
6
Agile practices: managerial
The agile principles imply, for a software development project, not only specific roles as
studied in the previous chapter, but a set of concrete practices, such as the daily meeting,
pair programming and test-driven development.

What, by the way, qualifies as a practice in software development? A practice has to
be an activity or a mode of working, but with a special twist: repeated application. In the
absence of repetition, we may have an interesting technique, but it is not a practice unless
it is performed regularly (in the case of an activity) or enforced systematically (in the
case of a mode of working).

Scrum also uses, for practices, the more picturesque name ceremonies.

We start in this chapter with practices affecting project organization and management.
The following chapter will cover technical, software-specific practices.

6.1 SPRINT

One of the core principles of agile development is to work iteratively, producing frequent
deliveries. All agile methods apply this idea, with various prescriptions for the duration
of the individual iterations. To denote these iterations, the Scrum term “sprint” has come
into wide use.

The purpose of a sprint is to advance the project by a significant increment, working
from a task list, known in Scrum as the sprint backlog. In most agile approaches each
task on the list is defined as the implementation of a “user story”.

6.1.1 Sprint basics

A Scrum sprint usually lasts one month. Many teams use other durations, and non-Scrum
agile authors recommend iterations of varying lengths, although never more than a few
weeks in line with the fundamental agile idea of short-cycled iterative development.

This idea of cutting up development into individual iterations lasting a month or so
defines the notion of sprint, but a second property, particularly emphasized in Scrum, is
just as important. It is the rule that during a sprint, the task list does not grow. The rule
has to be absolute: no one, laborer, duke or emperor — or project manager — is permit-
ted to add anything while the sprint is in progress.

← “Develop
iteratively”,
page 70.

AGILE PRACTICES: MANAGERIAL §6.190
This rule is made realistic by the short duration of sprints. Clearly, if iterations lasted
six months, it would be impossible to repress the customers’ and managers’ natural urge
to add functionality. With a one-month period, once everyone has signed on to the policy,
the project may enforce the strict ban on extensions. No exceptions are allowed, what-
ever the rank of the supplicant. If there is a really pressing need, it gets parked until the
end of the current sprint, and will be examined for possible inclusion in the next sprint.
If not having the envisioned feature is a real show-stopper, then the only solution is the
extreme one (akin, in the execution of a program, to raising an exception): terminating
the sprint early — a decision that, as we have seen, is the privilege of the product owner.
It is a pretty drastic decision; unless the product owner feels things are so critical as to
justify it, he will just wait, like everyone else, until the next sprint.

6.1.2 The closed-window rule

The rule barring additions of functionality during a sprint follows from one of the prin-
ciples we saw in an earlier chapter. It does not seem to have received a specific name in
the agile literature but it is so important that it deserves one. Let us call it the
closed-window rule: the window for changes is closed whenever a sprint is in progress.

The closed-window rule addresses one of the biggest practical obstacles to successful
software development: disruptive feature creep, more precisely disruptive customer- or
management-induced feature creep. Customers and managers teem with ideas, and keep
dreaming up new features. Giving them demos of early versions (in general a good prac-
tice, and strongly advocated in agile approaches) can make the phenomenon even worse
by bringing to light what functionality is still missing. By itself the feature creep phe-
nomenon is inevitable and in many respects healthy; a successful system will serve the
business best if the key stakeholders have had their say. The problem is the disruptive
nature of feature requests coming from a person carrying enough authority to change pri-
orities. He or she comes up with a superb idea, so superb indeed that it has to be imple-
mented right this minute at the expense of the currently scheduled tasks. Such
interruptions can quickly derail a project: priorities get messed up, important work is
delayed, and developers lose morale. But without a clear process such requests can be
politically difficult to refuse.

The genius of the closed-window rule is that it neither ignores the risk of feature creep
nor fights it head-on, but channels it into the limited framework of sprint planning exer-
cises. A practical consequence is that a kind of natural selection takes place between fea-
ture ideas. Many a brilliant suggestion loses its luster when you look at it again after a
few days, and when the time does come to select features for the next sprint it may no
longer seem so urgent. Disruptions are avoided and noise takes care of itself. The ideas
that were truly worthy of consideration get prioritized against all other tasks.

← “Freeze
requirements
during itera-
tions”, page 71.

§6.2 DAILY MEETING 91
6.1.3 Sprint: an assessment

Two aspects are interesting to discuss: sprint duration, and the closed-window rule.

The one-month standard duration of sprints appears just right. In this book we often
note that strict agile rules are too rigid, and sometimes see that the spirit is more impor-
tant than the exact details; but in this particular case it appears that following the exact
Scrum one-month prescription (including sprint planning and sprint review) works well.
More precisely, Scrum specifies “thirty days”; I have found, as noted earlier, that it is
more effective to use a calendar month. Simplicity breeds focus.

The closed-window rule is an outstanding idea. While it contradicts the Agile Mani-
festo’s principle A2, “Welcome changing requirements, even late in development”, by
conceding that not all change is welcome at all times, it provides a framework for han-
dling change (or “harnessing” change, as the principle puts it).

6.2 DAILY MEETING

A core agile practice is the daily meeting, also known as the “stand-up meeting” and as
the “daily scrum”. Stand-up because one of the original ideas was to make sure the meet-
ing does not last long — fifteen minutes is the standard — by requiring everyone to
stand; this requirement is impractical and usually not applied. Scrum because many
groups use some approximation of the version fine-tuned by the Scrum method.

The rationale for meeting at the beginning of every workday is the general agile
principle that direct contact is critical to project success. It meets here with the just as
general agile distrust of heavy processes and such waste-inducing practices (think
“lean”) as long meetings. Hence the emphasis on both frequency and strict time limits.
The method insists in particular on what a daily scrum is not: it is not intended to solve
problems or engage in deep technical discussions. Its focus is precisely defined:
answering the “three questions”. What did you do on the previous working day? What
will you do today? Any impediments?

The first two questions give the team the opportunity to catch up with each other on
the progress of the project and its immediate future. They also help ensure that team
members make realistic commitments and fulfill them, since today’s answer to the sec-
ond question, the promise, will meet tomorrow’s answer to the first, the reckoning. As
Cohn writes, the exercise is not a status update where a boss finds out who is behind
schedule, but an opportunity for team members to make commitments to each other.

In the third question, an impediment is any obstacle that stands between a team mem-
ber and the realization of his stated goals. There are technical impediments, such as prob-
lems with hardware or software products, and organizational impediments, such as the
absence of a team member whose input is needed. The meeting should remove the

?

← “Iteration
length”, page 71.

← Page 50.

→ “Impedi-
ment”, 8.12,
page 129.

AGILE PRACTICES: MANAGERIAL §6.292
impediments when possible in the short time imparted, and otherwise assign responsibil-
ity for removing them. In Scrum, more specifically, removing impediments is one of the
key responsibilities of the Scrum Master.

As emphasized by agile authors, one should be on the alert for practices that distort
the purpose of the daily meeting and threaten its effectiveness. The two main threats are
project members who go off into digressions, and the temptation to engage in deep tech-
nical discussions. Once you are aware of these risks, it is relatively easy to fend them off:
the person in charge of enforcing good practices — in a traditional approach the project
manager, and in Scrum the Scrum Master — can:

• Remind the ramblers to be concise; a more indirect technique is to enforce the time
limit even (or especially) if this means that some people do not get to speak. It should
not take more than one or two experiences of that kind for those who spoke too long
to understand that they are the ones at fault. If it does, the team truly has a problem.

• If a technical discussion takes off on its own, intervene and suggest holding a sepa-
rate meeting.

The idea of the daily meeting, with its focus on the three questions and the strict limita-
tion of scope and duration, is brilliant. As with other agile ideas, you can stop listening
to the advice when it becomes dogmatic. Some circumstances, such as geographically
distributed projects, naturally lead to variations over the basic scheme:

• Setup time. A 15-minute meeting is fine for a resident team but generally not effective
for a distributed team. Even with good technology and an experienced group of people,
it can take a few minutes (“Can you hear me?”, “Let’s switch from Skype to WebEx”,
“The video conference room is still occupied ”) to get down to business.

• Flexible working schedules. In many organizations, some employees come in at differ-
ent times or occasionally work at home. Such practices contradict the agile insistence
on direct personal communication, but they have other justifications, such as the desir-
ability of a “sustainable pace”, and companies may legally be required to allow them.

• Time zones. Consider a group with some members in California and others in Shang-
hai. 7 AM for the former means (in the winter) 11 PM for the latter. You can ask peo-
ple to be up late once in a while, but not every day.

• Meeting inflation. While there are good reasons for moving deeper technical discus-
sions to a separate meeting, they should be balanced with the overhead of organizing
separate meetings (“Let’s discuss this on Tuesday afternoon — Tuesday I am not here,
can you make it Wednesday at 10? — Yes, but I think the meeting room is not avail-
able” and so on), plus the context-switching time (the time for everyone to remember
what it was all about). Sometimes when an issue can be solved by a 20-minute dis-
cussion it is just as simple to have that discussion then and there.

• Length variability. There is no reason to use the same limits regardless of team size.
15 minutes may be fine for a group of five people and too short for ten.

?

← “Maintain a
sustainable
pace”, 4.4.3,
page 56.

§6.3 PLANNING GAME 93
A distributed team I know, which works across three continents and has honed its process
over several years, has two weekly meetings, Monday and Thursday, at a time that is
acceptable in all time zones affected. Both last one hour for the reasons just mentioned.
They have complementary goals:

• The Monday meeting is developer- and deadline-based. Its purpose is to check
progress towards the next deadline. It is run in the spirit of a Scrum daily meeting:
each member of the team presents his or her current status based on the “three ques-
tions”. Since it uses a full hour, technical discussions are not prohibited as long as
they remain short; anything that requires deeper analysis is moved to the Thursday
meeting or some other medium (such as an email discussion, or an extraordinary
meeting). The team long ago learned to make good use of the available time and never
overruns the one-hour limit. There is no agenda for those meetings; they are orga-
nized around the task list, a shared document that everyone can consult (through
screen sharing) during the meeting.

• In contrast, the Thursday meeting is agenda-based; it is devoted to the discussion of
a list of issues collected in advance by the meeting secretary (a task that rotates
between members of the group). Its decisions are recorded as “action items” in the
minutes (produced in real time during the meeting), and copy-pasted to the agenda of
the next meeting so that the first matter of the day is to check what has been promised,
just as in a daily meeting.

This particular formula, obtained by trial and error (as well as reading agile and other
software books) works well for that particular group. A team subject to different con-
straints will fine-tune its own variant of the daily meeting idea. Freed of dogmatism —
adapted in particular to the multi-site, flexible-personal-schedule working style of mod-
ern companies — that idea, particularly its focus on the “three questions”, is one of the
principal contributions of the agile school. Some day, the whole industry will be practic-
ing it and not even conceive that anyone could ever have been working otherwise.

6.3 PLANNING GAME

The next two practices to be reviewed (in this section and the next) address one of the
toughest challenges of software management and development: estimating the cost of a
system to be developed, or part of that system. The planning game comes from Extreme
Programming, the planning poker from Scrum. Cost estimation, the goal in both cases,
is only a subset of what “planning” normally covers; but this limited scope of the term is
consistent with the rest of the agile creed, which does not like the idea of upfront tasks.

The unit of estimation has traditionally been a unit of work: person-month or, at a
finer level of granularity, developer-day (one programmer working for one day). More
sophisticated metrics have been developed recently, in particular the story point, which
we will study in the discussion of artifacts. The discussion in this section and the next
does not depend on the particular metric used.

→ “Story
points”, 8.4,
page 121.

AGILE PRACTICES: MANAGERIAL §6.494
The XP planning game is a “game” not in the sense of a competition, with winners
and losers, but in the game theory sense of a cooperative game, where two actors try to
maximize different criteria and seek an optimal compromise between them. The two
actors are “business” and “development” in Beck’s term, or more simply the customer
and developer groups. The customers seek to maximize functionality and minimize the
time to obtain it. The developers understand the difficulty level associated with every
element of functionality, and the incompressible time that it requires. In the game:

• Customers define the respective priority of a set of functionality elements — defined
in agile style as user stories — for a project, or a particular iteration.

• Developers estimate the cost (person-days) of implementing each story.

In playing the game, the two groups perform these tasks repeatedly, engaging into nego-
tiation over the estimates. Customers sort the stories on the basis of priority. The game
terminates when the two sides have agreed to select the highest-priority tasks with a total
cost that fits within the time allotted for the release and the number of developers. In a
variant of the game, the result is not so strictly tied to a release cycle but simply consists
of a prioritized list of user stories.

6.4 PLANNING POKER

Scrum’s planning poker is another approach to the same problem as XP’s planning game,
how to estimate the cost of user stories in advance. Again the discussion does not depend
on the choice of measurement unit, such as developer-day or story point.

The two ideas of planning poker are to:

• Rely on the collective judgement of a panel of estimators, iterating until they agree.

• Avoid pointless haggling over small differences by forcing the values to be taken
from a sequence of clearly distinct values.

A sequence of values satisfying this criterion is the Fibonacci sequence: 0, 1 (and 1
again), 2, 3, 5, 8, 13, 21, 35, …

I hear you: that is not the Fibonacci sequence! Indeed. The last number cited should be 34.
Congratulations on your mathematical sophistication! But one agile consultant has had the
brilliant business idea of producing and selling a deck of planning-poker playing cards.
Trouble is, copyrighting the Fibonacci sequence is kind of hard, since it has been around
since something like 1202 in Italy (and a couple of millennia earlier in India). Not to worry:
just change one of the values. Not exactly as I did above — I am far too scared of a
copyright infringement suit! — but you get the idea.

If estimates are done in person-days, the second value is sometimes replaced by 0.5 since
some simple user stories may be implementable in less than a day. What matters is that
the values are sufficiently different to avoid the estimators getting into a fight over insig-
nificant differences, such as whether a particular task will take 11 or 12 days; the aim is
rough-cut estimation rather than exactness.

§6.4 PLANNING POKER 95
Some variants of planning poker rely on an even smaller set of choices, in particular
“T-shirt sizing” which offers five values from X-small to X-large. Most variants also
include the value “?” for the benefit of an estimator who feels there is not enough infor-
mation yet to propose an answer.

The panel of estimators is the development team, including the product owner and
other customer representatives as appropriate. It applies a form of the “Delphi”
expert-consensus decision method, which originated with the US military and has been
in use for decades. It is also influenced by the more recent concept of “wisdom of the
crowds”, according to which a group can collectively reach a better decision than even
the best individual experts in its midst. The goal is to arrive at a consensus, but to avoid
reaching it through the intimidation of outlying thinkers by the initial majority.

The process for estimating the cost of a functionality element involves the following steps:

1 Someone, typically the product owner, describes the feature.

2 The participants discuss it and ask questions as needed.

3 Every participant privately picks an estimate, from the preset sequence of values.

4 The choices are revealed. This where the process gets its name: as in a game of cards,
you show your hand only when asked.

5 If the values agree, the process stops for this item and the common estimate is retained.
(This is where it is important to have widely separated values in the sequence.)

6 If the values are not identical, a discussion takes place, with each member arguing
for his or her choice. Then the process is repeated from step 3, on the basis of infor-
mation gained in the discussion.

7 If the process does not converge to a common value, the participants will have to
abandon it and discuss what else to do, such as getting more information and post-
poning the estimation to a later date.

Cohn states that

Teams estimating with Planning Poker consistently report that they arrive at
more accurate estimates than with any technique they’d used before

without, however, citing actual studies. My own experience, also individual and also not
backed by studies, is less thrilling. The problem I have seen is the power of majority pres-
sure. If you are truly an expert and you come up with an estimate that is widely different
from those of the rest of the group, it is difficult to argue for long without appearing arro-
gant. To preserve group harmony you are naturally led to give up — at least if you know
you are not yourself going to get the task of implementing the item. This outcome can be
damaging to the project, especially when the expert knows how hard some task really is
but is unable to convince the rest of the group, which has not performed such work before
and thinks it will be a breeze.

[Surowiecki
2004]

[Cohn site].

?

AGILE PRACTICES: MANAGERIAL §6.596
6.5 ONSITE CUSTOMER

All agile methods, as we have seen, recommend involving customers or their represen-
tatives in the project. XP in particular has the notion of an “active customer”, also known
as an embedded customer. This practice is mentioned here as a reminder since an earlier
chapter discussed the corresponding roles: “customer” and “product owner”.

6.6 OPEN SPACE

Agile methods put considerable emphasis on the physical organization of the workspace.

Many development teams traditionally use, at least in the US, private offices for the
lead people and cubicles for everyone else. (Cubicles are less common in Europe, and
the more extreme formats are incompatible with local labor laws; some countries, for
example, require providing every office worker with access to daylight.)

Closed offices and cubicles are anathema to agile development. Because of the core
role of communication, it is a tenet that developers should work in an open space. Here
is a typical exhortation:

Use open working environments. Such environments allow people to
communicate more easily [and] get together, and facilitate self-organization.
When I walk into open areas, I can immediately tell how the team is doing.
Silence is always a bad sign. I know that people are collaborating if I can hear
conversations. When I enter a cubicle environment, there is often silence
indicating an absence of interaction. Cubicles are truly the bane of the modern
workplace. They quite literally keep people apart and break teams up.

In the recommended agile layout:

• The development area is a large room.

• Developers are seated at desks not too far from each other. If the team practices pair
programming, there will be two developers at each desk, but in any case people should
be able to hear conversations at neighboring desks and spontaneously join them.

• The walls are largely covered with whiteboards to support technical discussions.

• A quiet meeting room is available for technical meetings.

Many developers, in my experience, like this kind of arrangement, contradicting the ste-
reotype of programmers as inward-looking nerds. Many does not mean all; witness the
frequent practice of wearing noise-reduction headphones. Some agile authors recognize
the need for occasional isolation, “cones of silence” in Cockburn’s terms.

Indeed, while the basic idea is sound, and cubicles deserve all the scorn they get from
agile critics, it would be nice if everyone would follow Cockburn’s example and refrain
from sweeping absolutes. Open spaces are not the solution for all people and all times.
It is impossible to take Schwaber’s “Silence is always a bad sign” as a serious statement.

← Chapter 5,
particularly 5.2
and 5.5.

[Schwaber
2002], page 39.

[Cockburn
2003].

?

§6.7 PROCESS MINIATURE 97
Software development is a challenging intellectual activity. There is the engineering
part, which often requires “communication”, “collaboration”, “interaction” and “conver-
sation”, and the research part, which is in many respects akin to doing mathematics. There
is a time for talking, and a time for concentrating. Some people think best by explaining
their thinking to someone else, pair-programming style; some people think best while
walking (like Napoleon); and some people think best by shutting themselves off from the
world for a while. Most people think best by alternating between various models.

We have all met instances of the shy, introverted programmer who stays silent during
meetings and one morning comes in with an impeccably designed and implemented sub-
system, which all the “conversations” in the world would never have produced. It is part
of the respect due to programmers (as advocated forcefully in the Crystal method) to
accept that people are different and not to force a single scheme on them. Sure, you can
gently nudge the silent genius, once in a while, to communicate a bit more. But if you
start harassing him by enforcing a communicate-at-all-costs policy, all you will get is
that he will soon take his talents to a more accommodating environment.

The gentle nudging, by the way, may have to apply to both sides. An incessant chat-
terer may fulfill the agile ideal of “valuing interaction”, as the Agile Manifesto has it,
but may become a serious obstacle to the project’s progress, and deserve an encourage-
ment to stop talking and produce something for a change.

If silence is “always a bad thing”, what of the reverse situation: a workplace where
everyone is babbling all the time? It is just as alarming. A healthy environment, in my
experience, is one in which sometimes people talk and sometimes they silently read, or
write, or just think. When “walking into” a development space and seeing a programmer
who is just staring at the ceiling, only a naïve (and mean, and incompetent) manager
jumps to the conclusion that the programmer is wasting the company’s money.

The need for flexibility comes not only from developers’ personality traits but from
the nature of the tasks at hand. Requirements definition calls for lots of interaction
(although even here quiet thinking, to classify and abstract information, is essential);
design and implementation call for lots of thinking (although even here communication,
of the kind advocated by agile methods, is essential).

These reservations do not affect the essential soundness of the agile view: open spaces
often work well. Just do not turn the idea into a dogma. Different people, different cir-
cumstances and different times during projects call for different solutions.

6.7 PROCESS MINIATURE

Agile training frequently uses a technique that Cockburn calls “process miniature”: get
familiar with a proposed software process by applying it to some non-software tasks over
a short period, such as a day, an hour or even less. Scrum tutorial sessions, for example,
are notorious for asking participants to design paper planes by applying the Scrum roles,
principles and practices. Throwing the planes around is great fun.

[Cockburn
2005], page 91.

AGILE PRACTICES: MANAGERIAL §6.898
Process miniature can be a good way to visualize techniques that might otherwise
appear abstract, and understand the dynamics of group interaction in a self-organizing
team. One should not forget, however, that it is just a simulation, and that the most seri-
ous issues, technical and personal, will only materialize in the thick of a real project.
Building paper planes is not quite the same as building planes.

6.8 ITERATION PLANNING

A number of agile practices take the form of regular meetings. We have already seen the
“daily meeting”, but there are others, codified in particular by Scrum.

At the start of an iteration (a sprint in Scrum) there should be a meeting to plan that
iteration. The meeting should produce three main outcomes:

1 An iteration goal, describing what the team plans to achieve in the iterations,
concisely — a sentence or two — and in terms understandable by ordinary
stakeholders. A typical example (assuming a compiler project) is: implement the
new functional-language extensions.

2 An iteration backlog: the list of tasks to be implemented. This outcome is primarily
for the internal benefit of the team.

3 The list of acceptance criteria for each task.

Conspicuously absent from these goals are: the assignment of tasks to individual team
members, which will be done at the “last possible moment” according to the rule of
cross-functionality; and a list of testing tasks, since testing is done continuously as part
of the implementation of user stories, not as a separate activity.

The meeting is primarily reserved for the team and the product owner. As the team
will be responsible for implementing the backlog in the allotted time, the result repre-
sents a commitment on its part, normally ruling out the participation of observers.

The definition of tasks (outcome 2 above) is a two-step process: select user stories
from the backlog for the entire product; then, decompose each of them into tasks.

The process also requires estimating the cost of each task. This is where techniques
such as the planning game and planning poker, discussed earlier in this chapter, come
into play. Because the team is in the best position to size up tasks that it will have to
implement, the product owner may at times be asked to leave the meeting while this esti-
mation is in progress. Disagreements may imply repetitive application of the process.

To avoid endless discussions, the meeting has a time limit, generally a single day
(eight hours), sometimes split into two parts, one for selecting user stories and the other
for decomposing them into tasks.

?

← “Members
and observers”,
5.4, page 82.

§6.9 REVIEW MEETING 99
6.9 REVIEW MEETING

The review meeting mirrors, at the end of a sprint, the planning meeting performed at the
beginning. Its purpose is to assess what has actually been done.

In the meeting, the development team presents to outside stakeholders, and in partic-
ular to the product owner in Scrum, the results of the sprint. It discusses what has been
achieved, and not, against the original goals, cost estimates and acceptance criteria.

Such a review meeting is focused on results, not process. An end of sprint is also a
good opportunity to reflect, beyond what has been done, on how it was done. In Scrum
a separate meeting is reserved for that purpose: the retrospective.

6.10 RETROSPECTIVE

A sprint retrospective reviews what went well and less well during the latest sprint, with
a view to identifying what can be improved for the next one. The purpose is similar to
what we find at level 5, “Optimizing”, of the CMMI: integrating into the process (even
if this word is not welcome in agile circles) a feedback loop so that it can improve itself.

Whereas a review meeting requires the presence of the product owner (or, outside of
Scrum, other stakeholders representing the viewpoint of the customer), a retrospective
meeting is inward-looking and hence should primarily include the team and coach
(Scrum Master), although the product owner may attend.

6.11 SCRUM OF SCRUMS

Basic agile techniques are intended for small teams, up to about 10 people. The question
arises of how to scale up to larger projects. The Scrum answer is worth studying here. It
is known as a “scrum of scrums”, defined as

a daily scrum consisting of one member from each team in a multi-team project.

except that “daily” is according to Larman too high a frequency; two or three times a
week is enough.

The challenge confronting scrums of scrums is coordination. It manifests itself in
two ways:

• Interface changes.

• Dependencies between sub-projects.

Regular meetings are an effective way to address the first problem; if you make sure that
API changes that can break client code are clearly publicized (and, if possible, discussed
in advance), you avoid a serious source of trouble.

← “CMMI in
plain English”,
3.6.1, page 44.

[Schwaber
2004], page 44.

[Larman 2010],
page 200.

?

AGILE PRACTICES: MANAGERIAL §6.12100
On the second problem, the best agile answer that I have seen is that dependencies
should be avoided. According to Schwaber:

Before a project officially begins, the planners parse the work among teams to
minimize dependencies. Teams then work on parts of the project architecture that
are orthogonal to each other. However, this coordination mechanism is effective
only when there are minor couplings or dependencies that require resolution.

Quite true; dividing the project into “orthogonal” parts works only if the complexity is
of the additive kind. But of course a large project is usually large because it is truly —
that is, multiplicatively — complex, and then the dependencies will be tricky. Although
the agile literature claims that Scrum, XP and other methods can scale up, and gives
examples of successful large projects, it provides little guidance on how to tackle the
issues. As described in its own texts, the agile approach mostly targets projects involving
a small group of developers.

6.12 COLLECTIVE CODE OWNERSHIP

We end this review of management-related agile practices with an agile prescription that
could also be classified as a principle, although it enjoys neither the same importance nor
the same general application as the principles of the previous chapter.

In many projects every software module or subsystem is under the responsibility of a
specific person. A typical comment in dealing with teams at Microsoft is “If you want to
change something to that API, you will have to convince Liz, she owns that piece”. She
does not “own” it in the sense of intellectual property but in the sense of technical author-
ity: who decides whether to accept a request for change. Code ownership in that sense is
not restricted to commercial software: many open-source projects, such as Mozilla, also
enforce a similar model, where:

A module owner’s OK is required to check code into that module. In exchange,
we expect the module owner to care about what goes in, respond to patches
submitted by others, and be able to appreciate code developed by other people.

6.12.1 The code ownership debate

Individual code ownership has clear benefits: someone is in charge, and will feel respon-
sible for ensuring the consistency of the software and its integrity. One of the worst risks
in the evolution of a software system is a general degradation due to inconsiderate exten-
sions (“creeping featurism”); having a clear point of responsibility helps avoid it.

Individual code ownership can have negative consequences as well, emphasized by
agilists and in particular by proponents of Extreme Programming: balkanization of the
system, where each part of the code becomes a little fiefdom; concentration in one person
of the expertise about each part of the system, raising a serious risk if that person leaves;
and barriers to change, as the owner of a particular element (even if still a member of the
team) may not be available or willing when others need a change, or they may simply
not dare to ask.

[Schwaber
2004], page 44.

← “Additive
and multiplica-
tive complexity:
the lasagne and
the linguine”,
page 63.

[Mozilla mod-
ules].

§6.12 COLLECTIVE CODE OWNERSHIP 101
XP promotes collective code ownership:

Anyone on the team can improve any part of the system at any time. If something
is wrong with the system and fixing it is not out of scope for what I’m doing right
now, I should go ahead and fix it.

This statement is in fact more nuanced than its predecessor in the first edition of the same
book, which stated that “anybody who sees an opportunity to add value to any portion
of any code is required to do so at any time”.

Both versions surprisingly ignore the role of another core XP practice, pair program-
ming, studied in the next chapter. In the actual application of XP as described by Cock-
burn, pair programming does temper the free-for-all:

XP has a strong ownership model: Any two people sitting together and agreeing
on it [the change] can change any line of code in the system.

This restriction seems to be the minimum needed for making collective code ownership
reasonable. Even in a competent and self-organized team, it would be dangerous to allow
arbitrary changes without involving at least a second pair of eyes. The free-for-all policy
may have made the success of Wikipedia, but only with safeguards such as a vigilant
community of millions of editors and thousands of administrators, and with generally
less momentous consequences. (A mistyped digit in the population figure for the Duluth
entry, even if it takes a few hours before someone detects it, should cause no tragedies.
Program bugs are a serious matter.)

The Crystal method takes a more moderate attitude:

Most of the Crystal projects I have visited adopt the policy “change it, but let
me know”.

In assessing the possible policies — personal ownership, collective ownership, and solu-
tions in-between — it is important to note that preserving correctness is not the only
issue. Agile methods require running the regression test suite regularly; so if as a result
of a change-by-all policy someone messes up code that he does not completely under-
stand, there is a good chance that the problem will be caught right away. A potentially
more serious problem is degradation of the code, as described by Cockburn:

[If] everyone is allowed to add code to any class, [then] no one feels comfortable
deleting someone else’s code from the increasingly messy class. The result is […]
like a refrigerator shared by several roommates: full of increasingly smelly things
that almost everyone knows should be thrown out, but nobody actually throws out.

Indeed a question more important than code ownership is change control. With modern
configuration management tools it is possible to enforce specific rules automatically; for
example you may prohibit committing a change unless at least one other person approves
it. Google has such a rule. A more formal version requires a review of the code before it
is committed; it is known as RTC, “Review Then Commit” and was Apache’s initial pol-
icy. After complaints in 1998 that it was too constraining, Apache introduced the CTR
option, “Commit Then Review”, tempered by the possibility — seldom used but keeping
programmers on their guard — of veto by any approved committer.

[Beck 2005],
page 66.

[Beck 2000],
page 59, empha-
sis added.

[Cockburn
2005], page 216.
Emphasis in
original.

Same reference
as above.

?

Again from the
same place.

AGILE PRACTICES: MANAGERIAL §6.12102
Every project should define its policy on this fundamental issue of change control,
somewhere between the extremes of too much freedom, leading to code rot and bugs,
and too much restriction, leading to an ossified process. The decision on code ownership
should follow from this more fundamental policy, and also depends on other aspects of
the company’s or open-source project’s culture. Once again a one-policy-fits-all rule, as
prescribed here by Extreme Programming, does not survive objective analysis.

6.12.2 Collective ownership and cross-functionality

The extreme suggestion of letting anyone change anything becomes less surprising when
viewed in light of another common agile practice: assigning the next task to the next
available developer. Such an approach can only work if the developers are interchange-
able; anyone can work on anything. This is the agile assumption of cross-functional
teams: developers should remain generalists about the project, and not specialize in a
narrow area.

Arguments for and against cross-functionality are pretty much the same as those for
and against individual code ownership. The risks of specialization are the emergence of
jealously defended fiefdoms, and the dependency on individuals who may leave or be
unavailable when the project needs them. On the other hand, a complex project will
require highly focused competence in specific areas; it is inefficient to ask non-special-
ists to handle tasks in such an area, for which they will either botch the job or repeatedly
disturb the expert. It is usually more productive to wait until that expert becomes avail-
able to do the job himself.

The application domain has a considerable influence on this discussion. When read-
ing agile discussions, such as the recommendation of cross-functional teams, I some-
times have the impression that they are all based on consultants’ experience with
run-of-the-mill commercial developments for customers. In areas of advanced technical
development, specialization is inevitable. If you are building an operating system and the
next task involves updating the memory management scheme, you do not ask just any-
one on the team. You ask the person who has devoted the last five years of his life to
crafting the memory manager.

← “Cross-func-
tional”, 5.3.2,
page 81.

?

	Preface vii
	Contents xv
	1 Overview 1
	2 Deconstructing agile texts 17
	3 The enemy: Big Upfront Anything 31
	4 Agile principles 49
	5 Agile roles 79
	6 Agile practices: managerial 89
	7 Agile practices: technical 103
	8 Agile artifacts 117
	9 Agile methods 133
	10 Dealing with agile teams 145
	11 The Ugly, the Hype and the Good: an assessment of the agile approach 149

	Bibliography 155
	Index 163
	Preface
	Contents
	Preface vii
	Description and assessment vii
	Keeping a cool head viii
	Previous attempts ix
	Structure of the book ix
	Perspective and scope x
	Analysis: instinctive, experiential, logical or empirical? xi
	Free critical inquiry xii
	Acknowledgments xiii

	Contents xv
	1 Overview 1
	1.1 Values 2
	1.2 Principles 4
	Organizational principles 5
	Technical principles 6

	1.3 Roles 7
	1.4 Practices 8
	Organizational practices 8
	Technical practices 9

	1.5 Artifacts 10
	Virtual artifacts 10
	Material artifacts 11

	1.6 A first assessment 12
	Not new and not good 12
	New and not good 13
	Not new but good 14
	New and good! 14

	2 Deconstructing agile texts 17
	2.1 The plight of the traveling seminarist 17
	Proof by anecdote 18
	When writing beats speaking 19
	Discovering the gems 20
	Agile texts: reader beware! 21

	2.2 The Top Seven rhetorical traps 22
	Proof by anecdote 22
	Slander by association 23
	Intimidation 23
	Catastrophism 26
	All-or-nothing 27
	Cover-your-behind 27
	Unverifiable claims 28

	Postscript: you have been ill-served by the software industry! 30

	3 The enemy: Big Upfront Anything 31
	3.1 Predictive is not waterfall 31
	3.2 Requirements engineering 32
	Requirements engineering techniques 32
	Agile criticism of upfront requirements 32
	The waste criticism 33
	The change criticism 35
	The domain and the machine 36

	3.3 Architecture and design 37
	Is design separate from implementation? 37
	Agile methods and design 39

	3.4 Lifecycle models 41
	3.5 Rational Unified Process 42
	3.6 Maturity models 43
	CMMI in plain English 44
	The Personal Software Process 46
	CMMI/PSP and agile methods 46
	An agile maturity scale 47

	4 Agile principles 49
	4.1 What is a principle? 49
	4.2 The official principles 50
	4.3 A usable list 51
	4.4 Organizational principles 51
	Put the customer at the center 51
	Let the team self-organize 53
	Maintain a sustainable pace 56
	Develop minimal software 58
	Accept change 68

	4.5 Technical principles 70
	Develop iteratively 70
	Treat tests as a key resource 75
	Do not start any new development until all tests pass 76
	Test first 77
	Express requirements through scenarios 77

	5 Agile roles 79
	5.1 Manager 79
	5.2 Product owner 80
	5.3 Team 80
	Self-organizing 80
	Cross-functional 81

	5.4 Members and observers 82
	5.5 Customer 82
	5.6 Coach, Scrum Master 84
	5.7 Separating roles 86

	6 Agile practices: managerial 89
	6.1 Sprint 89
	Sprint basics 89
	The closed-window rule 90
	Sprint: an assessment 91

	6.2 Daily meeting 91
	6.3 Planning game 93
	6.4 Planning poker 94
	6.5 Onsite customer 96
	6.6 Open space 96
	6.7 Process miniature 97
	6.8 Iteration planning 98
	6.9 Review meeting 99
	6.10 Retrospective 99
	6.11 Scrum of scrums 99
	6.12 Collective code ownership 100
	The code ownership debate 100
	Collective ownership and cross-functionality 102

	7 Agile practices: technical 103
	7.1 Daily build and continuous integration 103
	7.2 Pair programming 105
	Pair programming concepts 106
	Pair programming versus mentoring 107
	Mob programming 107
	Pair programming: an assessment 107

	7.3 Coding standards 109
	7.4 Refactoring 109
	The refactoring concept 109
	Benefits and limits of refactoring 110
	Incidental and essential changes 112
	Combining a priori and a posteriori approaches 113

	7.5 Test-first and test-driven development 113
	The TDD method of software development 113
	An assessment of TFD and TDD 115

	8 Agile artifacts 117
	8.1 Code 117
	8.2 Tests 117
	8.3 User stories 119
	8.4 Story points 121
	8.5 Velocity 123
	8.6 Definition of done 125
	8.7 Working space 125
	8.8 Product backlog, iteration backlog 126
	8.9 Story card, task card 127
	8.10 Task and story boards 127
	8.11 Burndown and burnup charts 128
	8.12 Impediment 129
	8.13 Waste, technical debt, dependency, dependency charts 129

	9 Agile methods 133
	9.1 Methods and methodology 133
	Terminology 133
	The fox and the hedgehog 133

	9.2 Lean Software and Kanban 134
	Lean Software’s Big Idea 134
	Lean Software’s principles 134
	Lean Software: an assessment 135
	Kanban 136

	9.3 Extreme Programming 137
	XP’s Big Idea 137
	XP: the unadulterated source 137
	Key XP techniques 138
	Extreme Programming: an assessment 139

	9.4 Scrum 139
	Scrum’s Big Idea 139
	Key Scrum practices 140
	Scrum: an assessment 140

	9.5 Crystal 141
	Crystal’s Big Idea 141
	Crystal principles 141
	Crystal: an assessment 142

	10 Dealing with agile teams 145
	10.1 Gravity still holds 145
	10.2 The either-what-or-when fallacy 146

	11 The Ugly, the Hype and the Good: an assessment of the agile approach 149
	11.1 The bad and the ugly 149
	Deprecation of upfront tasks 149
	User stories as a basis for requirements 150
	Feature-based development and ignorance of dependencies 150
	Rejection of dependency tracking tools 150
	Rejection of traditional manager tasks 150
	Rejection of upfront generalization 151
	Embedded customer 151
	Coach as a separate role 151
	Test-driven development 151
	Deprecation of documents 151

	11.2 The hyped 152
	11.3 The good 153
	11.4 The brilliant 154

	Bibliography 155
	Index 163

	1 1 Overview
	Agile values
	Agile principles
	Key agile roles
	Key agile practices
	Key agile artifacts

	2 2 Deconstructing agile texts
	3 3 The enemy: Big Upfront Anything
	4 4 Agile principles
	Official agile principles
	Agile principles

	5 5 Agile roles
	6 6 Agile practices: managerial
	7 7 Agile practices: technical
	8 8 Agile artifacts
	9 9 Agile methods
	10 10 Dealing with agile teams
	11 11 The Ugly, the Hype and the Good: an assessment of the agile approach
	Bibliography
	Index

