
Implementing and evaluating an
exception mechanism for

SCOOP

Master Thesis

Florian Besser
ETH Zurich

fbesser@ethz.ch

March 16, 2013 - September 18, 2013

Supervised by:
Benjamin Morandi
Prof. Bertrand Meyer

Abstract

Exception handling is an important part of software development. Han-
dling exceptions in concurrent software is even more complicated: There can
be asynchronous exceptions, but because of design choices in each language, no
exception mechanism can be used everywhere.

Several exception mechanisms have been proposed for SCOOP, a concurrent
object-oriented programming model. We focus on two of these exception mech-
anisms, the EiffelSoftware exception mechanism as well as the accountability
mechanism.

We implemented the accountability mechanism, an exception mechanism
which handles exceptions in a more expressive and less restrictive way than
the Eiffelsoftware exception mechanism. We also developed variations of that
mechanism, making it more expressive. After that, we evaluated both the Eiffel-
software exception mechanism as well as the accountability mechanism in terms
of usability, expressiveness and performance. The evaluation has shown us two
points on which we could improve: We refined the accountability mechanism by
adding another variant, making it even more expressive and we preserved the
types of asynchronous exceptions, thus providing developers with more useful
information.

Additionally, we implemented the duel mechanism on top of the ordinary
exception mechanism, allowing two or more SCOOP processors to duel for a
resource, instead of having to wait until the resource is eventually released.

Acknowledgments

I would like to thank my supervisor, Benjamin Morandi, for always making
time for me, his clarifications on how the accountability mechanism should be
implemented, as well as for his help whenever problems arose that were out of
my control.

Thanks to Ian King and the people working on SCOOP for their input and
the effort with which they fixed problems.

Also thanks to Emmanuel Stapf, who pointed me in the right direction as
to where I could implement my changes in this behemoth of a codebase.

Thanks also go to my friends and family, who loyally pretended to follow my
train of thought as I raved on about processors and exceptions.

Contents

1 Introduction 6

2 SCOOP 8

3 The Exception Mechanisms 11
3.1 EiffelSoftware Exception Mechanism 11
3.2 Accountability Mechanism . 12

4 Implementation 15
4.1 EiffelStudio SCOOP Implementation 15
4.2 EiffelStudio Exception Mechanism Implementation 17
4.3 Accountability Mechanism Implementation 17
4.4 Testing . 17

5 Evaluation 22
5.1 EiffelSoftware Exception Mechanism 23

5.1.1 Usability and Expressiveness 23
5.2 Accountability Mechanism without Safemode 25

5.2.1 Usability and Expressiveness 25
5.3 Accountability Mechanism with Safemode 26
5.4 Performance Analysis . 28

6 Improvements 31
6.1 Accountability Mechanism Never Forget 31

6.1.1 Evaluation . 31
6.1.2 Performance . 32

6.2 Exception Types . 32

7 Duels 36
7.1 Implementation . 37
7.2 Evaluation . 38
7.3 Testing . 38

8 Guides 41
8.1 User Guide . 41

8.1.1 Choosing your Exception Mechanism 41
8.1.2 Quick Recap of Some Important SCOOP Facts 42

8.2 Developer Guide . 42
8.2.1 Where to Find and Build the Solution 43

4

8.2.2 SCOOP Framework . 43
8.2.3 Accountability Mechanism without Safemode 44
8.2.4 Accountability Mechanism with Safemode 45
8.2.5 Duel mechanism . 46
8.2.6 Integrating the Accountability Mechanism into EiffelStudio 47

9 Related Work 48

10 Conclusions and Future Work 49
10.1 Conclusions . 49
10.2 Future Work . 49

10.2.1 Asynchronous Callbacks 50
10.2.2 Can Processors Become Unfailed? 50
10.2.3 How to Handle Holder and Challenger Behaviour for Duel

Mechanism . 50
10.2.4 Timeouts in Duel Mechanism 51
10.2.5 Priorities for Different SCOOP Processors 51

A References 52

B Code Listings 53

Chapter 1

Introduction

In SCOOP multiple processors execute code in interleaved and potentially par-
allel fashion. SCOOP supports asynchronous (non-blocking) calls from objects
on one processor to objects on another processor. This allows the client to
continue while the supplier executes the received call. If the call terminates
normally, the client does not need to be informed. But if the supplier raises
an exception, the exception must be propagated to the client, who then has to
change its control flow and handle the exception. The client may no longer be
in a state where it can handle the exception though, since the client continued
after placing the call on the supplier. An exception from such an asynchronous
call is called an asynchronous exception. Such exceptions have a context, which
consists of two parts: The failed context is the supplier’s context, and the re-
sponsible context is the context of the client when it made the call. Exceptions
are always the product of a failure of the supplier, namely to hold its promise
to the client.

Several exception mechanisms have been proposed for SCOOP. This paper
is about implementing the accountability mechanism as described in [1]. We
then evaluate the EiffelSoftware exception mechanism as well as the newly im-
plemented one. The contributions are:

1. An implementation of the accountability mechanism as described in [1].

2. Several test programs to verify the correctness of the implementation.

3. An evaluation of usability, expressiveness, and performance of both the
existing implementation as well as the accountability mechanism.

4. A duel mechanism, which builds upon the exception mechanism, and
which allows processors to duel for resources.

Section 2 presents an overview of SCOOP and its features, section 3 explains
the exception mechanisms. Section 4 explains the implementation. The excep-
tion mechanisms are evaluated in section 5. Section 6 covers improvements for
the accountability exception mechanism. The duel mechanism is explained as
well as evaluated in section 7. A user as well as a developer guide can be found

6

Introduction 7

in section 8. Related work is discussed in section 9, references can be found in
section 10. We present our conclusions in section 11.

Chapter 2

SCOOP

In SCOOP, every object is attached to a processor, and that processor is called
the object’s handler. A processor is a thread that can execute actions on
objects. An object’s class describes what features can be applied to the object.
A processor may be a CPU, but it can also be implemented as a thread; if a
mechanism can execute calls sequentially, it can be a processor.

A variable x that is attached to a processor can have pointers to other
objects with the same handler (non-separate objects) as well as objects with a
different handler (separate objects). In case of a non-separate object,the call
x.f is non-separate: It is synchronously executed by the handler. Here, x is
called the target of the feature call. In case of a separate object, the feature
call is separate: The supplier executes the call asynchronously. Asynchronous
feature calls support concurrent execution of programs.

A good example of these concepts can be found in a simple producer and
consumer example, shown in listing 2.1. Assume that both the producer as well
as the consumer have their own handlers. We generally use the same word for
both the object as well as the handler, so in this case ”consumer” refers both
to the actual consumer object as well as its handler.

The keyword separate means that the objects may have a different handler
than the current object. In this example, both the producer as well as the
consumer have access to the same buffer, through which they will communicate.

To make sure that only one object accesses the buffer at the same time,
the buffer must be locked by that object. Locks required to execute a feature
are specified in the argument list. All possible targets of separate type must
be listed in the argument list, and the feature will only be executed once all
of them are locked by the current processor. Locks are held for as long as the
client executes its feature. Targets that are locked are called controlled, and
targets that are not locked are called uncontrolled.

SCOOP supports condition synchronization: Preconditions are not simply
evaluated to true or false, but they can be wait conditions. In the example 2.1,
the precondition of consume states that the buffer must not be empty. This
means that the execution of consume is delayed until the precondition evaluates

8

SCOOP 9

Listing 2.1: Eiffel : Producer-consumer example

1 producer: separate PRODUCER

2 consumer: separate CONSUMER

3 buffer: separate BUFFER[INTEGER]

4
5 consume (buffer: separate BUFFER[INTEGER]): INTEGER

6 require

7 not buffer.is_empty

8 do

9 Result := buffer.item

10 end

11
12 produce (buffer: separate BUFFER [INTEGER]; a_element:

INTEGER)

13 require

14 not buffer.is_full

15 do

16 buffer.put (a_element)

17 end

to true.

Listing 2.2 shows lock passing, another technique supported by SCOOP. In
this scenario, the supervisor will act as the client, while the worker will be
the supplier. The client has the ability to pass locks it currently holds to the
supplier, including the lock to itself. This allows the supplier to place calls to
the resources guarded by these locks. The client has to wait for the supplier to
return the locks, so any call involving lock passing becomes synchronous.

SCOOP uses wait by necessity to determine when synchronization between
supplier and client is necessary: The client will wait for a result from a call if that
result is needed. In the example 2.1, Result := buffer.item is a synchronous
call, since the result from buffer.item is required and therefore waited upon.

SCOOP 10

Listing 2.2: Eiffel : Supervisor-worker example

1 note

2 description: "The supervisor will place a workload on a

WORKER , but will remain available should the WORKER

have any problems/questions."

3
4 class SUPERVISOR

5
6 place_workload (a_worker: separate WORKER)

7 do

8 a_worker.do_work (Current) −−Allow the worker to
p l a c e c a l l b a c k s to the s up e r v i s o r

9 end

10
11 end

Chapter 3

The Exception Mechanisms

This chapter gives an overview of the two exception mechanisms. It explains
the basic behaviour of processors, with a high-level event based algorithm.

3.1 EiffelSoftware Exception Mechanism

This exception mechanism was developed by EiffelSoftware. In this exception
mechanism suppliers remember exceptions as well as the client responsible for
them. The basic idea is that an exception caused by a client must eventually
be returned to that client.

Algorithm 1 shows the interactions between a client p and suppliers {q1 ...
qn} for a feature request f. The event based notation follows Cachin et al. [4].

Whenever a client locks a supplier (see Feature application start), the sup-
plier remembers the client and that it is locked (see 〈Get |p, [LOCK]〉). In case
the supplier fails, it executes the associated rescue clause to reestablish its consis-
tency. Without a retry instruction (see Rescue clause end), the supplier remem-
bers the exception as well as the client associated with it. It will never again exe-
cute any calls from that client (see Feature call, after Rescue clause end has been
executed), and the client will always get the same exception if it tries to interact
with the supplier. The failed supplier will release all locks it holds, and wait
until the client releases the lock on the supplier. The client will receive an excep-
tion whenever it asks for a report from the supplier, and the supplier reports a
failure (see 〈Get | p, [GET REPORT]〉 and 〈Get |p, [GET REPORT WAIT]〉).
The client queries for such a report before placing a call on a supplier and after
the supplier executed a synchronous call (see Feature call). When the client
unlocks the supplier (see 〈Get |p, [UNLOCK]〉), the supplier will no longer be
locked, but still try to execute any remaining calls placed on it.

This approach allows exceptions to be passed back to whomever caused
them, allowing processors to delegate work to other processors, and then later
query for the result or the exception. It also makes sure that the client will
get informed of possible exceptions in a timely manner, while not requiring any

11

The Exception Mechanisms - Accountability Mechanism 12

manual querying specifically for exceptions or other effort from the developer’s
side.

3.2 Accountability Mechanism

The core of this exception mechanism is accountability. Whenever clients
query for any exceptions from suppliers, they are said to hold the suppliers
accountable. A supplier is called accountable if it might in the future have to
report exceptions to its client.

Algorithm 2 shows the interactions between a client p and suppliers {q1 ...
qn} for a feature request f.

Whenever a client locks a supplier (see Feature application start), the sup-
plier sets itself accountable and locked (see 〈Get |p, [LOCK]〉). In case the sup-
plier fails, it executes the associated rescue clause to reestablish its invariant.
Without a retry command (see Rescue clause end), the supplier remembers the
failure and cleans up: It deletes any remaining feature requests from the client
and waits until the client decides to release the lock (see 〈Get |p, [UNLOCK]〉) or
until the supplier is held accountable (see 〈Get |p, [HOLD ACCOUNTABLE]〉).
Should the client hold the supplier accountable, it will propagate the exception
to the client (see Feature call). If a supplier is held accountable, the supplier
becomes unfailed, meaning it is allowed to receive more calls. The client auto-
matically holds the supplier accountable if it does a synchronous feature call.
As soon as the client releases the lock of the supplier, the supplier dismisses the
accountability (see 〈Get | p, [UNLOCK]〉). If there is still some work left from
the client, the supplier will execute it. In case of failure, the supplier will not
safe the exception, since it is no longer accountable (and therefore the client
can never hold the supplier accountable). When there is no work left and the
supplier is no longer accountable, the supplier forgets any exception it might
have stored before (see upon ¬accountable∧ requests = ()).

This exception mechanism allows exceptions to be lost, for example by never
querying a processor after giving it some asynchronous work. Sometimes it is
vital that no exception ever gets lost, and this is the purpose of the safemode.
In case the safemode is used, the client will not only query for exceptions on
synchronous calls, but also whenever it finishes executing its own feature body
(see Feature body end). By doing so, the supplier will never be in a situation
where it discards an exception, and no exceptions will be lost. The safemode is
a slight variant of the original accountability mechanism, and can be turned on
or off by the developer.

The Exception Mechanisms - Accountability Mechanism 13

1 upon event 〈Initialize〉 do
2 locked := false; client := V oid; dirty towards := (); requests := ();
3 upon event 〈Feature application start | f , {q1, . . . , qn}〉 do
4 forall the qi ∈ {q1, . . . , qn} do
5 trigger 〈Send | qi, [LOCK]〉;
6 end

7 upon event 〈Feature call | f , qi, is synchronous〉 do
8 trigger 〈Send | qi, [GET REPORT]〉;
9 wait 〈Get | qi, [REPORT, s]〉;

10 if s = fail then
11 rescue;
12 end
13 trigger 〈Send | qi, [FEATURE LOG, f]〉;
14 if is synchronous then
15 trigger 〈Send | qi, [GET REPORT WAIT]〉;
16 wait 〈Get | qi, [REPORT, s]〉;
17 if s = fail then
18 rescue;
19 end

20 end

21 upon event 〈Feature application end | f , {q1, . . . , qn}〉 do
22 forall the qi ∈ {q1, . . . , qn} do
23 trigger 〈Send | qi, [UNLOCK]〉;
24 end

25 upon event 〈Get | p, [LOCK]〉 do
26 locked := true; client := p;
27 upon event 〈Get | p, [FEATURE LOG, f]〉 do
28 requests := requests • f ;
29 upon event 〈Rescue clause end〉 do
30 dirty towards := dirty towards ∪ {client};
31 requests := ();

32 upon event 〈Get | p, [GET REPORT]〉 do
33 if p ∈ dirty towards then
34 trigger 〈Send | p, [REPORT fail]〉;
35 else
36 trigger 〈Send | p, [REPORT success]〉;
37 end

38 upon event 〈Get | p, [GET REPORT WAIT]〉 such that requests = ()
do

39 if p ∈ dirty towards then
40 trigger 〈Send | p, [REPORT fail]〉;
41 else
42 trigger 〈Send | p, [REPORT success]〉;
43 end

44 upon event 〈Get | p, [UNLOCK]〉 do
45 locked := false;

Algorithm 1: Asynchronous exception mechanism, EiffelSoftware imple-
mentation

The Exception Mechanisms - Accountability Mechanism 14

1 upon event 〈Initialize〉 do
2 locked := false; accountable := false;
3 failed := false; requests := ();

4 upon event 〈Feature application start | f , {q1, . . . , qn}〉 do
5 forall the qi ∈ {q1, . . . , qn} do
6 trigger 〈Send | qi, [LOCK]〉;
7 end

8 upon event 〈Feature call | f , qi, is synchronous〉 do
9 trigger 〈Send | qi, [FEATURE LOG, f]〉;

10 if is synchronous then
11 trigger 〈Send | qi, [HOLD ACCOUNTABLE]〉;
12 wait 〈Get | qi, [REPORT, s]〉;
13 if s = fail then
14 rescue;
15 end

16 end

17 upon event 〈Feature body end | f , {q1, . . . , qn}, in safe mode〉 do
18 if in safe mode then
19 forall the qi ∈ {q1, . . . , qn} do
20 trigger 〈Send | qi, [HOLD ACCOUNTABLE]〉;
21 wait 〈Get | qi, [REPORT, s]〉;
22 if s = fail then
23 rescue;
24 end

25 end

26 end

27 upon event 〈Feature application end | f , {q1, . . . , qn}〉 do
28 forall the qi ∈ {q1, . . . , qn} do
29 trigger 〈Send | qi, [UNLOCK]〉;
30 end

31 upon event 〈Get | p, [LOCK]〉 do
32 locked := true; accountable := true;
33 upon event 〈Get | p, [FEATURE LOG, f]〉 do
34 if ¬failed then
35 requests := requests • f ;
36 end

37 upon event 〈Rescue clause end〉 do
38 failed := true; requests := ();
39 upon event 〈Get | p, [HOLD ACCOUNTABLE]〉 such that

requests = () do
40 if failed ∧ accountable then
41 failed := false; trigger 〈Send | p, [REPORT fail]〉;
42 else
43 trigger 〈Send | p, [REPORT success]〉;
44 end

45 upon event 〈Get | p, [UNLOCK]〉 do
46 accountable := false;
47 upon ¬accountable∧ requests = () do
48 locked := false; failed := false;

Algorithm 2: Asynchronous exception mechanism, accountability mech-
anism with and without safemode

Chapter 4

Implementation

This chapter discusses how SCOOP and the various exception mechanism are
implemented. We use high-level descriptions, if you are interested in the code,
have a look at the developer guide in Section 8.2.

4.1 EiffelStudio SCOOP Implementation

SCOOP uses a chains over queues system, or COQS in short. To understand
the implementation of the exception mechanism, it is vital to know how a COQS
works.

EiffelSoftware implemented a simple COQS system, defined as follows: A
COQS is defined as a finite set Q1, Q2, . . . , Qn called the queues, such that there
exists a set of non-empty lists, called the chains with the following properties:

1. Every element of every queue belongs to exactly one chain.

2. Every element of every chain belongs to exactly one queue.

Every SCOOP processor Pi has a queue Qi attached to itself. The chain
elements of Qi hold the work that processor Pi must execute.

Figure 4.1 shows a COQS as it is used in SCOOP: P as well as R would like
to assign some work to Q. Since the calls from P and R should not interleave,
two chains are necessary. P creates a chain with itself as head and Q as a
dependant. R does the same. P and R can now assign some work to Q: P places
the two calls f() and g() on Q while R places the call x(3).

Processors execute a processor loop, as shown in Algorithm 3. A processor
gets the top chain node of its queue (for Q this would be the node containing
f() and g()), then starts to work on the chain node. A processor only exits its
current chain node if the head of the chain closes the chain (for Q, P would
be the head). The head of a chain closes a chain only if it executed all feature
requests of its chain node. Figure 4.2 shows the same processors, after a small

15

Implementation - EiffelStudio SCOOP Implementation 16

Figure 4.1: P and R place calls on Q

Figure 4.2: Q began working on its top chain node, P placed another call on Q

amount of time has passed: Q has executed the call f(), and P has placed
another call on Q. Note that the call from P will be executed before the earlier
call of x(3) from R. This is necessary since otherwise the calls from P and R
would interleave.

Algorithm 3 shows the basic behaviour of a processor: A processor grabs its
next chain node and proceeds to work on it. While a processor works on a chain
node, it queries the chain node for the top feature request stored, and saves
the request as the current feature request. The processor will then execute the
current feature request. Executing a feature request means executing each call
one by one. If a call has a separate target the client will place it as a feature
request on the supplier. If a separate call is also synchronous, the client waits
for the supplier for an answer (wait by necessity).

It is important to distinguish between chain nodes and actual feature re-
quests: A chain node is placed on a queue and can contain any number of

Implementation - EiffelStudio Exception Mechanism
Implementation 17

feature requests for a processor to execute. A feature request is always part of
a chain node. This constraint makes sure that processors working on a chain
cannot be disturbed, and no two clients interleave work on a supplier.

4.2 EiffelStudio Exception Mechanism Implemen-
tation

Algorithm 3 works as long as no organized panic happens. However, if asyn-
chronous exceptions should be handled the algorithm needs to be extended.
Algorithm 4 shows the changes needed to implement the EiffelSoftware excep-
tion mechanism (work on chain was not changed and thus omitted). The client
will look if the supplier is dirty towards it before placing a call as well as after
waiting for the response from a placed separate synchronous call. Processors
encountering an exception will look up their current client, and set themselves
dirty towards it.

4.3 Accountability Mechanism Implementation

Algorithm 5 shows the processor loop when using the accountability mechanism
with and without safemode (again, work on chain was not altered and is there-
fore omitted). If the accountability mechanism is used, chains receive a new
flag called accountable. If a chain is accountable or the safemode is turned on,
the involved processors will store exceptions, and otherwise throw them away.
Chains are accountable when created, and become unaccountable whenever the
client releases its locks. This accountability mechanism makes sure that proces-
sors only store exceptions that have a chance to be later propagated back to the
client that caused them. Processors have a new flag called failed. Processors
start unfailed, and become failed if they enter an organized panic. Processors
become unfailed whenever they propagate an exception back to the client or
when the client releases its lock. Thus the mechanism ensures that the supplier
is always unfailed when it is locked by a client.

If the safemode is turned on processors will query all their suppliers before
releasing locks, thus preventing exceptions to be lost.

4.4 Testing

We developed many test cases in order to verify the exception mechanism per-
forms as it should. In total, we developed 32 programs that test one or multiple
aspects of an exception mechanism. You can find all these programs online
when building our solution, see Section 8.2.1.

For very basic functionality testing, we developed six programs that deal
with exception handling. These programs are of an academic nature, and do

Implementation - Testing 18

1 Algorithm processor loop()

2 initialization;
3 while not processor.is redundant do
4 current chain node := processor.queue.top;
5 current chain := current chain node.entire chain;
6 while not (current chain.is closed ∧ current chain node.is empty)

do
7 work on chain (current chain node);
8 if processor = current chain.head ∧

current chain node.is empty then
9 current chain.close

10 end

11 end
12 processor.queue.pop;

13 end

1 Procedure work on chain(Chain node node)
2 if node.top != Void then
3 current feature request := node.top;
4 node.pop;
5 if current feature request.needs new locks then
6 Create a new chain, spanning all processors which need to be

locked.
7 end
8 execute (current feature request);

9 end

1 Procedure execute(Feature request req)
2 while req.body.top != Void do
3 current call := req.body.top;
4 req.body.pop;
5 if current call.target = processor then
6 Execute locally
7 else if current call.is lock passing call then
8 place call(current call, current call.target); –Places the call (as

a feature request) on the target processor
9 Wait for result, and periodically check for callbacks.

10 else if current call.is separate synchronous call then
11 place call(current call, current call.target);
12 Wait for result (do not check for callbacks).

13 else
14 place call(current call, current call.target);
15 –Do not wait, call is asynchronous

16 end

17 end

Algorithm 3: Processor loop without support for exceptions

Implementation - Testing 19

1 Algorithm processor loop()

2 initialization;
3 while not processor.is redundant do
4 current chain node := processor.queue.top;
5 current chain := current chain node.entire chain;
6 while not (current chain.is closed ∧ current chain node.is empty)

do
7 work on chain (current chain node);
8 if processor = current chain.head ∧

(current chain node.is empty ∨
processor.is in organized panic) then

9 current chain.close;
10 end
11 if processor.is in organized panic then
12 processor.set dirty towards(current chain.head);
13 Wake up current chain.head; –The client may be waiting

for a result, it must be woken up.
14 Break; –Exit while loop, continue without organized panic.

15 end

16 end
17 processor.queue.pop;

18 end

1 Procedure execute(Feature request req)
2 while req.body.top != Void do
3 current call := req.body.top;
4 req.body.pop;
5 if current call.is separate call ∧ current call.target.is dirty towards

(processor) then
6 throw exception;
7 end
8 if current call.target = processor then
9 Execute locally –This can throw an exception

10 else if current call.is lock passing call then
11 place call(current call, current call.target); –Places the call (as

a feature request) on the target processor
12 Wait for result, and periodically check for callbacks.

13 else if current call.is separate synchronous call then
14 place call(current call, current call.target);
15 Wait for result (do not check for callbacks).

16 else
17 place call(current call, current call.target);
18 –Do not wait, call is asynchronous

19 end
20 if current call.is separate synchronous call ∧

current call.target.is dirty towards (processor) then
21 throw exception;
22 end

23 end

Algorithm 4: Execute with support for the EiffelStudio exception mech-
anism

Implementation - Testing 20

1 Algorithm processor loop()

2 initialization;
3 while not processor.is redundant do
4 current chain node := processor.queue.top;
5 current chain := current chain node.entire chain;
6 while not (current chain.is closed ∧ current chain node.is empty)

do
7 work on chain (current chain node);
8 if processor.is in organized panic ∧

(current chain.is accountable ∨ safemode) then
9 processor.set failed;

10 Wake up current chain.head; –The client may be waiting
for a result, it must be woken up.

11 end
12 if processor = current chain.head ∧

current chain node.is empty then
13 if safemode then
14 Wait for all suppliers to finish, then query if any are

failed. If one or more are failed, throw exception.
15 end
16 current chain.close;
17 current chain.set unaccountable;

18 end

19 end
20 processor.queue.pop;

21 end

1 Procedure execute(Feature request req)
2 while req.body.top != Void do
3 current call := req.body.top;
4 req.body.pop;
5 if processor.is failed then
6 –Only execute calls if the processor is not failed
7 continue; –Go to the next iteration of the while loop.

8 end
9 if current call.target = processor then

10 Execute locally –This can throw an exception
11 else if current call.is lock passing call then
12 place call(current call, current call.target); –Places the call on

the target processor
13 Wait for result, and periodically check for callbacks.

14 else if current call.is separate synchronous call then
15 place call(current call, current call.target);
16 Wait for result (do not check for callbacks).

17 else
18 place call(current call, current call.target);
19 –Do not wait, call is asynchronous

20 end
21 if current call.is separate synchronous call ∧

current call.target.is failed then
22 throw exception;
23 end

24 end

Algorithm 5: Processor loop with support for the accountability mecha-
nism

Implementation - Testing 21

not illustrate a real-world problem. You can find these programs in the Maude
Tests folder in our delivery.

We developed another six programs to test basic functionality, but this time
we tried emulating common problems, such as trying to read a non-existent file.
These programs can be found in the Small Tests folder.

A testing process that only tests small parts of the overall solution is not
sufficient. We changed two basic SCOOP examples to rely on exceptions instead
of other functionality. You can find these programs in the SCOOP modified
Examples folder. We implemented every example four times, once for every
exception mechanism. The exception mechanisms have functional differences
that make it impossible to write code that works with all four of them.

We implemented three more large projects to test very specific weaknesses
of an exception mechanism. The idea was to see what effort a developer would
have to undertake to make a certain program still work even with the ”wrong”
exception mechanism. You can find these files in the Large Tests folder. Again
every project is implemented four times, once for every exception mechanism.

Chapter 5

Evaluation

This chapter presents an evaluation of the exception mechanisms. The mech-
anisms were evaluated for usability, expressiveness and performance. An ex-
ception mechanism is considered expressive if it can be used to model many
different types of problems without considerable workarounds by the developer.
Usability is defined as how easily a developer can use the mechanism.

We implemented the following examples on every exception mechanism, and
use them to gauge the expressiveness and usability of the exception mechanism.

1. Worker-aggregator, see Listings B.1 and B.2.

2. Filesystem, see Listings B.3, B.4 and B.5.

3. Producer-consumer, see Section 8.2.1 for building the solution.

4. Barbershop, see Section 8.2.1 for building the solution.

The producer-consumer as well as the barbershop example have one central
server that is shared by multiple users. In the producer-consumer example, the
central server is a bounded buffer that is used by both producers and consumers.
Everyone tries to lock the shared buffer, and then either produce or consume
an element. The buffer throws an exception if someone tries to consume from
it even though it is empty or if someone tries to insert an element even though
it is full. The example demonstrates the benefit of a failed supplier becoming
unfailed: If the buffer would no longer accept calls from a producer or consumer,
then the system would deadlock. Since there can be only one instance of the
buffer, a client cannot simply create a new buffer and continue working on it.

In the worker-aggregator example, several workers are given some asynchro-
nous tasks, but the original client will never again interact with them. Instead,
a second client will later query the workers. The idea is that the first client is
unable to handle exceptions from the tasks, and instead the second client should
receive the exceptions. We came up with this example when we tried to find
programs that would reveal weaknesses in exception mechanisms.

22

Evaluation - EiffelSoftware Exception Mechanism 23

The filesystem example tries to combine the difficulties from the other ex-
amples. Several workers share a central service, which they use to access files.
However, the workers must be able to query the service in a non-blocking way.
Since SCOOP blocks whenever a result is not available, the workers can’t sim-
ply query the service. Instead, the service accepts work, but then sends any
answers to a separate answer register. The workers query the answer register,
which will immediately return the file contents, an empty string (if no content
is available currently) or an exception (if there was an exception when reading
the file). This example is not handled correctly by any of the exception mecha-
nisms, some workarounds are always required. That makes the example a good
opportunity to study how easily the exception mechanism can be adapted to fit
a situation it was not originally intended for.

5.1 EiffelSoftware Exception Mechanism

5.1.1 Usability and Expressiveness

From a theoretic point of view, the EiffelSoftware exception mechanism is quite
easy to use. It is clear who will receive exceptions, and at first it looks quite
robust. The implementation of the mechanism has problems when it comes to
certain types of SCOOP programs however:

1. Since the supplier saves an exception indefinitely, this can lead to some
problems for the client: A client might not always be able to handle all
possible exceptions from earlier calls to the supplier. For example, a client
might use the same supplier for multiple purposes. It will place a workload
on the supplier, and later try to place another workload on the client, then
receiving an exception. Developers using the current implementation must
therefore always make sure that any exception the supplier might throw
from earlier workloads can always be handled. A program showing this
problem can be found in Listing 5.1.

2. Another problem of the supplier indefinitely saving exceptions is that it
can never become unfailed. This means for the client that once the supplier
has an exception, it can never use the supplier again. The client must
recreate the entire supplier again, adding a lot of complicated code. It
might not even be possible to simply create a new supplier, for example
if the supplier uses the singleton pattern. The singleton pattern dictates
that at most one instance of the class can exist, and no further instances
may be created.

3. It is also possible to lose exceptions. For example, a client places a call on
the supplier, and later a second client queries the supplier for the result.
In that example, the first client never again interacts with the supplier, so
the exception is never propagated and thus lost. A program showing this
can be found in Listings B.1 and B.2

The EiffelSoftware exception mechanism performs well in systems where a
client does not need to interact with a failed supplier again. Generally every

Evaluation - EiffelSoftware Exception Mechanism 24

Listing 5.1: Eiffel : Past exceptions class

1 note

2 description: "Clients must be able to handle any prior

exceptions from their suppliers."

3
4 class PAST_EXCEPTIONS

5
6 create

7 make

8 feature

9 make

10 local

11 l_worker: separate WORKER

12 do

13 create l_worker.make

14 a (l_worker)

15 b (l_worker)

16 end

17
18 a (a_worker: separate WORKER)

19 do

20 a_worker.async_call_fail −−This p l a c e s an
asynchronous c a l l on the worker , which w i l l l a t e r
f a i l .

21 rescue

22 −−S ince th e r e i s no f u r t h e r i n t e r a c t i o n with a worker ,
t h i s r e s cu e c l a u s e i s never used

23 end

24
25 b (a_worker: separate WORKER)

26 do

27 a_worker.sync_call −−This p l a c e s a synchronous c a l l
on the worker , which would complete normal ly . But

due to the e a r l i e r f a i l i n g c a l l , the worker w i l l
i n s t e ad r e tu rn an exc ep t i on here !

28 rescue

29 −−This r e s cu e c l a u s e must be ab l e to handle the
exc ep t i on that was caused by the f a i l i n g c a l l
p laced on a worker in a () . A behav iour l i k e t h i s
makes the program unn e c e s s a r i l y compl i ca ted and
hard to f o l l ow .

30 end

31
32 end

Evaluation - Accountability Mechanism without Safemode 25

program where a failed supplier can be discarded can be modeled using this ex-
ception mechanism. A good example would be the worker-aggregator program,
if the aggregator and root class were rolled into one.

To summarize: The mechanism is easy to use, and developers will quickly
learn how to effectively use it. Developers will however face difficulty when using
the mechanism to construct larger systems: The client must be able to handle
all prior exceptions from a supplier, so developers must add many safeguards,
increasing code complexity. Interactions between clients and suppliers can be
modeled if no exceptions occur, or if after the exception is propagated the client
does not have any further business with the supplier. In the case that the client
does need further communication with a dirty supplier, then the developer must
add code to the client, allowing it to construct a new supplier. This issue can
greatly increase code complexity or might even be impossible to solve.

5.2 Accountability Mechanism without Safemode

5.2.1 Usability and Expressiveness

The accountability mechanism requires developers to think in terms of locks:
They must know which processor currently locks which other processors, and
they must understand that exceptions disappear as soon as these locks are
lifted. It is possible that a developer does not wish to work with an exception
mechanism that allows exceptions to be lost; For these cases, the accountability
mechanism without safemode is clearly a bad fit, and this led to the implemen-
tation of the accountability mechanism with safemode, which is evaluated in
Section 5.3. Additionally, developers must understand the difference between
synchronous and asynchronous calls, since asynchronous calls will never return
exceptions.

Exceptions can be forgotten by processors because of design by contract:
Even if a supplier fails, it must be able to satisfy its invariant. In other words,
it must be able to receive some further work, and thus should be able to forget
an exception. If a client releases the lock of the supplier, it can no longer interact
with it in any way, and thus it is safe for the supplier to forget the exception.
Forgetting exceptions gives some additional guarantees to clients, namely that
a processor is unfailed whenever a lock on it is acquired. This means clients do
not have to handle exceptions that were caused earlier.

The accountability mechanism without safemode also has problems when it
comes to certain SCOOP programs:

1. The mechanism that the supplier forgets any exceptions as soon as the
client releases the lock can have some problematic side effects. It can hap-
pen that a client locks a supplier, just to place some asynchronous calls on
it. In these cases, exceptions will be lost. An example of this behaviour
can be found in the producer-consumer program: The buffer returns ex-
ceptions whenever produce or consume is not immediately possible. Since
exceptions are lost as soon as the lock is released, producers must add

Evaluation - Accountability Mechanism with Safemode 26

a synchronous call if they want to receive exceptions. Otherwise, not all
elements the producers try to insert into the buffer actually end up in
the buffer, so in the end the consumers still try to consume further ele-
ments, while the producers have long stopped producing. This means the
program never terminates.

2. It is possible that the client performing the call on the supplier is not
actually able to handle exceptions caused by that call. For example, a
client places a call on the supplier, and later a second client queries the
supplier for the result. In that example, the first client never again inter-
acts with the supplier, so the exception is never propagated and thus lost.
A program showing this can be found in Listings B.1 and B.2.

If a system requires a failed supplier to be able to take on new work, then
this exception mechanism works very well. For example, producer-consumer as
well as barbershop are two examples where this approach works very well, albeit
with minor changes.

In conclusion, the accountability mechanism is slightly harder to grasp the
first time it is used, but it pays off by allowing developers to write cleaner
code. They no longer have to take indefinitely failed processors as well as
exceptions from the past into consideration when coding. This model allows
SCOOP processors to truly behave like objects with contracts by leveraging
the principles of design by contract. Developers should find this model more
intuitive and easier to use, once they have grasped the finer nuances of it.

5.3 Accountability Mechanism with Safemode

The accountability mechanism with safemode was invented to be an alternative
to the accountability mechanism without safemode. It allows developers to
easily code some of the SCOOP programs that are difficult to code when using
the accountability mechanism without safemode.

If developers know how the accountability mechanism without safemode be-
haves, they will be able to use this mechanism without problems. One main
point to be remembered is that at the end of the client’s body, the client must
wait for all suppliers. This means that a client has to carefully plan which jobs it
places on its suppliers and which jobs it executes itself. Otherwise, performance
will suffer.

This altered mechanism is not without problems, though:

1. Since the accountability mechanism with safemode dictates that at the
end of the client body the client will wait for all suppliers, this complicates
long-lived entities. When working with those entities, the client is always
waiting for its suppliers. An example for this can be found in listing
5.2. This forces the client to lock long-lived entities once, and then pass
their locks around to stop them from being unlocked. For these programs,
consider using the accountability mechanism without safemode.

Evaluation - Accountability Mechanism with Safemode 27

Listing 5.2: Eiffel : Long lived entities class

1 note

2 description: "Long -lived entities with safemode."

3
4 class LONG_LIVED_ENTITIES

5
6 create

7 make

8 feature

9 make

10 local

11 i: INTEGER

12 l_worker: separate WORKER

13 do

14 from

15 i := i

16 until

17 i > 5

18 loop

19 create l_worker.make

20 start_work (l_worker)

21 end

22 end

23
24 start_work (a_worker: separate WORKER)

25 do

26 a_worker.long_work −−This asynchronous c a l l i s
in tended to g i v e the worker some work , wh i l e the
a pp l i c a t i o n can cont inue . But s i n c e the safemode i s
turned on , the a pp l i c a t i o n a c t u a l l y has to wait

u n t i l the worker has f i n i s h e d , meaning t h i s code i s
j u s t as f a s t as s e q u e n t i a l code .

27 end

28
29 end

2. It is possible that the client performing the call on the supplier is not
actually able to handle exceptions caused by that call. For example, a
client places a call on the supplier, and later a second client queries the
supplier for the result. In that example, the first client is forced to handle
the exception, even though it has no way of doing so.

This exception mechanism works best with programs where an omitted ex-
ception could be fatal. A good example would be producer-consumer : If the
accountability mechanism without safemode is chosen, then extra care must be
taken that no exceptions are lost (synchronous query from the producers). With
the safemode on, this extra code is no longer needed.

Evaluation - Performance Analysis 28

5.4 Performance Analysis

Performance is an important aspect of any program. We wanted to gauge how
fast the exception mechanisms were when compared to one another.

We present micro-benchmarks showing the performance of individual aspects
of the system. The different exception mechanisms made it impossible for us to
run meaningful macro benchmarks. We thought about implementing a problem
multiple times, once for every exception mechanism. The resulting benchmark
would have been unfair though: If we choose a problem that favors one exception
mechanism over the other, then any implementation using the other exception
mechanisms is less performant. The EiffelSoftware exception mechanism cannot
work with a failed supplier, so the only examples left allow failed suppliers to be
discarded. The accountability exception mechanism was explicitly constructed
to work with failed suppliers. So either way our macro benchmarks would be
biased.

The benchmarks were executed under Linux Mint, on an Acer Aspire V3-
771G. This laptop features an Intel Core i7 at 2.4 - 3.4 GHz, as well as 16 GB
RAM and a 120 GB SSD. Note that SCOOP is not aimed at high-performance
parallel machines. It is still important to get an overview of the performance
of our system, for example to assess if the benefit of added flexibility is not
outweighed by slower performance.

The aim of benchmarking is to investigate the relationships between different
exception mechanisms. This investigation can be used to identify bottlenecks in
the system. Timings were obtained using the C gettimeofday command. This
command returns the seconds as well as the microseconds since the Epoch. All
benchmark code was inserted by hand to ensure accuracy. The benchmark pro-
grams are a number of Eiffel programs specifically designed to test the individual
aspects being timed.

You can find the results in Table 5.1. The first column holds the name of the
benchmark. Next to it is a shorthand notation of what exception mechanism
was used. Accountability refers to the accountability mechanism with safemode.
EiffelSoftware refers to the EiffelSoftware exception mechanism. The column
repetitions contains how often we measured. You can find the mean of all results
in the next column. The last two columns contain the 95% and 99% percentile
respectively.

The first two rows are the results of the sync call benchmark. Synchronous
calls are placed by a client on a supplier, with the client waiting for the answer.
No exceptions are thrown. This benchmark shows the overhead incurred when
using an exception mechanism that is not used. The accountability mechanism
is slightly worse off against the Eiffelsoftware implementation by around 6%.

The second pair of rows shows the async call benchmark. Here the client
places asynchronous calls on the supplier, and then continues without querying
the supplier. None of these calls cause exceptions either. Since no changes were
made to how asynchronous calls are placed, this outcome was expected.

The next pair shows the time taken to lock a supplier processor. There were
no changes to this functionality, so an even outcome was expected.

Evaluation - Performance Analysis 29

Benchmark Mechanism Repetitions Mean q0.95 q0.99
Sync call EiffelSoftware 200k 18.37 µs 4 µs 9 µs
Sync call Accountability 200k 19.60 µs 7 µs 12 µs
Async call EiffelSoftware 100k 0.52 µs 1 µs 5 µs
Async call Accountability 100k 0.54 µs 1 µs 4 µs
Locking EiffelSoftware 100k 0.78 µs 1 µs 6 µs
Locking Accountability 100k 0.77 µs 1 µs 6 µs
Safemode
sync

Accountability 100k 62.49 µs 64 µs 75 µs

Local excep-
tion

EiffelSoftware 100k 12.03 µs 43 µs 76 µs

Local excep-
tion

Accountability 100k 2.09 µs 3 µs 8 µs

Propagate
exception

EiffelSoftware 100k 100.82 µs 178 µs 273 µs

Propagate
exception

Accountability 100k 17.30 µs 22 µs 29 µs

Table 5.1: The measured results of various benchmarks.

The seventh row shows the synchronisation step when a client finishes ex-
ecuting its feature body. This step only occurs if the safemode is used. The
client has to query all suppliers; In this benchmark, there was only one supplier
to be queried. The time this step takes might seem quite high, but the step
involves the client querying the supplier, and the supplier sending an answer. If
an application using the safemode is correctly optimized, this step should not
occur too often.

Rows eight and nine show the time taken to for a local organized panic. A
local panic is measured from the time the exception is raised until the executing
processor sets itself dirty or failed. Processors using the accountability mecha-
nism handle exceptions quite fast, by simply storing the exception and setting
themselves failed. A Processors using the EiffelSoftware exception mechanism
has to do some more work, for example it has to find out its current client, and
then set itself dirty towards that client.

The last pair shows how fast an exception can be propagated between pro-
cessors. This exception propagation includes the time taken for the supplier
to have a local organized panic. We chose this measurement because it nicely
demonstrates the entire subprocess of receiving, handling and propagating ex-
ceptions. Again the accountability mechanism is significantly faster; The client
simply checks the failed flag of the supplier, and immediately knows if there was
an exception.

To summarize: The accountability mechanism is faster when confronted with
exceptions, whereas the EiffelSoftware implementation has a slight advantage if
no exceptions are thrown. We believe that the accountability mechanism can
reach the same performance as the EiffelSoftware mechanism if it is improved
in the future.

You can find these files in the Benchmarks folder when building the solution,

Evaluation - Performance Analysis 30

see Section 8.2.1.

Chapter 6

Improvements

This chapter presents improvements which we developed after the evaluation
phase. It explains how we added another mode for the accountability mechanism
as well as how we preserved the type of asynchronous exceptions.

6.1 Accountability Mechanism Never Forget

As stated during the evaluation of the accountability mechanism with and with-
out safemode, there are still some SCOOP programs that require the developer
to manually propagate exceptions. We extended the accountability mechanism
further, by adding a mode which we call never forget. This new mode can be
used to model problems that cannot be modeled when using the accountability
mechanism or the Eiffelsoftware exception mechanism.

This mode behaves like the accountability mechanism without safemode,
except no exceptions get deleted when locks are released.

6.1.1 Evaluation

Since the accountability mechanism never forget does not forget exceptions on
lock releases, this brings two important changes:

1. If a client only places asynchronous calls on a supplier, the supplier can
become failed, and it will not forget it. If then at some later point a second
client locks the supplier and queries it, the second client will receive any
exception that was stored earlier, just as intended.

2. This very behaviour also has an important downside: A client can no
longer be sure that a supplier is unfailed whenever it is locked. It is now
possible that a client will get an exception from a supplier that it can
neither handle nor that it caused. Developers will have to remember this
downside.

31

Improvements - Exception Types 32

Only use the accountability mechanism never forget when a situation like
worker-aggregator (see Listings B.1 and B.2, compare to Listing 6.1) arises.
Otherwise, use the accountability mechanism with or without safemode.

6.1.2 Performance

The accountability mechanism never forget is a variant of the original account-
ability mechanism without safemode when it comes to performance. Usually
they are on par, but there are some exemptions to that rule. If there are a lot
of occasions where the accountability mechanism without safemode would have
lost exceptions, then using the new accountability mechanism never forget can
lead to a big slowdown, since the exceptions may no longer be lost, but instead
propagated and handled.

6.2 Exception Types

When evaluating the different exception mechanisms, we found an additional
problem that developers will have to face. The type with which exceptions are
passed between processors is always changed to a generic developer exception.
In Eiffel there are many exception types, such as operating system failure, or
precondition violation. This creates a problem, as the example web-exceptions
shows: The root class (Listing 6.2) delegates work to the web supplier (Listing
6.3), and later queries the supplier. The supplier can either return a result,
a timeout exception or a 404 exception. Before our improvement, the supplier
either returns a result, or simply a developer exception.

The client will have no way of knowing whether the supplier has encountered
a timeout or a 404 error. But in this case, such a distinction is vital: If a timeout
occurred, the client should simply print a quick message to the user and retry
issuing the command. In case of a 404 error the client must show an error
message to the user and abort. There is no chance a call that produced a 404
error will succeed the next time it is attempted.

We changed the implementation of SCOOP in such a way that the actual
exception is saved, ready to be passed to the client. When the time comes, the
SCOOP runtime environment throws the correct exception to the client, and
doesn’t have to create a developer exception from scratch.

This should enable developers to work with exceptions in a more efficient
way, they will immediately know what type of exception was passed around.

Improvements - Exception Types 33

Listing 6.1: Eiffel : Modified aggregator class

1 note

2 description: "The aggregator class (modified for never

forget), which is used to aggregate the results of all

workers."

3
4 class AGGREGATOR

5
6 create

7 make

8 feature

9 make

10 do

11 create workers.make

12 end

13
14 receive_worker (a_worker: separate WORKER)

15 do

16 workers.put_front (a_worker)

17 end

18
19 collect

20 −−Co l l e c t r e s u l t s from a l l the workers .
21 do

22 from

23 workers.start

24 until

25 workers.after

26 loop

27 receive_results (workers.item)

28 workers.forth

29 end

30 end

31
32 receive_results (a_worker: separate WORKER)

33 local

34 b: BOOLEAN

35 do

36 b := w.get_result −−This c a l l now y i e l d s the exc ep t i on
caused e a l i e r by the roo t c l a s s .

37 rescue

38 −−And here we can handle the exc ep t i on .
39 end

40 feature {NONE} −−I n t e r n a l
41 workers: LINKED_LIST[separate WORKER]

42 end

Improvements - Exception Types 34

Listing 6.2: Eiffel : Exception type demo root class

1 note

2 description: "This root class interacts with the web

supplier."

3
4 class EXCEPTION_TYPE_DEMO

5
6 create

7 make

8 feature

9 make

10 local

11 l_web_supplier: separate WEB_SUPPLIER

12 do

13 create l_web_supplier.make

14 work (l_web_supplier , "http :// www.example.com/index.

html") −−Works on f i r s t try , ge t r e spons e
15 work (l_web_supplier , "http :// www.far -away.cn/index.

html") −−Timeout , w i l l work a f t e r a wh i l e
16 work (l_web_supplier , "http :// www.unreachable.com/

doesnotexist.html") −−404 Error
17 rescue

18 −− I f t h i s r e s cu e c l a u s e i s reached , the program i s
aborted . This should only happen i f a 404 excep t i on
i s encountered .

19 end

20 work (a_web_supplier: separate WEB_SUPPLIER; a_str: STRING

)

21 local

22 response: BOOLEAN

23 l_exception_404: EXCEPTION_404

24 l_exception_timeout: EXCEPTION_TIMEOUT

25 do

26 response := a_web_supplier.serve_request (a_str)

27 print ("Gotten response. Everything is fine.%N")

28 rescue

29 l_exception_404 ?= (create {ISE_EXCEPTION_MANAGER }).

last_exception

30 l_exception_timeout ?= (create {ISE_EXCEPTION_MANAGER

}).last_exception

31 if l_exception_timeout /= Void then

32 print ("Timeout received , simply trying again ...%N")

33 retry

34 elseif l_exception_404 /= Void then

35 print ("404 exception received , not handling that

error .%N")

36 else

37 print ("Unknown error received , not handling it.%N")

38 end

39 end

40 end

Improvements - Exception Types 35

Listing 6.3: Eiffel : Web supplier class

1 note

2 description: "The web supplier tries to take URLs and

deliver responses."

3
4 class WEB_SUPPLIER

5
6 create

7 make

8 feature

9 make

10 do

11 counter := 1

12 end

13 serve_request (a_url: separate STRING): BOOLEAN

14 local

15 l_url: STRING

16 do

17 create l_url.make_from_separate (a_url)

18 −−For s imp l i c i t y we do not a c t u a l l y make web reque s t s ,
but d e l i v e r the answer d i r e c t l y .

19 if l_url.is_equal("http ://www.far -away.cn/index.html")

and counter <= 3 then

20 counter := counter + 1

21 exception_timeout.raise

22 elseif l_url.is_equal("http ://www.unreachable.com/

doesnotexist.html") then

23 exception_404.raise

24 else

25 Result := True

26 end

27 end

28 feature {NONE}

29 counter: INTEGER

30 exception_404: EXCEPTION_404

31 once

32 create Result

33 end

34 exception_timeout: EXCEPTION_TIMEOUT

35 once

36 create Result

37 end

38 end

Chapter 7

Duels

One major problem with the locking of SCOOP processors is that while a client
locks a supplier, no other processor may interfere. The idea that locks are
always held until the client releases them greatly complicates SCOOP programs
where one processor should have a higher priority than the others. Duels allow
a processor to be unlocked prematurely.

So far developers had two options: Either accept these delays and try to
work around them as best as possible or simply make all processors release and
reacquire all locks in short intervals. The first solution complicates code. The
second approach is also not really a good fit, since it leads to contention of
the locks, and therefor performance drops. It also does not guarantee that the
important SCOOP processor can acquire the necessary locks.

There is a solution to this problem, however: The duel mechanism allows a
client that currently holds the lock for a supplier (called a holder) to prematurely
release that lock to some other processor that would like to acquire the lock
(called the challenger). Since the holder and the challenger will fight for the
lock, this mechanism is called a duel mechanism. It was first mentioned in [3],
page 999+.

The mechanism allows a SCOOP processor to have both a holder behaviour
as well as a challenger behaviour. The holder behaviour can either be retain or
yield. Retain means that locks are not released and is activated by default. Yield
enables the processor to yield its locks, meaning others can acquire them even if
the current processor has not regularly released them. The challenger behaviour
can either be wait turn, demand or insist. Wait turn is enabled per default and
means that the challenger will patiently wait until the locks become regularly
available, even if the holder is willing to give them up earlier. Insist tries to
interrupt the holder, but if the holder retains its locks, the challenger waits.
Lastly, demand is a ”now or never” tactic: The challenger tries to interrupt the
holder, but if that fails the challenger gets an exception. This is intended for
real-time systems, where it is unacceptable for the challenger to wait.

The following table shows all possible conflicts as well as their outcome.
Underlined options are activated by default.

36

Duels - Implementation 37

Challenger Behaviour ⇒ wait turn insist demand
Holder Behaviour ⇓
retain Challenger

waits
Challenger
waits

Exception in
challenger

yield Challenger
waits

Exception in
holder’s rou-
tine

Exception in
holder’s rou-
tine

7.1 Implementation

The implementation was closely integrated into the existing SCOOP runtime
system. Every SCOOP processor can simply execute the features set holder
behaviour retain, set holder behaviour yield, set challenger behaviour wait turn,
set challenger behaviour demand or set challenger behaviour insist at any place
and time to set the corresponding behaviour.

Processors will no longer apply calls from clients that lost their lock. The
interesting part about the duel mechanism is how locks are acquired, see Algo-
rithm 6. Whenever a processor would like to lock a supplier, it will query the
behaviour of the current holder, and then act accordingly. If there is no current
holder, then the lock is acquired immediately.

input: A processor supplier which is to be locked

1 challenger behaviour := processor.challenger behaviour;
2 current holder := supplier.client;
3 if current holder /= Void ∧ supplier.locked then
4 holder behaviour := current holder.holder behaviour;
5 if (holder behaviour = retain ∧ challenger behaviour = wait turn) ∨

(holder behaviour = retain ∧ challenger behaviour = insist) ∨
(holder behaviour = yield ∧ challenger behaviour = wait turn) then

6 Wait until supplier.locked is false, then try again
7 else if holder behaviour = retain ∧ challenger behaviour = demand

then
8 throw exception;
9 else if (holder behaviour = yield ∧ challenger behaviour = demand)

∨ (holder behaviour = yield ∧ challenger behaviour = insist) then
10 current holder.cancel lock –Makes sure the current holder has lost

the lock for the supplier;
11 Acquire lock;

12 end

13 else
14 Acquire lock;
15 end

Algorithm 6: Acquiring a lock, executed by the challenger processor

Duels - Evaluation 38

7.2 Evaluation

The duel mechanism works as intended. It allows developers to easily imple-
ment models that call for processors which yield their locks prematurely. The
mechanism has further potential, which is discussed in Section 10.2.

Listings 7.1 and 7.2 give a nice example of how the duel mechanism can be
used: The boss will issue constant work to the secretary receptionist. There will
also be a customer that comes in and interrupts the secretary receptionist every
once in awhile. In order for the customer to be able to interrupt, the boss will
yield the locks it holds and the customer will insist upon obtaining locks.

7.3 Testing

We developed seven additional tests to test the functionality of the duel mech-
anism implementation. You can find these programs in the Duel Tests folder
when building our solution, see Section 8.2.1.

The tests for the duel mechanism consist of six small programs that test
the base cases of two processors dueling with each other. The seventh program
is the real-world Secretary Receptionist example, taken out of [3], page 1001.
In this program, a Boss and a Customer duel for the Secretary Receptionist ’s
attention. The boss has a lot of work for the secretary, but every now and
then a customer enters with a quick query. Since customers are important and
often impatient, the boss yields in favor of a customer, so that the secretary can
temporarily turn into a receptionist and serve a customer’s request. As soon as
the customer is served, the boss tries to assign work to the secretary again.

Duels - Testing 39

Listing 7.1: Eiffel : Boss class

1 note

2 description: "The Boss will periodically issue work to the

secretary , but it will allow the secretary to be

interrupted by customers."

3 class

4 BOSS

5 create

6 make

7 feature

8 make (sr: separate SECRETARY_RECEPTIONIST)

9 do

10 secretary_receptionist := sr

11 placed_work := 0

12
13 set_holder_behaviour_yield −−The BOSS i s w i l l i n g to

y i e l d l o c k s to c h a l l e n g e r s that e i t h e r i n s i s t or
demand l o c k s .

14 end

15 live

16 do

17 from

18
19 until

20 placed_work >= 100000

21 loop

22 issue_work (secretary_receptionist)

23 end

24 end

25 issue_work (sr: separate SECRETARY_RECEPTIONIST)

26 −−Wil l work with the s e c r e t a r y u n t i l i n t e r r up t ed
27 local

28 b, interrupted: BOOLEAN

29 do

30 if interrupted then

31 −− BOSS has been in t e r rup t ed , w i l l t ry to r e ga i n
l o ck .

32 else

33 from

34
35 until

36 placed_work >= 100000

37 loop

38 b := sr.do_work

39 placed_work := placed_work + 1

40 end

41 end

42 rescue

43 interrupted := True

44 retry

45 end

46 secretary_receptionist: separate SECRETARY_RECEPTIONIST

47 placed_work: INTEGER

48 end

Duels - Testing 40

Listing 7.2: Eiffel : Customer class

1 note

2 description: "The customer will try to interrupt the

receptionist in order to get some quick info."

3 class

4 CUSTOMER

5 create

6 make

7 feature

8 make (sr: separate SECRETARY_RECEPTIONIST)

9 do

10 secretary_receptionist := sr

11 placed_work := 0

12
13 set_challenger_behaviour_insist −−The CUSTOMER w i l l

i n s i s t upon locks , thus i t w i l l i n t e r r u p t l o ck
ho l d e r s w i l l i n g to y i e l d l o c k s

14 end

15 live

16 do

17 from

18
19 until

20 placed_work >= 100

21 loop

22 interrupt (secretary_receptionist)

23 wait −−Wait f o r some time , to s imu la t e the customer
only coming in once in awh i l e

24 end

25 end

26 interrupt (sr: separate SECRETARY_RECEPTIONIST)

27 −−Just a qu ick query
28 local

29 b: BOOLEAN

30 do

31 b := sr.do_work

32 placed_work := placed_work +1

33 end

34 secretary_receptionist: separate SECRETARY_RECEPTIONIST

35 placed_work: INTEGER

36 end

Chapter 8

Guides

8.1 User Guide

This user guide is intended for developers looking to make use of the various
SCOOP exception mechanisms. It is not intended for developers looking to
change parts of the implementation. If you wish to change the implementation,
have a look at the developer’s guide in Section 8.2.

8.1.1 Choosing your Exception Mechanism

Should you wish to choose or change the exception mechanism used in your
project, there is an easy way to do this. You can also change the exception
mechanism of a project later, by using the same few steps:

1. Open EiffelStudio and highlight your project.

2. Now click on the ”Edit Project” button; a new window will pop up.

3. On the left of the new window, select the ”Advanced” entry in the list.

4. On the right you will now see several configuration options appear. Look
for the two saying ”SCOOP Safemode” and ”SCOOP Never Forget”.

(a) If you wish to use the accountability mechanism without safemode
or never forget, simply set both of these entries to ”False”.

(b) If you wish to use the accountability mechanism with safemode,
set ”SCOOP Safemode” to ”True”, and ”SCOOP Never Forget” to
”False”.

(c) If you wish to use the accountability mechanism with never forget,
set”SCOOP Safemode” to ”False”, and ”SCOOP Never Forget” to
”True”.

5. Click on the ”OK” button on the lower right. The window will close.

41

Guides - Developer Guide 42

6. Now check the ”Clean” checkbox. Also select ”Compile” from the ”Ac-
tion” dropdown list. This forces a recompile. You should always recompile
your project after changing the exception mechanism.

There is no way to currently set the exception mechanism when creating a
new project. The exception mechanism will default to the accountability mech-
anism without safemode. If you wish to create a new project with a different
exception mechanism, first create the project with the default exception mech-
anism, then close EiffelStudio. Now follow the instructions above to select your
exception mechanism.

8.1.2 Quick Recap of Some Important SCOOP Facts

When using any of the available accountability mechanisms, there are a few
important things that should always be remembered:

1. A client can only place calls on a supplier if the client holds a lock of the
supplier.

2. While a client holds a lock on a supplier, no other SCOOP processor may
place calls on the supplier or the client. So if possible, do not hold these
locks longer than necessary.

3. Commands that the client places on the supplier allow the client to con-
tinue without waiting. These calls are asynchronous. Commands are calls
which do not return a result, and which do not have any of the client’s
held locks as arguments.

4. Queries that the client places on the supplier make the client wait until
the supplier answers. These calls are synchronous. Queries always have a
return value.

5. If the client places a lock-passing call on the supplier, then the client must
also wait for the supplier. As such, these calls are synchronous, no matter
whether they are commands or queries. Lock-passing calls use one or more
of the locks the client holds as an argument.

6. Whenever possible, handle exceptions in the supplier, without passing
them to the client. This is faster and allows the client to continue undis-
turbed. If you can’t handle exceptions in the supplier, make sure the client
has the corresponding exception handling necessary to handle them.

8.2 Developer Guide

This developer guide is intended for developers who want to change the be-
haviour of the SCOOP exception mechanism.

Guides - Developer Guide 43

8.2.1 Where to Find and Build the Solution

It is required that you have a working version of EiffelStudio (not EVE) installed
on your system. You can download EiffelStudio from

http://www.eiffel.com/products/studio/

We used EiffelStudio 7.3.92665. You may want to get a version as close as
possible to this release, or your results might not exactly match ours. Once you
have EiffelStudio set up and working you must download EVE. Our code only
extends EVE, and cannot run on its own. You can find a tutorial about EVE
here:

https://trac.inf.ethz.ch/trac/meyer/eve/wiki

Our code is based upon revision 92789, and we recommend getting exactly
that revision. There may be errors when merging EVE with our code files if
you use a different version, proceed with caution. After you have downloaded
EVE, download our extension:

http://se.inf.ethz.ch/student_projects/florian_besser/

Our source code is delivered in the form of a patch. Please extract the
downloaded archive, move to your EVE Src directory and then use this command
to merge EVE with our patch:

patch -p0 -i path/to/thesis.diff

Then continue compiling and running EVE as described in the tutorial.

8.2.2 SCOOP Framework

We observed some interesting implementation details of which you should be
aware:

1. The features of ISE SCOOP MANAGER are executed at a time where
you cannot create new objects. If you need any new objects, for example
some strings to write stuff to a logfile, you have to create them on the C
side and not in Eiffel!

2. Chains as well as various other structures are represented as arrays. If
you want to know what an entry in the array symbolizes, search the class
ISE SCOOP MANAGER for constants which end in index, such as re-
quest chain accountable index with value 5. These constants will tell you
what a specific array element represents. In the example, the 6th entry
(arrays are zero-based here) tells you whether the chain is accountable or
not.

3. If you want to add or remove entries from these arrays, you can usu-
ally find a constant that holds the array size. Search the class ISE
SCOOP MANAGER for constants which end in index count, such as
processor meta data index count. If you change such a constant, all ar-
rays that use it will have the correct number of entries.

http://www.eiffel.com/products/studio/
https://trac.inf.ethz.ch/trac/meyer/eve/wiki
http://se.inf.ethz.ch/student_projects/florian_besser/

Guides - Developer Guide 44

4. The class ATOMIC MEMORY OPERATIONS provides some helper fea-
tures for setting and changing variables atomically. If you need some exam-
ples how to use the functionality, have a look at flag chain accountable in
ISE SCOOP MANAGER for setting values or look at is chain accountable
in the same class for reading them.

5. There is a large C side to the Eiffel Framework. Many features use direct
C code and are not written in Eiffel. There is a gap between C and
Eiffel, which is bridged by callbacks. An example would be the feature
scoop task callback in class ISE SCOOP MANAGER: The C side will call
this feature whenever tasks are to be completed. From the Eiffel side
these calls magically appear, and you cannot easily trace from where the
callback came. So if you do not find any Eiffel code that invokes a certain
routine, you have to search the C side for a point where a callback to Eiffel
is made.

6. Nearly every tasks that the SCOOP runtime system has to perform, such
as adding a call to a processor or creating a chain, will start with a callback
from the C side to the feature scoop task callback in class ISE SCOOP
MANAGER. This is a good entry point to see the workflow on the Eiffel
side.

8.2.3 Accountability Mechanism without Safemode

There are three main places where parts of the exception mechanism are imple-
mented, all of them inside the class ISE SCOOP MANAGER:

1. scoop application loop: This loop is executed by every processor. The
processor finds its current chain, and then executes this loop to work
on said chain. In the loop, the supplier gets the oldest call that was
placed on it and tries to execute it. Additionally, this feature handles any
communication with the client, should the need arise. Our changes focus
on the rescue clause of this feature: Here, we implemented the behaviour
that exceptions are only stored if the chain is accountable.

2. signify end of request chain: This feature is executed by the client to close
a chain. In the implementation by EiffelSoftware this feature just sets the
chain status to closed, and nothing more. We amended this feature to close
the chain and set it unaccountable. The client also deletes any exceptions
the supplier processors might have stored here.

3. log call on processor : The client uses this feature to log a call on a sup-
plier. The feature is quite complicated and does a lot more than the name
suggests. This feature also handles the entire execution of callbacks on
the client as well as when exactly the client checks if the supplier is failed!
In our implementation asynchronous calls never yield exceptions for the
client. Additionally, the client checks after a synchronous call whether the
supplier is failed, and so it receives the exception directly.

Guides - Developer Guide 45

8.2.4 Accountability Mechanism with Safemode

Everything covered in the section above also applies to the accountability mech-
anism with safemode. This section presents the changes made from the account-
ability mechanism without safemode, to give you a good overview on how you
could change the safemode implementation.

At the end of the client feature body, there is a query to all suppliers. The
client uses a direct callback from C into the ISE SCOOP MANAGER.

Here is how the callback was achieved on the C side:

1. We implemented a new SCOOP task for the end of a feature body: We
defined the task scoop task feature body end both in ISE SCOOP MAN-
AGER as well as in eif macros.h (since the C side must also know what the
task ID is). We created a new C macro called EIF FEATURE BODY END
in eif macros.h to be used for the callback.

2. We modified the Eiffel classes BYTE CODE as well as STD BYTE CODE
which are used to generate C code from Eiffel. If you do a search for
safemode you will find all the modifications which we made. All these
modifications make sure that the callback is injected just at the end of
the client’s feature body. Of course, that additional code is only injected
if safemode is turned on.

And these are the changes we made to the ISE SCOOP MANAGER to
handle the callback:

1. We updated scoop manager task callback so that the new task ID is rec-
ognized. Whenever a processor receives the feature body end task ID, it
executes a call to feature body end. This feature grabs the client’s current
chain, which contains all suppliers. It then sends a signal to every sup-
plier to finish up and report and waits for an answer. Once an answer
is received, the client checks for any exception from the suppliers. If an
exception occurred, the exception is raised on the client.

2. We also had to make sure that no exceptions were lost before a callback to
feature body end was triggered. So we additionally modified the features
signify end of request chain and scoop application loop.

3. In signify end of request chain we added a conditional that if the safemode
was enabled, no exceptions may be dropped.

4. In scoop application loop, there were two changes. First, we added a con-
ditional in the rescue clause so exceptions are always stored if safemode
is enabled. Secondly, we had to implement a mechanism that allows the
client to wait until the supplier is finished. We added a conditional for
synchronisation: If a supplier finishes all its work while safemode is en-
abled, then it will wait for a special signal from the client to report any
exceptions.

Guides - Developer Guide 46

8.2.5 Duel mechanism

We implemented new features that the developer can use in his code to set holder
and challenger behaviour. These features involve callbacks, so we implemented
the functionality to handle these callbacks in ISE SCOOP MANAGER. This
class also contains our changes for using the behaviour set by the developer.

The following changes allow setting a processors behaviour:

1. In the class ANY we implemented set holder behaviour retain, set holder
behaviour yield, set challenger behaviour wait turn, set challenger behaviour
demand and set challenger behaviour insist, which directly use macros de-
fined in eif macros.h.

2. These macros automatically execute a callback with new SCOOP task IDs
scoop task holder behaviour or scoop task challenger behaviour (defined in
eif macros.h) to the class ISE SCOOP MANAGER.

We then changed the implementation of ISE SCOOP MANAGER as follows:

1. We changed scoop manager task callback so that the new task IDs are
recognized. Depending whether holder or challenger behaviour is set,
set holder behaviour or set challenger behaviour is executed.

2. The SCOOP processors did originally not have any flags for holder or
challenger behaviour, so we had to create them. We added two entries
to processor meta data. These two entries are used to store the desired
behaviour of the processor. The two new entries are at index proces-
sor holder behaviour index and processor challenger behaviour index, re-
spectively.

3. We implemented the logic of obtaining locks in request processor resource.
The challenger uses the supplier’s chain to find the current lock holder.
The challenger then extracts its own challenger behaviour as well as the
holders holder behaviour, and proceed accordingly.

4. There was a slight problem interrupting the holder: It is not possible to
throw an exception to a processor, it is only possible to let the processor
discover it. To implement this, we either require every processor con-
stantly check for new exceptions (which is a big performance hit) or have
the processor only check occasionally (meaning there is a race condition
that two clients might access the same supplier). The solution was to add
a new status for chains. They can now be in a state called lock lost. If the
holder loses its lock, then the holder’s chain receives the status lock lost.

5. To make sure that the holder actually sees the changed chain state, we
changed the implementation of scoop application loop. The processor queries
the chain state before applying any features: If the chain state is lock lost,
the processor throws an exception to itself.

Guides - Developer Guide 47

8.2.6 Integrating the Accountability Mechanism into Eif-
felStudio

In order for developers to be able to select which exception mechanism to use, we
had to change the Eiffel project definition, the Eiffel parser and a few auxiliary
files.

These changes were necessary to change the project definition:

1. CONF VALIDITY : Changes here allow us to parse project files which
contain a flag for safemode or never forget.

2. CONF TARGET : By adding features here we can set if a project uses the
safemode or never forget system.

3. CONF CONSTANTS : This file contains the name and the description for
the safemode and never forget system.

4. CONF INTERFACE NAMES : This file contains the actual entries to the
EiffelStudio interface.

And these changes were applied to the parser:

1. TARGET PROPERTIES : This file contains the flags for the safemode
and never forget system on the Eiffel side.

2. SYSTEM I : This file contains new features to set if a project uses the
safemode or never forget mechanism.

3. LACE I : This class is used to read out a project, then input any settings
such as the safemode or never forget entries into the system using the
features from SYSTEM I.

There were some changes to other files necessary:

1. eif project.h: This file contains the flags for the safemode or never forget
system on the C side.

2. eif project.c: And this file contains the documentation for the flags, and
makes them globally available.

3. AUXILIARY FILES : This file contains C calls to set the two flags defined
in eif project.h.

4. ISE SCOOP MANAGER: The processors query if the safemode or never
forget system ar on here (at runtime), and cache the result to improve
efficiency.

Chapter 9

Related Work

Compton et al. [5] present a first implementation of a runtime system for
SCOOP. The runtime system discussed in the paper includes a simple exception
mechanism that treats any asynchronous exception as fatal. Thus the problem
of transferring exceptions between processors is simply solved by halting the
entire system.

Morandi et al. [1] first defined the accountability mechanism. Their speci-
fication is the basis for the implemented accountability mechanism. The paper
also includes a discussion about different asynchronous exception mechanisms
and can be used to get an overview of the subject.

Morandi et al. [2] defined the operational semantics of SCOOP in their
paper. The paper does not discuss exception mechanisms, but instead gives a
formal definition of how SCOOP should behave.

48

Chapter 10

Conclusions and Future
Work

10.1 Conclusions

Implementation: We successfully implemented the accountability mechanism
both with and without safemode as specified in [1]. The implementation is
integrated into EVE.

Evaluation: We evaluated all flavours of the accountability mechanism as
well as the implementation done by EiffelSoftware.

Evaluation programs: We wrote several SCOOP programs to evaluate the
different accountability mechanisms. These programs highlight different prob-
lems for different exception mechanisms.

Improvements: We improved the accountability mechanism by adding an-
other mode to it, called never forget. The new mode allows developers to model
some SCOOP programs that could not be modeled using the other modes of
the accountability mechanism. Additionally, developers now always receive the
original exception, which should help them debug their applications.

Duel mechanism: The duel mechanism requires a well-defined underlying
exception mechanism. Since we implemented several exception mechanisms, we
built upon them and added the duel mechanism on top. With this mechanism
several processors can now duel for locks, which allows the premature transfer of
locks from one processor to another. This simplifies the process for developers to
write SCOOP programs where reaction time as well as performance is important.

10.2 Future Work

Our work on different exception mechanisms and the duel mechanism has un-
covered some yet unanswered questions. This section will briefly discuss work

49

Conclusions and Future Work - Future Work 50

that requires further investigation.

10.2.1 Asynchronous Callbacks

Callbacks happen whenever a processor A passes its own lock to another pro-
cessor B, and then B places a callback on A. According to the formal model of
SCOOP [2], there can be no asynchronous callback, it should instead always be
synchronous. However, EiffelSoftware implemented this behaviour differently,
allowing asynchronous callbacks. In the example above: A receives an asyn-
chronous callback from B, goes into an organized panic but B never queries A.
Instead, B finishes its job, and then returns all locks to A. The question is:
What should A do now? It might not be possible for A to handle an exception
which was caused by a callback from B, and B has finished its job and therefore
cannot handle any exceptions.

We tried to solve this issue by having processors that receive callbacks behave
just like ordinary suppliers. In other words, if they get an exception, they store
it, and return it whenever the client tries to query them. Should the client
return all locks to them, they forget the exception. But it is clear that our way
of handling this problem is but one of many, and may not be optimal.

10.2.2 Can Processors Become Unfailed?

Another interesting question is whether a processor is unfailed. In the implemen-
tation by EiffelSoftware the answer is simply no. The accountability mechanism
allows a processor to become unfailed in two ways: Either if the lock of that
processor is released or if the processor manages to propagate the exception.

This topic asks some interesting questions: Can a failed processor receive
work again? And if so, what conditions must be fulfilled? We believe that by
using the powers of Design by Contract we can nicely answer these questions. If
an exception occurs, the processor executes the current feature’s rescue clause,
restoring the object’s invariant. In other words, that object can now receive
further calls, even if an exception occurred. The client must still be informed
of the exception, but as soon as that is done, new calls can be placed on the
object.

10.2.3 How to Handle Holder and Challenger Behaviour
for Duel Mechanism

Our approach gives every processor its own behaviour, just as described by B.
Meyer in [3]. Since behaviour does usually not change often, we think this
implementation is viable. While our approach works nicely and allowed us
to demonstrate a proof-of-concept, developers might want more fine-grained
control. For example, future implementations could make it possible that a
developer can modify the holder behaviour for every lock a processor holds. A
good middle way can be to allow the developer to set the desired behaviour on
a per-feature basis.

Conclusions and Future Work - Future Work 51

10.2.4 Timeouts in Duel Mechanism

Some challengers might be able to wait only for a certain time, but then they
either need the lock or an exception. This problem could be solved by timeouts,
after which the challenger automatically tries to acquire the lock using the insist
behaviour.

10.2.5 Priorities for Different SCOOP Processors

In some programs different processors have different priorities, just like threads
have different priorities. Priorities for different processors would allow develop-
ers to easily design a system where locks are always released for high-priority
challengers, but not for low- or medium-priority challengers. A good example
would be an application that has a GUI and many different processors working
on tasks. The processor responsible for keeping that GUI responsive should
never have to wait for locks and thus should have a high priority.

Appendix A

References

[1] B. Morandi, S. Nanz, and B. Meyer. Who is Accountable for Asynchronous
Exceptions? APSEC ’12 Proceedings of the 2012 19th Asia-Pacific Software
Engineering Conference, Volume 01, Pages 462-471

[2] B. Morandi, S. Nanz, and B. Meyer. A comprehensive operational se-
mantics of the SCOOP programming model. Arxiv preprint arXiv:1101.1038,
2011.

[3] B. Meyer, Object-Oriented Software Construction, Second Edition, Pren-
tice Hall, 1997.

[4] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable and
Secure Distributed Programming, 2nd ed. Springer, 2011.

[5] M. Compton and R. Walker, A Run-time System for SCOOP, Journal of
Object Technology, Vol. 1, No. 3, 2002.

52

Appendix B

Code Listings

53

Code Listings 54

Listing B.1: Eiffel : Worker aggregator class

1 note

2 description: "This root class issues work to different

workers , and then passes them to an aggregator for

later querying."

3
4 class WORKER_AGGREGATOR

5
6 create

7 make

8 feature

9 make

10 local

11 i: INTEGER

12 l_aggregator: separate AGGREGATOR

13 l_worker: separate WORKER

14 do

15 create l_aggregator.make

16 from

17 i := 1

18 until

19 i > 5

20 loop

21 create l_worker.make

22 start_work (l_worker)

23 pass (l_aggregator , l_worker)

24 i := i+1

25 end

26 collect(l_aggregator)

27 end

28 start_work (a_worker: separate WORKER)

29 do

30 a_worker.async_call_fail −−This p l a c e s an
asynchronous c a l l on the worker , which w i l l l a t e r
f a i l .

31 rescue

32 −−S ince th e r e i s no f u r t h e r i n t e r a c t i o n with a worker ,
t h i s r e s cu e c l a u s e i s never used

33 end

34 pass (a_aggregator: separate AGGREGATOR; a_worker:

separate WORKER)

35 do

36 a_aggregator.receive_worker (a_worker)

37 end

38 collect (a_aggregator: separate AGGREGATOR)

39 do

40 a_aggregator.collect −−An asynchronous c a l l to the
aggregator , l e a v i n g the a pp l i c a t i o n f r e e to
cont inue .

41 end

42 end

Code Listings 55

Listing B.2: Eiffel : Aggregator class

1 note

2 description: "The aggregator class , which is used to

aggregate the results of all workers."

3
4 class AGGREGATOR

5
6 create

7 make

8 feature

9 make

10 do

11 create workers.make

12 end

13 receive_worker (a_worker: separate WORKER)

14 do

15 workers.put_front (a_worker)

16 end

17 collect

18 −−Co l l e c t r e s u l t s from a l l the workers .
19 do

20 from

21 workers.start

22 until

23 workers.after

24 loop

25 receive_results (workers.item)

26 workers.forth

27 end

28 end

29 receive_results (a_worker: separate WORKER)

30 local

31 b: BOOLEAN

32 do

33 b := w.get_result −−This c a l l w i l l not y i e l d the
exc ep t i on that the worker has encountered . Instead ,
the worker w i l l now re tu rn whatever r e s u l t i s

a v a i l a b l e , and the deve l ope r can ’ t be su r e the
r e s u l t i s a c t u a l l y c o r r e c t . The deve l ope r a l s o has
no way o f f i n d i n g out that the worker encountered
an exc ep t i on at a l l .

34 end

35 feature {NONE} −−I n t e r n a l
36 workers: LINKED_LIST[separate WORKER]

37 end

Code Listings 56

Listing B.3: Eiffel : Querier class

1 note

2 description: "The querier class , which places work for the

dedicated file reader on the shared buffer , then

queries the answer register."

3
4 class QUERIER

5
6 feature

7 live

8 do

9 from

10 until

11 False

12 loop

13 if not waiting then

14 queue_file (bounded_buffer)

15 end

16 get_results (answer_register)

17 end

18 rescue

19 retry

20 end

21 queue_file (buffer: separate BOUNDED_BUFFER[INTEGER])

22 local

23 boo: BOOLEAN

24 do

25 buffer.put (number * 1000 + counter)

26 boo := b.is_full

27 −−In ca s e any excep t i on mechanism othe r than the
a c c o un t a b i l i t y mechanism with safemode i s used , a
synchronous c a l l must be p laced here to r e c e i v e
ex c ep t i on s !

28 end

29 get_results (ar: separate ANSWER_REGISTER)

30 local

31 l_result_from_ar: STRING

32 do

33 create l_result_from_ar.make_from_separate (ar.

get_results ((number * 1000 + counter).out))

34 −− I f the E i f f e l S o f tw a r e exc ep t i on mechanism i s used ,
the answer r e g i s t e r must never propagate an
except ion , s i n c e t h i s would break the system . So
the E i f f e l S o f tw a r e exc ep t i on mechanism f o r c e s the
deve l ope r to add more code here as we l l as on the
answer r e g i s t e r , s i n c e the answer r e g i s t e r has to
t r a n s f e r an e r r o r message (not an excep t i on) to the
qu e r i e r .

35 waiting := (l_result_from_ar.count = 0) −− I f the
answer i s ”” , wait f u r t h e r

36 rescue

37 waiting := False −−The answer was an except ion , no
need to wait f u r t h e r

38 end

39 feature {NONE}

40 number: INTEGER

41 answer_register: separate ANSWER_REGISTER

42 bounded_buffer: separate BOUNDED_BUFFER[INTEGER]

43 waiting: BOOLEAN

44 end

Code Listings 57

Listing B.4: Eiffel : Dedicated file reader class

1 note

2 description: "The dedicated file reader executes requests

from the queriers , and transmits answers as well as any

exceptions to the answer register."

3
4 class DEDICATED_FILE_READER

5
6 feature

7 live

8 do

9 from

10 until

11 False

12 loop

13 get_work (bounded_buffer)

14 read_file

15 end

16 rescue

17 retry

18 end

19 get_work (buffer: separate BOUNDED_BUFFER[INTEGER])

20 local

21 i: INTEGER

22 do

23 i := buffer.consume

24 if not is_queued (i.out) then

25 workload.put_left (i.out)

26 end

27 end

28 read_file

29 local

30 file_name , line: STRING

31 input : PLAIN_TEXT_FILE

32 do

33 if workload.is_empty then

34 −−No work , e x i t
35 else

36 file_name := workload.first

37 create input.make_open_read(file_name)

38 input.read_line

39 line := input.last_string

40 put_answer (answer_register , line , file_name)

41 workload.remove_first

42 end

43 rescue

44 put_answer (answer_register , "ERROR", file_name) −−
The q u e r i e r s won ’ t be ab l e to t e l l the d i f f e r e n c e
between a f i l e that r e a l l y conta ined ”ERROR” and an
ac tua l e r r o r ! This shows the problem o f d ev e l op e r s
having to do workarounds .

45 workload.remove_first

46 end

47 feature −−Helpe r s
48 put_answer (ar: separate ANSWER_REGISTER; line , file_name:

STRING)

49 do

50 ar.put_answer (line , file_name)

51 end

52 end

Code Listings 58

Listing B.5: Eiffel : Answer register class

1 note

2 description: "The answer register receives any answers and

exceptions that the deicated file reader produces.

Queriers will query the answer register for these

answers / exceptions."

3
4 class ANSWER_REGISTER

5
6 feature

7 put_answer (line , file_name: separate STRING)

8 local

9 l, f: STRING

10 do

11 create l.make_from_separate (line)

12 create f.make_from_separate (file_name)

13 output.put (l, f)

14 end

15
16 get_results (file_name: separate STRING): STRING

17 local

18 s: STRING

19 res: STRING

20 do

21 create s.make_from_separate (file_name)

22 res := output.item (s)

23 if res /= Void and then not res.is_equal ("ERROR")

then

24 Result := output.found_item −−Return output
25 elseif res /= Void then

26 my_exception.raise −−Error encountered
27 −− I f the E i f f e l S o f tw a r e exc ep t i on mechanism i s used ,

the answer r e g i s t e r may not throw exc ep t i on s to
a que r i e r , s i n c e that would mean the qu e r i e r
cou ld never query the answer r e g i s t e r a f t e rwa rd s .
So dev e l op e r s cou ld add a s p e c i a l answer f o r

f a i l u r e , but t h i s would c r e a t e a c o n f l i c t i f a
f i l e ’ s c on t en t s were e xa c t l y the same as the
s p e c i a l answer . . .

28 else

29 Result := "" −−Data not yet r e c e i v e d
30 end

31 end

32
33 feature {NONE}

34 my_exception: DEVELOPER_EXCEPTION

35 once

36 create Result

37 end

38 output: HASH_TABLE[STRING , HASHABLE]

39 end

	1 Introduction
	2 SCOOP
	3 The Exception Mechanisms
	3.1 EiffelSoftware Exception Mechanism
	3.2 Accountability Mechanism

	4 Implementation
	4.1 EiffelStudio SCOOP Implementation
	4.2 EiffelStudio Exception Mechanism Implementation
	4.3 Accountability Mechanism Implementation
	4.4 Testing

	5 Evaluation
	5.1 EiffelSoftware Exception Mechanism
	5.1.1 Usability and Expressiveness

	5.2 Accountability Mechanism without Safemode
	5.2.1 Usability and Expressiveness

	5.3 Accountability Mechanism with Safemode
	5.4 Performance Analysis

	6 Improvements
	6.1 Accountability Mechanism Never Forget
	6.1.1 Evaluation
	6.1.2 Performance

	6.2 Exception Types

	7 Duels
	7.1 Implementation
	7.2 Evaluation
	7.3 Testing

	8 Guides
	8.1 User Guide
	8.1.1 Choosing your Exception Mechanism
	8.1.2 Quick Recap of Some Important SCOOP Facts

	8.2 Developer Guide
	8.2.1 Where to Find and Build the Solution
	8.2.2 SCOOP Framework
	8.2.3 Accountability Mechanism without Safemode
	8.2.4 Accountability Mechanism with Safemode
	8.2.5 Duel mechanism
	8.2.6 Integrating the Accountability Mechanism into EiffelStudio

	9 Related Work
	10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Future Work
	10.2.1 Asynchronous Callbacks
	10.2.2 Can Processors Become Unfailed?
	10.2.3 How to Handle Holder and Challenger Behaviour for Duel Mechanism
	10.2.4 Timeouts in Duel Mechanism
	10.2.5 Priorities for Different SCOOP Processors

	A References
	B Code Listings

