asking the right questions 118

6.10.1 Uncover the unsaid 118
6.10.2 Cover all PEGS 118
6.10.3 Do not confuse roles 119
6.10.4 Ask effective questions 119
6.10.5 Get stakeholders to prioritize 121

6.11 Prototypes: tell or show? 122

6.11.1 What is a prototype? 122
6.11.2 Incremental prototypes 122
6.11.3 Throwaway prototypes 123
6.11.4 UI prototypes 123
6.11.5 Feasibility prototypes 123
6.11.6 Limitations of prototypes 125
6.11.7 Risk assessment and mitigation 126

6-E Exercises 126

Bibliographical notes and further reading 127

CONTENTS xxv
7 SCENARIOS: USE CASES, USER STORIES 129

7.1 Use cases 129

7.2 User stories 132

7.3 Epics and use case slices 133

7.4 The benefits of scenarios for requirements 133

7.5 The limitations of scenarios for requirements 134

7.6 The role of use cases and user stories in requirements 135

7-E Exercises 136

Bibliographical notes and further reading 136

8 OBJECT-ORIENTED REQUIREMENTS 137

8.1 Two kinds of system architecture 137

8.2 The notion of class 138

8.3 Relations between classes and the notion of deferred class 139

8.4 Why object-oriented requirements? 140

8.5 An OO notation 142

8.6 Avoiding premature ordering 143

8.6.1 The limitations of sequential ordering 143
8.6.2 A detour through stacks 144

8.7 Logical constraints versus premature ordering 147

8.7.1 A contract-based specification 147
8.7.2 Logical constraints are more general than sequential orderings 150
8.7.3 What use for scenarios? 151
8.7.4 Where do scenarios fit? 151
8.7.5 Different roles for different techniques 152
8.7.6 Towards formal methods and abstract data types 153
8.7.7 “But it’s design!” 153
8.7.8 Towards seamlessness 154

8.8 The seven kinds of class 154

8.8.1 Requirements classes 155
8.8.2 Design and implementation classes 156
8.8.3 Goals and project classes 156
8.8.4 Permissible relations between classes 156

8.9 Going object-oriented 158

8-E Exercises 159

Bibliographical notes and further reading 159

CONTENTSxxvi
9 BENEFITING FROM FORMAL METHODS 161

9.1 Those restless Swiss! 161
9.2 Basic math for requirements 162

9.2.1 Logic and sets 162
9.2.2 Operations on sets 163
9.2.3 Relations 163
9.2.4 Functions 164
9.2.5 Powers and closures 165
9.2.6 Sequences 166

9.3 The relocating population, clarified 167
9.3.1 Naming components of a specification 167
9.3.2 Interpretation 1 167
9.3.3 Interpretation 2 168
9.3.4 Back to English: the formal picnic 168

9.4 Who writes formal specifications? 170
9.5 An example: text formatting, revisited 171

9.5.1 Defining a framework 171
9.5.2 The distinctive nature of requirements 173
9.5.3 Text formatting as minimization 174
9.5.4 The specification 175
9.5.5 Analyzing the specification 175
9.5.6 Proving requirements properties 176
9.5.7 Back from the picnic 178
9.5.8 Error handling 179

9.6 Formal requirements languages 180
9.7 Expressing formal requirements in a programming language 182
9-E Exercises 183

Bibliographical notes and further reading 185

10 ABSTRACT DATA TYPES 187

10.1 An example 187
10.2 The concept of abstract data type 188
10.3 Functions and their signatures 188
10.4 Axioms 190
10.5 ADT expressions as a model of computation 190
10.6 Sufficient completeness 191

10.6.1 A workable notion of completeness 192
10.6.2 A proof of sufficient completeness 193

10.7 Partial functions and preconditions 194
10.7.1 The need for partial functions 194
10.7.2 Partial functions in ADT specifications 194
10.7.3 The nature of preconditions 195
10.7.4 Expression correctness 196

CONTENTS xxvii
10.7.5 Ascertaining correctness 197
10.7.6 No vicious cycle 197

10.8 Using abstract data types for requirements 198
10.8.1 Turning an ADT into a class 198
10.8.2 Functional and imperative styles 199
10.8.3 From an ADT to a class 200

10.9 ADTs: lessons for the requirements practitioners 200
10-E Exercises 201

Bibliographical notes and further reading 203
11 ARE MY REQUIREMENTS COMPLETE? 205

11.1 Document completeness 205
11.2 Goal completeness 206
11.3 Scenario completeness 207
11.4 Environment completeness 208
11.5 Interface completeness 208
11.6 Command-query completeness 209
Bibliographical notes and further reading 210

12 REQUIREMENTS IN THE SOFTWARE LIFECYCLE 211
12.1 Rescuing the Waterfall 211
12.2 Rescuing the Spiral model 212
12.3 Rescuing RUP 214
12.4 Rescuing Agile and DevOps 215

12.4.1 An agile lifecycle 215
12.4.2 Agile damage, agile benefit 216
12.4.3 DevOps 216

12.5 The Cluster model 217
12.6 Seamless development 218

12.6.1 The unity of software development 218
12.6.2 A seamless process 219
12.6.3 Reversibility 220

12.7 A unifying model 221
12.7.1 Overall iterative scheme 221
12.7.2 Not all sprints are created equal 221
12.7.3 An example sequence of sprints 223
12.7.4 Implement early and often 224
12.7.5 Detailed view of a sprint 225
12.7.6 A combination of best practices 226

Bibliographical notes and further reading 227

 BIBLIOGRAPHY 229

INDEX 239

	Preface
	Contents
	1 1 Requirements: basic concepts and definitions
	2 2 Requirements: general principles
	3 3 Standard Plan for requirements
	4 4 Requirements quality and verification
	5 5 How to write requirements
	6 6 How to gather requirements
	7 7 Scenarios: use cases, user stories
	8 8 Object-oriented requirements
	9 9 Benefiting from formal methods
	10 10 Abstract data types
	11 11 Are my requirements complete?
	12 12 Requirements in the software lifecycle
	Bibliography
	Index

