§8.7 LOGICAL CONSTRAINTS VERSUS PREMATURE ORDERING 147

From: Handbook of Requirements and Business Analysis, by
Bertrand Meyer, Springer, 2022. © Bertrand Meyer, 2022.
See book page at requirements.bertrandmeyer.com.

Below is section 8.7 from chapter 8 of the Handbook,
Object-Oriented Requirements.

8.7 LOGICAL CONSTRAINTS VERSUS PREMATURE ORDERING

As the stack example illustrated, object-oriented specifications stay away from premature
time-order decisions by focusing on object types (classes) and their operations (queries and
commands), without making an early commitment to the order of executing these operations.

8.7.1 A contract-based specification

Here again is the essence of “main success scenario” in the insurance example (the original with
more details was on page 130).

1. A reporting party who is aware of the event registers a loss to the insurance company.
2. A clerk receives and assigns claim to a claims agent.
3. The assigned claims adjuster:

* 3.1 Conducts an investigation.

* 3.2 Evaluates damages.

* 3.3 Sets reserves.

* 3.4 Negotiates the claim.

* 3.5 Resolves the claim and closes it.

(Note about the example’s Environment: as noted on page 130, a reserve in the insurance busi-
ness is a monetary amount that an insurer, when receiving a claim, sets aside as a financial pro-
vision estimating the financial liability that may eventually result from the claim. Reserves are
important as an accounting precaution for difficult cases that may cause a prolonged analysis,
or even litigation, and incur a high cost which will only be known at the end of the process.)



148 OBJECT-ORIENTED REQUIREMENTS §8.7

As a specification, this scenario is trying to express a few useful things; for example, you
must set reserves before starting to negotiate the claim. But it expresses them in the form of a
strict sequence of operations, a temporal constraint which does not cover the wide range of legit-
imate scenarios. As in the stack example, describing a few such scenarios is useful as part of
requirements elicitation, but to specify the resulting requirements it is more effective to state
the logical constraints. Here is a sketch of how the class INSURANCE_CLAIM could specify
them in the form of contracts.

class INSURANCE_CLAIM feature

-- Boolean queries (all with default value False):
is_investigated, is_evaluated, is_reserved, is_agreed, is_imposed, is_resolved: BOOLEAN
investigate
-- Conduct investigation on validity of claim. Set is_investigated.
deferred
ensure
is_investigated
end
evaluate
-- Assess monetary amount of damages.
require
is_investigated
deferred
ensure
is_evaluated
-- Note: is_investigated still holds (see the invariant at the end of the class text).
end
set_reserve
-- Assess monetary amount of damages. Set is_reserved.
require
is_investigated
-- Note: we do not require is_evaluated.
deferred
ensure
is_reserved
end




§8.7 LOGICAL CONSTRAINTS VERSUS PREMATURE ORDERING

negotiate

-- Assess monetary amount of damages. Set iS_agreed only if negotiation

-- leads to an agreement with the claim originator.

require

is_reserved

is_evaluated
deferred
ensure

is_reserved

-- See the invariant for is_evaluated and is_investigated.
end

impose (amount: INTEGER)
-- Determine amount of claim if negotiation fails. Set is_imposed.
require
not is_agreed
is_reserved
deferred
ensure
is_imposed
end
resolve
-- Finalize handling of claim. Set is_resolved.
require
is_agreed or is_imposed
deferred
require
is_resolved
end
invariant -- “="1s logical implication.
is_evaluated = is_investigated
is_reserved = is_evaluated
is_resolved = is_agreed or is_imposed
is_agreed = is_evaluated
is_imposed = is_evaluated

is_imposed = not is_agreed -- Hence, by laws of logic, is_agreed = not is_imposed

end




150 OBJECT-ORIENTED REQUIREMENTS §8.7

Notice the interplay between the preconditions, postconditions and class invariant, and the var-
ious boolean-valued queries they involve (is_investigated, is_evaluated, is_reserved...). You
can specify a strict order of operations 0y, 0,..., as in a use case, by having a sequence of asser-
tions p; such that operation 0; has the contract clauses require pj;and ensure p;. ; but assertions
also enable you to specify a much broader range of allowable orderings as all acceptable.

The class specification as given is only a first cut and leaves many aspects untouched. It will
be important in practice, for example, to include a query payment describing the amount to be
paid for the claim; then impose has the postcondition payment = amount, and negotiate sets a
certain amount for payment. Such aspects are not hard to complete but have been left out above
to keep the example short. (Remember that the Companion to this Handbook has many practi-
cal specification examples.) The following subsections describe the key points to be learned
from the example as it stands.

Even in this simplified form, the specification includes a few concepts that the original use
case left unspecified, in particular the notion of imposing a payment (through the command
Impose) if negotiation fails. Using a logical style typically uncovers such important questions
and provides a framework for answering them, helping to achieve one of the principal goals of
requirements engineering (“Requirements Questions Principle”, page 22).

8.7.2 Logical constraints are more general than sequential orderings

The specific sequence of actions described in the use case (“main success scenario”) is com-
patible with the logical constraints: you can check that in the sequence

-- The following is the “main success scenario”, already reproduced on page 147.
investigate
evaluate
set_reserve
negotiate
resolve

the postcondition of each step implies the precondition of the next one (the first has no precon-
dition). In other words, the temporal specification satisfies the logical one. But you can also see
that prescribing this order is a case of overspecification (as defined in 4.7.3, page 59): other
orderings also satisfy the logical specification. It may be possible for example — subject to
confirmation by Subject-Matter Experts — to change the order of evaluate and set_reserve, or
to perform these two operations in parallel.

The specification does cover the fundamental sequencing constraints; for example, the pre-
and postcondition combinations imply that investigation must come before evaluation and res-
olution must be preceded by either negotiation or imposition. But they avoid the non-essential
constraints which, in the use case, were only an artifact of the sequential style of specification,
not a true feature of the problem.



§8.7 LOGICAL CONSTRAINTS VERSUS PREMATURE ORDERING 151

The logical style is also more conducive to conducting a fruitful dialogue with domain
experts and stakeholders:

» With a focus on use cases, the typical question from a requirements engineer (business ana-
lyst) is “do you do A before doing B?” Often the answer will be contorted, as in “usually yes,
but only if C, oh and sometimes we might start with B if D holds, or we might work on A and
Binparallel...”, leading to vagueness and to more complicated requirements specifications.

» With logic-based specifications, the two fundamental question types are: “what conditions
do you need before doing B?” and ““does doing A ensure condition C?”. They force stake-
holders to assess their own practices and specify precisely the relations between operations
of interest.

8.7.3 What use for scenarios?

Use cases and more generally scenarios, while more restrictive than logical specifications,
remain important as complements to specifications. They serve as both input and output to
more abstract requirements specifications (such as OO specifications with contracts):

* As input to requirements: initially at least, stakeholders and Subject-Matter Experts often
find it intuitive to describe typical system interactions, and their own activities, in the form
of scenarios. Collecting such scenarios is an invaluable requirements elicitation technique.
The requirements engineer must remember that any such scenario is just one example walk
through the system, and must abstract from these examples to derive general logical rules.

* As output from requirements: from an OO specification with its contracts, the requirements
engineers can produce valid use cases. “Valid” means that the operation at every step satis-
fies the applicable precondition, as a consequence of the previous steps’ postconditions and
of the class invariant. The requirements engineers can then submit these use cases to the
SMESs and through them to stakeholders to confirm that they make sense, update the logical
conditions if they do not (to rule out bad use cases), and check the results they are expected
to produce.

8.7.4 Where do scenarios fit?

While many teams will prefer to write scenarios (for the purposes just described) in natural lan-
guage, it is possible to go one step further and, in an object-oriented approach to requirements,
gather scenarios in classes.

We will see later in this chapter (section 8.8) that an OO requirements specification includes
classes of several kinds. One of the categories (see 8.8.1) is expressly intended for scenarios.
A scenario class will include a number of routines, each typically representing a use case or
user story. Such routines are expressed in the notation of an object-oriented programming lan-
guage, as convenient and expressive here, to describe processes of interaction with a system,
as it is for its traditional use of describing programs.



152 OBJECT-ORIENTED REQUIREMENTS §8.7

A scenario routine will use these mechanisms to express a use case or user story in terms of
the features of other (non-scenario) classes of the OO specification. Scenario classes, taking
advantage of OO structuring mechanisms, particularly inheritance, can provide groupings at
different levels, as introduced in 7.3: epics and use case slices.

Scenario classes are examples of specification drivers. Classes in the other categories
describe types from the environment, the project or the system (its design or its implementa-
tion). A specification-driver class, for its part, specifies patterns of exercising the mechanisms
provided by such classes. Besides scenario classes, another example of a specification driver
is a test driver, which triggers features of implementation classes and checks the outcomes
through test oracles. Specification drivers generalize this notion to any class whose purpose is
to exercise features of a given set of classes. They serve various purposes, in particular for soft-
ware verification; scenario classes are a particularly useful application of the idea.

8.7.5 Different roles for different techniques

The preceding discussions suggests that a complementarity exists not only between scenarios
(such as use cases) and OO specifications but also between the roles involved. Let us now
review this human aspect.

Scenarios, while not appropriate as requirements specifications, are a productive tool in the
dialog with Subject-Matter Experts and other non-IT-specialist stakeholders since they reflect
the intuition of how one will work with the system. Using them alongside OO specifications
(both as inputs to them and outputs from them) leads to a productive distribution of tasks rep-
resented by the following figure.

Working with both
Subject-Matter ExpertsJ € > Other g
Develop use cases stakeholders use cases and

1 0O specifications

Subrmnit Submit | OO Submit “valid”

use specifica|tions use cases
cases (derived from
0O specification)

Business Analysts/ ] ’ Develop OO specifications

Requirements Engineers

This scheme is subject to variation; in particular, depending on matters specific to each project
and discussed elsewhere in this Handbook:

+ All stakeholders might qualify as Subject-Matter Experts; then the top-right box goes away.

* Even if “other stakeholders” exists as a distinct category, there is no universal rule forcing
BAs (business analysts) to go through designated SMEs only to obtain information from
stakeholders. Each project sets its own policy on this matter.



§8.7 LOGICAL CONSTRAINTS VERSUS PREMATURE ORDERING 153

The diagram, covering the general case, shows the use of scenarios and OO specifications by
various categories of requirements builders. One possible complaint against logic-based spec-
ifications is that they are not to everyone’s taste. In reality, anyone can learn to use them (the
underlying concepts are very simple), but the focus on logical reasoning is one of the reasons
for having a separate category of requirements engineers or business analysts. These require-
ments experts should fully master the corresponding techniques. The distribution of tasks then
becomes clear, as already outlined above:

* SME:s and other stakeholders may prefer, at least initially, to reason in terms of scenarios.

» It is the task of BAs to abstract these specific cases into general specifications, using the
techniques of object-oriented requirements and contracts.

* A constant back-and-forth takes place; in particular, BAs show the consequences of their
OO modeling to the other two groups, to check that their understanding is correct.

Many specialists of non-IT areas will (as experience shows) naturally take to the OO style and
the associated logical mechanisms. But even if they do not, the BAs should.

It is in fact paradoxical to encounter resistance to such methods based on the argument that
“it is too hard for our people”. The basic justification for having requirements experts, be they
called business analysts or requirements engineers, is precisely that they master techniques
unique to the engineering of requirements. If requirements were all about listing individual sce-
narios — “the user can do this and then that, the system will respond by this and then that” —
there would hardly be a need for a separate profession. Good requirements analysis is about
abstracting from special cases to general specifications. The best path is to abstract from sce-
narios to contracted classes.

8.7.6 Towards formal methods and abstract data types

The intrusion of logic into the descriptions — see for example the invariant of class INSUR-
ANCE_CLAIM on page 149 — is a first step towards making use of mathematical techniques
in requirements. Simple mathematics, based on elementary logic, but mathematics all the same.

The general application of mathematical techniques to reasoning about software is known
as formal methods and goes beyond this first step. Chapter 9 is devoted to formal methods and
followed by a discussion in chapter 10 of a particular formal notion, abstract data type, the
mathematical counterpart to the software notion at the core of object technology: class.

8.7.7 “But it’s design!”

Although at this stage you should have no doubt about the suitability of object-oriented princi-
ples for requirements, it is still useful (if only for discussions you may have with colleagues
steeped in more traditional approaches) to dispel a common misunderstanding: that such spec-
ifications as illustrated in the preceding example, based on classes and contracts (plus inheri-
tance to organize the classes into hierarchies), are premature designs or even — heaven forbid!
— premature implementations. If so, they would be subject to the reproach of “overspecifica-
tion” (4.7.3, page 59).



154 OBJECT-ORIENTED REQUIREMENTS §8.8

Of course they are not. In the present discussion, classes are modeling tools at the require-
ments level. OO modeling means that you describe elements (from the Project, Environment,
Goals or System) through types of objects and the applicable operations. These classes are
purely descriptive; they need not contain any inkling of future design decisions.

The “but it’s premature design!” reaction is ironic when used to advocate use cases, which
present a clear risk of premature design since they specify ordered sequences of operations,
leading to the temptation of writing programs along those same ordering patterns.

8.7.8 Towards seamlessness

While free from design and implementation considerations, the classes written for require-
ments purposes are still classes and can be expressed in an object-oriented language that also
supports design and implementation classes. The benefit here is to avoid harmful changes of
concepts and notations when going through successive steps of the software lifecycle.

This approach is known as seamless development and discussed in more detail in connec-
tion with the place of requirements in the software lifecycle (see “Seamless development”,
12.6, page 218). One of its beneficial consequences is reversibility: having everything
expressed in a single notation makes it easier to update the requirements at any stage in the
project, even deep into design, implementation or verification, in line with the Requirements
Evolution Principle (“The evolution of requirements”, 2.1.4, page 23).

Without having seen yet the full discussion of seamlessness, we may take advantage of the
preceding discussion to analyze the diverse nature of classes that appear in requirements and
at other stages of software development. This analysis leads us, in the next section, to an
important classification of the various kinds of class.



