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Must it be assumed that because we are engineers
beauty is not our concern, and that while we make our
constructions robust and durable we do not also strive
to make them elegant?

Is it not true that the genuine conditions of strength
always comply with the secret conditions of harmony?

The first principle of architectural esthetics is that the
essential lines of a monument must be determined by a
perfect adaptation to its purpose.

Gustave Eiffel, 1887

From his response in the newspaperLe Temps
to a petition by prominent artists and writers
protesting his project of elevating a tower of
iron in Paris.
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Preface: Meeting the challenge of
software quality (in progress)
Eiffel embodies a “certain idea” of software construction: the belief that it
is possible to treat this task as a serious engineering enterprise, whose goal
is to yield quality software through the careful production and continuous
enhancement of parameterizable, scientifically specified reusable
components, communicating on the basis of clearly defined contracts and
organized in systematic classifications.

Such aims lead to anew cultureof software development, focusing on
the reuse of industrial-grade components, on the development of complete
systems rather than just programs, and on the long-term investment in tools
and libraries, capturing the software know-how of an organization. Even
more importantly, they mean accepting the challenge of quality in
software.

Eiffel is nothing else than these principles taken to their full
consequences. In particular, the engineering of quality software
components requires an appropriate notation; this book describes such a
notation – Eiffel as a language for analysis, design and implementation.

A language, of course, is not enough. To achieve quality and move to
the new culture, we must understand the methodological background; we
must have access to a large body of good pre-built reusable components;
and we need the appropriate development tools. For several years, the work
on Eiffel has been proceeding in all of these directions, resulting in a
method, a language, a set of libraries, and software development
environments.

What you will find below is a description of the language part of Eiffel.
Other books cover the complementary aspects:Object-Oriented Software
Constructionpresents the method in detail;Eiffel: The LibrariesandEiffel:
The Environment describe the required library and tool support.

For the precise refer-
ence to the books men-
tioned here, see
appendixI “An Eiffel
Bibliography” , page
====
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THOUGHT AND EXPRESSION

Inaccurate as it would be to consider language issues only, the reverse
mistake is just as damaging.

A strange idea has become prevalent in some software circles: the claim
that languages, after all, are not that important. Requests are even heard
here and there for a bizarre animal, the “language-independent
methodology” – about as useful as a bird without wings, and just as likely.

In software perhaps more than anywhere else, thought is inseparable
from its expression. To obtain good software, a good notation is not
sufficient; but it is certainly necessary.

OLD, NEW AND OUT

The language concepts in Eiffel are not, of course, entirely new. Some key
ideas came from earlier designs, most notably Simula 67, Algol variants
(especially Algol W), Alphard, CLU, Ada, and the early (pre-Oxford)
versions of the Z specification language. Among the novel aspects are a
number of language constructs — in the areas of inheritance, typing,
exceptions, assertions, information hiding and higher-level functions
among others — as well as the choice of concepts from various sources and
their combination into a coherent edifice. In particular, Eiffel is original in
its association of an assertion facility (coming from work on program
verification and formal specification) with a full object-oriented approach
emphasizing multiple and repeated inheritance and information hiding.

Also notable is the set of ideas that havenotbeen retained. To design is
to renounce. Although designers rarely speak about this aspect, an
engineering product is defined by what it has excluded as much as by what
it has retained. In Eiffel, where so much attention was devoted to keeping
the language small and trying to make it elegant, readers will be surprised,
perhaps shocked in some cases, not to find such broadly accepted concepts
as global variables, enumeration types, subrange types, goto instructions
(as well as the many disguises that have been invented for them over the
years, such as “exit”, “break”, “continue” and the like), routine pointers,
undisciplined type conversions (“casts”), in-class overloading, pointer
arithmetic, language-defined input and output, and even the notion of main
program.

The exclusion of these concepts does not mean that all of them are
intrinsically bad, although in light of what we know today about software
engineering some obviously are; others are simply redundant or
incompatible with mechanisms that were more important for the Eiffel
software development method.



§  THE SIGNAL AND THE NOISE ix
THE SIGNAL AND THE NOISE

Simple does not mean simplistic. The language definition, as it appears in
this book, includes a few notions that are definitely non-trivial, particularly
the full feature adaptation mechanism, repeated inheritance, and the details
of type checking. Several reasons justify the presence of these more
advanced elements: only a small number of constructs are involved; the
basic ideas are straightforward, and the more difficult aspects simply result
from pushing the basic ideas to their full consequences; simple uses will
yield the expected results, according to the “principle of least surprise”;
there is no need to understand all the details for ordinary use (and you will
indeed find SHORTCUT signs inviting you to skip the more specialized
sections); and the extra power granted by the language’s most sophisticated
facilities, far from being mere gadgetry, addresses some of the most
difficult issues of large-scale software development.

In other words, what the language design has sought is the highest possible
signal-to-noiseratio, allowing users of the language to make the most out of
their intellectual energy. This means getting rid of the noise (features which
make the language bigger without contributing any really new concept): who
needs three formsof loopwhen ageneral enough onewill do,or special syntax
for array access when we can simply view arrays as “container” structures
described by a library class? But it also means reaching for the highest
possible level of signal: including the appropriate constructs to deal with the
truly difficult cases of software development, especially those which arise in
the construction of large and ambitious systems.

When the time comes to decide what is essential and what is
superfluous, there is no substitute for experience with the language in many
projects and application areas. Interactive Software Engineering has been
an extensive user of Eiffel for a decade and a half. Other than interfaces to
other tools — viewed by the Eiffel side as “external software” according to
the techniques of chapter31 — all our developments, including ISE’s
Eiffel compiler-interpreter and the supporting environment, are in Eiffel. In
addition to our own practice, we have observed users of our tools in their
development of systems ranging over most application areas of computers.

Such experience, although not a guarantee against mistakes, provides
crucial background for the choices that await language designers.

AppendixC draws on
the Eiffel experience to
discuss the issues of
language design and
evolution.
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LANGUAGE LEVEL

If you have read previous publications about Eiffel, includingObject-
Oriented Software Construction, you will notice some differences with the
language described here. This book indeed presents Eiffel version 5, which
benefits from the accumulated experience mentioned above. The
differences with previous versions do not affect the fundamental semantics
of Eiffel; rather, they bring in simplifications in some areas and a few
extensions in others. Although long-time Eiffel users and enthusiasts may
at first be surprised by some of these changes, I hope they will soon realize
that this update brings local but significant improvements to the language,
without impairing the consistency and simplicity of its basic design.

A list of changes may be found in anappendix, complemented by
another recalling earlier changes from Eiffel 2 to Eiffel 3.

Language evolution is a delicate issue; one must walk a fine line
between unjustified upheaval and undue conservatism. Yet another
appendix — useful reading if you wish to understand Eiffel in some depth
— discusses this question

THE FUTURE OF EIFFEL

The publication of the first edition of this book marked a turning point in
the evolution of Eiffel: the passage from single to multiple sources and
from individual control to collective oversight.

Until then, one company (Interactive Software Engineering) was the
sole supplier of Eiffel compilers. The book’s publication enabled more
people to take a part. D.W. Barron explained many years ago the danger of
such a collective approach:

Eiffel users have indeed frequently stated their fears about committee-
controlled evolution, particularly the propensity of committees to indulge
in what was called gadgetry above and is also known as “featurism”:
repeated addition of special-purpose facilities, which may individually
please specific constituencies, but will collectively destroy the consistency
of the design. The risk exists, but perhaps less than with some other
language, as the Eiffel community may be trusted to understand the virtues
of design simplicity. Besides, the original designer might still be around for

As a working hypothesis we can suggest that the probability of
achieving clearly seen and sensible objectives in language design
is in inverse proportion to the number of people involved in the
design process. Thus the best languages are those designed by a
single individual or a small coherent group. The worst languages
are those “designed” by large committees.

F, Language changes
from the previous edi-
tion andG, Changes
from early versions.

C, Onlanguagedesign
and evolution.

D.W. Barron, “An
Introduction to the
Study of Programming
Languages” , Cam-
bridge University
Press, 1977, page 144.
Slightly abridged.



§  MISSING ELEMENTS xi
some time, as a kind of Commendatore’sstatua gentilissimaready to
intervene at the earliest sign of debauchery.

MISSING ELEMENTS

In two areas in which I would have liked this book to go further.

One is the old but still thorny problem of numerical precision in
floating-point computation, for which Eiffel relies on quite traditional
solutions, with imprecisely defined semantics. A rigorous approach to this
problem, in line with the systematic treatment of other aspects in Eiffel,
should be possible, but will require the collaboration of experts in
numerical analysis as well as software engineering.

The other missing part is concurrency. There is in fact a language design
for concurrency in Eiffel, based on a simple extension (one keyword) and
consistent with the theory underlying Eiffel (“Design by Contract”). Yet I
stopped short of including the description of this mechanism here because
as of this writing it has not yet been implemented. No official programming
language document should ever be published unless all major components
of the language have been successfully implemented – a principle applied
throughout the evolution of Eiffel and, before it, to just about every
successful language. (The counter-examples, languages that attracted
considerable interest upon publication but then failed because they proved
too hard to implement, are all too familiar.)

ACKNOWLEDGMENTS

So many people have helped with the development of the language that I
have decided to go beyond the usual “acknowledgments” section and
includea specialappendix listing all the contributions that I was able to
remember, including in particular the names of people who invented
specific Eiffel constructs and mechanisms.

Eiffel would not exist today without the support and enthusiasm of its
users. My biggest debt is to all the software developers the world over who
have chosen to rely on Eiffel for their projects. I thank them for their trust
and hope that this book will be up to their exacting standards of quality.

Santa Barbara, Zürich, MelbourneB.M.
June 2002
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Preface to the third edition
NON-CLASSICAL NUMBER THEORY

A practical note about why this book is called a “third edition”. A year after
the initial printing, a number of revisions were made, leading to a second
printing; this became the reference, and the contents remained the same in
the many printings that followed. Although substantial, the second
printing’s changes were not numerous enough to justify calling the result a
secondedition. Technically, then, the present volume is a second edition.
But imagine the endless confusions if it were called that way: “I see no
mention of thePrecursorconstruct in ETL! — Check the second edition. —
But I havethe second edition! — Are you sure?— Well, here it says on page
xii: «Second revised printing» — Oh, but what you want is the second
edition— What do you mean?How do I tell the difference?” and so on. To
avoid such silliness I insisted that this edition be called third, leaving only
one opportunity for (harmless) confusion: some people, on seeing the title,
might think that they have missed an edition. They have not.

MIGRATION AIDS

Language evolution is a natural phenomenon and the users of previous
versions should be helped in the transition to the new version. An appendix
gives a detailed list of the differences between Eiffel 5 and the previous
version, listing in particular the precise changes in validity constraint, rule
by rule and clause by clause. This should be of primary interest to compiler
writers. For language users, the attraction lies in new facilities such as
agents, tuples, creation expressions, generic creations and assignment
procedures; in relaxed constraints (permitting for example even more
“freedom” for “free operators”); and in a general cleaning-up of the
semantics. The transition should be smooth since Eiffel 5 introduces very
few incompatibilities with the previous version.



About the status of Eiffel
The design of the Eiffel language is standardized by ECMA, an
international standards organization based in Geneva. The standards favors
the spread of Eiffel by enabling interoperability between Eiffel tools and
implementations. Such tools should adhere to the standard and
acknowledge ECMA; please contact ECMA for the details.

The text makes occasional references to the Eiffel implementation of
Eiffel Software: EiffelStudio, the portable development environment
available on all major industry platforms, and Eiffel EnVISion!, the verion
for Visual Studio .NET. Occasional references also appear to the associated
libraries EiffelBase (data structures and algorithms) and For information
about these and other products and services of Eiffel Software, including
Eiffel training and consulting, seehttp://eiffel.com.

http://eiffel.com




About the language description
In a book describing the language support for a radically new approach to
software construction, it was natural to take a fresh look not only at the
subject matter but also at the techniques used to present it.

To help you enjoy the discussion of Eiffel, here are a few notes about
the description method, and about the reasons that led to it.

TYPES OF DESCRIPTION, LEVELS OF DISCOURSE

The describer of a programming, design or analysis language faces an
interesting task. He must address several constituencies: interested
bystanders, novices starting to use the language, experienced users, authors
of compilers and interpreters. He must satisfy several requirements:
explaining the concepts in a clear way; teaching the use of the language;
giving examples; providing a precise reference to answer questions of
details and remove possible ambiguities or contradictions.

The almost universal response to these conflicting goals is to write at
least two documents: auser’s manualand areference manual, the latter
also called “report”. The user’s manual is supposed to be readable by
ordinary human beings; the reference manual must be precise, accurate
and, as the accepted consequence, hard to read and boring. The reference
manual is indispensable, however, for implementors, and users may also
need it when they run into tricky questions or apparent ambiguities. Often,
there is a third document, a tutorial.

Having experienced this division, on the reader’s side of the fence, when
using programming languages as well as software tools (for which the
same problems arise, usually with the same solutions), I have come to
dislike it profoundly. In spite of all the good intentions that justify the
multi-document structure, the net result is that, in any serious use of the
language or tools, you keep shuffling between the documents involved
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when seeking information about the available features and their properties.
Sometimes you will look at the user’s manual and fail to find the detailed
information that you need; but when you look at the reference manual you
miss the necessary informal explanations, comments and examples. If, as
is too often the case, you end up looking in both places, you find
repetitions, which waste your time, or even apparent contradictions.

This book innovates by being both a reference and a user’s manual, and
by addressing the needs of both users (beginning or advanced) and
implementors (authors of compilers or interpreters). It also includes a
tutorial overview.

Of course, by trying to cater to several audiences, it may fail to satisfy
any of them. This will be for the reader to judge.

FORMALITY

To compound the difficulty, the “reference” parts of the presentation,
intended to serve as official answer to questions about the syntax, validity
rules and semantics of language constructs, are more formalized than in
most existing language references. These official elements have to coexist
with much more informal explanations, comments, examples and advice.

Not that this work can claim to offer a trulyformaldescription of Eiffel;
this would have required a mathematical specification based on the
methods of axiomatic or denotational semantics (which I have tried to
summarize, at an introductory level, in another book). The aims here are
more modest, but every effort has been devoted to specifying Eiffel with as
much precision as can be afforded without resorting to mathematics. An
earlier article argued that one of the important byproducts of writing formal
specifications may be informal descriptions of a new and better kind,
derived fromthe formal ones, which they serve as accompaniment and
running commentary. Although no such derivation was used here, readers
familiar with formal methods will recognize their influence and a style
which resembles what one could find in a non-formal specification
resulting from a detour through mathematical formality.

See the book “Introduction to the Theory of Programming Languages”,
Prentice-Hall International, 1990.

The article mentioned is “On Formalism in Specifications”, IEEE
Software,2, 1, January 1985, pages 6-26, especially page 24 and figure 5.

For an example of a language specified in a formal way, see R. C. Holt
et al., “The Turing Programming Language”, Prentice-Hall International,
1988.



§  ORDER OF PRESENTATION xvii
As an example of the effort made to achieve more precision than is
customary, most of the validity constraints (rules governing such aspects as
type compatibility or the number of actual arguments to a routine) are
expressed as necessary andsufficient conditions. As a user of
programming languages manuals, I have long been puzzled by their focus
onnecessaryconditions: the source of the assignmentmustbe of the same
type as the target, the number of actual argumentsmustbe the same as the
number of formal arguments, and so on. All this is fine, but how do I know
that I have considered all the relevant “musts” and that now Imaysubmit
my result as a valid piece of software?

To address this question in a systematic way, the description of almost
every construct (such as Class, Instruction or Expression) includes a
validity constraint of the form “this will be validif and only ifthe following
conditions are satisfied...”. The firstif indicates that the conditions given
are sufficient.

Others, it is hoped, will capitalize on this book’s attempt at precision
and rigor to produce formal specifications of Eiffel. This style may
contribute to making the presentation appear somewhat pedantic at times.
It also carries some dangers: if you forget a condition, you give users a
misplaced sense of security, whereas with the “must” style, since you never
claim exhaustivity, they learn to be wary. But I felt that the sometimes
painstaking task of producing the complete list of validity requirements
should be the responsibility of the language specifier, not a job left for each
language user and compiler implementor to handle individually.

ORDER OF PRESENTATION

As if all this was not already making the task impossible, two of the
major goals for this book were to make it, against all odds, nottooboring,
and to encourage readers to study it in the way one should approach any
decent book save for dictionaries and railway timetables: sequentially,
from cover to cover.

This has meant another change from the common practice in language
books, affecting the order of introduction of the various concepts.

The traditional order is bottom-up: first the lexical constituents
(character set, constants, identifiers), then on to expressions, instructions
and higher-level structuring mechanisms.

Here, in contrast, the presentation is top-down; once you have read the
initial overview chapter and a short chapter introducing basic conventions,
you will learn about the overall architecture of software systems written in
Eiffel, then about the structure of their individual modules (classes), then
about the routines, the attributes, the run-time model, and the lower-level
constituents of Eiffel software.
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“Construct” is defined more precisely below. The reason for this
departure from the conventional order is to make sure that the key concepts
and constructs are introduced first, enabling you to keep in mind the “big
picture” throughout the presentation. After all, the details of bit constants
and the representation of special characters in strings, although useful in
some cases, are not what makes Eiffel exciting; it is more rewarding to
understand right away how to build and read software systems at the
highest level.

The presentation is divided into five parts:

Part A, Introduction, includes an overview of the language and a
presentation of the conventions used for syntactic and semantic construct
descriptions.

Part B, Structure, describes how Eiffel software is organized, explaining
the architectural notions of system, cluster, class and feature, the
inheritance and client relations between classes, routines, assertions, the
feature adaptation mechanism based on inheritance, and the type system
with the associated notion of conformance.

Part C, Contents, covers the inner parts of classes and features and their
effect on software execution: control structures, instructions, exceptions,
attributes, objects, values, expressions, entities, calls, interface with other
languages, and the lexical structure of software texts.

Part D, Kernel Library elements, introduces some basic library
facilities, covering universal features (available to all classes), persistence,
arrays, strings, arithmetic classes, input and output.

Part E, Appendices, includes a presentation of recommended style
standards, a discussion of the issues of language design and evolution, a
bibliography on Eiffel, a description of Lace (the Language for Assembling
Classes in Eiffel, used to combine classes into executable systems), two
summaries of the differences between Eiffel 3 and previous versions (in
both the old-to-new and new-to-old directions), and reference information:
reserved words, precedence, syntax reference in three different forms
(textual order, alphabetical order, diagrams), index.

PARAGRAPH TYPES AND ROAD SIGNS

For the reader of this book, the language description strategy described
above has two significant consequences.



§  CROSS-REFERENCES AND SHORTCUTS xix
First, the top-down order of presentation implies that once in a while, as
you read the presentation, you will be requested to perform an “act of faith”
when seeing a reference to a concept that will only be defined precisely in
a later part of the discussion. Suchforward referencesare inevitable
regardless of the style of presentation, since any useful programming
language, even one such as Eiffel for which simplicity was a constant
design obsession, includes concepts so intricately related as to make a
linear presentation next to impossible; but the top-down style causes even
more of them.

Next, the other key decisions – merging the reference manual and user
manual into a single book, attempting to satisfy at once the needs of diverse
audiences – mean that several types of discourse are interwoven in the
discussion, belonging to various levels of formality and not all enjoying the
same official status.

This book uses a number of devices to guide you through these different
components of the presentation. In particular, it relies on a system ofroad
signs, printed in the left margin, and notes, printed in the right margin, to
help you grasp right away the type and level of individual components.

Here is the set of road signs:

A road sign indicates the nature of some part of the text: comment,
preview, reminder, shortcut, syntax, validity, semantics, examples, caveat.
Usually the sign applies to the marked paragraph, although it sometimes
covers the following few paragraphs as well; if it is attached to the first
paragraph of a section, it applies to the entire section.

Let us take a look at the various road signs; this will also serve to explain
the presentation style.

CROSS-REFERENCES AND SHORTCUTS

Forward references are much less confusing if they are explicitly signaled.
All forward references are marked by a note in the right margin, preceded
by the symbol→ and indicating where to look for the final word on a
concept being used ahead of its full definition.

The above use of “construct” was a forward reference.

In many cases, it will be necessary to include a partial explanation of the
concept at the point of forward reference. ThePREVIEW road sign indicates
that this explanation is only temporary, although it suffices for the needs of
the discussion at this point.

Because this book is meant to be read by human beings with less than
unbounded memory, it also includesbackward references: pointers to the
place where a certain concept was originally introduced. Backward
references are given as right-margin notes preceded by

Signposts on
your way to
Eiffel wisdom
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Sometimes, a summary review of the concept is given at the point of
backward reference; the corresponding paragraph is then labeled by the
REMINDER road sign, indicating that the new explanation is only there to
refresh the reader’s memory, and that the official definition is the earlier
one.

The use of cross-references, backward and forward, is particularly
generous. To facilitate quick retrieval, most of these references include
page numbers, often in addition to section numbers. To avoid bothering
readers who follow the presentation sequentially, they are almost entirely
confined to the right margin; but they should prove invaluable to anyone
seeking to gain a thorough understanding of the concepts involved, with all
their intertwining.

The desire to make fast back and forth searches easier also explains why
the page number appears (in small print) even on the first page of a chapter
– favoring reader’s convenience over typographical tradition.
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Besides cross references, other notes will also appear occasionally in
the right margin; they are not part of the language definition, but give
auxiliary information, such as bibliographic references, usually pointing to
the detailed Eiffel bibliography of appendix ====

Another “directional” road sign is theSHORTCUT warning, which
accompanies a note indicating that some part of the discussion (usually an
entire section, or the remainder of a chapter) may be skipped at first
reading. This applies to finer aspects of the presentation, which will be of
interest to readers wishing to become acquainted with the details of Eiffel,
but are not essential to an overall understanding. Typically, such aspects
would have appeared in a reference manual but not in a user’s manual.

DESCRIBING A CONSTRUCT

The most important parts of the language description are of course the
specifications of individual language structures, orconstructs. Examples
of constructs are Class, Instruction, Expression, Identifier. For most
constructs, the presentation consists of the following sequence of elements,
each labeled by the corresponding road sign from the preceding figure.

PURPOSE: a brief explanation of the construct’s role.

EXAMPLES: one or more typical uses. Some of the examples were
designed specifically for this presentation; many others come, sometimes
in simplified form, from the text of the Basic Eiffel Libraries, which form
an important body of carefully written and heavily exercised Eiffel
software.

TheEXAMPLES sign is the “interesting detail” pictogram of the Swedish
Recreation Standard.

SYNTAX: Specification of the textual form of software components, or
specimens, corresponding to each construct. Syntax is described through a
simple formalism.

==== starting on page ==== explains the syntax notation.

VALIDITY : Rules such as typing constraints, stating restrictions on
permissible specimens of the construct, not captured by the syntactical
specification alone.

The notion of validity is discussed in ==== and ==== starting on page
==== the role of validity codes, such asVIEX next to the road sign on the
figure, is explained on page====

SEMANTICS: Description of the meaning (that is to say, the run-time effect)
of the construct.
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For users as well as for implementors, distinguishing clearly between
syntax, constraints and semantics is essential to a good understanding of
the language. Every construct has a certain structure, is subject to some
limitations, and has a certain effect.

TheSYNTAX, VALIDITY andSEMANTICS paragraphs constitute the core of the
official language definition. They are complemented in this role by
paragraphs labeledDEFINITION, which introduce terms to be used thereafter
with a precise meaning.

COMMENTS, WARNINGS AND ADVICE

Additional paragraphs, liberally interspersed in the rest of the discussion,
serve explanatory purposes and are outside of the language definition
proper:

• COMMENT: Time to stop for some explanations, discussions and informal
addenda.

• METHODOLOGY: Advice on how to use individual constructs in the Eiffel
software development method. The road sign suggests the proper way
to go around an intersection — with apologies to readers from the
British Isles, Australia, Japan, Singapore etc.

• CAVEAT: Remarks alerting you to slippery road segments – possible
misunderstandings which could lead to mistakes or improper use of the
language.

• PREVIEW, REMINDER: As discussed above.

Of course, not every paragraph is labeled. Unlabeled paragraphs
generally fall under the “comment” category.

GRAPHICAL REPRESENTATIONS

For analysis and design discussions, for explaining software structures to
others, for exploring classes and systems with “browsers” and other
interactive tools, it is often useful to display information graphically.

The presentation of the most important language constructs includes a
description of associated graphical conventions, based on some results of
an effort directed by Jean-Marc Nerson to develop standardized pictorial
representations of Eiffel software components – classes with their client
and inheritance relations, features, assertions, notes etc. – in a simple and
immediately understandable visual form.

The notation is known as BON – Business Object Notation – and is
described in “Extending Eiffel Toward O-O Analysis and Design”. See the
reference in appendix ====
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These conventions are obviously not part of the language; they merely
assist software construction and understanding. The form presented here is
neither final nor complete; other publications will describe the notation in
detail.

THE CAKE AND ITS ICING

A more general question arises from the last observation: what then, among
the elements explained in this book,isofficially part of the Eiffel language?

From the preceding discussion, it is clear that some parts, such as the
paragraphs labeledSYNTAX, VALIDITY andSEMANTICS, definitely belong to the
cake – the actual definition of Eiffel as a language. In contrast, the
introductory overview of chapter ==== is only part of the icing, and so is
anything labeledCOMMENT, CAVEAT or METHODOLOGY in the subsequent
chapters.

This leaves some areas of uncertainty, especially around the Eiffel
libraries, which are looted regularly in parts B and C for illustrations of
language constructs, and provide most of the facilities described in part D:
universal features, arrays, strings, persistence, basic arithmetic, input and
output. (The classes of part D belong to the Kernel Library, containing
fundamental facilities; the classes providing construct examples,
sometimes in adapted or simplified form, are mostly from the Data
Structure, Graphics and Parsing libraries.)

Chapter ==== discusses the status of libraries. When reading about the
Kernel Library classes of part D, you may consider their interfaces – what
in Eiffel is called theirshort form , excluding implementation aspects – to
be part of the official description of Eiffel, although separate from the
language proper. This does not apply to the other libraries, whose class
extracts are used merely as examples.

See ==== starting on page ==== about the short form.

The decision to give an official status to the specification of some Kernel
Library classes is subject to discussion. An argument against it is that these
classes are not the only possible ones, and that their inclusion here might
be unfairly preventing others from coming up with a better notion of (say)
arrays. On closer look, however, several reasons suggest that one should
not be too shy about enforcing a standard here:

One of the major attractions of Eiffel is precisely the presence of a
standardized set of carefully designed libraries. It would be regrettable to
forsake such a benefit simply out of a concern for fairness to other potential
but as yet unproven solutions.

Most applications will need some of the Kernel Library classes selected
for this book.
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Only the interface is specified. This leaves room for multiple,
competing implementations.

Encouraging the use of a standard set of library classes is not the same
as claiming they are the last word. Improvements may be expected in the
future. Eiffel’s design makes it possible to cushion the effect of such
changes on systems using the classes affected, thanks to mechanisms such
as “obsolete” features and classes and, more generally, to the client-
supplier independence enforced by the language and the method.

See ==== beginning on page ==== on obsolete features.

As with the rest of the language, future decisions on these issues will
rest with others. As with the rest of the language, I have tried to lay the
ground for the work and to proceed as far as a single person could go.
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Draft 5.10, 25 August 2006 (Santa Barbara). Extracted from ongoing work on future
third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-2005.
Access restricted to purchasers of the first or second printing (Prentice Hall, 1991).
Do not reproduce or distribute.
PART I: INVITATION TO EIFFEL
This first part of the book presents Eiffel informally in short introductory chapter,An Eiffel
tutorial, Eiffel in a Nutshell, useful in particular if you are new to Eiffel and want to get a quick
appreciation of what it is all about.

Further introductory material appears in the appendices:

• Instead ofAn Eiffel tutorial you may prefer a longer presentation, which essentially covers
the entire language:An Eiffel tutorial, in appendixH, sufficient for advanced uses of Eiffel.

• You may also be interested in appendixE, which providesA brief history of Eiffel.

None of this material has any official reference status. Although you shouldn’t find any
discrepancy with the reference material of partII , it’s of course the latter which you should
follow if you have the impression of a contradiction.
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1

An Eiffel tutorial
1.1 OVERVIEW

Eiffel is a method and language for the efficient description and development of quality
systems.

As a language, Eiffel is more than a programming language. It covers not just
programming in the restricted sense of implementation but the whole spectrum of software
development:

• Analysis, modeling and specification, where Eiffel can be used as a purely descriptive tool
to analyze and document the structure and properties of complex systems (even non-
software systems).

• Design and architecture, where Eiffel can be used to build solid, flexible system structures.

• Implementation, where Eiffel provides practical software solutions with an efficiency
comparable to solutions based on such traditional approaches as C and Fortran.

• Maintenance, where Eiffel helps thanks to the architectural flexibility of the resulting
systems.

• Documentation, where Eiffel permits automatic generation of documentation, textual and
graphical, from the software itself, as a partial substitute for separately developed and
maintained software documentation.

Although the language is the most visible part, Eiffel is best viewed as amethod, which guides
system analysts and developers through the process of software construction. The Eiffel
method is focused on both productivity (the ability to produce systems on time and within
budget) and quality, with particular emphasis on the following quality factors:

This chapter presents a general description of Eiffel, assuming no prior
knowledge. Although all its elements are described in more detail in the
subsequent chapters, some readers may prefer to skip it; others, however,
may use it as a preparation for the rest of the material.

The reader in search of a quick overview (“Eiffel in a nutshell”) may turn
instead to section 7 of the ECMA Eiffel standard (pages5 to 24) which
provides a concise presentation of the language essentials.
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• Reliability: producing bug-free systems, which perform as expected.

• Reusability: making it possible to develop systems from prepackaged, high-quality
components, and to transform software elements into such reusable components for future
reuse.

• Extendibility: developing software that is trulysoft— easy to adapt to the inevitable and
frequent changes of requirements and other constraints.

• Portability: freeing developers from machine and operating system peculiarities, and
enabling them to produce software that will run on many different platforms.

• Maintainability: yielding software that is clear, readable, well structured, and easy to
continue enhancing and adapting.

1.2 GENERAL PROPERTIES

Here is an overview of the facilities supported by Eiffel:

• Completely object-orientedapproach. Eiffel is a full-fledged application of object
technology, not a “hybrid” of O-O and traditional concepts.

• External interfaces. Eiffel is a software composition tool and is easily interfaced with
software written in lower-level languages such as C, C++ and Java.

• Full lifecycle support. Eiffel is applicable throughout the development process, including
analysis, design, implementation and maintenance.

• Classesas the basic structuring tool. A class is the description of a set of run-time objects,
specified through the applicable operations and abstract properties. An Eiffel system is
made entirely of classes, serving as the only module mechanism.

• Consistent type system. Every type is based on a class, including basic types such as
integer, boolean, real, character, string, array.

• Design by Contract. Every system component can be accompanied by a precise
specification of its abstract properties, governing its internal operation and its interaction
with other components.

• Assertions. The method and notation support writing the logical properties of object states,
to express the terms of the contracts. These properties, known as assertions, can be
monitored at run-time for testing and quality assurance. They also serve as documentation
mechanism. Assertions include preconditions, postconditions, class invariants, loop
invariants, and are also used in “check instructions”.

• Exception handling. Abnormal conditions, such as unexpected operating system signals or
more generally a contract violation, can be caught and corrected.

• Information hiding. Each class author decides, for each feature, whether it is available to
all client classes, to specific clients only, or just for internal purposes.

• Self-documentation. The notation is so designed as to enable environment tools to produce
abstract views of classes and systems, textual or graphical, and suitable for reusers,
maintainers and client authors.

• Inheritance. One can define a class as extension or specialization of others.
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• Redefinition. An inherited feature (operation) can be given a different implementation or
signature.

• Explicit redefinition. Any feature redefinition must be explicitly stated.

• Subcontracting. Redefinition rules require new assertions to be compatible with inherited
ones.

• Deferred features and classes. It is possible for a feature, and the enclosing class, to be
specified — including with assertions — but not implemented. Deferred classes are also
known as abstract classes.

• Polymorphism. An entity (variable, argument etc.) can become attached to objects of many
different types.

• Dynamic binding. Calling a feature on an object always triggers the version of the feature
specifically adapted to that object, even in the presence of polymorphism and redefinition.

• Static typing. A compiler can check statically that all type combinations will be valid, so
that no run-time situation will occur in which an attempt will be made to apply an
inexistent feature to an object.

• Assignment attempt(“type narrowing”). It is possible to check at run time whether the type
of an object conforms to a certain expectation, for example if the object comes from a
database or a network.

• Multiple inheritance. A class can inherit from any number of others.

• Feature renaming. To remove name clashes under multiple inheritance, or to give locally
better names, a class can give a new name to an inherited feature.

• Repeated inheritance: sharing and replication. If, as a result of multiple inheritance, a
class inherits from another through two or more paths, the class author can specify, for
each repeatedly inherited feature, that it yields either one feature (sharing) or two
(replication).

• No ambiguity under repeated inheritance. Conflicting redefinitions under repeated
inheritance are resolved through a “selection” mechanism.

• Unconstrained genericity. A class can be parameterized, or “generic”, to describe
containers of objects of an arbitrary type.

• Constrained genericity. A generic class can be declared with a generic constraint, to
indicate that the corresponding types must satisfy some properties, such as the presence of
a particular operation.

• Garbage collection. The dynamic model is designed so that memory reclamation, in a
supporting environment, can be automatic rather than programmer-controlled.

• No-leak modular structure. All software is built out of classes, with only two inter-class
relations, client and inheritance.

• Once routines. A feature can be declared as “once”, so that it is executed only for its first
call, subsequently returning always the same result (if required). This serves as a
convenient initialization mechanism, and for shared objects. You may also specify “once”
to mean “once per thread” or “once per instance of the class”.
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• Standardized library. The Kernel Library, providing essential abstractions, is standardized
across implementations.

• Other libraries. Eiffel development is largely based on high-quality libraries covering
many common needs of software development, from general algorithms and data
structures to networking and databases.

It is also useful, as in any design, to list some of what isnot present in Eiffel. The approach
is indeed based on a small number of coherent concepts so as to remain easy to master. Eiffel
typically takes a few hours to a few days to learn, and users seldom need to return to the
reference manual once they have understood the basic concepts. In fact the description given
in the present chapter is, save for a few details, essentially complete. Part of this simplicity
results from the explicit decision to exclude a number of possible facilities:

• No global variables, which would break the modularity of systems and hamper
extendibility, reusability and reliability.

• No union types(or record type with variants), which force the explicit enumeration of all
variants; in contrast, inheritance is an open mechanism which permits the addition of
variants at any time without changing existing code.

• No in-class overloadingwhich, by assigning the same name to different features within a
single context, causes confusions, errors, and conflicts with object-oriented mechanisms
such as dynamic binding. (Dynamic binding itself is a powerful form of inter-class
overloading, without any of these dangers.)

• No goto instructionsor similar control structures (break, exit, multiple-exit loops) which
break the simplicity of the control flow and make it harder or impossible to reason about
the software (in particular through loop invariants and variants).

• No exceptions to the type rules. To be credible, a type system must not allow unchecked
“casts” converting from a type to another. (Safe cast-like operations are available through
assignment attempt.)

• No side-effect expression operators confusing computation and modification.

• No low-level pointers, no pointer arithmetic, a well-known source of bugs. (There is
however a typePOINTER, used for interfacing Eiffel with C and other languages.)

1.3 THE SOFTWARE PROCESS IN EIFFEL

Eiffel, as noted, supports the entire lifecycle. The underlying view of the system development
lifecycle is radically different not only from the traditional “Waterfall” model (implying a
sequence of discrete steps, such as analysis, global design, detailed design, implementation,
separated by major changes of method and notation) but also from its more recent variants
such as the spiral model or “rapid prototyping”, which remain predicated on a synchronous,
full-product process, and retain the gaps between successive steps.

Clearly, not everyone using Eiffel will follow to the letter the principles outlined below;
in fact, some very competent and successful Eiffel developers may disagree with some of
them and prefer a somewhat different process model. In the author’s mind, however, these
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principles fit best with the language and the rest of the method, even if practical developments
may fall short of applying their ideal form.

Clusters and the cluster model

Unlike earlier approaches, the Eiffel model assumes that the system is divided into a number
of subsystems orclusters. It keeps from the Waterfall a sequential approach to the
development of each cluster (without the gaps), but promotesconcurrent engineeringfor the
overall process, as suggested by the following picture:.

The Eiffel techniques developed below, in particular information hiding and Design by
Contract, make the concurrent engineering process possible by letting the clusters rely on
other clusters through clearly defined interfaces, strictly limiting the amount of knowledge
that must be acquired about a cluster to use it, and permitting separate testing. When the
inevitable surprises of a project happen, the project leader can take advantage of the model’s
flexibility, advancing or delaying various clusters and steps through dynamic reallocation of
resources.

Each of the individual cluster lifecycles is based on a continuous progression of activities,
from the more abstract to the more implementation-oriented:

This picture should be understood as describing a process of accretion (as with a
stalactite), where each stepsenrichesthe results of the previous one. Unlike traditional views,
which emphasize the multiplicity of software products — analysis document, global and
detailed design documents, program, maintenance reports… —, the principle is here to treat
the software as asingle product which will be repeatedly refined, extended and improved.
The Eiffel language supports this view by providing high-level notations that can be used
throughout the lifecycle, from the most general and software-independent activities of system
modeling to the most exacting details of implementation tuned for optimal run-time
performance.

Cluster 1

Cluster 2

Cluster n

PROJECT TIME

The cluster
model:
sequential and
concurrent
engineering

Individual
cluster
lifecycle
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These properties make Eiffel span the scope of both “object-oriented methods” (whereas
most such methods do not yield an executable result) and “programming languages” (whereas
most such languages are not suitable for design and analysis).

Seamlessness and reversibility

The preceding ideas define theseamless approachembodied by Eiffel. With seamlessness
goesreversibility : the ability to go back, even late in the process, to earlier stages. Because
the developers work on a single product, they can take advantages of bouts of late wisdom —
such as a great idea for adding a new function, discovered only at implementation time — and
integrate them in the product. Traditional approaches tend to discourage reversibility because
it is difficult to guarantee that the analysis and design will be updated with the late changes.
With the single-product principle, this is much easier to achieve.

Seamlessness and reversibility enhance extendibility by providing a direct mapping from
the structure of the solution to the structure of the problem description, making it much easier
to take care of customers’ change requests quickly and efficiently. They promote reliability,
by avoiding possible misunderstandings between customers’ and developers’ views. They are
obviously a major boost to maintainability. More generally, they yield a smooth, consistent
software process that is particular favorable to both quality and productivity.

Generalization and reuse

The latest part of the cluster lifecycles, Generalization, is unheard of in traditional models. It
is meant to prepare the results of a cluster for reuse across projects by looking for elements of
general applicability, and transform them for inclusion in libraries.

Of course not all companies using the method will be ready to include this phase in their
lifecycles. But those which do will see the reusability of their software greatly improved.

Generali-
zation

Implemen
tation

Design

Specification

V & V*

TIME *V&V: Validation and Verification
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Constant availability

Complementing the preceding principles is the idea that, in the cluster lifecycle, the
development team (under the responsibility of the project leader) should at all times maintain
acurrent working demowhich, although covering only a part of the final system, works well,
and can be demonstrated or — after a certain stage — shipped as an early release. It is not a
“prototype” in the sense of a mockup meant to be thrown away, but an initial iteration towards
the final product; the successive iterations will progress continuously towards until they
become that final product.

Compilation technology

The preceding goals benefit from the ability to check frequently that the current iteration is
correct and robust. Eiffel compiler writers have developed considerable effort to supporting
efficient compilation mechanisms, such as ISE’sMelting Ice Technology which ensures
immediate recompilation after a change. The recompilation time is a function of the size of
the changes, never of the system’s overall size. Even for a system of several thousand classes
and several hundred thousand lines, the time to get restarted after a change to a few classes is,
on a typical modern computer, a few seconds.

Such a “quick melt” (recompilation) will immediately catch (along with any syntax
errors) the type errors — often the symptoms of conceptual errors that, if left undetected,
could cause grave damage later in the process or even during operation. Once the type errors
have been corrected, the developers should start testing the new functionalities, relying on the
power ofassertions— explained in1.8 — to kill the bugs while they are still larvae. Such
extensive unit and system testing, constantly interleaved with development, plays an
important part in making sure that the “current demo” is trustworthy, and will eventually yield
a correct and robust product.

Quality and functionality

Throughout the process, the method suggests maintaining a constantquality level: apply all
the style rules, put in all the assertions, handle erroneous cases (rather than the all too common
practice of thinking that one will “make the product robust” later on), enforce the proper
architecture. This applies to all the quality factors except possibly reusability (since one may
not know ahead of time how best to generalize a component, and trying to make everything
fully general may conflict with solving the specific problem at hand quickly). All that varies
is functionality : as the project progresses and clusters come into place, more and more of the
final product’s intended coverage becomes available. The only question — for example to
answer the more practical one “Can we ship something yet?” — is “Do we cover enough?”,
never “Is it good enough?” (as in “Will it not crash?”).

Of course not everyone using Eiffel can, any more than in another approach, guarantee
that the ideal just presented will always hold. But it is the theoretical scheme to which the
method tends. It explains Eiffel’s emphasis on getting everything right: the grandiose and the
mundane, the structure and the details. Regarding the details, the Eiffel books cited in the
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bibliography include many rules, some petty at first sight, about such low-level aspects as the
choice of names for classes and features (including their grammatical categories), the
indentation of software texts, the style for comments (including the presence or absence of a
final period), the use of spaces. Applying these rules does not, of course, guarantee quality;
but they are part of a quality-oriented process, along with the more ambitious principles of
design. In addition they are particularly important for the construction of quality libraries, one
of the central goals of Eiffel.

Whenever they are compatible with the space constraints, the present chapter and the rest
of this book apply these rules to their Eiffel examples.

1.4 HELLO WORLD

When discovering any approach to software construction, however ambitious its goals, it is
reassuring to see first a small example of the big picture — a complete program to print the
famous “Hello World” string. Here is how to perform this fascinating task in the Eiffel
notation.

You write a classHELLO with a single procedure, saymake, also serving as creation
procedure. Here is a minimal version of the class:

In practice, however, the recommended Eiffel style rules suggest a better documented version:

The two versions perform identically; the following comments will cover the more complete
second one.

Thenote clause does not affect execution semantics; use it to associate annotations with
the class, so that browsers and other indexing and retrieval tools can help users in search of

classHELLOcreation makefeature
make

do io.put_string("Hello World%N") end
end

note
description: "Root for trivial system printing a message"

classHELLOcreation
make

feature
make

-- Print a simple message.
do

io.put_string ("Hello World")
io.put_new_line

end
end
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reusable components satisfying certain properties. Here there is a single annotation entry,
description.

The name of the class isHELLO. Any class may contain “features”;HELLOhas just one,
calledmake. Thecreation clause indicates thatmakeis a “creation procedure”, that is to say
an operation to be executed at class instantiation time. The class could have any number of
creation procedures.

The definition of that creation procedure,make, appears in thefeature clause. Again there
can be any number of such clauses (to separate features into logical categories), and each one
of them can contain any number of feature declarations. Here we have only one.

The line starting with-- (two dash signs) is a comment; more precisely it is a “header
comment”, which style rules invite software developers to write for every such feature, just
after theis. (As will be seen in“The shortform of aclass”, page40, environment tools know
about this convention and use it to include the header comment in the automatically generated
class documentation.)

The body of the feature is introduced by thedokeyword and terminated byend. It consists
of two output instructions. They both useio, a generally available reference to an object that
provides access to standard input and output mechanisms; the notationio.f, for some feature
f of the corresponding library class (STD_FILES), means “applyf to io”. Here we use two
such features:

• put_string outputs a string, passed as argument, here"Hello World".

• put_new_line terminates the line.

Rather than using a call toput_new_line, the first version simply integrates a new-line
character, denoted as%N, at the end of the string. Either technique is acceptable.

To execute the software and printHello World, you need to construct a small “system” (the
term preferred to “program” in Eiffel, to emphasize the idea of building software by assembly
of reusable components) and designate classHELLO as the system’sroot class, with make
being specified as the system’sroot procedure. Eiffel environments provide simple ways to
construct anAce file that specifies the root class, the root creation procedure, and other
compilation options. In ISE Eiffel, for example, an interactive tool lets you enter the names
of these two elements, and builds the Ace file for you, with all compilation options initialized
to the most common defaults. You then click the “Melt” (quick compile) button to compile
the system; after a few seconds, you are ready to click the “Run” button, which will cause
execution of the system. This outputsHello Worldon the appropriate medium: a Console on
Windows or OS/2, the starting window on Unix or VMS.

1.5 THE STATIC PICTURE: SYSTEM ORGANIZATION

We now look at the overall organization of Eiffel software.
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Systems

An Eiffel system is a collection of classes, one of which is designated as the root class. One
of the features of the root class, which must be one of its creation procedures, is designated
as the root procedure.

To execute such a system is to create an instance of the root class (an object created
according to the class description) and to execute the root procedure. In anything more
significant than “Hello World” systems, this will create new objects and apply features to
them, in turn triggering further creations and feature calls.

For the system to make sense, it must contains all the classes on which the rootdepends
directly or indirectly. A classB depends on a classA if it is either aclient of A, that is to say
uses objects of typeA, or anheir of A, that is to say extends or specializesA. (These two
relations, client and inheritance, are described in more detail below.)

The rest of section1.5 will describe the nuts and bolts of an Eiffel system and of its
execution.

Classes

The notion of class is central to the Eiffel approach. A class is the description of a type of run-
time data structures (objects), characterized by common operations (features) and properties.
Examples of classes include:

• In a banking system, a classACCOUNTmay have features such asdeposit, adding a
certain amount to an account,all_deposits, yielding the list of deposits since the account’s
opening, andbalance, yielding the current balance, with properties stating thatdeposit
must add an element to theall_depositslist and updatebalanceby adding the sum
deposited, and that the current value ofbalancemust be consistent with the lists of deposits
and withdrawals.

• A classCOMMANDin an interactive system of any kind may have features such asexecute
and undo, as well as a featureundoablewhich indicates whether a command can be
undone, with the property thatundo is only applicable ifundoable yields the value true.

• A classLINKED_LISTmay have features such asput, which adds an element to a list and
countyielding the number of elements in the list, with properties stating thatput increases
count by one and thatcount is always non-negative.

We may characterize the first of these examples as an analysis class, directly modeling
objects from the application domain; the second one as a design class, describing a high-level
solution; and the third as an implementation class, reused whenever possible from a library
such as EiffelBase. In Eiffel, however, there is no strict distinction between these categories;
it is part of the approach’s seamlessness that the same notion of class, and the associated
concepts, may be used at all levels of the software development process.
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Class relations

Two relations can exist between classes:

• You can define a classC as aclient of a classA to enable the features ofC to rely on objects
of typeA.

• You may define a classB as anheir of a classA to provideB with all the features and
properties ofA, letting B add its own features and properties and modify some of the
inherited features if appropriate.

If C is a client ofA, A is a supplier of C. If B is an heir ofA, A is a parent of B. A
descendantof A is eitherA itself or, recursively, a descendant of an heir ofA; in more
informal terms a descendant is a direct or indirect heir, or the class itself. To excludeA itself
we talk of proper descendant. In the reverse direction the terms areancestorandproper
ancestor.

The client relation can be cyclic; an example involving a cycle would be classesPERSON
andHOUSE, modeling the corresponding informal everyday “object” types and expressing
the properties that every person has a home and every home has an architect. The inheritance
(heir) relation may not include any cycle.

In modeling terms, client roughly represents the relation “has” and heir roughly represents
“is”. For example we may use Eiffel classes to model a certain system and express that every
child has a birth date (client relation) andis a person (inheritance).

Distinctive of Eiffel is the rule that classes can only be connected through these two
relations. This excludes the behind-the-scenes dependencies often found in other approaches,
such as the use of global variables, which jeopardize the modularity of a system. Only through
a strict policy of limited and explicit inter-class relations can we achieve the goals of
reusability and extendibility.
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The global inheritance structure

If you write an Eiffel class, it does not come into a vacuum but fits in a preordained structure,
shown in the following figure and involving two library classes:ANY andNONE.

Any class that does not explicitly inherit from another is considered to inherit fromANY,
which introduces a number of general-purpose features useful everywhere; examples include
copying, cloning and equality testing operations (page26) and default input-output
mechanisms.

NONE is a fictitious class, which is considered to be an heir of any class that has no
explicit heir. Since inheritance has no cycles,NONEcannot have proper descendants. This
makes it useful, as we will see, to specify non-exported features, and to denote the type of void
values.

Clusters

Classes are the only form of module in Eiffel. As will be explained in more detail, they also
provide the basis for the only form of type. This module-type identification is at the heart of
object technology and yields the fundamental simplicity of the Eiffel method.

Efforts to introduce a higher-level notion of module above classes are misguided, as they
introduce a whole new set of issues (name space, name visibility, information hiding, separate
compilation, module inclusion) to which the solutions would clash with the class-level
techniques. This would also hamper reusability (by making it harder to reuse a class by itself)
and extendibility.

ANY

NONE

All developer-
written classes…

Global
inheritance
structure
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There is a need, however, for anorganizationalconcept: cluster. A cluster is a group of
related classes. The cluster is a property of the method, enabling managers to organize the
development into teams, but it does not require a specific Eiffel language construct. As we
have already seen (section1.3) it also plays a central role in the lifecycle model.

External software

The subsequent sections will show how to write Eiffel classes with their features. In an Eiffel
system, however, not everything has to be written in Eiffel: some features may beexternal,
coming from external languages such as C, C++, Java, Fortran or others. For example a
feature declaration may appear (in lieu of the forms seen later in this chapter) as

to indicate that it is actually an encapsulation of a C function whose original name is_ fstat
(the alias clause is optional, but here it is needed because the C name, starting with an
underscore, is not valid as an Eiffel identifier).

Similar syntax exists in several Eiffel compilers to interface with C++ classes. ISE Eiffel
includes a tool calledLegacy++ which will automatically produce, from a C++ class, an
Eiffel class that encapsulates its facilities, making them available to the rest of the Eiffel
software asbona fideEiffel features.

These mechanisms illustrate one of the roles of Eiffel: as an system architecturing and
software composition tool, used at the highest level to produce systems with robust, flexible
structures ready for extendibility, reusability and maintainability. In these structures not
everything must be written in the Eiffel language: existing software elements and library
components can play their part too, the structuring capabilities of Eiffel (classes, information
hiding, inheritance, clusters and other techniques seen in this chapter) serving as the overall
wrapping mechanism.

1.6 THE DYNAMIC STRUCTURE: EXECUTION MODEL

A system with a certain static structure describes a set of possible executions. The run-time
model governs the structure of the data (objects) created during such executions.

The properties of the run-time model are not just of interest to implementers; they also
involve concepts directly relevant to the needs of system modelers and analysts at the most
abstract levels.

file_status( filedesc: INTEGER): INTEGER
-- Status indicator forfiledesc

external
"C" alias "_fstat"

end
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Objects, fields, values and references

A class was defined as the static description of a a type of run-time data structures. The data
structures described by a class are calledinstancesof the class, which in turn is called their
generating class(or just “generator”). An instance of ACCOUNT is a data structure
representing a bank account; an instance ofLINKED_LISTis a data structure representing a
linked list.

An object, as may be created during the execution of a system, is an instance of some class
of the system.

Classes and objects belong to different worlds: a class is an element of the software text;
an object is a data structure created during execution. Although is possible to define a class
whose instances represent classes (as classE_CLASSin the ISE libraries, used to access
properties of classes at run time), this does not eliminate the distinction between a static,
compile-time notion, class, and a dynamic, run-time notion, object.

An object is either an atomic object (boolean, character, integer, real) or a composite
object made of a number offields, represented by adjacent rectangles on the conventional run-
time diagrams:

Each field is avalue. A value can be either an object or an object reference:

• When a field is an object, it will in most cases be an atomic object, as on the figure where
the first field from the top is an integer and the third a character. But a field can also be a
composite object, in which case it is called asubobject.

• A reference is either void or uniquely identifies an object, to which it is said to be
attached. In the preceding the second field from the top is a reference — attached in this
case, as represented by the arrow, to the enclosing object itself. The bottom field is a void
reference.

Features

A feature, as noted, is an operation available on instances of a class. A feature can be either
anattribute or aroutine. This classification, which can be followed by starting from the right
on the figure above, is based on implementation considerations:
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• An attribute is a feature implemented through memory: it describes a field that will be
found in all instances of the class. For example classACCOUNTmay have an attribute
balance; then all instances of the class will have a corresponding field containing each
account’s current balance.

• A routine describes a computation applicable to all instances of the class.ACCOUNTmay
have a routinewithdraw.

Routines are further classified intofunctions, which will return a result, andprocedures,
which will not. Routinewithdraw will be a procedure; an example of function may be
highest_deposit, which returns the highest deposit made so far to the account.

From the viewpoint of classes relying on a certain class (itsclients), the more relevant
classification is the one coming from the left on the preceding figure:

• Commands have no result, and can modify an object. They can only be procedures.

• Querieshave a result: they return information about an object. They can be implemented
as either attributes (by reserving space for the corresponding information in each instance
of the class, a memory-based solution) or functions (a computation-based solution). An
attribute is only possible for a query without argument, such asbalance; a query with
arguments, such asbalance_on(d), returning the balance at dated, can only be a function.

From the outside, there is no difference between a query implemented as an attribute and
one implemented as a function: to obtain the balance of an accounta, you will always write
a.balance.

In the implementation suggested above,a is an attribute, so that the notation denotes an
access to the corresponding object field. But it is also possible to implementa as a function,

Feature

Command
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Feature

Routine

Attribute
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Procedure
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No
result
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whose algorithm will explore the lists of deposits and withdrawals and compute their
accumulated value. To the clients of the class, and in the official class documentation as
produced by the environment tools, the difference is not visible.

This principle ofUniform Accesssupports Eiffel’s goals of extendibility, reusability and
maintainability: you can change the implementation without affecting clients; and you can
reuse a class without having to know the details of its features’ implementations.

A simple class

The following simple class text illustrates the preceding concepts

note
description: "Simple bank accounts"

class
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER

-- Number of deposits made since opening
do

if all_deposits/= Void then
Result:= all_deposits.count

end
end

feature -- Element change
deposit(sum: INTEGER)

-- Add sum to account.
do

if all_deposits= Void then
create all_deposits

end
all_deposits.extend(sum)
balance:= balance + sum

end
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(The{ NONE} qualifier and theinvariant clause, used here to make the example closer to
a real class, will be explained shortly.DEPOSIT_LISTrefers to another class, which can be
written separately using library classes.)

The category to which each feature belong is easy to deduce from its syntactic appearance.
Here onlydepositanddeposit_count, which include ado … clause, are routines;balanceand
all_deposits, which are simply declared with a type, are attributes. Note that even for
attributes it is recommended to have a header comment.

Routinedeposit_countis declared as returning a result (of typeINTEGER); so it is a
function. Routinedeposit has no such result and hence is a procedure.

Creating and initializing objects

Classes, as noted, are a static notion. Objects appear at run time; they are created explicitly.
The instruction that creates an object of typeACCOUNT and attaches it tox is written

assuming thatx has been declared of typeACCOUNT. Such an instruction must be in a routine
of some class — the only place where instructions can appear — and its effect at run time will
be threefold: create a new object of typeACCOUNT; initialize its fields to default values; and
attach the value ofx to it. Here the object will have two fields corresponding to the two
attributes of the generating class: an integer forbalance, which will be initialized to 0, and a
reference forall_deposits, which will be initialized to a void reference:

feature { NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.
invariant

consistent_balance:
(all_deposits/= Void) implies (balance= all_deposits.total)
zero_if_no_deposits:

(all_deposits= Void) implies (balance= 0)
end

create x

0balance

all_deposits

(ACCOUNT)

Instance with
fields
initialized to
defaults
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The default initialization values are specified for all possible types:

It is possible to override the initialization values by providing — as in the earlier example
of class HELLO — one or more creation procedures. For example we might change
ACCOUNT to make sure that every account is created with an initial deposit:

The newly addedcreation clause will list one or more (here just one) procedures of the
class. In this case the original formcreatex is not valid any more for creating an instance of
ACCOUNT1; a creation instruction must be of a form such as

createx.make(2000)

known as a creation call. Such a creation call will have the same effect as the original form
(creation, initialization, attachment tox) followed by the effect of calling the selected creation
procedure, which here will calldeposit with the given argument.

Note that in this example all thatmakedoes is to calldeposit. So an alternative to
introducing a new proceduremakewould have been simply to introduce a creation clause of

Type Default value

INTEGER, REAL Zero

BOOLEAN False

CHARACTER Null

Reference types (such asACCOUNT
andDEPOSIT_LIST)

Void reference

Composite expanded types (see next) Same rules, applied recursively to all fields

note
description: "Simple bank accounts, initialized with a first deposit"

class
ACCOUNT1

creation
make

feature -- Initialization
make(sum: INTEGER)

-- Initialize account withsum.
do

deposit(sum)
end

… The rest of the class as forACCOUNT…
end
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the form creation deposit, elevatingdeposit to the status of creation procedure. Then a
creation call would be of the formcreatex.deposit(2000).

Entities

The example assumedx declared of typeACCOUNT(or ACCOUNT1). Such anx is an
example of entity, a notion generalizing the well-known concept of variable. An entity is a
name that appears in a class text to represent possible run-time values (a value being, as
defined earlier, an object or a reference). An entity is one of the following:

• An attribute of the enclosing class, such asbalance andall_deposits.

• A formal argument of a routine, such assum for deposit andmake.

• A local Variable declared for the needs of a routine.

• The special entityResult in a function.

The third case, local variables, arises when a routine needs some auxiliary values for its
computation. Here is an example of the syntax:

This example is a variant ofdeposit for which we assume that the elements of a
DEPOSIT_LISTsuch asall_depositsare no longer just integers, but objects, instances of a
new class,AMOUNT. Such an object will contain an integer value, but possibly other
information as well. So for the purpose of proceduredepositwe create an instance of
AMOUNT and insert it, using procedureextend, into the list all_deposits. The object is
identified through the local Variablenew, which is only needed within each execution of the
routine (as opposed to an attribute, which yields an object field that will remain in existence
for as long as the object).

deposit(sum: INTEGER)
-- Add sum to account.

local
new: AMOUNT

do
create new.make(sum)
all_deposits.extend(new)
balance:= balance + sum

end
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The last case of entity,Result, serves to denote, within the body of a function, the final
result to be returned by that function. This was illustrated by the functiondeposits_count,
which read

The value returned by any call will be the value of the expressionall_deposits.count(to
be explained in detail shortly) for that call, unlessall_depositshas valueVoid, denoting a void
reference (/= is “not equal”).

The default initialization rules seen earlier for attributes (see the table on page20) also
serve to initialize all local variables andResulton entry to a routine. So in the last example, if
all_depositsis void (as in the case on initialization with the class as given so far),Resultkeeps
its default value of 0, which will be returned as the result of the function.

Calls

Apart from object creation, the basic computational mechanism, in the object-oriented style
of computation represented by Eiffel, is feature call. In its basic form, it appears as

wheretarget is an entity (it can more generally be an expression),featureis a feature name,
and there may be zero or moreargumentexpressions. In the absence of anyargumentthe part
in parentheses should be removed.

We have already seen such calls. If thefeature denotes a procedure, the call is an
instruction, as in

If featuredenotes a query (function or attribute), the call is an expression, as in the right-
hand side of

The principle of Uniform Access (page18) implies that this form is the same for an
attribute and for a function without arguments. (The feature used in this example,countfrom
classDEPOSIT_LIST, could indeed be implemented in either of these two ways: we can keep
acountfield in each list, updating it for each insertion and removal; or we can computecount,
whenever requested, by traversing the list to count the number of elements.)

deposit_count: INTEGER
-- Number of deposits made since opening (provisional version)
if all_deposits/= Void then

Result:= all_deposits.count
end

target.feature(argument1, …)

all_deposits.extend(new)

Result:= all_deposits.count
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In the case of a routine with arguments — procedure or function — the routine will be
declared, in its class, as

meaning that, at the time of each call, the value of each formal will be set to the corresponding
actual (formal1to argument1and so on). In the routine body, it is not permitted to change the
value of a formal argument, although it is possible to change the value of an attached object
through a procedure call such asformal1.some_ procedure(…).

Infix and prefix notation

Basic types such asINTEGERare, as noted, part of Eiffel’s uniform type system, and so are
declared as classes (part of the Kernel Library).INTEGER, for example, is characterized by
the features describing integer operations: plus, minus, times, division, less than, and so on.

With the dot notation seen so far, this would imply that simple arithmetic operations
would have to be written with a syntax such asi.plus(j) instead of the usuali + j . This would
be awkward. Infix and prefix features solve the problem, reconciling the object-oriented view
of computation with common notational practices of mathematics. The addition function is
declared in classINTEGER as

Such a feature has all the properties and prerogatives of a normal “identifier” feature,
except for the form of the calls, which is infix, as ini + j , rather than using dot notation. An
infix feature must be a function, and take exactly one argument. Similarly, a function can be
declared asnegatedalias "–", with no argument, permitting calls of the form–3 rather than
(3).negated.

Predefined library classes covering basic types such asINTEGER, CHARACTER,
BOOLEAN, REALare known to the Eiffel compiler, so that a call of the formi + j , although
conceptually equivalent to a routine call, can be processed just as efficiently as the
corresponding arithmetic expression in an ordinary programming language. This brings the
best of both worlds: conceptual simplicity, enabling Eiffel developers, when they want to, to
think of integers and the like as objects; and efficiency as good as in lower-level approaches.

Infix and prefix features can be used in any class, not just predefined classes for basic
types. For example a graphics class could use the nameplus alias "|–|" for a function
computing the distance between two points, to be used in expressions such aspoint1 |–|
point2.

feature ( formal1: TYPE1; …)
do … end

plusalias "+" (other: INTEGER): INTEGER
do … end
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Type declaration

Every entity in Eiffel is declared as being of a certain type, using the syntax already
encountered in the above examples:

entity_name: TYPE_NAME

This applies to attributes, formal arguments of routines and local variables. The result type
is also declared for a function, as in the earlier example

deposit_count: INTEGERis …

Here the type also serves as the type implicitly declared forResultin the function’s body.

What is a type? With the elements seen so far, every type is aclass. INTEGER, used in the
declaration ofdeposits_count, is, as we have seen, a library class; and the declaration
all_deposits: DEPOSIT_LIST assumes the existence of a classDEPOSIT_LIST.

Three mechanisms introduced below — expanded types (page24), genericity (page32)
and anchored declarations (page70)— will generalize the notion of type slightly. But they do
not change the fundamental property thatevery type is based on a class, called the type’s
base class. In the examples seen so far, each typeis a class, serving as its own base class. An
instance of a classC is also called an “object of typeC ”.

Type categories

It was noted above that a value is either an object or a reference. This corresponds to two kinds
of type: reference types and expanded types.

If a class is declared as just

classCLASS_NAME…

it defines a reference type. The entities declared of that type will denote references. So in the
declaration

x: ACCOUNT

the possible run-time values forx are references, which will be either void or attached to
instances of classACCOUNT.
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Instead ofclass, however, you can use the double keywordexpanded class, as in the
library class definition

In this case the value of an entity declared asn: INTEGERis not a reference to an object,
but the object itself — in this case an atomic object, an integer value.

Note that the value of an entity of expanded type can never be void; only a reference can.
Extending the earlier terminology, an expanded entity is alwaysattached toan object, atomic
(as in the case ofn: INTEGER) or composite (as inx: EC for some expanded classEC).

Expanded declarations make it possible to construct composite objects with subobjects,
as in the following abbreviated class declaration (Notes clause and routines omitted):

The following illustration shows the structure of a typical instance ofCAR:

This example also illustrates that the distinction between expanded and reference types is
important not just for system implementation purposes but for high-level system modeling as
well. To understand the conceptual distinction, note that many cars will share the same
originating_plant, but anenginebelongs to just one car. References represent the modeling

note
description: "Integer values"

expanded class
INTEGER

feature -- Basic operations
plusalias "+" (other: INTEGER): INTEGER

do … end
… Other feature declarations…

end

class CARfeature
engine: ENGINE
originating_plant: PLANT

end

(CAR)

(ENGINE)

originating_plant

engine (PLANT)
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relation “knows about”; subobjects, as permitted by expanded types, represent the relation
“has part”, also known as aggregation. The key difference is that sharing is possible in the
former case but not in the latter.

Basic operations

The following basic operations are available on entities and expressions.

Assignment uses the symbol:=. The assignment instruction

updates the value ofx to be the same as that ofy. This means that:

• For entities of reference types, the value ofx will be a void reference if the value ofy is
void, and otherwisex will be attached to the same object OBJ2 asy:

• For entities of expanded types, the values are objects; the object attached tox will be
overwritten with the contents of the object attached toy. In the case of atomic objects, as
in n := 3 with the declarationn: INTEGER, this has the expected effect of assigning ton
the integer value3; in the case of composite objects, this overwrites the fields forx, one by
one, with the correspondingy fields.

To copy an object, usex.copy (y) which assumes that both x and y are non-void, and
copies the contents ofy’s attached object onto those ofx’s. Note that for expanded entities the
effect is the same as that the of the assignmentx := y.

A variant of thecopy operation isclone. The expressionclone (y) produces a newly
created object, initialized with a copy of the object attached toy, or a void value ify itself is
void. For a reference type (the only interesting case) the returned result for non-voidy is a
reference to the new object. In other wordsclone can be viewed as a function that performs

x := y

create Result
Result.copy(y)

Composite
object with
reference and
subobject

$x
Before

After

OBJ1

OBJ2

y

Effect of
reference
reattachment
x := y
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So in the assignmentx := clone(y), assuming both entities of reference types andy not
void, will attach x to a new object identical to y’s attached object, as opposed to the
assignmentx := y which attachesx to thesame object asy.

To determine whether two values are equal, use the expressionx = y. (The expressionx /
= y will yield true if they arenot equal.) For references, the equality comparison will yield
true if the values are either both void or both attached to the same object; this is the case in
the last figure in the stateafter the assignment, but not before.

As with assignment, there is also a variant that works on objects rather than references:
x.is_equal(y) will return true whenx andy are both non-void and attached to field-by-field
identical objects. This can be true even whenx = y is not, for example, in the figure,before
the assignment, if the two objects shown are field-by-field equal.

A more general variant ofis_equalis used under the formequal (x, y). This is always
defined, even ifx is void, returning true wheneveris_equalwould but also ifx andy are both
void. (In contrast,x.is_equal(y) is not defined for voidx and would, if evaluated, yield an
exception as explained in“Exception handling”,  page 42 below.)

The predefined featureVoiddenotes a void reference. So you can makex void through the
assignmentx := Void, and test whether it is void throughif x = Void then … The type ofVoid
is NONE, the “least interesting” class (as seen in“Theglobalinheritancestructure”,page14).

The features introduced in this section —copy, clone, is_equal, equal, Void — are not
language constructs but features defined in the highest-level classANY(page14) and hence
available to all classes.Void is of typeNONE. Using the redefinition mechanisms to be seen
in the discussion of inheritance, a class can redefinecopyand is_equalto describe specific
notions of copy and equality. (The assertions will ensure that the two remain compatible: after
x.copy(y), the propertyx.is_equal(y) must always be true.) Redefiningcopyautomatically
causescloneto follow, and redefiningis_equalautomatically causesequalto follow. Void too
should not be redefined. To avoid any mistake these features are declared as “frozen” — not
redefinable. To guarantee the original, non-redefined semantics you may use the frozen
variantsstandard_copy, standard_clone, standard_equal and so on.

Deep operations and persistence

Featurecloneonly duplicates one object. If some of the fields of that object are references to
other objects, the references themselves will be copied, not those other objects.

It is useful, in some cases, to duplicate not just one object but an entire object structure.
The expressiondeep_clone(y) achieves this goal: assuming non-voidy, it will produce a
duplicate not just of the object attached toy but of the entire object structure starting at that
object. The mechanism of course respects all the possible details of that structure, such as
cyclic reference chains. As earlier features,deep_clone comes from classANY.

A related mechanism provides a powerfulpersistence facility. A call of the form

x.store(Some_file_or_network_connection)
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(using the conventions of ISE Eiffel) will store a copy of the entire object structure starting at
x, under a suitable representation. Likedeep_clone, procedurestorewill follow all references
to the end and maintain the properties of the structure. The functionretrievedcan then be used
— in the same system, or another — to recreate the structure from the stored version.

As the name suggests,Some_file_or_network_connectioncan be an external medium of
various possible kinds, not just a file but possibly a database or network. ISE’s EiffelNet
client-server library indeed uses thestore-retrievedmechanism to exchange object structures
over a network, between compatible or different machine architectures, for example a
Windows client and a Unix server.

Memory management

Reference reattachmentsx := y of the form illustrated by the figure on page26 can cause
objects to become unreachable. This is the case for the object identified as OBJ2 on that figure
(the object to whichx was attached before the assignment) if no other reference was attached
to it.

In all but toy systems, it is essential to reclaim the memory that has been allocated for such
objects; otherwise memory usage could grow forever, as a result of creation instructions
createx … and calls tocloneand the like, leading to thrashing and eventually to catastrophic
termination.

Unlike some other approaches, the Eiffel method suggests that the task of detecting and
reclaiming such unused object space should be handled by an automatic mechanism (part of
the Eiffel run-time environment), not manually by developers (through calls to procedures
such as Pascal’sdispose and C/C++’sfree). The arguments for this view are:

• Convenience: handling memory reclamation manually can add enormous complication to
the software, especially when — as is often the case in object-oriented development — the
system manipulates complex run-time data structures with many links and cycles.

• Reliability : memory management errors, such as the incorrect reclamation of an object
that is still referenced by a distant part of the structure, are a notorious source of
particularly dangerous and hard-to-correct bugs.

Eiffel environments have developed sophisticatedgarbage collectorswhich efficiently
handle the automatic reclamation process, while causing no visible degradation of a system’s
performance and response time.

Reliance on automatic garbage collection is a key part of the Eiffel method’s contribution
to both ease of development and software reliability.
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Information hiding and the call rule

The basic form of computation, it has been noted, is a call of the formtarget.feature(…).
This is only meaningful iffeaturedenotes a feature of the generating class of the object to
which target (assumed to be non-void) is attached. The precise rule is the following:

The first condition simply expresses that iftarget has been declared astarget: A then
featuremust be the name of one of the features ofA. The second condition reflects Eiffel’s
application of the principles of information hiding. Afeature clause, introducing one or more
feature declarations, may not just appear as

but also include a list of classes in braces,feature { A, B, …}, as was illustrated for
ACCOUNT:

This form indicates that the features appearing in that clause are onlyavailable — in the
sense of available for calls, as used in the Feature Call rule — to the classes listed. In the
example featureall_depositsis only available toNONE. Because of the global inheritance
structure (page14) this means it is in fact available to no useful client at all, and is equivalent
in practice tofeature { } with an empty class list, but the form listingNONEexplicitly is more
visible and hence preferred.

With this specification a class text including the declarationacc: ACCOUNTand a call of
the form

violates the Feature Call rule and will be rejected by the Eiffel compiler.

Besides fully exported features (introduced byfeature … without further qualification)
and fully secret ones (feature { } or feature { NONE}), it is possible to export features
selectively to some specified classes, using the specificationfeature {A, B, …} for arbitrary
classesA, B, … By enabling a group of related classes to provide each other with privileged

Feature Call rule

A call of the formtarget.feature(…) appearing in a classC is only valid if fea-
ture is a feature of the base class oftarget’s type, and is available toC.

feature -- Comment identifying the feature category
… Feature declaration…
… Feature declaration…
…

feature { NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.

acc.all_deposits



§1.630
access, this Selective Export mechanism is one of the techniques that avoids the much more
heavy solution of using meta-modules above the class level (see“Clusters”,  page 14).

Exporting features selectively to a set of classesA, B, … also makes them available to the
descendants of these classes. So a feature clause beginning with justfeature is equivalent to
one starting withfeature { ANY}.

These rules enable successive feature clauses to specify exports to different clients. In
addition, the recommended style, illustrated in the examples of this chapter, suggests writing
separate feature clauses — regardless of their use for specifying export privileges — to group
features into separate categories. Typical categories, appearing in the order given, are:
Initialization (for creation procedures); Access (for general queries); Status report; Status
setting; Element change; Implementation (for selectively exported or secret features).

The Feature Call rule is the first of the rules that make Eiffel astatically typed approach,
where the applicability of operations to objects is verified at compile time rather than during
execution. Static typing is one of the principal components of Eiffel’s support for reliability
in software development.

Execution scenario

The preceding elements make it possible to understand the overall scheme of an Eiffel
system’s execution.

At any time during the execution of a system, one object is thecurrent object of the
execution, and one of the routines of the system, thecurrent routine , is being executed, with
the current object as its target. (We will see below how the current object and current routine
are determined.) The text of a class, in particular its routines, make constant implicit
references to the current object. For example in the instruction

appearing in the body of proceduredepositof classACCOUNT, the name of the attribute
balance, in both occurrences, denotes thebalancefield of the current object, assumed to be
an instance ofACCOUNT. In the same way, the procedure body that we have used for the
creation proceduremake in theACCOUNT1variant

contains a call to the proceduredeposit. Contrary to earlier calls written in dot notation as
target.feature(…), the call todeposithas no explicit target; this means its target is the current
object, an instance ofACCOUNT1. Such a call is said to beunqualified; those using dot
notations arequalified calls.

balance:= balance + sum

make(sum: INTEGER)
-- Initialize account withsum.

do
deposit(sum)

end
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Although most uses of the current object are implicit, a class may need to name it
explicitly. The predefined expressionCurrentis available for that purpose. A typical use, in a
routinemerge(other: ACCOUNT) of classACCOUNT, would be a test of the form

With these notions it is not hard to define precisely the overall scenario of a system
execution by defining what object and routine will, at each instant, be the current object and
the current routine:

• Starting a system execution, as we have seen, consists in creating an instance of the root
class, the root object, and executing a designated creation procedure, the root procedure,
with the root object as its target. The root object is the initial current object, and the root
procedure is the initial current procedure.

• From then on only two events can change the current object and current procedure: a
qualified routine call; and the termination of a routine.

• In a call of the formtarget.routine(…), targetdenotes a certain object TC. (Iftargetis an

attribute, TC is the object attached to the corresponding field of the current object, which
must be non-void for the call to proceed.) Then TC becomes the new current object. The
generating class of TC must, as per the Feature Call rule, contain a routine of nameroutine,
which becomes the new current routine.

• When a routine execution terminates, the target object and routine of the most recent non-
terminated call (which just before the terminated call were the current object and the
current routine) assume again the role of current object and current routine. This does not
apply, of course, to the termination of the original root procedure call; in this case the entire
execution terminates and there is nothing more to say about it.

Abstraction

The description of assignments stated that inx := y the targetx must be an entity. More
precisely it must be avariable entity; this excludes formal routine arguments: as noted, a
routine r (arg: SOME_TYPE) cannot assign toarg (reattaching it to a different object),
although it can change the attached objects through calls of the formarg.procedure(…).

The restriction to an entity precludes in particular assignments of the form
obj.some_attribute:= some_value, since the left-hand sideobj.some_attributeis an
expression (a feature call), not an entity, and you can no more assign toobj.some_attribute
than to, say,a + b — another expression which is also, formally, a feature call.

if other= Current then
report_error("Error: trying to merge an account with itself!")

else
… Normal processing (merging two different accounts)…

end
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To obtain the intended effect of the invalid assignment you may use a procedure call of the
form obj.set_attribute(some_value), where the base class ofobj’s type has defined the
procedure

This rule is essential to enforcing the method. Permitting direct assignments to an object’s
fields would violate all the tenets of information hiding by circumventing the interface
carefully crafted by the author of the supplier class. It is the responsibility of each class author
to define the exact privileges that the class gives to each of its clients, in particular field
modification rights. A field can be totally hidden (when the corresponding attribute is
exported toNONE); it can be exported in read-only mode (when the attribute is exported, but
no procedure that modifies it); it can be exported in free-write mode (as withset_attributeif
the class exports this procedure); but it can also be exported in restricted-write mode, as with
proceduredepositof classACCOUNT, which will allow addition of a certain amount to the
balance field, but not direct setting of the balance. In such a case, the exported procedures
may, thanks to the assertion mechanism reviewed later (1.8), place some further restrictions
on the permitted modifications, for example by requiring the withdrawn amount to be
positive.

The more general view is that each class describes a well-understood abstraction, for
which the class designer decides exactly what operations are permitted. The class
documentation (theshort form, see page40) makes this view clear to client authors; no
violation of that interface is permitted, as it would make a mockery of the principles of object
technology. This approach also paves the way for future generalization (page8) of the most
promising components and their inclusion into reusable libraries.

1.7 GENERICITY

Some of the classes that we will need, particularly (but not solely) in libraries, arecontainer
classes, describing data structures made of a number of objects of the same type, or
compatible types. Examples of containers include arrays, stacks and lists. The class
DEPOSIT_LIST posited in earlier examples describes containers.

It is not hard, with the mechanisms seen so far, to write a class such asDEPOSIT_LIST,
which would include such features ascount(query returning the number of elements) andput
(command to insert a new element).

Most of the operations, however, would be the same for lists of objects other than deposits.
To avoid undue replication of efforts and promote reuse, we need a way to describegeneric
container classes, which can be applied to describe containers of elements of many different
types.

set_attribute(v: VALUE_TYPE)
-- Set value of attribute to v.

do
attribute:= v

end
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The notation

introduces such a generic class. A name such asG appearing in brackets after the class name
is known as aformal generic parameter; it represents an arbitrary type.

Within the class text, feature declarations can freely useG even though it is not known
what typeG stands for. ClassLIST of ISE’s EiffelBase libraries, for example, includes
features

fThe operations available on an entity such asfirst andx, whose type is a formal generic
parameter, are the operations available on all types: use as sourcey of an assignmentx := y,
use as targetxof such an assignment (although not forval, which as a formal routine argument
is not variable), use in equality comparisonsx = y or x /= y, and application of universal
features fromANYsuch asclone, equal andcopy.

To use a generic class such as list, a client will provide a type name asactual generic
parameter; for example instead of usingDEPOSIT_LISTthe classACCOUNTcould include
the declaration

usingLISTas a generic class andDEPOSITas the actual generic parameter. Then all features
declared inLIST as working on entities of typeG will work, when called on the target
all_deposits, on entities of typeDEPOSIT. With the target

these features would work on entities of typeACCOUNT.

A note of terminology: to avoid confusion, Eiffel literature uses the wordargument for
routine arguments, reservingparameter for the generic parameters of classes.

Genericity reconciles extendibility and reusability with the static type checking demanded
by reliability. A typical error, such as confusing an account and a deposit, will be detected
immediately at compile time, since the callall_accounts.extend(dep) is invalid for dep
declared of typeDEPOSIT. (What is valid is something likeall_accounts.extend(acc) for acc
of type ACCOUNT.) In other approaches, the same effect might require costly run-time
checks (as in Java or Smalltalk), with the risk of run-time errors.

class C [G] … The rest as for any other class declaration…

irst: G
-- Value of first list element

extend(val: G)
-- Add a new element of valueval at end of list
…

all_deposits: LIST[DEPOSIT]

all_accounts: LIST[ACCOUNT]
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Further flexibility will be provided by providing aconstrained form of genericity that
allows assuming other operations, on a formal generic parameter, than just those ofANY. This
will be seen in the discussion of inheritance.

An example of generic class from the Kernel Library isARRAY[G], which describes
direct-access arrays. Features include:

• put to replace an element’s value, as inmy_array.put (val, 25) which replaces byval the

value of the array entry at index 25.

• itemto access an entry, as inmy_array.item(25) yielding the entry at index 25. A synonym

is---- FIX ---- "@", so that the same result can be obtained more tersely asmy_array@25.

• lower, upper andcount: queries yielding the bounds and the number of entries.

• The creation proceduremake, as increatemy_array.make(1, 50) which creates an array

with the given index bounds. It is also possible to resize an array throughresize, keeping of
course the old elements. In general, the Eiffel method shuns built-in limits and favors
automatically resizable structures.

The comment made aboutINTEGERand other basic classes applies toARRAYtoo: Eiffel
compilers know about this class, and will be able to process expressions of the form
my_array.put(val, 25) andmy_array@25 in essentially the same way as a C or Fortran array
access (my_array[25] in C). But it is consistent and practical to let developers treatARRAY
as a class and arrays as objects; many library classes in EiffelBase, for example, inherit from
ARRAY. Once again the idea is to get the best of both worlds: the convenience and uniformity
of the object-oriented way of thinking; and the efficiency of traditional approaches. A similar
technique applies to another Kernel Library class, that one not generic:STRING, describing
character strings with a rich set of string manipulation features.

The introduction of genericity brings up a small difference between classes and types. A
generic classC is not directly a type since you cannot declare an entity as being of typeC (you
must use for some actual generic parameterT — itself a type). Rather, C is a type pattern. To
obtain an actual typeC [T], you must provide an actual generic parameterT. This is known as
a generic derivation. (T itself is, recursively, a type — either a non-generic class or again a
generically derived typeD [U] for someD andU, as inLIST[ARRAY[INTEGER]] .)

It remains true, however, that every type is based on a class. The base class of a generically
derived typeC [T] is C.

1.8 DESIGN BY CONTRACT, ASSERTIONS, EXCEPTIONS

Eiffel directly implements the ideas of Design by Contract, which enhance software reliability
and provide a sound basis for software specification, documentation and testing, as well as
exception handling and the proper use of inheritance.
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Design by Contract basics

A system — a software system in particular, but the ideas are more general — is made of a
number of cooperating components. Design by Contract states that their cooperation should
be based on precise specifications —contracts— describing each party’s expectations and
guarantees.

An Eiffel contract is similar to a real-life contract between two people or two companies,
which it is convenient to express in the form of tables listing the expectations and guarantees.
Here for example is how we could sketch the contract between a homeowner and the
telephone company:

Note how the obligation for each of the parties maps onto a benefit for the other. This will
be a general pattern.

The client’s obligation, which protects the supplier,is called aprecondition. It states what
the client must satisfy before requesting a certain service. The client’s benefit, which
describes what the supplier must do (assuming the precondition was satisfied), is called a
postcondition.

In addition to preconditions and postconditions, there will also beinvariants applying to
a class as a whole. More precisely a class invariant must be ensured by every creation
procedure (or by the default initialization if there is no creation procedure), and maintained
by every exported routine of the class.

Expressing assertions

Eiffel provides syntax for expressing preconditions (require), postconditions (ensure) and
class invariants (invariant), as well as other assertion constructs studied later (see
“Instructions”,  page 75): loop invariants and variants, check instructions.

provide_service OBLIGATIONS BENEFITS

Client (Satisfy precondition:)
Pay bill

(From postcondition:)
Get telephone service

Supplier (Satisfy postcondition:)
Provide telephone service

(From precondition:)
No need to provide
anything if bill not paid
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Here is a partial update of classACCOUNT with more assertions:

Each assertion is made of one or more subclauses, each of them a boolean expression
(with the additional possibility of theold construct). If there is more than one subclause, as in
the postcondition ofdepositand in the invariant, they are treated as if they were connected by
anand. Each clause may be preceded by a label, such asconsistent_balancein the invariant,
and a colon; the label is optional and does not affect the assertion’s semantics, except for error
reporting as explained in the next section, but including it systematically is part of the
recommended style. The boolean expressiona implies b is true if a is false, and otherwise if
botha andb are true.

note
description: "Simple bank accounts"

class
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER

-- Number of deposits made since opening
do

… As before…
end

feature -- Element change
deposit(sum: INTEGER)

-- Add sum to account.
require

non_negative: sum>= 0
do

… As before…
ensure

one_more_deposit:
deposit_count= old deposit_count + 1

updated: balance= old balance + sum
end

feature { NONE} -- Implementation
all_deposits: DEPOSIT_LIST

-- List of deposits since account’s opening.

invariant
consistent_balance: (all_deposits/= Void) implies

(balance= all_deposits.total)
zero_if_no_deposits: (all_deposits= Void) implies

(balance= 0)
end
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Because assertions benefit from the full power of boolean expressions, they may include
function calls. This makes it possible to express sophisticated consistency conditions, such as
“ the graph contains no cycle”, which would not be otherwise expressible through simple
expressions, or even through first-order predicate calculus, but which are easy to implement
as Eiffel functions returning boolean results.

The precondition of a routine expresses conditions that the routine is imposing on its
clients. Here a call todepositis correct if and only if the value of the argument is non-negative.
The routine does not guarantee anything for a call that does not satisfy the precondition. It is
in fact part of the Eiffel method that a routine body shouldnever test for the precondition,
since it is the client’s responsibility to ensure it. (An apparent paradox of Design by Contract,
which is reflected in the bottom-right entries of the preceding and follwing contract tables,
and should not be a paradox any more at the end of this discussion, is that one can getmore
reliable software by havingfewer explicit checks in the software text.)

The postcondition of a routine expresses what the routine does guarantee to its clients for
calls satisfying the precondition. The notationold expression, valid in postconditions (ensure
clauses) only, denotes the value thatexpression had on entry to the routine.

The precondition and postcondition state the terms of the contract between the routine and
its clients, similar to the earlier example of a human contract:

The class invariant, as noted, applies to all features. It must be satisfied on exit by any
creation procedures, and is implicitly added to both the precondition and postcondition of
every exported routine. In this respect it is both good news and bad news for the routine
implementer: good news because it guarantees that the object will initially be in a stable state,
averting the need in the above example to check that the total ofall_depositsis compatible
with the balance; bad news because, in addition to its official contract as expressed by its
specific postcondition, every routine must take care of restoring the invariant on exit.

A requirement on meaningful contracts is that they should be in good faith: satisfiable by
an honest partner. This implies a consistency rule: if a routine is exported to a client (either
generally or selectively), any feature appearing in its precondition must also be available to
that client. Otherwise — for example if the precondition includedrequire n > 0, wheren is a
secret attribute — the supplier would be making demands that a good-faith client cannot
possibly check for.

deposit OBLIGATIONS BENEFITS

Client (Satisfy precondition:)
Use a non-negative argument.

(From postcondition:)
Get deposits list and balance
updated.

Supplier (Satisfy postcondition:)
Update deposits list and
balance.

(From precondition:)
No need to handle negative
arguments.
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It should be noted in this respect that ensuring a precondition does not necessarily mean
testing for it explicitly. Assumingn is indeed exported, a client can make a correct call as

possibly with anelsepart, but this is not the only possible form: ifn is known to be positive,
perhaps because some preceding call set it to the sum of two squares, then there is no need for
protection by anif or equivalent. In such a case, acheck instruction as introduced later
(“Instructions”,  page 75) is recommended if the reason for omitting the test is non-trivial.

Using assertions for built-in reliability

The first use of assertions is purely methodological. By applying a discipline of expressing,
as precisely as possible, the logical assumptions behind software elements, one can write
software whose reliability is built-in: software that is developed hand-in-hand with the
rationale for its correctness.

This simple observation — usually not clear to people until they have practiced Design by
Contract thoroughly on a large-scale project — brings as much change to software practices
and quality as the rest of object technology.

Run-time assertion monitoring

Assertions in Eiffel are not just wishful thinking. They can be monitored at run time under the
control of compilation options.

It should be clear from the preceding discussion that assertions are not a mechanism to test
for special conditions, for example erroneous user input. For that purpose, the usual control
structures (if deposit_sum>= 0 then …) are available, complemented in applicable cases by
the exception handling mechanism reviewed next. An assertion is instead acorrectness
condition governing the relationship between two software modules (not a software module
and a human, or a software module and an external device). Ifsumis negative on entry to
deposit, violating the precondition, the culprit is some other software element, whose author
was not careful enough to observe the terms of the deal. Bluntly:

To be more precise:

• A precondition violation signals a bug in the client, which did not observe its part of the
deal.

• A postcondition (or invariant) violation signals a bug in the supplier — the routine —
which did not do its job.

That violations indicate bugs explains why it is possible to enable or disable assertion
monitoring through mere compilation options: for a correct system — one without bugs —

if x.n > 0 then x.r end

Assertion Violation rule

A run-time assertion violation is the manifestation of a bug.
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assertions will always hold, so the compilation option makes no difference to the semantics
of the system.

But of course for an incorrect system the best way to find out where the bug is — or just
that there is a bug — is often to check the assertions. Hence the presence of the compilation
options, which Eiffel environments typically provide at several levels (here as supported in
ISE Eiffel, which makes them settable separately for each class, with defaults at the system
and cluster levels):

• no: assertions have no run-time effect.

• require: check preconditions only, on routine entry.

• ensure: preconditions on entry, postconditions on exit.

• invariant : asensure, plus class invariant on both entry and exit for qualified calls.

• all: asinvariant , pluscheckinstructions, loop invariants and loop variants (“Instructions”,
page 75).

An assertion violation, if detected at run time under one of these options other than the
first, will cause an exception (“Exceptionhandling”, page42). Unless the software has an
explicit “retry” plan as explained below, the violation will cause production of an exception
trace and termination (or, in development environment such as EiffelBench, a return to the
browsing and debugging facilities of the environment at the point of failure). If present, the
label of the violated subclause will be displayed, serving to identify the cause precisely.

The default isrequire. This is particularly interesting in connection with the Eiffel
method’s insistence on using libraries: with libraries such as EiffelBase that are richly
equipped with preconditions expressing terms of use, an error in theclient softwarewill often
lead, for example through an incorrect argument, to violating one of these preconditions. A
somewhat paradoxical consequence is that even an application developer who does not apply
the method too well (out of carelessness, haste, indifference or ignorance) will still benefit
from the presence of assertions in someone else’s library code.

During development and testing, assertion monitoring should be turned on at the highest
possible level. Combined with static typing and the immediate feedback of compilation
techniques such as the Melting Ice Technology, this permits the development process
mentioned in the section“Quality andfunctionality”, page9, where errors are exterminated
at birth. No one who has not practiced the method in a real project can imagine how many
mistakes are found in this way; surprisingly often, a violation will turn out to affect an
assertion that was just included for goodness’ sake, the developer being convinced that it
could not “possibly” fail to be satisfied.

By providing a precise reference (the description of what the software is supposed to do)
against which to assess the reality (what the software actually does), Design by Contract
profoundly transforms the activities of debugging, testing and quality assurance.

When releasing the final version of a system, it is usually appropriate to turn off assertion
monitoring, at least down to therequire level. The exact policy depends on the circumstances;
it is a tradeoff between efficiency considerations, the potential cost of mistakes, and how
much the developers and quality assurance team trust the product. When developing the
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software, however, one should always assume that monitoring will be turned off in the end (so
as to avoid loosening one’s guard).

The short form of a class

Another application of assertions regards documentation. Environment mechanisms — such
as clicking theshort button of a Class Tool in ISE’s EiffelBench — will produce, from a class
text, an abstracted version, the short form, which only includes the information relevant for
client authors. Here is the short form of classACCOUNT in its latest version:

The wordsclass interfaceare used instead of justclassto avoid any confusion with actual
Eiffel text, since this is documentation, not executable software. (It is in fact possible to
generate a compilable variant of the short form in the form of a deferred class, a notion defined
later in this chapter.)

Compared to the full text, the short form keeps all the elements that are part of the abstract
interface relevant to client authors:

• Names and signatures (argument and result type information) for the exported features.

• Header comments of these features, which carry informal descriptions of their purpose.
(Hence the importance, mentioned in section1.4, of always including such comments and
writing them carefully.)

note
description: "Simple bank accounts"

class interface
ACCOUNT

feature -- Access
balance: INTEGER

-- Current balance
deposit_count: INTEGER

-- Number of deposits made since opening
feature -- Element change

deposit(sum: INTEGER)
-- Add sum to account.

require
non_negative: sum>= 0

ensure
one_more_deposit: deposit_count= old deposit_count + 1
updated: balance= old balance + sum

invariant
consistent_balance: balance= all_deposits.total

end
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• Preconditions and postconditions of these routines (at least the subclauses involving only
exported features, which may exclude certain postcondition subclauses).

• Class invariant (same observation).

The following elements are removed, however: any information about non-exported
features; all the routine bodies (doclauses, or theexternalandoncevariants seen in“External
software”, page15 above and“Once routines,sharedobjects,smartinitialization andon-
demandexecution”, page73 below); assertion subclauses involving non-exported features;
and some keywords not useful in the documentation, such asis for a routine.

In accordance with the Uniform Access principle (page18), the short form does not
distinguish between attributes and argument-less queries. In the above example,balance
could be one or the other, as it makes no difference to clients, except possibly for performance.

The short form is the fundamental tool for using supplier classes in the Eiffel method. It
protects client authors from the need to read the source code of software on which they rely.
This is a crucial requirement in large-scale industrial developments.

The result is also particularly interesting because it satisfies the property that should
always be required of good software documentation:

• It is truly abstract, free from the implementation details of what it describes but
concentrating on its functionality.

• Instead of being produced separately — an unrealistic requirement, hard to impose on
developers initially and becoming impossible in practice if we expect the documentation
to remain up to date as the software evolves — the documentation is extracted from the
software itself. It is not a separate product but a different view of the same product. This
prolongs thesingle product principle that lies at the basis of Eiffel’s seamless
development model (1.3).

Other views are possible. For example the EiffelCase tool of ISE’s environment offers
graphical “bubble-and-arrow” diagrams representations of system structures, showing classes
and their relations — client, inheritance — according to the conventions of BON (the
Business Object Notation) with, in the first case, the possibility to edit these diagrams and
generate updated Eiffel text in accordance with the principles of seamlessness and
reversibility.

The short form — or its variant the flat-short form, which takes account of inheritance
(“Flat andflat-shortforms”, page64) are the standard form of library documentation, used
extensively, for example, in the bookReusable Software(see bibliography). Assertions play
a central role in such documentation by expressing the terms of the contract. As demonstrated
a contrarioby the widely publicized $500-million crash of the Ariane-5 rocket launcher in
June of 1996, due to the incorrect reuse of a software module from the Ariane-4 project,reuse
without a contract documentation is the path to disaster. Non-reuse would, in fact, be
preferable.
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Exception handling

Another application of Design by Contract governs the handling of unexpected cases. The
vagueness of many discussions of this topic follows from the lack of a precise definition of
terms such as “exception”. With Design by Contract we are in a position to be specific:

• Any routine has a contract to achieve.

• Its body defines a strategy to achieve it — a sequence (or other control structure) involving
instructions. Some of these operations are themselves routines, with their own contracts;
but even an atomic operation, such as the computation of an arithmetic operation, has an
implicit contract, stating that theresult will be representable.

• Any one of these operations mayfail , that is to say be unable to meet its contract; for
example an arithmetic operation may produce an overflow (non-representable result).

• Failure of one of these operations is anexception for the routine.

• As a result the routine may fail too — causing an exception in its own caller.

Note how the two basic concepts, failure and exception, are defined precisely. Although
failure is the more basic concept — since it is defined for atomic, non-routine operations —
the definitions are mutually recursive, since an exception may cause a failure of the recipient
routine, and a routine’s failure causes an exception in its own caller.

Why only the observation that an exception “may” cause a failure? The reason is that a
routine may have planned for the exception and defined arescuepolicy. This is done through
a clause with the corresponding keyword, as in:

This example includes the only two constructs needed for exception handling:rescueand
retry . Theretry instruction is only permitted in a rescue clause; its effect is to start again the

read_next_character(f: FILE)
-- Make next character available inlast_character;
-- if impossible, set failed to True.

require
readable: file.readable

local
impossible: BOOLEAN

do
if  impossiblethen

failed := True
else

last_character:= low_level_read_function(f)
end

rescue
impossible:= True
retry

end
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execution of the routine, without repeating the initialization of local variables (such as
impossiblein the example, which was initialized toFalseon first entry). Featuresfailed and
last_character are assumed to be attributes of the enclosing class.

This example is typical of the use of exceptions: as a last resort, for situations that should
not occur. The routine has a precondition,file.readable, which ascertains that the file exists
and is accessible for reading characters. So clients should check that everything is fine before
calling the routine. Although this check is almost always a guarantee of success, a rare
combination of circumstances could cause a change of file status (because a user or some
other system is manipulating the file) between the check forreadable and the call to
low_level_read_function. If we assume this latter function will fail if the file is not readable,
we must catch the exception.

A variant would be

which would try again up toMax_attempts times before giving up.

The above routine, in either variant, never fails: it always fulfills its contract, which states
that it should either read a character or setfailed to record its inability to do so. In contrast,
consider the variant

local
attempts: INTEGER

do
if  attempts< Max_attemptsthen

last_character:= low_level_read_function(f)
else

failed := True
end

rescue
attempts:= attempts + 1
retry

end

local
attempts: INTEGER

do
last_character:= low_level_read_function(f)

rescue
attempts:= attempts + 1
if  attempts< Max_attemptsthen

retry
end

end
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with no more role forfailed. In this case, afterMax_attemptsunsuccessful attempts, the
routine will execute itsrescueclause to the end, with noretry (the if having noelseclause).
This is how a routine fails. It will, as noted, pass on the exception to its caller.

Such a rescue clause should, before returning, restore the invariant of the class so that the
caller and possible subsequentretry attempts from higher up find the objects in a consistent
state. As a result, the rule for an absentrescueclause (the case, of course, for the vast majority
of routines in most systems) is that it is equivalent to

where proceduredefault_rescuecomes fromANY, where it is defined to do nothing; in a
system built for robustness, classes subject to non-explicitly-rescued exceptions should
redefinedefault_rescue(perhaps using a creation procedure, which is bound by the same
formal requirement) so that it will always restore the invariant.

Behind Eiffel’s exception handling scheme lies the principle — at first an apparent
platitude, but violated by many existing mechanisms — that a routine shouldeither succeed
or fail . This is all a result of the contract notion: succeeding means being able to fulfil the
contract (possibly after one or moreretry ); failure is the other case, which must always trigger
an exception in the caller. Without this principle it would be possible for a routine to miss its
contract and yet to return to its caller in a seemingly normal state. That is the worst possible
way to handle an exception.

Concretely, exceptions result from the following events:

• A routine failure (rescue clause executed to the end with noretry ), as just seen.

• Assertion violation, if they are monitored.

• Attempt to call a feature on a void reference:x.f (…), the fundamental computational

mechanism, can only work if x is attached to an object, and will cause an exception
otherwise.

• Developer exception, as seen next.

• Operating system signal: no memory available for a requested creation or clone (even after
garbage collection has rummaged everything to find some space), arithmetic overflow.
(But no C/C++-like “wrong pointer address”, which cannot occur thanks to the statically
typed nature of Eiffel.)

It may in some cases be useful, when handling exceptions inrescueclauses, to ascertain
the exact nature of the exception that got the execution there. For this it is suffices to inherit
from the Kernel Library classEXCEPTIONS, which provides queries such asexception,
giving the code for the last exception, and symbolic names (“Constantattributes”, page75)
for all such codes, such asNo_more_memoryand so on. Then by testingexceptionagainst
various possibilities one can have specific exception handling. The method strongly suggests,
however, that exception handling code should remain simple; a complicated algorithm in a
rescue clause is probably a sign of abuse.

rescue
default_rescue
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Class EXCEPTIONSalso provides various facilities for fine-tuning the exception
facilities, such as a procedureraisethat will explicitly trigger a “developer exception” with a
code than can then be detected and processed.

Exception handling makes it possible to produce Eiffel software that is not just correct but
robust, by planning for cases that shouldnot normally arise, but might out of Murphy’s law,
and ensuring they do not affect the software’s basic safety and simplicity.

Other applications of Design by Contract

The Design by Contract ideas pervade the Eiffel method. In addition to the applications just
mentioned, they have two particularly important consequences:

• They make it possible to use Eiffel for analysis and design. At a high level of abstraction,
it is necessary to be precise too. With the exception of BON, object-oriented analysis and
design methods tend to favor abstraction over precision. Thanks to assertions, it is possible
to express precise properties of a system (“At what speed should the alarm start
sounding?”) without making any commitment to implementation. The discussion of
deferred classes (“Applicationsof deferredclasses”, page54) will show how to write a
purely descriptive, non-software model in Eiffel, using assertions to describe the essential
properties of a system without any computer or software aspect.

• Assertions also serve to control the power of inheritance-related mechanisms —
redeclaration, polymorphism, dynamic binding — and channel them to correct uses by
assigning the proper semantic limits. See“Inheritance and contracts”,  page 59.

1.9 THE INHERITANCE MECHANISM

Inheritance is a powerful and attractive technique. A look at either the practice or literature
shows, however, that it is not always well applied. Eiffel has made a particular effort to tame
inheritance for the benefit of modelers and software developers. Many of the techniques are
original with Eiffel. Paul Dubois has written (comp.lang.pythonUsenet newsgroup, 23 March
1997):there are two things that[Eiffel] got right that nobody else got right anywhere else:
support for design by contract, and multiple inheritance. Everyone should understand these
“correct answers” if only to understand how to work around the limitations in other
languages.

Basic inheritance structure

To make a class inherit from another, simply use aninherit  clause:

note … classD creation … inherit
A
B
…

feature
…
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This makesD an heir of A, B and any other class listed. Eiffel supportsmultiple
inheritance: a class can have as many parents as it needs. Later sections (“Multiple inheritance
andfeaturerenaming”, page57 and“Repeatedinheritanceandselection”, page65) will
explain how to handle the possible conflicts created by parent features.

By defaultD will simply include all the original features ofA, B, …, to which it may add
its own through itsfeature clauses if any. But the inheritance mechanism is more flexible,
allowingD to adapt the inherited features in many ways. Each parent name —A, B, … in the
example — can be followed by a Feature Adaptation clause, with subclauses, all optional,
introduced by keywordsrename, export, undefine, redefineandselect, enabling the author
A to make the best use of the inheritance mechanism by tuning the inherited features to the
precise needs ofD. This makes inheritance a principal tool in the Eiffel process, mentioned
earlier, of carefully crafting each individual class for the benefit of its clients. The various
Feature Adaptation subclauses will be reviewed in the following sections.

Redefinition

The first form of feature adaptation is the ability to change the implementation of an inherited
feature. Assume a classSAVINGS_ACCOUNTthat specializes the notion of account. It is
probably appropriate to define it as an heir to classACCOUNT, to benefit from all the features
of ACCOUNTstill applicable to savings accounts, and express the conceptual relationship
that every savings account “is” an account (apart from its own specific properties). But we
may need to produce a different effect for proceduredepositso that besides recording the
deposit and update the balance it also updates the interest (say).

This example is typical of the form of reuse promoted by inheritance and crucial to
effective reusability in software: the case ofreuse with adaptation. Traditional forms of reuse
are all-or-nothing: either you take a component exactly as it is, or you build your own.
Inheritance will get us out of this “reuse or redo” dilemma by allowing us to reuseandredo.
The mechanism is feature redefinition:

note
description: "Savings accounts"

class
SAVINGS_ACCOUNT

inherit
ACCOUNT

redefine depositend
feature -- Element change

deposit(sum: INTEGER)
-- Add sum to account.

do
… New implementation (see below)…

end
… Other features…

end
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iWithout theredefinesubclause, the declaration ofdepositwould be invalid, yielding two
features of the same name, the inherited one and the new one. The subclause makes this valid
by specifying that the new declaration will override the old one.

In a redefinition, the original version — such as theACCOUNTimplementation ofdeposit
in this example — is called theprecursor of the new version. It is common for a redefinition
to rely on the precursor’s algorithm and add some other actions; the reserved wordPrecursor
helps achieve this goal simply. Permitted only in a routine redefinition, it denotes the parent
routine being redefined. So here he body of the newdeposit could be of the form

Besides changing the implementation of a routine, a redefinition can turn an argument-less
function into an attribute; for example a proper descendant ofACCOUNTcould redefine
deposits_count, originally a function, as an attribute. The principle of Uniform Access (page
18) guarantees that the redefinition makes no change for clients, which will continue to use
the feature under the formacc.deposits_count.

Polymorphism

The inheritance mechanism is relevant to both roles of classes: module and type. Its
application as a mechanism to reuse, adapt and extend features from one class to another, as
just seen, covers the module role. But inheritance is also asubtyping mechanism. To say that
D is an heir ofA, or more generally a descendant ofA, is to expresses that instances ofD can
be viewed as instances ofA.

The mechanism that supports this idea ispolymorphic assignment. In an assignmentx :=
y, the types ofy do not, thanks to inheritance, have to be identical; the rule is that the type of
y must simplyconform to another. A classD conforms to a classA if and only if it is a
descendant (which of course includes the case in whichA andD are the same class); if these
classes are generic, conformance ofD [U] to C [T] requires in addition that typeU conform
to typeT (through the recursive application of the same rules).

So with the inheritance relations suggested earlier, the declarations

make it valid to write the assignment

which will assign toacc a reference attached (if not void) to a direct instance of type
SAVINGS_ACCOUNT, notACCOUNT.

Such an assignment, where the source and target types are different, is said to be
polymorphic. An entity such asacc, which as a result of such assignments may become

Precursor(sum) -- Apply the algorithm ofACCOUNT’s version of deposit
… Instructions to update the interest…

acc: ACCOUNT; sav: SAVINGS_ACCOUNT

acc:= sav
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attached at run time to objects of types other than the one declared for it, is itself called a
polymorphic entity.

For polymorphism to respect the reliability requirements of Eiffel, it must be controlled
by the type system and enable static type checking. We certainly do not want an entity of type
ACCOUNTto become attached to an object of typeDEPOSIT. Hence the second typing rule:

The second case is that of a call such astarget.routine(…, y, …) where the corresponding
routine declaration is of the form routine (…, x: SOME_TYPE, …). The rules governing the
setting ofx to the value ofy at the beginning of the call are exactly the same as those of an
assignmentx := y: not just the type rule, as expressed by Type Conformance (the type ofy
must conform toSOME_TYPE), but also the actual run-time effect which, as for assignments,
will be either a reference attachment or, for expanded types, a copy.

The ability to accept the assignmentx := Void for x of any reference type (“Basic
operations”,page26) is a consequence of the Type Conformance rule, since Void is of type
NONE which by construction (“The global inheritancestructure”, page14) conforms to all
types.

Polymorphism also yields a more precise definition of “instance”. Adirect instanceof a
typeA is an object created from the exact pattern defined by the declaration ofA’s base class,
with one field for each of the class attributes; you will obtain it through a creation instruction
of the formcreatex…, for x of typeA, or by cloning an existing direct instance. Aninstance
of A is a direct instance of any type conforming toA: A itself, but also many types based on
descendant classes. So an instance ofSAVINGS_ACCOUNTis also an instance, although not
a direct instance, ofACCOUNT.

A consequence of polymorphism is the ability to definepolymorphic data structures.
With a declaration such as

accounts: LIST[ACCOUNT]

the procedure callaccounts.extend(acc), because it uses a procedureextendwhich in this
case expects an argument of any type conforming toACCOUNT, will be valid not only ifacc
is of typeACCOUNTbut also if it is of a descendant type such asSAVINGS_ACCOUNT.

Type Conformance rule

An assignmentx := y, or the use ofy as actual argument corresponding to the
formal argumentx in a routine call, is only valid if the type ofy conforms to the
the type ofx.
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Successive calls of this kind make it possible to construct a data structure that, at run-time,
might contain objects of several types, all conforming toACCOUNT:

Such polymorphic data structures combine the flexibility and safety of genericity and
inheritance. They can be more or less general depending on the type, hereACCOUNT, chosen
as actual generic parameter; static typing is again precious, prohibiting for example a
mistaken insertion of the formaccounts.extend(dep) wheredepis of typeDEPOSIT, which
does not conform toACCOUNT.

It remains possible to produce unrestrictedly polymorphic data structures, such as a
general_list: LIST [ANY] which makes the callgeneral_list.extend(x) valid for anyx. The
price to pay is that the operations applicable to an element retrieved from such a list are only
the most general ones (assignment, clone, equality comparison and the like) — although
assignment attempt, studied below, will make it possible to apply more specific operations
after checking that a retrieved object is of the appropriate type.

Dynamic binding

The complement of polymorphism and dynamic binding, which is the answer to the question
“What version of a feature will be applied in a call whose target is polymorphic?”. For
example, ifaccis of typeACCOUNT, the attached objects may now, thanks to polymorphism,
be direct instances not just ofACCOUNT but also SAVINGS_ACCOUNTor other
descendants. Some of these descendants, indeedSAVINGS_ACCOUNTamong them, redefine
features such asdeposit. Then we have to ask what the effect will be for a call of the form

Dynamic binding is the clearly correct answer: the call will execute the version ofdeposit
from the generating class of the object attached toaccat run time. Ifaccis attached to a direct
instance ofACCOUNT, execution will use the originalACCOUNTversion; ifacc is attached
to a direct instance ofSAVINGS_ACCOUNT, the call will execute the version redefined in that
class.

This is a clear correctness requirement. A policy ofstatic binding (as available for
example by default in C++ or Borland’s Delphi) would take the declaration ofacc as an
ACCOUNTliterally. But that declaration is only meant to ensure generality, to enable the use

acc.deposit(some_value)?

Direct
instances
of: ACCOUNT ACCOUNT

SAVINGS_ACCOUNT
MONEY_MARKET_ACCOUNT

Polymorphic
data structure
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of a single nameacc in many different cases: what counts at execution time is the object that
accrepresents. Applying theACCOUNTversion to aSAVINGS_ACCOUNTobject would be
wrong, possibly leading in particular to objects that violate the invariant of their own
generating class (since there is no reason a routine ofACCOUNTwill preserve the specific
invariant of a proper descendant such asSAVINGS_ACCOUNT, which it does not even know
about).

Note that in some cases the choice between static and dynamic binding does not matter:
this is the case for example if a call’s target is not polymorphic, or if the feature of the call is
redefined nowhere in the system. In such cases the use of static binding permits slightly faster
calls (since the feature is known at compile time). This application of static binding should,
however, be treated as acompiler optimization. Good Eiffel compilers detect such cases and
process them accordingly — unlike approaches that make developers responsible for
specifying what should be static and what dynamic (a tedious and error-prone task, especially
delicate because a minute change in the software can make a static call, far away in another
module of a large system, suddenly become dynamic). Eiffel developers are protected from
such concerns; they can rely on the semantics of dynamic binding in all cases, with the
knowledge that an optimizing compiler will apply static binding when safe and desirable.

Even in cases that require dynamic binding, the design of Eiffel, in particular the typing
rules, enable compilers to make the penalty over the static-binding calls of traditional
approaches very small and, most importantly,constant-bounded: it does not grow with the
depth or complexity of the inheritance structure. The discovery in 1985 of a technique for
constant-time dynamic binding calls, even in the presence of multiple and repeated
inheritance, was the event that gave the green light to the development of Eiffel.

Dynamic binding is particularly interesting for polymorphic data structures. If we iterate
over the list of accounts of various kinds,accounts: LIST [ACCOUNT], illustrated in the last
figure, and at each step letacc represent the current list element, we can repeatedly apply

to have the appropriate variant of thedeposit operation triggered for each element.

The benefit of such techniques appears clearly if we compare them with the traditional
way to address such needs: using multi-branch discriminating instructions of the form
if “Account is a savings account” then … elseif“ It is a money market account” then … and
so on, or the correspondingcase… of … or inspect instructions. Apart from their heaviness
and complexity, such solutions cause many components of a software system to rely on the
knowledge of the exact set of variants available for a certain notion, such as bank account.
Then any addition, change or removal of variants can cause a ripple of changes throughout the
architecture. This is one of the majors obstacles to extendibility and reusability in traditional
approaches. In contrast, using the combination of inheritance, redefinition, polymorphism and
dynamic binding makes it possible to have apoint of single choice— a unique location in
the system which knows the exhaustive list of variants. Every client then manipulates entities
of the most general type,ACCOUNT, through dynamically bound calls of the form
acc.some_account_ feature(…).

acc.deposit(…)
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These observations make dynamic binding appear for what it is: not an implementation
mechanism, but anarchitectural technique that plays a key role (along with information
hiding, which it extends, and Design by Contract, to which it is linked through the assertion
redefinition rules seen below) in providing the modular system architectures of Eiffel, the
basis for the method’s approach to reusability and extendibility. These properties apply as
early as analysis and modeling, and continue to be useful throughout the subsequent steps.

Deferred features and classes

In the above examples of dynamic binding, all classes were assumed to be fully implemented,
and dynamically bound features had a version in every relevant class, including the most
general ones such asACCOUNT.

It is also useful to define classes that leave the implementation of some of their features
entirely to proper descendants. Such an abstract class is known asdeferred; so are its
unimplemented features. The reverse of deferred iseffective, meaning fully implemented.

LIST is a typical example of deferred class. As it describes the general notion of list, it
should not favor any particular implementation; that will be the task of its effective
descendants, such asLINKED_LIST(linked implementation),TWO_WAY_LIST(linked both
ways), ARRAYED_LIST(implementation by an array), all effective, and all indeed to be found
in ISE’s EiffelBase libraries.

At the level of the deferred classLIST, some features such asextend(add an item at the
end of the list) will have no implementation and hence will be declared as deferred. Here is
the corresponding form, illustrating the syntax for both deferred classes and their deferred
features:

note
description: "Sequential finite lists, without a commitment%[

to a representation%]"
deferred class

LIST [G]
feature -- Access

count: INTEGER
-- Number of items in list

do
… See below; this feature can be effective…

end
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A deferred feature (considered to be a routine, although it can yield an attribute in a proper
descendant) has the single keyworddeferred in lieu of the do Instructionsclause of an
effective routine. A deferred class — defined as a class that has at least one deferred feature
— must be introduced bydeferred class instead of justclass.

As the example ofextendshows, a deferred feature, although it has no implementation,
can be equipped with assertions. They will be binding on implementations in descendants, in
a way to be explained below.

Deferred classes do not have to be fully deferred. They can contain some effective features
along with their deferred ones. Here, for example, we may expresscount as a function:

This implementation relies on the loop construct described below (from introduces the
loop initialization) and on a set of deferred features of the class which allow traversal of a list
based on moving a fictitious cursor: start to bring the cursor to the first element if any, after to

feature -- Element change
extend(x: G)

-- Add x at end of list.
require

space_available: not full
deferred
ensure

one_more: count= old count + 1
end

… Other feature declarations and invariant…
end

count: INTEGER
-- Number of items in list

do
from  startuntil  after loop

Result:= Result + 1; forth
end

end
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find out whether all relevant elements have been seen, and forth (with preconditionnot after)
to advance the cursor to the next element. For example, forth appears as

whereindex— another deferred feature of the class — is the integer position of the cursor.

Although the above version of feature count is time-consuming — it implies a whole
traversal just for the purpose of determining the number of elements — it has the advantage
of being applicable to all variants, without any commitment to a choice of implementation, as
would follow for example if we decided to treat count as an attribute. Proper descendants can
always redefine count for more efficiency.

Function count illustrates one of the most important contributions of the method to
reusability: the ability to definebehavior classesthat capture common behaviors (such as
count) while leaving the details of the behaviors (such as start, after, forth) open to many
variants. As noted earlier, traditional approaches to reusability provide closed reusable
components. A component such asLIST, although equipped with directly usable behaviors
such as count, is open to many variations, to be provided by proper descendants.

A classB inheriting from a deferred classA may provide implementations — effective
declarations — for the features inherited in deferred form. In this case there is no need for the
equivalent of aredefine subclause; the effective versions simply replace the inherited
versions. The class is said toeffect the corresponding features. If after this process there
remain any deferred features, B is still considered deferred, even if it introduces no deferred
features of its own, and must be declared asdeferred class.

In the example, classes such asLINKED_LISTandARRAYED_LISTwill effect all the
deferred features they inherit fromLIST — extend, start etc. — and hence be effective.

Note that — except in some applications restricted to pure system modeling — deferred
classes and features only make sense thanks to polymorphism and dynamic binding. Because
extend has no implementation in classLIST, a call of the formmy_list.extend(º) with my_list
of typeLIST[T] for someT can only be executed if my_list is attached to a direct instance of
an effective proper descendant ofLIST, such asLINKED_LIST; then it will use the
corresponding version of extend. Static binding would not even be meaningful here.

Even an effective feature ofLISTsuch as count may depend on deferred features (start and
so on), so that a call of the form my_list.count can only be executed in the context of an
effective descendant.

forth
-- Advance cursor by one position

require
not_after: not after

deferred
ensure

moved_right: index= old index + 1
end
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All this indicates that a deferred class must haveno direct instance(it will have instances,
the direct instances of its effective descendants). If it had any, we could call deferred features
on them, leading to execution-time impossibility. The rule which achieves this goal is simple:
if the base type ofx is a deferred class, no creation instruction of targetx, of the formcreate
x …, is permitted.

Applications of deferred classes

Deferred classes cover abstract notions with many possible variants. They are widely used in
Eiffel where they cover various needs:

• Capturing high-level classes, with common behaviors.

• Defining the higher levels of a general taxonomy, especially in the inheritance structure of
a library.

• Defining the components of an architecture during system design, without commitment to
a final implementation.

• Describing domain-specific concepts in analysis and modeling.

As the reader will have noted, these applications make deferred classes a central tool of
the Eiffel method’s support for seamlessness and reversibility. The last one in particular uses
deferred classes and features to model objects from an application domain, without any
commitment to implementation, design, or even software (and computers). Deferred classes
are the ideal tool here: they express the properties of the domain’s abstractions, without any
temptation of implementation bias, yet with the precision afforded by type declarations,
inheritance structures (to record classifications of the domain concepts), and assertions to
express the abstract properties of the objects being described.

Unlike approaches using a separate object-oriented analysis and design method and
notation (Booch, OMT, UML…), this technique integrates seamlessly with the subsequent
phases (assuming the decision is indeed taken to develop a software system): it suffices to
develop the deferred classes progressively by introducing effective elements, either by
modifying the classes themselves or by introducing design- and implementation-oriented
descendants. In the resulting system, the classes that played an important role for analysis, and
are the most meaningful for customers, will remain important; as we have seen
(“Seamlessnessandreversibility”, page8) this direct mappingproperty is a great help for
extendibility.

The following sketch (from the bookObject-OrientedSoftwareConstruction) illustrates
these ideas on the example of scheduling the programs of a TV station. This is pure modeling
of an application domain; no computers or software are involved yet. The class describes the
notion of program segment.

Note the use of assertions to define semantic properties of the class, its instances and its
features. Although often presented as high-level, most object-oriented analysis methods (with
the exception of Waldén’s and Nerson’s Business Object Notation) have no support for the

http://eiffel.com/doc/oosc
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expression of such properties, limiting themselves instead to the description of broad
structural relationships.

note
description: "Individual fragments of a broadcasting schedule"

deferred class
SEGMENT

feature -- Access
schedule: SCHEDULEis deferred end

-- Schedule to which segment belongs
index: INTEGERis deferred end

-- Position of segment in its schedule
starting_time, ending_time: INTEGERis deferred end

-- Beginning and end of scheduled air time
next: SEGMENTis deferred end

-- Segment to be played next, if any

sponsor: COMPANYis deferred end
-- Segment’s principal sponsor

rating: INTEGERis deferred end
-- Segment’s rating (for children’s viewing etc.)

Minimum_duration: INTEGERis 30
-- Minimum length of segments, in seconds

Maximum_interval: INTEGERis 2
-- Maximum time between two successive segments, in seconds

feature -- Element change
set_sponsor(s: SPONSOR)

require
not_void: s /= Void

deferred
ensure

sponsor_set: sponsor= s
end

… change_next, set_ratingomitted…
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Structural property classes

An interesting category of deferred classes includes classes whose purpose is to describe a

structural property, which may be useful to the description of many other classes. Typical

examples are covered by classes of the Kernel Library:

• NUMERICdescribes objects on which arithmetic operations +, –,∗, / are available, with

the properties of a ring (associativity, distributivity, zero elements etc.). Kernel Library

classes such asINTEGERandREAL— but not, for example,STRING— are descendants

of NUMERIC. An application that defines a classMATRIXmay also make it a descendant

of NUMERIC.

• COMPARABLEdescribes objects on which comparison operations <, <=, >, >= are

available, with the properties of a total preorder (transitivity, irreflexivity). Kernel Library

classes such asCHARACTER, STRINGandINTEGER— but not outMATRIXexample —

are descendants ofNUMERIC.

For such classes it is again essential to permit the inclusion of effective features in a

deferred class, and to include assertions. For example classCOMPARABLEwill declareplus

alias "<" as deferred, and express the other features effectively in terms of it. (The type

like Current is explained in“Covarianceandanchoreddeclarations”,page70below; it may

be considered equivalent, in the following class text, to the typeCOMPARABLE.)

invariant
in_list: (1 <= index) and (index<= schedule.segments.count)
in_schedule: schedule.segments.item(index) = Current
next_in_list: (next/= Void) implies (schedule.segments.item (index + 1) =

next)
no_next_iff_last: (next= Void) = (index= schedule.segments.count)
non_negative_rating: rating >= 0
positive times: (starting_time> 0) and (ending_time> 0)
sufficient_duration: ending_time – starting_time>= Minimum_duration
decent_interval: (next.starting_time) – ending_time<= Maximum_interval

end

note
description: "Objects thatcanbecomparedaccordingtoatotalpreorder relation"

deferred class
COMPARABLE
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Note how<= is defined in terms of<, and>= in terms of<=.

Multiple inheritance and feature renaming

It is often necessary to define a new class in terms of several existing ones. For example:

• The Kernel Library classesINTEGERandREALmust inherit from bothNUMERICand
COMPARABLE.

• A classTENNIS_PLAYER, in a system for keeping track of player ranking, will inherit
from COMPARABLE, as well as from other domain-specific classes.

• A classCOMPANY_PLANE may inherit from bothPLANE andASSET.

• ClassARRAYED_LIST, describing an implementation of lists through arrays, may inherit
from bothLIST andARRAY.

In all such cases multiple inheritance provides the answer.

Multiple inheritance can causename clashes: two parents can include a feature with the
same name. This would conflict with the ban on name overloading within a class — the rule
that no two features of a class may have the same name. Eiffel provides a simple way to
remove the name clash at the point of inheritance through therename subclause, as in

feature -- Comparison
is_lessalias "<" (other: like Current): BOOLEAN

-- Is current object less thanother?
require

other_exists: other/= Void
deferred
ensure

asymmetric: Resultimplies not (other< Current)
end

is_less_equalalias "<=" (other: like Current): BOOLEAN
-- Is current object less than or equal toother?

require
other_exists: other/= Void

do
Result:= (Current< other) or is_equal(other)

ensure
definition: Result= (Current< other) or is_equal(other)

end
… Other features: is_greateralias ">", min, max, …
invariant

irreflexive: not (Current< Current)
end
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Here bothLISTandARRAYhave features calledcountand item. To make the new class
valid, we give new names to the features inherited fromARRAY, which will be known within
ARRAYED_LISTas capacityand array_item. Of course we could have renamed theLIST
versions instead, or renamed along both inheritance branches.

Every feature of a class has afinal name: for a feature introduced in the class itself
(“immediate” feature) it is the name appearing in the declaration; for an inherited feature that
is not renamed, it is the feature’s name in the parent; for a renamed feature, it is the name
resulting from the renaming. This definition yields a precise statement of the rule against in-
class overloading:

It is interesting to compare renaming and redefinition. The important distinction is
between features and feature names. Renaming keeps a feature, but changes its name.
Redefinition keeps the name, but changes the feature. In some cases, it is of course appropriate
to do both.

Renaming is interesting even in the absence of name clashes. A class may inherit from a
parent a feature which it finds useful for its purposes, but whose name, appropriate for the
context of the parent, is not consistent with the context of the heir. This is the case with
ARRAY’s featurecountin the last example: the feature that defines the number of items in an
array — the total number of available entries — becomes, for an arrayed list, themaximum
number of list items; the truly interesting indication of the number of items is the count of how
many items have been inserted in the list, as given by featurecountfrom LIST. But even if we
did not have a name clash because of the two inheritedcount features we should rename
ARRAY’s count ascapacityto maintain the consistency of the local feature terminology.

The rename subclause appears before all the other feature adaptation subclauses —
redefine already seen, and the remaining onesexport, undefine and select — since an

note
description: "Sequential finite lists implemented as arrays"

class
ARRAYED_LIST[G]

inherit
LIST[G]
ARRAY[G]

rename
countas capacity, itemas array_item

end
feature

…
end

Final Name rule

Two different features of a class may not have the same final name.
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inherited feature that has been renamed sheds its earlier identity once and for all: within the
class, and to its own clients and descendants, it will be known solely through the new name.
The original name has simply disappeared from the name space. This is essential to the view
of classes presented earlier: self-contained, consistent abstractions prepared carefully for the
greatest enjoyment of clients and descendants.

Inheritance and contracts

A proper understanding of inheritance requires looking at the mechanism in the framework of
Design by Contract, where it will appear as a form ofsubcontracting.

The first rule is that invariants accumulate down an inheritance structure:

The invariant of a class is automatically considered to include — in the sense of logical
“and” — the invariants of all its parents. This is a consequence of the view of inheritance as
an “is” relation: if we may consider every instance ofB as an instance ofA, then every
consistency constraint on instances ofA must also apply to instances ofB.

Next we consider routine preconditions and postconditions. The rule here will follow from
an examination of what contracts mean in the presence of polymorphism and dynamic
binding.

Consider a parentA and a proper descendantB (a direct heir on the following figure),
which redefines a routiner inherited fromA.

As a result of dynamic binding, a calla1.r from a clientC may be serviced not byA’s
version ofr but byB’s version ifa1, although declared of typeA, becomes at run time attached
to an instance ofB. This shows the combination of inheritance, redefinition, polymorphism
and dynamic binding as providing a form ofsubcontracting; A subcontracts certain calls to
B.

Invariant Accumulation rule

The invariants of all the parents of a class apply to the class itself.

Client, parent
and heir

A

r
require

pre
…
ensure

post
end

C

B

r++

require
pre’

…
ensure

post’Inheritance

Client
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The problem is to keep subcontractors honest. Assuming preconditions and
postconditions as shown on the last, a call inC of the form

or justa1.q; a1.r where the postcondition ofq implies the preconditionpreof r, satisfies the
terms of the contract and hence is entitled to being handled correctly — to terminate in a state
satisfyinga1.post. But if we let the subcontractorB redefine the assertions to arbitrarypre’
andpost’, this is not necessarily the case:pre’ could be stronger thanpre, enablingB not to
process correctly certain calls that are correct fromA’s perspective; andpost’could be weaker
thanpost, enablingB to do less of a job than advertized forr in the short form ofA, the only
official reference for authors of client classes such asC. (An assertionp is stronger than or
equal to an assertionq if p impliesq in the sense of boolean implication.)

The rule, then, is that for the redefinition to be correct the new preconditionpre’ must be
weaker than or equal to the originalpre, and the new postconditionpost’must be stronger than
or equal to the originalpost’.

Because it is impossible to check simply that an assertion is weaker or stronger than
another, the language rule relies on new variants of the assertion constructs:require elseand
ensure then, relying on the mathematical property that, for any assertionsp andq, p implies
( p or q), and (p and q) impliesp. For a precondition, usingrequire elsewith a new assertion
will perform anor, which can only weaken the original; for a postcondition,ensure thenwill
perform anand, which can only strengthen the original. Hence the rule:

The last case — retaining the original — is frequent but by no means universal.

The Assertion Redeclaration rule applies toredeclarations. This terms covers not just
redefinition but also effecting (the implementation, by a class, of a feature that it inherits
deferred). The rules — not just for assertions but also, as reviewed below, for typing — are
indeed the same in both cases. Without the Assertion Redeclaration rule, assertions on
deferred features, such as those onextend, countandforth in “Deferredfeaturesandclasses”,
page51, would be almost useless — wishful thinking; the rule makes them binding on all
effectings in descendants.

From the Assertion Redeclaration rule follows an interesting technique: abstract
preconditions. What needs to be weakened for a precondition (or strengthened for a

if  a1.pre then a1.r end

Assertion Redeclaration rule

In the redeclared version of a routine, it is not permitted to use arequire or
ensure clause. Instead you may:
• Use a clause introduced byrequire else, to be or-ed with the original

precondition.

• Use a clause introduced byensure then, to be and-ed with the original
postcondition.

In the absence of such a clause, the original assertion is retained.
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postcondition) is not the assertion’s concrete semantics but its abstract specification as seen
by the client. A descendant can change theimplementationof that specification as it pleases,
even to the effect of strengthening the concrete precondition, as long as the abstract form is
kept or weakened. The precondition of procedureextendin the deferred classLISTprovided
an example. We wrote the routine (page52) as

The precondition expresses that it is only possible to add an item to a list if the
representation is not full. We may well consider — in line with the Eiffel principle that
whenever possible structures should be of unbounded capacity — thatLISTshould by default
makefull always return false:

Now a classBOUNDED_LISTthat implements bounded-size lists (inheriting, like the
earlierARRAYED_LIST, from bothLIST andARRAY) may redefinefull:

Procedureextendremains applicable as before; any client that used it properly withLIST
can rely polymorphically on theFIXED_LISTimplementation. The abstract precondition of
extendhas not changed, even though the concrete implementation of that precondition has in
fact been strengthened.

Note that a class such asBOUNDED_LIST, the likes of which indeed appear in EiffelBase,
is not a violation of the Eiffel advice to stay away from fixed-size structures. The
corresponding structures are bounded, but the bounds are changeable. Althoughextend

extend(x: G)
-- Add x at end of list.

require
space_available: not full

deferred
ensure

one_more: count= old count + 1
end

full: BOOLEAN
-- Is representation full?
-- (Default: no)

do
Result:= False

end

full: BOOLEAN
-- Is representation full?
-- (Answer: if and only if number of items iscapacity)

do
Result:= (count= capacity)

end
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requiresnot full, another feature, calledforceby convention, will be available to work in all

cases, resizing (and possibly reallocating) the structure if necessary. Even arrays in Eiffel are

not fixed-size, and have a procedureforcewith no precondition, accepting any index position.

The Assertion Redeclaration rule, together with the Invariant Accumulation rule, provides

the right methodological perspective for understanding inheritance and the associated

mechanisms. Defining a class as inheriting from another is a strong commitment; it means

inheriting not only the features but the logical constraints. Redeclaring a routine is a

committing decision: it means that you are providing a new implementation (or, for an

effecting, a first implementation) of a previously defined semantics, as expressed by the

original contract. Usually you have a wide margin for choosing your implementation, since

the contract only defines a range of possible behaviors (rather than just one behavior), but you

must remain within that range. Otherwise you would be perverting the goals of redeclaration,

using this mechanism as a sort of late-stage hacking to override bugs in ancestor classes.

Join and uneffecting

It is not an error to inherit two deferred features from different parents under the same name,

provided they have the same signature (number and types of arguments and result). In that

case a process offeature join takes place: the features are merged into just one — with their

preconditions and postconditions, if any, respectively or-ed and and-ed.

More generally, it is permitted to have any number of deferred features andoneeffective

feature that share the same name: the effective version will apply to all the others.

All this is not a violation of the Final Name rule (page58), since the name clashes

prohibited by the rule involve twodifferent features having the same final name; here the

result is justone feature, resulting from the join of all the inherited versions.

Sometimes we may want to joineffective features inherited from different parents,

assuming again the features have compatible signatures. One way is to redefine them all into

a new version; then they again become one feature, with no name clash in the sense of the

Final Name rule. But in other cases we may simply want one of the inherited implementations

to take over the others. The solution is to revert to the preceding case byuneffecting the other

features; uneffecting an inherited effective feature makes it deferred (this is the reverse of
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effecting, which turns an inherited deferred feature into an effective one). The syntax uses the
undefine subclause:

Again what counts, to determine if there is an invalid name clash, is the final name of the
features. In this example to of the joined features were originally calledf; the one fromA was
calledg, but inD it is renamed asf, so without the undefinition it would cause an invalid name
clash.

Feature joining is the most common application of uneffecting. In some non-joining cases,
however, it may be useful to forget the original implementation of a feature and let it start a
new life devoid of any burden from the past.

Changing the export status

Another Feature Adaptation subclause makes it possible to change the export status of an
inherited feature. By default — covering the behavior desired in the vast majority of practical
cases — an inherited feature keeps its original export status (exported, secret, selectively
exported). In some cases, however, this is not appropriate:

• A feature may have played a purely implementation-oriented role in the parent, but
become interesting to clients of the heir. Its status will change from secret to exported.

• In implementation inheritance (for exampleARRAYED_LISTinheriting fromARRAY) an
exported feature of the parent may not be suitable for direct use by clients of the heir. The
change of status in this case is the reverse of the previous one.

classD inherit
A

rename
g asf -- g was effective in A

undefine
f

end
B

undefine f end -- f was effective in B
C

-- C also has an effective featuref, which will serve as implementation
-- for the result of the join.

feature
…
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You can achieve either of these goals by writing

This gives a new export status to the features listed (under their final names since, as noted,
export like all other subclauses comes afterrename if present): they become exported to the
classes listed. In most cases this list of classes,X, Y, …, consists of justANY, to re-export a
previously secret feature, orNONE, to hide a previously exported feature. It is also possible,
in lieu of the feature list, to use the keywordall to apply the new status to all features inherited
from the listed parent. Then there can be more than one class-feature list, as in

where any explicit listing of a feature, such ascapacity, takes precedence over the export
status specified forall. Here most features ofARRAYare secret inARRAYED_LIST, because
the clients should not permitted to manipulate array entries directly — they will manipulate
them indirectly through list features such asextendanditem, whose implementation relies on
array_itemand array_put —; but ARRAY’s featurecount remains useful, under the name
capacity, to the clients ofARRAYED_LIST.

Flat and flat-short forms

Thanks to inheritance, it is possible to write a concise class text which achieves a lot, relying
on all the features inherited from direct and indirect ancestors.

This is part of the power of the object-oriented form of reuse, but can create a
comprehension and documentation problem when the inheritance structures become deep:
how does one understand such a class, either as client author or as maintainer? For clients, the
short form, which only considers the class text, does not tell the full story about available
features; and for maintainers, much of the information must be sought in proper ancestors.

These observations suggest a need for mechanisms that will produce, from a class text, a
version that is equivalent feature-wise and assertion-wise, but has no inheritance dependency
at all. This is called theflat form of the class. It is a class text that has no inheritance clause
and includes all the features of the class, immediate (declared in the class itself) as well as

class D inherit
A

export { X, Y, …}  feature1, feature2, … end
…

class ARRAYED_LIST[G] inherit
ARRAY[G]

rename
countas capacity, itemas array_item, put as array_put

export
{ NONE} all
{ ANY}  capacity

end
…
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inherited. For the inherited features, the flat form must of course take account of all the feature
adaptation mechanisms: renaming (each feature must appear under its final name),
redefinition, effecting, uneffecting and export status change. For redeclared features,require
elseclauses are or-ed with the precursors’ preconditions, andensure thenclauses are and-ed
with precursors’ postconditions. For invariants, all the ancestors’ clauses are concatenated. As
a result, the flat form yields a view of the class, its features and its assertions that conforms
exactly to the view offered to clients and (except for polymorphic uses) heirs.

An Eiffel environment should provide tools to produce the flat form of a class. (In the ISE
environment users will click on the “Flat” button in the “Class Tool” to get it.)

The short form (“The shortform of a class”, page40) of the flat form of a class, known
as its flat-short form, is the complete interface specification, documenting all exported
features and assertions — immediate or inherited — and hiding implementation aspects. It is
the appropriate documentation for a class.

Repeated inheritance and selection

An inheritance mechanism, following from multiple inheritance, remains to be seen. Through
multiple inheritance, a class can be a proper descendant of another through more than one
path. This is called repeated inheritance and can be indirect, as in the following figure, or even
direct, when a classD lists a classA twice in itsinherit  clause.

This particular example is in fact often used by introductory presentations ofmultiple
inheritance, which is a grave pedagogical mistake: simple multiple inheritance examples
(such asINTEGER inheriting from NUMERIC and COMPARABLE, COMPANY_PLANE
from ASSET and PLANE and so on) should involve the combination ofseparate
abstractions. Repeated inheritance is an advanced technique; although precious, it does not
arise in elementary uses and requires a little more care.

In fact there is only one non-trivial issue in repeated inheritance: what does a feature of
the repeated ancestor, such aschange_addressandcomputer_account, mean for the repeated

TEACHING_
ASSISTANT

UNIVERSITY_
PERSON

STUDENTTEACHER

change_address

computer_account

Inheritance
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descendant, hereTEACHING_ASSISTANT? (The example features chosen involve a routine
and an attribute; the basic rules will be the same.)

There are two possibilities: sharing (the repeatedly inherited feature yields just one feature
in the repeated descendant) and duplication (it yields two). Examination of various cases
shows quickly that a fixed policy, or one that would apply to all the features of a class, would
be inappropriate. A feature such aschange_addresscalls for sharing: as a teaching assistant
you may be both teacher and student, but you are just one person and have just one official
domicile. But if there are different computers and accounts for students doing course work
and for faculty, you will probably have two accounts, one as a student and one as a teacher.

The Eiffel rule enables, once again, the software developer to craft the resulting class so
as to tune it to the exact requirements. Not surprisingly, it is based on names. In accordance
with the Final Name rule (no in-class overloading):

So to tune the repeated descendant, feature by feature, for sharing and replication it
suffices to use renaming. If you do nothing, you will obtain sharing, which is indeed in most
cases the desired policy (especially for those cases of unintended repeated inheritance:
makingD inherit fromA even though it also inherits fromB, which you forgot is already a
descendant ofA). If you use renaming somewhere along the way, so that the final names are
different, you will obtain two separate features. Note that it does not matter where the
renaming occurs; all that counts is whether in the common descendant,
TEACHING_ASSISTANTin the last figure, the names are the same or different. So you can
use renaming at that last stage to cause replication; but if the features have been renamed
higher you can also use last-minute renaming toavoidreplication, by bringing them back to
a single name.

The Repeated Inheritance rule gives the desired flexibility to disambiguate the meaning of
repeatedly inherited features. There remains a problem in case of redeclaration and
polymorphism. Assume that somewhere along the inheritance paths one or both of two
replicated versions of a featuref, such ascomputer_accountin the example, has been
redeclared; we need to define the effect of a calla.f (a.computer_accountin the example) if
a is of the repeated ancestor type, hereUNIVERSITY_PERSON, and has become attached as
a result of polymorphism to an instance of the repeated descendant, here
TEACHING_ASSISTANT. If one or more of the intermediate ancestors has redefined its
version of the feature, the dynamically-bound call has two or more versions to choose from.

Repeated Inheritance rule

• A feature inherited multiply under one name will be shared: it is considered to
be just one feature in the repeated descendant.

• A feature inherited multiply under different names will be replicated, yielding
as many variants as names.

Indirect
repeated
inheritance
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The ambiguity is resolved here through aselect clause, as in

The assumption here is that no other renaming has occurred —TEACHING_ASSISTANT
takes care of the renaming to ensure replication — but that one of the two parents has
redefinedcomputer_account, for exampleTEACHERto express the special privileges of
faculty accounts. In such a case the rule is that one (and exactly one) of the two parent clauses
in TEACHING_ASSISTANTmust select the corresponding version. Note that no problem
arises for an entity declared as

since the valid calls are of the formta.faculty_accountand ta.student_account, neither of
them ambiguous (the callta.computer_accountwould be invalid, since after the renamings
classTEACHING_ASSISTANT has no feature of that name). Theselect only applies to a call

with up of type UNIVERSITY_PERSON, dynamically attached to an instance of
TEACHING_ASSISTANT; then theselectresolves the ambiguity by causing the call to use the
version from TEACHER. For example if we traverse a data structure of the form
computer_users: LIST [UNIVERSITY_PERSON] to print some information about the
computer account of each element in the list, the account used for a teaching assistant is the
faculty account, not the student account. (Note that we can, if desired, redefine
faculty_accountin classTEACHING_ASSISTANT, using student_accountif necessary, to
take into consideration the existence of another account. But in all cases we need a precise
disambiguation of whatcomputer_accountmeans for aTEACHING_ASSISTANTobject
known only through aUNIVERSITY_PERSON entity.)

The selectis only needed in case of replication. If the Repeated Inheritance rule would
imply sharing, as with change_address, and one or both of the shared versions has been
redeclared, the Final Name rule makes the class invalid, since it now hastwo different
featureswith the same name. (This is only a problem if both versions are effective; if one or
both are deferred there is no conflict but a mere case of feature joining as explained in“Join
anduneffecting”, page62.) The two possible solutions follow from the previous discussions:

class TEACHING_ASSISTANTinherit
TEACHER

rename
computer_accountas faculty_account

select
faculty_account

end
STUDENT

rename
computer_accountas student_account

end
…

ta: TEACHING_ASSISTANT

up.computer_account
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• If you do want sharing, one of the two versions must take precedence over the other. It
suffices toundefine the other, and everything gets back to order. Alternatively, you can
redefine both into a new version, which takes precedence over both.

• If you want to keep both versions, switch from sharing to replication: rename one or both
of the features so that they will have different names; then you mustselect one of them.

Constrained genericity

Eiffel’s inheritance mechanism has an important application to extending the flexibility of the
genericity mechanism. In a classSOME_CONTAINER[G], as noted (1.7), the only
operations available on entities of typeG, the formal generic parameter, are those applicable
to entities of all types. A generic class may, however, need to assume more about the generic
parameter, as with a classSORTABLE_ARRAY[G… ] which will have a proceduresort that
needs, at some stage, to perform tests of the form

whereitem (i) and item ( j) are of typeG. But this requires the availability of a featureplus
alias "<" in all types that may serve as actual generic parameters corresponding toG. Using
the typeSORTABLE_ARRAY[INTEGER] should be permitted, becauseINTEGERhas such a
feature; but notSORTABLE_ARRAY[MATRIX] if there is no total order relation onMATRIX.

To cover such cases, declare the class as

making it constrained generic. The symbol–> recalls the arrow of inheritance diagrams;
what follows it is a type, known as the generic constraint. Such a declaration means that:

• Within the class, all features of the generic constraint — here all features of
COMPARABLE: is_lessalias "<", is_less_equalalias "<=" etc. — may be applied to
entities of typeG.

• A generic derivation is only valid if the chosen actual generic parameter conforms to the
constraint. Here we can useSORTABLE_ARRAY[INTEGER] since INTEGER is a
descendant ofCOMPARABLE, but notSORTABLE_ARRAY[INTEGER] if MATRIXis not
a descendant ofCOMPARABLE.

A class can have a mix of constrained and unconstrained generic parameters, as in the
EiffelBase classHASH_TABLE[G, H –> HASHABLE] whose first parameter represents the
types of objects stored in a hash table, the second representing the types of the keys used to
store them, which must beHASHABLE. As these examples suggest, structural property
classes such asCOMPARABLE, NUMERICandHASHABLEare the most common choice for
generic constraints.

Unconstrained genericity, as inC [G], is defined as equivalent toC [G –> ANY].

if  item(i) < item( j) then …

classSORTABLE_ARRAY[G –> COMPARABLE] … The rest as before…
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Assignment attempt

The Type Conformance rule (“Polymorphism”, page47) ensures type safety by requiring all
assignments to be from a more specific source to a more general target.

In some cases, the type of the target object cannot be known for sure. This happens for
example when the target comes from the outside — a file, a database, a network. The
persistence storage mechanism(“Deepoperationsandpersistence”,page27) includes, along
with the procedurestoreseen there, the reverse operation, a functionretrievedwhich yields
an object structure retrieved from a file or network, to which it was sent usingstore. But
retrievedas declared in the corresponding classSTORABLEof EiffelBase can only return the
most general type,ANY; the exact type can only be ascertained at execution time, since the
corresponding objects are not under the control of the retrieving system, and might even have
been corrupted by some external agent.

In such cases we cannot trust the declared type but must check it against the type of an
actual run-time object. Eiffel introduces for this purpose theassignment attemptoperation,
written

with the following effect (only applicable ifx is a variable entity of reference type):

• If y is attached, at the time of the instruction’s execution to an object whose type conforms
to the type ofx, perform a normal reference assignment.

• Otherwise (ify is void, or attached to a non-conforming object), makex void.

Using this mechanism, a typical object structure retrieval will be of the form

As another application, assume we have aLIST [ACCOUNT] and class
SAVINGS_ACCOUNT, a descendant ofACCOUNT, has a featureinterest_ratewhich was not

x ?= y

x ?= retrieved
if  x = Void then

“We did not get what we expected”
else

“Proceed with normal computation, which will typically involve
calls of the formx.some_feature”

end
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in ACCOUNT. We want to find the maximum interest rate for savings accounts in the list.
Assignment attempt easily solves the problem:

Note that if there is no savings account at all in the list the assignment attempt will always
yield void, so that the result of the enclosing function will be 0, the default initialization.

Assignment attempt is useful in the cases cited — access to external objects beyond the
software’s own control, and access to specific properties in a polymorphic data structure. The
form of the instruction precisely serves these purposes; not being a general type comparison
(but only a verification of a specific expected type) it does not carry the risk of encouraging
developers to revert to multi-branch instruction structures, for which Eiffel provides the
usually preferable alternative of polymorphic, dynamically-bound feature calls.

Covariance and anchored declarations

The final property of Eiffel inheritance involves the rules for adapting not only the
implementation of inherited features (through redeclaration of either kind, redeclaration and
redefinition, as seen so far) and their contracts (through the Assertion Redeclaration rule), but
also their types. More general than type is the notion of a feature’ssignature, defined by the
number of its arguments, their types, the indication of whether it has a result (that is to say, is
a function or attribute rather than a procedure) and, if so, the type of the result.

In many cases the signature of a redeclared feature remains the same as the original’s. But
in some cases we may want to adapt it to the new class. For example if we assume that class
ACCOUNT has features

local
s: SAVINGS_ACCOUNT

do
from account_list.startuntil account_list.after loop

s ?= acc_list.item
-- item from LIST yields the element at cursor position

if s /= Voidand then s.interest_rate> Resultthen
-- Usingand then (rather thanand) ensures that
-- s.interest_rate is not evaluated ifs = Void is true.

Result:= s.interest_rate
end
account_list.forth

end
end
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Assume we introduce an heirBUSINESS_ACCOUNTof ACCOUNTto represent special
business accounts, corresponding to classBUSINESS inheriting fromHOLDER:

Clearly,ownermust be redefined in classBUSINESS_ACCOUNTto yield a result of type
BUSINESS; the same signature redefinition must be applied to the argument ofset_owner.
This case is fully typical of the general scheme of signature redefinition: in a descendant, you
may need to redefine both query results and routine arguments to types conforming to the
originals. This is reflected by a language rule:

The term “covariance” reflects the property that all types — those of arguments and those
of results — vary together in the same direction as the inheritance structure.

If a feature such asset_ownerhas to be redefined for more than its signature — to update
its implementation or assertions — explicit signature redefinition is acceptable. For example
set_ownercould do more for business owners than it does for ordinary owners. Then the
redefinition will be of the form

But in many cases the body will be exactly the same as in the precursor. Then explicit
redefinition would be unbearably tedious, implying constant text duplication. The mechanism

owner: HOLDER
set_owner(h: HOLDER)

-- Make h the account owner.
require

not_void: h /= Void
do

owner:= h
end

Covariance rule

In a feature redeclaration, both the result type if the feature is a query (attribute
or function) and the type of any argument if it is a routine (procedure or function)
must conform to the original type as declared in the precursor version.

ACCOUNT HOLDER

BUSINESSBUSINESS_
ACCOUNT

…

Inheritance

Client

…

Parallel
hierarchies
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of anchored redeclaration solves this problem. The original declaration ofset_ownerin
ACCOUNT should be of the form

A like anchor type, known as an anchored type, may appear in any context in which
anchorhas a well-defined typeT: anchorcan be an attribute or function of the enclosing class,
or an argument of the enclosing routine. Then in the class in which it appears typelike anchor
means the same asT; for example, inset_ownerabove, the declaration ofh has the same effect
as ifh had been declared of typeHOLDER, the type of the anchorownerin classACCOUNT.
The difference comes in proper descendants: if a type redefinition changes the type of the
anchor, any entity declaredlike the anchor will be considered to have been redefined too. So
this is a form of implicit type redeclaration.

In the example, classBUSINESS_ACCOUNTonly needs to redefine the type ofowner(to
BUSINESS). Then there is no need to redefineset_owner— except if we want to change its
implementation or assertions.

It is possible to useCurrentas anchor; the declarationlike Currentdenotes a type based
on the current class (with the same generic parameters if any). This is in fact a common case;
we saw in“Structuralpropertyclasses”,page56, that it applies in classCOMPARABLEto
features such as

since we only want to compare two comparable elements of compatible types — but not, for
example, integer and strings, even if both types conform toCOMPARABLE. (A “balancing
rule” makes it possible, however, to mix the various arithmetic types, consistently with
mathematical traditions, in arithmetic expressions such as3 + 45.82 or boolean expressions
such as3 < 45.82.)

Similarly, procedurecopyis declared in classANYas

set_owner(b: BUSINESS)
-- Makeb the account owner.

… New routine body…
end

set_owner(h: like Current)
-- Make h the account owner.
-- The rest as before:

require
not_void: h /= Void

do
owner:= h

end

is_lessalias "<" (other: like Current): BOOLEANis …

copy(other: like Current) is …
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with both the argument anchored to the current object. Functionclone, for its part, has
signatureclone(other: ANY): like other, showing a result anchored to the argument, so that
the type ofclone(x) for any x is the same as the type of x.

A final, more application-oriented example of anchoring toCurrentwould be the feature
mergeposited in an earlier example (page31) with the signaturemerge(other: ACCOUNT).
By using insteadmerge(other: like Current) we can ensure that in any descendant class —
BUSINESS_ACCOUNT, SAVINGS_ACCOUNT, MINOR_ACCOUNT… — an account will
only be mergeable with another of a compatible type.

Covariance complicates somewhat the static type checking mechanism; mechanisms of
“system validity” and “catcalls” address the problem, which is discussed in detail in the book
Object-Oriented Software Construction(see the bibliography).

1.10 OTHER IMPORTANT MECHANISMS

We now examine a few supplementary mechanisms that complement the preceding picture:
shared objects; constants; instructions; and lexical conventions.

Once routines, shared objects, smart initialization and on-demand execution

The Eiffel’s method obsession with extendibility, reusability and maintainability yields, as
has been seen, highly modular and decentralized architectures, where inter-module coupling
is limited to the strictly necessary, interfaces are clearly delimited, and all the temptations to
introduce obscure dependencies, in particular global variables, have been removed. There is
a need, however, to let various components of a system have access to common objects,
without requiring their routines to pass these objects around as arguments (which would only
be slightly better than global variables). For example various classes may need to perform
output to a common “console window”, represented by a shared object.

Eiffel addresses this need through an original mechanism that also takes care of another
important issue, poorly addressed by many design and programming approaches:
initialization. The basic idea is very simple: if instead ofdo the implementation of an effective
routine is introduced by the keywordonce, it will only be executed the first time the routine
is called during a system execution (or, in a multithreaded environment, the first time in each
thread), regardless of what the caller was. Subsequent calls from the same caller or others will
have no effect; if the routine is a function, it will always return the result computed by the first
call — object if an expanded type, reference otherwise.

In the case of procedures, this provides a convenient initialization mechanism. A delicate
problem in the absence of aoncemechanism is how to provide the users of a library with a
set of routines which they can call in any order, but which all need, to function properly, the
guarantee that some context had been properly set up. Asking the library clients to precede
the first call with a call to an initialization proceduresetupis not only user-unfriendly but silly:
in a well-engineered system we will want to check set-up in every of the routines, and report
an error if necessary; but then if we were able to detect improper set-up we might as well shut
up and set up (by callingsetup) ourselves instead. This is not easy, however, since the object

http://eiffel.com/doc/oosc
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on which we callsetupmust itself be properly initialized, so we are only pushing the problem
further. Makingsetup aonce procedure solves it: we can simply include a call

at the beginning of each affected routine; the first one to come in will perform the needed
initializations; subsequent calls will have, as desired, no effect. We may call this mechanism
smart initialization .

Once functions will give us shared objects. A common scheme is

The first call will create the appropriate window and return a reference to it. Subsequent calls,
from anywhere in the system, will return that same reference. The simplest way to make this
function available to a set of classes is to include it in a classSHARED_STRUCTURESwhich
the classes needing a set of related shared objects will simply inherit.

For the classes using it,console, although a function, looks very much as if it was an
attribute — only one referring to a shared object.

The “Hello World” system at the beginning of this chapter (1.4) used an output instruction
of the form io.put_string("Some string"). This is another example of the general scheme
illustrated byconsole. Featureio, declared inANYand hence usable by all classes, is a once
function that returns an object of typeSTANDARD_FILES(another Kernel Library class)
providing access to basic input and output mechanisms. Procedureput_stringis one of them.
Because basic input and output must all work on the same files,io should clearly be a once
function, shared by all classes that need these mechanisms.

By default, “once” means “once in this execution”. The mechanism actually provides
further versatility. You may include aonce key, as inonce("THREAD"); this specifies, in a
multi-threaded setup, that the routine will be executed once for each thread of execution.
Another predefined once key is"OBJECT", specifying that you want the routine to be
executed once for each applicable object. For example, the function

setup

console: WINDOW
-- Shared console window

once
create Result.make(…)

end

historical_data: LARGE_AMOUNT_OF_INFORMATION
-- Collection of supplementary pieces of information on this object

once("OBJECT")
create Result.make(…)
“Load in all the necessary information”

end
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will retrieve a possibly large amount of information, but only once for each object, and only
if needed (since retrieve the information for every instance would take up unrealistic space).
This provides a convenient form ofon-demand execution, which wihtout the once
mechanism might require tedious and repetitive programming.

As further refinements of the mechanism, you may select an arbitrary string as once key;
a routine may list more than one once key, as inonce("KEY1", "KEY2"); and you may execute
a callonces.refresh("SOME_KEY"), using featureoncesfrom classANY, to reset all routines
that have listed"SOME_KEY" as a once key, that is to say, cause them to execute their bodies
again the next time they are called. To reset all once routines, useonces.refresh_all.

Constant attributes

The attributes studied earlier were variable: each represents a field present in each instance of
the class and changeable by its routines.

It is also possible to declare constant attributes, as in

These will have the same value for every instance and hence do not need to occupy any
space in objects at execution time. (In other approaches similar needs would be addressed by
constants, as in Pascal or Ada, or macros, as in C.)

What comes after theis is a manifest constant: a self-denoting value of the appropriate
type. Manifest constants are available for integers, reals, booleans (TrueandFalse), characters
(in single quotes, as 'A', with special characters expressed using a percent sign as in '%N' for
new line, '%B' for backspace and '%U' for null).

Manifest constants are also available for strings, using double quotes as in

with special characters again using the % codes. It is also possible to declare manifest arrays
using double angle brackets:

which is an expression of typeARRAY[INTEGER]. Manifest arrays and strings are not
atomic, but denote instances of the Kernel Library classesSTRINGandARRAY, as can be
produced by once functions.

Instructions

Eiffel has a remarkably small set of instructions. The basic computational instructions have
been seen: creation, assignment, assignment attempt, procedure call,retry . They are
complemented by control structures: conditional, multi-branch, loop, as well asdebug and
check.

Solar_system_planet_count: INTEGERis 9

User_friendly_error_message: INTEGERis "Go get a life!"

<<1, 2, 3, 5, 7, 11, 13, 17, 19>>
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A conditional instruction has the formif … then … elseif… else… end. Theelseif…
part (of which there may be more than one) and theelse… part are optional. After theif
comes a boolean expression; afterthen, elseif andelse come zero or more instructions.

A multi-branch instruction has the form

where theelse inst0 part is optional,exp is an expression of typeINTEGER (as here),
CHARACTERor STRING, the values listed in thewhen parts are constants of the
corresponding type (or constant intervals such as1..10), listing all different values, andinst0,
inst1, inst2, … are sequences of zero or more instructions.

The effect of such a multi-branch instruction, if the value ofexpis one of the values listed
or belongs to one of the intervals, is to execute the correspondinginsti. If none of thevi
matches, the instruction executesinst0, unless there is noelsepart, in which case it triggers
an exception (the appropriate behavior, since an absentelsepart is an explicit statement that
theexpmust have one of the values listed, unlike a conditionalif c then instendwith noelse
part, which does nothing in the absence of anelse part).

A variant of the multi-branch instruction lets you discriminate on the basis of the type of
the run-time object attached to the value of an expression:

This is useful when the various branches do not use the specific type ofexp, as when
discriminating between various kinds of exception in arescueclause. For more sophisticated
discrimination structures, dynamic binding usually provides a better solution.

inspect
exp

when 0 then
inst1

when–1, 1..10 then
inst2

…
else

inst0
end

inspect
exp

when { TYPE1}  then
inst1

when { TYPE2}, { TYPE3} then
inst2

else
inst0

end
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The loop construct has the form

The invariant inv andvariant var parts are optional, the others required.initialization and
bodyare sequences of zero or more instructions;exit andinv are boolean expressions (more
precisely,inv is an assertion);var is an integer expression.

The effect is to executeinitialization, then, zero or more times untilexit is satisfied, to
executebody. (If after initialization the value ofexit is already true,bodywill not be executed
at all.) Note that the syntax of loops always includes an initialization, as most loops require
some preparation. If not, just leaveinitialization empty, while including thefrom since it is a
required component.

The assertioninv, if present, expresses aloop invariant (not to be confused with class
invariants). For the loop to be correct,initialization must ensureinv, and then every iteration
of bodyexecuted whenexit is false must preserve the invariant; so the effect of the loop is to
yield a state in which bothinv andexitare true. The loop must terminate after a finite number
of iterations, of course; this can be guaranteed by using aloop variant var. It must be an
integer expression whose value is non-negative after execution ofinitialization, and decreased
by at least one, while remain non-negative, by any execution ofbodywhenexit is false; since
a non-negative integer cannot be decreased forever, this ensures termination. The full-
assertion-monitoring mode will check these properties of the invariant and variant after
initialization and after each loop iteration, triggering an exception if the invariant does not
hold or the variant is negative or does not decrease.

An occasionally useful instruction isdebug (Debug_key, …) instructionsend where
instructionsis a sequence of zero or more instructions and the part in parentheses is optional,
containing if present one or more strings (debug keys). Compilation options of the
environment (specifying explicit debug keys, or just yes or no to govern the effect of debug
instructions with no keys) make it possible to treat this instruction as executing the
instructions, or doing nothing at all. The obvious use is for instructions that should be part of
the system but executed only in some circumstances, for example to provide extra debugging
information.

The final instruction is connected with Design by Contract. The instruction
checkAssertionsend, whereAssertionsis a sequence of zero or more assertions, will have

from
initialization

until
exit

invariant
inv

variant
var

loop
body

end
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no effect unless assertion monitoring is turned on at the Check level or higher. In that case it
will evaluate all the assertions listed, having no further effect if they are all satisfied; if any
one of them does not hold, however, the instruction will trigger an exception.

This instruction serves to state properties that are expected to be satisfied at some stages
of the computation — other than the specific stages, such as routine entry and exit, already
covered by the other assertion mechanisms such as preconditions, postconditions and
invariants. A recommended use ofcheckinvolves calling a routine with a precondition, where
the call, for good reason, does not explicitly test for the precondition. Consider a routine of
the form

Because of the call tosome_feature, the routine will not work unless its precondition is
satisfied. A calla.r (x) can appear asif x /= Void then a.r (x) end, but this is not the only
possible scheme; for example if the preceding instruction iscreatex then we knowx is not
void and do not need to protect the call at all. In some cases, however, the argument showing
thatx is not void might be less obvious; for examplex could have been obtained, in a non-
adjacent part of the algorithm, asclone(y) for somey that we know is not void. It is good
practice in this case to write the call as

Note the recommended convention: extra indentation of thecheckpart to separate it from
the algorithm proper; and inclusion of a comment listing the rationale behind the developer’s
decision not to check explicitly for the precondition.

In production mode with assertion monitoring turned off, this instruction will have no
effect. But it will be precious for a maintainer of the software who is trying to figure out what
it does, and in the process to reconstruct the original developer’s reasoning. (The maintainer
might of course be the same person as the developer, six months later.) And if the rationale is
wrong somewhere, turning assertion checking on will immediately uncover the bug.

r (ref: SOME_REFERENCE_TYPE)
require

not_void: r /= Void
do

r.some_feature
…

end

check
x_not_void: x /= Voidend

-- Becausex was obtained as a clone ofy,
-- andy is not void because [etc.]

end
a.r (x)



§1.11  CONCURRENCY AND FURTHER DEVELOPMENTS 79
Lexical conventions

Eiffel software texts are free-format: distribution into lines is not semantically significant, and
any number of successive space and line-return characters is equivalent to just one space. The
style rules suggest indenting software texts as illustrated by the examples in this chapter.

About 65 names — all unabbreviated single English words, except forelseif which is
made of two words — are reserved, meaning that they cannot be used to declare new entities.
Most of them are keywords, serving only as syntactic markers, and conventionally written in
boldface in texts such as the present one:class, feature, inherit etc. Other reserved words,
such asCurrent, directly carry a semantic denotation.

Except in manifest character constants (appearing in single quotes, such as 'A') and
character strings (appearing in double quotes, such as "lower and UPPER"), letter case is not
significant, to avoid errors due to subtle differences in writing an identifier. The style rules are
again quite strict: they suggest writing class names in upper case, asACCOUNT, non-constant
feature names and keywords in lower case, asbalanceand class, constant features and
predefined entities and expressions with an initial lower case, asAvogadroandCurrent.

Successive declarations or instructions may be separated by semicolons. Eiffel’s syntax
has been so designed, however, that (except in rare cases)the semicolon is optional. Omitting
semicolons for elements appearing on separate lines lightens text and is the recommended
practice. For clarity, however, successive elements appearing on a single line should always
be separated by semicolons.

1.11 CONCURRENCY AND FURTHER DEVELOPMENTS

Recent work has resulted in advanced mechanisms being made available to the Eiffel
community in the area of concurrency, Internet development, multithreading, CORBA.

SCOOP

Many proposals have been made to make Eiffel support concurrent programming; an
extensive bibliography may be found athttp://www.eiffel.com. The most developed of these
proposals is known as SCOOP — Simple Concurrent Object-Oriented Programming — and
is the result of work performed between 1991 and 1996.

The key word in SCOOP is the first: “Simple”. SCOOP represents a minimal extension to
Eiffel — one keyword,separate— and takes full advantage of the existing sequential Eiffel
mechanisms, remaining fully compatible with the spirit of the method which its prolongs to
its natural concurrent counterparts. In spite of its simplicity, it is extremely general, covering
all known forms of concurrency, from multiple processes to Internet programming,
multithreading and distributed computation (all implemented or being implemented in ISE’s
environment at the time of writing). The following summary is drawn from the chapter on
concurrency inObject-Oriented Software Construction.

We use the fundamental scheme of O-O computation: feature call,x.f (a), executed on
behalf of some object O1 and callingf on the object O2 attached tox, with the argumenta.

http://eiffel.com/doc/oosc
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But instead of a single processor that handles operations on all objects, we may now rely on
different processors for O1 and O2 — so that the computation on O1 can move ahead without
waiting for the call to terminate, since another processor handles it.

Because the effect of a call now depends on whether the objects are handled by the same
processor or different ones, the software text must tell us unambiguously what the intent is for
any x. Hence the need for the single new keyword: rather than justx: SOME_TYPE, we
declarex: separateSOME_TYPEto indicate thatx is handled by a different processor, so that
calls of targetx can proceed in parallel with the rest of the computation. With such a
declaration, any creation instructioncreatex.make(…) will spawn off a new processor — a
new thread of control — to handle future calls onx.

Nowhere in the software text should we have to specifywhichprocessor to use. All we
state, through theseparatedeclaration, is that two objects are handled by different processors,
since this radically affects the system’s semantics. Actual processor assignment can wait until
run time. Nor do we settle too early on the exact nature of processors: a processor can be
implemented by a piece of hardware (a computer), but just as well by a task (process) of the
operating system, or, on a multithreaded OS, just a thread of such a task. Viewed by the
software, “processor” is an abstract concept; you can execute the same concurrent application
on widely different architectures (time-sharing on one computer, distributed network with
many computers, threads within one Unix or Windows task…) without any change to its
source text. All you will change is a “Concurrency Configuration File” which specifies the
last-minute mapping of abstract processors to physical resources.

We need to specify synchronization constraints. The conventions are straightforward:

• No special mechanism is required for a client to resynchronize with its supplier after a

separate callx.f (a) has gone off in parallel. The client will wait when and if it needs to:

when it requests information on the object through a query call, as in

value:= x.some_query. This automatic mechanism is calledwait by necessity.

• To obtain exclusive access to a separate object O2, it suffices to use the attached entitya
as an argument to the corresponding call, as inr (a).

• A routine precondition involving a separate argument such asa causes the client to wait
until the precondition holds.

• To guarantee that we can control our software and predict the result (in particular, rest
assured that class invariants will be maintained), we must allow the processor in charge of
an object to execute at most one routine at any given time.

• We may, however, need tointerrupt the execution of a routine to let a new, high-priority
client take over. This will cause an exception, so that the spurned client can take the
appropriate corrective measures — most likely retrying after a while.

This covers most of the mechanism, which will enable us to build the most advanced
concurrent and distributed applications through the full extent of Eiffel techniques reviewed
in this chapter, from multiple inheritance and behavior classes to static typing, dynamic
binding and Design by Contract.
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Other developments

(--- REWRITE OR REMOVE---) As part of the growth of Eiffel usage in large projects and
its openness to the rest of the software world, a number of important developments, some
already in the form of products, others in progress, have recently occurred:

• Development of multithreading libraries (which may be used without the SCOOP
extensions of the preceding section for users using sequential Eiffel, or in conjunction with
SCOOP).

• CORBA interfaces, as a result of a cooperation between ISE and ICL Ltd., and of a multi-
vendor effort leading to a proposed official Eiffel binding for IDL, the Interface Definition
Language of CORBA.

• Interfaces to Microsoft’s OLE 2 and Active X.

• Interfaces to relational and object-oriented databases.

• Libraries or reusable components in many different areas (such as ISE’s EiffelMath for
scientific and financial applications).

• Java and Java bytecode generation, Java interfaces.

• Interfaces to many other industry-standard products.
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PART II: LANGUAGE DESCRIPTION
This second part of the book presents the full description of the Eiffel language. It presents
the formal elements (syntax, validity, semantics) interspersed with detailed explanations and
examples.

For an extract containing only the formal elements, see partVI .
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Syntax, validity and semantics
2.1 OVERVIEW

To study the details of Eiffel, you will need a few conventions and basic
rules. In particular, you will need to understand the role of the three levels
of language description:

• Syntax, defining the textual structure of Eiffel software.

• Validity , defining when a syntactically well-formed software element
has a meaning.

• Semantics, specifying what that meaning is, in terms of its effect on the
software’s execution.

Each of these levels conditions the next: validity is only defined for a
syntactically legal element, and semantics only for a valid element. This
chapter defines the three levels more precisely and introduces the notations
used, in the rest of the book, to describe the syntax, validity and semantics of
Eiffel constructs. It also offers an overview ofcorrectness, a part of semantics.

Before proceeding, you should have read the note about the language
description styleafter the Preface.

2.2 SYNTAX: COMPONENTS, SPECIMENS, CONSTRUCTS

Eiffel’s syntax defines the structure of class texts.

The structure only: to express furtherlimitations on legal texts, we need validity
constraints; and to describe the effect of these texts, we need semantic rules.

Syntax, BNF-E
Syntax is the set of rules describing the structure of software texts.
The notation used to define Eiffel’s syntax is calledBNF-E.

← “Aboutthelanguage
description”,  page xv.

→ See below2.7 and
2.8,startingonpage96,
about validity con-
straints, and2.9 about
semantics.
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Here are the key syntax notions:

An important convention will simplify the discussions:

This example illustrates another convention

BesidesClass, examples of construct names includeParenthesizedand
Unlabeled_assertion_clause. Every non-terminal appears in the index with
the page of its syntactical definition. Anappendix gives the full list.

“BNF” is Backus-Naur Form, a traditional technique for describing the
syntax of a certain category of formalisms (“context-free languages”),
originally introduced for the description of Algol 60. BNF-E adds a few
conventions — one production per construct, a simple notation for repetitions
with separators — to make descriptions clearer. The range of formalisms that
can be described by BNF-E is the same as for traditional BNF.

Component, construct, specimen
Any class text, or syntactically meaningful part of it, such as an
instruction, an expression or an identifier, is called acomponent.
The structure of any kind of components is described by a
construct. A component of a kind described by a certain
construct is called aspecimen of that construct.

For example, any particular class text, built according to the rules given in
this language description, is acomponent. TheconstructClassdescribes
the structure of class texts; any class text is aspecimenof that construct. At
the other end of the complexity spectrum, an identifier such as
your_variable is a specimen of the constructIdentifier.

Although we could use the term “instance” in lieu of “specimen”, it could
cause confusion with the instances of an Eiffel class — the run-time objects
built according to the class specification.

Construct Specimen convention
The phrase ‘‘anX’’, whereX is the name of aconstruct, serves as
a shorthand for ‘‘aspecimen ofX’’.

For example, ‘‘aClass’’ means ‘‘a specimen of constructClass’’: a text
built according to the syntactical specification of the constructClass.

Construct Name convention
Everyconstruct has a name starting with an upper-case letter and
continuing with lower-case letters, possibly with underscores (to
separate parts of the name if it uses several English words).

Typesetting conventions complement the Construct Name convention:
construct names, such asClass, always appear in Roman and inGreen—
distinguishing them from the blue of Eiffel text, as inResult := x.

→ AppendixK, Syntax
in alphabetical order

→ “Textual conven-
tions”,  page 94.
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2.3 TERMINALS, NON-TERMINALS AND TOKENS

Every construct is either a ‘‘terminal’’ or a ‘‘non-terminal’:

An example of non-terminal isConditional, whose specimens are
“conditional instructions” such as

Such a non-terminal construct specimen includes further syntactical
components, here the expressiona > b and the instructionsput (a) and
put (b) — themselves specimens of non-terminals, with further sub-
components. We may represent the full structure as a “syntax tree” as
illustrated on the next page.

2.4 THE LEXICAL LEVEL

As the figure shows, constructs defining keywords and symbols, such asif
and;, do not have construct names, since they each have a single specimen
(if  etc.) which you can use directly to refer to the construct.

Other terminal constructs such asIdentifier represent many possible
specimens (an infinity of them in the case ofIdentifier). So, like non-
terminal constructs, they need a name and a description of how to obtain
their specimens. They are calledlexical constructs. Other examples of
lexical constructs includeInteger, denoting unsigned integer constants,
such as598, andString, denoting sequences of arbitrary characters. As
noted earlier, the specimens of a lexical construct, such as individual
integers or strings, are calledtokens.

Terminal, non-terminal, token
Specimens of aterminal construct have no further syntactical
structure. Examples include:
• Reserved words such asif andResult.
• Manifestconstants such as the integer234; symbols such as;

(semicolon) and+ (plus sign).
• Identifiers (used to denote classes, features, entities) such as

LINKED_LISTandput .
The specimens of terminal constructs are calledtokens.
In contrast, the specimens of anon-terminal construct are
defined in terms of other constructs.

Tokens (also calledlexical components) form the basic vocabulary of
Eiffel texts. By starting with tokens and applying the rules of syntax you
may build more complex components — specimens of non-terminals.

if  a > b then put (a) else put (b) end

Chapter32, about the
lexical structure,
explains the various
kinds of tokens.
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Lexical constructs are covered in a laterchapter. Because tokens have
such a simple structure, we usually don’t need, for lexical constructs, the
formal production rules that we will study next for non-terminal constructs.
We satisfy ourselves with definitions such as “anIdentifieris a sequence of
one or more characters, of which the first is a letter and any subsequent one
a letter or a number or an underscore”.

2.5 PRODUCTIONS

To specify a non-terminal construct we need to define what its possible
specimens are. That was true for terminals too, but here we require a little
more machinery, in the form of aproduction for every non-terminal:

(Then_part_list)

(Then_part)

(Else_part)

(Identifier)

(Actuals)

(Expression)

(Ident-
ifier)

a

if

put

(Conditional)

then

else

end

(Expression)

(Instruction)

(Call)(Binary_expression)

(Expr-
ession)

(Binary) (Expression)

a b

(Instruction)

(Identifier)>

(Ident-
ifier)

(Actuals)

b

put

(Call)

(Expression)

(Identifier)

(Construct_name)

Non-
terminal

Terminal

(Identifier)

A syntax tree
showing the
structure of a
construct
specimen

For the syntax produc-
tions, see e.g. appendix
K. A few intermediate
nodes(non-terminals)
have been omitted for
simplicity.

→ Chapter32.
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We need three kinds of right side:

The rest of this section explores them in turn.

Aggregate productions

The right-sideof an Aggregate production lists one or more constructs,
some of which may be in square brackets to indicate optional parts. This
specifies that, to obtain a specimen of the left-hand side construct, you
simply provide asuccession(“aggregation”) of specimens of the listed
constructs, in the order given. So theproduction

indicates that aConditional is made of the keywordif , followed by a
Then_part_list(that is to say, a specimen of theThen_part_listconstruct),
possibly followed by anElse_part— “possibly” because brackets indicate
an optional component —, followed by the keywordend. More generally:

Production
A production is a formal description of the structure of all
specimens of anon-terminalconstruct. It has the form

Construct=∆ right-side
whereright-sidedescribes how to obtain specimens of theConstruct.

The symbol=∆  may be read aloud as “is defined as”.
BNF-E uses exactly one production for each non-terminal. The reason for
this convention is explainedbelow.

Kinds of production

A production is of one of the following three kinds, distinguished
by the form of theright-side:
• Aggregate, describing a construct whose specimens are made

of a fixed sequence of parts, some of which may be optional.
• Choice, describing a construct having a set of given variants.
• Repetition, describing a construct whose specimens are made of

a variable number of parts, all specimens of a given construct.

Conditional =∆ if  Then_part_list[Else_part] end

→ “One production
per non-terminal”,
page 93.

→ Page481.
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Choice productions

A Choiceproduction also lists a number of constructs, but with a different
purpose: we want to state that a specimen of the left-hand side construct is
a specimen ofone — any one — of the listed constructs (rather than
specimens ofall the non-optional specimens, as in the aggregate case).

We separate the alternatives by vertical bars| to suggest exclusive
choice. Forexample:

This specifies that aType is one of: a Class_or_tuple_type, a
Formal_generic_name, anAnchored. More generally:

Repetition productions

Use a Repetition production for a certain construct to express that its
specimens are made ofany number of specimens of some given construct,
separated, if more than one, by a specified separator. The production will
use braces, and three dots… to suggest repetition; it will also list either an
asterisk∗ if “any number” means “zero or more”, or a plus sign+ to specify
“one or more”.

Aggregate production
An aggregateright side is of the formC1 C2 ... Cn (n > 0), where
every one of theCi is aconstruct and any contiguous subsequence
may appear in square brackets as[Ci ... Cj] for 1≤ i ≤ j ≤ n.
Every specimen of the corresponding construct consists of a
specimen ofC1, followed by a specimen ofC2, ..., followed by a
specimen ofCn, with the provision that for any subsequence in
brackets the corresponding specimens may be absent.

Type =∆ Class_or_tuple_type |
Formal_generic_name |
Anchored

Choice production
A choiceright side is of the formC1 | C2 | ... |Cn (n > 1), where
every one of theCi is a construct.
Every specimen of the correspondingconstruct consists of
exactly one specimen of one of theCi.

→ Page328.
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So a right side of the form{C § …} + means “one or more specimens of
C, to be separated by§”, where§ is a separator symbol or, more generally
a construct. Replace+ by ∗ for “zero or more”, allowing constructs with
empty specimens.

For example:

means that a specimen ofThen_part_list— representing the “then part” of
a conditional instruction, as specified by the production forConditional
shown earlier as an example of aggregate — consists of one or more
Then_partclauses, separated, if more than one, by the keywordelseif. So
typical specimens ofThen_part_list are of the forms

and so on, wheret1, t2, t3 … are specimens ofThen_part.

If the production had used an asterisk * instead of a plus+, the empty
text would also have been an acceptable specimen ofThen_part_list.

More generally:

The last two cases are not common, since most repetitions involve a
separator, but for those that don’t the simpler notation suffices.

Then_part_list=∆ { Then_partelseif…} +

t1
t1 elseif t2
t1 elseif t2 elseif t3

Repetition production, separator
A repetition right side is of one of the two forms

{ C § ...}*
{C § ...}+

whereC and§ (theseparator) areconstructs.
Every specimen of the corresponding construct consists of zero
or more (one or more in the second form) specimens ofC, each
separated from the next, if any, by a specimen of§.
The following abbreviations may be used if the separator is empty:

C*
C+

→ Page481.
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Using recursive productions

You will note that many productions appear to define constructs recursively
(that is to say, in terms of themselves). For example the grammar includes
the following three productions:

which, taken together, show thatInstruction is defined in terms of
Conditional, defined in terms ofElse_part, defined in terms ofCompound,
defined in terms ofInstruction. This may seem strange (if you haven’t seen
syntax descriptions before), but in fact may make perfect sense.

Such recursive chains, to be useful, must always include a Choice
production, with at least one branch leading to a construct entirely defined
from terminals. Although the mathematical theory falls beyond the scope
of this book, the general idea is that if the mutually recursive productions
involving a constructA are

whereT1, T2 andT3 are terminal constructs, then the possible specimens
of A are of the form

wheret1 is a specimen ofT1 etc.

Informally, you may view a set of mutually recursive productions as an
equationN = T + A ∗ N, whereN is the vector of non-terminals (A andB in
the last example),T is a vector of terminals,A is a matrix of terminals, + is
choice (the same as |), and∗ is concatenation. Then the solution of the

equation isN = T + A ∗ T + A2 ∗ T + A3 ∗T + ...

Instruction =∆ ... Other choices ... |Conditional

Conditional =∆ if  Then_part_list[Else_part] end

Else_part =∆ else Compound

Compound =∆ { Instruction ";" …} +

A =∆ T1 B T2

B =∆ A | T3

t1 t3 t2
t1 t1 t3 t2 t2
t1 t1 t1 t3 t2 t2 t2
… and so on ...

 For a detailed discus-
sion of the theory of fix-
points, which underlies
thesecomments,see the
book “Introduction to
the Theory of Program-
ming Languages”.
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One production per non-terminal

The conventions of BNF-E ensure a property mentioned earlier:

We donot, for example, define

Type =∆ … Other Choices… | like Anchor

with the last Choice branch involving an Aggregate. Instead, we use two
productions, one Choice and one Aggregate:

Non-production syntax rules

BNF-E and other BNF variants only cover a certain category of
grammatical structures, known as “context-free”. Not all properties of
interest are context-free; in addition some could in principle be described
by context-free productions, but not easily.

The language definition makes only moderate use of recursion thanks to the
availability of Repetition productions: when the purpose is simply to
describe a construct whose specimens may contain successive specimens
of another construct, a Repetition generally gives a clearer picture; see for
example the definition ofCompound as a repetition ofInstruction.
Recursion remains necessary to describe constructs with unbounded
nesting possibilities, such asConditional andLoop.

Basic syntax description rule

Everynon-terminalconstruct is defined by exactly oneproduction.

Unlike in most BNF variants, every BNF-E production always uses exactly
one of Aggregate, Choice and Repetition,nevermixing them in the right
sides. This convention yields a considerably clearer grammar, even if it has
a few more productions (which in the end is good since they give a more
accurate image of the language’s complexity).

Type =∆ ... Other Choices ... |Anchored
Anchored=∆ like Anchor
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To capture such properties we must use any applicable description
technique, often just plain English (but as usual with much care and
precision). We call such excursions from BNF “non-production” rules:

2.6 REPRESENTING TERMINALS

As shown by the preceding examples, the right sides of productions often
list some terminals. This raises a problem for reserved words, which might
be mistaken for construct names — consider for example the keyword
classand the constructClass— and special symbols, some of which, such
as{ , [ and +, are also used as symbols of the syntax notation.

The following conventions remove any ambiguity.

Non-production syntax rule
A non-production syntax rule, marked “(non-production)”, is a
syntax property expressed outside of theBNF-E formalism.

Unlike validity rules, non-production syntax rules belong to the syntax,
that is to say the description of the structure of Eiffel texts, but they capture
properties that are not expressible, or not conveniently expressible, through
a context-free grammar.

For example the BNF-E Aggregate productions allow successive right-
side components to be separated by an arbitrary break — any sequence of
spaces, tabs and “new line” characters. In a few cases, for example in an
Alias declaration such asalias"+", it is convenient to use BNF-E — with a
right-side listing the keywordalias, a double quote, anOperatorand again
a double quote — but we need toprohibit breaks between either double
quote and the operator. We still use BNF-E to specify such constructs, but
add a non-production syntax rule stating the supplementary constraints.

Textual conventions

The syntax (BNF-E) productions and other rules of the Standard
apply the following conventions:
1 • Symbols of BNF-E itself, such as the vertical bars | signaling

a choice production, appear in black (non-bold, non-italic).



§2.6  REPRESENTING TERMINALS 95
As an example, here is the syntactic definition of the constructCompound,
given by a repetition production. A specimen ofCompoundis formed of
zero or more specimens ofInstruction, separated by semicolons:

2 • Any construct name appears indark green(non-bold, non-
italic), with a first letter in upper case, asClass.

3 • Any component (Eiffel text element) appears inblue.

4 • The double quote, one of Eiffel’sspecialsymbols, appears in
productions as '" ': a double quote character (blue like other
Eiffel text) enclosed in two single quote characters (black
since they belong to BNF-E, not Eiffel).

5 • All other special symbols appear in double quotes, for
example a comma as ",", an assignment symbol as ":=", a
single quote as "'" (double quotes black, single quote blue).

6 •Keywords and otherreservedwords, such asclassandResult,
appear inbold (blue like other Eiffel text). They do not require
quotes since the conventions avoid ambiguity with construct
names:Class is the name of a construct,classa keyword.

7 • Examples of Eiffel comment text appear in non-bold, non-
italic (and in blue), as-- A comment.

8 • Other elements of Eiffel text, such as entities and feature names
(including in comments) appear in non-bolditalic (blue).

The color-related parts of these conventions do not affect the
language definition, which remains unambiguous under black-
and-white printing (thanks to the letter-case and font parts of the
conventions). Color printing is recommended for readability.
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2.7 VALIDITY

The productions and other elements labeledSYNTAX, as described so far,
specify the structure of constructs. In many cases, however, adherence to
the structural requirements does not suffice to guarantee that a specimen of
a construct will be meaningful.

For example, the followingAssignment is built according to the
syntactical specification of the corresponding construct:

x := f. func(a + b, x)

But this does not mean that theAssignmentwill be acceptable in every
possible context. It must also satisfy certain rules regarding the types of the
components involved, the number of arguments passed to a routine such as
funcetc. Such supplementary requirements are called validity constraints

Because of the difference between cases1 and3, { denotes the opening
brace as it might appear in an Eiffel class text, whereas { is a symbol of the
syntax description, used in repetition productions.

In case2 the use of an upper-case first letter is a consequence of the
“Construct Name convention”.

Special symbols are normally enclosed in double quotes (case5), except
for the double quote itself which, to avoid any confusion, appears enclosed
in single quotes (case4). In either variant, the enclosing quotes — double
or single respectively — are not part of the symbol.

In some contexts, such as thetableof all suchsymbols, special symbols
(cases4 and5) appear in bold for emphasis.

In application of cases7 and8, occurrences of Eiffel entities or feature
names in comments appear in italics, to avoid confusion with other
comment text, as in a comment

-- Update the value ofvalue.

where the last word denotes a query of namevaluein the enclosing class.

Compound { Instruction";" …} *

Validity constraint
A validity constraint on aconstruct is a requirement that every
syntactically well-formedspecimen of the construct must satisfy
to be acceptable as part of a software text.

← Page86.

→ Pages890, 1154.

=
∆

→ The specification of
Assignment is on page
589. The right side in
this example is a speci-
men of qualifiedCall,
whose syntax appears
on page626.
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Validity constraints come in addition to syntactic rules, and are in fact
defined only for what the definition calls “syntactically well-formed
specimens”. In theAssignment example, the validity constraint is:

(The “target entity” is the left side,x in the example; the “source
expression” is the right side.)

Such validity constraints are introduced by theVALIDITY road sign as
shown. Every constraint has a four-character code, hereVBAR, uniquely
identifying it. You do not need to pay any attention to these codes as you
are first reading this book; but implementors of language processing tools,
especially compilers, should include the appropriate code in any error
message that reports a constraint violation. Then, if you get one of these
error messages during system development, you will be able to look up the
code in the index of this book, where they all appear under the heading
“validity codes”, directing you to the detailed explanation of the language
rule that you may have violated.

Some compilers, such as Eiffel Software’s EiffelStudio environment,
give you the exact validity constraint, out of this book, as part of the
error message.

The first letter of a validity code is alwaysV (for “Validity”), the second
one identifies the chapter, such asB for this chapter; the last two are a
mnemonics for the constraint, for exampleAR for Assignment Rule.

A number of the validity rules have been reorganized from the previous
editions. The appendix on changesgives the list of differences.

Many constraints, such as theFeatureDeclarationrule,VFFD, list several
conditions, each identified with a number. Error messages in this case
should include not just the constraint code but also the number of the
particular condition which was violated, for exampleVFFD (2).

Assignment rule VBAR

An Assignmentis valid if and only if its source expression
conforms to itstarget entity.

Valid
A constructspecimen, built according to the syntax structure
defined by the construct’s production, is said to bevalid, and will
be accepted by thelanguageprocessingtools of any Eiffel
environment, if and only if it satisfies thevalidity constraints, if
any, applying to the construct.

→ See a full discussion
of this constraint on
page590.

→ “CHANGES IN
VALIDITY CON-
STRAINTS AND CON-
FORMANCERULES”,

→ Page162.
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2.8 INTERPRETING THE CONSTRAINTS

To avoid confusion, use the language properly, and benefit from the
diagnostics of compilers and other tools, you must understand the precise
nature of constraints and the conventions governing their interpretation.

Almost all the constraints listed in this book arenecessary and sufficient
conditions. This is not the usual style for other programming language
descriptions, which commonly tell you that specimens of a certain
constructmustsatisfy a certain property, ormay notbe of a certain form.
Constraints in this book tell you instead that specimens of a certain
construct will be valid if and only if they meet a specified set of
requirements.

As discussed in thePreface, such a form is preferable, since it allows
you not just to detect that certain specific components arenotvalid, but also
to ascertain without doubt whether an arbitrary componentis valid.

This style requires a general convention. When reading the Assignment
rule, VBAR, used in the previous section to illustrate the notion of
constraint, it may have struck you that the rule cannot possibly suffice to
ensure the validity of the example assignment: what about the validity of
the right side,f.func (a + b, x), which must satisfy all the validity
constraints on function calls (funca properly defined and exported function
applicable to objects off’s type, with exactly two formal arguments of
types matching the actual arguments given)?

Spelling out all such conditions on the components of a construct would
lead to needlessly complex and repetitive validity constraints. Instead, all
validity discussions rely on a universal interpretation rule:

In theAssignmentcase, this means that constraintVBARis considered to
be automatically extended with the condition

“ … andx satisfiesall validity constraintsonspecimensof Variable,
andy satisfies all validity constraints on specimens ofExpression”

so that, for the exampleAssignmentabove, the Assignment rule implicitly
requires that f.func(a + b, x) be a valid function call.

General Validity rule VBGV

Every validity constraint relative to aconstruct is considered to
include an implicit supplementary condition stating that every
component of the construct satisfies every validity constraint
applicable to the component.

← See“FORMAL-
ITY”,  page xvi.

→ The constraint on
Variable is the Entity
rule, page513; for the
constraints onExpres-
sionsee chapter28..
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2.9 SEMANTICS

Lexical, syntactic and validity rules are only there to help us ensure that our
software makes sense. The next question — even more important — is:
what is that sense? The task of semantics is to answer that question.

The “effect” may include executing actions, producing a value, or both. It is
defined by a rule markedSEMANTICS. For specimens having subcomponents,
the rule will recursively refer to the semantics of the subcomponents.

The definition of “semantics” above explicitly assumes that the
construct is syntactically legal and valid. When reading theSEMANTICS

paragraphs, remember that they only apply to valid specimens. In many
cases, the semantic rules would not even make sense otherwise; attempting
to describe the effect of an invalid component is useless.

Most construct presentations will cover first syntax, then validity, then
semantics. This is the expected order: first how to build language components
of a certain kind; then what restrictions may exist on their parts; finally, what
the result means. In a few cases, the semantics comes before the validity; such
departures from the normal sequence occur when the best way to understand
the reason for a constraint is to look first at the construct’s effect in valid cases,
and then find out what is required for that semantics to make sense. The change
of order in such cases is, of course, only a pedagogical device; as everywhere
else, the semantic specification is meaningless for invalid components.

2.10 CORRECTNESS

Validity is only a structural property; execution of valid Eiffel software
may produce undesired results, or not terminate, or produce an exception
that lead tofailure.

The loop from until False loop end is a valid instruction, but, if executed,
will never terminate.

Even for a valid component, then, we need a more advanced criterion: the
component’s ability to operate properly at run-time. This is called
correctnessand is a more elusive aim than validity, since it involves
semantic properties.

Ascertaining the correctness of an executable software component
requires two pieces of information: what the component does (its
implementation), but also what it is expected to do (its specification, or

Semantics
Thesemanticsof aconstructspecimen that is syntactically legal
andvalid is the construct’s effect on the execution of a system that
includes the specimen.

This loop has an empty
initialization (from),
an empty loop body
(loop), and an exit con-
dition that can never
hold. See“LOOP”,
17.7, page 494.

→ “Failure” is a tech-
nical termdefined in the
discussion of excep-
tions in chapter26.

→ Assertions, specifi-
cationsandcorrectness
are studied in chapter9.



SYNTAX, VALIDITY AND SEMANTICS §2.11100
contract). Eiffel supports both aspects: along with the executable elements
of a class (the bodies of its routines, made of executable instructions), you
may provideassertions, which state the contracts.

A class will be said to be correct if its features are guaranteed to perform
according to their contracts.

2.11 TWO-TIER DEFINITION AND UNFOLDED FORMS

A number of Eiffel mechanisms provide high-level idioms for program
schemes that could also be addressed — less concisely, or less elegantly —
through other constructs. As a simple example, for aMulti_branch
instruction dealing with character constants, youmay use character
intervals rather than listing individual characters; instead of writing

you may replace the consecutive character choices by a single interval:

The effect is the same but the text is simpler. We may call such language
mechanismssecond-tier, where the first tier would contain the constructs
that cannot easily be expressed in terms of any others. The presence of
second-tier constructs doesn’t contradict the Eiffel language design
principle that “the language should provideonegood way to do anything
useful”, since the intention of the second-tier mechanisms is to provide a
significantly better means of expression in applicable cases.

For such mechanisms the language definition often relies on the
technique ofunfolded forms. The idea is simply to define the properties of
second-tier variants in terms of the more basic constructs; then it suffices
to define the validity constraints, semantic specification, or both, for these
basic forms. In the discussion of multi-branch instructions, thedefinition
of “Unfolded form of a Multi_branch” reduces any variant of the
instruction to one without intervals, so that the unfolded form of variant[2]
above is [1]. After that, the validity and semantic definition for
Multi_branchonly address (through a number of intermediate definitions)
the case of unfolded forms.

inspect
char

when then [1]
case1

else
case2

end

when then -- The rest as above [2]

→ “MUL TI-BRANCH
CHOICE”, 17.4,page
482.

'a', 'b', 'c', 'd', 'e'

'a'.. 'e'

→ Page486.
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We will find unfolded forms useful for specifying the following constructs:

• Multiple declarations.

• Inheritance parts, to ensure conformance of all types toANY.

• Only clauses in postconditions.

• Assertions.

• Precursor.

• Anchored declarations.

• Formal generic parameters

• Tuples, through the notion of “anonymous class”.

• Conversion

• Multi_branchchoice instruction and associatedInterval definitions.

• Creatorspart of a class.

• Creation instruction.

• Assigner call.

• Non-object call.

• Once routine in the case of a “fresh” call.

• Operator expressions, which we unfold into steps: first through the
“Parenthesized Form” to remove potential ambiguities thanks to
operator precedence; then through the “Equivalent Dot Form” reduce
every expression to aCall.

2.12 THE CONTEXT OF EXECUTING SYSTEMS

As explained in the next chapter, the executable units of Eiffel software are
called “systems” (although many people also use the more traditional term
“program”). The following terminology will serve to discuss the context of
system execution:

Execution terminology
• Run time is the period during which asystem is executed.

• The machine is the combination of hardware (one or more
computers) and operating system through which you can
execute systems.

• The machine type, that is to say a certain combination of
computer type and operating system, is called aplatform .

• Language processing toolsserve to build, manipulate, explore
and execute the text of an Eiffel system on a machine.

→ Unfolded form defi-
nition: : page159.

→ Page174.

→ Page244.

→ Page254.

→ Page306.

→ Page344.

→ Page353.

→ Page416.

→ Pages486and486.

→ Page548.

→ Page552.

→ Page600.

→ Pages630.

→ Pages646.

→ Pages769 and780.
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2.13 TEXTUAL CONVENTIONS

Eiffel texts are written in “free format”: the only purpose of separating
them into lines and including extra “white space” (space or tab characters)
in these lines is to improve the readability of class texts, according to the
style rules ofa later chapter.

A language processing tool treats any sequence of line separations,
spaces and tabs between lexical elements of the language as a single
“break”, asexplained in the chapter on the lexical structure. For such a tool
the only relevant information is the presence of a break, not its precise
makeup — for example its use of a line return rather than a space — which
is interesting only for human readers.

Eiffel is case-insensitive:

Hence the definitions:

The most obvious example of a language processing tool is an Eiffel
compiler or interpreter, which you can use to execute a system. But many
other tools can manipulate Eiffel texts: Eiffel-aware editors, browsers to
explore systems and their properties, documentation tools, debuggers,
configuration management systems. Hence the generality of the term
“ language processing tool”.

Case Insensitivity principle

In writing the letters of anIdentifierserving as name for a class,
feature or entity, or areserved word, using the upper-case or
lower-case versions has no effect on the semantics.

So you can write a class or feature name asDOCUMENT, documentand
evendOcUmEnT with exactly the same meaning.

Upper name, lower name
Theupper nameof anIdentifieror Operatori is i written with all
letters in upper case; itslower name, i with all letters in lower case.

→ Style guidelines are
the topic of appendix
34.

→ “BREAKS”,  32.5,
page 881

→ “Letter Caserule”,
page 886
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These rules are detailed in the correspondingchapter. They are for the
benefit of your fellow human readers; language processing tools such as
compilers will ignore them, except if they include an option for enforcing
style standards. Do apply these standards: one of the attractions of Eiffel is
its readability; consistency of Eiffel style, from Saõ Paulo to Sakhalin,
makes it even better.

Another convention that greatly facilitates the writing and maintenance
of Eiffel systems is the optional nature of semicolons:

In the example the lower name isdocumentand the upper nameDOCUMENT.

The definition is mostly useful for identifiers, but the names of some
operators, such asand and other boolean operators, also contain letters.

The reason for not letting letter case stand in the way of semantic
interpretation is that it is simply too risky to let the meaning of a software
text hang on fine nuances of writing, such as changing a letter into its upper-
case variant; this can only cause confusion and errors. Different things
should, in reliable and maintainable software, have clearly different names.

Letter case is of course significant in “manifest strings”, denoting texts to be
taken verbatim, such as error messages or file names.

This letter case policy goes with strong rules onstyle:

• Classes and types should always use the upper name, as with a
classDOCUMENT.

• Non-constant features and entities should always use the lower name, as
with an attributedocument.

• Constants and “once” functions should use the lower name with the first
letter changed to upper, as with a constant attributeDocument.

Syntax (non-production): Semicolon Optionality rule

In writing specimens ofany construct defined by a Repetition
production specifying the semicolon ";" as separator, it is
permitted, without any effect on the syntax structure, validity and
semantics of the software, to omit any of the semicolons, or to
add a semicolon after the last element.

→ Chapter34.
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This rule applies to instructions, declarations, successive groups of formal
arguments, and many other Repetition constructs. It does not rely on the
layoutof the software: Eiffel’s syntax is free-format, so that a return to the
next line has the same effect as one or more spaces or any other “break”.
Rather than relying on line returns, the Semicolon Optionality rule is
ensured by the syntax design of the language, which guarantees that
omitting a semicolon never creates an ambiguity.

The rule also guarantees that an extra semicolon at the end, as ina; b;
instead of justa; b is harmless.

The style guidelines suggest omitting semicolons (which would only
obscure reading) for successive elements appearing on separate lines, as is
usually the case for instructions and declarations, and including them to
separate elements on a given line.

Because the semicolon is still formally in the grammar, programmers
used to languages where the semicolon is an instructionterminator, who
may then out of habit add a semicolon after every instruction, will not
suffer any adverse effect, and will get the expected meaning.
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The architecture of Eiffel software
3.1 OVERVIEW

The present chapter introduces the overall structure of Eiffel software
by discussing in turn the notions of class, system and cluster.

The constituents of Eiffel software are calledclasses. To keep your classes
and your development organized, it is convenient to group classes into
clusters. By combining classes from one or more clusters, you may build
executablesystems.

These three concepts provide the basis for structuring Eiffel software:

• A class is a modular unit.

• A cluster is a logical grouping of classes.

• A systemresults from the assembly of one or more classes to produce
an executable unit.

Of these, only “class”, describing the basic building blocks, corresponds
directly to a construct of the language. To build clusters and systems out of
classes, you will use not a language mechanism, but tools of the
supporting environment.

Clusters provide an intermediate level between classes and systems,
indispensable as soon as your systems grow beyond the trivial:

• At one extreme, a cluster may be a simple group of a few classes.

• At the other end, a system as a whole is simply a cluster that you have
made executable (by selecting aroot classand aroot procedure).

• In-between, a cluster may be a library consisting of several subclusters,
or an existing system that you wish to integrate as a subcluster into a
larger system.

Clusters also serve to store and group classes using the facilities of the
underlying operating system, such as files, folders and directories.

After the basic definitions, the language description will concentrate on
classes, indeed the most important concept in the Eiffel method, which
views software construction as an industrial production activity: combining
components, not writing one-of-a-kind applications.
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3.2 CLASSES

Classes are not just the modular units of software decomposition: they also
serve as a basis for the types of Eiffel.

This dual view is essential to understanding the notion of class and,
more generally, the principles of object-oriented software construction:

• As a decomposition unit, a class is a module, that is to say a group of
relatedservices packaged together into a named unit.

• As a type, a class is the description of similar run-time data elements, or
objects, called the instances of the class.

Although these two roles may at first seem rather different, it is in fact
useful to support them through a single concept — the class — on the basis
of an important observation (the starting point of the theory ofAbstract
Data Types): a good way of describing a set of similar objects without
describing their implementation is to list the operations applicable to them.
But then if the objects are all instances of the same class, we can define that
class, viewed as a module, so that the services it offers are precisely the
operations available on the instances of the class, viewed as a type.

This identification of services on modules with operations on instances is
what makes it possible to merge the module and type views into the single
concept of class. Thefeatures of a class are these services-operations.

For example, a document processing system could have classes such as
DOCUMENT, PARAGRAPH, FONT, TEXT_DISPLAY. These are the
modular units of the system; their texts can be processed by an Eiffel
language processing tool, such as a compiler. They also describe possible
run-time objects: documents, paragraphs, fonts, displayable views of text.
Systems that include the given classes will be able to create such objects,
modify them, and access their properties.

Each of these classes will contain features; for example,PARAGRAPH
may include featuresindent, describing an operation that indents a
paragraph, andline_count, to determine the number of lines of a paragraph.

To create an instance of a class, you may use acreation instruction ; a
typical form is

wherex is the name of the entity that will denote the newly created object,
andcp is one of the features of the class, which must have been designated
as a creation procedure. This creates an object, makes it accessible
through the namex, and appliescp to initialize it. For example you might
create an instance of class DOCUMENT through

create x.cp (...)

create new_text.make("Isabelle", 250)

“ Object-Oriented Soft-
ware Construction”
discusses the practical
and theoretical roles of
classes.

→ Chapter19explains
the precise nature
of objects.

→ Chapter20.

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
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assuming DOCUMENT has a creation proceduremake with two
arguments: a string for the author’s name, an integer for the expected
number of pages.

A bit of more precise terminology is useful here. An instance of a class
C resulting from a creation instruction on a target of the corresponding type
is called adirect instance of C; in the last example,new_textwill be
attached to a direct instance ofDOCUMENT. The reason for this term is
that with the introduction of inheritance we will consider direct instances
of proper descendantsof C also as instances (not direct) ofC.

3.3 CLASS TEXTS AND CLASS NAMES

Every class has a class name, such asDOCUMENTor PARAGRAPH, and
aclass text describing the features of the class and its other properties.

As you know, letter case is not significant in identifiers, so that you can
write a class name asdoCumEntif you really want to. But this is strongly
discouraged. The standard style is to write all class names using their upper
names, such asDOCUMENT.

When you want to display a class in EiffelStudio, you may type its name in
any mix of lower and upper case (lower case is usually more convenient); the
tools will display the upper name.

The classes of a system must all, as discussedbelow, have different names.

3.4 CLUSTERS

As the number of classes in your systems grows, you will need to arrange
these classes into groups, called clusters.

Clusters correspond to the major divisions of a system. For example, a
compiling system may include a lexical cluster, a parsing cluster, a
semantic analysis cluster, an optimization cluster, a generation cluster. A
cluster may encompass a library, such as EiffelBase or EiffelVision; or it
may be an application cluster, encompassing a logically significant subset
of a system’s specific classes.

The figure on the next page illustrates a typical system structure as a set of
layers, each representing a cluster. Every cluster of this example except
KERNEL relies on others through pillars, representing the dependency
relations, client and inheritance, between the clusters’ classes. The lower
clusters, which normally should be built first, provide the basic
capabilities; the higher clusters are more specialized, including
APPLICATION which is assumed to cover the application-specific
facilities of the system. In practice, of course, a system may include several
application clusters.

→Chapter4presentsthe
structure of class texts.

→ Appendix34 pre-
sents style rules.
← The upper name is
the name all in upper
case. See“TEXTUAL
CONVENTIONS”,
2.13, page 102.

→ “Class Name rule”,
page 111.

The analogy with a
physical construction
works only to a point;
theauthorandpublisher
decline any responsibil-
ityshouldyoubuildyour
house with the architec-
ture shown.
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You may nest clusters; a cluster included in another is called asubcluster.
So we may represent a structure of classes and clusters as a tree, as shown
at the top of the facing page. With this structure, a system as a whole is a
cluster; a library is a cluster; and if you want to embed an existing system
(itself having such a nested structure) as a subsystem in a larger system,
you’ll make it one of its subclusters. Such arbitrary nesting is part of the
Eiffel method’s support for software reuse and composition:

It is useful to define these notions precisely:

Cluster, subcluster, contains directly, contains
A cluster is a collection of classes, (recursively) other clusters
called itssubclusters, or both. The cluster is said tocontain
directly  these classes and subclusters.
A clustercontains a classC if it contains directly eitherC or a
cluster that (recursively) containsC.

In the presence of subclusters, several clusters may contain a class, but
exactly one contains it directly.

APPLICATION

USER
INTERFACE

EIFFEL-

EIFFELVISION

WEL

EIFFELBASE

KERNEL

MEDIA

A possible
cluster
structure

Here some of the clus-
ters are Eiffel Software
Libraries.

In each cluster, some
classes are shown, with
possible inheritance
(singlearrow)andclient
(double arrow) links.
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In the figure clustersx1, x2andx3all contain classC; the one that contains
C directly isx3. These observations lead us to define two kinds of cluster:

This is not the recommended style, however; themethodological advice
is to keep the two cases separate, so that terminal clusters will contain only
classes and internal clusters will contain directly only subclusters. This is
the case in the example of the last figure.

Beyond this advice, there is no absolute rule on how to group classes
into clusters. It is usually wise to observe the following informal criteria:

• The classes in a cluster should be conceptually related.

• In most cases, the number of classes in a terminal cluster should not
exceed 20. You should consider splitting a terminal cluster into
subclusters if it reaches that size, unless you feel that the classes are
strongly connected and the cluster has a “flat” structure with no obvious
criterion for splitting it.

• Cycles in theclient relation should, in general, only involve classes that
all belong to the same terminal cluster, avoiding cases in whichA is a
client ofB and B a client ofA with A andB in different clusters.

• For any terminal cluster, there should be at least one person who
understands the cluster in its entirety.

Terminal cluster, internal cluster
A cluster isterminal  if it contains directly at least one class.
A cluster isinternal  if it contains at least onesubcluster.

From these definitions, it is possible for a cluster to be both terminal
and internal.

Internal cluster

Class

Terminal cluster

x1

x2

x3

C

Clusters,
subclusters
and classes

→ “Client” is a rela-
tion between classes,
studied in chapter7.
Cycles in the relation
areexplicitlypermitted;
see“SIMPLE CLI-
ENTS”,  7.4, page 193.
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Do not look, however, for a cluster construct in Eiffel. The highest-level
construct is the class; clusters, although essential for organizing Eiffel
software and managing its development, do not require language support.
This is because such support would in most cases be redundant with the
facilities provided by operating systems. If, as may be expected, classes are
kept in files, then clusters will use the operating system mechanisms
available to support the grouping of related files: folders (the Windows/
Macintosh term) and directories (Unix/Linux). If, as suggested above, you
make a clear separation between terminal and internal clusters, then some
cluster folders will only contain class files, and the others will only contain
subfolders. In the figure on the preceding page, squares then represent
folders and the circles represent class files.

Eiffel tools, unlike the Eiffel language, should support clusters. The notion of
cluster is also prominent in theLace control language.

3.5 SYSTEMS

By themselves, classes are only building blocks. To obtain an executable
software element, you must assemble one or more classes into asystem
and designate one of them as the “root”. Here are the precise definitions.

We start with a “universe” of classes:

For example, in the EiffelStudio environment, you may define a universe by
specifying (through the control language Lace, or through the graphical
interface) a set ofdirectories(folders), each defining acluster. The cluster is
a set of classes; by default, any file in that directory with a name ending with
.e— for example,your_class.e—, called aclass file, is expected to contain
an Eiffel class. The class texts contained in the class files of the specified
clusters then make up the universe.

Each class is given by its name:

This is indeed a unique identification within a universe:

Universe
A universe is a set of classes.

The universe provides a reference from which to draw classes of interest for
a particular system. Any Eiffel environment will provide a way to specify
a universe.

Class names
Class_name=∆ Identifier

→ Lace is a control lan-
guage for assembling,
compiling and execut-
ing Eiffel systems, cov-
ered by appendixB.
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Theprecedingvalidity rule leads to the rulegiving themeaningofaclassname:

As usual, the semantic rule only makes sense if the validity rule holds.

A system will be drawn from a universe; to do this we need to designate
a particular type and a particular procedure as “roots”:

Class Name rule VSCN

It is valid for auniverse to include a class if and only if no other
class of the universe has the same upper name.

Eiffel expressly does not include a notion of “namespace” as present in some
other languages. Experience with these mechanisms shows that they suffer
from two limitations:
• They only push forward the problem of class name clashes, turning it

into a problem of namespace clashes.
• Even more seriously, they tie a class to a particular context, making it

impossible to reorganize (“refactor”) the software later without
breaking existing code, and hence defeating some of the principal
benefits of object technology and modern software engineering.

Name clashes, in the current Eiffel view, should be handled bytools of the
development environment, enabling application writers to combine classes
from many different sources, some possibly with clashing names, and resolving
these clashes automatically (with the possibility of registering user preferences
and remembering them from one release of an acquired external set of classes
to the next) while maintaining clarity, reusability and extendibility.

Class name semantics

A Class_nameC appearing in the text of a classD denotes the
class calledC in the enclosinguniverse.

System, root type name, root procedure name
A system is defined by the combination of:
1 • A universe.

2 • A type name, called theroot type name.

3 • A feature name, called theroot procedure name.
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The names that you choose for root type and root procedure should
correspond to suitable types and procedures in the system. To state this rule
we need a notion of dependency between types:

This makes it possible to define what’s a proper choice of root type:

Type dependency
A typeT depends on a typeR if any of the following holds:
1 •R is aparent of thebase classC of T.

2 •T is aclient ofR.

3 • (Recursively) there is a typeSsuch thatT depends onSandS
depends onR.

This states thatC depends onA if it is connected toA directly or indirectly
through some combination of the basic relations between types and classes
— inheritance and client — studiedlater. Case1 relies on the property that
every type derives from a class, called its “base class”; for example a
generically derived type such asLIST [INTEGER] has base classLIST.
Case3gives us indirect forms of dependency, derived from the other cases.

Root Type rule VSRT

It is valid to designate a typeTNasroottype of asystem of universe
U if and only if it satisfies the following conditions:
1 •TN is the name of astand-alone typeT.

2 •T only involves classes inU.

3 •T’s base class is notdeferred.

4 • The base class of any type on whichT depends is inU.

→ Inheritance: chap-
ter 6; client: chapter7
(general definition on
page192); base class:
chapter11.
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To complement the conditions on the root type we need one on the root
procedure (the procedure that will start the system’s execution):

These conditions make it possible to create the root object:

• A type is “stand-alone” if it only involves class names; this excludes
“anchored” types (like some_entity) and formal generic parameters,
which only mean something in the context of a particular class text.
Clearly, if we want to use a type as root for a system, it must have an
absolute meaning, independent of any specific context. “Stand-alone
type” is defined at the end of the discussion of types.

• A deferred class is not fully implemented, and so cannot have any direct
instances. It wouldn’t work as base class here, since the very purpose of
a root type is to be instantiated, as the first event of system execution.

• To be able to assemble the system, we must ensure that any class to
which the root refers directly or indirectly is also part of the universe.

In condition2, a typeT “ involves” a classC if it is defined in terms ofC,
meaning thatC is the base class ofT or of any of its generic parameters:
U [V, X [Y, Z]] involvesU, V, X, YandZ. If T is a non-generic class used as a
type,T “involves” only itself.

Root Procedure rule VSRP

It is valid to specify a namepn as root procedure name for a
systemS if and only if it satisfies the following conditions:
1 •pn is the name of acreation procedurep of S’s root type.
2 •p has no formal argument.
3 •p is precondition-free.

A routine isprecondition-free(condition3) if it has no precondition, or a
precondition that evaluates to true. A routine can impose preconditions on
its callers if these callers are other routines; but it makes no sense to impose
a precondition on the external agent (person, hardware device, other
program...) that triggers an entire system execution, since there is no way
to ascertain that such an agent, beyond the system’s control, will observe
the precondition. Hence the last condition of the rule.

Regarding condition1, note that a non-deferred class that doesn’t explicitly
list any creation procedures is understood to have a single one, procedure
default_create, which does nothing by default but may be redefined in any
class to carry out specific initializations.

→ “DEFERRED
FEATURES”,  10.11,
page 272

→ “Typesandclasses
involved in a type”,
page 343.

→ “OMITTING THE
CREATION PROCE-
DURE”, 20.4,page527.
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Another condition on the root procedure is that it must be effective (non-
deferred): a deferred procedure has no implementation, and hence cannot
be used to start system execution. But we don’t need such a condition in the
Root Procedure rule, because it follows from the Root Class rule: if the root
class contained a deferred procedure, it would itself have to be declared as
deferred (as a result of arule to be seen in a later chapter), and we have
already precluded that through condition3 of the Root Class rule.

Thanks to the Root Type and Root Procedure rules we no longer have to
talk about type and procedurenames, but can directly refer to the root type,
the root procedure and the root class of a system:

Any language processing tool used to assemble and execute systems must
enable you to perform the following tasks:

1 • Selecting a root class.

2 • If the root class has two or more creation procedures, selecting one of
them — theroot procedure — for the system’s execution.

Techniques to perform these selections fall beyond the scope of Eiffel
proper, relying instead on tools of the environment. One possibility is to
useLace (Language for Assembling Classes in Eiffel), a simple Eiffel-like
notation for specifying how to build and process a system. You may find a
detailed description of Lace in anappendix.

The root type and root procedure are needed toexecutethe system:

Root type, root procedure, root class
In asystemSof root type nameTNand root procedure namepn,
the root type is the type of nameTN, the root class is thebase
class of that root type, and theroot procedure is the procedure
of namepn in that class.

System execution

To executeasystem on amachine means to cause the machine to
apply a creation instruction to the system’sroot type.

If a routine is a creation procedure of a type used as root of a system, its
execution will usually create other objects and call other features on these
objects. In other words, the execution of any system is a chain of explosions
— creations and calls — each one firing off the next, and the root procedure
is the spark that detonates the first step.

→ “Class Header
rule”,  page 126.

→ AppendixB.
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Classes
4.1 OVERVIEW

This chapter explores the role of classes and the structure of class texts.

4.2 OBJECTS

Viewed as a type, a class describes (as noted in the previous chapter) the
properties of a set of possible data structures, orobjects, which may exist
during the execution of a system that includes the class; these objects are
called theinstances of the class

An object may represent a real-world thing such as a radio signal in cell
phone software, a document in text processing software or an electron in
physics software. It may also represent an immaterial concept from that
world, such as a fabrication process in factory control software. Or it may
be a pure artefact of computer programming, such as an abstract syntax tree
in compilation software.

Classes corresponding to these examples might be:

• SIGNAL, whose instances represent signals transmitted by some device.

• DOCUMENT, whose instances represent documents.

• ELECTRON, whose instances represent electrons.

• NODE, whose instances represent nodes of syntax trees.

Every object that may exist during the execution of a system is an instance
of some class of that system. This is an important property, since it means
that thetype system is simple and uniform, being entirely based on the
notion of class.

Classes are the components used to build Eiffel software.

Classes serve two complementary purposes: they are the modular units
of software decomposition; they also provide the basis for the type system
of Eiffel.

→Theprecisenatureof
objects is explained in
chapter19.

→ Chapter11 covers
types.
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More precisely, every object is adir ect instance of only one class,
called itsgenerating class. It may, however, be aninstance(direct or not)
of many classes: all theancestors (in the sense of inheritance) of its
generating class.

Some classes, said to bedeferred, have no direct instances; they provide
incomplete object descriptions. IfC is deferred, an instance ofC is a direct
instance of some effective (that is to say non-deferred) descendant ofC.

4.3 FEATURES

Viewed as a module, a class introduces, through its class text, a set of
features. Some features, calledattributes, represent fields of the class’s
direct instances; others, calledroutines, represent computations applicable
to those instances.

Since there is no other modular facility than the class, building a
software system in Eiffel means identifying the types of objects the system
will manipulate, and writing a class for each of these types.

A system that includes a certain class will usually contain operations to
create instances of that class (creation instructions and expressions, for a
non-deferred class) and to apply features to those instances (featurecalls).

4.4 USE OF CLASSES

In some cases, one of the two roles of classes is more important than
the other.

• At one extreme, a class may be interesting only as a module
encapsulating a number of routines. (It then resembles the “packages”
of older programming languages.) Often, it will not then have any
variable attributes. A system that uses such a class will not create any
directinstances of it; instead, other classes of the system will make use
of its features by inheriting from it, or through “non-object calls”.

• At the other end, you may want to introduce a class simply because you
need to describe a new type of object, without necessarily thinking of its
role in the system architecture, at least at first. (It then resembles the
“records” or “structures” of older programming languages, although it
will usually include routines along with attributes.)

Both of these uses of classes arise in practice and both are legitimate.

In most cases, however, classes live up to their reputation, making a
name for themselves in both the module and type worlds.

→ For exact defini-
tions: “ instance”and
“direct instance”, page
330; “Generating
class", page506;
“ancestor”, page177.

→ See chapters6 and
10 about inheritance
and deferred routines.

→ Features are studied
in detail in chapter5.

→Creation:chapter20;
calls: chapter23.

Even though it has no
direct instances, such a
class will have
instances — the direct
instances of proper
descendants.

→ “NON-OBJECT
CALLS”, 23.9,page629.
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4.5 THE CURRENT CLASS

This will be complemented by the notion of “current type”, which
includes the formal generic parameters.

4.6 CLASS TEXT STRUCTURE

A class text contains the class name and a number of parts, all optional
except forClass_header, and all exceptFormal_genericsintroduced by
a keyword:

• Notes, beginning withnote.

• Class_header, beginning with one of:class; deferred class; expanded
class; separate class.

• Formal_generics, beginning with a bracket[.

• Obsolete, beginning withobsolete.

• Inheritance, beginning withinherit .

• Creators, beginning withcreate.

• Converters, beginning withconverter.

• Features, made of one or moreFeature_clauseeach beginning withfeature.

• Invariant, beginning withinvariant .

• Notes again, for more specific index properties if desired.

Here is an extract froma classdescribinghashtables, which illustrates all
clauses exceptObsolete:

Current class
The current class of a constructspecimen is the class in which
it appears.

Every Eiffel software element — feature, expression, instruction, … —
indeed appears in a class, justifying this definition. Most language
properties refer directly or indirectly, through this notion, to the class in
which an element belongs.
vb

note
description: "Hash tables used to store items associated %

with hashable keys."
names: h_table, dictionary
access: key, direct
representation: array
size: resizable

→ “Curr ent type”,
page 365

Thisclass isasimplified
form of one in the Eiffel-
Base library. A “hash
table” is a table used to
record a number of ele-
ments, each identified
by an individual key.
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class HASH_TABLE[G, KEY –> HASHABLE] inherit
TABLE[G, KEY]

redefine
load

end

create
make, from_tree

convert
from_tree({ BINARY_SEARCH_TREE})

feature -- Initialization
make (n: INTEGER)

-- Allocate space forn items.
… Procedure body omitted…

load … Rest of procedure omitted

feature -- Access
control: INTEGER
Max_control: INTEGERis 5

feature -- Status report
ok: BOOLEAN

-- Was last operation successful?
do

Result:= (control= 0)
end

… Other features omitted…
feature -- Removal

remove(k: KEY)
-- Remove entry of keyk.

require
valid_key: is_valid(k)

do
… Procedure implementation omitted…

ensure
not has(k)

end

invariant
0 <= control; control<= Max_control

note
date: "$Date: 1998/01/30 20:57:49 $"
revision: "$Revision: 1.8 $"
reviser: "Marcel Satchell, January 2000"
changes: "Copy and equality semantics"
original_author: "Eiffel Software, 1986"

end
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This abbreviated example is a specimen of aClass_declaration, with the
following general syntax:

The next section offers an informal overview of the various parts and their
roles, usingHASH_TABLEas illustration. Subsequent sections of this
chapter will only cover in detailNotes, Class_header, Formal_generics,
Obsoleteand the closingend; describing the rest is the task of the
following chapters.

4.7 PARTS OF A CLASS TEXT

As noted, classHASH_TABLEincludes all of the possible parts save for
Obsolete. Let’s examine them informally, in their order of appearance.

The firstNotespart serves to associate note information with the class,
to facilitate identification, archival and retrieval of the class based on
properties not found elsewhere in its text. TheNotespart is studied in detail
in the next section. It is organized as a sequence of clauses, each containing
an optionalNote term, such asdescription, a colon, and one or more
associated values. Examples include a short description of the scope of the
class (descriptionentry), or alternate names for the notion covered by the
class. TheNote terms and values are free, but this example uses some of
the recommended ones, part of the style guidelines.

The Class_headerintroduces the class name, hereHASH_TABLE.
Instead of justclass, the class header could begin withdeferred class,
expanded class or separate class, making the class “deferred”,
“expanded” or “separate”.

Class declarations
Class_declaration=∆ [Notes]

Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end

→ Inheritance is dis-
cussed in chapters6,
10, and16, Creators in
chapter20, Features in
chapter5, and Invari-
ant in chapter9.

→ Deferred classes:
10.11, page 272 and
subsequent sections.

→ Expanded: 11.9,
page 335 and subse-
quent sections. Sepa-
rate: chapter33.
Genericity: chapter12.
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TheFormal_genericspart, if present, makes the class “generic”, which
means it is parameterized by types. HereHASH_TABLEhas two formal
generic parameters:G, representing the type of the elements in a hash table;
andKEY, representing the type of the keys which serve to retrieve these
elements. To obtain a type from a generic class, you must provide types,
calledactual generic parameters. For example, you may declare an entity
denoting a possible hash table as

using typesCARandSTRINGas actual generic parameters forG andKEY:
the type HASH_TABLE [CAR, STRING] represents tables of cars
retrievable through strings (perhaps the license plate numbers). A type
obtained in this way is called ageneric derivation of the base class, here
HASH_TABLE. The entityownership_recorddeclared with this type may
at run-time become attached to a table from which it is possible to retrieve
cars from their associated strings.

The notationKEY–>HASHABLEin classHASH_TABLEindicates that the
second formal generic parameter,KEY, is “constrained” by the library class
HASHABLE. This means that any corresponding actual generic parameter must
be a descendant ofHASHABLE; this is indeed the case with classSTRING. The
first formal generic parameter,G, is “unconstrained”, allowing any type to be
used as the corresponding actual generic parameter.

TheObsoletepart, if present, indicates that the class is an older version
which should no longer be used except for compatibility with existing
systems. For example, along withHASH_TABLE, a library may contain a
class beginning with

The only effect of such a clause is that some language processing tools may
produce a warning when they process such a class. The warning should
reproduce theString listed after theobsolete keyword.

The Inheritancepart, beginning withinherit , lists theparents of the
class and anyfeature adaptation applied to the inherited features.
HASH_TABLEhas only one parent,TABLE; its Feature_adaptationpart,
beginning withredefine, simply indicates that the new class will provide a
new version of the inherited procedureload. There is indeed a declaration
of load in the class text.

ownership_record: HASH_TABLE[CAR, STRING]

class  H_TABLE[G, KEY–> HASHABLE]

inherit
… Rest of class text omitted…

→ On unconstrained
and constrained
genericderivations,see
12.3 and12.6, starting
on page351.

obsolete
"Use HASH_TABLE, which relies on improved algorithms"

→ Inheritance:
chapter6.
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The Creatorspart, beginning withcreate, lists the procedures which
clients may use tocreate direct instances of the class. Here there are two:
makeandfrom_tree. A client may create a direct instance ofHASH_TABLE
by executing a creation instruction (also using the keywordcreate) such as

which will allocate a new table with room for eighty thousand items.

A Converterspart lists some of the creation procedures as being also
conversionprocedures, allowing assignment from instances of other types.
Here it specifies as creation procedurefrom_tree, taking aBINARY_TREE
as argument; this permits, forh a hash table andb a binary tree, to
abbreviate the creation instruction

as just

TheFeaturespart introduces thefeatures of the class. It is made of zero or
more subparts, each called aFeature_clauseand introduced by the keyword
feature. There are two reasons for allowing more than oneFeature_clause:

• It is part of therecommendedstyle practice to group features into
categories. This yields a good class structure, facilitating understanding
and maintenance. The EiffelBase libraries define a number of feature
clause headers, each with a standard header comment; they include the
ones used in the example:Initialization, Access, Status report, Removal.

• Each may define an export status, making the corresponding features
public, secret, or available to specific clients. In the absence of such a
specification the default status is public availability.

Here noFeature_clausedeparts from the default so that all the features
shown — the proceduresmake, removeand load, the functionok, the
variable attributecontrol and the constant attributeMax_control— are
available to all clients. Calls from clients will use dot notation, as in

The last of these calls applies tomake, which is also a creation procedure
but here is just used as a normal exported procedure. (Compare this call
instruction with theCreationinstruction above, using the keywordcreate.)

create ownership_record.make(80_000)

create h.from_tree(b)

h := b

ownership_record.remove("1745 BB 75")
--Assuming aVariable entitystatus of type INTEGER:

status := ownership_record.control
ownership_record.make(10_000)

→ Creation: chapter20.

→ Conversion:
chapter15.

→ Features: chapter5.

→ “GROUPING
FEATURES”,  34.5,
page 911.

→ A feature is
“exported” if it is avail-
able to all clients. See
definition on page211.
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Of course, when deciding to exportmake, the designer ofHASH_TABLE
should make sure that calls occurring after the initialCreationinstruction will
have the proper effect; this probably means using a new size which is greater
than or equal to the original one (in other words, keeping the original if the
argument to the call is smaller), and writing the routine so that resizing does
not lose any of the previously inserted elements.

To ensure thatmakeis not available for outside calls, it would suffice to add a
Feature_clausewithanemptyClientslist,beginningwithfeature{ } ,andmove
the declaration ofmakethere. This isexplainedin detail in the chapters on
features and exports.

The Invariant part, beginning withinvariant , introduces consistency
conditions on the features of the class; here the condition simply gives the
bounds for attributecontrol.

Finally you may have a newNotesclause, complementing the one at the
beginning of the class, and introducing note information of a more
specialized nature, such as copyright, revision history and author name.

After this general survey of the structure of a class text, the rest of this
chapter examine five clauses which apply to the class as a whole:Notes,
Class_header, Formal_generics, Obsolete and ending comment.

4.8 ANNOTATING A CLASS

Through aNotesentry you may include documentary information in the
text of a class.

This is particularly important in the approach to software construction
promoted by Eiffel, based on libraries of reusable classes: the designer of
a class should help future users find out about the availability of classes
fulfilling particular needs.

We may imagine the author of a classDOCUMENTwriting the class
text as follows:

note

class DOCUMENTinherit … feature
…

note

end

→ “Restrictingexports”
,page201.A full exampl
appears in5.5, page 134

→ “CLASS INVARI-
ANTS”,  9.8, page 245.

description: "Documents of the most general form"
domains: text, text_processing, FrameMaker

author: "Tatiana Sergeevna Krasnojivotnaya"
approved_by: "Giovanni Giacomo della Gambagialla"
original: 21, March, 1999
last: 12, July, 2006
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The general form is:

EachNote_entrystarts with aNote_name, such asauthor:, terminated
by a colon. The rest of theNote_entryis a list ofNote_itemterms, each of
which is an Identifier (such as text_processingor July) or a
Manifest_constant, that is to say a value of a basic type, such as the integer
21, or a string such as"Tatiana Sergeevna Krasnojivotnaya" etc.

By the very nature ofNotesparts, the choice of indices and values is
free. Using consistent conventions will greatly facilitate the successful
retrieval of reusable classes. Here you may wish to rely on theset of
guidelines defined for the Eiffel Software Libraries.

As illustrated by both theHASH_TABLEandDOCUMENTexamples,
a class may include up to twoNotesclauses, one at the very beginning,
before the keywordclass, and one at the very end, beforeend. Their
intended role is complementary:

• Use the initialNotesfor critical information that you want every reader
of the class to discover before reading anything else about the class,
such as thedescriptionentry which succinctly explains the role of the
class.

• Use the finalNotesfor archival and management information such as
revision history, copyright and intellectual property notices, author and
reviser names, and any supplementary information that will be useful to
maintainers of the class.

Notes
Notes =∆ noteNote_list

Note_list =∆ { Note_entry";" …}*

Note_entry=∆ Note_name Note_values

Note_name=∆ Identifier ":"

Note_values=∆ { Note_item ","…} +

Note_item=∆ Identifier | Manifest_constant

Notesparts (there may be up to two, one at the beginning and one at the
end) have no effect on the execution semantics of the class. They serve to
associate information with the class, for use in particular by tools for
configuration management, documentation, cataloging, archival, and for
retrieving classes based on their properties.

→ “GUIDELINESFOR
ANNOTATING
CLASSES”,34.13,page
921.

→Manifest_constantis
introduced in32.16,
page 899, and subse-
quent sections.
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TheNotes parts ofHASH_TABLE, shown earlier, illustrated these guidelines.

4.9 CLASS HEADER

TheClass_headerintroduces the name of the class; it also serves to indicate
whether the class is deferred or expanded. Here are twoClass_header
examples from EiffelBase and one from the Kernel Library, illustrating
these possibilities:

The general form of theClass_header is simply:

As the syntax specification indicates, these four options are exclusive. A
class may not, for example, be both deferred and expanded; in fact, all non-
expanded classes are considered to be reference classes.

Notes semantics

A Notespart has no effect onsystem execution.

class LINKED_LIST
deferred class SEQUENCE
expanded class INTEGER

Class headers
Class_header=∆ [Header_mark] classClass_name

Header_mark=∆ deferred | expanded| frozen

The Class_namepart gives the name of the class. The recommended
convention (here and in any context where a class text refers to a class
name) is theupper name.

The keywordclassmay optionally be preceded by one of the keywords
deferred, expandedand frozen, corresponding to variants of the basic
notion of class:

• A deferred class describes an incompletely implemented abstraction,
which descendants will use as a basis for further refinement.

• Declaring a class asexpanded indicates that entities declared of the
corresponding type will denote objects rather than references to objects.

• Making a classfrozen prohibits it from serving as “conforming parent”
to other classes.

The upper name is the
name written all in
upper case..
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This is part of a general characteristic of the syntax: unlike languages such as
Ada, Java and C++, Eiffel does not use multiple successive keyword qualifiers.
Where it allows you to writeproperty1 x or property2 x, it does not permit
property1 property2 x. This keeps things simple and easy to remember.

The first two cases have an influence on the validity rule forClass_header
and we now examine them in more detail.

Deferred classes

A class declareddeferred describes an incompletely implemented
abstraction, with the expectation that proper descendants of the class will
provide or refine the implementation. This is useful to cover incompletely
understood concepts or groups of related concepts. A typical example in
EiffelBase is the deferred classSEQUENCE, which describes sequential
data structures without prescribing any particular implementation. Proper
descendants of this class, such asLINKED_LIST, describe concrete
sequential structures. Such non-deferred classes are said to beeffective.

The deferred-effective distinction applies not just to classes but to their
individual features: a feature is deferred if its class specifies it (often with
a contract: precondition and postcondition) but does not provide an
implementation. In general, a deferred class includes one or more deferred
features. For example procedureextend, which adds an element at the end
of a sequence, is deferred inSEQUENCEandeffected(made effective) by
LINKED_LIST and other effective descendants, each in its own way.

Deferred classes have no direct instances (you may not create an
instance of the corresponding type, as increate x for x of type
SEQUENCE[T]); only their effective descendants do, so thatcreate x is
valid for x of typeLINKED_LIST[T].

A lessdrasticway of restricting clients’ instantiation rights is through the
Creators part.

The validity rule below requires that as soon as a class has at least one
deferred feature you must declare it as class asdeferred class. If not, the
class would be considered effective; then clients could create instances, and
call on them a feature that you haven’t implemented.

There is no converse requirement: you may declare a class asdeferred
even if it has no deferred feature. This is a way of stating that you intend to
use a class as an abstract concept even though you haven’t included any
deferred feature yet. In particular, you are prohibiting clients from creating
direct instances throughcreatex instructions.

→ For details see
“DEFERRED FEA-
TURES”,  10.11,
page 272.

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”,  20.7, page 539.
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Expanded classes

Declaring a classC asexpandedchanges the assignment and comparison
semantics of the entities declared of the corresponding types. Withy: C
(ignoring any generic parameters), andC not expanded, the assignment
x := y is a reference assignment, and the boolean expressionx = y
compares references. But ifC is expanded, the assignment copies the
object denoted byy, and the test compares objects.

One application of this notion is to represent the notion ofsub-object:

The figure shows an instance of a class with two attributes, one of a
reference type and the other of an expanded type, representing a sub-object.
The discussion of types will provide moredetails on the difference between
expanded and reference semantics.

To declare a class as expanded you must make sure that it retains
default_create— the default initialization procedure coming, after
possible renaming or redefinition, from the universal classANY— as one
of its creation procedures. The reason is that initializing an object with sub-
objects, such as the one illustrated above, requires initializing all its sub-
objects, for which all that’s available is the standard initialization.

In the simplest case this requirement is automatically met: a class that doesn’t
have aCreatorspart (that is to say, doesn’t explicitly list creation procedures)
is considered to havedefault_createas its sole creation procedure. The details
appear in thediscussion of creation.

Validity of a class header

The validity rule onClass_headerstates the relationship between the actual
class text and a declaration asdeferred:

Class Header rule VCCH

A Class_headerappearing in the text of a classC is valid if and
only if has either nodeferredfeatureor a Header_markof the
deferred form.

r: C

e: expanded C

Sub-object vs.
reference to
another object

→ “EXPANDED
TYPES”,11.9,page335.

→ “OMITTING THE
CREATION PROCE-
DURE”, 20.4,page527.

→ 20.4, page 527.
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The Class Header rule yields a simple definition:

4.10 FORMAL GENERIC PARAMETERS

A class whoseClass_header is followed by aFormal_generics part, as in

If a class has at least one deferred feature, either introduced as deferred in
the class itself, or inherited as deferred and not “effected” (redeclared in
non-deferred form), then its declaration must start not just withclassbut
with deferred class.

There is no particular rule on the other possible markers,expandedand
frozen, for a Class_header. Expanded classes often make the procedure
default_createavailable for creation, but this is not a requirement since the
corresponding entities may be initialized in other ways; they follow the same
rules as other “attached” entities.

Expanded, frozen, deferred, effective class
A class is:
• Expanded if its Class_header is of theexpanded form.

• Frozen if its Class_header is of thefrozen or expanded form.

• Deferred if its Class_header is of thedeferred form.

• Effective if it is not deferred.

MakingC frozenprohibits it from serving as “conforming parent” to other
classes. The second case indicates the two ways of ensuring this:

• Inheritance from expanded classes, as explained in the discussion of
inheritance, is non-conforming. As a consequence, any expanded class
is also frozen.

• You can explicitly mark a non-expanded class asfrozen.

The third case defines what makes a classdeferred:

• If it has at least one deferred feature, the class itself is deferred. The
Class Header rule below requires it to be markeddeferred for clarity.

• If it only has effective features, the class is effective unless you decide
otherwise: you can still explicitly mark itdeferred. This ensures that it
will have no direct instances, since one may not apply creation
instructions or expressions to a variable whose type is based on a
deferred class.

classHASH_TABLE[G, KEY–> HASHABLE]…

The definition of
“deferred class” is on
page309.
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will be called ageneric class. (If the Formal_genericspart is absent, the
class is, predictably, anon-generic class.) A generic class has one or more
formal generic parameters, which are identifiers, hereG andKEY, not
conflicting with any name of a class in the surrounding universe. The
mechanism that permits generic classes and the corresponding types is
calledgenericity.

As noted, a generic class does not directly yield a type, although it is
easy to derive a type from it: just provide a list of types, calledactual
generic parameters, one for each formal generic parameter. This was
done above in the declaration ofownership_record to derive the type

from HASH_TABLE, with anActual_genericslist made of the typesCAR
andSTRING. Such a type is said to begenerically derived.

Genericity is the main reason classes and types are not identical notions:
while any non-generic class is also a type, a generic class such as
HASH_TABLEneeds actual generic parameters to yield types such as the
above. The notions of class and type are, of course, closely connected.
More precisely, any type has abase class whose features provide the
operations available on the type’s instances; for a generically derived type
such as the above, the base class is simply the type stripped of its actual
generic parameters, hereHASH_TABLE.

A wholechapter is devoted to genericity and will give the details. Here
is a is a preview of the syntax ofFormal_generics parts:

The Constraintconstruct, alsodetailed in the genericity chapter, governs
constrained genericity, as in C [G –> CONSTRAINING_TYPE], which
specifies thatG represents not arbitrary types, as in the basic (unconstrained)
case, but types that conform toCONSTRAINING_TYPE.

4.11 OBSOLETE MARK

By specifying anObsoletemark for a class, you indicate that the class does
not meet your current standards, and you advise developers against
continuing to use it as supplier or parent; but you avoid harming existing
systems that may rely on this class.

HASH_TABLE[CAR, STRING]

Formal_generics=∆ "["Formal_generic_list"]"

Formal_generic_list=∆ [Formal_generic";" …]

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

→ “BASE CLASS,
BASE TYPE AND
TYPE SEMANTICS”,
11.7, page 332.

→ Chapter12; see syn-
tax and validity in
“GENERICCLASSES”,
12.2, page 349.

→ “CONSTRAINED
GENERICITY”,  12.6,
page 354.
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The decision to make an entire class obsolete is not a frequent one in well-
planned software development: through information hiding, uniform access,
dynamic binding and genericity, the language often enables developers to
change a class with little or no impact on clients and descendants. Even when
some aspects of a class become obsolete, the class as a whole may remain
appropriate; this is why you should usually prefer the related mechanism
letting you make individualfeaturesobsolete. The next chapterexplains how
to do this, with further comments about software evolution and obsolescence.

The decision to make aclassobsolete is appropriate when you realize that
even by obsoleting some of its features you won’t be able to bring it up to
its ideal form without disturbing existing software, and decide to replace it
by a new version. The civilized way to do this is to keep the old class, at
least for a while, under its original name, but mark it obsolete; this signals
to client and descendant developers that they will ultimately have to adapt
their classes to the new version.

An Obsoletemark has no other effect; in particular it has no bearing on
the software’s execution.

Here is the syntax of the mark, which comes after theClass_headerand
optionalFormal_generics:

There is no validity constraint. The semantic specification covers both
obsolete classes and obsolete features:

Class obsolescence is not a way to cover up for bugs or flawed designs. If
you realize that a class is incorrect or inadequate, you should face the
consequences and repair the problem, even if this requires updating
dependent classes. Any existing system using the flawed class cannot be
functioning properly anyway. TheObsoletefacility is meant for a different
case: classes which were useful and sound, but cover needs for which you
have now found improved solutions, based on a new design not backward-
compatible with the original.

Obsolete marks
Obsolete=∆ obsoleteMessage

Message=∆ Manifest_string

Obsolete semantics
Specifying anObsoletemark for a class or feature has no run-
time effect.
When encountering such a mark,languageprocessingtools may
issue a report, citing the obsolescenceMessageand advising
software authors to replace the class or feature by a newer version.

→ “OBSOLETE FEA-
TURES”,5.21,page165,.
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Features
5.1 OVERVIEW

5.2 THE ROLE OF FEATURES

A feature of a class describes an operation which is applicable to the
instances of the class. For example:

• A classSIGNALmight have such features asamplitude(amplitude of a
signal) ormodulate(modulate a signal with another).

• A classDOCUMENTmight have such features ascharacter_countorprint.
• A class ELECTRON might have such features asspin or valence.
• A classABSTRACT_NODEmight have such features asarity, is_leaf,

is_root, add_child or remove_child.
As these examples indicate, the operations represented by features may be
of two kinds:

• Some arequery operations, used to find out properties of objects
(“What is the amplitude of this signal? How many characters does this
document contain? Is this tree node a leaf?”).

• Others arecommands, used to change objects or apply actions to them
(“Print this document! Add a new child to this node!”).

A query will be implemented as an attribute or a routine. By nature, a
command will always be a routine.

A class is characterized by its features. Every feature describes an
operation for accessing or modifying instances of the class.

A feature is either anattribute, describing information stored with each
instance, or aroutine, describing an algorithm. Clients of a classC may
applyC’s features to instances ofC throughcall instructions or expressions.

Every feature has an identifier, which identifies it uniquely in its class.
In addition, a feature may have analias to permit calls using operator or
bracket syntax.

The following discussion introduces the various categories of feature,
explains how to write feature declarations, and describes the form of
feature names.

Queries are imple-
mented as attributes or
functions,commandsas
procedures.



FEATURES §5.3132
5.3 FEATURE CATEGORIES

The following diagram shows the variants of the notion of feature and the
associated terminology:

From the right, we have a classification based on the implementation of
features:

• A feature implemented by storing information in every instance of the
class (or, in the case of a constant, common to all instances) is anattribute .

• A feature implemented by an algorithm (a computation) applicable to
all instances of the class is aroutine. A routine that returns a result is a
function; one that doesn’t is aprocedure.

From the left, we have a classification based initially on more abstract
properties of features:

• A feature that does not return a result — but may modify its target object
— is acommand. Commands can only be implemented byprocedures
as just defined.

• A feature that provides a result — some information about its target
object — is aquery. A query may be implemented either by storing that
information, giving anattribute, or by computing that information when
requested, giving afunction.

This book is precise and careful in its use of the terminology. Please make
sure (possibly by reading this section once again) that you are familiar with
the exact meanings of all the terms:feature, command, query, routine,
function andattribute.

Feature

Command

Query

Feature

Routine

Attribute

Function

Procedure

Returns

No
result

result

No
result

Compu-

Memory

Compu-

Memory

Returns
result

tation

tation
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The word “method”, sometimes used in the object-oriented literature, may be
viewed as a synonym for “routine”, i.e. a feature implemented by an
algorithm rather than stored. Although this is a well-accepted term, it is
redundant (there were already several words for this notion before O-O came
about: routine, subroutine, subprogram…) and leads to confusion with the
ordinary sense of the word “method”.

“Feature” is at a higher level, since it covers all categories. The closest word
in the C++/UML/Java literature is “member”. Many presentations treat
attributes as a data structure implementation mechanism, unrelated to
routines; this loses the notion that at the highest level of abstraction we only
have a notion of feature, with no commitment to any particular
implementation choice. It’s OK to export an attribute (there is no need to
encapsulate it in a function!) as long as, to the client, it appears only as a
query, with an interface that doesn’t betray whether the query is implemented
as an attribute or a function. This is Eiffel’s approach.

5.4 IMMEDIATE AND INHERITED FEATURES

The rest of this chapter will describe the properties ofFeaturesparts of a
class, which introduces zero or more “features of the class”.

When thinking about features, we must be careful not to confuse two
notions:

• The featuresintroduced in a class.

• The featuresof that class.

The reason for this distinction is inheritance, which enables a class, in
addition to the features declared in its own text, to obtain features declared
in other classes — its parents.

Here is the precise terminology.

Inherited, immediate; origin; redeclaration; introduce
Any featuref of a classC is of one of the following two kinds:
1 • If C obtainsf from one of itsparents,f is aninherited feature

of C. In this case any declaration off in C (adapting the
original properties off for C) is aredeclaration.

2 • If a declaration appearing inC applies to a feature that is not
inherited, the feature is said to beimmediate in C. ThenC is
the origin (short for “class of origin”) off, and is said to
introduce f.

The notion of parent is
studied in chapters6,
10 and16.

This defines the origin
of immediate features
only.The full definition,
also covering inherited
features, appears on
page311.
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The rest of this chapter only discusses immediate and redeclared
features, by describing theFeatures part of a class declaration.

5.5 FEATURES PART: EXAMPLE

A Featurespart is a sequence of one or moreFeature_clause, as in the
following sketch of a class from the EiffelBase Library:

A featureredeclaration is a declaration that locally changes an inherited
feature. The details of redeclaration appear in the study of inheritance;
what is important here is that a declaration in theFeaturespart only
introduces a new feature (called “immediate” inC, or “introduced” byC)
if it is not a redeclaration of some feature obtained from a parent.

Every feature of a class is immediate either in the class or in one of its
proper ancestors (parents, grandparents and so on).

note

... Notes clause omitted ...

class LINKED_LIST[T] inherit
LIST[T]

redefine
first, start, return

end

feature -- Access
first: T

-- Item at first position
require

not_empty: not empty
do

Result:= first_element.item
end

feature -- Measurement
count: INTEGER

-- Number of items in the list

... Other feature declarations andFeature_clauseomitted ...

feature { LINKED_LIST} -- Implementation
previous, next: like first_element

merge_left(other: like Current)
... Rest of procedure omitted ...

...Other feature declarations omitted...

→ Redeclaration is
studied in chapter10,
especially10.28, start-
ing on page312.

→ Inheritedfeaturesare
studied inchapters6,10
and16, with the full def-
inition on page470.
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A Featurespart contains one or moreFeature_clause. EachFeature_clause
is introduced by the keywordfeature, which may be followed, as in the last
two cases above, by aClientssubclause, which is a list of class names in
braces, as in{ A, B, C, …} .

All the features of aFeature_clausehave the sameexport status. If the
beginning of theFeature_clausegives a list of clients in braces, the clause’s
features are available for calls to those clients and their proper descendants
only; otherwise they are available to all clients. Here, for example:

• first andcount are available for calls to all clients.

• previous, nextandmerge_leftare available only toLINKED_LISTitself,
when used as its own client.

• The remaining features are available only toNONE; this means that they
are secret (accessible within classLINKED_LISTonly, without use of
dot notation).

For a class including many features, you may want to use more than one
Feature_clauseeven for features which all have the same export status.
This separates features into feature categories. In this case every
Feature_clauseshould begin (after the keywordfeature and theClients
list, if any) with aHeader_commentindicating the feature category. Here,
the comments indicating the various categories are

Because the inclusion of such aHeader_commentis part of the
recommended style, it appears as an optional component in the syntax for
Feature_clausegiven below. Eiffel tools — such as documentation tools, or
tools for archiving and retrieving classes — may treat it specially; for eon
it for contents. In particular, it appears in the “contractview” serving as the
basic documentation for a class.

feature { NONE} -- Implementation

first_element: LINKABLE[like first]
-- First linkable element

...Other feature declarations omitted...

invariant
empty= (first_element= Void)
...Other invariant clauses omitted...

end

-- Access
-- Measurement
-- Cursor movement
-- Implementation

→ Chapter7 explains
the details of the export
policy and of
Clientsclauses.

→“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.9, page 212.
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Although you may choose any text for header comments, the texts used
here —Accessand others — are among a dozen or so standard ones used,
always in the same order, throughout classes of EiffelBase and other
libraries. This yields a consistent style, greatly facilitating software
understanding and maintenance. It’s a good idea to use such a standard set
of headers; start from the one in EiffelBase and extend it if necessary.

5.6 GRAPHICAL REPRESENTATION

In BON (Business Object Notation), the suggested graphical
representation for classes and system structures, the features introduced in
a class should appear next to the ellipse representing that class.

If enough display space is available and you want a full representation
of the features, the format is that of afeature box appearing next to the
class ellipse, and shown on the next figure for part of the class sketched in
the previous section.

As in the textual form of the class, the features are grouped into
successive divisions according to their export status.

Each feature includes type information as needed: argument types for
routines; for a query (attribute or function), result type.

...

...

Annotations

previous: like first_element

merge_left: like Current

first_element: LINKABLE[like first]

first: G

count: INTEGER
...

LINKED_LIST
[G]

Exported

LINKED_LIST [G]

LINKED_LIST [G]

empty= (first_element= Void)

{ LINKED_LIST}

{ NONE}

Class invariant

Annotations

A class and its
feature box
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This graphical notation takes up a large amount of space and is mostly
suitable for examining and designing classes in an interactive graphical
environment, where you can see the various properties displayed on
demand: the ellipses representing classes, the arrows representing the
client and inheritance relations, the feature boxes. For printing on paper, or
a whiteboard discussion, a more concise representation — frequently used
in the present book — is appropriate:

An additional convention will be seen in thediscussionof attributes: if you
know that a feature is an attribute, you may highlight this property by
enclosing the feature’s name in a rectangle.

5.7 FEATURES PART: SYNTAX

Here is the precise format of theFeaturespart of a class text, illustrated by
the above example.

The rest of this chapter concentrates on theFeature_declaration
construct, explaining what kinds of feature a class may declare.

Feature parts
Features=∆ Feature_clause+

Feature_clause=∆ feature [Clients]
[Header_comment]
Feature_declaration_list

Feature_declaration_list=∆ { Feature_declaration ";" …}*

Header_comment=∆ Comment

As part of a generalsyntacticalconvention, semicolons areoptional
between aFeature_declarationand the next. The recommendedstyle rule
suggests omitting them except in the infrequent case of two successive
declarations on a single line.

LINKED_LIST
[G]

first: T previous: like first_element

merge_left: like Current

first_element:
count: INTEGER

LINKABLE[like first]

A class with
some features

→ Page499.

→ The syntax for the
Clientspart appears on
page208.

← “Syntax (non-pro-
duction): Semicolon
Optionality rule”,
page 103
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5.8 FORMS OF FEATURE

By introducing anattributein a class, you specify that at run-time every
instance of the class will possess a certain value, or field, corresponding to
the attribute.

So you may picture any instance of the class as an object made of a
number of fields, each giving the value defined by the object for one of the
attributes of the class. The figure illustrates a direct instance of a classC
with three attributes,x, y andz. (To picture a non-direct instance, we would
also need to consider attributes introduced in proper descendants.)

An attribute is eithervariable or constant:

• If an attribute is variable, the corresponding field may be different for
various instances of the class and may change at run-time. As a
consequence, the actual values must be stored for each instance.

• If an attribute is constant, the corresponding field is the same value for
all instances, and may not change at run-time. This value appears in the
class as part of the attribute declaration.

By introducing aroutine in a class, you specify that a certain computation
(an algorithm) must be applicable to every instance of the class. A routine,
as we have seen, is either aprocedure or afunction:

• A procedure does not return a result; it may perform a number of
operations, which may modify the instance.

• A function returns a result and may also perform operations.

Feature categories: overview

Every feature of a class is either anattribute or aroutine.
An attribute is eitherconstant or variable.
A routine is either aprocedure or afunction.

A set of definitions in the discussion that follows introduces each of these
notions precisely, making it possible to recognize, from a valid feature
declaration, which kind of feature it introduces.

x is of typeINTEGER,z
of typeCHARACTER,
andyof some reference
type. The field fory is
attached to an object,
which the figure does
not show.

x

y

z

32

'A'

A class
instance with
its fields
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A functionshouldnotchangeany object, except if the change only affects
an object’s representation, not its abstract properties. Because language
processing tools cannot easily know which properties are abstract, the ban
on object-modifying functions is a methodological guideline — the
Command-Query Separation principle— and not a language rule.

5.9 FEATURE DECLARATIONS: EXAMPLES

To help you become familiar with the syntax of aFeature_declaration, here
are a few artificial examples illustrating the various possibilities. The next
sections give the precise syntax and detailed comments; for the most part,
however, the examples should suffice as a guide for declaring features. The
name of each example feature (such asfunction_without_arguments)
suggests its nature.

variable_attribute: INTEGER
-- Some field of integer type

other_variable_attribute: SOME_TYPE
-- Some other field, of another type

Constant_attribute: REAL= 3.141592
-- A constant real value used by the class

procedure(argument1: INTEGER; argument2: SOME_TYPE)

-- (Here should come the description
-- of the procedure’s intended effect.)

do
some_attribute.some_procedure
other_attribute.other_procedure

end

deferred_procedure(argument1: SOME_TYPE)
-- (Here should come the description
-- of the procedure’s intended effect.)

deferred
end

function_with_arguments(arg1, arg2: SOME_TYPE): OTHER_TYPE
-- (Here should come the description
-- of the result computed by the function.)

do
createResult
Result.some_procedure(arg2)

end

See"“ Object-Oriented
Software Construction” .

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
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5.10 FEATURE DECLARATIONS: SYNTAX

With the preceding examples in mind, we can now look at the exact
ingredients that make up aFeature_declaration_list.

Such a list introduces immediate features of a class. It is a sequence of
individual Feature_declaration clauses. In general each
Feature_declarationintroduces one feature, although it is possible to use a
single declaration to introduce two or more "synonym" features. Each
Feature_declaration includes the following pieces of information:

• The feature’s original name (or names in the case of synonyms).

• The type of the feature, if it is an attribute or a function.

• The formal arguments, if the feature is a routine (procedure or function)
with arguments.

• The actual value of the feature if it is a constant attribute.

function_without_arguments: INTEGER
-- (Here should come the description
-- of the result computed by the function.)

do
Result:= some_value

end

plusalias "+" (some_matrix: like Current): like Current
-- Matrix sum ofCurrent andsome_matrix

do
...(Computation of the sum intoResult)...

end

attribute_with_contract: SOME_TYPE
-- (Here should come the description of its role.)

require
some_property

attribute
ensure

other_property
end

self_initializing_attribute: SOME_TYPE
-- (Here should come the description of its role.)

attribute
initialization_instructions

end
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• The contract and computation associated with the feature if applicable;
a routine in particular must have an associated algorithm, but an
attribute may also have a precondition and postcondition, as with
attribute_with_contract, and a self-initialization algorithm, as with
self_initializing_attribute.

• Possibly an Obsoleteclause for a routine whose use is no longer
recommended.

• Possiblythekeywordfrozen, appearing before the feature name to express
that the declaration is final (not subject to redefinition in descendants).

The precise syntax is:

The above examples illustrate some of the most important
valid combinations.

What appears before theDeclaration_bodyis not just a feature name but
aNew_feature_list, with the syntax

Feature declarations
Feature_declaration=∆ New_feature_list Declaration_body

Declaration_body=∆ [Formal_arguments] [Query_mark]
[Feature_value]

Query_mark=∆  Type_mark[Assigner_mark]

Type_mark=∆ ":" Type

Feature_value=∆ [Explicit_value]
[Obsolete]
[Header_comment]
[Attribute_or_routine]

Explicit_value =∆ "=" Manifest_constant

Not all combinations ofFormal_arguments, Query_markandFeature_value
are possible; theFeatureBody rule andFeatureDeclarationrule will give
the exact constraints. For example it appears from the above syntax that both
aDeclaration_bodyand aFeature_valuecan be empty, since their right-side
components are all optional, but the validity constraints rule this out.

New feature lists
New_feature_list=∆ { New_feature "," …} +

New_feature=∆ [frozen] Extended_feature_name

→ “OBSOLETE FEA-
TURES”,5.21,page165.

→ More on frozen dec-
larations in discussion
of the Feature Declara-
tion rule page162
below(condition4),
and of the Redefine Sub-
clause rule, page307
(condition2).

→ Pages144 and162.

→ The form of an
Extended_feature_nam
e and the rules on mul-
tiple feature declara-
tions appear later in
this chapter(5.18).
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where an Extended_feature_nameis a feature identifier possibly
complemented by anAlias (for operator features).

A Formal_argumentspart, possible only for a routine, describes the
arguments to a routine and their types. An example is

A Query_markis present to mark that the feature is a query (attribute or
function). It has aType_markspecifying the type of the information
returned by the query: for an attribute that’s the type of the field in instances
of the class, for a function, it’s the type of the result computed by an
execution of the function.. Examples ofType_markare

A Query_markmay also include an optionalAssigner_mark. This lets you
associate with the query a command of the class (a procedure), which can
then be used to change the value of the query for the target object. A typical
Assigner_markis:

This may appear in a declaration of a functionitem: T for some typeT, as in

whereput is a procedure of the same class, taking an argument of typeT.
This allows clients to use assignment syntax,x.item:= a (for a of typeT),
as an abbreviation for the feature callx.put(a). The mechanism also works
for queries with arguments, as inyour_array.item(i ) := 5 for a featureitem
taking an integer argument, as it does in classARRAY[G], whereitemhas
an integer argument; the associated assigner procedure correspondingly
takes two two arguments, of typesG and INTEGER. (Thanks tobracket
syntax, you may also write this last example as your_array [i] := 5.)

The procedure which anAssigner_markassociates with a query, such asput
in these examples, is called anassigner procedure. The assignment-like
instructions which this makes possible, such asx.item:= a — with
assignment-like syntax but the semantics of a call — is anassigner call.

TheFeature_valuepart, if present, gives the “value” of the feature, required
in two cases:

Having a list of features, rather than just one, makes it possible for
example to declare together several attributes of the same type or, in the case
of routines, to introduce several “synonym” routines, with the same body.

(arg1, arg2: TYPE1; arg3: TYPE2; arg4, arg5, arg6: TYPE3)

: INTEGER
: SOME_TYPE

assignput

item: T …

→ The syntax of
Formal_arguments
appears in8.3, page
219.

assign put

→ “BRACKET FEA-
TURE”, 5.17,page158.

→ “ASSIGNER PRO-
CEDURES”,  5.16,
page 155.
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• For a constant attribute,it introduces a literal value (integer, string etc.)
with by an “equal: sign, as inOne: INTEGER= 1.

• For a routine, it introduces the routine text.

For an attribute you can use a full form similar to that of routines, as in
x: A ... attribute ... end, but for the most common case there’s an
abbreviated form of the declaration: justx: A.

In the above example, theFeature_valuefor constant_attributedefines
the constant’s value to be the real number 3.141592; theFeature_valuefor
procedure is

A Feature_valuemay, according to the syntax, introduce some or all of the
following components (the validity rules define which combinations are
possible):

• An Explicit_value to specify the value of aconstant attribute.

• An Obsolete mark to signal that the feature isobsolete.

• A Header_comment to explain the purpose of the feature.

• An Attribute_or_routinepart to give the detailed specification of a
routine or attribute, with clauses such as a precondition, a postcondition
or, for a routine, the associated algorithm, as detailed next.

5.11 FEATURE BODIES

Here indeed is the syntax ofAttribute_or_routine:

-- (Here should come the description
-- of the procedure’s intended effect.)

do
some_attribute.some_procedure
other_attribute.other_procedure

end

Feature bodies
Attribute_or_routine=∆ [Precondition]

[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end

Feature_body=∆ Deferred | Effective_routine| Attribute

→ See29.2, page 787
and subsequent sec-
tions about constants.

→ “OBSOLETE FEA-
TURES”,5.21,page165.
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Subsequent chapters detail various elements of anAttribute_or_routine:

• A Precondition andPostcondition express thecontract of a feature.

• Local_declarationsintroduce local variables needed by the feature’s

algorithm if any.

• A Feature_body gives details of its implementation as an

Effective_routinewith an associated algorithm, or an attribute, or states

that it is deferred routine, implemented only in proper descendants.

• A Rescueclause takes over if a run-timeexception arises during the

execution of the feature.

Only some combinations of these various clauses are meaningful. It is

convenient to state the corresponding validity rule at the level of a

Feature_value as a whole rather than justAttribute_or_routine:

Feature Body rule VFFB

A Feature_valueis valid if and only if it satisfies one of the
following conditions:
1 • It has anExplicit_value and noAttribute_or_routine.

2 • It has anAttribute_or_routinewith a Feature_bodyof the
Attribute kind.

3 • It has noExplicit_valueand has anAttribute_or_routinewith
a Feature_bodyof the Effective_routinekind, itself of the
Internalkind (beginning withdo or once).

4 • It has noExplicit_valueand has anAttribute_or_routinewith
neither a Local_declarationsnor a Rescue part, and a
Feature_bodythat is eitherDeferredor anEffective_routine
of theExternal kind.

The Explicit_valueonly makes sense for an attribute — either declared
explicitly with Attribute or simply given a type and a value — so cases3
and4 exclude this possibility.

TheLocal_declarationsandRescueparts only make sense (case4) for
a feature with an associated algorithm present in the class text itself; this
means a routine that is neither deferred nor external, or an attribute with
explicit initialization.

→ Chapter9.

→ “LOCAL VARI-
ABLESANDRESULT”,
8.6, page 225.

→ Chapter8.

→ Chapter26.

The variants of
Feature_body appear
on page222 as part of
the discussion of rou-
tines.
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5.12 HOW TO RECOGNIZE FEATURES

The precise form and properties of attributes and routines, as described by
the syntax given above forFeature_declaration, are studied in later
chapters. You should, however, learn right away how to recognize
attributes (constant or variable) and routines (procedures or functions).
This is not difficult and the above examples illustrate the most common
cases. First, variable attributes:

The first two features in the earlierexample, variable_attribute and
other_variable_attribute, were in this category. Here is an extract from a
Feature_clausewith two declarations introducing three variable attributes:

In both cases1 and2 the feature will be an attribute. Case1 is a constant
attribute declaration such asn: INTEGER= 100, with no further details.
Case2 is the long form, explicitly using the keywordattribute and making
it possible, as with routines, to have aPrecondition, a Postcondition, and
even an implementation (including aRescueclause if desired) which will
be used, for “self-initializing” types, on first use of an uninitialized field.

The Feature Body rule is the basic validity condition on feature
declarations. But for a full view of the constraints we must take into
account a set of definitions appearing next, which say what it takes for a
feature declaration — already satisfying the Feature Body rule — to belong
to one of the relevant categories:variable attribute, constant attribute,
function, procedure. Another fundamental constraint, the Feature
Declaration rule (VFFD), will then require that the feature described by
any declaration match one of these categories. So the definitions below are
a little more than definitions: they collectively yield a validity requirement
complementing the Feature Body rule.

Variable attribute
A Feature_declarationis avariable attribute declaration if and
only if it satisfies the following conditions:
1 • There is noFormal_arguments part.

2 • There is aQuery_mark part.

3 • There is noExplicit_value part.

4 • If there is aFeature_valuepart, it has anAttribute_or_routine
with aFeature_body of theAttributekind.

count, capacity: INTEGER
backup: LINKED_LIST[INVESTMENT]

→ Page162.

← Page139.
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These examples use the abbreviated form without a keyword. You would
obtain the same semantics by specifyingattribute  explicitly:

The keyword is required if you need to include a precondition, a
postcondition, or a for self-initialization algorithm, as in
attribute_with_contracts andself_initializing_attribute above, or

The next kind of feature is the constant attribute:

Two examples, introducing anInteger_constant andaManifest_stringare:

Even though the value is known from the declaration, it may still be useful
to associate a contract (precondition, postcondition or both) to emphasize
its more fundamental properties, which presumably would survive a
change of the value in a revision of the software:

count, capacity: INTEGER

bounding_rectangle: RECTANGLE
-- Smallest rectangle including this figure

require
non_empty: not empty

attribute
create Result.make(lower, leftmost, height, width)

ensure
Result.lower= lower ; Result.higher= higher
Result.leftmost= leftmost; Result.rightmost= rightmost
Result.height= height; Result.width= width

end

Constant attribute
A Feature_declarationis aconstant attribute declaration if and
only if it satisfies the following conditions:
1 • It has noFormal_arguments part.

2 • It has aQuery_mark part.

3 • There is aFeature_valuepart including anExplicit_value.

maximum_discount: INTEGER
message: STRING

And similarly forbackup.

attribute
end

= 25
= "No such site"
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Finally, the case of a routine, with two variants:

In theexample illustrating the various categories of feature, the features
with the following names are routines:

plus, with its infix alias"+", is a function; the others are procedures or
functions as indicated by their names.

Why do we need such rules for recognizing various kinds of feature? To
put it more critically, why doesn’t the language distinguish more clearly
between them — for example by requiring specific keywords such as
procedure at the beginning of each declaration?

The reason ismethodological. As seen by clients, a feature is an abstract
property of the instances of the class. Its particular choice of
implementation within the class is a subordinate concern. As a
consequence, the syntax downplays the differences between these forms of
features instead of emphasizing them.

message: STRING= "No such site"

Routine, function, procedure
A Feature_declarationis a routine declaration if and only if it
satisfies the following condition:
• There is aFeature_valueincluding an Attribute_or_routine,

whoseFeature_bodyis of theDeferredorEffective_routinekind.

If a Query_markis present, the routine is afunction; otherwise it
is aprocedure.

For a routine theFormal_arguments(like theQuery_mark) may or may not
be present.

By convention this definition treats a deferred feature as a routine, even
though its effectings in proper descendants may be, in the case of a query,
attributes as well as functions.

procedure
deferred_procedure
function_with_arguments
function_without_arguments
plusalias "+"

ensure
Result/= Void
Result.count<= Max_message_length

← Page139 on.
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More precisely, what matters for clients is whether a feature returns a
result, or just affects the state of objects without directly producing a result.
This distinction is reflected in the following notions:

Of course, it is sometimes necessary to check what category a feature really
belongs to. As the above examples indicate, you should quickly become
familiar with the various forms.

5.13 THE SIGNATURE OF A FEATURE

As defined above, a query feature — attribute or function — has a result
type. But for any feature, query or command, we often need a more
complete characterization of the feature’s type properties, involving both
the type of its result (in the query case) and the number and type of its
arguments if any.

The notion ofsignature provides this. The signature of a feature is
made of two lists of types:

• The list of argument types (empty for an attribute, or a routine without
arguments).

• The list of result types (empty for a procedure).

To represent lists of types, we can borrow Eiffel’stuple notation, as in
[TYPE1, TYPE2, TYPE3]. (Such a list is not an Eiffel component, simply a
notation to talk about properties of Eiffel features.) So a function whose
declaration begins with

has the signature

We do not really need a sequence for the second component of a signature,
since it will have zero or one element (zero ifor a procedure, one for a
query). Using a list on both sides provides more symmetry and generality.
(The discussion of tuples willillustrate that symmetry.)

Command, query
A command is aprocedure. Aquery is anattribute orfunction.

These notions underlie two importantprinciples of the Eiffel method:

• The Command-Query separation principle, which suggests that queries
should not change objects.

• The Uniform Access principle, which enjoins, whenever possible, to
make no distinction between attributes and argumentless functions.

f (a: INTEGER; b: X): LINKED_LIST[STOCK] is...

[INTEGER, X], [LINKED_LIST[STOCK]]

See the discussion of
these principles in
"Object-Oriented Soft-
ware Construction"
and“UNIFORM
ACCESS”,  23.4, page
624in the present book.
These ideas also lead to
the notion of contract
view, studied in7.9,
page 212.

Chapter13 discusses
tuples.

→ “Emulatingmultiple
results”,  page 379
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Here are the signatures of the features in the example at the beginning
of this chapter. An empty sequence is shown as[] .

The signatures ofvariable_attributeandfunction_without_argumentsare
identical, even though one is an attribute and the other a function. For
clients, asnoted, the difference won’t be visible.

The notion of signature deserves a precise definition:

In the above examples, the argument signature ofvariable_attributeis
[ ] (empty sequence); the argument signature ofprocedureis [INTEGER,
SOME_TYPE].

variable_attribute:
other_variable_attribute:
constant_attribute:
procedure:
deferred_procedure:
function_with_arguments:

function_without_arguments:
plusalias "+":
attribute_with_contract:
self_initializing_attribute:

[ ], [ INTEGER]
[ ], [SOME_TYPE]
[ ], [REAL]
[INTEGER, SOME_TYPE], []
[SOME_TYPE], []
[SOME_TYPE, SOME_TYPE],

[OTHER_TYPE]
[ ], [ INTEGER]
[like Current], [ like Current]
[ ], [SOME_TYPE]
[ ], [SOME_TYPE]

Signature, argument signature of a feature
Thesignatureof a featuref is a pairargument_types, result_type
where argument_typesand result_type are the following
sequences of types:
• For argument_types: if f is a routine, the possibly empty

sequence of its formal argument types, in the order of the
arguments; iff is anattribute, an empty sequence.

• For result_type: if f is aquery, a one-element sequence, whose
element is the type off; if f is aprocedure, an empty sequence.

Theargument_types part is the feature’sargument signature.

The argument signature is an empty sequence for attributes and for routines
without arguments.

Seeabove,page147,and
“UNIFORMACCESS”,
23.4, page 624
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5.14 FEATURE NAME

Feature names serve to identify features.

A feature name always involves an identifier; this means that it is always
possible to write a valid call in ordinary object-orienteddotnotation, as in

For some features syntactic variants are available, but the availability of
these basic forms is guaranteed:

Such bracket aliases appear for example in theARRAY, LIST and
HASH_TABLEclasses of EiffelBase, so that you can access an element
of one of these structures ast [i], wherei is an integer in the first two
cases and a key in the last one.

x. f (a) -- Qualified: from a client, applied tox

f (a) -- Unqualified: from within the class,
-- applied to the current object

Feature principle

Every feature has an associated identifier.
Any valid call (qualified orunqualified) to the feature can be
expressed through this identifier.

The syntactic variants, available throughalias clauses, offer other ways to
express calls, reconciling object-oriented structure with earlier notations:

• You may qualify the name withalias "§" where§ is some operator. For
example if a feature is namedplus, clients must call it asa.plus(b); by
naming itplus alias "+" you still allow this form of calls — per the
Feature principle — but you also permita + b in accordance with
traditional syntax for arithmetic expressions. The details of alias
operators, as well as the associated conversion mechanism, appear next.

• You may also use a “bracket alias”, written simplyalias "[ ] " (with an
opening bracket immediately followed by a closing bracket). This
allows access through bracket syntaxx [index]. For example
if a class describing some table structure has a feature
itemalias "[ ] " (index: H): G whereH is some index type, items can be
accessed throughyour_table.item(i) but also through the more concise
your_table[i]. Again this is just a syntactic facility: the second form is
a synonym for the first, which remains available.

→ As detailed in the
chapter on calls:
chapter23.
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You may combine suchalias clauses in the extended feature name with
assignerprocedures. For example the EiffelBase classHASH_TABLE
defines the access feature

whereput is a procedure to insert an element with a given key. This means
that you can not only use bracket syntax for accessing items, as in

(an abbreviation foryour_element:= your_hash_table.item (your_key)),
but also in an assigner call

an abbreviation foryour_hash_table.put (your_element, your_key).

We have now seen all kinds of feature name. Here is the syntax:

For the record we mustclarify the use of quotes and spaces in anAlias:

itemalias "[ ] " (key: H): G assignput …

your_element:= your_hash_table[your_key]

your_hash_table[your_key] := your_element

Feature names
Extended_feature_name=∆ Feature_name [Alias]

Feature_name=∆ Identifier

Alias =∆ alias '" ' Alias_name'" ' [convert]

Alias_name=∆ Operator | Bracket

Bracket =∆ "[ ] "

The optionalconvert mark, for an operator feature, supports mixed-type
expressions causing a conversion of the target, as in the expression
your_integer+ your_real, which should use the “+” operation fromREAL,
not INTEGER, for compatibility with ordinary arithmetic practice. See the
presentation of conversions.

Syntax (non-production): Alias Syntax rule

The Alias_nameof an Alias must immediately follow and
precede the enclosing double quote symbols, with no intervening
characters (in particular nobreaks).
When appearing in such anAlias_name, the two-word operators
and then andor elsemust be written with exactly one space (but
no other characters) between the two words.

Introduced in

→ “MIXED-TYPE
EXPRESSIONS: TAR-
GETCONVERSION”,
15.12, page 428.

→ Similar rules apply
to signed constants, in
“Syntax (non-produc-
tion): Sign Syntax
rule”,  page 788, and,
further in that chapter,
to character and
string constants.
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It is useful to give official names to the aliased forms:

There are indeed three forms of call:

• For the standard case, identifier features, calls usedot notation, as in

• Giving a feature anoperatoralias, such asplusalias "+", allows calls to
take the form of ordinary arithmetic expressions, such asa + b, rather
than the more “obviously O-O” but heaviera.plus(b).

• A class may have one (and only one) feature with abracket alias, such
asitemalias "[ ]" . The purpose, for a class representing container data
structures such as arrays or tables, is to let clients access the structures
using the traditional syntax of array and function access, for example
your_array[x] as a synonym foryour_array.item (some_index).

In general, breaks or comment lines may appear between components
prescribed by a BNF-E production, making this rule necessary to
complement the grammar: you must writealias "+", notalias " + ".

Operator feature, bracket feature, identifier-only
A feature is anoperator feature if its Extended_feature_namefn
includes anOperatoralias, abracket feature if fn includes a
Bracket alias. It isidentifier-only if neither of these cases applies.

The most common case is identifier-only. The other two kinds provide
convenient modes of expression (“syntactic sugar”) for some cases where
a shorter form, compatible with traditional mathematical conventions, is
desirable forcalling the feature.

When referring to feature names, some syntax rules use the
Extended_feature_name, and some use theFeature_name, which is just the
identifier, dropping theAlias if any. The criterion is simple: when a class
text needs to refer to one of its own features, theFeature_nameis sufficient
since (from the Feature Identifier principle below) it uniquely identifies the
feature. So theExtended_feature_nameis used in only two cases: when
you first introduce a feature, in aFeature_declarationas discussed above,
and when youchangeits name for a descendant, in aRenameclause (for
both inheritance and constrained genericity).

This also means that in descendants of its original class a feature will
retain itsAlias, if any, unless a descendant explicitly renames it to a name
that may drop theAlias, or provide a new one. In particular, redeclaring a
feature does not affect itsAlias.

a.variable_attribute
b.procedure(b, c)
a.plus(b)
your_array.item(some_index)

→ Calls are studied in
chapter23. See also
chapter28 about
expressions.

→ “RENAMING”,
6.9, page 183.

→ Studied in more
detail in thenext section.

→ Studied in more
detail below.
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Remember that the operator and bracket aliases are only there to allow a

form of feature call with a syntax other than dot notation, conforming to

widely accepted notations (operator expressions, bracket access for

arrays). Per theFeatureprinciple, every feature has aFeature_name(which

you can use to call the feature, although most people find the operator or

bracket form clearer when available). If we need to clarify, we talk of “the

identifier” of the feature:

This notion is closely related to one of the language’s design principles:

Another general notion that we need to define for feature name is when

two feature names or operators are “the same”. The definition ensures that

we ignore letter case:

Identifier of a feature name
The Identifier that starts aExtended_feature_nameis called the
identifier of that Extended_feature_nameand, by extension, of
the associated feature.

Feature Identifier principle

Given a classC and an identifierf, C contains at most one featureof
identifier f.

This principle reflects a criticalproperty of object-oriented programming
in general and Eiffel in particular: no “overloading” of feature names
within a class. It is marked as “validity” but has no code of its own since it
is just a consequence of other validity rules.

Same feature name, same operator, same alias
Two feature names are considered to be “the same feature name” if
and only iftheir identifiers have identicallower names.
Two operators are “the same operator” if they have identical
lower names.
An Alias in an Extended_feature_nameis “the same alias” as
another if and only if they satisfy the following conditions:
• They are either the sameOperatoror bothBracket.

• If either has aconvert mark, so does the other.

← Page150.

← Discussed at the end
of this chapter:“NO IN-
CLASS OVERLOAD-
ING”,  5.22, page 167.

← The lower name is
(page102) the name all
in lower case.
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5.15 OPERATOR FEATURES

Operator features — those declared with anAlias listing a binary or unary
operator — allow class authors, as previewed above, to provide their clients
with a form of call based on the time-honored conventions of arithmetic
expressions, using infix and prefix operators.

A matrix class can useplusalias"+" as the name of an addition function,
enablingusersof this feature towriteadditions in theusualmathematical form

rather than in dot notation, which in this case might come out as
matrix1.plus(matrix2).

Similarly, naming a negation functionnegatedalias "–" allows calls
written in the form– matrix1 as well asmatrix1.negated.

The following syntax shows that an operator is either a free operator
(Free_unaryor Free_binary)or a standard operator. The standard
operators, listed explicitly below, use special symbols, except for boolean
operators which, following tradition, use keywords, simple (asand) or
double (asand then).

So my_name, MY_NAMEand mY_nAMeare considered to be the same
feature name. The recommended style uses a name with an initial capital
and the rest in lower case (as inMy_name) for constant attributes, and the
lower name, all in lower case (as inmy_name) for all other features. If
letters appear in operator feature names, letter case is also irrelevant when
it comes to deciding which feature names are the same and which different.

This notion is useful in particular to enforce the rule that, in any class,
there can be only one feature of a given name (no “overloading”), and to
determine what constitutes a “name clash” under multiple inheritance. In
such cases the language rules simply ignore letter case.

matrix1  matrix2

Operators
Operator=∆ Unary | Binary

Unary =∆ not | "+" | "–" | Free_unary

Binary =∆ "+" | "–" | "∗" | "/" | "//" | "\\" | "^" | ".." |
"<" | ">" | "<=" | ">=" |
and |or |xor |and then|or else| implies |
Free_binary

→ “NO IN-CLASS
OVERLOADING”,
5.22, page 167.

+
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The rule, givenformally in the lexical analysis chapter, lets you use the
symbols appearing in standard operators and any others non-alphabetic
symbols as long as the result does not create any ambiguity with standard
operators, special symbols, and predefined operators used for equality and
inequality (=, /=, ~, /~).

To avoid spurious parentheses in the writing of expressions, each of the
standard operators,UnaryandBinary, has a precedence level, according to
a table appearing in thediscussionof expressions. All free operators have
the same precedence, higher than for standardoperators.

Remember that an operator is not by itself a feature name but only
appears in thealias of an Extended_feature_name, which also lists an
identifier. This means that you neverhaveto use operator notation to call a
feature, as inmatrix1 + matrix2: dot notation, using the feature’s identifier
as inmatrix1.plus(matrix2), is always available, with the same semantics.

5.16 ASSIGNER PROCEDURES

Bla Bla Bla

Free operators enable developers to define their own operators with
considerable latitude. This is particularly useful in scientific
applications where it is common to define special notations, which
Eiffel will render as prefix or infix operators. You may for example
define operators such as∗∗, |–| (maybe as an infix alias for adistance
function), or various forms of arrow such as<–>, –|–>, =>.

Assigner marks
Assigner_mark=∆ assign Feature_name

→ “OPERATORS”,
32.13, page 892

→ “Operator prece-
dence levels”,  page
768.
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In an assignmentx := v the targetx must be a variable. Ifitemis an attribute
of the typeT of a, programmers used to other languages may be tempted to
write an assignment such asa.item := v to assign directly to the
corresponding object field, but this is not permitted as it goes against all the
rules of data abstraction and object technology. The normal mechanism is
for the author of the base class ofT to provide a “setter” command
(procedure), sayput, enabling the clients to use a.put (v).

The class author may, for convenience, permita.item:= vas a shorthand
for this call a.put (v), by specifying put as an assigner command
associated withitem. An instruction such asa.item := v is not an
assignment, but simply a different notation for a procedure call; it is known
as anassigner call. This scheme, a notational simplification only, is also
convenient for features that have aBracketalias, allowing for example, with
a an array, an assigner calla [i] := v as shorthand for a calla.put (v, i).

The mechanism is applicable not just to attributes but (in line with the
Uniform Access principle) to all queries, including functions with arguments.

The following rule defines under what conditions you may, as author of
a class, permit such assigner calls from your clients by associating an
assigner command with a query.

Assigner Command rule VFAC

An Assigner_markappearing in the declaration of aqueryq with
n arguments (n ≥ 0) and listing aFeature_namefn, called the
assigner commandfor q, is valid if and only if it satisfies the
following conditions:

1 • fn is theidentifier of acommandc of the class.
2 •c hasn + 1 arguments.
3 • The type ofc’s first argument and the result type ofq have the

same deanchored form.
4 • For everyi in 1..n, the type of thei+1-st argument ofc and

the type of thei-th argument ofq have the same deanchored
form.

The feature q can only be a query since, from the syntax of
Declaration_body, an Assigner_markcan only appear as part of a
Query_mark, whose presence makes the feature a query.

In cases3 and4, we require the types (more precisely their deanchored
forms, obtained by replacing any anchored type such aslike x by the type
of the anchorx) to be identical, not just compatible (converting or
conforming). To understand why, recall that the assignmenta.item := y is
only a shorthand for a calla.put (x) with, as a typical implementation:
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In the conformance case, two-way compatibility would mean that the base
classes are proper descendants of each other, causing aninheritance cycle.

In the convertibility case, it would violate theConversionAsymmetryprinciple.

It is in fact possible to have conformance one way and convertibility the
other, but this case is not useful enough to justify a special rule.

item: T assignputdo … end
put (b: U) do … item := b … end

Now assume thatU is not identical toT but only compatible with it, and
consider the procedure call

a.put (a.item)

or the equivalent assignment form

a.item:= a.item

which are in principle useless — they reassign to a field its own value —
but should certainly be permitted. They become invalid, however, because
the sourcea.item (actual argument of the call or right side of the
assignment) is of typeT, the target (the formal argument) of typeU, and it’s
generally impossible for two different types to be each compatible with the
other.

This explains clause3: the first argument of the assigner procedure must
haveexactlythe same type as the result of the query (once both have been
deanchored). Similar reasoning applied to other arguments, if any, leads to
clause4.

WARNING: not valid
for differentT andU;
see text.

→ Prohibited by
clause1 of the Parent
rule, page178.

→ Page408.
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5.17 BRACKET FEATURE

Besides operator aliases, the syntax ofAlias offers theBracketvariant,
allowing you for example to declare, in a classHASH_TABLE[G, H]
describing tables of elements of typeG with keys of typeH, a feature

This is a normal feature, here a function, distinguished only by a new form
of call. Although you may still use the standard dot-notation form

the bracket alias allows another phrasing for exactly the same semantics:

To avoid ambiguity, at most one feature of a class may have a bracket alias;
it must be a function with at least one argument. These requirements appear
in the general constraint on aliases: theAlias validity rule.

If the function has more than one argument, the bracket notation will
use commas, as inmatrix3[i, j, k].

It is often convenient, as already noted, to use the assigner procedure
mechanism in connection with a bracket alias. If the declaration ofitemreads

referring to a procedureput of the same class, with compatible signature:

then instead of

you may write, with identical semantics:

item (key: K): G
-- Item having the givenkey

require
present: has(key)

do
… “Appropriate implementation”…

ensure
…

end

your_table.item("ABC")

your_table

itemalias "[] " (key: K): G
… The rest as above…

put ( ) … end

your_table.put (v, "ABC")

your_table v

← Bracket, page151.

alias "[] "

["ABC"]

→ Page163.

assignput

value: G; key: K

["ABC"] :=
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5.18 SYNONYMS AND MULTIPLE DECLARATION

Because the first part of aFeature_declarationis a New_feature_list, not
just oneExtended_feature_name, each feature declaration may introduce
more than one feature, as in

Such features introduced together are known as synonyms:

Synonym declarations should be viewed as an abbreviation, according to
the following rule:

: INTEGER -- Attributes
require … do … ensure… end -- Routines

Synonym
A synonymof a feature of a classC is a feature with a different
Extended_feature_namesuch that bothnames appear in the same
New_feature_list of aFeature_declaration of C.

Unfolded form of a possibly multiple declaration
Theunfolded form of a Feature_declarationlisting one or more
feature names, as in:

f1, f2, … , fn declaration_body (n ≥ 1)
where eachfi is aNew_feature, is the corresponding sequence of
declarations naming only one feature each, and with identical
declaration bodies, as in:

f1 declaration_body
f2 declaration_body
...
fn declaration_body

← Syntax on pages141
and141.

a, b, c
f, g
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When should we use multiple declarations? The last observations provide
a clue. If you anticipate that a feature may have different variants in
descendant classes, it may be better to introduce it as two features, initially
identical, in its class of origin. This is in particular the case when you
expect descendants to redefine the feature, but want to guarantee them
access to the original — for themselves and, if appropriate, their clients.
Then you should declare one of the two features as frozen.

ANY, the Kernel Library class serving as ancestor of all developer-
defined classes, provides several examples of this technique.ANYoffers a
general comparison function,is_equal, originally comparing two objects
for field-by-field equality. The semantics of the object comparison operator
~ is defined in terms ofis_equal. Any class may redefineis_equal(and
hence the meaning of~ for operands of the corresponding types) to account
for the specific semantics of equality desired for the class. For example, if
objectsL1 andL2 below are instances of a classINTEGER_SET, they are
not field-by-field equal (since they contain references to different objects),
but the author ofINTEGER_SETmay decide thatis_equaland ~ must
return true on these objects as they represent the same set. The class will
redefineis_equal to test for the desired notion of equality.

Thanks to the unfolded form, we may always assume, when studying the
validity and semantics of feature declarations, that each declaration applies
to only one feature name. This convention is used throughout the language
description; to define both thevalidity and the semantics, it simply refers
to the unfolded form, which may give several declarations even if they are
all grouped in the class text.

A multiple declaration introduces the feature names as synonyms. But
the synonymy only applies to the enclosing class; there is no permanent
binding between the corresponding features. Their only relationship is to
have the sameDeclaration_body at the point of introduction.

This means in particular that a proper descendant of the class may
rename orredeclare one without affecting the other.

Eachfi, being aNew_feature, may include afrozen mark. In the unfolded
form this mark only applies to thei-th declaration.

→ “Feature Declara-
tion rule”,  page 162.

→Renaming:chapter6
Redeclaration: chapter
10.

See21.6, page 580
about the respective
roles of functions
is_equal andequal.

51 8-5 33

(INTEGER_SET) (INTEGER_SET)

L1 L2 Equivalent
objects not
field-by-field
equal51 8-5 33
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Along with such redefinitions ofis_equal, it is useful to keep the default
version (performing field-by-field comparison) for all classes. This is why
ANY  introduces two equality functions, originally as synonyms:

with the consequence (enforced through thefrozen mark) that the second
function may not be redefined, so that developers can trust it to retain a
fixed, universal semantics — indeed, a fixed implementation.

It is also important to understand when multiple declarations arenot
appropriate. This includes the following two situations:

• If you devise abettername for an existing feature, but wish to provide
upward compatibility for existing clients and descendants, then a better
mechanism, described below, is available: “obsoleting” the feature. This
has the advantage of facilitating the eventual phasing out of the obsolete
version, whereas there is no incentive to remove a synonym.

• The availability of a synonym mechanism is usually not a good excuse
for refusing to choose between possible names. Class designers,
especially designers ofreusablelibrary classes, should not be fickle;
even if two sets of names appear equally good, it is generally better to
choose just one than to provide both. By passing on the choice to client
developers, the latter solution would only confuse them, and make the
class appear more complex than it is.

These observations suggest that multiple declarations, although an
important facility for cases such as the one mentioned above, should
remain a relatively infrequent occurrence in normal Eiffel development.

The example also suggests what kinds of use are proper for frozen
features. The very idea of “freezing” a feature is, in general, contrary to the
fundamental Eiffel concepts of software extendibility and adaptability,
which the feature adaptation mechanisms (in particular redeclaration)
support directly. When you inherit from a class, you should be able to adapt
its features to the new context; you may use the assertion mechanism to
guarantee that the specification remains compatible with the framework
defined in the original, although the implementation may be different.

This mechanism is so central in the Eiffel method that it leaves only a
limited role for frozen features: taking care of predefined, system-level
operations such asis_identical, for which we require not only the
specification but the implementation to be determined once and for all.

is_equal, frozen default_is_equal
(x: like Current): BOOLEANis...

"Reusable Soft-
ware"discusses how to
choose the names of
library features; see
also Appendix34of the
present book.
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5.19 VALIDITY OF FEATURE DECLARATIONS

To be valid, aFeature_declarationmust satisfy a constraint, known as the
Feature Declaration rule. Here is the rule in full, followed by a detailed
explanation of its clauses.

Additional obligations apply if there is anAssigner_mark; they are covered
by the Assigner Procedure rule (automatically included thanks to theGeneral
Validity rule).

A redeclaration is either aredefinition of an inherited feature (changing its
specification, signature or implementation) or aneffecting (an effective
implementation of a feature inherited in deferred form). The exact
requirements in this case are captured by the Redeclaration rule, which will
be given when we complete the study of inheritance, redefinition and
deferred features.

Feature Declaration rule VFFD

A Feature_declarationappearing in a classC is valid if and only if
it satisfies all of the following conditions for every declaration of
a featuref in itsunfolded form:

1 • TheDeclaration_bodydescribes a feature which, according to
the rules givenearlier, is one of:variableattribute, constant
attribute,procedure,function.

2 • f does not have thesamefeaturename as any other feature
introduced inC (in particular, any other feature of the unfolded
form).

3 • If f has the same feature name as thefinalname of any inherited
feature, theDeclaration_bodysatisfies theRedeclarationrule.

4 • If theDeclaration_bodydescribes adeferredfeature, then the
Extended_feature_name of f is not preceded byfrozen.

5 • If the Declaration_bodydescribes aoncefunction, the result
type isstand-alone.

6 • Any anchored type for an argument isdetachable.

7 • TheAlias clause, if present, isalias-valid for f.

As stated at the beginning of the rule, the conditions apply to theunfolded
formof the declaration; thismeans that the rule treats a multiple declaration
f1, f2, ... , fn declaration_bodyas a succession ofn separate declarations
with different feature names but the samedeclaration_body.

Conditions1 and 2 are straightforward: theDeclaration_bodymust
make sense, and the name or names of the feature being introduced must
not conflict with those of any other feature introduced in the class.

← The syntax of
Feature_declaration
was given on page141

← The rules for deter-
mining the kind of fea-
ture are those of5.12.

→ The full Redeclara-
tion rule isonpage313.

→ As defined on page
163 below.

← Assigner Procedure
rule:page156;General
Validity rule: page98.

← “Unfoldedformofa
possiblymultipledecla-
ration”,  page 159.
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A companion constraint, seen as part of the Redefine Subclause rule in alater
chapter, will prohibit theredefinition of a frozen feature.

In applying conditions2 and3, remember that two feature names are “the
same” not just if they are written identically, but also if they only differ by
letter case. Only the identifiers (Feature_name) of the features play a role
in this notion, not anyAlias they may have.

The Feature Namerule will state a consequence of conditions2 and3
that may be more appropriate for error messages in some cases of violation.

Condition4 prohibits afrozenfeature from being declared as deferred.
The two properties are conceptually incompatible since frozen features, by
definition, may not be redeclared, whereas the purpose of deferred features
is precisely to force redeclaration in proper descendants.

Condition 5 applies to once functions. Aonceroutine only executes its
body on its first call. Further calls have no effect; for a function, they yield
the result computed by the first call. This puts a special requirement on the
result typeT of such a function: if the class isgeneric,T should not depend
on any formal generic parameter, since successive calls could then apply to
instances obtained from different generic derivations; andT must not be
anchored, as in the context of dynamic binding it could yield incompatible
types depending on the type of the target of each particular call. The notion
of stand-alone typecaptures these constraints onT.

Condition 6 addresses delicate cases of polymorphism and dynamic
binding, where anchored arguments and their implicit form of
“covariance” may cause run-time errors known as “catcalls”. It follows
from the general rule for signature conformance and isdiscussed with it.

The last condition,7, is the consistency requirement on features with an
operator or bracket alias. It relies on the following definition (which has a
validity code enabling compilers to give more precise error messages).

Alias Validity rule VFAV

An Alias clause isalias-valid for a featuref of a classC if and
only if it satisfies the following conditions:
1 • If it lists anOperatorop: f is aquery; no other query ofC has

anOperatoralias using thesameoperator and the same number
of arguments; and either:op is aUnaryandf has no argument,
or op is aBinary andf has one argument.

2 • If it lists a Bracket alias: f is a query with at least one
argument, and no other feature ofC has aBracket alias.

3 • If it includes aconvert mark: it lists anOperatorand f has
one argument.

← Definition of “same
featurename”,page153.

→ Page474.

←Frozen featureswere
introducedonpage141.

→ Page307.

→ “ONCE ROU-
TINES”,23.14,page641.

→ See, in the chapter
on types:“STAND-
ALONE TYPES”,
11.12, page 347.

→ “Signature con-
formance”,  page 386.
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Such a feature must return a result and hence be a query — attribute or
function. An attribute is only possible in the unary case, and is indeed
permitted in line with theUniform Access principle, although in most
practical cases you’ll need a function.

5.20 SCOPE OF NAMES

Any feature of a class is accessible for use in anyFeature_declarationof
the class, and in itsInvariant clause. Examples of the first use include
unqualified (direct) calls in theFeature_body, Precondition, Postcondition
andRescueclauses of a routine, and use asAnchor for anAnchoredtype
in a declaration of a feature or of a routine argument.

To avoid any ambiguity,constraints will prohibit reusing the name of a
feature of the class for any other entity appearing in the class: formal
argument or local variable of a routine, Object-Test Local of anObject_test.

The Feature Declaration rule doesnot, however, prohibit conflicts
between feature names and names ofclasses. It is possible for a feature to
bear the same lower name as a class of the universe. You may sometimes
find it convenient to write a feature declaration such as

in a class text which only needs one feature of a certain type (here given by
classERROR_WINDOW) if you consider that the type name provides
enough information to describe the role of the feature.

The first two conditions express the uniqueness and signature requirements
on operator and bracket aliases:

• An operator featureplusalias "§" can be either unary (called as§ a) or
binary (called asa § b), and so must take either zero or one argument.
Two features may indeed share the same alias— likeidentityalias "+"
and plus alias "+", respectively unary and binary addition in class
INTEGERand others from the Kernel Library — as long as they have
different identifiers (hereidentityandplus) and different signatures, one
unary and the other binary.

• A bracket feature, of which there may be at most one in a class, will be
called under the formx [a1, …, an] with n ≥ 1, and so must be a query
with at least one argument (and hence a function). Condition2 tells us
that there may be at most one bracket feature per class.

Condition3 indicates that aconvert mark, specifying “target conversion”
as in your_integer+ your_real, makes sense only for features with one
argument, with anOperator which (from condition1) must be aBinary.

error_window: ERROR_WINDOW

→ “UNIFORM
ACCESS”,23.4,page624.

→ “SEMISTRICT
BOOLEAN OPERA-
TORS”,28.6,page774.

→ Seechapters8about
Feature_body, 9 about
Precondition andPost-
condition, 26 about
Rescue.

→Formalargumentrule,
page220;Local variable
rule, page226; Object
Test rule, page659.
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5.21 OBSOLETE FEATURES

As classes evolve in the constantly changing world of software
development, you may find that a feature is no longer satisfactory.

If all you need is to change its implementation, then you should be able
to update the feature without affecting its dependent classes (clients and
proper descendants). For example, you may change aFeature_body, even
if this causes replacing an attribute by a function or conversely, with
minimum impact on dependents.

Unfortunately, this is not always the case. You may become unhappy
with a feature’s name, its signature or its specification — all of which are
part of the interface and known to the clients.

In such a situation, if you are certain that you have found a better
replacement for the feature, you should perform the change without delay,
for fear of prolonging the life of inferior software versions. But you must
also take into consideration any existing dependent classes that relied on
the feature. Clearly, you should avoid any change that would suddenly
prevent such classes from functioning; but you may want to encourage their
authors to adapt them to the new version within a reasonable time.

The preceding chapter showed how to declare an entireclass as
obsolete. This is a rather drastic decision; more often, the class as a whole
remains adequate, but you want to update a few features.

The feature obsolescence mechanism supports this need. By declaring a
feature asobsolete, you keep it usable exactly as it was, while alerting its users
to the existence of a better version. This provides a graceful way to phase out
a feature while remaining friends with the developers of its clients.

Both routines and attributes may become obsolete. To mark a routine
obsolete, give it anObsolete clause, of the form

where Messageis a Manifest_string. This serves to warn authors of
dependent classes that the routine should no longer be used. TheMessage
should direct readers to alternate features.

Here is an obsolete routine which once figured in classARRAYof the
Kernel Library:

obsolete Message

The specification defines
theroutine’ssemantics.It
is normally expressed by
assertions;seechapter9.

← See4.11, page 128,
about obsoleting an
entire class.
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In older versions of the library,enterwas the routine used to replace by
new_valuethe value of the element at indexi in an array. An examination
of the consistency of names and conventions in the library resulted in a
decision to update the routine; both the name (putrather thanenter) and the
order of arguments were changed. TheMessage explains this change.

To avoid cluttering library classes with features that are no longer relevant,
library maintainers should not allow obsolete routines to loiter forever. After
a suitable grace period — time for one or two new releases of the software to
displace the older generations — they will have fulfilled their duties as
Client-Friendly Transition Facilitators and should be retired with honors.
This indeed happened to the above version ofenter, which (although fondly
remembered) disappeared long ago from classARRAY, allowing — by an
unforeseen twist of fate —enter to reappear as a synonym ofput.

The syntax of class-levelObsoleteclauses also applies — through the
production forFeature_value— to routine-level clauses; here it is again:

As we saw there, marking a feature asObsoletedoes not affect its
semantics. But language processing tools may produce a warning when
they process a client or descendant class that uses the feature. The warning
should include theMessage.

Thecontractview of a class does not retain any feature marked obsolete.

A compiler or other language processing tool may also go further and
provide an option that, under some conditions, will automatically update
the text of client classes, replacing all calls to an obsolete routine by the
body of the routine with appropriate argument substitution.

enter(i: INTEGER; new_value: T)

-- Replace bynew_value the element at index i
require

i >= lower; i <= upper
do

...(Appropriate algorithm)...
ensure

set:item(i) = new_value
end

Obsolete=∆ obsoleteMessage

Message=∆ Manifest_string

obsolete"Use ’put(new_value, i)’ "

← Page141.

←Thissyntaxappeared
originally on page129,
followed by the seman-
tics, applicable to obso-
lete features as well as
obsolete classes.

→“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.9, page 212.
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As noted in the discussion of obsolete classes, the availability of a
feature obsolescence mechanism is not an excuse to grant a reprieve to
software components that are buggy or otherwise deficient. If you discover
a specification, design or implementation flaw, only one reaction is
reasonable: correcting the mistake. A routine is a candidate for
obsolescence only when, as originally written, it adequately covered a
certain need, but is not in a manner satisfying your current standards. You
prefer the new version, but the obsolete version is notwrong; it’s just not
what you wish to keep for the future.

5.22 NO IN-CLASS OVERLOADING

A consequence of the various validity rules on features and their names —
to be expressed fully by theFeatureNamerule — is that Eiffel never
permits the same name to denote different features within the scope of a
given class. This is expressed by theFeature Name rule.

When you see a feature namef in a class you immediately know what
feature it refers to; and when you see a feature calla.f (…) with a of type
T you can immediately find the featuref to which it refers inT. (The actual
feature to be called may of course, as a result of dynamic binding, be a
redeclared version from a descendant.)

The full Feature Name rule appears only in a later chapter because it
must take into account, along with the features introduced in a class, those
inherited from its parents, and possibly renamed in the process: no name
conflicts must arise between any of these. The rule must handle the effect
of all inheritance mechanisms, including renaming, redefinition, and
sharing under repeated inheritance.

The result, however, is simple: no name conflicts, period. The
“overloading” mechanisms permitted by some languages is a confusing
facility with no known benefit. It contradicts the principles of object
technology and creates difficulties for both language users and compiler
writers. The idea of using the same name to denotedifferent thingswithin
a given scope can at best be described as rather puzzling.

Eiffel enforces instead the clear rule that in one class one feature name
means one thing. (Nothing prevents you, asnoted, from using the same
name for feature names andclass names, which can cause no ambiguity.)

→ Page474.

← “SCOPE OF
NAMES”,5.20,page164.
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The only form of overloading permitted by Eiffel is the reuse of a
feature name acrossdifferentclasses. The systematic naming conventions
of the recommended style actually encourage you in this direction; the idea
is to use a single name for features that correspond to thesamebasic
semantics adapted to different contexts — the reverse of in-class
overloading. Inter-class overloading takes its full power through dynamic
binding, which allows dynamic (run-time) selection of the proper semantic
variant, where intra-class overloading is static (compile-time). The
dynamic form of inter-class overloading can also be calledsemantic
overloading, in contrast with thesyntacticnature of in-class overloading.

What is commonly known as “operator overloading”, the possibility of
using the same operators, arithmetic in particular, for operations on
different data types, is provided in a more general and flexible way by the
combination ofAlias clauses, permitting operator syntax for calls, and the
conversion mechanism.
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The inheritance relation
6.1 OVERVIEW

This chapter introduces the fundamental properties of inheritance,
concentrating on the first view — the module aspect. It describes in
particular therenamingmechanism, which brings considerable flexibility
by letting you decide anew in each class on the names of the features it
inherits.Laterchapters discuss the type view of inheritance, which leads to
Eiffel’s type system, and explore the feature adaptation mechanisms that go
with it: redefinition, effecting, undefinition, and the sharing and replication
mechanisms of repeated inheritance.

6.2 AN INHERITANCE PART

To define a class as inheriting from one or more others, include one or more
Inheritance parts, each introduced by the keywordinherit .

Below is a slightly simplified form (omitting in particular theNotes
clause) of the beginning of classFIXED_TREE from the EiffelBase
Library. It shows a typicalInheritancepart, indicating thatFIXED_TREE
obtains some of its features from three other classes:

• TREE, describing the general notion of tree, regardless of representation.
• CELL, describing elements used to store an individual piece of

information (such as a tree node).
• FIXED_LIST, providing some of the implementation.

Inheritance is one of the most powerful facilities available to software
developers. It addresses two key issues of software development,
corresponding to the two roles of classes:

• As a module extensionmechanism, inheritance makes it possible to
define new classes from existing ones by adding or adapting features.

• As atype refinementmechanism, inheritance supports the definition of
new types as specializations of existing ones, and plays a key role in
defining the type system.

→ Chapters11to13on
typing and14 on con-
formance.
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The classes listed in the twoInheritance parts, TREE, CELL and
FIXED_LIST, are said to be the “parent classes”, or just “parents”, of
FIXED_TREE. This is defined as a case ofmultiple inheritance.As the
fixed-tree example shows, there is often a need to adapt the features of
parents to a new class. This is achieved through theFeature_adaptationpart
of aParentpart, highlighted above: a Redefine clause for theTREEparent
and aRename clause forFIXED_LIST.

The first inheritance clause, introduced by justinherit , guarantees
conformance of the class to the two parents listed. The other one,
introduced byinherit { NONE} , provides non-conforming inheritance,
giving the new class access to the features of the parent —FIXED_LIST—
without introducing a “subtyping” (conformance) relation.

A Feature_adaptationpart may contain Redefine and Rename
subclauses, as here, as well as others —Undefine, New_exports, Select —
listed in the syntax below.

6.3 FORM OF THE INHERITANCE PART

Here is the relevant syntax:

class
FIXED_TREE[T]

inherit
TREE[T]

CELL [T]
inherit { NONE}

FIXED_LIST[T]

feature
… (Rest of class omitted) …

redefine
attach_to_higher

end

rename
off as child_off,
afteraschild_after,
beforeaschild_before

redefine
duplicate, first_child

end

→ The notion of parent
is defined precisely in
the next section.



§6.3  FORM OF THE INHERITANCE PART 171
Bla bla bla =====================

A Parent_listnames one or moreParentparts. Each is relative to a
Class_type, thatis to say a class nameB possibly followed by actual generic
parameters (as inB [T, U ]). B mustbe the name of a class in the universe to
which the current class belongs. This property yields a definition:

Inheritance parts
Inheritance=∆ Inherit_clause+

Inherit_clause=∆ inherit [Non_conformance] Parent_list

Non_conformance=∆ "{" NONE "}"

Parent_list=∆ { Parent ";" …} +

Parent=∆ Class_type[Feature_adaptation]

Feature_adaptation=∆ [Undefine]
[Redefine]
[Rename]
[New_exports]
[Select]
end

As with all other uses of semicolons, the semicolon separating successive
Parentparts is optional. Thestyle guidelines suggest omitting it between
clauses that appear (as they should) on successive lines.

Syntax (non-production): Feature adaptation

A Feature_adaptationpart must include at least one of the
optional components.

This rule removes a potential syntax ambiguity by implying that theend in
classB inherit A endcloses the class; otherwise it could be understood as
closing just theParent part.

Parent part for a type, for a class
If a Parentpartpof anInheritancepart lists aClass_typeT, p is said
to be aParent partfor T, and also for thebase class ofT.

→ “OPTIONALSEMI-
COLONS”,  34.10,
page 919.

→ Class types are stud-
ied in chapter11. The
requirement thatBbe a
class of the universe fol-
lows from the Class
Type rule, page333.
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The earlier declaration ofFIXED_TREEcontainsParentparts for classes
TREE, CELL andFIXED_LIST.

Specifying{ NONE} ( aNon_conformancemarker) in anInherit_clause
yields a restricted form of inheritance, where the new class has access to
the features and invariant of each parent listed, but the corresponding types
do not conform to the parent types. This is known asnon-conforming
inheritance and detailedlater in this chapter.

After theClass_typein a Parentpart you may also specify an optional
Feature_adaptationclause listing the modifications that the new class
wants to perform on the features it inherits from that parent. These
modifications may affect various properties of the features, each handled
by a subclause ofFeature_adaptation:

• Their effectiveness status, deferred or effective (Undefine).

• Their signature and implementation (Redefine).

• Their names (Rename).

• Their export status (New_exports).

• Their resolution of dynamic binding conflicts under repeated
inheritance (Select).

Renameis studiedlater in this chapter, the others in subsequent chapters,
in particular onedevoted entirely to feature adaptation.

6.4 GRAPHICAL CONVENTION

In pictorial representations of system structures, where classes appear as
labeled ellipses, the inheritance relation is represented by single arrows
(red if color is available) pointing from heirs’ ellipses to parents’ ellipses.

6.5 ANY

No class that you write is an orphan.

So ininherit TREE[T] there is aParentpart for the typeTREE[T] and for its
base classTREE. For convenience this definition, like those for “parent” and
“heir” below, applies to both types and classes.

→ “NON-CONFORM-
INGINHERITANCE”,
6.8, page 180.

→ See6.9,page183on
Rename; chapter10on
Feature_adaptation,
especiallyRedefineand
Undefine(the latter in
10.19,page290); ,page
204 onNew_ exports;
16.12, page 463on
Select.

C

B
Parent and
heir
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The convention ensuring this property — illustrated by the following
figure — is that any class that doesn’t have an explicitInheritancepart is
considered to haveANY as its parent.

The figure also shows, at the bottom, a fictitious classNONE, studied
next. But there’s nothing fictitious aboutANY:

An important property of the inheritance structure is that every class
inherits, directly or indirectly, from a class calledANY, of which a version
is provided in the Kernel Library as required by the next rule. The
semantics of the language depends on the presence of such a class, whether
the library version or one that a programmer has provided as a replacement.

ClassANYrule VHCA

Everysystem must include a non-generic class calledANY.

The key property ofANYis that it is not only an ancestor of all classes and
hence types, but that all typesconform to it, according to the following
principle, which is not a separate validity rule (although for reference it has
a code of its own) but a consequence of the definitions and rules below.

Universal Conformance principle VHUC

Every type conforms toANY.

To achieve the Universal Conformance principle, the semantics of the
language guarantees that a class that doesn’t list any explicitParentis
considered to haveANYas its parent. This is captured by the following
notion: Unfolded Inheritance Part. The above definition of “parent”, and
through it the definition of “ancestor”, refer to the Unfolded Inheritance
Part of a class rather than its actualInheritancepart.

A

Developer-defined
classes

NONE

ANY

B C

ED

The
inheritance
structure

→ “NONE”, 6.6,page
175.
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The fictitious clauseinherit ANY is conforming.

If a class had one or moreParentclauses, but all were non-conforming, it
would violate the Universal Conformance principle; wewon’t allow this. The
solution is simple: in this (rare) case, just addinherit ANY, explicitly.

The special status ofANYimplies two key properties, corresponding to
the type and module views of inheritance:

1 •ANYis the most general of directly useful types: any type that you may
define will conform toANY.

2 • The features ofANY, describing general-purpose operations, are
universal: any class that you may define will have access to them.

As a consequence of property1, if you want a routine to be applicable to
objects of arbitrary developer-defined types, you may give it an argument
of type ANY. An example is the function, declared inANY itself, that
produce aduplicate of an object:

Property2 provides every developer-defined class with a set of important
universal features coming fromANY. Some examples are the function
cloned as sketched above, the proceduresdefault_rescue and
default_creategiving default exception and creation behavior and the
functionoutproducing a string representation of any object.

If you write a class that has no explicitParent, and hence automatically
inheritsANY, you can’t do anything — renaming, redefinition,…— to the
features fromANY. If you do want to adapt them, the solution is simply to
make the inheritance explicit:

Unfolded Inheritance Part of a class
Any class C has an Unfolded Inheritance Part defined
as follows:
1 • If C has anInheritancepart: that part.
2 • Otherwise: anInheritancepart of the forminherit ANY.

cloned(other: ANY): like Current
-- Void if other is void; otherwise, new object
-- field-by-field identical to object attached toother

… Rest of routine omitted…

class C inherit

redefinecopy, default_rescue, … end
feature

…
end

→ “Parentrule”, page
178, condition4.

→ “CLONING AN
OBJECT”,  21.4,
page 575.

→ See26.5, page 694,
aboutdefault_rescue.

ANY
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The special role ofANYturns any case ofmultiple inheritance into a case of
repeatedinheritance: on the earlierfigure,E is an heir to bothB andC, and
hence an indirect descendant ofANY in two ways. Such situations are
addressed through the normal rules of repeated inheritance (discussed below
and detailed in alater chapter). Unless you specify otherwise, repeated
inheritance fromANYwill produce the expected effect for a class such asE:
the class will have just one version of every feature fromANY, as if it there
were just one inheritance path.

6.6 NONE

The overall inheritancefigure shows, along withANYat the top, another
special class at the bottom:NONE. This class is considered to inherit from
all classes that have no other heirs — assuming appropriate renaming to
remove any resulting name clashes.

Unlike ANY, NONE does not actually exist as a class text (if only
because that text would need to be updated every time anyone, anywhere,
writes a new class!), but serves as a convenient fiction to make the
inheritance structure and the type system complete.

NONEhas no useful instance. It serves as the type ofVoid, which denotes
a void reference. SinceNONEis assumed to be a descendant of every class,
the Parent rulebelow implies that no class may be an heir ofNONE. The class
does not export any feature, to help ensure that no feature call has a void target.

6.7 RELATIONS INDUCED BY INHERITANCE

The syntax tells us exactly when inheritance is “multiple”:

Multiple, single inheritance
A class hasmultiple inheritance if it has an Unfolded
InheritancePart with two or moreParentparts. It hassingle
inheritance otherwise.

← Page173.

→ Chapter16; see
especially“SHARING
ANDREPLICATION”,
16.4, page 436.

← Page173.

→ Page178.
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Inheritance introduces the “parent” and “heir” relations between classes:

Listing { NONE} indicates that the relation does not imply conformance of
the associated types:

What counts for this definition is the number not of parent classes but of
Parentparts. If two clauses refer to the same parent class, this is still a case
of multiple inheritance, known asrepeated inheritanceand studiedlateron
its own. If there is noParentpart, the class (as will be seen below) has a de
facto parent anyway, theKernel Library classANY.

The definition refers to the “Unfolded” inheritance part which is usually just
theInheritancepart but may take into account implicit inheritance fromANY,
as detailed in the correspondingdefinition below.

Multiple inheritance is a frequent occurrence in Eiffel development; most
of the effective classes in the widely used EiffelBase library of data
structures and algorithms, for example, have two or more parents. The
widespread view that multiple inheritance is “bad” or “dangerous” is not
justified; most of the time, it results from experience with imperfect
multiple inheritance mechanisms, or improper uses of inheritance. Well-
applied multiple and repeated inheritance is a powerful way to combine
abstractions, and a key technique of object-oriented software development.

Inherit, heir, parent
A classC inherits from a type or classB if and only if C’s
Unfolded Inheritance Part contains aParent part forB.
B is then aparent of C (“parent type” or “parent class” if there is
any ambiguity), andC anheir (or “heir class”) ofB. Any type of
baseclassC is also an heir ofB (“heir type” in case of ambiguity).

Conforming, non-conforming parent
A parentB in anInheritancepart isnon-conforming if and only if
everyParentpartfor B in the clause appears in anInherit_clause
with aNon_conformance marker. It isconforming otherwise.

→ See chapter16

→ Page174.
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The reflexive transitive closures of the basic relations are also of interest:

From ancestor types we obtain ancestor classes, called just ancestors:

.

Ancestor types of a type, of a class
Theancestor types of atypeCT of base classC include:
1 •CT itself.

2 • (Recursively) The result of applyingCT’s genericsubstitution
to the ancestor types of everyparent type forC.

The ancestor types of aclass are the ancestor types of its
currenttype.

The basic definition covers ancestor types of atype; the second part of the
definition extends this notion to classes.

Case1 indicates that a type is its own ancestor.

Case2, the recursive case, applies the notion ofgeneric substitution
introduced in the discussion of genericity. The idea that if we consider the
type C [INTEGER], with the class declarationclassC [G] inherit D [G]
…, the type to include in the ancestors ofC [INTEGER] as a result of this
Inheritancepart is notD [G], which makes no sense outside of the text of
C, butD [INTEGER], the result of applying toD [G] the substitutionG →
INTEGER; this is the substitution that yields the typeC [INTEGER] from
the classC [G] and is known as the generic substitution of that type.

Ancestor, descendant
ClassA is anancestorof classB if and only if A is thebaseclass
of anancestor type ofB.
ClassB is adescendantof classA if and only if A is an ancestor
of B.

Any class, then, is both one of its own descendants and one of its own
ancestors.Proper descendants and ancestors exclude these cases.

Proper ancestor, proper descendant
Theproper ancestorsof a classC are itsancestors other thanC
itself. Theproper descendantsof a classB are itsdescendants
other thanB itself.

“Reflexive transitive
closure” means the
relation iterated any
number of times(zero
or more).
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6.6 PROHIBITING CYCLES

An important constraint governs the inheritance relation: there must be no
inheritance cycles.

In other words, you may not build a class structure as in the left part of the
figure, whereD inherits fromB, B from A, A from C andC from D. More
generally, it is invalid to have a set of classesC0, C1, …, Cn (n ≥ 1), where
C0 andCn are the same class and everyCi is an heir ofCi+1.

The reason for this restriction is easy to understand: makingC an heir
to B means defining the set of features ofC as an extension ofB’s feature
set; the relationship cannot be mutual.

Prohibiting cycles does not mean prohibiting a classD from being a
descendant of another classA in more than one way, as illustrated by the
structure appearing in the right part of the above figure. This is a caseof
repeated inheritance, valid if it meets the relevant validity constraints.

These observations lead to the validity constraint onInheritance parts:

Parent rule VHPR

TheUnfoldedInheritancePart of a classD is valid if and only if
it satisfies the following conditions:
1 • In everyParentpart for a classB, B is not adescendant ofD.

2 • Noconforming parent is afrozen class.

3 • If two or more Parentparts are for classes which have a
common ancestorA, D meets the conditions of theRepeated
Inheritance Consistency constraint forA.

4 • At least one of theParent parts isconforming.

5 • No two ancestor types ofD are differentgenericderivations of
the same class.

6 • EveryParent is generic-creation-ready.

Cycle
(INVALID )

Repeated
InheritanceA

D B

C

A

D

CB

(may be valid)

Invalid cycle
vs. valid
repeated
inheritance

→ Chapter16.
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When applying the Parent rule, do not be misled by the “if” part of the “if
and only if”: to guarantee that anInheritancepart is valid, you will also have
to check conditions which do not appear explicitly in the rule. In particular:

• Every parentP must be a valid type; this means among other
requirements that ifP is generically derived, appearing asB [X, …],
thenB must be the name of a generic class in the surrounding universe
and the actual parametersX, … must be valid types matching the formal
parameters ofB.

• EveryFeature_adaptationclause (with itsRename, Redefineand other
subclauses) must be valid.

The Parent rule does not need, however, to express such requirements
explicitly: The General Validity rule implicitly adds to the constraint on any
construct the condition that all the sub-components are valid too. Be sure to
remember this convention — without which the validity rules would become
hopelessly complicated — whenever you see an “if and only if” validity
constraint throughout this book. If you have the impression that the constraint
does not cover every necessary condition, this is probably just because it
omits the validity requirements on sub-components, as permitted by the
General Validity rule.

Condition1 ensures that there are no cycles in the inheritance relation.

The purpose of declaring a class asfrozen (case2) is to prohibit
subtyping. We still permit thenon-conformingform of inheritance, which
permits reuse but not subtyping.

Condition 3 corresponds to the case of repeated inheritance; the
RepeatedInheritanceConsistency constraintwill guarantee that there is no
ambiguity on features thatD inherits repeatedly fromA.

Condition4 ensures a central property of the type system: the Universal
Conformance principle, stating that all types conform toANY. Without this
condition, it would be possible for allParentparts of a class to benon-
conformingand hence to cause violation of the principle. Note that in the
Unfolded Inheritance Part there is always at least oneParentpart, since the
absence of anInheritancepart is a shorthand forinherit ANY, ensuring that
condition4 holds.

Condition5 avoids various cases of ambiguity which could arise if we
allowed a classC to inherit from bothA [T] andA [U] for differentT and
U. For example, if C redefines a featuref from A, the notation
Precursor{ A} in the redefinition could refer to either of the parents’
generic derivations.

Condition6 also concerns the case of a generically derivedParentA [T];
requiring it to be “generic-creation-ready” guarantees that creation
operations onD or its descendants will function properly if they need to
create objects of typeT

→ Page466.

→ Page466.

→ Studied below:
“NON-CONFORM-
INGINHERITANCE”,
6.8, page 180.

→ Studied below:
“NON-CONFORM-
INGINHERITANCE”,
6.8, page 180.

→ “Generic-creation-
ready type”,  page 360.

→ The Class Type
rule,“VTCT”,  page
333, requiresPto be the
name of a class in the
universe. On generic
parameters,see the rule
“VTGD”,  page 359.

← General Validity
rule: page98.
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6.7 ADAPTING INHERITED FEATURES

The major purpose of inheriting from one or more classes is to obtain their
features (together with the associated assertions, and the classes’
invariants) as an addition to one’s own. The features obtained by a class
from its parents are called itsinherited features. As already noted, this
yields one of the two categories of features of a class; the others are
immediate features, introduced in a class itself.

The very notion of inherited feature indicates how inheritance provides
an accumulation process enabling classes to use features defined in one or
more previously existing classes – its proper ancestors.

Although a class inherits all its proper ancestors’ features, it retains the
flexibility to adapt them to its own context in various ways:

• A feature introduced in a certain class under a certain name may be
known under different names in descendant classes. This is achieved
throughrenaming.

• A feature defined with a certain signature, specification and
implementation may get a new declaration changing any of these
properties. This is achieved throughredefinition.

• A feature introduced with a certain signature may get a new one. This is
also achieved through redefinition, and through the associated
mechanism ofanchored declaration.

• A feature introduced in a proper ancestor with a specification but no
implementation, known as adeferred feature, may get an
implementation. This is the process ofeffecting.

• If a classC inherits two or more deferred features with compatible
signatures and specifications, it may merge them into a single feature.
This is ajoin .

• When a classC inherits the same feature from two or more of its parents,
which themselves inherit it from a common ancestor, simple techniques are
available to ensure that the result inC is only one feature (sharing) or several
(duplication). The applicable rules are those ofrepeated inheritance.

• Under repeated inheritance, polymorphism and dynamic binding could
cause conflicts, which you must remove through theSelectmechanism.

The first of these techniques, renaming, is purely syntactical, affecting
feature names rather than the features themselves. It is studied later in this
chapter. The others determine the semantic adaptation of features to the
context of new descendants;later chapters explore them in detail.

6.8 NON-CONFORMING INHERITANCE

(The mechanism described here is for advanced users. On first reading you
mayskip the present section.)

← "Features of a class"
and"inherited fea-
tures" were first dis-
cussed in5.4, page 133

→ “THE JOIN
MECHANISM”,
10.21, page 292.

→ Chapter10 on fea-
ture adaptation and16
on repeated inheritance

→ Skip to“RENAM-
ING”,  6.9, page 183
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One of the principal applications of inheritance — in its “type” rather
than “module” persona — is to govern conformance. The basic idea is
simple: in the most common cases, an assignment of the forma1 := b1with
a1 of typeA andb1 of typeB is valid if B is a descendant ofA. You can
similarly call f (b1) if f has a formal argument of typeA. The details appear
in theconformance chapter.

Sometimes, you may want inheritancewithout conformance: the
module-only side of inheritance, disallowing such assignments and
arguments passing. To force this it suffices to prefix the mention ofA in the
correspondingParent part by keyword{ NONE} , as in

Adding { NONE} in this fashion does not affect the basic properties of the
inheritance relation; it simply means that typeB will not conform to A
through this inheritance link.

The syntax is reminiscent of the possibility of declaring features in a clause
feature { NONE} , rather than justfeature, to restrict its export status.

This facility is useful only in specific cases of restricting an inheritance
link to “implementation inheritance” or “facility inheritance”: you want the
reusability benefits of inheritance, but not the subtyping part.

Some simple-minded presentations of object technology will tell you that this is
“wrong” and that inheritance should always involve subtyping. Although they
can legitimately point to incorrect uses of inheritance, it is improper to disallow
implementation inheritance altogether, as it has many perfectly valid uses. The
chapter on the methodology of inheritance inObject-Oriented Software
Constructiondiscusses these issues in detail and presents a taxonomy of the uses
of inheritance.

In this book we will see two major applications of non-conforming
inheritance, both of which use it to remove potential ambiguities: repeated
inheritance and convertibility.

classB inherit
A

… Feature_adaptation clause if needed…
… Rest of class omitted…

→ Chapter14.

{ NONE}

In a case of repeated
inheritance,B might
still conform toA
through another inher-
itance link.
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• The repeated inheritance chapter will show that it is sometimes possible
for a class to obtain two different versions of a feature inherited from a
common ancestor through more than one path. This creates a potential
ambiguity because of polymorphism and dynamic binding, since a call
of the form a.f, wherea is of the repeated ancestor type, could in
principle trigger either of the two variants ifa is attached at run time to
an instance of the common descendant type. When such a conflict
arises, you will resolve it through aSelectclause. The problem only
arises, however, if both paths are conforming; by using non-conforming
inheritance whenever you don’t need subtyping you reduce the need for
Select and simplify your class texts.

• The study ofconvertibility will show how to make a type convertible to
another by including conversion procedures, as in

which makes assignments such asa1 := b1 (and corresponding argument
passing) valid; they will cause a conversion using the listed creation
procedurefrom_B. To avoid any ambiguity, theConversionProcedure
rule prohibits such a scheme whenB conforms toA, as this would also
make the assignment valid but with a different semantics (reference
reattachment with no conversion). Thegeneralprinciple is that a type may
conform or convert to another, but not both. In some cases you might still
like B to inherit fromA for its features only. It suffices in this case to make
B list {NONE} A, rather than justA, as itsParent.

This discussion also explains why we needed condition4 of theInheritance
rule, requiring that if there areParent parts they can’t all be non-
conforming: we need at least one conforming branch to ensure that all
types conform toANY — theUniversal Conformance rule.

The graphical representation of inheritance links has a slightly different
form (similar to theconventionfor the“expandedclient” relation) to signal
non-conforming inheritance:

classA create
from_Bconvert { B}

… Rest of class omitted…

→ Chapter15.

→ “Conversion Proce-
dure rule”,  page 411;
“Conversion princi-
ple”,  page 408.

←Page178(bothrules).

→ Page198, in the
next chapter.

C

B
Parent and
non-
conforming
heir
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6.9 RENAMING

As part of itsFeature_adaptation, anyParentpart may include aRename
subclause, which serves to adapt names of inherited features to the local
context of the newclass.

Here is aRename subclause from the previous example:

Renaming is especially useful in two cases:

• With renaming, you may correct anyname clashoccurring because of
multiple inheritance. A name clash occurs when two or more parents of
a class have a feature of the same name, and wouldusually make the
class invalid if not removed by renaming.

• Renaming also enables a class to offer its inherited features to its clients
and descendants under a terminology appropriate to its own context,
rather than to the context of the parents from which it inherited them. In
other words, it helps make sure that, beyond offering the rightfeatures,
you also offer them under the rightfeature names.

The general syntax of aRename clause is:

rename
off as child_off,
afteraschild_after,
beforeaschild_before

Rename clauses
Rename=∆ renameRename_list

Rename_list=∆ { Rename_pair "," …} +

Rename_pair=∆ Feature_nameasExtended_feature_name

The first component of aRename_pairis just aFeature_name, the identifier
for the feature; the second part is a fullExtended_feature_name, which may
include analias clause. Indeed:

• To identify the feature you are renaming, itsFeature_namesuffices.

• At the same time you are renaming the feature, you may give it a new
operator or bracket alias, or remove the alias if it had one.

Forms of feature adaptation other than renaming, in particular effecting and
redefinition, do not affect theAlias, if any, associated with aFeature_name.

→“NAMECLASHES”,
10.23, page 297, dis-
cusses the exact cases in
which name clashes
are prohibited.
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So if B has the features

you may define a new class

Then for the features offered byC to its direct clients:

• pluschanges its identifier tosumand keeps its alias. Without thealias
part it would no longer have an operator alias inC.

• multiplied is renamed totimes and loses its alias.

• dividedkeeps its identifier but changes its alias; you can’t change just
the alias without giving a full newExtended_feature_name, which in
this case reuses the previousFeature_name (the identifierdivided).

• item keeps its identifier and loses its bracket alias; again you have to
repeat the identifier.

• f takes over the bracket alias vacated byitem. Since every class may
have at most one feature with the bracket alias, this would not be
possible without the change toitem.

• g gets a new identifier and a new alias, thefree operator||.

The aliases all assume that the corresponding features have the right
signatures; for example"+" as aBinary requires a one-argument query.

plusalias "+"
multipliedalias "∗"
dividedalias "/"
itemalias "[]"
f
g

classC inherit
B

rename

end
… Rest of class omitted…

Warning: this is an ex-
treme case, illustrating
the possibilities but not
intended as a model
of style!plusas sumalias "+",

multipliedas times,
dividedas dividedalias "//",
itemas item,
f asf alias "[]",
g ash alias "||"

→ “F ree operator”,
page 893

← “Alias Validity
rule”,  page 163
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TheRename clause is subject to a constraint.:

Renaming is a purely syntactical mechanism:

This principle indeed adds nothing by itself to the semantics of the
language; it is there to remove any uncertainty. Experience has shown that
renaming sometimes confusesnewcomers to object technology —
surprisingly, since the idea is particularly simple: to distinguish between a
feature and its name.

6.10 FEATURES AND THEIR NAMES

A class defines a set of features, each with a certain feature names. The two
concepts are clearly distinct.

A feature is a certain component (attribute or routine), characterized by
a signature, an associated algorithm (for a routine), a value (for a constant
attribute), and possibly other properties. Such a feature is “a feature of” one
or more classes: the class which introduces it, and (subject to feature
adaptation mechanisms) all the descendants of that class.

Rename Clause rule VHRC

A Rename_pairof the formold_nameasnew_name, appearing
in theRenamesubclause of theParentpart forB in a classC, is
valid if and only if it satisfies the following conditions:
1 •old_name is thefinal name of a featuref of B.
2 •old_namedoes not appear as the first element of any other

Rename_pair in the sameRename subclause.
3 •new_name satisfies theFeature Name rule forC.
4 • The Alias of new_name, if present, isalias-valid for the

version off in C.

In condition4, the “alias-valid” condition captures the signature properties
allowing a query to have an operator or bracket aliases. It was enforced
when we wanted to give a feature an aliasin thefirst place and, naturally,
we encounter it again when we give it an alias through renaming.

Renaming principle

Renaming does not affect the semantics of aninherited feature.

The “positive” semantics of renaming (as opposed to the negative
observation captured by this principle) follows from the definition offinal
name andextended final nameof a featurebelow.

→ The Feature Name
rule, page474, express-
es that no other feature
of C hasnew_nameas
its final name.

→“FeatureNamerule”,
page 474.

← “Alias Validity rule”,
page 163.

← Clauses5 and7 of
“Feature Declaration
rule”,  page 162.

→ Page186.

See “Repentant Java
programmer can’t un-
derstand the difference
between a feature and a
feature name”, in Proc.
BEIROOT ‘05 (Bizarre
Experiences In Remedi-
al Object-Oriented
Training), Beirut, Aug.
2005, pages 22345-
27226.
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Every feature of a class has a name in that class. This association
between a feature and a feature name only eixts relative to the class. The
samefeature may have differentfeature namesin different classes.

This is precisely what renaming achieves. The presence, in aParent
clause forB in C, of aRename subclause of the form

implies that the inherited feature known asf in B is known asg in C.

The precise definitions are the following:

Also convenient is the notion of “inherited name” of an inherited feature:

rename…, f asg, …

Final name, extended final name, final name set
Every featuref of a classC has anextended final namein C, an
Extended_feature_name, and a final name, a Feature_name,
defined as follows:
1 • The final name is theidentifier of the extended final name.
2 • If f is immediate in C, its extended final name is the

Extended_feature_nameunder whichC declares it.
3 • If f is inherited,f is obtained from a feature of aparentB of C.

Let extended_parent_namebe (recursively) the extended final
name of that feature inB, andparent_nameits final name off
in B. Then the extended final name off in C is:

- If theParentpart forB in C contains aRename_pairof the
form rename parent_nameas new_name: new_name.
- Otherwise:extended_parent_name.

The final names of all the features of a class constitute thefinal
name setof a class.

Since an inherited feature may be obtained from two or more parent features,
case3 only makes sense if they are all inherited under the same name. This
will follow from the final definition of “inherited feature” in the discussion of
repeated inheritance.

The extended final name is anExtended_feature_name, possibly including
anAlias part; the final name is its identifier only, aFeature_name, without
the alias. The recursive definition defines the two together.

Inherited name
The inherited name of a feature obtained from a featuref of a
parentB is thefinal name off in B.

The notion of"class of
origin" was first intro-
duced on page133.The
full definition appears
on page311.

→ How the final name
set is actually deter-
mined depends on
renaming, redefinition
and joining, as dis-
cussed in chapters10
and16. See further
comments about the
final name set on page
473.

→ “Inherited fea-
tures”,  page 470.
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Renaming — to press the point! — does not change any of the inherited
features, but simply changes the names under which those features will be
known by clients and descendants. Consider a featuref, which has the final
nameold_name in a classB. By writing an heirC as

you decide to make the inherited feature available toC, C’s descendants
and (if it is exported)C’s clients under the namenew_name.

As a consequence, you have also freed the inherited name off, here
old_name, so that another feature ofC may now use this name. That other
feature could come from various places:

1 • It could be a new feature introduced byC itself, for which you wish to
use the nameold_name.

2 • It could be a feature inherited from a parent ofC other thanB, and
having the nameold_namein that parent. Here, without renaming, you
would have introduced a — usually invalid — name clash inC.

3 • It could even be a feature inherited fromB or another parent under some
other name, and renamedold_name in C. This case is somewhat
contorted, but it does occasionally arise.

Whatever the case, remember that if you do decide to reuseold_namefor
another feature ofC, you do not introduce any connection between that
feature and the original featuref, obtained fromB under the inherited name
old_name. The two are unrelated; for example one could be a procedure
and the other an attribute.

The following example illustrates these properties. Assume a class
COLORSwith features of namesred, orange, black, white, andFRUITS
with a feature of nameorange_fruit. You can write a class of the form

In the rest of the language description, references to the “name” of a
feature, if not further qualified, always denote the final name.

classC inherit
…,
B

rename…, , … endold_nameas new_name
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The featureorangeof classCOLORSis known inFRUITS_AND_COLORS
as orange_color; this makes the nameorange available for the feature
inherited fromFRUITSunder the nameorange_fruit. The featurered of
COLORSis known inFRUITS_AND_COLORSas red_color, making the
nameredfree for a new attribute introduced inFRUITS_AND_COLORSwith
no connection to the originalred. Finally each ofCOLORS’s featuresblack
andwhite is known inFRUITS_AND_COLORS under the other’s name.

As this example illustrates, you should understand the renamings induced by
a Renamesubclause as all simultaneous; this allows such constructions as
renameblackaswhite, whiteasblackto make sense. In other words, even if
the Renamesubclause includes aRename_pairold_nameas new_name,
other occurrences ofold_nameor new_nameas the first element of a
Rename_pairin the same subclause must still be interpreted as in the parent.

This last case, which swaps the names of two inherited features, is rather
extreme. It illustrates, however, the importance of renaming to the building
of professional-quality reusable software components. Writing a class as
heir to another means endowing the new class with a certainfunctionality,
as provided by the parent’s features. But this does not by itself make these
features available under aterminologyconsistent with the heir’s specific
context. Renaming is there to guarantee that, for the heir, its clients and its
descendants, the terminology is just as right as the functionality is.

An auxiliary notion resulting from this discussion proves convenient:

class FRUITS_AND_COLORSinherit
COLORS

rename

end
FRUITS

rename

end
feature

end

Declaration for a feature
A Feature_declarationin a classC, listing aFeature_namefn, is a
declaration for a featuref if and only if fn is thefinalname off in C.

Although it may seem almost tautological, we need this definition so that
we can talk about a declaration “for” a featuref whetherf is immediate —
in which casefn is just the name given in its declaration — or inherited,
with possible renaming. This will be useful in particular when we look at a
redeclaration, which overrides a version inherited from a parent.

There is no assumption
that these classes and
featureshaveanyuseas
abstractions reflecting
their names; they just
illustrate some lan-
guage properties.

orangeas orange_color, redas red_color,
blackas white, whiteas black

orange_fruitas orange

red: INTEGER
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6.11 INDEPENDENCE OF INHERITANCE AND EXPANSION

The “expanded” or “reference” status of a class is not inherited.

As you may remember, aClass_header may begin with

as opposed to the more commonclass C or deferred classC. If the
expandedmark is present, the class and types based on it are said to be
expanded. Creation of an instance, as in

will yield an objects withcopy semanticsrather than reference semantics.
What effect does this have on heirs ofC?

The answer is straightforward: no effect. The only consequence of the
expansion status of a class is the semantics of objects of the corresponding
types, such as the object attached tox above. An expanded class may inherit
from a non-expanded one, and conversely. The expansion status is not
transmitted, but entirely determined by the class’s ownClass_header.

This convention makes it easy to provide both a reference and expanded
versions of the same class, as in

The two classes have the same features; one is expanded, the other is not.
Because of the rules on creation, each will have to list the procedures, if
any, that it plans to use as creation procedures.

expanded classC…

x: C
…
createx.…

class RCfeature
… Full class declaration: feature declarations, invariant etc.…

end

expanded class EC inherit
RC
-- No need to write anything else, except possibly
-- Notes and Creation clauses

end

→ See“CLASS TEXT
STRUCTURE”,  4.6,
page 117..
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Clients and exports
7.1 OVERVIEW

This occurs for example whenC includes a declaration of the form

To an entity such asx, C may apply the features that the designer ofShas
explicitly madeavailable(hasexported) to the clients ofS. In other words,
the client relation allows a class to rely on the facilities provided by another
as part of its official interface.

This chapter defines the client relation in its diverse forms; it studies
how a class can export its features to its clients, and how these clients can
use the exported features. The discussion ends with a solution, resulting
from the export mechanism, to an important practical question: how to
document a class.

7.2 ENTITIES
Classes become clients of one another by using typed components,entities
andexpressions, both denoting run-time values (references or objects). An
entity of a classC is one of the following:

Along with inheritance, the client relation is one of the basic mechanisms
for structuring software.

In broad terms, a classC is a client of a typeS — which is then a
supplierof C — when it can manipulate objects of typeS and applyS’s
features to them.

The simplest and most common way is forC to contain the declaration
of an entity of typeS.

x: S

Variants of the relation introduce similar dependencies through other
mechanisms, in particular generic parameters.

Although the original definitions introduce “client” in its various forms
as a relation between a class and a type, we’ll immediately extend it, by
consideringS’s base class, to a relation between classes.

→ Chapter19 covers
entities, with a full defi-
nition on page512.
Chapter28 covers
expressions.



CLIENTS AND EXPORTS §7.3192
• An attribute ofC.

• A formal argument to a routine ofC.

• A local variable of a routine ofC, including (for a function) the
predefined entityResult denoting the result.

• An Object-Test Local (in anObject_test).

• Current .

Any such entity has a type, defined in its declaration.

Expressionsare obtained by combining entities and function calls
through operators (which themselves denote calls). Any expression has a
type, deduced from the type of its components.

It’s those entities and expression types that generates the client relation, by
makingC a “simple client” ofT, as defined below, as soon as it has an entity
or expression of typeT.

7.3 CONVENTIONS

We need a few conventions to simplify the discussion of the client and
supplier relations.

Next, we need to clarify a technical point: when does the discussion of
clients and suppliers involve classes, and when is it about types? If, as
above, you declare in classC the entityxas being of typeS, Sis a type. That
type may be a class, but it may also be a less trivial type; for example,S
may be thegenerically derivedtype

It is useful to distinguish between several variants of the client relation:
simple client, expanded client and generic client relations. Each is studied
below. The more general notion of client is the union of these cases,
according to the following definition.

Client relation between classes and types
A classC is aclient of a typeS if someancestor ofC is asimple
client, anexpanded client or ageneric client ofS.

Recall that the ancestors ofC includeC itself. The definition involves all of
C’s ancestors to include dependencies caused by inherited features along
with those due to the immediate features ofC. Assume that an inherited
routine r of C uses a local variablex of type S; this means thatC may
depend onSeven if the text ofC does not mentionS. (If C redefinesr, the
definition may then needlessly makeC a client ofS, but this has no harmful
consequences.)

D [U]

← “RELATIONS
INDUCED BY
INHERITANCE”, 6.7,
page 175.

← A similar problem
arose for inheritance:
syntactically, aParent is
atype,notaclass,butthe
definitions in6.3, page
170 and6.7, page 175,
made it possible to talk
about parentclasses.
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where D is a generic class andU, itself a type, is the actual generic
parameter for this particular generic derivation ofD.

As this example indicates, the client relation in its most basic form holds
between a class and a type, not necessarily between a class and another
class. It generalizes immediately, however, to a relation between classes,
since every type is derived from some class called itsbase class. In most
cases, the base class of a type is obvious: for example, in a generic
derivation such asD [U], the base class isD; and if a non-generic class is
used as a type, it is its own base class. Hence a simple convention:

As a result of these conventions, it suffices for the following sections to
define what it means for a classC to be a client (in one of the three variants)
of a typeS.

If C is a client ofSandSis a client ofB, we will say thatC is anindirect
client ofB:

Finally, we sometimes need to refer to the inverse relations:

7.4 SIMPLE CLIENTS

The most immediate case of the client relation is for a classC to be a
simple client of a typeS, which is then said to be asimple supplier of C.
This happens in particular whenever C contains a declaration of the form

Assuming the class skeletons:

Client relation between classes
A classC is aclient of a classB if and only if C is aclient of a
type whosebase class isB.
The same convention applies to thesimpleclient,expandedclient
andgeneric client relations.

Supplier
A type or classSis asupplier of a classC if C is aclient ofS, with
corresponding variants: simple, expanded, generic, indirect.

x: S

class A feature
x: B
y: C [D]
…

end

→ The complete defini-
tion of"base class", for
every possible category
of type, appears in
chapters11 to 13.
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ThenA is a simple client ofB andC, andB a simple client ofE. B andC
are, conversely, simple suppliers of A, andE of B.

In this example a class becomes a simple client of certain types through
the declarations of its entities.C will also be a simple client ofSwhenever
it contains an expression of type S.

Here is the precise definition:

The suggested graphical representation, illustrated below, shows the
simple client relation with a double arrow. The arrow may be labeled above
by the name of the corresponding entity, and below by the names of the
actual generic parameters in brackets, as with [D] for the relation between
A andC.

class B feature
z: E
…

end

Simple client
A classC is asimple client of a typeS if, in C, S is the type of
some entity or expression or theExplicit_creation_typeof a
Creation_instruction, or is one of theConstraining_typesof a
formal generic parameter ofC, or is involved in theType of a
Non_object_callor of aManifest_type.

The constructs listed reflect the various ways in which a class may, by listing
a typeSin its text, enable itself to use features ofS on targets of typeS.

No constraint restricts how the classes of a system may be simple clients of
one another. In particular, cycles are permitted: a class may be its own
simple client, both directly according to this definition and indirectly.

A C

BE

y

x

z

[D]

Simple Clients
and suppliers
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For example you might need a classPERSON introducing attributes

This is an example of a direct cycle of the simple client relation. Cycles may
also be indirect; for example, a classHOUSE might introduce an attribute

with classPERSON having an attributeresidence of typeHOUSE.

This means is that every person has a mother, father and residence, and
every house has an architect. There is nothing contradictory (no vicious
circle) in these declarations; at the implementation level they create no
difficulty either since it is possible to implement the corresponding
attributes as references, as the lower half of the figure suggests by showing
typical instances of the classes: references1, 3 and4 are to instances of
PERSON, reference2 to an instance ofHOUSE.

Some of these references could also be void, but only if the attribute types are
declared asdetachable:? PERSON, ? HOUSE.

To avoid any confusion we must distinguish the client relation between
classes(and types), which is the topic of the chapter, from any specific link
that it induces between individualobjects that are instances of these
classes. In particular, a cycle between two classes does not imply a cycle
between specific objects; in the situation of the above figure, links2 and3
will only connect the objects shown in a “Frank Lloyd Wright setup” (the
case of an architect that lives in a house he has designed). Links1 and4
cannot be cyclic since no person is his own father or mother. This should
in fact be an invariant of the class:mother/= Current.

mother, father: PERSON

architect: PERSON

PERSON HOUSE

residence

father

architect

mother, father

residence

architect

32

4 1, 2, 3, 4: see text

mother
1

Cycles in the
simple client
relation

As usual, the ellipses
represent classes. The
rectangles show typical
instances of these
classes, with their fields

→ Chapter24
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7.5 EXPANDED CLIENTS

Expanded types introduce a special variant of the client relation, called
“expanded client”.

Expanded types describe objects that behave withcopy semantics
rather than reference semantics: an assignment or argument passing will
copy the object, not just attach a reference to it. Non-expanded types,
which use reference semantics, are calledreference types.

A type is expanded if and only if its base class is itself expanded; it must
be declared asexpanded class rather than justclass.

An application of expanded classes and types is to describecomposite
objects, the name given to objects that containsubobjects. Consider a class
declaration with the following attributes (routines omitted)

whereRAis a reference type,EBandED are expanded types;INTEGER, a
basic type, is also expanded. Then instances ofC can be viewed as
composite objects. The figure below shows a typical one

The figure shows a conceptual view of the objects and subobjects; it does not
necessarily describe the actual representation, since it is always possible to
represent expanded fields by references rather than subobjects. See below.

This example illustrates the expanded variant of the client relation:

class B feature
a: RA
b: INTEGER
c: EC
d: ED
e: RA

end

Expanded client
A classC is anexpanded clientof a typeS if S is anexpanded
type and some attribute ofC is of typeS.

→ See chapter11 for
the details of expanded
types, starting with
11.9, page 335.

Composite
object

a: RA

b: INTEGER

c: EC

d: ED

e:RA
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Only attributes matter for this definition, since other expressions and
queries do not cause subobjects.

The last example and its illustration appear to suggest that we should
prohibit cycles in the expanded client relation, as in

or the even more absurd-looking case of a direct cycle:

It’s indeed not possible physically for every instance ofEC to contain an
instance ofEA if every instance ofEA contains an instance ofEC, or for
every instance ofEB to contain another of the same type.

But in fact such examples — useful or not — create no particular
problem and we don’t need to prohibit them. Remember that the figure
showing expanded fields as subobjects is just an illustration; the only
semantic property that matters is that instances of expanded types have
copy semantics, meaning that:

• An assignment or argument passing will copy the object, not just assign
a reference.

• An equality operation will compare objects contents, not references.

To support these rules, expanded types havelazy initialization semantics:
expanded objects need only be created when first accessed.

Any implementation of expanded attributes that supports these properties
is acceptable. In particular, while thesubobjectrepresentation is generally
preferable when possible (that is to say, in the absence of cycles), it is always
possible to usereferencesinstead, and create the associated objects on
demand, as part of lazy initialization. Cycles are then not a problem.

This solution is available for attributesa, c andb in the last example.:

expanded classEA feature
c:
…

end

expandedclassEC feature
a:
…

end

expandedclassEB feature
b:
…

end

EC

EA

EB
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Conceptually, you may consider that if an objectOB of the expanded type
EBhas a field of that same type (the same would apply to the indirect case
involving instances ofEA and EC), the field still represents a that
subobject, just “written smaller” inside the first:

Lazy semantics implies that all subobjects are evaluated only when needed,
and an execution can only perform a finite number of such evaluations; so
the process will stop and the level of object embedding remains finite.

Of course we can’t really “write smaller” in the memory of a computer,
so the most obvious implementation will use embedded sub-objects for
expanded attributes at the first level only, and then references for the (rare)
case of cycles in the expanded relation. But the subobject embedding
picture remains applicable conceptually.

Earlier versions of Eiffel had an “Expanded Client rule” prohibiting cycles in
the expanded client relation. The lazy semantics of expanded types now
makes it unnecessary.

The graphical representation of the expanded client relation uses a double
line, as with the simple client relation, but with a brace near the arrowtip:

7.6 GENERIC CLIENTS

Assume thatB is a generic class, and that classC contains a declaration of
the form

usingS as actual generic parameter for the generic derivation of B.

As seen above, this declaration makesC a simple client ofB. But it also
introduces a dependency betweenC and S. This dependency is in fact
similar to what happens ifC has an entity or expression of typeS; this
variant of the client relation is calledgeneric client.

x: B [S]

Embedded
objects

--------------------
--------------------
--------------------
-----------------------------------------------------------------------------------------------------------------------------------------------------

(EB)

(EB)
(EB)

C B

Expanded
client
See corresponding con-
vention for expanded
inheritance, page182.
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As case2 of the definition indicates,C may become a generic client of
Sby usingSas actual generic parameter not just in the type of an entity or
expression (as withx above), but also in aParent part, as in

TheParentpart may appear not just inC itself as here, but in any one of its
ancestors: generic client status is passed on through inheritance.

The graphical convention for the generic variant of the client relation
uses a double arrow from the generic client to its generic supplier, listing
the base class with three dots in brackets[…]. For a declarationx: B [S]:

The full picture is in this case:

Do not confuse the two forms of client relation arising here:C is a simple
client ofB, with Sas a generic parameter, through the declaration ofx (left
part of the figure); but that declaration also makesC a generic client ofS,
assumed here for simplicity to be a non-generic class..

There is no restriction on how the classes of a system may become
generic clients of each other.

Generic client, generic supplier
A classC is ageneric clientof a typeS if for some generically
derived typeT of the form B […, S, …] one of the following
holds:
1 •C is aclient ofT.

2 •T is aparent type of anancestor ofC.

Case1 captures for example the use inC of an entity of typeB [S] (with B
having just one generic parameter). Case2 coversC inheriting directly or
indirectly (remember thatC is one of its own ancestors) fromB [S].

classC inherit

feature
…

B […, S,…]

B […]
C S

Generic client

B
[S]

B […]
C S

Generic client
and simple
client
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7.7 INDIRECT CLIENTS

======Text was moved after all the other definitions per ISO
recommendation

7.8 EXPORT CONTROLS AND INFORMATION HIDING

The client relation determines how a class may call features of a certain
type, on entities of that type. Such calls are subject toexport controls,
implementing a policy of “information hiding”.

AssumeC is a simple or expanded client ofS. C declares one or more
entities or expressions of typeS; let x: Sbe one of them. The benefit, forC,
is to be able to callS’s features on entities and expressions such asx. The
simplest form ofcall, occurring inC, is

wherer is a feature ofS. This form uses dot notation; forms using operators
and assignment procedures are also possible.

Not all such calls, however, are permitted; in particular, not all the
features of a class need be callable by all clients. The designer of a supplier
class may want to keep some features private, or available to some clients
only, because they are only of internal use and subject to change; letting
any client access them directly would jeopardize further evolution, by
requiring a change of the client classes every time these features change.

This is especially true of features that reflect not the services directly
offered by a class to its clients, but internal support for the implementation
of these services, resulting from specific choices of representation and
algorithms. By keeping such features private, the designer of the supplier
class protects clients against the effects of later reversals of these choices.
This policy is part ofinformation hiding , a central principle of software
development, which holds that the developer of a module must make a
clear distinction between two categories of properties: those which are
local to the module itself (its “secrets”, or “private properties”); and those
that are available to clients (“public properties”).

Indirect client
A classA is anindirect client of a typeSof baseclassB if there
is a sequence of classesC1 = A, C2, …, Cn = B such thatn > 2 and
everyCi is aclient ofCi+1 for 1 ≤ i < n.
The indirect forms of thesimple client, expandedclient and
generic client relations are defined similarly.

x.f (…)

→Seechapter23about
the various forms, uses
and properties of calls.

→ Chapter25 covers
the conditions on call
validity.
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Eiffel supports information hiding in a number of ways, including
Design by Contract, the notion of contract view, and the principle of
Uniform Access. One of the principal tools for information hiding is the
ability for a class to define a specific export status for every one of its
features. You can achieve this through two related mechanisms:

• For immediate features (those introduced in the class itself), you may
specify export restrictions by listing clients in aFeature_clause. In the
absence of such a restriction, features are available to all possible clients.

• For inherited features (those obtained from parents), you may change
the export policy specified by each parent through theNew_exports
subclauses of the correspondingParentparts. Inherited features not
listed tthere retain the export status they had in the parent.

The following discussion explain these two mechanisms in detail.

Restricting exports

You define the export status of an immediate feature by specifying authorized
clients in theFeature_clausewhere it is declared. AFeature_clausebegins
with the keywordfeature followed by an optionalClientspart; if present, this
Clients part lists the classes to which the feature is available.

If there is noClientspart, then every feature introduced in theFeature_
clauseis available to any client that cares to use it. So if classPARAGRAPH
includes aFeature_clauseof the form

then any other class may declare an entityp of type PARAGRAPHand
include a call such as

If, however, theClientspart of aFeature_clauseis present, it consists of a
list of classes in braces, and makes the features introduced by the clause
available only to those classes and their descendants.

Here is such aFeature_clause, appearing in a classLINKABLE and
listing three clients:

feature
indent(n: INTEGER)

-- Indent paragraph byn positions.
… Procedure body omitted…

p.indent(5)

feature { LINKABLE, LINKED_LIST, TWO_WAY_TREE}
right: like Current
put_right(other: like Current)

--Makeotherright neighbor of this object.
… Procedure body omitted…

← Feature_clause was
introduced in5.7,page
137.

Thefeature keyword is
not technically part of
theFeature_clause, but
introduces it.
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This Feature_clauseintroduces two features,right and put_right, and
makes them available to clientsLINKABLE (the class itself, viewed as its
own client),LINKED_LISTandTWO_WAY_TREE. This means that, forl
of typeLINKABLE, calls of the form

are permitted if they appear in descendants of any of the classes
LINKABLE, LINKED_LIST andTWO_WAY_TREE.

The next subsections explore two properties visible on this example:

• A class may need to make features available to itself.

• Making a feature available to a class also makes it available to all of its
proper descendants.

Exporting to oneself

The aboveClientspart, appearing in classLINKABLE, listedLINKABLE
itself among the classes to whichright andput_rightare available. This is
required if the class contains aqualified call such as

with l of a type based onLINKABLE. If theFeature_clausestarted with just
feature { LINKED_LIST, TWO_WAY_TREE} , such a qualified call would
be invalid outside of the two classes listed and their descendants; in
particular, it would be invalid inLINKABLE itself.

The reason is clear: a qualified callx.f (…) always makes the enclosing
class a client ofx’s type; so the above call makesLINKABLE a client of
itself, and ifLINKABLEhas madeput_rightselectively available to some
clients only this will only be permitted if it has listed itself among them.

Although perhaps strange at first sight, this convention is consistent
with the general rules on export. (Making exceptions for clients that
happen to be the class itself, or one of its descendants, would lead to
complicated rules.) Be sure to note, however, that all this only applies to
qualified calls. There is no restriction, in the text of a class, onunqualified
calls to features of the class itself, as with

l.right
l.put_right(…)

l.put_right(…)

put_right(…)

→ Chapter23.
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appearing in a routine ofLINKABLE, with thesemantics ofcallingput_right
on thecurrent object. This is always permitted regardless of the export
status ofput_right— that is, even ifput_rightappears in aFeature_clause
whose Clients part does not includeLINKABLE. Clearly, a secret or
selectively available feature such asput_right would be useless if it
couldn’t be called in this way from within the class. Unlike qualified calls
such asl.put_right(…), such an unqualified call is not considered to make
the class a client of itself.

A general semantic property is that, except for invariant monitoring, an
unqualified callf (…) will always have the same effect as the qualified call
Current.f (…). But as a result of this discussion the validity constraints are
slightly different: if f is not exported to the class itself, the first form may be
valid and the second one not.

Exporting to descendants

Making a feature available to a class also makes it available to the proper
descendants of that class. This is because a class needs the same privileges
that its parents had; for example, it could redefine an inherited routine,
changing the original algorithm into a slightly different one, which still
needs access to the same information from suppliers.

As a consequence, declaring features in aFeature_clause of the form

makes them available to all classes, since every developer-defined class is
a descendant ofANY. Such a clause has the same effect as noClientspart
at all, as in

Making a feature secret

The export control mechanism as just described gives us, as a special case,
the ability to make a featuref completelysecret— available for call to no
client. It suffices to declare the feature in aFeature_clause that starts\

feature
… Feature declarations…

feature
… Feature declarations…

feature
… Declaration forf and other secret features…

→ “Target of a call”,
page 628.

{ ANY}

← “ANY”,  6.5, page
172;seealsochapter35
for more details.

{ NONE}
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where NONE is the fictictious class at thebottom of the inheritance
hierarchy. BecauseNONEhas no usable instance, and no developer-written
class can be a descendant ofNONE, this makes it impossible for any class
to usef as feature of a qualified callx.f (…).

The treatment ofANY and NONE for export controls is pleasantly
symmetric: feature { ANY} introduces public features, available to all
classes;feature { NONE} introduces private features, available to no class.

The conventions for shorthands are, however, different:

• feature with noClients part is an abbreviation forfeature { ANY} .

• feature {} with an emptyClientspart is not permitted by the syntax: the
production forClients requires aClass_list, which cannot be empty.
feature { } could be accepted as a synonym forfeature { NONE} (and
actually was in earlier versions of Eiffel, although seldom used), but the
language design has settled on a single convention, and chosen the more
explicit one for clarity. It is not in the usual Eiffel style to use empty brace or
parenthesis enclosures.

Adapting the export status of inherited features

The precedomg discussion has explained the export status of features
introduced in a class (although the formal definitions have not yet been
given). We also need to know what happens toinherited features.

If a feature isredeclared, its new declaration will appear in aFeature_
clause, whoseClientspart, or absence thereof, will determine the export
status as we have just seen. But what is the feature is not redeclared?

The rule is simple. By default, the feature will keep its export status. An
heir can change that status, however, through aNew_exportspart,
appearing as part of theFeature_adaptation subclause of aParent part.

← “NONE”,  6.6,
page 175.

→ Page208below.

→ A class"redeclares"
a feature if it provides a
new declaration for it.
This may be either a
redefinition or an
effecting. See chapter
10 for details.
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As an example, here is the beginning (Notesclause excluded) of a class
of EiffelBase:

The New_exportspart appears with theother possiblesubclauses of a
Feature_adaptation: after Undefine, Redefineand Rename(only the last
one present here) and beforeSelect.

TheNew_exportssubclause has the general form (shown here with the
export keyword that introduces the subclause)

meaning: unless a redeclaration specifies a different status, makef1, f2, …
available to clientsA, B, C and any of their descendants; makeg1, g2, …
available to clientsX, Y and any of their descendants; and so on.

It is good, as illustrated, to include after eachClientslist a header comment,
such as-- Implementation, indicating the new feature category. The notion of
feature category, and the recommendation to list it through aHeader_comment,
are derived from the practice oflabeling feature clauses in a similar way.

If, instead of a feature list such asf1, f2, …, aClientslist is followed by the
keywordall, then all non-redeclared inherited features are available to the
given clients and their descendants, except for any features for which other
parts of the subclause specify a different policy. For example,FIXED_
STACKabove hides all features inherited fromARRAYED_LISTfrom all
clients, by exporting them toNONEonly. This is a typical example of a
class which inherits its interface from one parent (hereSTACK) and uses
another parent (hereARRAY) for implementation purposes only.

class FIXED_STACK[T] inherit
STACK[T]

inherit { NONE}
ARRAY[T]

rename
putas array_put,
…Other renaming pairs omitted…

end
feature

…

export
{ A, B, C} -- Feature category 1

f1, f2, …
{ X, Y}-- Feature category 2

 g1, g2, …
…

export
{ NONE} -- Implementation

all

←All thesesubclauses,
and theFeature_adap-
tation as a whole, are
optional. The syntax
appeared on page171.

← “FEATURESPART:
EXAMPLE”, 5.5,page
134; syntax, page137.



CLIENTS AND EXPORTS §7.8206
If no part of the subclause mentionsall in lieu of a feature list, any non-
redeclared inherited feature that is not explicitly given a new export status
keeps the exact export status that it had in the parent. Assuming class
declarations of the form:

the features ofC have the following status:

• x, available to all clients,h, available toA and its descendants, andk,
secret, do not appear in any of theNew_exportssubclauses: they both
keep the status they had inB.

• i andj, regardless of their original status inB, are now available toD and
its descendants.

• f isnowavailable toallclients. (Re-exporting toANYishowyoumakegenerally
available a feature that was selectively available, or secret, in a parent.)

Expanding or restricting the export status

Elaborate changes of export status in inheritance, as in the last example, are
uncommon. But two simpler cases causing the use of aNew_exportsclause
do occur fairly often:

• Extending: you may want to re-export a feature which was used in the
parent for implementation purposes only, but turns out to be of direct
value for the clients of the new class, as withf in the last example.

• Restricting: in designing a new class, you may want to hide features that
were exported by a parent.

class B feature
x: INTEGER

feature { A}
f, g, h: INTEGER

feature { NONE}
i, j, k: INTEGER

end

class C inherit
B

end

export
{ D} -- Implementation

i, j
{ ANY} -- Access

f
end
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The second case does not arise in the last example; it does appear in the
previous one, for the inheritance ofFIXED_STACKfrom ARRAY, which
hidesall inherited features. It is not by accident that theInherit_clausein
that case started with

meaning, as we haveseen, non-conforming inheritance. Restricting the
export availability of a class is, indeed, applicable only to non-conforming
inheritance, as it could causetype problems in the conformance case.

Extending the export status of an inherited feature is always possible,
whether in conforming or non-conforming inheritance.

The rule that defines this policy is not a validity constraint but instead a
part of the semantics. The “client set” of a featuref of a classC — the set
of classes that have access tof for qualified calls — is definedbelow as the
union of all applicableClients lists: the list governing its declaration or
redeclaration inC, theNew_exportsif applicable, and the applicable lists
from conformingparents. So with non-conforming inheritance you can
override the original status as you please; but with a conforming parent,
even though it is not invalid to writeexport { NONE} , this will have no
effect since theClientslist { NONE} will be combined with the feature’s
status in the parent, which will then remain applicable.

The export status of features

The previous discussion allows us to give a precise definition of theexport
statusof any feature, which will determine to what classes the feature is
available for qualified calls. This notion determines the validity of

or the equivalent using operator expressions or assignment procedure calls,
appearing in a classC which declaresx of typeS: the feature of final name
f in S must be available toB.

We first need a notion of “client set”, applying toClientsparts such as
{ A, B, C} which, as we have seen, may appear both at the beginning of a
Feature_clause and in aNew_exports subclause:

inherit { NONE}

x.f (…)

Client set of aClients part
Theclient setof a Clientspart is the set ofdescendants of every
class of theuniverse whose name it lists.
By convention, the client set of an absentClientspart includes all
classes of the system.

← “NON-CONFORM-
INGINHERITANCE”,
6.8, page 180.

→ “NOTES ON THE
TYPEPOLICY”, 25.7,
page 672.

→ “Client setof a Cli-
ents part”,  page 207.

→ See chapter25 on
call validity. The pre-
cise requirement is con-
dition 2 of export
validity, page632.
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Rules on setting the export status

(This section introduces no new concepts but gives a more formal
presentation of ideas introduced above. You may skip it on first reading.)

The two constructs that determine the export status of a feature are
ClientsandNew_exports. To conclude this discussion on export controls
and information hiding, we need to express their precise syntax, constraints
and semantics.

Here is the syntax of theClients part:

This construct may appear in two positions. One is in aNew_exports, as
seen next; the other is as an optional component of aFeature_clause, as in

The descendants of a class include the class itself. The “convention” of this
definition simplifies the following definitions in the case of noClientspart,
which should be treated as if there were aClients part listing justANY,
ancestor of all classes.

No validity ruleprevents listing in aClientspart a namen that does not
denote a class of the universe. In this case — explicitly permitted by the
phrasing of the definition —n does not denote any class and hence has no
descendants; it does not contribute to the client set.

This important convention is in line with the reuse focus of Eiffel and
its application to component-based development. You may develop a class
C in a certain system, where it lists some classS in aClientspart, to giveS
access to some of its features; then you reuseC in another system that does
not includeS. You should not have to changeC since no bad consequence
can result from listing a class not present in the system, as long asC does
not itself useSas its supplier or ancestor.

Even in a single system, this policy means that you can removeS— if
you find it is no longer needed — without causing compilation errors in the
classes that list it in theirClientsparts. With a stricter rule, you would have
to removeSfrom every suchClientspart. But then if you later change your
mind — as part of the normal hesitations of an incremental design process
— you would have to put it back in each of these places. This process is
tedious, and it wouldn’t take many iterations until programmers start
making many features public just in case — hardly an improvement for
information hiding, the purpose of all this.

Clients
Clients =∆ "{" Class_list "}"

Class_list=∆ { Class_name "," …} +

feature { A,B,C}
… Feature declarations…

→ Next section: “-
DOCUMENTINGTHE
CLIENT INTERFACE
OF A CLASS”,  7.9,
page 212

← Feature_clause was
specified on page137.
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These properties may at first seem at odds with the language’s emphasis on
including validity constraints that permit detection of errors and
inconsistencies at compile time. But in fact there is no adverse effect:

• As noted, permitting aClientspart in a classC to listing a non-exist
classS gives us useful flexibility. Of course you may misspell a class
name in aClientspart and, in the absence of any constraint, not get a
validity error. But this is not really cause for concern: if you mean to
exportf to A in C and mistakenly start theFeature_clausewith feature
{ B} instead offeature { A} , then for any callc1.f (…) with c1 of type
C in A you will get a validity error. So the absence of a constraint on the
class names listed in aClientspart introduces no risk of accidentally
violating information hiding requirements.

This policy contrasts with theClassTyperule, which addresses the only other
possible use of aClass_namein the language: as part of aClass_type. There
we will need, of course, to require that any class used as part of a type be part
of the surrounding universe.

• Similar reasoning explains why it is not invalid for a class to appear
twice in a Clients part, as in{ A, A} . Export privileges extend to
descendants; so if we disallowedfeature { A, A} we should also prohibit
feature { A, B} if B is a proper descendant ofA, since exporting toAalso
exports toB. Such a rule is too complicated for the benefits it brings.

Since there is no restriction on the classes listed in theClass_list, one of
them may be the enclosing class or one of its ancestors, allowing the class,
as noted earlier, to make a feature selectively available to the current class.

Now for New_exports. It is an optional element ofFeature_adaptation
in a Parentpart, as illustrated byFIXED_STACKabove, and has the
following form:

There isno validity constraint onClientspart. In particular, it is valid for
aClients part both:

• To list a class that does not belong to the universe.

• To list a class twice.

Export adaptation
New_exports=∆ export New_export_list

New_export_list=∆ {New_export_item ";" …}+

New_export_item=∆ Clients[Header_comment] Feature_set

Feature_set=∆ Feature_list |all

Feature_list=∆ {Feature_name "," …}+

→ “Class Type rule”,
page 333.

← Syntax on page171.

←TheoptionalHeader_
commentindicatesafea-
ture category: see, page
204.
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A constraint applies to anyNew_exports clause:

Export List rule VLEL

A New_exportsclause appearing in classC in aParentpart for a
parentB, of the form

export
{ class_list1}  feature_set1
…
{ class_listn}  feature_setn

is valid if and only if for everyfeature_seti (for i in the interval
1..n) that is aFeature_list (rather thanall):
1 • Every element of the list is thefinal name of a feature ofC

inherited fromB.

2 • No feature name appears more than once in any such list.

To obtain the export status of a feature, we need to look at theFeature_clause
that introduces it if it is immediate, at the applicableNew_exportsclause, if
any, if it is inherited, and at theFeature_clausecontaining its redeclaration if
it is inherited and redeclared. In aNew_exports, the keywordall means that
the chosen status will apply to all the features inherited from the given parent.

The following definitions and rules express these properties. They start
by extending the notion of “client set” from entireClients parts to
individual features.

Client set of a feature
The client set of a featuref of a classC, of final namefname,
includes the following classes (for all cases that match):
1 • If f is introduced orredeclared inC: the client set of the

Feature_clause of thedeclaration forf in C.
2 • If f is inherited: the union of the client sets (recursively) of all

its precursors fromconforming parents.
3 • If the Feature_setof one or moreNew_exportsclauses ofC

includes fnameor all, the union of the client sets of their
Clientsparts.
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This is what “available”, used informally up to now, exactly means:

This definition is the principal rule for determining the export status of a
feature. It has two important properties:

• The different cases are cumulative rather than exclusive. For example a
“redeclared” feature (case1) is also “inherited” (case2) and the
applicableParent part may have aNew_exports(case3).

• As a result of case2, the client set can never diminish under
conforming inheritance: features can win new clients, but never lose
one. This is necessary under polymorphism and dynamic binding to
avoid certain type of “catcalls” leading to run-time crashes.

Available for call, available
A featuref is available for call, or justavailable for short, to a
classC or to a typebased onC, if and only ifC belongs to the
client set off.

In line with others in the present discussion, the definition of “available
for call” introduces a notion aboutclassesand immediately generalizes it
to types based on those classes.

The key validity constraint on calls, export validity, will express that a
call a.f (…) can only be valid iff is available to the type ofa.

There is also a notion of “available for creation”, governing whether a
Creation_call create a.f (…) is valid. “Available” without further
qualification means “available for call”.

There are three degrees of availability, as given by the following definition.

Exported, selectively available, secret
The export status of a feature of a class is one of the following:
1 • The feature may beavailable to all classes. It is said to be

exported, orgenerally available.

2 • The feature may be available to specific classes (other than
NONEandANY) only. In that case it is also available to the
descendants of all these classes. Such a feature is said to be
selectively available to the given classes and their
descendants.

3 • Otherwise the feature is available only toNONE. It is then said
to besecret.

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”,  20.7, page 539.
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7.9 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS

Now that we have seen the details of the client and export mechanisms, we
can obtain an answer to a central issue of software development, especially
relevant to the component-based, reuse-oriented software culture promoted
by Eiffel: how can the author of a class provide authors of client and
descendant classes, and maintainers of the class itself, with a clear
description of the facilities offered?

Selecting features

A class will be documented through its features (as well as other properties
such as the class invariant and the list of its parents). The first question is:
which features do we show? Not necessarily all of them: for example, a
client class needs only the features available to it, while a descendant has
access to all features. Also, we might consider inherited features, or not.
These observation suggest two orthogonal distinctions:

• Between views relevant to authors of: the class itself; all clients; a
specific client (taking into account selective exports as discussed earlier
in this chapter); proper descendants.

• Betwen views that take into account:immediatefeatures and invariant
clauses (those from the class itself) only;inherited ones as well.

Retaining the useful combinations gives the following ways of selecting
features to document:

This is the fundamental terminology for information hiding, which
determines when it is possible to call a feature through aqualified callx.f.
As special cases:

• A feature introduced byfeature { NONE} (case3) is available to no
useful classes.

• A feature introduced byfeature { ANY} , or justfeature, is available to
all classes and so will be considered to fall under case1.

• A feature introduced byfeature {A, B, C} , where none of{ A, B, C} is
ANY, falls under case2.

A feature available to a class is also available to all the proper descendants
of that class. As a consequence, selective export does not restrict reuse as
much as it may seem at first: while the features will only be available to
certain classes, these may be classes written much later, as long as they are
descendants of one of the listedClients.

Available
to all clients

Available to clientX Available to descendants
(all features)

Orevenfeature{ANY,A,
B,…} ; adding classes
afterANYbringsnothing.
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In the first row, we select not only immediate features but also those
inherited from a parent andredeclared. This is for two reasons:

• The combination of immediate and redeclared features gives us a good
idea of the “added value” of the class: what it adds to its parents’
features. The termincremental viewexpresses this notion.

• More prosaically, such a view is easy to produce: a simple parsing tool,
working on the basis of just one class without having to access its proper
ancestors, can process all feature declarations — not having to
differentiate between new declarations andredeclarations — and, on the
basis ofClientsparts, retain the public ones (incremental view) or those
available to a specific client (X-client view).

In the second row, we include all inherited features.

Contract views

Once we have selected the features to document, what information do we
retain for them? The most obvious answer would be to give the source
code. But this is usually not appropriate: for a “client programmer” (author
of a client class), the class text usually includes implementation details
along with interface properties. The principle of information hiding
requires that we include only the latter. For the view to be offered to a client
programmer, the interface properties include:

• The name of a feature.

• Its signature: types of arguments and result if any.

• Thecontracts: precondition, postcondition.

• Some properties of the class other than its features, in particular the
class invariant.

Introducing this new dimension into our classification gives the following
variant of the previous table, again retaining useful combinations only:

Immediate + redeclared Incremental
view

X-client incremental view

All including inherited
features (“flat views”)

Client view X-client view Descendant view

Available
to all clients,
contracts only

Available to clientX,
contracts only

Available to descendants
(all features), source text

Immediate + redeclared Incremental
contract view

X-client incremental
contract view

It would be possible to
spot the redefinitions
(by analyzing the
Redefine clauses) but
not the effectings.
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The leftmost column yields the most intereresting form of documentation
for Eiffel classes: thecontract view, incremental or not.

Here are the precise definitions leading to this notion. The basic ideas are
in the preceding discussion, but the defintions need to take all cases and
details into account.

All including inherited
features (“flat views”)

Contract view X-client contract view Descendant view

Secret, public
A property of a class text issecretif and only if it involves any of
the following, describing information on whichclient classes
cannot rely to establish their correctness:
1 • Any feature that is notavailable to the given client, unless this

is overridden by the next case.

2 • Any feature that is notavailable for creation to the
given client, unless this is overridden by the previous case.

3 • The body and rescue clause of any feature, except for the
information that the feature is external orOnceand, in the last
case, its once keys if any.

4 • For a query without formal arguments, whether it is
implemented as anattribute or a function, except for the
information that it is aconstant attribute.

5 • Any Assertion_clausethat (recursively) includes secret
information.

6 • Any parent part for a non-conformingparent (and as a
consequence the very presence of that parent).

7 • The information that a feature is frozen.

Any property of a class text that is not secret ispublic.

Software developers must be able to use a class as supplier on the basis of
public information only.

A feature may be available for call, or for creation, or both (cases1 and
2). If either of these properties applies, the affected clients must know
about the feature, even if they can use it in only one of these two ways.

Whether a feature is external (case3) or constant (case4) determines
whether it is possible to use it in aNon_object_calland hence is public
information.
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These notions yield the definition of the incremental contract view:

Below is an extract — beginning, middle and end — from the
incremental contract view of theHASH_TABLEclass of EiffelBase,
displayed at the click of a button by Eiffel Software’s EiffelStudio (5.6)
running on Windows.

Incremental contract view, short form
The incremental contract view of a class, also called itsshort
form , is a text with the same structure as the class but retaining only
public properties.

Eiffel environments usually provide tools that automatically produce the
incremental contract view of a class from the class text. This provides the
principal form of software documentation: abstract yet precise, and
extracted from the program text rather than written and maintained
separately.

The definition specifies the information that the incremental contract
view must retain, but not its exact display format, which typically will be
close to Eiffel syntax.

An
incremental
contract view
(extracts)
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As you will note from this example, the view relies on syntactic
conventions slightly different from those of Eiffel; for example, it uses
class interface instead of the Eiffel keywordclass. This avoids any
confusion with actual Eiffel, since a short form is not a classtextbut class
documentation. The above definition indeed leaves environments such
freedom as to the exact appearance of such views; it only specifies which
information to retain and which to discard.

The next definition introduces the non-incremental variant:

The contract views, incremental and full, are a fundamental tool for
many aspects of software construction. By providing the right level of
abstraction to talk about classes, they constitute the Eiffel method’s
technique of choice for discussing class designs and documenting reusable
components. The resulting documentation is free — no need to hire a
technical writer, since environment tools take care of producing the
document — and, being extracted from the class text, is not subject to the
major risk of software documentation, thereverse Dorian Gray
phenomenon: ceasing to be truthful as the software evolves.

Contract view, flat-short form
Thecontract view of a class, also called itsflat-short form , is a
text following the same conventions as theincrementalcontract
view form but extended to include information aboutinherited as
well asimmediate features, the resultingcombinedpreconditions
andpostconditions and theunfoldedform of the classinvariant
including inherited clauses.

The contract view is the full interface information about a class, including
everything that clients need to know (but no more) to use it properly. The
“combined forms” of preconditions and postconditions take into account
parents’ versions as possibly modified byrequire elseandensure then
clauses, and hence describing features’ contracts as they must appear to the
clients. The “unfolded form” of the class invariant includes clauses from
parents. In all these, of course, we still eliminate any clause that includes
secret information, as with the incremental contract view.

The contract view is the principal means of documenting Eiffel
software, in particular libraries of reusable components. It provides the
right mix of abstraction, clarity and precision, and excludes
implementation-dependent properties. Being produced automatically by
software tools from the actual text, it does not require extra effort on the
part of software developers, and stands a much better chance to remain
accurate when the software changes.
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Routines
8.1 OVERVIEW

8.2 ROUTINE DECLARATION

A routine declaration describes the interface of a routine and, unless the

routine is deferred, its implementation.

Here are two routine declarations;total is a function,movea procedure.

Routines describe computations.

Syntactically, routines are one of the twokinds of feature of a class; the
other kind is attributes, which describe data fields associated with instances
of the class. Since every Eiffel operation applies to a specific object, a
routine of a class describes a computation applicable to instances of that
class. When applied to an instance, a routine may query or update some or
all fields of the instance, corresponding to attributes of the class.

A routine is either a procedure, which does not return a result, or a
function, which does. A routine may further be declared asdeferred,
meaning that the class introducing it only gives its specification, leaving it
for descendants to provide implementations. A routine that is not deferred
is said to beeffective.

An effective routine has abody, which describes the computation to be
performed by the routine. A body is aCompound, or sequence of
instructions; each instruction is a step of the computation.

The present discussion explores the structure of routine declarations,
ending with the list of possible various forms of instructions.

→ Chapter18explores
attributes.
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It is not necessary to repeat the name of the routine as an ending comment,
writing for exampleend -- move, as an earlier convention suggested. Most
routine texts in well-written Eiffel texts are short, so the ending comment tends
to obscure, not help. You may still use an ending comment for the occasional
long routine.

A Feature_declaration, asyouwill remember, declares a routine if and only
if it satisfies the following condition:

• There is aFeature_valueincluding an Attribute_or_routine, whose
Feature_body is of theDeferredor Effective_routinekind.

TheFormal_argumentsandType_markparts may or may not be present. If
theQuery_markis present, the declaration describes a function; otherwise
it describes a procedure.

As with any other feature, a routine declaration may include more than
one routine name, as in the following declaration of three procedures:

Themeaning, as in the general case of “synonym” features, is the same as
that of three separate declarations with identicalDeclaration_body.

The routines remain otherwise independent; in particular,redefining or
renaming one in a descendant does not affect the others.

total: INTEGER
-- Sum of attributesa, b andc

deferred
ensure

summed:Result= a + b + c
end

move(mice: MOUSE; men: MENU)
-- Move mouse cursor to first item in menu.

require
men_exist: men/= Void

do
mice.move(men)

end

proc2, proc3, proc4 (x, y: REAL)
require

x > y
do

print (sqrt (x – y))
end

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

← “SYNONYMS AND
MULTIPLEDECLARA-
TION”, 5.18,page159.

→ Renaming: chapter6
;redefinition: chapter10.
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8.3 FORMAL ARGUMENTS

A routine may have arguments, corresponding to information that callers
will pass to every execution of the routine.

Functiontotal seen earlier has no arguments. Proceduremovehas two
formal arguments calledmice and men. Assuming bothmoveand total
appear in a classC, instructions using typical calls to these routines,
appearing in some routine of a classB, might be

with c1 of type C, mo of type MOUSE, me of type MENU, n of type
INTEGER. Expressionsmoandmeare the actual arguments of the first call.

The formal arguments ofmovewere all of different types. As with feature
names inaFeature_declaration,youmaygroup twoormore formalarguments
of the same type into anEntity_declaration_group. The comma serves as
separator, as in this routine from classTWO_WAY_LIST in EiffelBase:

Formal argument, actual argument
Entities declared in a routine to represent information passed by
callers are the routine’sformal arguments.
The corresponding expressions in a particular call to the routine
are the call’sactual arguments.

RulesonCall require the number of actual arguments to be the same as the
number of formal arguments, and the type of each actual argument to be
compatible with (conform or convert to) the type of the formal argument at
the same position in the list.

A note on terminology: Eiffel always uses the termargument to refer
to the arguments of a routine. The word “parameter” is never used in this
context, because it could create confusion with the types that can
parameterizeclasses, calledgeneric parameters.

c1. move
n := c1.total

update_after_deletion
(  index: INTEGER)

… Rest of routine omitted…

→ Chapter25. See8.4,
page 221 below about
achieving the effect of a
variable number of
arguments.

← About genericity see
chapter12.

(mo, me)

one, other: like first_element;
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This declares bothoneandotheras being of typelike first_element. The
effect would have been identical with a routine header of the form

The preceding examples illustrate the general form of the
Formal_arguments part of a routine declaration.

A validity constraint mandates a choice of name avoiding any ambiguity:

The standard Eiffel style suggests different conventions anyway for features
and formal arguments. Features, which have a wide scope (meaning that they
can be used throughout a class and all its descendants), must have clear,
meaningful names, typically made of one or more full words, separated, if
more than one, by underscores, as inspouse_name(but not overqualified by
the class name: if this feature appears in a classEMPLOYEE, do not call it
employee_spouse_nameas this would be redundant). For a formal argument,
which has a small scope — most routines in Eiffel are short — the declaration
of the argument and its uses will seldom be more than a few lines apart; you
should choose short, simple names. Abbreviations are perfectly all right, as
in update_price(r: RATE; pc: PROMOTION_CODE).

update_after_deletion
(one: like first_element;
other: like first_element;
index: INTEGER)

Formal argument and entity declarations
Formal_arguments=∆ "(" Entity_declaration_list ")"

Entity_declaration_list=∆ {Entity_declaration_group";" …} +

Entity_declaration_group=∆ Identifier_list Type_mark

Identifier_list =∆ { Identifier "," …} +

As with other semicolons, those separating anEntity_declaration_group
from the next are optional. Thestyleguidelines suggest including them for
successive declarations on a line, as with short formal argument lists, but
omitting them between successive lines, as with local variable declarations
(also covered byEntity_declaration_group).

Formal Argument rule VRFA

Let fa be theFormal_argumentspart of a routiner in a classC. Let
formals be the concatenation of everyIdentifier_list of every
Entity_declaration_groupin fa. Then fa is valid if and only if no
Identifiere appearing informals is thefinal name of a feature ofC.

Another rule, given later, applies the same conditions to names oflocal
variables. Permitting a formal argument or local variable to bear the same
name as a feature could only cause confusion (even if we had a scoping rule
removing any ambiguity by specifying that the local name overrides the
feature name) and serves no useful purpose.

→“LOCALVARIABLES
AND RESULT”,  page
225.
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Being too pompous about names of formal arguments maydecrease
readability by giving arguments more attention that they deserve. Features are
the aristocracy of a class and deserve full glory; formal arguments (and local
variables) are their servants and should not try to shine above their rank.
Beginners sometimes use names of the forma_TYPE_NAME, as in
raise_salary(a_rate: RATE; a_promotion_code: PROMOTION_CODE).
Seasoned Eiffel developers consider thisrevolting kitsch.

Complementing the Formal Argument rule is a general rule — also
applicable to local variables, studied later in this chapter — that precludes
using the same identifier twice in anEntity_declaration_list. Clearly, in

the type ofx would be ambiguous. The type ofy would not be ambiguous
since the two occurrences are part of the sameEntity_declaration_group,
but the duplicate listing ofy is invalid all the same; it can serve no useful
purpose. This is the only condition on anEntity_declaration_list:

8.4 USING A VARIABLE NUMBER OF ARGUMENTS

From the above syntax, and the previewed constraint on valid calls, it
follows that every routine has a fixed number of arguments, which is the
number of entities appearing in theEntity_declaration_listof its
Formal_arguments part.

These rules do not prevent you from obtaining the effect of routines
with variable numbers of arguments if you so desire. If the arguments are
of arbitrary types, you may replace by a single argument of typeTUPLE,
corresponding to a sequence of arbitrary values, as in

which you can then call with a “Manifest tuple” consisting of a sequence
of values in brackets:

x: T1
x, y, y: T2

Entity Declaration rule VRED

Let el be an Entity_declaration_list. Let identifiers be the
concatenation of every Identifier_list of every
Entity_declaration_groupin el. Thenel is valid if and only if no
Identifier appears more than once in the listidentifiers.

write_formatted ( ; format: STRING)
-- Print all elements ofvalues, under givenformat.

…See below about the procedure body…

write_formatted ([your_integer, your_string, your_real],
your_output_format)

See “Further reports of
abominable taste in the
provinces”, in Proc.
BISTOORI(45th Intl.
Conf. on Biedermeier
InfluencesontheStyleof
TypicalObject-Oriented
Retrograde Implemen-
tations), Sotchi, 2004,
pp. 2045-3497.

WARNING: not valid!

→ See chapter13
about tuples.

values: TUPLE
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The procedure body will analyze the successive tuple elements and their
types. The discussion of tuplesshows how to write it.

If all the items are of types conforming to a knownT you can, as an
alternative to tuples, useARRAY[T] as the argument type. A routine to print
numeric values could read

where a typical call appears as:

Here we are passing anINTEGERand aREAL; both of these types conform
to NUMERIC. The manifest array passed as argument is a tuple converted
into an array.

8.5 ROUTINE BODY

A Feature_bodyhad three possible forms:

The last case will be studied in the discussion of attributes. Routines
correspond to the first two cases:

A Feature_bodyof the first possible form,Deferred, consists of the sole
keyworddeferred; this indicates that the routine, and as a consequence the
enclosing class, aredeferred .

write_numerics( )
-- Print all elements ofvalues.

…Procedure body omitted…

write_numerics({ ARRAY[NUMERIC]} [ your_integer, your_real])

Feature_body=∆ Deferred | Effective_routine| Attribute

Routine bodies

Deferred=∆ deferred

Effective_routine=∆ Internal | External

Internal =∆ Routine_mark Compound

Routine_mark=∆ do | Once

Once =∆ once[ "("Key_list ")" ]

Key_list =∆ { Manifest_string "," …} +

→ “Emulating a vari-
able number of argu-
ments”,  page 380 .

values: ARRAY[NUMERIC]

←Thissyntaxappeared
first on page143.

→ See“DEFERRED
FEATURES”,  10.11,
page 272and subse-
quent sections.
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A routine of the other form,Effective_routine, may be External,
indicating that it is implemented in another language. In the remaining and
by far the most common case,Internal, the routine body is aCompound: a
sequence of instructions describing the algorithm to be executed (after
initialization of any local variables includingResultfor a function) on a call
to the routine.

The introductory keywordsdo andonceof anInternalbody correspond
to differentsemantics for calls to the routine:

• With adobody the initialization and body are executed anew for each call.

• If routine o of classC has aonce body (o is then called a ‘‘once
routine’’), the initialization and body are executed only for the first call
to o applied to an instance ofC during any given session. For every
subsequent call on an instance ofC during the same session, the routine
call has no effect; if the routine is a function, the value it returns is the
same as the value returned by the first call. Once routines are useful for
“smart initialization” actions which must be applied the first time a
certain structure is accessed, and forsharedinformation. They help
avoid the global variables of conventional programming languages.

You can fine-tune the meaning of “once” by includingonce keysafter
the keywordonce, as inonce("THREAD") to specify that the execution
will take place once in each thread. Other predefined values include
"PROCESS" (the default) and"OBJECT" (to require computation once
for every instance). You can even define your own once keys and then
reset the key, throughonces.reset("YOUR_KEY"), ensuring that the
next call to any once routine using this key will execute its body again.
The mechanism also makes it possible to define variable keys to be set
from outside the Eiffel text proper, for example in an Ace file.

It is convenient to introduce precise terms:

Once routine, once procedure, once function
A once routine is anInternalroutiner with a Routine_markof
theOnce form.
If r is aprocedure it is also aonce procedure; if r is afunction,
it is also aonce function.

→Compoundandother
control structures are
the topic of chapter17.

→Fordetails:“PRECISE
CALL SEMANTICS”,
23.17, page 652.

→“ONCEROUTINES”,
23.14, page 641.
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Here is an example procedure (from the EiffelTime library) with all the
optional components exceptObsolete andRescue clauses:

The various components and their respective roles are the following. All
components except theFeature_body and the finalend are optional.

• The text appearing immediately after the routine name and arguments,
starting with--, is a Header_commentexplaining the purpose of the
routine. Other comments may be inserted at the end of any line; but this
one has a special role, documenting the routine’s interface. The
“contract view” of a class retains header comments.

• The keywordrequire introduces anAssertion, called thePrecondition
of the routine. This expresses the conditions under which a call to the
routine is correct. Hereis_correct_timemust be true for the arguments
given. TheIdentifiercorrectis a label identifying that assertion.

• TheLocal_declarationsclause, studied below, declares local variables
used only within the routine body, and initialized anew on each call.
Heremake_fine uses a local variables_trunc of typeINTEGER.

• The Feature_bodyis here of theEffective kind, more specifically
Internal, starting withdo (the other possibility isonce) and continuing
with instructions — zero or more in the general case, here three.

• The keywordensureintroduces anotherAssertion, thePostconditionof
the routine. This expresses the conditions that a routine call will ensure
on return if called in a state satisfying the precondition. Here it states
that a number of queries have been set from the values of the arguments.

 make_fine (h, m: INTEGER; s: DOUBLE)
-- Sethour, minuteandsecondtoh, mand integer part ofs;
-- Setfractional_second to fractional part of s.

require
correct: is_correct_time (h, m, s, False)

local
s_trunc: INTEGER

do
s_trunc :=  s.truncated_to_integer
fractional_second := s – s_trunc
make (h, m, s_trunc)

ensure
hour_set: hour = h
minute_set: minute = m
fine_second_set: fine_second = s

end

←“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.9, page 212.

→ Chapter9

→ Chapter9
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The example does not include aRescueclause. If present, this describes
what to do if an exception occurs during an execution of the routine. The
absence of aRescueclause has the same effect as the presence of aRescue
clause just consisting of a call to the proceduredefault_rescueof the
universal classANY. So the example routine could have been written
equivalently as

In its original form, default_rescuehas a null effect, but a class may
redefine it to provide specific exception handling.

8.6 LOCAL VARIABLES AND RESULT

If present in a routine, aLocal_declarationsclause is the declaration of
variable entities available only within theFeature_body; they are useful for
the computation it describes, but their values do not need to be retained by
the current object after a call to the routine.

The last example introduced just one local variable:

used in thedo clause to hold the value ofs.truncated_to_integer, needed
by two of the instructions.

In this example there is no need for an automatic initialization of the
variable since the first instruction of the routine assigns it a value. Such an
explicit assignment is not required; if the routine’s execution accesses the
value of the variable when it has not been assigned,initialization rules
guarantee a well-defined initial value, for example 0 for integers and False
for booleans.

The general structure of aLocal_declarations clause is:

TheEntity_declaration_listmay be absent, as we tolerate an emptylocal part
— perhaps while you are refactoring your software and moving local variable
declarations in and out.

 make_fine (h, m: INTEGER; s: DOUBLE)
... All other clauses as above ...

rescue
default_rescue

end

local
s_trunc: INTEGER

Local variable declarations
Local_declarations=∆ local [Entity_declaration_list]

→ TheRescue clause
and proceduredefault_
rescueare discussed in
detail in chapter26.

→ “Default Initializa-
tion rule”,  page 516.
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In addition to the earlier constraint requiring all identifiers in an

Entity_declaration_listto be different, we must avoid any ambiguity

between local variables and features of the class:

When applying validity and semantics rules, you must treatResult as an

entity of the type declared for the enclosing function’s result. For example,

this function from classCLOSED_FIGUREin EiffelVision treatsResultas

a local variable of typeINTEGER:

Local Variable rule VRLV

Let ld be theLocal_declarationspart of a routiner in a classC.
Let locals be the concatenation of everyIdentifier_listof every
Entity_declaration_groupin ld. Then ld is valid if and only if
everyIdentifiere in locals satisfies the following conditions:
1 • No feature ofC hase as itsfinal name.

2 • No formal argument ofr hase as itsIdentifier.

Most of the rules governing the validity and semantics of declared local
variables also apply to a special predefined entity:Result, which may only
appear in a function or attribute, and denotes the value to be returned by the
function. The following definition of “local variable” reflects this similarity.

Local variable
The local variables of a routine include allentities declared in its
Local_declarationspart, if any, and, if it is a query, the predefined
entityResult.

Result can appear not only in theCompound, Postconditionor Rescueof a
function or variable attribute but also in the optionalPostconditionof a
constant attribute, where it denotes the value of the attribute and allows
stating abstract properties of that value, for example after a redefinition. In
this case execution cannot change that value, but for simplicity we continue
to callResult a local “variable” anyway.

fill_style_count: INTEGER
-- Number of defined fill styles for this figure

do
Result:= global_fill_style_count + local_fill_style_count

end

← “VRED”, page221
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8.7 EXTERNALS

A routine may have aFeature_bodyof theExternalform, which means that
its implementation is written in another language.

The following examples illustrate the form of anExternal body:

They enable other Eiffel elements to call a C procedure under the Eiffel
nameopen_file and a C function underfile_status.

Such routines are viewed by the rest of a system as normal Eiffel
routines; their only special property is that their execution, instead of being
under the control of the Eiffel system to which they belong, is a call to some
code generated by a compiler for the foreign language.

The second external routine of the example, a function, has a subclause
of the form alias external_name, indicating that this function will be
known through an Eiffel name,file_status, different from its name in the
foreign language; by default the two would be the same. Here an alias is
required since the C name,_fstat, begins with an underscore and so is not
a valid Eiffel identifier.

The External mechanism include a wide set of possibilities; in
particular, you may include inline C code directly, through thealiasclause.
A laterchapter is entirely devoted to this mechanism.

open_file(file_od: INTEGER; mode: CHARACTER)
-- Openfile_od in modemode.

require
file_status(file_od) <= 0

external
"C"

end

file_status(file_od: INTEGER): INTEGER
-- Current status of file associated withfile_od

external
"C"

alias
"_fstat"

end

→ Chapter31.
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8.8 TYPES OF INSTRUCTIONS

TheInternalbody of a non-deferred routine is aCompound, or sequence of
instructions. As an introduction to the detailed study of instructions in ter
chapters, here is an overview of the available variants. The syntax is:

Instructions
Compound=∆ { Instruction ";" …}*

Instruction =∆ Creation_instruction | Call |
Assignment | Assigner_call|
Conditional|Multi_branch|Loop
| Debug| Precursor| Check| Retry

A Compoundis a possibly empty list of instructions, to be executed in the
order given. In the various parts of control structures, such as the branches
of a Conditional or the body of aLoop, the syntax never specifies
Instructionbut alwaysCompound, so that you can include zero, one or
more instructions.

A Creation_instructioncreates a new object, initializes its fields to
default values, calls on it one of the creation procedures of the class (if
any), and attaches the object to an entity.

Call executes a routine. For theCall to yield an instruction, the routine
must be a procedure.

Assignment changes the value attached to a variable.

An Assigner_callis a procedure call written with an assignment-like
syntax, as inx.a := b, but with the semantics of a call, as just a notational
abbreviation forx.set_a(b) where the declaration ofaspecifies an assigner
commandset_a.

Conditional, Multi_branch, Loop and Compounddescribecontrol
structures, made out of instructions; to execute a control structure is to
execute some or all of its constituent instructions, according to a schedule
specified by the control structure.

Debug, which may also be considered a control structure, is used for
instructions that should only be part of the system when you enable the
debug compilation option.

Precursor enables you, in redefining a routine, to rely on its
original implementation.

Checkis used to express that certain assertions must hold at certain
moments during run time.

Retry is used in conjunction with the exception handling mechanism.

→ Chapter20.

→ Chapter23.

→ Chapter22.

→ “ASSIGNER
CALL”,  22.12, page
607.

→ Control structures
andDebug: chapter17.

→ Precursor: 10.24,
page 299.

→ Assertions and
Check: chapter9.
→ Exceptions and
Retry: chapter26.
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Correctness and contracts
9.1 OVERVIEW

This chapter describes assertions and the resulting notion of correctness
of a class. It also specifies how the supporting development environment
should help check correctness conditions at run time.

9.2 WHY ASSERTIONS?

One could write entire systems without assertions. Some Eiffel developers
are even rumored to havedoneso. In fact, assertions have no effect on the
semantics of correct systems — in theory, the only one that matters.

Do not look, however, for a SHORTCUT sign suggesting that you skip
this chapter on first reading. Assertions are a key element of software
development in Eiffel and omitting them would be renouncing a major
benefit of the method.

Assertions serve to express the specification of software components:
indications ofwhat a component does rather thanhow it does it. This is
essential information for building the components so that they will perform
reliably, for using the components, and for validating them.

Eiffel software texts — classes and their routines — may be equipped with
elements of formal specification, calledassertions, expressing correctness
conditions.

Assertions play several roles: they help in the production of correct and
robust software, yield high-level documentation, provide debugging
support, allow effective software testing, and serve as a basis for exception
handling. With advances in formal methods technology, they open the way
to proofs of software correctness.

Assertions are at the basis of theDesign by Contractmethod of Eiffel
software construction.

"Deviant Eiffel Pro-
grammers", in Pro-
ceedings of RACOON
13 (Report of Annual
Conference on Object-
Oriented Neuropsychi-
atry), Tahiti, 2005,
pages 3456-3542.
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The classes of the EiffelBase Library provide many examples of the use
of assertions to express abstract properties of classes and routines.
Consider the many descendants of classCHAIN, describing sequential data
structures ("chains") such as lists. They enable clients to manipulate a
cursor, allowed to go one position off the right and left edges of a chain, but
no further. An assertion occurring in theclass invariant of the
corresponding classes expresses this property:

whereindexidentifies the current cursor position, andcountis the number
of elements in the structure. The invariant must be guaranteed by every
creation procedure of the class, and maintained by every exported routine.

In the same classes, a client may use exported procedures such asstart,
finish, forth andbackto move the cursor. The bodies of these procedures
depend on the implementation chosen (linked, array etc.) but many of their
important properties are expressed by implementation-independent
assertions, so that a version offorth will have the form

Therequire andensureclauses introduceapreconditionandpostcondition:

• The precondition states the condition under whichforth is applicable:
the cursor must not be “after” the right edge, as defined by the boolean
functionafter. Any client callingforth must guarantee this condition.

• The postcondition states the property which the procedure must
guarantee at the completion of any correct call: the cursor index will
have been increased by one (the expressionold position denotes the
value ofpositionas captured on routine entry). Any client may assume
this condition after a call toforth.

As these examples indicate, assertions are not instructions; they do not
necessarily have an effect at execution time. Instead, they express
properties that should be satisfied by the implementation. In other words,
an assertion is adescription, not aprescription.

Preconditions, postconditions, class invariants and other uses of
assertions described below (in particular loop invariants) definecontracts
for the corresponding software elements: features, classes, loops.

0 <= index; index<= count + 1

forth
-- Move forward one position.

do
… Some appropriate implementation…

end

require
not_after: not after

ensure
moved:position= old position + 1

The optional labels
not_afterandmoved,
specimens ofTag,serve
as documentation and
alsoforerrormessages.
See below.
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For precise terminology: acontractis the specification of a software element;
it is made ofassertions. For example the contract of a feature comprises its
precondition and postcondition; the contract of a class includes the contracts
(as just defined) of all its features, plus the class invariant.

Contracts have important applications throughout software development.
Among others:

• By helping developers to state precisely the formal properties of
software elements, they enhance the correctness and reliability of the
resulting software. The underlying theory ofDesign by Contract,
views the construction of a software system as the fulfillment of many
small and large contracts between clients and suppliers.

• Assertions may also be monitored at run time, providing a powerful tool
for testing anddebugging software.

• Contracts serve as the basis for automatic documentation tools, which
produce abstractinterface documentation of a class by extracting
implementation-independent information from the class text.

• Rules on the fate of assertions in inheritance (invariant accumulation,
precondition weakening, postcondition strengthening) provide a clear
methodological framework for the proper use of inheritance and
associated mechanisms of polymorphism and dynamic binding.

The first and second of these applications explain why the semantics of
contracts, as defined later in this chapter, involves two aspects:

• The basicsemanticrole of contracts is to define thecorrectnessof
classes and their features. a class is correct if its implementation satisfies
the contracts. Determining correctness is a matter ofmathematical
proofs, performed by people or by proof tools. Most of today’s
development environments do not yet provide proof tools, but the notion
of correctness is still essential to understand the role of contracts.

• Even in the absence of proofs, Eiffel environments must provide
mechanisms forrun-time monitoring of assertions, for the debugging
and testing benefits just mentioned. Thatpart of the semantics specifies
when and how to evaluate assertion clauses during execution,

9.3 GRAPHICAL CONVENTION

The figure below illustrates the graphical representations that may be used
to show routine preconditions, routine postconditions and class invariants.

See“Object-Oriented
Software Construction”.

←“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.9, page 212.

→ “THE CORRECT-
NESS OF A CLASS”,
9.12, page 252.

→ “RULES OF RUN-
TIME ASSERTION
MONITORING”, 9.13,
page 253.

For routines’assertions
each“drawer”  figura-
tivelyopensononlyone
side: theroutineobtains
an input condition from
the left drawer and
delivers an output con-
dition through the right
drawer. The class
invariant combines
both conventions.

0 < = position
position< = count + 1

forth

not after

position= old position +1

CHAIN*
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9.4 USES OF ASSERTIONS

Assertions appear in the followingconstructs:

• The Precondition and Postcondition parts of anAttribute_or_routine.

• TheInvariant clause of a class.

• TheCheck instruction.

• TheInvariant of aLoop instruction.

In addition, loops may have variants, which are integer expressions rather
than assertions but play a closely related role.

All the constructs involving assertions are optional.

9.5 FORM OF ASSERTIONS

An Assertion, introduced by such keywords asrequire (for preconditions),
ensure(for postconditions),invariant (for class and loop invariants) and
check (for Check instructions) is made of one or moreAssertion_clause,
each based on a boolean expression, as in the precondition

from a routine with formal argumentsce andra. This expresses that in a
correct call to be correct the first argument must be non-void and the
second argument must be positive. In this example eachAssertion_clause
is labeled by aTag (point_exists, positive_radius).

The general form of anAssertion, and the syntax of constructs where it
may appear, are:

require
point_exists: ce /= Void
positive_radius: ra > 0.0

Assertions
Precondition=∆ require [else] Assertion

Postcondition=∆ ensure [then] Assertion[Only]

Invariant =∆ invariant Assertion

Assertion=∆ { Assertion_clause ";" …}*

Assertion_clause=∆ [Tag_mark]
Unlabeled_assertion_clause

Unlabeled_assertion_clause=∆ Boolean_expression | Comment

Tag_mark=∆ Tag ":"

Tag =∆ Identifier

Attribute_or_routine:
page143.

Class_declaration:
page119.
Check: page249.
Loop: page495.

A related construct is
the loop Variant,
described later in this
chapter(9.14).

← On Tag_mark, see
page====.
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A Boolean_expression, as used in this syntax definition, issimply an
Expression constrained to be of typeBOOLEAN.

The semicolon is optional asAssertion_clauseseparator. This requires
a non-production rule to avoid any ambiguity:

Semicolons or not, the order ofAssertion_clausecomponents of an
Assertionis significant. More precisely, the semantic specification below
treats them as if they were separated by theand then binary boolean
operator (replacing the semicolon if present). From that operator’s own
semantics this means that:

• The value of anAssertionis true if and only if everyAssertion_clause
in theAssertion has value true.

• If an Assertion_clausehas value false, so has the wholeAssertionin
which it appears, even if the value of a subsequent clause is not defined.

Syntax (non-production): Assertion Syntax rule
An Assertionwithout a Tag_markmay not begin with any of
the following:
1 • An opening parenthesis "(".

2 • An opening bracket "[".

3 • A non-keywordUnary operator that is alsoBinary.

This rule participates in the achievement of the general Semicolon
Optionality rule. Without it, after anAssertion_clausestarting for example
with theIdentifiera, and continuing (case2) with [x] it is not immediately
obvious whether this is the continuation of the same clause, usinga [x] as
the application of a bracket feature toa, or a new clause that starts by
mentioning theManifest_tuple[x]. From the context, the validity rules will
exclude one of these possibilities, but a language processing tool should be
able to parse an Eiffel text without recourse to non-syntactic information.
A similar issue arises with an opening parenthesis (case1) and also (case
3) if what follows a is –b, which could express a subtraction froma in the
same clause, or start a new clause about the negated value ofb. The
Assertion Syntax rule avoids this.

The rule does significantly restrict expressiveness, since violations are rare
and will be flagged clearly in reference to the rule, and it is recommended
practice anyway to use aTag_mark, which removes any ambiguity.

→ Syntax on page761
aspartof thediscussion
of expressions,.

→ “SEMISTRICT
BOOLEAN OPERA-
TORS”,28.6,page774.
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Because of the second of these properties, if anAssertion_clauseb only
makes sense when another,a, is true, you should writea beforeb. For
example if you need a clause of the formx.some_propertyandx is of a
detachable type, and hence could be void, you should write the assertion as

where the first property implies that the second one, whether or not it holds,
is meaningful. As another example, assuming an integer arraya and an
integeri, a routine precondition could read

The last clause relates to thei-th item ofa, defined only ifi is within the
array’s bounds as expressed by the first two clauses (which we could also
express more concisely asvalid_key(i)). It would be incorrect here to
reverse the order of clauses.

A few straightforward definitions are useful:

These are “local” assertions because unlikelater “unfolded forms” they do
not take into account the ancestor versions that, combined with the local
clauses, will yield the full precondition, postcondition or invariant applicable
to a feature or class.

Coming back to the syntax: anAssertion_clausemay be preceded by a
Tag, such aspoint_existsandpositive_radiusin theearlier example. Such
tags are identifiers, with no validity constraint. They are useful for
documentation purposes; in addition, they help produce precise error
messages in the case, studied below, of run-time assertion monitoring.
Although theTag is optional and does not affect the semantics of correct
programs, the style rule recommends including it for clarity.

x /= Void
x.some_property

require
i >= a.lower
i <= a.upper
a [i] > 0

Precondition, postcondition, invariant
The precondition and postcondition of a feature, or the
invariant of a class, is theAssertion of, respectively, the
correspondingPrecondition, Postconditionor Invariantclause if
present and non-empty, and otherwise the assertionTrue.

So in these three contexts we consider any absent or empty assertion clause
as the assertionTrue, satisfied by every state of the computation. Then we
can talk, under any circumstance, of “the precondition of a feature” and
“the invariant of a class” even if the clauses do not appear explicitly.

→ “REDECLARA-
TION AND ASSER-
TIONS”,  10.17, page
283, and also
UNFOLDING ASSER-
TIONS UNDER
INHERITANCE below.

← Page232.
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Finally, you will have noted that the syntax for
Unlabeled_assertion_clauseallows a clause that consists of just a
Comment. This is useful for documenting conditions that you cannot or do
not wish to express formally; for example:

9.6 UNFOLDING ASSERTIONS UNDER INHERITANCE

Assertions have a close relationship with inheritance. In particular:

• The actual invariant applicable to a class includes, in addition to any
clauses appearing in the class itself, all those from its ancestors.

• An inherited feature may change the assertions of its parent version,
weakening the precondition through arequire else clause and
strengthening the postcondition through anensure then clause.

These notions will becaptured, in the discussion of feature adaptation, by
the notion ofunfolded formof an assertion, the result of including both
immediate and inherited elements. Most of the semantic properties of
contracts rely on the unfolded form.

9.7 ASSERTIONS ON INDIVIDUAL FEATURES

We now look in more detail at the contracts governing a single feature.
Class invariants, which apply to a whole class, will come next.

Preconditions and postconditions

The declaration of anAttribute_or_routine— deferred routine, effective
routine with ado or once body, external routine, but also an attribute
written with the explicitattribute keyword — may include aPrecondition,
aPostcondition or both.

Here is an example of a routine from classCHAIN in EiffelBase:

require
acyclic:

put_i_th(v: like first; i: INTEGER)
-- Put itemv at i-th position.

require
index_large_enough: i >= 1
index_small_enough: i <= count

deferred
ensure

not_empty:not is_empty
end

-- The structure is not cyclic.

→ “Unfoldedformofan
assertion”,  page 287.
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The precondition expresses that no client should call the routine unless the
actual argument fori is between 1 andcount. The postcondition expresses
that, after a successfully completed execution of the routine,is_empty(a
boolean function of the same class) will yield false.

Each Assertion_clauseof the Preconditionand Postconditionhas been
labeled with aTag such asindex_large_enough.

The contract of a routine

A precondition and postcondition constitute a contract:

Here ‘‘implies’’ is boolean implication. The notion of subcontract is
important because it defines the clients’ perspective on permissible changes
in a routine’s implementation. For a client of a class offering a routine

what counts is the contract defined by the assertions: a client which
achievespreat call time is entitled to obtainposton return. Another routine
other_routmay be acceptable as a substitute forrout if it still satisfies that
contract. This does not necessarily mean that the contract ofother_rout
must be the same as that ofrout: it may also be a subcontract [pre’, post’],
since in that case any client’s call that satisfies the obligation defined by the
original contract (pre) also satisfies the obligation of the new contract
( pre’), and the benefits guaranteed by the new contract (post’) also entitle
the clients to those guaranteed by the original (post).

The constraint on routine redeclaration will ensure that whenever a
routine is redeclared (redefined, or effected if the original was deferred),
the new specification is a subcontract of the original.

Contract, subcontract
Let pre and post be the precondition and postcondition of a
featuref. Thecontract of f is the pair of assertions [pre, post].
A contract [pre’, post’] is said to be asubcontractof [pre, post]
if and only ifpre impliespre’ andpost’ impliespost.

rout (…)
require

pre
do

…
ensure

post
end

→ “REDECLARA-
TION AND ASSER-
TIONS”,  10.17, page
283 and“Redeclara-
tion rule”,  page 313.
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Constraints on routine assertions

For the contracts to be enforceable, preconditions and postconditions must
satisfy constraints making them usable by clients.

The first constraint affects preconditions:

The features mentioned in the constraint may include features ofC and,
for a complex precondition, features of other classes; for example, if the
precondition ofr, includes the expression

Precondition Export rule VAPE

A Preconditionof a featurer of a classSis valid if and only if every
featuref appearing in everyAssertion_clauseof its unfoldedform
u satisfies the following two conditions for every classC to which
r is available:
1 • If f appears asfeature of a call in u or any of its

subexpressions,f is available toC.

2 • If u or any of its subexpressions usesf as creation procedure
of aCreation_expression, f is available for creation toC.

If (condition1) r were available to a classB but its precondition involved a
featuref not available toB, r would be imposing toB a condition thatB
would not be able to check for itself; this would amount to a secret clause
in the contract, preventing the designer ofB from guaranteeing the
correctness of calls.

The rule applies to theunfolded formof a precondition, which will be
defined as the fully reconstructed assertion, including conditions defined
by ancestor versions of a feature in addition to those explicitly mentioned
in a redeclared version.

The unfolded form (by relying on the “Equivalent Dot Form” of the
expressions involved) treats all operators as denoting features; for example
an occurrence ofa > b in an assertion yieldsa.greater(b) in the unfolded
form, wheregreateris the name of a feature of alias">". The Precondition
Export rule then requires, if the occurrence is in aPrecondition, that this
feature be available to any classes to which the enclosing feature is
available.

Condition 2 places the same obligation on any featuref used in a
creation expressioncreate a.f (…) appearing in the precondition (a rare
but possible case). The requirement in this case is “available for creation”.

a.b (c) + d ∗ (e.f (g).h)

More on avoiding
secret clauses below.
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where b, f, h are features of other classes, all these features must be
available toB — as well asa, c, d, plusalias "+", productalias "∗", e and
g if all of these are features ofC.

In addition to the Precondition Export rule:

• The Entity rule, studied as part of thediscussion of entities, further
restricts the kind of entities that may appear in anAssertion. For
exampleResult may only appear in a postcondition.

• If r is a creation procedure, the Creation Clause rule puts extra
requirements on its precondition, expressed by the Creation
Precondition rule and its notion of “creation-valid” precondition clause.

For postconditions, there is no rule corresponding to the Precondition
Export rule; the Entity rule is sufficient. AnAssertion_clauseof a
Postconditionmay — unlike in aPrecondition— refer to features with a
different availability status. For example, the postcondition for routine
put_right in classLINKED_LIST of EiffelBase includes the clause:

wherev is a formal argument of the routine but the querynext is only
available toLINKED_LIST itself.

The reason for this difference of treatment between aPreconditionand
a Postconditioncomes from the theory of Design by Contract. In the case
of preconditions, as noted, using a secret query would make it impossible
for clients to satisfy the contract. But including a secret query in a
postcondition causes no harm to clients: they simply will not be able to rely
on the corresponding properties, which indeed do not appear in the
contractview.

The difference in export status of the various entities involved in a
precondition or postcondition explains the need for the following notion:

next.item= v

Availability of an assertion clause
An Assertion_clausea of a routinePreconditionor Postcondition
is available to a classB if and only if all the features involved in
the Equivalent Dot Form ofa areavailable toB.

This notion is necessary to define interface forms of a class adapted to
individual clients, such as the incremental contract view (“short form”).

→“Entity rule”, page513.

→ “Cr eation Clause
rule”, page548; “Cr e-
ation Precondition
rule”,  page 547.

←“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.9, page 212; .
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“Old” expression

A special form ofexpression, theOld expression, is available in routine
postconditions only.

In a postcondition clause, the expressionold exphas the same type as
exp; its value at execution time, on routine exit, is the value ofexp as
evaluated on routine entry in the current call.

An exampleappeared in the postcondition forforth. Here is another,
from routineput in classFIXED_QUEUEof EiffelBase; the routine inserts
an element into a queue:

The highlighted postcondition clause indicates that if the queue was
initially empty (old is_empty) the value at cursor position (given byitem)
will be the one just inserted. Operatorimplies is boolean implication.

The syntax of anOld expression is simply

The validity constraint expresses that aPostconditionis the only permitted
context for anOld expression:

put (v: T)
-- Add itemv to queue.

require
not_full: not full

do
…

ensure
count= old count + 1

not empty
array_item((last – 1 + capacity) // capacity) = v

end

“Old” postcondition expressions
Old =∆ old Expression

Old Expression rule VAOX

An Old expressionoeof the formold e is valid if and only if it
satisfies the following conditions:
1 • It appears in aPostcondition partpostof a feature.

2 • It does not involveResult.

3 • Replacingoeby e in postyields a validPostcondition.

→ Expressions are the
topic of chapter28.

← Page230.

(old is_empty) implies (item= v)

// is the remainder oper-
ator on integers.
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The semantic rule follows from the above informal explanations:

Result is otherwise permitted in postconditions, but condition2 rules it out
since its value is meaningless on entry to the routine. Condition3 simply
states thatold e is valid in a postcondition ife itself is. The expressione
may not, for example, involve any local variables (although it might
includeResultwere it not for condition2), but may refer to features of the
class and formal arguments of the routine.

Old Expression Semantics, associated variable,
associated exception marker

The effect of including anOld expressionoe in a Postcondition
of aneffectivefeaturef is equivalent to replacing the semantics of
its Feature_bodyby the effect of a call to a fictitious routine
possessing a local variableav, called theassociated variableof
oe, and semantics defined by the following succession of steps:
1 • Evaluateoe.

2 • If this evaluationtriggers anexception, record this event in an
associated exception marker for oe.

3 • Otherwise, assign the value ofoe to av.

4 • Proceed with the original semantics.

The recourse to a fictitious variable and fictitious operations is in the style
of “unfolded forms” used throughout the language description. The reason
for these techniques is the somewhat peculiar nature of theOld expression,
used at postcondition evaluation time, but pre-computed (if assertion
monitoring is on for postconditions) on entry to the feature.

The matter of exceptions is particularly delicate and justifies the use of
“associated exception markers”. If anOld expression’s evaluation triggers
an exception, the time of that exception — feature entry — is not the right
moment to start handling the exception, because the postcondition might
not need the value. For example, a postcondition clause could read

((x /= 0)and (old x /= 0)) implies ((((1 /x) + (1 / (old x)))) = y)

If x is 0 on entry,old x /= 0will be false on exit and hence the postcondition
will hold. But there is no way to know this when evaluating the variousOld
expressions, such as1 / old x on entry. We must evaluate this expression
anyway, to be prepared for all possible cases. Ifx is zero, this may cause an
arithmetic overflow and trigger an exception. This exception should not be
processed immediately; instead it should be remembered — hence the
associated exception marker — and triggered only if the evaluation of the
postcondition, on routine exit, attempts to evaluate the associated variable;
hence the following rule.
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There remains to define precisely the value of the “associated variable”:

“Only” clause

With theOld expression we have a way to express the effect of a routine by
specifying how some properties of the object after the routine’s execution
relate to values captured before the execution.

This technique can be used in particular to express that the values of
some queries (attributes or functions) donot change through the
application of the routine; it suffices to use a postcondition of the form

Although it does the job, this technique has some disadvantages:

• Often, a routine will change only a few queries. In the above style, its
postcondition will have many “similar clauses”, one for each query that
it doesn’t affect.

• You have to go through the class, for each routine, to make sure you
don’t forget any such queries.

• When you add a new query unrelated to existing routines, you have to
add a “similar clause” to every one of these routines!

The “associated variable” is defined only for effective features, since a
deferred feature has noFeature_body. If an Old expression appears in the
postcondition of a deferred feature, the rule will apply to effectings in
descendants through the “unfolded form” of the postconditions, which
includes inherited clauses.

Like any variable, the associated variableav of an Old expression raises a
potential initialization problem; but we need not require its type to beself-
initializing since the above rule implies thatov appears in a Certified
Attachment Pattern that assigns it a value (the value ofoe) prior to use.

Associated Variable Semantics
As part of the evaluation of a postcondition clause, the evaluation
of theassociated variable of anOld expression:
1 •Triggers an exception of type OLD_EXCEPTION if an

associated exception marker has been recorded.

2 • Otherwise, yields the value to which the variable has been set.

ensure
q = old q
r = old r
… Other similar clauses…
… Other postcondition clauses…

→ “Self-initializing
type”,  page 515.
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• Things become even more messy with inheritance: if you add a new
querys in a descendant and do not redefine a featuref, most likelyf will
not modifys, but its original postcondition obviously cannot state that;
to express this property, you would have to redefinef for the sole
purpose ofadding the clauses = old s to its postcondition!

These observations show that along with the mechanism for expressing
how a routine affects the value of certain queries, we need a
complementary notation to express what queries it doesnot affect. The
only postcondition clause achieves this goal. In a postcondition you may
include one (and only one) clause of the form

to state thatall queries other thanq, r, sare left untouched by the enclosing
routine. In other words, this is an abbreviation for postcondition clauses

whereq1, …, qn are all the queries other thanq, r, s. The “unfolded form”
defining the validity and semantics of anOnly clause will express this.

The syntax is straightforward:

only q, r, s

q1 = old q1
…
qn = old qn

“Only” postcondition clauses
Only =∆ only [Feature_list]

The syntax of assertionsindicates that anOnly clause may only appear in
aPostcondition of a feature, as its last clause.

Those other postcondition clauses let you specify how a featuremay
change specific properties of the target object, as expressed by queries. You
may also want — this is called theframe problem — to restrict the scope
of features by specifying which properties itmay notchange. You can
always do this through postcondition clausesq = old q, one for each
applicable queryq. This is inconvenient, not only because there may be
many suchq to list but also, worse, because it forces you to list them all
even though evolution of the software may bring in some new queries,
which will not be listed. Inheritance makes matters even more delicate
since such “frame” requirements of parents should be passed on to heirs.

An Onlyclause addresses the issue by enabling you to list which queries
a feature may affect, with the implication that:

→ In the form of an
ensure then clause; see
“REDECLARATION
AND ASSERTIONS”,
10.17, page 283.

← Construct Postcon-
dition, page232.
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To express the validity and semantics of anOnly clause, we must clarify
how inheritance affects it. What does our example,only q, r, sappearing in
the postcondition of a featuref of a classC, mean in a proper descendant
D, which may add its own queries? Two cases are possible:

• D does not redeclaref. Then we must understandonly q, r, sas we did
in C: f may modify no query ofD, whether fromC or new inD.

• We may want to allowf to modify some features ofD — sayt andu —
in addition to q, r and s. In that case we’ll redeclaref with a new
postcondition clause, introduced byensure then, of the formonly t, u.
Such anOnly clause appearing in a declaration means: “the feature may
only affect,among queries introduced since any precedingOnly clause,
the queriest andu”. The effect then is cumulative, as if there had been
a singleOnly clause of the formonly q, r, s, t, u.

Here are the rules stating these properties. First, the validity:

First, two useful notions of “unfolding”. First we need to include
inherited features:

• Any querynot listed is left unchanged by the feature.

• The constraints apply not only to the given version of the feature but also,
as enforced by the following rules, to any redeclarations in descendants
(specifically, to their effect on the queries of the original class).

The syntax allows omitting theFeature_list; this is how you can specify
that the routine must leaveall queries unchanged (it is then known as a
“pure” routine).

Only Clause rule VAON

An Only clause appearing in aPostconditionof a feature of a
classC is valid if and only if everyFeature_nameqn appearing
its Feature_list if any satisfies the following conditions:
1 • There is no other occurrenceof qn in thatFeature_list.
2 •qn is thefinal name of aqueryq of C, with no arguments.

3 • If C redeclaresf from aparentB, q is not a feature ofB.

Another condition, following from thesyntax, is that anOnly clause
appears at the last element of aPostcondition; in particular, you may not
include more than oneOnly clause in a postcondition.

← Construct Postcon-
dition,page232.
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The notion of unfolded feature list enables us to interpret anOnly clause
as a sequence of postcondition clauses asserting that the feature — double
negation! — doesnot change any of the thenon-listed features from the
current class:

Unfolded feature list of anOnly clause
The unfolded feature list of an Only clause appearing in a
Postconditionof a featuref in a classC is theFeature_listcontaining:
1 • All the feature names appearing in itsFeature_list if any.

2 • If f is theredeclaration of one or more features, thefinalnames
in C of all the features whose names appear (recursively) in
their unfolded Only clauses.

For an immediate feature (a feature introduced inC, not a redeclaration),
the purpose of anOnly clause of the form

only q, r, s
is to state thatf may only change the values of queriesq, r, s.

In the case of a redeclaration, previous versions may have had their own
Only clauses. Then:

• If there was already anOnly clause in an ancestorA, the features listed,
here q, r and s, must be new features, not present inA. Otherwise
specifyingonly q, r, s would either contradict theOnly clause ofA if it
did not include these features (thus ruling out any modification to them
in any descendant), or be redundant with it if it listed any one of them.

• The meaning of theOnly clause is thatf may only changeq, r ands in
additionto inherited queries that earlierOnlyclauses allowed it to change.

Note that this definition is mutually recursive with the next one.

Unfolded Only clause
Theunfolded Only clauseof a featuref of a classC is a sequence
of Assertion_clausecomponents of the following form, one for
every argument-less queryq of C that does not appear in the
unfoldedfeaturelist of theOnlyclause of itsPostconditionif any:

q = (old q)

This will make it possible to express the semantics of anOnly clause
through a sequence of assertion clauses stating that the feature may change
the value of no queries except those explicitly listed.
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9.8 CLASS INVARIANTS

The next category of assertion use is the class invariant, determined by the
last clause of a class text,Invariant. Unlike aPreconditionor Postcondition
which characterizes a single feature, the class invariant applies to an entire
class — more precisely, to all its exported features.

The invariant specifies properties which any instance of the class must
satisfy at every instant at which the instance is observable by clients.

The classCHAINquoted above has the followingInvariantclause (with
assertion tags removed from brevity):

Note the use of the equal sign: for a queryq returning a reference, the
Only clause states (bynot includingq) that after the feature’s execution the
reference will be attached to the same object as before. That object might,
internally, have changed. You can still rule out such changes by listing in
theOnly clause other queries reflecting properties of the object’scontents.

deferred class CHAIN feature
…
invariant

-- Definitions:
empty= (count= 0)
off = ((position= 0) or (position= count + 1))
isfirst = (position= 1)
islast= (not emptyand (position= count))

-- Axioms:
count>= 0
position>= 0; position<= count + 1
empty=> (position= 0)
(not off) implies (item= i_th (position))

-- Theorems:
(is_firstor is_last) implies (not empty)

end
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As an example, the first Assertion_clause states that in all observable states
the result ofempty(a boolean function) called on a chain is true if and only
if the value ofcountcalled on the same chain is zero. The second and third
of those marked asAxioms state that the value ofposition, an integer
attribute, always remains between 0 and the value ofcount plus one.

This Invariant has been divided into “Definitions”, expressing that certain
queries may be defined in terms of others, “Axioms”, expressing constraints
on the features, and “Theorems”, expressing properties which may be
deduced from other clauses. This classification helps for readability but has
no semantic consequence.

As already noted, the semantics of a class’s invariant — to define
correctness and specify assertion monitoring — doesn’t just rely on the
invariant clauses listed in the class itself but includes ancestors’ invariants,
through the notion of “unfolded form”. The unfolded form is the
concatenation of the clauses of its parents’s invariants, themselves
unfolded in the same way, and its own clauses.

This ensures the consistency of thetype view of inheritance. In
particular, inheritance permits substitution of instances: ifC is a
descendant ofB, instances ofC will also be instances ofB. But the
soundness of this notion requires any semantic obligation on instances of
B, as expressed byB’s invariant, to be also applicable to instances ofC.
Hence the definition of the invariant of a class as including all invariant
clauses from ancestors.

9.9 THE CONSISTENCY OF A CLASS

Invariants and the notion of routine contract make it possible to define the
consistency of a class, part of itscorrectness, one of its two characteristic
semantic properties.

A class will be said to be consistent if its implementation satisfies the
correctness requirements expressed by the preconditions on the routines of
the class, the postconditions, and the class invariant.

The following notations serve to define this notion precisely. They are
not part of Eiffel, but mathematical conventions used to talkabout Eiffel
classes and their semantic properties.

• If r is a routine,dor denotes its body,prer its precondition, andpostr its
postcondition.

• If C is a class,INVC denotes its class invariant.

← On the two views of
inheritance see
“OVERVIEW”,  6.1,
page 169.

WARNING: These are
mathematical nota-
tions, not Eiffel text.
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• If P and Q are assertions andA is an instruction or compound, the
notation{ P} A { Q} expresses the property that wheneverA is executed
in a state in which P is true, the execution will terminate in a state in
which Q is true. This is a standard concept from the theory of
programming languages, taken here in a “total correctness” meaning:

If P, A andQ are extracted from the text of a routine with arguments, the
Hoare triple{ P} A { Q} will be considered to hold if and only if it holds for
all possible values of the formal arguments.

Earlierconventions enable us to assume that everyAttribute_or_routine
has both aPreconditionand aPostcondition, and that everyClasshas an
Invariant, by considering any missing clause as an implicit form for
require True , ensure True or invariant True . In addition, we will take
inheritance into account by considering theunfolded forms of these
assertions, integrating inherited properties.

These conventions make it possible to define class consistency:

Hoare triple notation (total correctness)
In definitions of correctness notions for Eiffel constructs, the
notation{ P} A { Q} (a mathematical convention, not a part of
Eiffel) expresses that any execution of theInstruction or
CompoundA started in a state of the computation satisfying the
assertionP will terminate in a state satisfying the assertionQ.

Class consistency

A classC is consistent if and only if it satisfies the following
conditions:
1 • For everycreation procedurep of C:

{ prep} dop { INVC and thenpostp}
2 • For every featuref of C exported generally orselectively:

{ INVC and thenpref} dof { INVC and thenpostf}
whereINVC is theinvariant ofC and, for any featuref, pref is the
unfoldedform of the precondition off, postf the unfolded form of
its postcondition, anddof its body.

Class consistency is one of the most important aspects of thecorrectness
of a class: adequation of routine implementations to the specification. The
other aspects of correctness, studied below, involveCheck instructions,
Loop instructions andRescue clauses.

← “Pr econdition,post-
condition, invariant”,
page 234.

→ “Unfoldedformofan
assertion”,  page 287.

The mathematical sym-
bol ∧ represents bool-
ean conjunction.

→ “Corr ectness
(class)”,  page 253.
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PUR?
9.10 CHECK INSTRUCTIONS

Another use of assertions is theCheck instruction, of the form

This lets you express that a certain property, captured bySome_assertion,
will be satisfied whenever execution reaches the instruction. As the name
indicates, the instruction is there to require that some mechanism “check”
that the property indeed holds. The mechanism in question may be a human
reader, a mechanical program prover (if possible), or the execution itself.
(We have not seen yet what effect, if any, assertion constructs may have on
execution, andmust wait a few more sections for an answer.)

A common use of aCheckinstruction is just before a routine call, to
express one or both of two properties without which the call’s execution
couldn’t make sense:

• For aQualified_call, the target is attached (not void).

• The routine’s precondition is satisfied.

As an example of the first case, the body of procedureremove_leftin the
classLINKED_LIST of EiffelBase contains the following extract:

In that class,item(i) yields the element at positioni. TheCheckinstruction
expresses that the value atposition – n –1 is not void, and so can be used
as the target of the call toput_right that follows.

Thenotepart is optional but recommended: as here, it lets you explain,
through awhy entry, the reasoning that leads you to expect that the
assertion will hold.

Another style recommendation illustrated here is to indent theCheck, to
separate it from instructions that perform actual steps of the algorithm.

check
“Some_assertion” -- May include zero or more clauses

note -- This part is optional
Tag: “Explanation”

end

previous:= item(position – n –1)

previous.put_right(active)

→ Thereaderwhodoes
not want to wait may
preview“RULES OF
RUN-TIME ASSER-
TION MONITOR-
ING”,  9.13, page 253.

check
previous /= Void

note
why: "Value atposition – n –1 cannot be void"

end

← “ANNOTATING A
CLASS”,4.8,page122.
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As an example of the second case, the body of procedureput in the same
class contains:

This should be understood in light of the precondition foritem( j):

TheCheckinstruction expresses that the call toitemsatisfies the precondition
thanks to the context (theConditional instruction) and the invariant.

More generally, aCheckinstruction is useful in the following situation.
You know that the proper execution of a certain computation requires some
consistency condition (such as a call’s target being attached, or a
precondition satisfied). To do your job properly, you so design the context
of the computation as to guarantee the desired condition. If your reasoning
and its consequence (that the consistency condition will be satisfied) are
not obvious to a reader of the software text, aCheckinstruction will clarify
that you did not overlook your obligations.

In the presence of assertion monitoring as discussed below, theCheck
will also help detect the mistake if you did make one after all.

The general form of aCheck instruction is:

if  i = 1 then
lt.put_right(first_element)

else

left_neighbor:= item(i – 1)
…

end

require
index_large_enough: j >= 1
index_small_enough: j <= count

Check instructions
Check =∆ checkAssertion [Notes] end

TheNotespart is intended for expressing a formal or informal justification
of the assumption behind the property being asserted.

check
i – 1 >= 1
i – 1 <= count

note
why: “See condition ofif and invariant”

end
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The following definition expresses the semantics:

9.11 LOOP INVARIANTS AND VARIANTS

Our next application of assertions uses them to guarantee the correctness
of loops. It uses an assertion, theloop invariant , as well as an integer
expression, theloop variant. The variant is not syntactically an assertion,
but plays a closely related role.

The invariant determines the properties ensured by the loop on exit; the
variant guarantees that the loop’s execution terminates.

Here is an example of these constructs in a loop from routine
search_child(which looks for a certain node among the children of the
current node) in the EiffelBase classLINKED_TREE:

This discussion refers toinstructions of aLoop: the from clause or
Initialization, executed once at the start of the loop; the iteration orloop
clause, executed zero or more times until theExit_condition, introduced by
until , holds.

The invariant expresses a property ofchild_position, the index of the child
being looked at:child_position will remain between 0 andarity (the
number of children) plus one. Stating that this property is a loop invariant
means asserting that theInitialization ensures it, and that every iteration
preserves it. This is indeed the case:

• TheInitialization, go_before, moves the child cursor to the node’s first
child, or to position 0 if there is no child.

Check-correct
An effective routine r is check-correct if, for every Check
instructionc in r, any execution ofc (as part of an execution ofr)
satisfies itsAssertion.

from
go_before

until
child_afteror else( j = i)

loop
child_forth
if (sought= child) then j := j + 1 end

end

invariant
0 <= child_position; child_position<= arity + 1

variant
arity – child_position +1

→ “LOOP”,  17.7,
page 494.
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• In the iteration,child_forth, which moves the child cursor right by one
position, is only executed when the propertychild_afteris not satisfied
(since this condition is part of theExit_condition).

The variant is an integer expression,arity – child_position + 1, which is
always non-negative and decreases on every iteration. This guarantees that
the loop will terminate.

Here now are the precise rules governing these constructs, starting with
the syntax.InvariantandVariantappear in the syntax ofLoop, appearing
in the chapter on control structures. A loop invariant is a specimen of
Invariant, also applicable to class invariants and givenearlier in this
chapter. A loopVariant (which contains an integer expression, not an
assertion) has the following syntax:

The optionalTag_marklabels the variant in the same way as for an
Assertion_clause. The variant must satisfy a simple constraint:

The sized variantsareINTEGER_XandNATURAL_XwhereX is an explicit
length, for exampleINTEGER_16.

Associated terminology:

Semantically, the invariantINV of a correct loop satisfies two properties:

• The loop’s Initialization (from  clause) ensures the truth ofINV.

• Any iteration started in a state that does not satisfy theExit_condition
but satisfiesINV terminates withINV true again.

As a result of these properties, the invariant will still be satisfied on loop
exit, at which point theExit_conditionwill hold. Their conjunction is the
output condition of the loop. From a theoretical viewpoint, the goal of the
loop is to achieve this condition, and the looping process reaches it by
successive approximations.

Variants
Variant =∆ variant  [Tag_mark] Expression

Variant Expression rule VAVE

A Variant is valid if and only if itsvariantexpression isof type
INTEGER or one of itssized variants.

Loop invariant and variant
The Assertionintroduced by theInvariant clause of a loop is
called its loop invariant . The Expressionintroduced by the
Variant clause is called itsloop variant.

→ Page495.

← Page232.

→ “INTEGERS”,
30.6, page 820.
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You may view the variant as an estimate of the remaining distance to the
goal. The variantVAR of a correct loop satisfies two properties:

• TheInitialization setsVar to a non-negative value.

• Any iteration started in a state that does not satisfy theExit_condition
decreases the value ofVARwhile keeping it non-negative.

As a result of these properties, since the variant is an integer expression, the
iterations may not go on forever.

The following definitioncaptures this correctness semantics:

In keeping with the general use of the word “contract” — for features, for
classes — the invariant and variant of a loop (only the former an assertion)
are said to define the contract of the loop.

9.12 THE CORRECTNESS OF A CLASS

In connection with the various uses of assertions, we have seen how a class
may be “correct” in several partial ways:

• Consistent: every feature satisfies its precondition and postcondition,
every creation procedure ensures the invariant, every exported feature
preserves the invariant.

• Check-correct: the assertion of everyCheck instruction holds.

• Loop-correct: loops preserve their invariants and decrease their variants.

Loop-correct
A routine is loop-correct if every loop it contains, withloop
invariant INV, loop variant VAR, Initialization INIT, Exit
condition EXIT and body (Compoundpart of theLoop_body)
BODY, satisfies the following conditions:
1 • { true}  INIT { INV}

2 •{ true}  INIT { VAR≥ 0}

3 • { INV and then not EXIT}  BODY{ INV}

4 •{ INV and then not EXIT and then (VAR = v)} BODY
{ 0 ≤ VAR< v}

Conditions1 and2 express that the initialization yields a state in which the
invariant is satisfied and the variant is non-negative. Conditions3 and4
express that the body, when executed in a state where the invariant is
satisfied but not the exit condition, will preserve the invariant and decrease
the variant, while keeping it non-negative. (v is an auxiliary variable used
to refer to the value ofVAR beforeBODY’s execution.)

← For the Hoare triple
notation{P} A {Q} see
page247 above.
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Exceptions will lead to one more variant: a class isexception-correct if in
the case of a non-retried exception, leading to a failure of the enclosing
routine, the “rescue clause” will restore the class invariant.

The combination of these properties yields the full notion of correctness:

Do not confuse correctness and validity. Correctness is a semantic notion,
expressing that the implementation of a class matches its specification.
Validity is simply the property that a construct is well-formed, such as a
routine call with the proper number and type of actual arguments. The
correctness of a software element is a meaningless notion unless the element
is valid.

Ideally, an Eiffel environment should come with tools which can prove or
disprove the correctness of a class as defined here. This is still beyond the
reach of most of today’s environments, although the technology is
progressing quickly. To understand classes and contracts, however, it is
essential to refer to this notion of class correctness, even if you have to
assess correctness by manual examination of the class rather than through
proof tools.

As the next best thing to proofs, Eiffel environments must support run-
time monitoring of contracts, as described next.

9.13 RULES OF RUN-TIME ASSERTION MONITORING

Complementing the notion of class correctness, run-time monitoring
provides the second facet of assertion semantics.

Contracts, as expressed through assertions and loop variants, express
correctness requirements on software texts. If we view them not just as
specification (as in the definition of class correctness) but as language
constructs, they raise the same semantic question as any other construct:
what’s the run-time effect? In the execution of acorrectsystem — the only
case that, in principle, matters — every assertion will always be satisfied at
the times when it has to: a precondition on every call to its routine, a
postcondition on return and so on. So in theory it should not be necessary
to define the semantics of assertions evaluation: for a correct class, the
effect of evaluating an assertion is irrelevant, since the value is always true!
This may be called the paradox of assertion semantics.

Correctness (class)
A class iscorrect if and only if it is consistent and every routine
of the class ischeck-correct,loop-correct andexception-correct.

→ “EXCEPTION
CORRECTNESS”,
26.9, page 702.

←“CORRECTNESS”,
2.10, page 99.
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The paradox is only theoretical. In practice, short of proofs as discussed
above, one must often accept the prospect that a system may contain errors
— may not be correct. Then assertions provide crucial help in detecting
these errors and suggesting corrections. By directing the run-time system
to evaluate assertions and variant clauses, and to trigger an exception if it
detects a violation, you check the consistency between what the software
does (the feature implementations) and what you think it does (the
contracts): you let the tools call your bluff. This gives a remarkable tool for
debugging, testing and maintaining software systems.

Eiffel implementations are indeed required to provide, usually through
a compilation option, mechanisms to evaluate contract elements —
assertions and loop variants — during the execution of a system. We now
review the details of this requirement.

Associated boolean expression

We must first clarify what it means to evaluate an assertion. As a language
construct, the notion of assertion derives from boolean expressions. Like a
boolean expression, an assertion describes a property that, for the
computation captured in a certain state, is true or false.

Two possibilities available for writing assertions — specifically,
postconditions — do not exist in boolean expressions:Old expressions and
Only clauses. Their semantics, however, does reduce in the end to that of
boolean expressions thanks to the associated “unfolded forms”:

• old expstands for an extra variable (the “associated variable” of theOld
expression) that would have been initialized to the value ofexpon entry
to the routine.

• only q1, … qn stands for a set of assertions of the formt = old t, one for
every queryt that is not one of theqn.

We can capture these equivalences through a notion of unfolded form:

Local unfolded form of an assertion
The local unfolded form of an assertion a — a
Boolean_expression— is the Equivalent Dot Form of the
expression that would be obtained by applying the following
transformations toa in order:
1 • Replace anyOnly clause by the correspondingunfoldedOnly

clause.

2 • Replace anyOld expression by itsassociated variable.

3 • Replace any clause of theComment form byTrue.

← ““Old” e xpres-
sion”,  page 239.

← ““Only” clause”,
page 241.
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Assertion monitoring

An Eiffel environment must make it possible to evaluate assertions — that
is to say, the boolean expressions resulting from their unfolding as just
defined — during execution.

For a correct system, as noted, such evaluation will have no effect on
execution semantics, except through possible side effects of the functions
called by assertions.

For an incorrect system, if an assertion evaluates to true, it has no further
effect on the outcome of the computation. If it evaluates to false, it will
trigger anexception, disrupting the normal flow of computation.

The first notion isevaluationof an assertion or loop variant. For a
variant — an integer expression — the meaning is clear; for assertions we
must be more precise:

The unfolded form enables you to understand an assertion, possibly with
many clauses, as a single boolean expression. The use ofand then to
separate the clauses indicates that you may, in a later clause, use an
expression that is defined only if an earlier clause holds (has value true).

This unfolded form is “local” because it does not take into account any
inherited assertion clauses. This is the business of the full (non-local)
notion of unfoldedform of an assertion, introduced in thediscussion of
redeclaration.

The Equivalent Dot Form of an expression removes all operators and
replaces them by explicit call, turning for examplea + b into a.plus (b).
This puts the result in a simpler form used by later rules.

If an Only clause is present, we replace it by its own unfolded form, a
sequence ofAssertion_clausecomponents of the formq = old q, so that we
can treat it like other clauses for the assertion’s local unfolded form. Note
that this unfolding only takes into account queries explicitly listed in the
Only clause, but not in anyOnly clause from an ancestor version;
inheritance aspects are handled by the normal unfolding of postconditions,
applicable after this one according (as noted above) to the general notion
of unfolded form of an assertion

The syntaxpermits aCommentas Unlabeled_assertion_clause. Such
clauses are useful for clarity and documentation but, as reflected by
condition3, cannot have any effect on run-time monitoring.

Evaluation of an assertion
To evaluatean assertion consists of computing thevalue of its
unfolded form.

→ “Unfoldedformofan
assertion”,  page 287.

← Page232..

→ Chapter26 dis-
cusses exceptions.



CORRECTNESS AND CONTRACTS §9.13256
Should assertions be evaluated? Not necessarily. You may define
various levels ofmonitoring, including no evaluation at all:

Unlike other semantic definitions of this book the rule is in “may” rather than
“must” mode, describing run-time checks that you will wish to enable or
disable depending on the circumstances. The possibilities are detailed next.

The following definition describes how assertion monitoring can catch
cases of software incorrectness:

This defines the value of an assertion in terms of the value of a boolean
expression, as given by thediscussion of expressions.

Assertion monitoring
The execution of an Eiffel system may evaluate, ormonitor,
specific kinds of assertion, and loopvariants, at specific stages:
1 • Precondition of a routiner: on starting a call tor, after

argument evaluation and prior to executing any of the
instructions inr’s body.

2 • Postcondition of a routiner: on successful (not interrupted by
an exception) completion of a call tor, after executing any
applicable instructions ofr.

3 • Invariant of a classC: on both start and termination of a
qualifiedcall to a routine ofC.

4 • Invariant of a loop: after execution of theInitialization, and
after every execution (if any) of theLoop_body.

5 • Assertion in a Check instruction: on any execution of
that instruction.

6 • Variant of a loop: as with the loop invariant.

Assertion violation
An assertion violation is the occurrence at run time, as a result
of assertion monitoring, of any of the following:
• An assertion (in the strict sense of the term) evaluating to false.

• A loop variant found to be negative.

• A loop variant found, after the execution of aLoop_body, to be
no less than in its previous evaluation.

To simplify the discussion these cases are all called “assertionviolations”
even though a variant is not technically an assertion.

→ “Expression Seman-
tics(strict case)”, page
773 and .“Operator
Expression Semantics
(semistrict cases)”,
page 777
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Assertions affect the semantics of system execution only in the case of
assertion violations:

The result of the exception isdetailed in the corresponding chapter. Any
exception, when it occurs, interrupts the execution of some routine that has
been started but not yet finished: therecipient of the exception. In
accordance with the principles of Design by Contract:

• For a precondition violation, the recipient is the caller: it has not
observed its obligations, and any attempt to execute the routine would
be meaningless, and perhaps harmful. In this case the error — thebug
— is on the client side.

• For a postcondition violation, the recipient is the routine itself: it is
unable to fulfill its obligations. The bug is on the supplier side.

Thedefinition of “exception cases”, part of exception semantics, provides
the full specification for these two kinds of violation and all others.

Levels of assertion monitoring

As noted for the definition of assertion monitoring, the execution “may”
monitor exceptions but does not always have to do so. For a program that
is known to be correct — through other means, for example aproof that it
meets its contracts — you may prefer to avoid the overhead of monitoring.
An Eiffel development environment, however, must offer you at least basic
monitoring facilities.

A number of levels of monitoring are predefined:

Implementations may — and usually do — provide more combinations
than the four required by the last part of the rule.

It is common to providepreconditionchecking only (variant2) as the
default. Checking preconditions on routine entry avoids disasters, since a
Routine_bodymight attempt to perform erroneous or impossible actions
when executed in a state which does not satisfy the routine’s precondition,
but normally causes only a modest performance penalty. More extensive
monitoring is especially useful for quality assurance, maintenance,
debugging, testing and regression analysis.

Assertion semantics

In the absence of assertion violations, assertions have no effect on
system execution other than through their evaluation as a result of
assertion monitoring.
An assertion violation causes anexception of type
ASSERTION_VIOLATION or one of itsdescendants.

→ “SEMANTICS OF
EXCEPTION HAN-
DLING”,  26.10, page
702

→ Page706.
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Invariant and qualified calls

As noted in thedefinition of assertion monitoring, a class invariant will
only be checked forqualified calls. If r is a routine of a classC, a call in
dot-notation is qualified if it is of the form

with an explicit target, herea.

An operator expression using a binary operator, such asa + b, is also a
qualified call since it is anabbreviation for a calla.plus (b), assuming a
featureplusalias "+". Since the difference is of syntax only, we can limit
ourselves here to the case of calls with an explicit dot.

Whether it appears in the text of a routine ofC or in another class, such
a qualified call will cause the invariant to be evaluated (both before and
after the call).

A routine ofC may also contain anunqualified call, written just

Assertion monitoring levels

An Eiffel implementation must provide facilities to enable or
disable assertion monitoring according to some combinations of
the following criteria:
• Statically (at compile time) or dynamically (at run time).

• Through control information specified within the Eiffel text or
through outside elements such as a user interface or
configuration files.

• For specific kinds as listed in the definition of assertion
monitoring: routine preconditions, routine postconditions, class
invariants, loop invariants,Check instructions, loop variants.

• For specific classes, specific clusters, or the entire system.

The following combinations must be supported:
1 • Statically disable all monitoring for the entire system.

2 • Statically enable precondition monitoring for an entire
system.

3 • Statically enable precondition monitoring for specified
classes.

4 • Statically enable all assertion monitoring for an entire system.

a.r (…)

r (…)

← Case3, page256.

→ “THE EQUIVA-
LENT DOT FORM”,
28.8, page 780. Chap-
ter 23 discusses quali-
fied and unqualified
calls in details.
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where the target is nota any more but thecurrent object. Such an
unqualified call will not cause an invariant check.

The formCurrent.r (…), which has the same semantics in the absence
of assertions, is qualified and so will trigger an invariant check.

→ “Curr ent object,
currentroutine”, page
649.
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Feature adaptation
10.1 OVERVIEW

Chapter6 introduced inheritance as a module enrichment technique. You
inherit from a class out of sheer mercenary interest: you want its features.
But that doesn’t necessarily mean accepting all these features at face value.

This chapter is the longest of this book, which should not be a surprise
since it explores in full detail some of the most fascinating aspects of object
technology: how to play mix and match with software components, taking
advantage of the best features of existing classes while refining, adapting or
overriding what is not exactly suited to your new need. Only a few basic
concepts are involved, but they interact in diverse and powerful ways.

So make sure you have a comfortable armchair and a big cup of coffee,
and for the 50 pages of this chapter be prepared to question, implement,
override, rename, merge or otherwise wring all those features that your
ancestors, for better or worse, bequeathed to you.

10.2 TERMINOLOGY: REDECLARATION, REDEFINITION, EFFECTING

Our major focus will be the tworedeclaration mechanisms that help adapt
inherited features to the local context of a class:

• Redefinition, which may change an inherited feature’s original
implementation, signature or specification.

• Effecting, which provides an implementation (oreffectiveversion) for
a feature that did not have one in the parent. The parent’s version,
deprived of any implementation, but with a signature and specification,
is said to bedeferred; deferred features play an important role in
analysis and design, which this chapter will explain.

A key attraction of the inheritance mechanism is that it lets you tune
inherited features to the context of the new class. This is known as feature
adaptation. The present discussion covers the principal mechanisms, leaving
to alater one some important complements related to repeated inheritance.

→ Chapter16presents
repeated inheritance.

There are actually 40
more pages of wringing
in chapter16.

The term"effecting"
sometimes surprises at
first, but achieves con-
sistent terminology: to
effect a a feature is to
make it effective.
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The purpose of redefining a feature is often to extend (rather than discard)
its original implementation. We will see how theprecursor mechanism
enables you, in a redefinition, to reuse and extend the original version.

Two closely related facilities, which the discussion will address in
detail, are the possibility of ofundefining an inherited feature, to forget its
original implementation, and of merging abstractions byjoining two or
more features inherited from different parents.

Another adjacent concept isrepeated inheritance, which enables a
class to inherit twice or more from a given ancestor, letting the designer
control what happens to the common feature heritage. This topic is
important enough to deserve a chapter of its own, coming onlylaterin this
book, after the conformance chapter, since repeated inheritance rules rely
extensively on those of type conformance.

Although with the present chapter the major language constructs involving
inheritance will have been introduced, we are still missing an important part of
thepicture.Tograsp the full extentandpracticalityof the techniques introduced
below, you will need to understandpolymorphismand dynamicbinding,
studied insubsequentchapters.Together, thesenotionsareresponsible forsome
of the most powerful characteristics of the object-oriented method.

10.3 REDECLARING INHERITED FEATURES: WHY AND HOW

A class inheriting from another may add new features of its own. But what
about the old ones? So far the presentation has assumed that an heir will be
happy enough to obtain every inherited feature “as is” from a parent. To be
sure, the heir mayrenamethe feature, but this does not change it; the effect
is simply to make it available to the client’s dependents under a name that
is better suited to the local context.

Inheritance offers more. When you inherit a set of features, you may
want to adapt those whose originalspecificationor implementationdid not
take advantage of the heir’s specific properties.

Redefinition is the basic method for achieving such an adaptation. By
redefining an inherited feature you may give it a new implementation, a new
signature, or a new set of assertions, as long as you follow the applicable rules
to ensure that the new version remains compatible with the old one as seen
by clients. You may even redefine a function into an attribute, switching from
an algorithmic representation to one that simply stores feature values. Every
proper descendant of a class may provide its own alternative redefinition.

In some cases, the original form of a routine does not provide any
default implementation at all; this is an explicit invitation for proper
descendants to offer various implementations. Such unimplemented
features, and the classes that introduce them, are said to bedeferred;
proper descendants may theneffect those features (make themeffective).

→ Chapter16.

→ “POLYMOR-
PHISM”,  22.11, page
606; “D YNAMICBIND-
ING”,  23.12, page 638.

← “RENAMING”,
6.9, page 183.
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In the software construction process, classes and features may in fact
remain deferred for a long time, providing a high-level notation for system
analysis and design.

The basic terminology has already been previewed:

redeclaration:

In the case of a redefiniti

Getting the full power of deferred features requires two more
mechanisms:

• Sometimes a class will be able to merge two or more features that it
inherits from separate parents; in so doing the class combines several
abstractions into one. This is the join mechanism.

• In some cases, as you inherit an effective feature from a parent, you may
want to discard the inherited implementation altogether, recanting all
the sins of its earlier effective life. This is the process of undefinition,
which turns an effective feature into a born-again deferred feature.

The following sections explore redefinition, deferred features, undefinition
and join. The discussion will first explain these facilities and their role in
software analysis, design and implementation. The second part of the
chapter, which you may skip on first reading, gives the more formal set of
corresponding syntactic rules and validity constraints, together with the
resulting semantic definitions.

10.4 FEATURE ADAPTATION CLAUSES

For a start, let us just refresh our memory as to the syntactical context of
this discussion: theInheritanceclause of a class declaration, which may
contain one or moreParentparts. Here is a simplified form of the the
beginning of classTWO_WAY_TREE in EiffelBase:

Redeclare, redeclaration
A classredeclaresaninheritedfeature if itredefines oreffects it.
A declarationfor a featuref is aredeclaration of f if it is either a
redefinition or aneffecting off.

This definition relies on two others, appearing below, for the two cases:
redefinition andeffecting.

Be sure to distinguishredeclarationfrom redefinition, the first of these
cases. Redeclaration is the more general notion, redefinition one of its two
cases; the other iseffecting, which provides an implementation for a feature
that was deferred in the parent. In both cases, a redeclaration does not
introduce a new feature, but simply overrides the parent’s version of an
inherited feature.

The formal part starts
with 10.25, page 306.

← Another descendant
ofTREE, classFIXED_
TREE, served to illus-
trate inheritance basics
in“AN INHERITANCE
PART”,  6.2, page 169
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note
… (Notes clause omitted)…

class TWO_WAY_TREE[T] inherit
TREE[T]

redefine
higher, …

end

BI_LINKABLE[T]
rename

… (Rename subclause omitted)…
redefine

put_between
end

TWO_WAY_LIST[like Current]
rename

… (Rename subclause omitted)…
redefine

first_child, update_after_insertion,
duplicate, merge_right, merge_left

end
feature

… Rest of class omitted…
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EachParentpart is relative to one of the class’s parents and may include a
Feature_adaptationsubclause (optional, but present for all three parents
above). Here again is the corresponding syntax:

The Renameand New_exportsclauses have been discussed inprevious
chapters. The next sections explainRedefine, Undefine andSelect.

10.5 WHY REDEFINE?

The first mechanism to study is feature redefinition, which allows you to
to change some aspects of an inherited feature.

Assume you write a classC that describes a specific variant of the
concepts covered by an existing classB. C will be an heir ofB. You may
find that, for this variant, the inherited version of a certain featuref is not
appropriate any more. This sets the stage for redefiningf in C.

Besides its name, a feature ischaracterized by three properties:

• The feature has asignature, defined by the number and type of its
arguments and result, if any.

• It either is deferred or has animplementation, including the choice
between attribute or routine, external or not, and for a non-external
routine theRoutine_body, Local_declarations andRescue.

• It has aspecification, defining the feature’scontract: Preconditionand
Postcondition (for routines only).

A feature redefinition may affect one or more of these three aspects. In
general, a change of specification implies a change of implementation.

There are two possible reasons,correctness and efficiency, for
redefining a feature:

Inheritance=∆ inherit Parent_list

Parent_list=∆ "{ Parent ";" … }

Parent=∆ "Class_type
[Feature_adaptation]

Feature_adaptation=∆ [Rename]
[New_exports]
[Undefine]
[Redefine]
[Select]
end

← The original presen-
tation of this syntax is
on page171.

← “RENAMING”,  6.9,
page 183; “Adapting the
export status of inherited
features”,  , page 204.

← “FEATURE DEC-
LARATIONS: SYN-
TAX”,  5.10, page 140.

Aroutinemayalsohave
a Header_comment
andanObsoleteclause,
which a redefinition
may change.
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• The original version may perform actions or compute results that are
incorrect for the new class, for example because they do not update
some of the new attributes.

• If the original version is still appropriate, it may not be efficient enough,
because it fails to take advantage of specific properties of the new class.

Signature redefinition falls in the correctness category: the types of
arguments or results, as originally declared, are not appropriate for the new
class.Implementationredefinition may be for correctness, efficiency or
both. A change ofspecificationinvolves correctness since it means the
redefined version offers a new contract to its clients.

10.6 REDEFINITION EXAMPLES

To get a good feel for redefinition, let us look at a pair of simple examples
illustrating each of the two purposes cited.

As a case of redefinition for correctness, assume a classCIRCLE,
inheriting fromELLIPSE and adding an attributeradius:

As always, it is useful to check that we are not misusing inheritance. Here
there is hardly any doubt that the structure is right: every circle may be
viewed as an ellipse that happens to have only one focus.

Let scalebe the procedure that scales a figure by a certain ratio. Since
attributeradius is not present inELLIPSE, the version ofscaleinherited
from ELLIPSE does not update the value of that attribute. ClassCIRCLE
must redefinescale to make sure that it updates not just the attributes
inherited fromELLIPSE, but also the specificCIRCLEattributes such as
radius. (The problem would not arise ifradiuswas a function, defined in
terms of attributes inherited fromELLIPSE, rather than an attribute.)

As illustrated by the figure, the graphical convention for a redefined
feature uses two plus signs after the feature’s name, as inscale++.

Inheritance
structure for
circles and
ellipses

scaleELLIPSE

scale++CIRCLEradius
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Now an example of redefinition for efficiency. ClassCIRCLE may
redefine as follows the functioncontainswhich determines whether a point
is inside a closed figure:

ELLIPSEhas a version ofcontainstoo. Because an ellipse is a more general
figure than a circle, theELLIPSEversion is more complex than the above; it
would still be correct for circles, but less efficient since it does not take
advantageof thespecialpropertiesofcircles.Redefinitionsolves theproblem.

10.7 THE REDEFINITION CLAUSE

Whether for correctness or efficiency, the redefinition of a feature must be
explicitly announced in aRedefinesubclause of theFeature_adaptationfor
the corresponding parent, as in

The names given in theRedefinesubclause must be thefinal names of
features inherited from the given parent. (In other words, these are the names
after any renaming; this is easy to remember since theRenameclause
always appears beforeredefine and other feature adaptation clauses.)

contains(p: POINT): BOOLEAN
-- Is p inside circle?

require
point_exists: p /= Void

do
Result:=(origin.distance(p) <= radius)

ensure
… Postcondition omitted…

end

class CIRCLEinherit
ELLIPSE

rename
…

redefine
scale, contains,…

end
… Rest of class omitted…

← “Final name” was
defined on page186.
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Such aRedefinesubclause allows — and requires — classCIRCLEto
include (in a Feature_clause) new feature declarations, such as given
above, forscale, containsand others listed after the keywordredefine.
These declarations will override the ones inherited from the parent, here
ELLIPSE. Without theRedefinesubclause, such declarations would make
CIRCLE invalid, since it would now have two features calledscale,
contains etc., a case of invalidname clash.

To discuss redefinition it will be convenient to refer to the “precursor”
of an inherited feature — its original form in the parent:

With the mechanisms seen so far, every feature of a parent yields a feature
in the heir; so every inherited feature hasone precursor. Mechanisms
explored later — joining of deferred features, and sharing under repeated
inheritance — may result in the merging of two or more parent features into
just one heir feature. This will requireextendingthedefinition to account
for features having more than one precursor.

10.8 REDEFINITION IN THE SOFTWARE PROCESS

(This section introduce no new language concept but broadens the
discussion by presenting methodological aspects.)

Before proceeding with more technical aspects of redefinition, it is
useful to reflect a little on the implications of this notion for object-oriented
software engineering. Feature redefinition is part of the answer to a major
software engineering issue: reconciling reusability with extendibility.

In software, it is seldom satisfactory to reuse an element exactly as it is;
often, you must also adapt it to a specific context. With redefinition, as
suggested by the simple examples above, you can keep those features that
are still appropriate for the new context, while overriding the
implementations of those which need to be adapted.

The ability to change the signature of an inherited routine, studied
below, is also essential to the smooth functioning of Eiffel’s type system.

It is useful to compare this technique with another of the mechanisms
for adapting an inherited feature:renaming. The distinction to keep in mind
is between afeature and afeature name:

Precursor (initial definition)

If a class inherits a feature from aparent, either keeping the
feature unchanged orredefining it, the parent’s version of the
feature is called theprecursor of the feature.

→“NAMECLASHES”,
10.23, page 297

→ “Pr ecursor (joined
features)”,  page 315.
See also the more fom-
ral definition, page473.

← “RENAMING”,
6.9, page 183.
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• A feature of a class is a certain operation (routine or attribute) applicable
to instances of the class. The feature is normally passed on to heirs, except
for redeclaration, which allows an heir to substitute another feature.

• Every feature of a class has afinal namerelative to that class, called just
its “feature name” if there is no ambiguity. This is the name used by the
class, its clients and heirs to refer to the feature. The name is normally
passed on to heirs, except for renaming, which allows an heir to
substitute another name for the same feature.

Redefinition and renaming serve complementary purposes:

You may want to apply both mechanisms to a given feature, to change both
the feature and its name:

Remember that once you have renamed a feature the only name that makes
sense for it in the rest of the class, past theRenameclause, is the new name,
which becomes its final name inC, herenew_name. In particular, the
Redefinesubclause — as well asUndefine —only refers to the new name.
So in this example it would have been invalid to write

since f is not the name of a feature thatC inherits fromB (unless the
Rename subclause separately renames another inherited feature tof).

10.9 CHANGING THE SIGNATURE

The preceding example redefinitions affected the implementation, for
either correctness or efficiency reasons. Here now is an example where we
need to change the signature of an inherited feature. That feature is an
attribute, so its signature only includes the attribute’s type.

Redefinition and renaming

Redefinition changes the feature, but keeps its name.
Renaming keeps the feature, but changes its name.

class B inherit
A

rename
f asnew_f

redefine
new_f

end
feature

… Rest of class omitted…

redefine f
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Consider classLINKED_LIST[T] in EiffelBase, representing one-way
linked lists of objects of typeT (the formal generic parameter).

One of the attributes of classLINKED_LIST is a reference to the first
element of a list:

The type of the corresponding objects,LINKABLE[T], represents list cells,
chained to their right neighbors:

Various proper descendants ofLINKED_LIST support variants of the
linked list data structure. An immediate heir isTWO_WAY_LIST, which,
instead of linkables, uses “bi-linkables”, chained not just to their
successors but also to their predecessors:

first_element: LINKABLE[T]

One-way
linked list

first_element

List header

List elements (cells)

The actual class text
usesLINKABLE[like
first].Thisdoesn’taffect
the discussion.

Linkable list
cell

item right

item rightleft

Bi-linkable list
cell
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ClassBI_LINKABLE is itself an heir fromLINKABLE:

Clearly, the first_elementof a TWO_WAY_LISTshould not just be a
linkable any more, but a bi-linkable. Hence the need to redefine that
attribute, which will appear inTWO_WAY_LIST as

The redefinition offirst_elementinto aBI_LINKABLEin TWO_WAY_LIST
follows the rule (given in detailbelow) requiring that any change of type in
a redeclaration replace the original with a type that conforms to it (by being
based on a descendant class, asBI_LINKABLE for LINKABLE).

In this example, the redefined feature is just an attribute. There is often
a concomitant need to change the types of routine arguments. For example,
the insertion routineput_element may be declared inLINKED_LIST as

Clearly, classTWO_WAY_LISTneeds to adaptput_elementto give it a first
argumentlt of typeBI_LINKABLE[T]. A redefinition ofput_elementwill
achieve this.

10.10 THE NEED FOR ANCHORED DECLARATIONS

Cases such as the redeclaration of the argumentlt of put_elementare so
frequent in inheritance hierarchies that they warrant a special mechanism,
bypassing the need for explicit redefinition. Rather than the above, the
signature ofput_element as declared inLINKED_LIST is

first_element: BI_LINKABLE[T]

put_element(lt: ; i: INTEGER) is…

put_element(lt: like first_element; i: INTEGER) is…

Signature
redefinitionLINKED_

LIST

TWO_WAY_
LIST

LINKABLE

BI_
LINKABLE

first_element

first_element++

→ “REDECLARA-
TIONANDTYPING”,
10.16, page 280

put_elementis secret
since clients of the list
classes never explicitly
manipulate linkables,
only objects of typeT.

LINKABLE[T]
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meaning thatlt has the same type asfirst_element: typeLINKABLE [T] in
LINKED_LISTand, in any proper descendant of this class, the new type, if
any, to whichfirst_elementhas been redefined. This mechanism, known as
anchored declaration, is discussed in detail in asubsequentchapter. It is
a form of implicit signature redefinition.

10.11 DEFERRED FEATURES

Feature redefinition, as just studied, lets you override the implementation,
signature or specification of a feature that already had an implementation
in a proper ancestor.

In some cases, the designer of that ancestor could not provide such a
default implementation, or did not want to. It is possible to declare a feature
without choosing an implementation by making itdeferred. This transfers
to proper descendants the responsibility for providing an implementation
through a new declaration, called aneffectingof the feature.

Although similar in many ways to redefinition, this case is more a
“definition” (without the re) of the feature, since there was no original
implementation in the parent. Accordingly, a class that effects a feature
inherited as deferred will not list it in aRedefine clause.

Some terminology:

• A feature that is not deferred — meaning it has an implementation,
either as an attribute or as a non-deferred routine — iseffective.

• The terms “deferred” and effective”, originally defined for features,
extend to classes: a class is deferred if it has at least one deferred
feature; otherwise (if all its features are effective) the class is effective.

Although sufficient for the time being, these definitions will be made more
rigorousbelow.

In graphical representations of system structures, both deferred features
and deferred classes will be marked by an asterisk* . Their effectings, as
other forms of redeclaration, are marked with a plus sign+.

→ “ANCHORED
TYPES”,  11.10, page
339

→ “E ffective, deferred
feature”,  page 309

Deferred class,
deferred
feature, and
effectings

CAR TRUCK
register

register

register

∗

+ +

VEHICLE
∗
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As noted above, a class designer may decide to declare a feature as
deferred because of eitherinability or refusal to provide an
implementation. These two cases correspond to the two major uses of
deferred routines and classes:

1 • You may want to write a class describing an abstract notion, covering
several possible implementations. Then you cannot write an effective
class, which would require that you provide full implementation
information. Some of the features of such a class, and hence the class
itself, will be deferred.

2 • In other cases, whether or not you have enough information to give the
implementation, you prefer to concentrate on the abstract properties of
a class and its features, postponing implementation concerns to later.

The next two sections explore these two applications.

10.12 DEFERRED CLASSES FOR DESCRIBING ABSTRACTIONS

The first application of deferred classes supports a central aspect of the
Eiffel method, resulting from the use of inheritance as a classification
mechanism. Often, classes appearing towards the top of inheritance
hierarchies represent general categories, for which various proper
descendants will provide specific implementations. The higher-level
classes should usually be deferred.

The EiffelBase Library contains numerous such cases. A typical
example is classTREE, describing the most general notion of tree,
independent of any representation. Specific implementations are described
by proper descendants of that class, such asFIXED_TREE and
TWO_WAY_TREE, both sketched earlier. ClassTREEcontains a number of
deferred features describing operations that cannot be made more precise
without committing to a representation. Typical of these is the procedure

which replaces byv the value stored in the “active child” (the child at
current cursor position) of the current node.

child_put(v: like item)is
-- Put itemv at active child position.

require
not_child_off: not child_off

deferred
ensure

replaced: child.item= v
end

OnFIXED_TREE see
6.2, page 169; on
TWO_WAY_TREE,
10.4, page 263.
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The keyworddeferred, indicating that the routine is deferred, comes in
lieu of an Effective body introduced bydo, once or external. As the
example shows, thePreconditionandPostconditionclauses may still be
present; they characterize the semantics of the routine, which all
descendant implementations must preserve (in a manner explained below).

Here are two further examples from other ISE Libraries.

EiffelVision contains numerous classes representing various
geometrical figures, some simple, some composite. They are all
descendants of a deferred classFIGURE, usually through one of its heirs
OPEN_FIGURE andCLOSED_FIGURE, still deferred themselves.

EiffelParse provides tools for analyzing programs or other structured
texts. To build a parser for a particular language, you write classes describing
the abstract structure of that language’s constructs; for example, a parser for
Eiffel will contain classesEIFFEL_CLASS, ROUTINE, INSTRUCTIONetc.
All such classes are descendants of the deferred classCONSTRUCT, through
one of three heirs ofCONSTRUCTdescribing three kinds of construct (the
same as in theEiffel syntax descriptions of this book):

• AGGREGATEdescribes constructs with a fixed number of parts. For
example, in a parser for Eiffel, a class describing the syntax of aLoop
(where the parts are anInitialization, an Invariant, a Variant and a
Loop_body) would be written as an heir toAGGREGATE.

• CHOICE describes constructs whose specimens are chosen from a
number of possible constructs. For example an EiffelInstructionis a
Creation, or aCall, or anAssignmentetc.; the corresponding class in a
parser would be an heir ofCHOICE.

• SEQUENCE describes constructs with a variable number of
components of the same kind, such as an Eiffel
Feature_declaration_list, which may consist of zero or more specimens
of Feature_declaration.

CONSTRUCTis almost fully deferred. The three heirs listed, although still
deferred, are “less” deferred since they provide effective routines for
parsing the corresponding types of constructs.

As you will remember, it is not possible to have a feature both deferred and
frozen, since frozen features may never be redeclared, and deferred features
are born for the very purpose of redeclaration.

10.13 DEFERRED CLASSES FOR SYSTEM DESIGN AND ANALYSIS

In the preceding examples, deferred classes were abstracted from effective
ones, by removing implementation aspects. In other cases, deferred classes
initially exist independently of any implementation. This is the second of
the two major applications of deferred classes.

See"Reusable Soft-
ware" for details about
these examples.

← “PRODUC-
TIONS”,  2.5, page 88.

→ The syntax forLoop
is on page495.

←Thesyntax forInstruc-
tion is on page228.

← The syntax for
Feature_declarationis
on page137.

← “Feature Declara-
tion rule”,  page 162
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This situation — mentioned earlier as a case of the designer notwanting
to consider any implementation — arises in particular out of the use of
Eiffel as a tool forsystem analysis and design.

At designtime, you are concerned with the architecture of a system, not
its implementation; deferred classes provide an ideal way to express the
abstract properties of an architecture, including contracts, without making
decisions about representation or algorithms

At a stage even more remote from implementation concerns, deferred
classes are ananalysistool: to model and analyze a certain category of real
world objects, you may writefully deferred classes that capture the abstract
properties of those objects. Not only are such classes independent of any
implementation; they may in fact be independent of any computerization.
It is indeed possible through deferred classes to describe in Eiffel many
natural or artificial systems, whether or not they involve computers and
software, as long as their structure and semantics are well understood.

Object-oriented systems analysismay be defined as the discipline of
describing systems of any kind through collections of fully deferred
classes, connected by client and heir relations (capturing system structure)
and characterized by preconditions, postconditions and invariants
(capturing system semantics). Although a detailed presentation of these
topics falls beyond the goal of this book, the following class sketch should
enable you to form a general idea of O-O system analysis.

Extracted from the hypothetical description of a chemical plant, it
illustrates the gist of the method, in particular its use of contracts to
characterize the known abstract properties of a set of objects. As noted,
such a specification is independent from any computer implementation —
although it will of course serve as an ideal basis for the software design and
implementation process if computerization does occur.

deferred class TANKfeature
fill

-- Fill tank with liquid
require

in_valve.open
out_valve.closed

deferred
ensure

in_valve.closed
out_valve.closed
is_full

end

"Fully deferred class”
means that all the
class’s features are
deferred. In general, a
classisdeferredassoon
as it has one deferred
feature, even if some of
its other features are
effective.
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10.14 EFFECTING A DEFERRED FEATURE

Unless you are using Eiffel just as a modeling language, and do not plan to
build software for the system that you first described using deferred
classes, you will eventually give these classes proper descendants that
effect (redeclare as effective) the features they inherit in deferred form.

Any classC that inherits a deferred feature from one of its parents may
provide a declaration making the feature effective inC. (This is a
possibility, not an obligation; if the designer ofC elects to leave some or all
of the inherited features deferred,C itself will still be a deferred class.)

… Other deferred features, such as:
empty, is_full, is_empty, in_valve, out_valve
gauge, maximum, …

invariant
is_full = ((0.97 *  maximum<= gauge) and

(gauge<= 1.03 *  maximum))
… Other invariant clauses…

end
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Effecting a feature is similar to redefining an inherited feature. Here you
will not list the feature in aRedefineclause since it was not “defined” in
the first place.

As an example of effecting, one of the many proper descendants of
TREE that effect child_put above is TWO_WAY_TREE, where the
redeclaration, describing the routine’s implementation for this particular
representation, looks like this:

Note the new form of the precondition and postcondition clauses. The
precondition of the effective version is the boolean “or” of the original
(deferred) routine’s precondition and of the assertion given in therequire
elseclause; the new postcondition is the boolean “and” of the original
postcondition and of the assertion given in theensure thenclause. This is
part of the general Redeclaration rule, as givenbelow.

For an effecting, as with the redeclaration ofput_childhere, you will
not list the feature in aRedefine clause.

10.15 PARTIALLY DEFERRED CLASSES AND PROGRAMMED ITERATION

As defined above, a class is deferred as soon as it has at least one deferred
feature. But nothing requires it to beall deferred: it may contain a
combination of deferred and effective features.

child_put(v: like item)
-- Makev the value of the node at active child position;
-- if current node is leaf, create active child with valuev.

require else
is_leaf_or_not_off: (not is_leaf) implies (not child_off)

local
node: like parent

do
if  is_leafthen

createnode.make(v)
put_child(node)
child_start

else
child.put (v)

end
ensure then

set: child_item= v
end

→ The“Redeclaration
rule”, page313, states
what exactly must
appear in theRedefine
clause.

←Thedeferredversion
of child_putwas on
page273.

→ “REDECLARA-
TION AND ASSER-
TIONS”,  10.17, page
283; “Redeclaration
rule”,  page 313.
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This yields one of the most powerful techniques of Eiffel development:
producing partially deferred classes which capture what you know for sure
about the behaviors and data structures characterizing a certain application
area, while leaving open what you do not yet know and what is open to
individual variation. You will describe the known aspects through effective
features, the variable ones through deferred routines. In particular, an
effective routine, covering a known general behavior, may call one or more
deferred features, which stand for the variable components of that behavior.

A typical application of this technique appears in many user-interface
building systems, where the application software is under the control of an
outside loop, sometimes called anevent loop, which controls the overall
scheduling of individual operations: detecting input events, processing
these events, updating the screen etc. The event loop is the same for all
applications, but each application will define its own version of the
individual operations. To implement this scheme elegantly, you may write
a deferred class covering the properties of all applications of a certain type,
with an effective routine that serves as event loop and calls deferred
routines representing the individual operations. Each specific application
will then effect these routines, according to its own needs, in a proper
descendant of the deferred class.

This scheme is an attractive alternative to the “call-back” mechanisms
present in lower-level programming languages.

→ On call-back mech-
anisms see also31.8,
page 833, indicating
how to enable an exist-
ing call-back mecha-
nism, implemented in
another language, to
call Eiffel routines.
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Another important application of the same idea is illustrated by the
iteration classes of EiffelBase. These classes provide various iteration
mechanisms on arbitrary structures: linear iteration (forward only), two-
way iteration, tree iteration (preorder, in order, postorder). For example,
classLINEAR[G] has iteration procedures such as

In this procedure,action and test are agents: objects representing
operations to be applied. They both take an argument of typeG,
representing a list item;action is a procedure that processes such an item,
testa boolean-valued function (predicate) that determines whether a certain
property is true of the item. A typical call, usingyour_integer_listof type
LIST [INTEGER] — where EiffelBase’sLIST is indeed a descendant of
LINEAR —is:

using two agent arguments, one built from procedureprint as applicable to
classINTEGERand the other from a functionis_positiveassumed to be
available in the current class to determine whether an integer is positive.
This call will print the initial elements of the list, if any, up to and excluding
the first positive one.

Along with until_do, traversal classes such asLINEAR and their
descendants provide other iterators:do_until, do_all, while_do, do_while,
do_if, exists, for_all.

until_do(action: PROCEDURE[ANY, G];
test: PREDICATE[ANY, G])
-- Starting at beginning of structure, applyaction to
-- every item up to but excluding first satisfyingtest.

do
from

start
until

afteror else test.item([item])
loop

action.call ([item])
forth

end
ensure

found_if_not_after: not after implies test.item([item])
end

your_list.until_do(~ { INTEGER} .print, ~ is_positive)

The actual implementa-
tion in the library class
is slightly different as it
takes advantage of
other iteration proce-
dures.

→ Chapter27 dis-
cusses in detail the
notion of agent and its
application to iteration.
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LINEAR is a very general deferred class, requiring its effective
descendants to provide features representing basic traversing steps:start to
start traversal,forth to advance by one position,item to yield the item at
cursor position,after to find out if the traversal has passed the last item. All
the classes of EiffelBase and other libraries that describe traversable data
structures such as chains, lists and many others are its descendants.

Effective procedures such asdo_until define traversal patterns.
Deferred features such asstartanditemdescribe the ingredients to be used
in any particular application of these patterns.

To provide an actual iteration mechanism over a certain concrete
structure — such asLINKED_LISTor CIRCULAR_LIST— it suffices to
inherit from LINEARor another of the traveral classes, and to effect the
deferred features to describe the specific machinery of iteration processing
on the chosen structure: how to start an iteration, move on to the next
element, access the current element, and determine end of traversal, based
on the specific implementation retained.

10.16 REDECLARATION AND TYPING

The two redeclaration mechanisms studied so far in this chapter,
redefinition and effecting, share many properties; both are ways to refine
the original declaration of an inherited feature, and both are subject to the
same constraints.

Two important properties apply in both cases:

• The type constraint, which we will now explore informally.

• The rule on semantics of updated assertions, studied in the next section.

Effecting the
details of
iteration

∗

LINKED_
LIST [G]

start *
forth * after *

item *

start+

forth + after+
item+

until_do+, do_all+, …

LINEAR[G]
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The formal version of these combined properties is the Redeclaration rule,
given in full later.

First, the type constraints. Letf be a precursor (parent’s version) of an
inherited feature. Assume that the signature off (in the parent) is

Recall that the first part, here[A, B], lists the arguments types for a routine
(it is empty for an attribute), and that the second part, hereC, lists the result
type for an attribute or a function (it is empty for a procedure).

Then the Redeclaration rule will state that if you redeclaref into a new
feature, the new signature must conform to the precursor’s signature.

Conformance, a key concept of the type system, is discussed in detail in
a later chapter, but the basic idea is straightforward: a type conforms to
another if its base class is a descendant of the other’s; a signature conforms
to another if it has the same number of arguments and results and every
type in the first signature conforms to its counterpart in the other. For
example, the signature.

will conform to the above if typeX conforms toA, Y to B andZ to C.

This rule means in particular that a redeclaration may not change the
number of arguments and results, and may only replace types of arguments
or results by conformant types. You can obtain the effect of changing the
number of arguments and results by usingtuples.

The Redeclaration rule also prohibits the redeclaration of an attribute
into a function. It is permitted, however, to redeclare a function into an
attribute; in this case the preceding constraint implies that the precursor
function must have been without arguments (otherwise the new signature
could not conform). The attribute used for the redeclaration may be
variable or constant.

[A, B], [C]

[X , Y], [Z]

→ “Redeclaration
rule”,  page 313.

← “THE SIGNATURE
OF A FEATURE”,
5.13, page 148.

→ See chapter14 on
conformance, particu-
larly “EXPRESSION
AND SIGNATURE
CONFORMANCE”,
14.4, page 386.

→ Chapter13.
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Redeclaring a function into an attribute is a useful and common
practice. Here is a typical case. Featurecount, present in most classes of
EiffelBase, gives the number of elements of a structure. Classes high in the
inheritance graph, such asLIST, the deferred class describing lists
independently of any representation choice, declarecountas a function,
which traverses a structure to count its elements. The implementation of
effective descendants such asLINKED_LISTkeeps a record of a list’s
element count in the list header; these descendants accordingly redefine
count into an attribute.

This is typical of why you may want to redefine a function into an attribute.
A class B (LIST in this example) has a functionf that computes some
information about the corresponding objects (in the example, the number of
items in a list). You devise a new implementation, represented by a descendant
Cof B, that keeps the information up to date in a field of the object, represented
by an attribute ofC. (In the example,C is LINKED_LIST, which keeps a
record of the number of items in the list header.) In most object-oriented
languages, you would have to define this attribute as a new feature of the class,
and redefinef into a function that returns its value. But there is no need for
two separate features, since they represent the same information: in Eiffel,C
will simply redefinef into an attribute.

This is all in line with the Uniform Reference principle, which states
that attributes and functions without arguments should be indistinguishable
from the outside, as they are just two alternative ways to provide a query,
differing in implementation technique, not relevance to clients.

In implementing such a scheme,C must ensure that the value of the
query will always be up to date when clients access it; this means that any
procedure whose execution may have an effect on the query’s value must
be redefined inC to update the attribute. (In our example,LINKED_LIST
must redefine all the procedures that insert or remove items, to make sure
they increment or decrementcount.) To make sure that you don’t forget any

Redefining a
function into
an attribute

LIST [G]

LINKED_
LIST [G]

count∗
-- Default implementation:
-- traverse list and count items.

count++
4

-- Redefined as attribute: list
-- keeps track of number of items.
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such redefinition, take a look at procedure postconditions: in well-written
classes, the postcondition of any procedure should indicate whether the
procedure has any effect on any particular query. For example the
postcondition ofremove, which deletes an item from a list, will have a
clause of the formcount= old count– 1. This signals that together with any
redefinition ofcountinto an attribute there must be a redefinition ofremove
to include the instructioncount:= count+ 1 or equivalent.

Sometimes theB version off is deferred; this is the case in the above
example if instead ofLISTwe consider its ancestorSEQUENTIAL, where
count is deferred. (Deferred features are syntactically treated as routines,
although if they have no arguments they are just features for which we have
refused to choose yet between attribute and routine implementations.)

Why then (in spite of the Uniform Reference principle) does the type
constraint prohibit the reverse form of redefinition – changing an attribute
into a function? One of the reasons is that we would be unable, were this
permitted, to make sense of certain routines inherited from parents.
Assume classB with features

Then if C, an heir ofB, were allowed to redefinea into a function, but did
not redefineset_a, there would be no way to executeset_aapplied to
instances ofC, since one may not assign to a function. For the same reason,
it is not permitted to redefine a variable attribute into a constant attribute.

10.17 REDECLARATION AND ASSERTIONS

The other fundamental property of redeclaration governs thePrecondition
and Postconditionclauses of a redeclared routine. Such assertions, if
present, may not be ofthe basic forms using just require and ensure;
instead they must userequire elseandensure then. Consider a routine
redeclaration. If it contains new assertion clauses, they must be of the form

expressing the new assertions as a variation on the precursors’ assertions.

a: INTEGER;
set_ais do a := 0 end

-- a is an attribute
-- set_a assigns toa

require else alternative_precondition
ensure then extra_postcondition

← See chapter9about
Precondition andPost-
condition clauses and
their semantics in the
absenceof redeclaration.
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What kind of variation? Consider a routine redeclaration and letpre1,
… pren be the precursors’ preconditions andpost1, postn be the precursors’
postconditions. (Remember that in most practical cases there is only one
precursor, so thatn is 1; only with a join of deferred features may there be
two or more precursors.) Assume that new assertion clauses are present, of
the above form. Then the redeclared routine will be considered to have the
precondition and postcondition.

In other words, the precondition is or-ed with the original preconditions,
and the postcondition is and-ed with the original postconditions. For the
precondition, the use of operatoror elserather than plainor guarantees that
the assertion is defined, with value true, whenever one of the operands has
value true, even if a subsequent one is not defined; similarly,and then for
postconditions guarantees that any false operand makes the whole assertion
false even if a subsequent one is not defined.

If the assertion clauses are missing in a redeclaration, the convention is
that the redeclared routine is considered to haveFalse as
alternative_preconditionfor an absentPreconditionpart and True as
extra_postconditionfor an absentPostcondition. Because of the rules of
boolean algebra, this means keeping the corresponding precursor
assertions. (Or-ing a boolean value withfalse, or and-ing it withtrue, does
not change the condition.)

The use ofrequire elseandensure thenin a redeclared routine reflects
an important part of the Design by Contract method underlying Eiffel.
Redeclaring a routine means subcontracting to a descendant the job which
clients originally entrusted to the precursor. A good subcontractor will do
as well as better for clients as agreed in the original contract (involving the
precursor). This means:

• Keeping or weakening the precondition, so as not to impose any new
requirements on the original clients.

• Keeping or strengthening the postcondition, so as to return a result that
is as good as what was originally promised to the clients.

The or-ing and and-ing automatically guarantee these rules, sincep or elseq
is always weaker than or equal top, andp and thenq is always stronger than
or equal top.

Examples of strengthening the postcondition routine are very common.
In fact, almost any redefinition of a routine’s implementation, or effecting
of a deferred routine, will do something more — such as updating new
attributes —, leading to a postcondition stronger than the original. The
added properties should appear in theensure then clause.

alternative_preconditionor else pre1 or else… or else pren
extra_postcondition and then post1 and then… and then postn

With sharing in
repeated inheritance,
theremayalsobetwoor
more precursors, but
this is not a case of
redeclaration. See the
definition of“ inherited
features”  on page470.

→orelseandandthen
are the“semi-strict”
versions of plainor and
and. See“SEMIS-
TRICT BOOLEAN
OPERATORS”,  28.6,
page 774.

See"Object-Oriented
SoftwareConstruction"
and"Design by Con-
tract" (references in
appendixI) and the
notion of subspecifica-
tion in , page 236.

A condition is stronger
thanorequal toanother
if it implies it, in the
sense of boolean impli-
cation. “Weaker thanor
equal” is the inverse
relation.
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As an example of weakening the precondition, assume the inheritance
hierarchy illustrated below. Procedurewrite, in DEVICE, has two clauses
in its Precondition: the device must be open, and it must not be protected.
Examples of devices are output devices, interactive devices and files.

Assume that printers, a kind of device, may not be write-protected. (The
invariant of classPRINTERshould include the clausenot protected.) The
precondition ofwrite for PRINTER may then be weakened to justopen.

To achieve this, just include in the redefined version ofwrite in
PRINTER thePrecondition

The above semantic rule gives, as actual precondition:

which has the same value as justopen.

If a declaration introduces an immediate feature — in other words, it’s
not a redeclaration — therequire else and ensure then forms are still
permitted, having the same effect as justrequire andensure.

require else open

openor else(not protectedand then open)

Precondition
weakeningDEVICE

FILEOUTPUT INTERACTIVE

PRINTER TERMINAL

write+

*
open: BOOLEAN
write

 not protected
openprotected: BOOLEAN

∗

∗

∗

∗

∗

∗
 not protected

← “SYNONYMSAND
MULTIPLE DECLA-
RATION”,  5.18, page
159
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Since the longer forms are normally intended for redeclarations, you
might expect a validity constraint which makes them invalid for an
immediate feature. But there is no such constraint, among other reasons
because this tolerance makes it easy to declaresynonymfeaturesof which
one is immediate and the other inherited. A declaration may be of the form

where inherited is a feature inherited from a parent, for which this
declaration will be a redefinition or effecting, butimmediateis a new
feature. Therequire elseandensure thenform are compulsory because of
inherited. But they also work forimmediate, being understood asrequire
andensure.

Remember that there is no tolerance in the reverse direction: for a
redeclaration, only therequire elseandensure thenforms are permitted.

=---- UPDATE --- Assertion declaration, as we have now studied it,
complements another property involving the combination of assertions and
inheritance: thedefinition of “invariant of a class” as containing not only
the local Invariant clause, but also any others inherited from parents.
Together with the rules just seen on assertions of redeclared routines, this
ensures that inheritance and redeclaration maintain the fundamental
semantic properties of a class and its features, as expressed by the
assertions.

We need to consider one more case in the combination of redeclaration
and assertions. What happens, when you redefine a function without
arguments into an attribute, to the function’s assertions if any? Since an
attribute has no precondition, we may consider that the precondition is
changed toTrue; this is consistent with the preceding discussion sinceTrue
is weaker than any other assertion. For a postcondition, the situation is
different: the only way to express that the attribute’s possible values will

inherited, immediate
require else

pre
do

…
ensure then

post
end
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satisfy the corresponding condition (with the attribute’s name substituted
for Result) is to make it part of the invariant of the class. The definition of
class invariants took care of this by stating that the redefinition of a
function into an attribute automatically adds the adapted postcondition to
the invariant of the redefining class, replacing any occurrence ofCurrent
by the attribute name. So if a function was of the form

and a descendantC of its class of origin redefineslast_valueinto an
attribute, the invariant ofC will automatically include the clause

--- ADD DISCUSSION OF EFFECT OF REDECLARATION ON
“ONLY” POSTCONDITION CLAUSES

10.18 RULES ON INHERITED ASSERTIONS

-------

last_value: INTEGER
do

…
ensure

Result>= 0
end

last_value= 0

Unfolded form of an assertion
Theunfolded form of an assertiona of localunfoldedform ua in
a classC is the followingBoolean_expression:
1 • If a is theinvariantof C andC hasn parents for somen ≥ 1:

up1 and … and upn and then ua, where up1, … upn are
(recursively) the unfolded forms of the invariants of these
parents, after application of any feature renaming specified by
C’s correspondingParent clauses.

2 • If a is thepreconditionof aredeclared featuref: thecombined
precondition fora.

3 • If a is thepostconditionof aredeclared featuref: thecombined
postcondition fora.

4 • In all other cases:ua.
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The unfolded form of an assertion is the form that will define its semantics.
It takes into account not only the assertion as written in the class, but also
any applicable property inherited from the parent. The “local unfolded
form” is the expression deduced from the assertion in the class itself; for an
invariant we “and then” it with the “and” of the parents, and for
preconditions and postconditions we use “combined forms”, defined next,
to integrate the effect ofrequire elseandensure thenclauses, to ensure
that things will still work as expected in the context of polymorphism and
dynamic binding.

The earlier definitions enable us to talk about the “precondition of” and
“postcondition “of” a feature and the “invariant of” even in the absence of
explicit clauses, by usingTrue in such cases. This explains in particular
why case1 can mention “the invariants of” the parents ofC.

Assertion extensions
For a featuref of a classC:
• If C redeclaresf with a non-emptyPrecondition(starting with

require else), the precondition extension of f in C is the
correspondingAssertion.

• If C redeclaresf with a non-emptyPostcondition(starting with
ensure then), the postcondition extensionof f in C is the
correspondingAssertion.

In all other cases, the precondition extension off in C is Falseand
the postcondition extension off in C is True.

These are the forms that routines can use to override inherited
specifications while remaining compatible with the original contracts for
polymorphism and dynamic binding.require else makes it possible to
weaken a precondition,ensure thento strengthen a postcondition, under
the exact interpretation explained next.
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Covariance-aware form of an assertion extension
Thecovariance-aware form of aninherited assertiona is:
1 • If the enclosing routine has one or more argumentsx1, … xn

redefinedcovariantly to typesU1, … Un: the assertion
({ x1: U1} y1 and … and { xn: Un} yn ) and then a’

where y1, … yn are fresh names anda’ is the result of
substitutingyi for each correspondingxi in a.

2 • Otherwise:a.

A covariant redefinition may make some of the new clauses inapplicable to
actual arguments of the old type (leading to “catcalls”). The covariance-
aware form avoids this by ignoring the clauses that are not applicable. The
rule on covariant redefinition avoid any bad consequences.

Combined precondition, postcondition
Consider a featuref redeclared in a classC. Let f1, … fn (n ≥ 1)
be its versions inparents,pre1, … pren the covariance-aware
forms of (recursively) the combined preconditions of these
versions, andpost1, … postn the covariance-aware forms of
(recursively) their combined postconditions.
Let pre be thepreconditionextension off if defined and not
empty, otherwiseFalse.
Let postbe thepostconditionextension off if defined and not
empty, otherwiseTrue.
Thecombined preconditionof f is theAssertion

(pre1 or… or pren) or elsepre
Thecombined postcondition of f is theAssertion

(old pre1 impliespost1)
and… and
(old pren impliespostn)
and thenpost
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10.19 UNDEFINING A FEATURE

You may redefine an inherited feature; you may also, if it was effective,
undefine it.

As the Redeclaration rulewill expressprecisely, you may not use
redeclaration to turn an effective feature into a deferred one, discarding its
inherited implementation. In other words, redeclaration cannot decrease
the “effectiveness level” of a feature: it can take the status of an inherited
feature from deferred to deferred (redefinition), effective to effective
(redefinition), or deferred to effective (effecting), but never from effective
to deferred.

In some cases, however, this is desirable; when inheriting a feature, you
may wish to give it back its virginity, by pretending you inherited it as
deferred, even though its precursor (the parent’s version) is in fact effective.

Undefinition serves this goal. To undefine one or more effective
features inherited from a parent, just list them in theUndefinesubclause of
the correspondingParent part, as in

In the optional subclauses of aFeature_adaptation, Undefinecomes after
Rename andNew_exports, and beforeRedefine.

The informal rule is “perform anor of the preconditions and anandof the
postconditions”. This indeed the definition for “combined precondition”.
For “combined postconditions” the informal rule is sufficient in most cases,
but occasionally it may be too strong because it requires the old
postconditions even in cases that donot satisfy the old preconditions, and
hence only need the new postcondition. The combined postcondition as
defined reflects this property.

class C inherit
B

rename
…

undefine
f, g, h

redefine
…

… Other subclauses ofFeature_adaptation…
end

… Other parents and rest of class…

→ Clause5 of the
Redeclaration rule,
page313.

Toremember thisorder,
note that all subclauses
exceptRenamerefer to
features by their final
names, soRename
should come first.
Since, as seen next, an
undefined feature may
then be redefined,
Undefine must come
beforeRedefine.
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Here f, g, h must be features that are effective inB. The effect of the
aboveUndefinesubclause is thatC obtains these features fromB as if they
had been deferred rather than effective in that class; the process does not
change the features’ signature and specification.

It is possible to apply both undefinition and redefinition to the same
inherited feature; this is useful if you want to make an inherited feature
deferred and also change its signature or specification, as in

where theB version off had an argument of typeT rather thanU, assuming
(as required by the Redeclaration rule) thatU conforms toT.

This leads to a precise definition of the inherited status of a feature:

10.20 REDEFINITION AND EFFECTING

We can now define precisely the two variants of redeclaration:

class E inherit
B

undefine
f

redefine
f

end
feature

f (x: U) is deferred end
end

Inherited as effective, inherited as deferred
An inheritedfeature isinherited as effectiveif it has at least one
precursor that is aneffectivefeature, and the correspondingParent
part does notundefine it.
Otherwise the feature isinherited as deferred.

Effect, effecting
A classeffectsan inherited featuref if and only if it inheritsf as
deferred and contains adeclarationfor f that defines aneffective
feature.

Effecting a feature (making iteffective, hence the terminology) consists of
providing an implementation for a feature that was inherited as deferred.
No particular clause (such asredefine) will appear in theInheritancepart:
the new implementation will without ado subsume the deferred form
inherited from the parent.
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10.21 THE JOIN MECHANISM

The notion of deferred feature yields a useful technique:feature join,
allowing a class to merge several inherited features into just one.

The join mechanism supports an important aspect of object-oriented
architecture design: the fusion of abstractions. The abstractions that need
to be combined will come from different hierarchies of deferred classes.

The EiffelBase library, based on combinations of three such hierarchies,
provides typical opportunities for such fusion. The hierarchies correspond
to complementary classification criteria for general-purpose “container”
data structures:

• Storage, characterizing the representation properties of a container
structure (fixed size, variable size but bounded, unbounded but finite,
potentially infinite).

• Access, characterizing the methods through which clients store and
retrieve elements (in last-in-first-out for stacks, through a key for hash
tables etc.).

• Traversal, characterizing ways of exploring the container exhaustively
(forward, backward, postorder, preorder and others.).

You can obtain a particular type of effective container by multiple
inheritance from classes of these three categories. For example, a “fixed-
size list” has fixed-size storage, access by index and other techniques, and
forward traversal.

Redefine, redefinition
A classredefinesaninheritedfeaturef if and only if it contains
adeclarationfor f that is not aneffecting off.

Such a declaration is then known as aredefinition of f

Redefining a feature consists of providing a new implementation,
specification or both. The applicableParentclause or clauses must specify
redefinef (with f’s original name if the new class renamesf.)

Redefinition must keep the inherited status, deferred or effective, off:

• It cannot turn a deferred feature into an effective one, as this would fall
be an effecting.

• It may not turn an effective feature into a deferred one, as there is
another mechanism specifically for this purpose,undefinition. The
Redeclaration rule enforces this property.

As defined earlier, the two cases, effecting and redefinition, are together
calledredeclaration.

← Two feature names
are“thesame” if theyare
identicalordifferonlyby
letter case. See“Same
feature name, same
operator, same alias”,
page 153.

A container data struc-
ture, such as a queue or
a hash table, serves to
store and retrieve
objects. Some of the
most important kinds of
container data struc-
ture are covered by the
classes of EiffelBase.
See"Reusable Soft-
ware" for details.
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In this process of combining abstractions, it will often be useful to
merge inherited deferred routines if they correspond to the same notion in
the descendant. For example, the deferred EiffelBase classCHAIN
(describing sequential structures such as lists) inherits from two deferred
classes that both have anitemfunction returning the item at cursor position:

• ACTIVE, from the Access hierarchy, describe structures with a client-
controlled “cursor” position. Procedures are available to move the
cursor to various elements. In this class,item denotes the value of the
element at cursor position.

• BIDIRECTIONAL, from the Traversal hierarchy, describe structures that
are sequentially traversable both forward and backward. In this class,item
denotes the value of the current element at each step of a traversal operation.

Class CHAIN combines these two concepts and inherits bothitem
functions. Normally, this would be considered anameclash, which we
would have to remove through renaming. But here the clash is harmless, in
fact desired, since for aCHAIN the two concepts are compatible. If the
features were effective, we would have to choose between conflicting
implementations; but they are both deferred, so we have no such problem.
We can simply merge — “join” — them into one.

It is valid, then, to writeCHAIN as heir to bothBIDIRECTIONALand
ACTIVE even without renaming the deferreditem routines, which will
yield a single deferred routine inCHAIN:

Here is another interesting application. Occasionally you will need to effect
an inherited procedure to do nothing at all. For example a descendant of a
general-purpose iteration class, as studied earlier in this chapter, might not
need a particular initialization operation, provided in the ancestor by a
procedureprepare. You can manually effectprepareinto a procedure that
does nothing. But it is simpler to use a join with the proceduredo_nothing
from classANY, whose implementation faithfully respects its name:

deferred class CHAIN [T] inherit
BIDIRECTIONAL[T]

-- BIDIRECTIONAL has a deferred routineitem
…

ACTIVE[T]
-- ACTIVE has a deferred routineitem

…
… Other parents and rest of class text omitted…

class SIMPLE_ITERATORinherit
GENERAL_ITERATOR

rename prepareasdo_nothingend
… Other parents and rest of class text omitted…

→“NAMECLASHES”,
10.23, page 297.
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That’s all you have to do: renamingpreparecauses a join withdo_nothing
and the associated effecting.

To be joined, inherited features must have the same final name in the
class that performs the join. In the above case both precursors were called
item in the parents, so no particular action was required from the designer
of classCHAIN with respect to their names.In other cases you might want
to join two deferred features that have different names, sayf andg, in the
respective parents. You should then use renaming to make sure that the
features are inherited under the same final name:

If C inherits and joins two or more deferred features, the net result forC is
as if it had inherited a single deferred feature. In the absence of further action
from C, that feature remains deferred.C may of course provide an effective
declaration, killing several abstract birds with one concrete stone by using
a single redeclaration to effect several featuresinherited as deferred.

More generally,C may treat the result of the join as it would any other
inherited deferred feature.Cmay in particular redefine the feature to change
its signature while leaving it deferred. In that caseC must list all the
inherited features in theRedefinesubclauses of their respectiveParentparts.

The join mechanism imposes easily justifiable conditions on features to
be joined in this way: they must be deferred (after possible undefinition, as
detailed in the next section), inherited under the same name (after possible
renaming), and equipped with the same signature (after possible
redeclaration). The formal rule expressing these requirements is the Join
rule, describedlater in this chapter.

10.22 MERGING EFFECTIVE FEATURES

As introduced so far, the join mechanism applies only to deferred routines.
The reason is obvious: an attempt by a classD to join two effective features
inherited from parents ofD may yield an ambiguous result in the absence
of a clear universal criterion for choosing one of the two inherited
implementations over the other.

-- C may be deferred or not (see below)
… class C inherit

A
rename

f as new_name
…
end

B
rename

g as new_name
…
end

← “Inherited as
deferred” was defined
(page291) to mean:
either coming from
deferred precursors, or
explicitly undefined.

→ “Join rule”,  page
319.
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What happens, however, if when you designD you do know which of
the versions you want to override the other inD? Then the merging should
not raise any particular problem.

Theundefinitionmechanism makes this possible. Here is an illustration
of the scheme, used in this case to join three features:

We want to merge the three inherited features by renaming all of them into
a single name,f. But the originals were all effective, yielding three
implementations of which we may retain only one inD. To discard theA
and C implementations,D undefines them, leaving theB version as the
undisputed victor.

In the simplest case, there are only two competing features in parentsB
andC, and they already had the same namef in these parents. If you want
theB version to take over inD all you need is to undefine theC version:

Although f’s precursor inB was effective, the undefinition causesf to be
“inherited as deferred” fromC. TheB version provides an effecting.

An application of this technique will appear inrepeatedinheritance when a
class inherits conflicting versions of the same feature, and the class designer
wants to retain only one of these versions.

class D inherit
B

-- B has an effective featuref
C

undefinef end
feature

…
end

← “UNDEFINING A
FEATURE”,  10.19,
page 290.

g

f

renameg asf
undefinef

rename h asf renamei asf
undefinef

+

+

A B C

D

h+ i +
Merging and
overriding

→ See the beginning of
16.5, page 442.
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The general rule is the natural one (although we must wait until a full

definition of repeated inheritance to express it rigorously): inheriting two

or more features under the same name may only be invalid — a case of

nameclash— if more than one is inherited as effective. If, after possible

undefinition, they are all deferred, or all deferred except for one effective

version, then we have a valid case of join, since there is no conflict of

implementations: we have either no implementation or one. In the latter

case the effective version will serve as common implementation for all the

features inherited as deferred.

The examples have illustrated one way to reconcile conflicting effective

versions from parents: undefine all but one of them. This is like a

competition where one of the rivals win. There is another way — as in

business or in war — to resolve a competition: a new entrant overcomes

everyone else. The technique here will be to useredefinition rather than

undefinition: redefine all the conflicting inherited versions into a new one.

The last example becomes:

As you may have noted, it actually doesn’t make any difference here if we

replace either or even both of theredefine keywords byundefine. If we

undefine one of the features, the other takes over, but gets redefined. If we

undefine both, they are inherited as deferred, and hence joined; but then the

declaration off effects both.

class D inherit
B

redefinef end
C

redefinef end
feature

f
do

… “Redefined algorithm”…
end

…
end

→ The next section dis-
cusses name clashes.
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10.23 NAME CLASHES

Now that we have seen the join mechanism we are in a position to define
precisely the notion ofname clashof features under multiple inheritance,
and see what kinds of name clashes are permitted. From the previous
section we know the rough form of the rule: a name clash in a classD
between two or more inherited features will be OK, leading to a join of all
of them, if they all have compatible signatures (so that we may indeed join
them into a common version) and, taking any undefinitions into account:

• Either the resulting features, except possibly one, are all deferred.

• Or if this is not the case, meaning that two or more versions remain
effective inD, thenD redefines all of them into a common version, as in
the example class text above.

The discussion of repeated inheritance will also add a permissible case: the
“false alarm” resulting from features that come from different parents but
are really thesame featureinherited from a common ancestor. In the
absence of conflicting redefinitions this can cause no trouble.

Let’s see the precise form of the rule. The general guideline is theno
overloading principle, dictated (although it may at first sound like an
advertisement for a mutual fund) by criteria of clarity and simplicity.

Overloading — the possibility for a single name to denote several features within
the context of a given class — defeats the principles of object technology, running
into conflict with the more powerful forms ofdynamicoverloading provided by
polymorphismanddynamicbinding. Introducing in-classoverloading isprobably
the biggest mistake that one can make in the design of an O-O language.

In the absence of inheritance, the no-overloading principle is easy to
enforce: all the features declared in a class must have different names. With
single inheritance, we add the rule that no inherited feature may have the
same final name as a feature of the class; renaming provides an easy way
to correct any such potential conflict. With multiple inheritance, this last
rule must still apply between the class and each of its parents, but in
addition we have to take into account the case of conflicts between names
of features in the parents themselves. This is what we call a name clash:

Name clash
A class has aname clashif it inherits two or more features from
differentparents under the samefinal name.
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This property is not expressed as a separate validity constraint since it follows

from the Join rule given at the end of this chapter, and the complementary

mechanisms discussed in the repeated inheritance chapter.

In the first permissible case, the clash involves only one implementation, or

none; if the signatures are compatible, we may join all the features into a single

one, with no particular difficulty (and without departing from the no-

overloading principle). The second case is similar: joining through redefinition.

In the third case, we don’t have a real clash at all, only the appearance

of one, as if being scared in an empty house by a moving figure that turns

out to be our own reflection in the mirror. This case arises out of repeated

inheritance (as studied in alaterchapter) in the situation represented on

the figure:

Since final names include the identifier part only, aliases if any play no role
in this definition.

Name clashes would usually render the class invalid. Only three cases
may — as detailed by the validity rules — make a name clash permissible:

• At most one of the clashing features is effective.

• The class redefines all the clashing features into a common version.

• The clashing features are really the same feature, inherited without
redeclaration from a common ancestor.

→ Chapter16explores
repeated inheritance.

f A

CB

D

f f
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D seems to inherit two featuresf from both its parentsB andC, but they are
not really different features, simply the same feature inherited from a
common ancestorA, and not redeclared anywhere in the process. As we
may expect, and the rules of repeated inheritance will state precisely,D
inherits a single featuref, so this case causes no difficulty.Outside of these
three cases, however, a name clash is always prohibited. In the typical
situation

where bothA andB have a feature with the same namefname, classC will
be invalid. It’s quite easy to get rid of the name clash:

• Often you will want the features to remain distinct inC, because they
indeed correspond to different operations; their sharing of a common
name is just an unfortunate coincidence, a kind of pun. Then you will
simply rename one, or both.

• Sometimes, however, it’s not just a pun: inCyou really want the clashing
features to be merged into one. Then, if the signatures are compatible,
you can rely on the join mechanism by undefining either one; the other’s
implementation will take over. You may also undefine both, leavingCor
one of its own proper descendants in charge of effecting the joined result.

10.24 ADDING TO INHERITED BEHAVIOR: PRECURSOR

The last mechanism of this chapter,Precursor, simplifies writing a routine’s
redefinition when the new implementation relies on the original one.

The need for a precursor mechanism

In studying redefinition we have seen that you can override aroutine’s
inherited implementation (as well as its signature and contract). The new
implementation may be completely different from the original one; but
fairly often it just extends it, performing the same actions as the original
plus some others, with a redefinition of the form

class C inherit
A
B

… Rest of class omitted…

your_routine
do

“Something else”

“Yet something else”
end

A name clash
that isn’t really
one.

You may redefine fea-
tures of all kinds, but
thissectiononlyapplies
to routines.

“Whatever the original version did”
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If you need new actions only after the original processing there is no
“Something else”; if only before, there is no“Yet something else”.

A typical example would be the redefinition, in a proper descendant
TAXABLE_INVESTMENTof a classINVESTMENT, of the proceduresell,
where the new version performs what the original version did but must also
compute the tax penalty associated with the sale of a stock.

ThePrecursormechanism provides you, when writing redefinitions of
this kind, with a simple way to include“Whatever the original version did”
in the actions of the new routine body. WithoutPrecursor, you would have
two ways of achieving the intended effect:

• You could simply repeat the original algorithm in the body of the new
version, in lieu of the line that reads“Whatever the original version did”
above. This works but has the usual effects of code duplication: making
the software bigger and less readable (since the reader doesn’t
immediately realize that a certain element is not original but the
verbatim replication of something else); tediousness for the developer;
and, most damaging, the need to remember, if the original changes, that
you must update all duplicates as well, with the risk of forgetting some.
As you will have noted, one of the recurring fetures of the Eiffel method is its
phobia of unnecessary replication. Genericity, inheritance and other reuse
mechanism are all intended to make sure that what needs to be said is said
well, and said once.

• You can also use the replication mechanisms of repeated inheritance,
studied in therelevant chapter, to keep a duplicate of the original
feature, along with the redefined version. This approach avoids the
drawbacks of the preceding technique; it was indeed the recommended
method in early versions of Eiffel, and remains appropriate in some
cases. For most common applications, however, it is overkill, and
Precursor provides a simpler solution.

Precursor basics and examples

That solution is in fact disarmingly easy: in a routine redefinition,
Precursorstands for what was written above as“Whatever the original
version did”. The form of the construct is simply the reserved word
Precursor, followed by a list of actual arguments if any. So you can write
the first example sketch above, for a routine with no arguments, as just

your_routine
do

“Something else”

“Yet something else”
end

→ “KEEPING THE
ORIGINAL VERSION
OF A REDEFINED
FEATURE”,  16.8,
page 451

Precursor
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For a routine with arguments, the redefinition might look like

These examples illustrate how to use thePrecursorreserved word: exactly
like you would use the feature name (new_versionand sell in these
examples) for a new call to the corresponding routine, such as the calls
new_versionandsell (share_count, selling_price). Appearing in the body
of the routine, these calls would be recursive — leading in fact, as written,
to infinite recursion —, but instead of the feature name we usePrecursor
which yields the desired effect, calling the original version.

In the sell example the arguments toPrecursorare the same as the
formal arguments to the procedure,share_countand selling_price,
meaning that you call the precursor with the same arguments that were
passed to you. This is not a general requirement; in other circumstances
you may pass toPrecursor any arguments of the appropriate types.

These two examples use procedures. The mechanism works just as well
with functions:

The result of thePrecursorcall is the result returned by a call to the original
version of the routine, with the given arguments.

The Precursorcontruct is valid only in the case illustrated by these
examples: the body of the redefinition of a routine, in which it denotes the
original implementation in the parent.

sell (share_count: REAL; selling_price: PRICE)
-- Record sale ofshare_count shares atselling_price.

do

compute_tax
end

profit (share_count: REAL; selling_price: PRICE): AMOUNT
-- Profit from sale ofshare_count shares atselling_price.

do
Result:= Precursor(share_count, selling_price)

– tax_penalty(share_count, selling_price)
end

Precursor(share_count, selling_price)
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Outside of this case a class may not refer to ancestor versions of its features
(as provided by the “super” variables of some object-oriented languages,
notably Smalltalk) because this would impair the consistency of the notion of
class. A class is entirely defined by its features; how these features were
arrived at through inheritance is internal information, and the original
versions are not part of the information associated with the class. (They will
often violate the contracts associated with the class, in particular by failing to
maintain its invariant, typically stronger than the ancestors’ invariants.) The
only justification for accessing a parent version is that we may need the old
implementation to define a new one, through thePrecursor construct.

The precursor of a redefined feature isnota feature of the current class. If you
do want to keep both the original and the redefinition as features of the class,
you can, but you have to use a different mechanism: repeated inheritance,as
explained in a later chapter.

Choosing between multiple precursors

In ordinary cases, as illustrated by the examples, a redefined routine has
only one effective precursor. In studying the join of routines, however, we
have seen that it is possible for a routine declaration to be the redefinition
of two or more parent versions (precursors). If you use aPrecursor
construct in such a case you will need to specify which precursor you want,
by listing its name. Instead of justPrecursor(arguments) the syntax in that
case will bePrecursor { PARENT} ( arguments), wherePARENTis the
name of one of the parent classes from which we are redefining the feature.

Theearlier join example illustrates the case of multiple precursors:

In the “Redefined algorithm” a precursor call of the form
Precursor(arguments) is invalid, because it leaves open the obvious
question “Which precursor do you mean: the version fromA, or fromB?”.

class D inherit
B

redefinef end
C

redefinef end
feature

f
do

… “Redefined algorithm”…
end

…
end

→ “KEEPING THE
ORIGINAL VERSION
OF A REDEFINED
FEATURE”,  16.8,
page 451

← Page296.
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The qualified form removes the ambiguity: you should write either one of

You may, in fact, include both of these in the redefinition’s body if you need
to reuse both parents’ original implementations to define the new one.

The form with explicit qualification,Precursor{ PARENT_NAME}, is
valid even in the absence of ambiguity. It is usually preferable to use this
form in all cases since it clarifies the context and helps identify errors if you
change parents. This is part of the style guidelines.

With these observations we have enough to introduce the formal
properties of thePrecursorconstruct. (They will mark the beginning of the
formal part of this chapter; since it will introduce no new construct or
technique, but only provide precise definitions of the concepts seen
informally so far, you may on first reading skip to the next chapter.)

Precursor specification

The syntax of thePrecursorconstruct covers the variants seen in the
preceding examples:

For the validity and semantics, we avoid introducing special rules — which
would repeat many of the properties of calls — by relying on our usual
unfolding language definition technique: we just pretend that we were
clever enough, in the parent class, to keep a duplicate of the original
feature, by relying on asynonym feature:

(arguments)
(arguments)

Precursor
Precursor=∆ Precursor [Parent_qualification] [Actuals]

Parent_qualification=∆ "{" Class_name "}"

Relative unfolded form of aPrecursor

In a classC, consider aPrecursorspecimenp appearing in the
redefinition of a routiner inherited from aparent classB. Its
unfolded form relative to B is anUnqualified_callof the formr’
if p has noActuals, or r’ (args) if p has actual argumentsargs,
wherer’ is a fictitious feature name added, with afrozen mark,
assynonym for r in B.

Precursor{ B}
Precursor{ C}

← The definition of
Parent_qualification,
repeated here for clar-
ity,originally appeared
with Clients on page
208.
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In other words, we will talk about thePrecursorcall as if the declaration of
r in B, instead of just

had been written with a frozen synonym

Therule on multiple declarations implies that this is equivalent to having
declared independent features with an identicalBody. Becauser’ is frozen,
it retains the original semantics ofr, in the context of the new classC; this
is exactly what we want to describe the validity and semantics ofPrecursor.

Here indeed is the validity:

r (a: T; …) … do … Body …end

r,  (a: T; …) … do … Body … end

Precursor rule VDPR

A Precursoris valid if and only if it satisfies the following
conditions:
1 • It appears in theFeature_bodyof a Feature_declarationof a

featuref.

2 • If the Parent_qualificationpart is present, itsClass_nameis
the name of aparent classP of C.

3 • Among the features ofC’s parents, limited to features ofP if
condition 2 applies, exactly one is aneffective feature
redefined byC into f. (The class to which this feature belongs
is called theapplicable parent of thePrecursor.)

4 • Theunfoldedform relative to the applicable parent is, as an
Unqualified_call, argument-valid.

In addition:
5 • It is valid as anInstructionif and only if f is acommand, and

as anExpression if and only iff is aquery.

frozen r’

← “Unfoldedformofa
possiblymultipledecla-
ration”,  page 159.
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Here is a more verbose form of clause3, obtained from a mathematical
specification. LetPAR be the set of classes defined as follows: if the
Parent_qualificationpart is present,PARis the single-element set containing
the class whose name is listed in thatParent_qualification; otherwisePARis
the set of all parents ofC. Let REDEFbe the set of all the effective routines,
from classes belonging toPAR, of whichr is a redefinition. ThenREDEFhas
exactly one element.

This property really belongs to the validity of instructions and expressions,
but having a single clause here saves two full-fledged validity rules in the
respective chapters: “It is valid to use aPrecursoras anInstructionif and only
if its unfolded form is a call to a procedure”, and “It is valid to use aPrecursor
as anExpressionif and only if its unfolded form is a call to a function”.

This constraint also serves, in condition3, as a definition of the “applicable
parent”: the parent from which we reuse the implementation. Condition4
relies on this notion.

Condition1 states that thePrecursorconstruct is only valid in a routine
redefinition. In general the language definition treats functions and
attributes equally (Uniform Accessprinciple), but here an attribute would
not be permissible, even with anAttribute body.

Because of ourinterpretation of a multiple declaration as a set of separate
declarations, this means that ifPrecursorappears in the body of a multiple
declaration it applies separately to every feature being redeclared. This is an
unlikely case, and this rule makes it unlikely to be valid.

Condition2 states that if you include a class name, as inPrecursor{ B} ,
thenB must be the name of one of the parents of the current class. The
following condition makes this qualified form compulsory in case of
potential ambiguity, but even in the absence of ambiguity you may use it to
state the parent explicitly if you think this improves readability.

Condition3 specifies when this explicit parent qualification is required.
This is whenever an ambiguity could arise because the redefinition applies
to more than one effective parent version. The phrasing takes care of all the
cases in which this could happen, for example as a result of a join.

Condition4 simply expresses that we understand thePrecursorspecimen
as a call to a frozen version of the original routine; we must make sure that
such a call would be valid, more precisely “argument-valid”, the
requirement applicable to such anUnqualified_call.

A Precursorwill be used as either anInstructionor anExpression, in the
same way as a call to (respectively) a procedure or a function; indeed
Precursorappears as one of the syntax variants forboth of these constructs.
So in addition to being valid on its own, it must be valid in the appropriate
role. Condition5 takes care of this.

← “SYNONYMS AND
MULTIPLEDECLARA-
TION”,  5.18, page 159.

Pages228 and761.
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The definition of the “relative” unfolded form didn’t necessarily yield a
valid call; in fact it serves, in clause4, to determine validity. If as a result
we know we have a validPrecursor, we can define an unfolded form that is
not relative any more:

The semantics follows immediately:

As usual, semantics is only defined for valid specimens, so it may
legitimately use the “absolute” unfolded form.

10.25 REDEFINITION AND UNDEFINITION RULES

The agenda for the remainder of this chapter is to provide the precise rules
for syntax, validity and semantics of the mechanisms seen so far — all
feature adaptation mechanisms except for those involving repeated
inheritance. As already noted, this will introduce no new techniques, so
you may prefer on first reading to skip the rest of this chapter.

Let us begin with the straightforward syntax and validity ofUndefine
and Redefinesubclauses. It will do no harm to repeat here (again) the
general structure ofInheritance clauses:

The clauses involved in the present discussion areUndefineandRedefine.

Unfolded form of a Precursor

Theunfolded form (absolute) of a validPrecursoris itsunfolded
form relative to itsapplicable parent.

Precursor semantics

The effect of aPrecursor is the effect of itsunfolded form.

Inheritance parts
Inheritance=∆ "inherit Parent_list

Parent_list=∆ "{ Parent ";" … }

Parent=∆ "Class_type [Feature_adaptation]

Feature_adaptation=∆ [Rename]
[New_exports]
[Undefine]
[Redefine]
end

This syntax appeared
first on page171.

← See page183for
Renameand209 for
New_exports.
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Here is the syntax ofRedefine:

The following constraint applies toRedefine subclauses:

In this definition:

• Thefinal name of an inherited feature (clause1) is its name as it results
from possible renaming (theFeature_namepart only, not including any
Alias).

• A feature is“frozen” (clause2) if it has been declared with the keyword
frozen in its class of origin. The purpose of such a declaration is
precisely to forbid any redefinition of the feature in descendants,
guaranteeing that the exact original implementation remains in place.

• A feature is aconstantattribute (clause2) if it is declared with a clause
of the formis v, wherev is Manifest_constant.

• The condition for a redeclaration to be valid (clause4) appearslater in
this chapter; in particular, the new signature must conform to the
original’s, and you may not redeclare an attribute into a function.

• If C provides an effective version of a feature that it inherits as deferred,
this is a case of effecting, and hence of redeclaration, but not of
redefinition; as a consequence, clause4 indicates that the feature must
not appear in theRedefine subclause.

Redefinition
Redefine=∆ redefineFeature_list

Redefine Subclause rule VDRS

A Redefinesubclause appearing in aParentpartfor a classB in a
classC is valid if and only if everyFeature_namefnamethat it
lists (in itsFeature_list) satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.

2 • f was not frozen inB, and was not aconstant attribute.

3 • fname appears only once in theFeature_list.

4 • TheFeaturespart ofC contains oneFeature_declarationthat
is aredeclaration but not aneffecting off.

5 • If that redeclaration specifies adeferredfeature,C inheritsf as
deferred.

← “FEATURES AND
THEIRNAMES”, 6.10,
page 185.

← “FEATURE DEC-
LARATIONS: SYN-
TAX”,  5.10, page 140.

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

→ “REDECLARA-
TIONRULES”, 10.28,
page 312.

→Effectingisdefinedpre-
cisely in the next section.



FEATURE ADAPTATION §10.25308
As to the semantics:

The syntax of anUndefine clause is similar to that of aRedefine:

The constraint is also similar:

--- EXPLAIN LAST CLAUSE ---

and the semantics:

Redefinition semantics

The effect in a classC of redefining a featuref in aParentpartfor
A is that theversion off in C is, rather than its version inA, the
feature described by the applicable declaration inC.

This new version will serve for any use of the feature in the class, its clients,
its proper descendants (barring further redeclarations), and even ancestors
and their clients under dynamic binding.

Undefine clauses
Undefine=∆ undefineFeature_list

Undefine Subclause rule VDUS

An Undefinesubclause appearing in aParentpartfor a classB in
a classC is valid if and only if everyFeature_namefnamethat it
lists (in itsFeature_list) satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.

2 • f was notfrozen inB, and was not anattribute.

3 • f waseffective inB.

4 • fname appears only once in theFeature_list.

5 • Any redeclaration off in C specifies adeferred feature.

Undefinition semantics

The effect in a classC of undefining a featuref in aParentpartfor
A is to causeC to inherit fromA, rather than theversion off in A,
adeferred form of that version.

→Thisalsoappliestocli-
ents of proper ancestors,
under dynamic binding.
“D YNAMICBINDING”,
23.12, page 638
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10.26 DEFERRED AND EFFECTIVE FEATURES AND CLASSES

The discussion has already referred informally to features being “deferred”
or “effective” in a class. We can now make these notions precise, and use
the opportunity to define what it means to “effect” a feature

In case1 the declaration may be for a new (immediate) feature, or it may
be a redeclaration of an inherited feature, deferred in the parent but made
effective inC. This is known as aneffecting:

Some validity constraints, seen below, apply to this case: the effective
feature must satisfy the Redeclaration rule, and if there are two or more
deferred features among the lot, this is ajoin, governed by the Join rule.

It is possible under this definition for a redeclaration to effectingseveral
inherited features. Theonly other case in which we permit inheriting
several features with the same name without renaming is sharing under
repeated inheritance. Here too we don’t have a real name clash, as long as
at most one of the features is effective and they satisfy the two applicable
rules (Redeclaration and Join).

Effective, deferred feature
A featuref of a classC is aneffective featureof C if and only if
it satisfies either of the following conditions:
1 •C contains a declaration forf whoseFeature_bodyis not of

theDeferred form.

2 • f is aninheritedfeature, coming from aparentB of C where it
is (recursively) effective, andC does not undefine it.

f is deferred if and only if it is not effective.

As a result of this definition, a feature is deferred inC not only if it is
introduced or redefined inC as deferred, but also if its precursor was
deferred andC does not redeclare it effectively. In the latter case, the
feature is“inherited as deferred”.

The definition captures the semantics of deferred features and of their
effecting. In case1 it’s clear that the feature is effective, sinceC itself
declares it as either an attribute of a non-deferred routine. In case2 the
feature is inherited; it was already effective in the parent, andC doesn’t
change that status.

Effecting
A redeclaration into aneffective feature of a featureinheritedas
deferred is said toeffect that feature.

← “Inherited as effec-
tive, inherited as
deferred”,  page 291.

← “UNDEFINING A
FEATURE”,  10.19,
page 290.

→ “Repeated Inherit-
ance Consistency con-
straint”,  page 466.
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Effecting may follow one three schemes:

1 • You may writeC as heir to a classB wheref is deferred, and provide an
effecting off in the form of aFeature_declarationin theFeaturespart of
C. This is themost common use of deferred features and effecting.

2 • You may want to inherit a specification from one parentA and the
corresponding implementation from anotherB. In this caseA will
provide a deferred feature andB an effective feature with compatible
signature; if they have the same final name inC, theB version will serve
as effecting of theA version. In this case there is no new feature
declaration inC.

3 •C may also undefine a parent’s effective feature, and use an effective
feature (inherited from a parent, or introduced or redefined inC itself)
to provide an implementation. This is less common, but provides the
mechanism for merging effective features, with one of the
implementations overriding the others, as in one of theearlierexamples.

The above defines the meaning of “deferred” and “effective” for features.
These qualifiers carry over to the classes that contain these features:

This includes a validity requirement and a definition, both of which follow
from the the original discussion of classes:

• The requirement to declare the class asdeferred as soon as it has
deferred feature is not a new validity constraint, but just repeats what the
ClassHeaderrule said — except that now, as a result of the definitions
in this chapter, we have a precise definition of “deferred feature”
(introduced as deferred, or inherited as deferred and not effected).

• As to the definition, it follows from the Class Header rule combined
with theoriginaldefinitionof “deferredclass”, which stated that a class
is deferred if itsClass_headerstarts withdeferred. That was a purely
syntactic criterion; now we have a more meaningful one, reminding us
that a class is deferred whenever it has a deferred feature.

The reverse — that a class is effective if all its features are effective — is
usually true, but not always since you have the option of declaring it
explicitly asdeferred, to specify that it remains abstract and not directly
instantiatable. Hence the precise phrasing of the complementary property:

Bla bla bla ===================

Deferred class property

A class that has at least onedeferred feature must have a
Class_headerstarting with the keyworddeferred. The class is
then said to bedeferred.

← As illustrated in
“EFFECTING A
DEFERRED FEA-
TURE”, 10.14,page276.

←Asillustratedbythefig-
ure“Merging and over-
riding”,  page 295.

← ClassD, page295.

← “Class Header
rule”,  page 126.

← “Expanded, frozen,
deferred,effectiveclass”,
page 127.
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As a summary, remember that youmust declare a class as

as soon as it has a deferred featuref — not only if f is introduced inC as
deferred, but also ifC inherits it as deferred and does not effect it.

For an effective class, you will just use one of

10.27 ORIGIN AND SEED

Two useful definitions follow from the discussion of redeclaration.
Chapter6 defined theorigin of a feature introduced in classC asC itself.

We can now generalize this to arbitrary features, inherited as well as
immediate. The associated notion is a feature’sseed, its original version.
These notions, which will be especially useful in the discussion of repeated
inheritance, are defined as follows.

Effective class property

A class whose features, if any, are all effective, is effective unless
its Class_header starts with the keyworddeferred.

It is not an error to declare a classdeferred if it has no deferred features; the
effect is simply that clients are not able to create direct instances. It is indeed
sometimes useful to introduce a class that cannot be directly instantiated; for
example the designer may intend the class to be used only through
inheritance. The technique to achieve this is simply to state the abstract nature
of the class by declaring itdeferred even if all its features are effective.

deferred class C …

class C…
expanded class C…
reference class C…

Origin, seed

Every featuref of a classC has one or more features known as its
seedsand one or more classes known as itsorigins, as follows:
1 • If f is immediate inC: f itself as seed;C as a origin.

2 • If f is inherited: (recursively) all the seeds and origins of
its precursors.

This is not necessarily
the beginning of the
class text itself since
there may be aNotes
clause first.

← This is a refinement
of the initial definition
of"origin" onpage133,
which only covered
case1 of the present
definition.

→ “SHARING AND
REPLICATION”, 16.4,
page 436.
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----------If this is your first reading, do not let yourself be troubled by case
2, which refers to repeated inheritance. As soon as you have read the first
three sections of therepeatedinheritancechapter, the context in which case
2 occurs should be quite clear.

The origin of a feature is the most remote ancestor from which the feature
comes, and its seed is its original form in that ancestor.

None of the reincarnations that the feature may have gone through along
the inheritance part as a result of redefinition, effecting or renaming may
affect its seed and its origin.

10.28 REDECLARATION RULES

(The rest of this chapter gives the formal rules applying to feature
redeclaration. The essential concepts have already been seen, so you may
safely skip to the next chapter on first reading.)

---- REMOVE ALL THIS!!! According to theearlierdefinitions, case ----
-- is an effecting. Case ------ is an effecting for deferredf and effectiveg, a
redefinition if they are both deferred or both effective. Clause5 of the
constraint below will preclude the other apparent possibility:f effective,g
deferred.

In case -------, the text ofC does not contain any declaration forf, but
some other inherited featureg (which must come from a different parent)
effectsf. It is convenient to treat this implicit and somewhat special case as
a redeclaration, along with the explicit and more common case -------.

The above definition says nothing about validity: case ---- simply states
that if a declaration uses the name of an inherited feature, we must treat it
as a redeclaration (valid or not) of that feature, not as the declaration of a
new, or immediate, feature. Here is the rule that determines when a
redeclaration (explicit or implicit) is valid:

The origin, a class, is “where the feature comes from”, and the seed is the
version of the feature from that origin. In the vast majority of cases this is
all there is to know. With repeated inheritance and “join”, a feature may
result from the merging of two or more features, and hence may have more
than one seed and more than one origin. That’s what case2 is about.

→ Chapter16.

← “Ef fective, deferred
feature”, page309and
“Ef fecting”,  page 309.
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Redeclaration rule VDRD

Let C be a class andg a feature ofC. It is valid for g to be a
redeclaration of a featuref inherited from aparentB of C if and
only if the following conditions are satisfied.

1 •No effective feature ofC other thanf and g has thesame
final name.

2 • Thesignature ofg conforms to the signature off.

3 • ThePreconditionof g, if any, begins withrequire else (not
justrequire), and itsPostcondition, if any, begins withensure
then (not justensure).

4 • If the redeclaration is aredefinition (rather than aneffecting)
the Redefinesubclause of theParentpart for B lists in its
Feature_list thefinal name off in B.

5 • If f is inherited as effective, theng is also effective.

6 • If f is anattribute,g is an attribute,f andg are bothvariable, and
their types are either both expanded or both non-expanded.

7 • f andg have either both no alias or thesame alias.

8 • If both features are queries with associatedassigner
commandsfp andgp, thengp is theversion offp in C.
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Condition1 prohibits name clashes between effective features. Forg to be
a redeclaration off, both features must have the same final name; but no
other feature of the class may share that name. This is the fundamental rule
of no overloading.

No invalidity results, however, iff is deferred. Then ifg is also deferred,
the redeclaration is simply a redefinition of a deferred feature by another
(to change the signature or specification). Ifg is effective, the redeclaration
is an effecting off. If g plays this role for more than one inheritedf, it both
joins and effects these features: this is thecase in whichC kills several
deferred birds with one effective stone.

Condition 2 is the fundamental type compatibility rule: signature
conformance. In the case of a join,g may be the redeclaration of more than
onef; theng’s signature must conform to all of the precursors’ signatures.

Signature conformance permitscovariant redefinition of both query
results and routine arguments, but for arguments you must make the new
type detachable —?U rather than justU — to prevent “catcalls”.

Condition3 requires adapting the assertions of a redeclared feature, as
governed by rules givenearlier.

Condition4 requires listingf in the appropriateRedefinesubclause, but
only for a redefinition, not for an effecting. (We have a redefinitiononly if
g and the inherited form off are both deferred or both effective.) If two or
more features inherited as deferred are joined and then redefined together,
every one of them must appear in theRedefinesubclause for the
corresponding parent.

Condition5 bars the use of redeclaration for turning an effective feature
into a deferred one. This is because a specific mechanism is available for
that purpose: undefinition. It ispossible to apply both undefinition and
redefinition to the same feature to make it deferred and at the same time
change its signature.

Condition6 prohibits redeclaring a constant attribute, or redeclaring a
variable attribute into a function or constant attribute. It also precludes
redeclaring a (variable) attribute of an expanded type into one of reference
type or conversely. You may, however, redeclare a function into an attribute
— variable or constant.

Condition7 requires the features, if they have aliases, to have the same
ones. If you want to introduce an alias for an inherited feature, change an
inherited alias, or remove it, redeclaration is not the appropriate technique:
you must rename the feature. Of course you can still redeclare it as well.

Condition8 applies to assigner commands. It is valid for a redeclaration
to include an assigner command if the precursor did not include one, or
conversely; but if both versions of the query have assigner commands, they
must, for obvious reasons of consistency, be the same procedure inC.

← The bird-shooting
was on page294.

→ See details below:
“RULESONJOINING
FEATURES”,  10.29,
page 315.

←“REDECLARATION
AND ASSERTIONS”,
10.17, page 283.
← “Redefine, redefini-
tion”,  page 292.

← As noted: see classE,
page291.
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In earlier versions of the language, there was an extra condition, prohibiting
a redeclaration from changing anExternal feature into anInternal one or
conversely. Although initially justified by the original conventions on
external features, this had become just an implementation constraint with no
remaining conceptual justification.

Note, however, that redefining an external routine into a non-external one will
usually cause a small performance penalty for theoriginal (non-redefined)
version, as the Eiffel compiler will probably have to call the external routine
through an Eiffel wrapper.

10.29 RULES ON JOINING FEATURES

The last constraint that we need to examine governs the validity and
semantics of the join mechanism, used to merge two or more features, of
which at most one is effective, by inheriting them under the same name.

It is useful first to extend the notion of precursor:

Bla bla bla

Precursor (joined features)
A precursor of an inherited feature is aversion of the feature in
theparent from which it is inherited.

→OnExternalroutines,
see chapter31, espe-
cially “BASICS OF
EXTERNAL ROU-
TINES”,31.5,page828.

← The definition for in
the non-join case was
on page268. A final,
more formal definition
coveringbothcaseswill
appear on page473 at
the end of the repeated
inheritance chapter.
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precursors.

Transposition to a class or type

The transposition to a classC of a specimens appearing in a
ancestorA of C is the specimen obtained froms by replacing
every expression by itsEquivalent Dot Form, then:
1 • Replacing the arguments of anyCall by (recursively) their

transposition toC.

2 • If s is part of the declaration of a featureg replicated inC
along a certainrepeatedinheritance path, replacing any
Feature_nameused as name of thefeatureof an unqualified
call or as anchor of ananchoredtype by the name resulting
from any renaming of the feature along that path.

3 • Replacing anyFeature_nameused as name of the feature of an
unqualified call or as anchor of an anchored type, if case2
does not apply, by the result of any renaming along applicable
inheritance paths.

4 • In everyqualifiedcall of targett, replacingt by (recursively)
its transpositiont’ to C and the feature of the call by
(recursively) its transposition to the type oft’ in C.

5 • In every Non_object_callof target type T, replacingT by
(recursively) its transpositionT’ to C and the feature of the
call by (recursively) its transposition toT’.

6 • For every entitye, other than an attribute, such thats includes
a declaration fore, replacing every occurrence ofe by a fresh
identifier not used inC.

7 • If an ancestorB of C has aparenttype P of base classA,
replacing every occurrence of any generic parameterG of A
by (recursively) the transposition toC of the application toG
of P’s generic substitution.

The transposition to a typeT of a specimens appearing in a
ancestor of thebaseclassC of T is the result of applying the
generic substitution ofT to the class transposition of s to C.
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Transposition

Thedirect transposition to a classB of a specimens appearing
in a parentclassA of B is the specimen obtained froms by
replacing every expression by itsEquivalent Dot Form, then:
1 • Replacing the arguments of anyCall by (recursively) their

direct transposition toB.

2 • If s is part of the declaration of a featureg replicated inBalong
a certainrepeatedinheritance path, replacing the name of the
feature of anyunqualifiedcall by the name of the feature as
resulting from any renaming along that path.

3 • In everyunqualifiedcall of featuref whosefeaturenamefn
appears in aRename_pairof the formfn asgn in aParentpart
for A, such that case2 does not apply, replacingfn by the
identifier ofgn.

4 • In everyqualifiedcall of targett, replacingt by (recursively)
its class transpositiont’ to B and the feature of the call by
(recursively) its transposition to the type oft’ in B.

5 • In every Non_object_callof target type T, replacingT by
(recursively) its class transpositionT’ to B and the feature of
the call by (recursively) its transposition toT’.

6 • For every entitye, other than an attribute, such thats includes
a declaration fore, replacing every occurrence ofe by a fresh
identifier not used inB.

7 • Replacing every occurrence of a formal generic parameter of
Aby thegenericsubstitution ofB’s parenttype ofbaseclassA.

Theclass transpositionto a classC of a specimensappearing in
an ancestorA of C is:
8 • If A andC are the same class:s.

9 • If A is a parent of anancestorB of C: (recursively) the
transposition toC of thedirect transposition ofs to B.

The transposition to a typeT of a specimens appearing in a
ancestor of thebaseclassC of T is the result of applying the
generic substitution ofT to the class transposition of s to C.
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Without the join mechanism there was just one precursor; but a feature
resulting from the join of two or more deferred features will have all of
them as precursors.

Here now is the validity constraint for joining features:

The first part (cases3 and 7) defines transposition to an heir (direct
descendant). Cases8 and9 generalize this to any descendant. Recall that a
descendantC of A is eitherA itself (case8) or, recursively, a descendant of
an heirB of A (case9).

Case takes care of feature renaming. Because

Unfolded redeclaration

Consider afeaturef of a classA. Theunfolded redeclarationof
f in an heirC of A is aFeature_declaration defined as follows:
1 • If C redeclaresf, the declaration off in C.

2 • Otherwise, aFeature_declarationfor a feature with the same
extended name, the samesignature asf and the same
Assigner_mark if any, both transposedto C, and an
Attribute_or_routine consisting solely of:

• If f is deferred, aFeature_body of theDeferred kind.

• If f is an effective routine, ado clause whoseCompound
reads just Precursor (if f is a procedure) or
Result := Precursor (if f is a function), followed by the
parenthesized list of formal arguments if any.

• If f is an attribute, anattribute clause whoseCompound
reads justResult := Precursor.
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Join rule VDJR

It is valid for a classC to inherit two different features under the
samefinal name under and only under the following conditions:
1 • If both are inherited as effective, C redefines both into a

common version.

2 • If both areinheritedasdeferred, theunfoldedredeclaration in
C of each of them is a valid redeclaration of the other.

3 • Otherwise, theunfoldedredeclaration inC of the one inherited
as effective is a valid redeclaration of the one inherited as
deferred.

THE FOLLOWING INFORMATIVE TEXT NEEDS UPDATING.
The Join rule indicates that joined features must have exactly the same
signature — argument and result types.

What matters is the signature after possible redefinition or effecting. So
in practice you may join precursor features with different signatures: it
suffices to redeclare them using a feature which (as required bypoint 2 of
the Redeclarationrule) must have a signatureconforming to all of the
precursors’ signatures.

If the redeclaration describes an effective feature, this is the case of both
joining and effecting a set of inherited features. If the redeclaration
describes a feature that is still deferred, it is a redefinition, used to adapt the
signature and possibly the specification. In this case, point4 of the
Redeclaration rule requires every one of the precursors to appear in the
Redefine subclause for the corresponding parent.

Condition1 mentions “redeclaration or effecting”. These two cases are
not exclusive: an effecting — turning a featuref, inherited as deferred from
a parent ofC, into an effective one — can result from a new declaration of
f in C, but also from a “join” off with an effective feature inherited under
the same name from another parent.

In any case, nothing requires the precursors’ signatures to conform to
each other, as long as the signature of the version inC conforms to all of
them. This means you may write a class inheriting two deferred features of
the form

f (p: P): T …
f (t: Q): U …

and redeclare them with

→ “Repeated Inherit-
ance rule”,  page 438;
“Repeated Inheritance
Consistency con-
straint”,  page 466.
← “Redeclaration
rule”,  page 313.

→Asignatureconforms
toanother ifeverytypein
it conforms to the corre-
sponding type in the
other. See“EXPRES-
SION AND SIGNA-
TURE
CONFORMANCE”,
←Join-cum-effectingwas
described on page294.
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The following figure illustrates a valid case, in which all types involved
are non-generic classes (so that conformance is just inheritance).U is an
heir ofP, but for the second argument the relation is in the other direction:
Q is an heir ofV. Then a redeclaration into a feature of signature [U, Q], [R]
will be valid.

This takes care of the validity of the join mechanism. The last rule gives
the precise properties of the resulting feature:

f (x: ? R): V …

provided R conforms to bothP and Q and V to both T and U. No
conformance is required between the types appearing in the precursors’
signatures (P andQ, T andU).

The assumption that the features are “different” is important: they could
in fact be the same feature, appearing in two parents ofC that have
inherited it from a common ancestor, without any intervening
redeclaration. This would be a valid case of repeated inheritance; here the
rule that determines validity is theRepeatedInheritanceConsistency
constraint. The semantic specification (sharing under theRepeated
Inheritance rule) indicates thatC will have just one version of the feature.

Conditions1 and 2 of the Join rule are consistency requirements on
aliases and on assigner commands. The condition on aliases is consistent
with condition7 of the Redeclaration rule, which requires a redeclaration
to keep the alias if any; it was noted in the comment to that rule that
redeclaration is not the appropriate way to add, change or remove an alias
(you should use renaming for that purpose); neither is join. The condition
on assigner commands ensures that anyAssigner_callhas the expected
effect, even under dynamic binding on a target declared of a parent type.

Join Semantics rule

Joining in a classC two or more inherited features with the same
final name under the terms of theJoinrule yields a single feature
of C defined as follows:
1 • If at least one of these features is effective: itsunfolded

redeclaration inC.

2 • Otherwise: the unfolded redeclaration inC of any of them.
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****** TO BE REDONE *****The rule covers three cases:

• An explicit redeclaration, which serves as a redeclaration of all the
joined precursors, and gives them a new signature (which must conform
to all their signatures per the Join rule), body (since it serves as
“unfolded redeclaration” in point ****) and assertions (point ****).

• No redeclaration, with precursors all deferred, all having the same
signature; they are then merged into a single deferred feature.

• No redeclaration, with one effective feature and the others deferred, all
with the same signature; the effective feature then serves as effecting of
the others.

In the absence of a redeclaration, point****** states that the new feature
has no specific precondition and postcondition. It will still, however, have
a combined preconditionand acombined postconditionobtained from
the precursors’ assertions. In the case of a redeclaration, the combined
precondition and postcondition also include the assertions, if any, of the
redeclared version.

Point ****** leaves the concatenation order unspecified.

In point ******, there can be at most one effective precursor because of
the Join rule.

In point ****** (corresponding to a rare case) language processing
tools should produce an obsolescence message for the class performing the
join, but the resulting feature is not itself obsolete.

P V R

U Q R

U Q R

Conforming to
two incompati-
ble signatures

Inheritance

Signature
conformance

Same
class

← “OBSOLETE FEA-
TURES”,5.21,page165.
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Types
11.1 OVERVIEW

This chapter — complemented by the next two, which address generic
types and tuple types — presents the type system.

11.2 THE ROLE OF TYPES

Every object is an instance of some type. (More precisely, it is adirect
instanceof exactly one type; thanks to the inheritance mechanism it may
also be an instance of other, more general types.) Class texts may refer to
eventual run-time objects through the software elements that denote
values: constants, attributes, function calls, formal routine arguments, local
variables, and expressions built from such elements.

Typing in Eiffel is static. For software developers, this means four
practical properties:

• Every element denoting run-time values istyped: it has an associated
type, limiting the possible types of the attached run-time objects.

• This type is immediately clear — to a human reader or to a language
processing tool — from the element itself or the surrounding software
text. For a manifest constant, such as the Integer421, the type follows
from the way the constant is written; in all other cases it is a
consequence of a type declaration, made compulsory by the validity
rules of the language.

• Non-atomic constructs impose complementary validity constraints,
defining admissible type combinations. For example, an assignment
requires the type of the source to conform to the type of the target.

Types describe the form and properties of objects that can be created during
the execution of a system. The type system lies at the heart of the object-
oriented approach; the use of types to declare all entities leads to more clear
software texts and permits compilers to detect many potential errors and
inconsistencies before they can cause damage.
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• Since the constraints are defined as conditions on the software text,
language processing tools such as compilers or static analyzers may
check the type consistency of a systemstatically, that is to say, just by
examining the system’s text, without making any attempt at execution.

Thisexplicitandstaticapproach to typing has a number of advantages.
It makes software texts easier to read and understand, since developers, by
declaring the types of entities, reveal how they intend to use them. It
enables compilers and other tools to catch many potential errors by
detecting inconsistencies between declarations and actual uses. It gives
compilers information that helps them generate much more efficient code
than would be possible with an untyped (or more weakly typed) language.

Typing in Eiffel is taken seriously. Many languages that claim to be
statically (or even “strongly”) typed allow developers to cheat the type
system, enticing them into sordid back-alley deals sometimes known as
casts. No such cheating exists in Eiffel, where the typing rules suffer no
exception. This is essential if we want to have any trust in our software. The
only price to pay for this added security is the need to declare entities
explicitly and to observe validity constraints — obligations which are even
easier to justify if you observe that the type system, far from being a
hindrance to the developer’s freedom of expression, helps in the production
of powerful and readable software systems.

It should be noted, however, that some conceptual issues, having to do with
covariance and descendant hidingcan cause type problems in certain
borderline cases. Thechapter on type checking discusses them.

The present chapter and the next two (on generic types and tuple types)
explore the basic forms of types and their properties. This will not exhaust,
however, the issue of typing, which pervades most of the discussions of this
book. To understand the type system fully, you will need important
complements provided by two separate chapters:

• The discussion ofconformancewill explain how a type may be used in
lieu of another, and its instances in lieu of that other’s instances.

• The presentation of thetype checkingpolicy will show how the typing
policy defines the fundamental validity constraints on the most
important computational construct — feature call.

→ Chapter25.

→ Conformance is the
topic of chapter14.
Chapter23 covers
calls; on type checking,
see chapter25.
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11.3 WHERE TO USE TYPES

You will need to write a type — a specimen of the constructType— in the
following contexts:

1 • To declare the result type of an attribute or function: construct
Declaration_body.

2 • To declare the arguments of a routine or inline agent: construct
Formal_arguments, defined in terms ofEntity_declaration_list.

3 • To declare a local routine entity: constructLocal_declarations(also
defined in terms ofEntity_declaration_list).

4 • To indicate that a class has a certain parent: constructParent, as part of
Inheritance.

5 • To specify actual generic parameters, as explained in the next chapter:
constructActual_generics.

6 • To specify a genericConstraint, also in the next chapter: construct
Constraint, part ofFormal_generics.

7 • To indicate an explicit creation type in a creation instruction or
expression: constructExplicit_creation_type.

8 • To choose from a set of instructions, based on an expressions’s type, in
aMulti_branch.

9 • To specify the parameters (component types) of aTuple_type.

10 •To declare the type of a target of aCall_agent.

11 •To specify target conversion for infix operators.

12 •To call a feature without a target, in aNon_object_call.

As an example of the first three cases, here is the beginning of a possible
function declaration:

In this example and all the others, types are easy to recognize: apart from
keywords such aslike, they use all-upper-case names.

The function has a result (case1) of type RECTANGLE, probably a
reference type, and one argument (case2) of type LIST[WINDOW], a
“genericallyderived” reference type. It uses four local variables (case3) of
typeREAL, a basic expanded type. The use ofWINDOWas actual generic
parameter toLIST provides an example of case5.

total_occupied_area(wl: ):
-- Smallest rectangle that covers the representations
-- of all windows inwl

local
xmin, ymin, xmax, ymax:
... Rest of routine omitted ...

← Syntax: page141.

← Page220; see also
Inline_agent, p. 751.

← Page225.

← Page171.

→ Page350.

→ Page357.

→ Page551.

→ Choice, page485:.

→ Page372.

→Agent_actual,page752:

→ Page771:

→ Page626.

LIST[WINDOW] RECTANGLE

REAL

→Seechapter12about
generically derived
types.
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The following class beginning uses types in its twoParentparts (case4):

An example of case6 is the use of typeADDABLEin a class text starting with

which states that any actual generic parameter must conform toADDABLE
(which means roughly that it must be based on a descendant of that class).

An example of case7 is theCreation_instruction

which creates a direct instance ofWINDOW, initializes it using a call toset
with the given arguments, and attaches it toa. If a is of typeWINDOWyou
may (and usually should) omit the{ WINDOW} part; but it is useful ifa’s
type is a proper ancestor ofWINDOWand you expressly want to createa s
aWINDOW. Another example of case7 s theCreation_expression in

where we pass as argument to proceduredisplay an object of type
WINDOWcreated for the occasion. Here specifying the type is not an
option but a necessity since, unlike the previous case, we don’t have an
entitya with a type declaration to serve as the default.

An example of case8 is a multi-branch instruction

appearing in this case in aRescueclause to process exceptions. This states
what to do depending on the type oflast_exception.

An example of case9 (similar in syntax to case5, actual generic
parameters) is the tuple type

class DISPLAY_STATEinherit

…

class MATRIX[G –> ] ...

create{ }  a.set(x_corner, y_corner)

screen.display(create{ } .set(x_corner, y_corner))

inspect
last_exception.type

when { } then
fix_context; retry

when { }, { then
cleanup

end

TUPLE[ ]

LIST[WINDOW]
INPUT_MODE

ADDABLE

→Seechapter20about
creation instructions
and expressions.WINDOW

WINDOW

DEVELOPER_EXCEPTION

SIGNAL NO_MORE_MEMORY

REAL, INTEGER, RECTANGLE
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which describes “tuples” — sequences of values— with at least three
elements, the first of typeREALand so on.

An example of case10 is

an agent expression denoting a partially specified operation, ready to call
rotate(assumed to be a procedure ofRECTANGLE, with a single argument
representing an angle) to rotate any rectangle by 90 degrees.

An example of case ---- ADAPT --- is an instruction

which determines whether a run-time object obtained from an outside
source is of a certain predicted type.

Case11covers the ability to convert the result of an arithmetic operator
to the type of the second operand, as in the following in classINTEGER

which dispatchesyour_real + your_complexto the feature with the same
name in classCOMPLEX (rather than the one specified here).

Finally, case12 allows calls of the form{ } some_featurewhere
some_featureis a feature of typeT that doesn’t need a target, for example
a constant attribute.

11.4 HOW TO DECLARE A TYPE

The basis of the type system is the notion of class: every type is, directly or
indirectly, basedon a class, which provides the principal information for
determining how instances of the class will look like. But classes are only
the starting point of a whole set of type mechanisms that afford you
considerable flexibility:

• Certain classes, said to begeneric, do not directly describe a type;
instead, they describe a type pattern, with one or more variable parts that
must be filled in, through a “generic derivation”, to yield an actual type.
For example the classLIST [G] describes lists of elements of an
arbitrary type, denoted in the class byG.

agent{ } .rotate(90)

if { x: } retrieved_from_networkthen
x.f
…

else
…

end

plusalias "+" convert { } ( other: REAL): REAL
… Definition of integer addition…

RECTANGLE

EXPECTED_TYPE

COMPLEX

T

→ See“BASECLASS,
BASE TYPE AND
TYPE SEMANTICS”,
11.7, page 332 below.
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• Within the text of a generic class such asLIST, the formal generic
parameterssuch asG themselves represent types (the possible actual
generic parameters). The class may for example introduce an attribute
of type G, or a routine with an argument or result of typeG.
Syntactically, then, a formal generic parameter is a type, although the
exact nature of that type is not known in the class itself; only when a
generic derivation provides the correspondingactual generic parameter
(such asWINDOWabove) can we know whatG represents in that case.

• Finally, you may declare an entityx in a classC by using ananchored
type of the form like anchor for some other entityanchor. This
mechanism avoids tedious redeclarations since it ties the fate ofx’s type
to that ofanchor: in C, x is treated as if you had declared it with the type
used for the declaration ofanchor; if a proper descendant ofC
redeclaresanchor with a new type,x’s type will automatically follow.

Here is the syntactical specification covering all the possibilities.

Class_or_tuple_typecovers tuple types as well as class types. Tuple
types, studied in their ownchapter, are a kind of trimmed-down class type;
TUPLE [a: X; b: Y; c: Z] acts like a class with three featuresa, b andc of
the types given. You can omit the labels:TUPLE[X, Y, …] describesfinite
sequences of values of which the first must be of typeX, the second of type
Y and the third of typeZ. Tuple types share a number of properties with
class types, hence the first variant ofType, covering them both.

Types
Type =∆ Class_or_tuple_type |

Formal_generic_name |
Anchored

Class_or_tuple_type=∆ Class_type| Tuple_type

Class_type=∆ [Attachment_mark]
Class_name
[Actual_generics]

Attachment_mark=∆ "?" |  "!"

Anchored=∆ [Attachment_mark] like Anchor

Anchor =∆ Feature_name | Current

The most common and versatile kind isClass_type, covering types
described by a class name, followed by actual generic parameters if the
class is generic. The class name gives the type’s base class. If thebaseclass
is expanded, theClass_typeitself is an expanded type; if the base class is
non-expanded, theClass_type is a reference type.

→ Tuple_type is
defined in the chapter
on tuples, page372.

→ Actual_generics
describes a list of types.
The specification is on
page350as part of the
discussion of genericity
in the next chapter.

A class is an"expanded
class" if its Class_
header begins with
expanded class, and a
non-expanded class
otherwise.

→ Chapter13 dis-
cusses tuples.
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The second syntactical variant,Formal_generic_name, covers the
formal generic parameters of a class. IfC has been declared as

then, within the text ofC, G denotes a type. As noted, you cannot know the
precise nature of this type just by looking at classC; G represents whatever
actual generic parameter is provided in a particular generic derivation.

The next category,Anchoredtypes of the formlike anchor, accounts
for anchored declarations.

Tuple_type, the last category, covers types of the formT

The rest of this chapter examines these type categories, except for the
generic and tuple mechanisms which have their own chapters.

11.5 INSTANCES AND VALUES

For each kind of type in the language, we must specify — along with
associated syntax rules and validity constraints — thesemanticsof the type.

 Defining the semantics of a typeT involves answering two questions:

• What objects can be produced, during execution, from the description
given byT?

• What are at run time the possible values of an entity or expression of
typeT?

The answers have precise names:

An Attachment_mark? indicates that the type isdetachable: its values
may be void — not attached to an object. The! mark indicates the reverse:
the type isattached, meaning that its values will always denote an object;
language rules, in particular constraints on attachment, guarantee this. No
Attachment_markmeans the same as!, to ensure that a type, by default,
will be attached.

... class C [...,G,...] ...

Direct instances and values of a type

Thedirect instancesof a typeTare the run-time objects resulting
from: representing amanifest constant, manifest tuple,
Manifest_type, agent orAddressexpression of typeT; applying a
creationoperation to atarget of typeT; (recursively) cloning an
existing direct instance ofT.
The values of a typeT are the possible run-time values of an
entity or expression of typeT.

→ Chapter13 dis-
cusses tuples.

→Seealso“Type,gener-
ating type of an object;
generator”,  page 506.
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Specifying the direct instances might seem sufficient; the reason we also
need to consider values is the difference betweenexpandedandreference
types. A type’s values are objects in the first case, references to objects in
the second.

Expanded types include as a special sub-category the basic types:
BOOLEAN; CHARACTERand its sized variants such asCHARACTER_8;
INTEGERand its sized variants such asINTEGER_8and NATURAL_64;
REAL and its sized variants.REAL_32 and REAL_64; and POINTER,
covering addresses of features to be passed to external (non-Eiffel) routines.
Clearly, an entity of integer type should give us an integer value, not a
reference to a dynamically allocated cell that contains an integer.

Reference provide more flexibility thanks to dynamic object allocation,
allowing the execution to create objects when and only when it needs them;
reference semantics, supporting linked data structures. Expanded types, for
their part, are useful not only for basic types but also for describingsub-
objectsavoiding indirections. The role of expanded types, and the criteria
for choosing between expanded and reference, are further studied below.

The notion of type has, besides the expanded-reference distinction, a
number of variants detailed in the following sections:

• You may define a type byanchoring, aslike something, tying it to the
type of an entity, so that it will follow any redefinitions in descendants.
Anchoring is covered later in this chapter.

• A type may also be aFormal_generic_namerepresenting a formal
generic parameter of the enclosing class; it then serves as a placeholder
for any type (reference or expanded) that is used in a generic derivation.
The whole generic mechanism will be discussed in the next chapter.

In understanding type semantics, another useful notion is that ofinstance,
complementing the notion ofdirect instance defined above:

Instance of a type

The instancesof a typeTX are thedirect instances of any type
conforming toTX.

Since every type conforms to itself, this is equivalent to stating that the
instances ofTXare the direct instances ofTXand, recursively, the instances
of any other type conforming toTX.

→ “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 833.
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In the well-known example of an inheritance hierarchy with a classFIGURE
at the top and descendants describing successively more specific geometrical
figures, such asCLOSED_FIGURE, POLYGON, RECTANGLE, SQUARE,
each inheriting from the preceding one, a direct instance ofSQUAREis also
an instance of all the others, includingSQUARE itself.

This also illustrates that a deferred type such asFIGURE, which cannot have
direct instances (since creation instructions of targetFIGURE are invalid),
may have instances if the class has effective descendants.

A semantic rule connects the notion of value and instance:

Thanks to this rule, it suffices, when studying type semantics, to define the
direct instances of each possible type. The instances follow immediately
and — since the type’s declaration indicates whether it is reference (and if
so, attached) or expanded — so do the values.

11.6 INSTANCES OF A CLASS

Along with the instances, direct and indirect, of atype, it is convenient to
talk about the corresponding notion for aclass:

Instance principle

Any value of a typeT is:
• If T is reference, either a reference to aninstance ofT or (unless

T is attached) a void reference.

• If T is expanded, an instance ofT.

Instance, direct instance of a class
An instance of a classC is an instance of any typeT based onC.
A direct instance ofC is a direct instance of any typeTbased onC.

For non-generic classes the difference betweenCandT is irrelevant, but for
a generic class you must remember that by itself the class does not fully
determine the shape of its direct instances: you need a type, which requires
providing a set of actual generic parameters.

→ “Cr eation and
deferred classes”,
page 537.
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11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS

At its core, the notion of type in Eiffel proceeds from the notion of class.
Indeed, we can bring down the properties of any type to those of an
associatedClass_or_tuple_type and, through it, to those of a class:

A general property applies to the base class and base type:

For example, assuming thatC is generic:

Base principle

Any type T proceeds, directly or indirectly, from a
Class_or_tuple_typecalled itsbase type, and an underlying class
called itsbase class.
The base class of a type is also the base class of its base type.

A Class_typeis its own base type; an anchored typelike anchor with
anchorhaving base typeU also hasU as its base type. For a formal generic
parameterG in classC [G –> T] … the base type is (in simple cases) the
constraining typeT, orANYif the constraint is implicit.

The base class is the class providing the features applicable to instances
of the type. IfT is aClass_typethe connection to a class is direct:T is either
the name of a non-generic class, such asPARAGRAPH, or the name of a
generic class followed byActual_generics, such asLIST [WINDOW]. In
both cases the base class ofT is the class whose name is used to obtainT,
with any Actual_genericsremoved: PARAGRAPHand LIST in the
examples. For aTuple_type, the base class is a fictitious classTUPLE,
providing the features applicable to all tuples.

For types not immediately obtained from a class we obtain the base
class by going through base type: for exampleT is anAnchoredtype of the
form like anchor, andanchor is of typeLIST [WINDOW], then the base
class of that type,LIST, is also the base class ofT.

Base rule

The base typeof any type is aClass_or_tuple_type, with no
Attachment_mark.
The base classof any type other than aClass_or_tuple_typeis
(recursively) the base class of its base type.
Thedirect instances of a type are those of its base type.

Why are these notions important? Many of a type’s key properties (such as
the features applicable to the corresponding entities) are defined by its base
class. Furthermore, class textsalmostnever directly refer to classes: they
refer totypes based on these classes.

A class text may refer to
a class rather than a
type in only three cases:
the beginning of the
class declaration, as in
classYOUR_CLASS_
NAME…; a Clients
part (syntax page208);
and aPrecursor con-
struct(syntaxpage303).
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• If D is an heir ofC, theInheritancepart ofD will list as Parentnot C,
but a type of the form C [ACTUAL1, …].

• To describe objects to whichC’s features are applicable,D will declare
an entitye using notC but, again, a type generically derived fromC.

In such situations (and all other uses of types listed earlier) the base class
provides the essential information: what features are associated withC. In
the first example, they give the list of features thatD inherits fromC; in the
second, they provide the features whichD may call one.

As for the base type, besides its role in defining the base class, it appears
in many of theconformancerules, and determines what kind of object a
creation operation will produce at run time.

Clearly, you may only build a class type, generically derived or not, if
the base class is a class of the universe:

The Base rule simplifies the presentation of type semantics. For every
kind of type reviewed in this chapter and the next two we must specify the
type’s semantics, by stating what are the type’s direct instances and its
values. Thanks to the Base rule the process is straightforward:

Class Type rule VTCT

A Class_typeis valid if and only if it satisfies the following
two conditions:
1 • ItsClass_nameis the name of a class in the surroundinguniverse.

2 • If it has a “?” Attachment_mark, that class is not expanded.

The class given by condition1 will be the type’s base class. Regarding
condition2, an expanded type is always attached, so anAttachment_mark
would not make sense in that case.

Type Semantics rule

To define the semantics of a typeT it suffices to specify:
1 • WhetherT is expanded orreference.

2 • WhetherT, if reference, isattached ordetachable.

3 • What isT’s base type.

4 • If T is a Class_or_tuple_type, what are itsbaseclass and its
type parameters if any.

→ Conformance: chap-
ter 14; creation: chap-
ter 20.

→ For Formal_generic_
nametypestheexpanded/
reference status depends
on each generic deriva-
tion. See“SEMANTICS
OFGENERICTYPES”,
12.10, page 363.
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As soon as we knowT’s base type, and its actual generic parameters if any,
we will know itsdirect instances: those of its base type, determined by the
rulesontypeinstances. IfT is not a class type, we will know from the Base
rule that its base classis the base class ofT’s base type (itself a
Class_or_tuple_type). Finally, thevaluesof T will be its instances if it is
an expanded type, otherwise references to such instances.

In application of the Type Semantics rule, every presentation of a new
kind of type in this chapter and the next two has aSEMANTICS paragraph
that simply defines the base type (item3 above), the base class in the case
of aClass_or_tuple_type (4), and whether it is expanded or reference (1).

To simplify the discussion, we allow ourselves to use “base class” and
“base type” directly for expressions:

11.8 CLASS TYPES WITHOUT GENERICITY

We start our exploration of the type categories with the simplest way of
defining a type: using a class without generic parameters.

In this case there is no difference between class and type. Assume for
example a class text of the form

Then a class of the same universe (includingPARAGRAPHitself) may use
PARAGRAPH as a type, for example to declare entities.

Here PARAGRAPHis declared as a non-expanded class, so the
corresponding type is a reference type. At run-time, entities of that type
represent references which, if not void, are attached to instances of
PARAGRAPH, obtained through creation instructions.

Base class and base type of an expression
Any expressionehas abase typeand abase class, defined as the
base type andbase class of thetype ofe.

class PARAGRAPHfeature
first_line_indent: INTEGER;
other_lines_indent: INTEGER;
set_first_line_indent(n: INTEGER)

... Procedure body omitted ...
... Other features omitted ...

end

→ Chapter19.
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If classPARAGRAPHhad been declared aexpanded class…, then the
resulting type would be expanded. In the general case:

These are not fascinating notions yet, but we must define a base class and
base type for every type, and they will get less trivial as we move on.

PARAGRAPH, used as a type, is its own base type and its own base class.
Values of typePARAGRAPHare references to instances of the class.
Clients of the class maycall exported features such asfirst_line_indentand
others on entities of typePARAGRAPH.

Only one constraint, the Class Type rule, applies to aClass_typethat is
not generic: theIdentifier must be the name of a class of the universe.

11.9 EXPANDED TYPES

Most of the types you define will probably be reference types similar to the
last examples (LIST, WINDOW, PARAGRAPH…), as they offer the
flexibility of creating objects on demand, and the ability to define linked
structures. You can also use expanded types.

Role of expanded types

An earlier chapterpreviewed some of the possible reasons for using
expanded types:

• Realism in modeling external world objects, especially when you want
to describe objects that have sub-objects.

• Possible efficiency gain.

• Basic types.

• Interface with other languages.

• Machine-dependent operations.
The first case arises when we use Eiffel objects to model external world
objects which are composite, rather than containing references to other
objects. For example, in a Computer-Aided Design application, we may
view a car as containing, among others, four "wheel" sub-objects, rather
than four references to such objects. Such a decision, illustrated on the
following figure, is only legitimate for objects which may never share sub-
objects: in this example, a wheel may not be part of two different cars.

Non-generic class type semantics

A non-generic classCused as a type (of theClass_typecategory) has
the same expansion status asC (i.e. it is expanded ifC is anexpanded
class, reference otherwise). It is its ownbasetype (after removal of
anyAttachment_mark) andbase class.

→ The generic version
will be only slightly dif-
ferent: “Generically
derived class type
semantics”,  page 363.

→ See chapter23 about
callingfeaturesonentities.

← “EXPANDED CLI-
ENTS”,  7.5, page 196.
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The second reason is, in some circumstances, a gain in efficiency:

composite objects save space (by avoiding pointers) and time (by avoiding

indirections). For example, if every instance ofPERSONhas ahead,

declaringheadof an expanded type will give the structure illustrated by(a)

on the next figure, avoiding the indirection of(b). Here again, this only

applies because there is no sharing of sub-objects, at least if we exclude the

case of Siamese twins.

wheel_1

wheel_2

wheel_3

wheel_4

Reference
Fields

Other
Expanded
Fields

Sub-object vs.
reference to
another object

head
head

Other
fields

(a) (b)

Composite car
object
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You must realize, however, that the possible efficiency gain is not guaranteed.
The last two figures, and similar illustrations of expanded attributes and
composite objects, are only conceptual descriptions, not implementation
diagrams. (Unlike other languages that shall remain nameless here, Eiffel is
specified in terms of the abstract properties of software execution, not by
prescribing a certain implementation.) The authors of an Eiffel compiler or
interpreter may choose any representation they wish as long as they guarantee
the semanticsof expanded values, according to which (as explained in the
discussion of reattachment in alaterchapter) an assignmentx := y must copy
the object attached toy onto the object attached tox, and an equality testx = y
must compare the objects field by field.

Both the time and space gains are important in the case of basic types such
as integers or characters; to manipulate the value3, we should not need to
allocate an integer object dynamically, or to access it through a reference.
For that reason, basic types are described by expanded classes of the Kernel
Library, as explained in alater section.

Another opportunity for expanded types may be the need to keep data
structures produced and handled by software elements written in other
languages. An example might be control information associated with a
database management system, which Eiffel routines will not manipulate
directly, but pass back and forth to foreign (non-Eiffel) routines. As you
have no control over the format and size of such data structures, the best
way may be simply to keep them as sub-objects within your Eiffel objects.

Defining expanded types

The class types seen so far may or may not be expanded:

• A Class_typewhose base class is expanded is itself an expanded type;
values of that type are objects (instances of the type).

• A Class_typewhose base class is not expanded is a reference type;
values are references to potential objects, created dynamically.

---- WHOLE DISCUSSION OF “ EXPANDED T” REMOVED -----

Expanded types have specific properties, already previewed. First we must
know precisely when a type is “expanded” and when it is “reference”:

Expanded type, reference type
A type T is expanded if and only if it is not a
Formal_generic_nameand thebaseclass of itsdeanchoredform
is anexpanded class.
T is a reference type if it is neither a Formal_generic_name
norexpanded.

→ Chapter22.

→See,page338,about
basic types.
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Basic types

An important case of expanded types is a collection ofbasictypescovering
simple values:

• BOOLEAN, describing boolean values (true and false).

• CHARACTER, describing single characters.

• INTEGER and its variants supporting specific sizes:INTEGER_8,
INTEGER_16, INTEGER_64. The sizes of values of typeINTEGER
must be settable through a compilation option (the recommended value
is 64).

• REAL: floating-point numbers and its variants supporting specific sizes:
REAL_32, REAL_64. The sizes of values of typeREALmust be settable
through a compilation option (the recommended value is 64).

• POINTER, serving to pass addresses of Eiffel features and expressions
to non-Eiffel routines.

Three types also enjoy special properties but are not considered basic types:
ARRAY, STRINGand tuple types.

Properties of basic types, especially their conformance and semantics,
appear in achapter devoted to them.

This definition characterizes every type as either reference or expanded,
except for the case of aFormal_generic_name, which stands for any type
to be used as actual generic parameter in a generic derivation: some
derivations might use a reference type, others an expanded type.

Tuple types are, as a consequence of the definition, reference types.

Basic type
The basic types areBOOLEAN, CHARACTERand its sized
variants,INTEGERand itssizedvariants,REAL and itssized
variants andPOINTER.

Like most other types, the basic types are defined by classes, found in the
Kernel Library. In other words they are not predefined, “magic” types, but
fit in the normal class-based type system of Eiffel.

Compilers typically know about them, so that they can generate code
that performs arithmetic and relational operations as fast as in lower-level
languages where basic types are built-in. This is only for efficient
implementation: semantically, the basic types are just like other class types.

→ Genericity is dis-
cussed in the next chap-
ter.

→Detailed inchapter30.

→Seechapters36about
ARRAY andSTRING
and13 about tuples.

→ Chapter30.
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The basic types need some special conformance properties. In general,
a typeU conforms to a typeT only if U’s base class is a descendant ofT’s
base class. But thenINTEGER, for example, is not a descendant ofREAL.
Since mathematical tradition suggests allowing the assignmentr := i for r
of typeREALandi of type INTEGER, the definition of conformance will
include a small number ofspecial cases for basic types.

Except forPOINTERwhich has no exported feature of its own, each of the
basic classes describes the operations applicable to values of the corresponding
type (booleans, characters etc.). For compatibility with traditional arithmetic
notation, many of the feature identifiers areUnaryor Binary.

11.10 ANCHORED TYPES

The originality of anAnchoredtype, the last category in this chapter, is that
it carries a provision for automatic redefinition in descendants of the class
where it appears.

An Anchored type is of the form

with the predictable definitions:

Anchored types avoid “redefinition avalanche”. As long as what you
only consider what happens in a classC, declaring an entity of typelike
anchorin C is the same as declaring it of the same type asanchor, sayT.
The difference comes from inheritance: if any descendant ofC redefines
the type ofanchorto a new type (conforming toT), it will be considered to
have also redefined all the entities anchored toanchor.

Since it is quite common to have a group of related entities that must
keep the same type throughout their redefinitions, anchored declaration is
essential to the smooth functioning of the type system. Without it we would
constantly be writing lots of new declarations serving no other purpose
than type specialization.

like anchor

Anchor, anchored type, anchored entity
Theanchor of an anchored typelike anchoris theentityanchor.
A declaration of an entity with such a type is ananchored
declaration, and the entity itself is ananchored entity.

The anchor must be either an entity, orCurrent . If an entity,anchormust
be the final name of a feature of the enclosing class.

→ “EXPANDED TYPE
CONFORMANCE”,
14.9, page 394.
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Anchored examples

We already encountered anchored declarations in the discussion of
redeclaration; the example was that of a routine in the Data Structure
Library classLINKED_LIST:

whose argumentlc represents a list cell. This declaration “anchors”lc to
first_element, a feature of the class declared of typeLINKABLE [G] (the
type representing list cells). As a result,lc itself is considered in
LINKED_LIST to have the same type asfirst_element, LINKABLE [G].
Because lc has been anchored tofirst_element, any descendant of
LINKED_LISTwhich redefinesfirst_elementto a new type, taking into
account more specific forms of list cells (such as cells chained both ways,
or tree nodes), does not need to redefinelc and all similar entities of the
class: their types will automatically follow the redeclared type of their
anchor,first_element.

Anchoring is often useful for arguments of “set” procedures. If class
EMPLOYEEhas an attributeassignmentof typeEMPLOYEE_ASSIGNMENT,
and an associated procedure

it isusuallybepreferable touse the typelike assignmenttodeclare theargument
a. Within the given class, the effect is the same, sinceassignmentis of type
EMPLOYEE_ASSIGNMENT; but if a descendant redefinesassignmentto a
morespecific type—suchasENGINEERING_ASSIGNMENT—thesignature
of the procedureset_assignment will automatically follow.

Anchoring to Current

You may useCurrentas anchor. Declaringx of typelike Current in a class
C is equivalent to declaring it of typeC in C, and redeclaring it of typeD
in any proper descendantD of C.

put_element(lc: like first_element; i: INTEGER)

set_assignment(a: EMPLOYEE_ASSIGNMENT)
-- Makea the employee’s current assignment.

require
exists: a /= Void

do
assignment:= a

ensure
set: assignment= a

end

→ The encounter was
towards theendof10.9,
page 269.

Warning: this is not the
recommended style —
see text.pl
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Among other advantages, this technique avoids lengthy redefinitions.
LINKABLE, mentioned earlier, relies on it. A list cell has a reference to its
right neighbor:

The attributeright denotes that reference in classLINKABLE, where it is
anchored toCurrent:

This declaration guarantees that in any more specialized version of
LINKABLE, described by a proper descendant of classLINKABLE, right
will automatically denote to objects of the descendant type. An example is
classBI_LINKABLE, representing elements chained both ways:

In this case the anchored declaration guarantees that a doubly linked list
element is only used in conjunction with other elements of the same (or a
more specialized) type. Another descendant ofLINKABLE is a class
describing tree nodes; here too, the anchoring guarantees that tree nodes
only refer to other tree nodes, not to simpleLINKABLE elements.

Anchoring to an expanded or generic

In like x wherex is a query or argument, there is no particular restriction
on the typeT of x. In the most common caseT will be a reference type, but
it may also be anything else, such as:

• An anchored type itself — under a no-cycle requirement explained below.

• An expanded type.

• A Formal_generic_namerepresenting a generic parameter of the
enclosing class.

• A Tuple_type.

right: like Current

item right
Linkable list
cell
This figure and the next
appeared previously on
page270.

item rightleft Bi-linkable list
cell
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f
The expanded case is not very exciting because redefinition possiblitiesare
very limited for the anchor. It enables you, however, to emphasize that a
group of expanded entities must have the same type, and facilitates
switching between reference and expanded status if you don’t get the first
time around. [NOTE: NEXT TWO SECTIONS WILL PROBABLY BE
REMOVED.]

The formal parameter case is more subtle. Ifx is of typeG in a class
C [G], like x denotes the actual generic parameter corresponding toG.
Declaringy: like x has, within the text ofC, the same effect as declaringy
of type G. With z of type C [T] for some typeT, the ruleson genericity
imply thatz.y has typeT. If C has a featuref (u: like x), a callz. f(v) will
be valid only if the type ofv is exactlyT — not another type conforming to
T, as would be valid ifu was declared just with the typeG.

The same spirit guides the interpretation oflike t, wheret is of a tuple
type such asTUPLE [A, B, C]. If u is declared asTUPLE [A, B, C], the
conformancerulesontupletypes let us assign tou not only a tuple such as
[a1, b1, c1] (with a1 of typeA and so on) but also a longer tuple such as
[a1, b1, c1, d1, e1] as long as the initial items are of the requisite types (A,
B andC respectively). But withu of typelike t, only a tuple of exactly three
elements will be permissible. This means that you can have your choice
between a lax interpretation of tuple types (tuples ofn items or more, for
some n) and a restrictive one (tuples of exactlyn items). The strict
interpretation will be useful in particular forroutine agents.

→ As a consequence o
“Redeclaration rule”,
page 313 and“Dir ect
conformance:expanded
types”,  page 396.

→ “GenericTypeAdap-
tation rule”,  page 367;
see also“THE TYPE
OFANEXPRESSION”,
28.11, page 782.

→ “TUPLE TYPE
CONFORMANCE”,
14.10,page396. On the
rules for agents, see
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Avoiding anchor cycles

To go from the preceding informal presentation of anchored types to their
precise constraint and semantics requires that we address the issue of
anchor chains and prohibit cycles.

The syntax permitsx to be declared of typelike anchor if anchor is
itself anchored, of typelike other_anchor. Although most developments do
not need such anchor chains, they turn out to be occasionally useful for
advanced applications. But then of course we must make sure that an
anchor chain is meaningful, by excluding cycles such asa declared aslike
b, b aslike c, andc aslike a. The following definition helps.

Anchor set; cyclic anchor
The anchor setof a typeT is the set ofentities containing, for
every anchored typelike anchorinvolved inT:
• anchor.

• (Recursively) the anchor set of the type ofanchor.

An entity a of type T is a cyclic anchor if the anchor set ofT
includesa itself.

The anchor set ofLIST [like a, HASH_TABLE[like b, STRING]] is,
according to this definition, the set{ a, b} .

Because of genericity, the cycles that make an anchor “cyclic” might
occur not directly through the anchors but through the types they involve,
as witha of typeLIST [like b] whereb is of typelike a. Here we say that a
type “involves” all the types appearing in its definition, as captured by the
following definition.

Types and classes involved in a type
The typesinvolved in a typeT are the following:
• T itself.

• If T is of the form a T’ where a is an Attachment_mark:
(recursively) the types involved inT’.

• If T is agenericallyderivedClass_typeor aTuple_type: all the
types (recursively) involved in any of its actual parameters.

The classesinvolved in T are thebaseclasses of the types
involved inT.
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Validity and semantics of anchored types

---------------

The notions just introduced enable us to define the validity of anchored types.
Every type has andeanchoredversion, an “unfoldedform” which expands
thelike:

A [B, C, LIST [ARRAY[D]]] involves itself as well asB, C, D, ARRAY[D]
andLIST [ARRAY[D]. The notion ofcyclic anchorcaptures this notion in
full generality; the basic rule, stated next, will be that ifa is a cyclic anchor
you may not use it as anchor: the typelike a will be invalid.

Deanchored form of a type
The deanchored form of a type T in a classC is the type
(Class_or_tuple_type or Formal_generic) defined as follows:
1 • If T is like Current : thecurrent type ofC.

2 • If T is like anchor where the typeAT of anchor is not
anchored: (recursively) the deanchored form ofAT.

3 • If T is like anchorwhere the typeATof anchoris anchored but
anchor is not acyclic anchor: (recursively) the deanchored
form of AT in C.

4 • If T is a AT, wherea is anAttachment_mark: a DT, whereDT
is (recursively) the deanchored form ofAT deprived of its
Attachment_mark if any.

5 • If none of the previous cases applies:T after replacement of
any actual parameter by (recursively) its deanchored form.

← “TWO-TIER DEFI-
NITION AND
UNFOLDEDFORMS”,
2.11, page 100.
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Other than the no-cycle requirement, the rule on anchors is liberal. In
particularan anchor’s type may be expanded, or aFormal_generic_name.
Anchoring is of limited benefit in these cases, since the conformance rules
leave little possibility of redeclaration for an entity of expanded or formal
generic types. But an anchored declaration can cause no harm, and still has
the benefits of clarity and concision.

Now for the semantics. When we declarea as being of typelike anchor
with anchorof typeT we considera, for all practical purposes — such as
deciding what features are applicable toa — to be of typeT too. So the base
type oflike anchorwill be T, or more generally the base type ofT (since we
allowT itself to belike other_anchoror some other non-primitive type). So in

we may consider, within the function’s body, thatResultis of typeANY.
Similarly, with

Although useful mostly for anchored types, the notion of “deanchored
form” is, thanks to the phrasing of the definition, applicable toany type.
Informally, the deanchored form yields, for an anchored type, what the type
“really means”, in terms of its anchor’s type. It reflects the role of
anchoring as what programmers might call a macro mechanism, a
notational convenience to define types in terms of others.

Case4 enables us to treat? like anchoras a detachable type whether the type
of anchor is attached or detachable.

Anchored Type rule VTAT

It is valid to use an anchored typeAT of the formlike anchorin
a classC if and only if it satisfies the following conditions:
1 •anchor is eitherCurrent or the final name of a query ofC.

2 •anchor is not acyclic anchor.

3 • Thedeanchored formUT of AT is valid inC.

Thebase class andbase type ofAT are those ofUT.

An anchored type has no properties of its own; it stands as an abbreviation
for its unfolded form. You will not, for example, find special conformance
rules for anchored type, but should simply apply the usual conformance
rules to its deanchored form.

frozen clone(other: ANY): like otheris … do … end

set_assignment(a: like assignment) is … do … end
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whereassignmentis an attribute of typeEMPLOYEE_ASSIGNMENT, we
may treata, within set_assignment, as being of that same type.

The “current type”, used in thelike Current case, is the class name
equipped with its generic parameters if applicable. So for alike Current
declaration in classPARAGRAPHthe base type isPARAGRAPH; in class
HASH_TABLE[G, KEY –> HASHABLE] it is HASH_TABLE[G, KEY].
This notion will be discussed in the next chapter.

“Expansion status” means whether the type is expanded or reference. In the
of anchoring to aFormal_generic_name, as withlike G in a classC [G], we
shall see that the expansion status ofG depends on every particular generic
derivation: it is the same as the expansion status of the corresponding actual
generic parameter. The status oflike G will follow.

The Anchored Type rule legitimates the use of a recursive definition of the
above semantic rule. To determine the base type oflike anchorwe must
look at the type ofanchor, which might itself involve one or more types of
the formlike other_anchor, leading us to look at the type ofother_anchor
and so on. Because the Anchored Type rule requiresanchorto be a non-
cyclic anchor, this process will always terminate. This also applies to the
process of determining whether the type is reference or expanded.

11.11 GUARANTEEING ATTACHMENT

-----ADD EXPLANATIONS

Anchored declaration is essentially a syntactical device: you may always
replace it by explicit redefinition. But it is extremely useful in practice,
avoiding much code duplication when you must deal with a set of entities
(attributes, function results, routine arguments) which should all follow
suit whenever a proper descendant redefines the type of one of them, to
take advantage of the descendant’s more specific context.

Attached, detachable
A type is detachable if its deanchoredform is a Class_type
declared with the? Attachment_mark.
A type isattached if it is not detachable.

By taking the “deanchored form”, we can apply the concepts of “attached”
and “detachable” to an anchored typelike a, by just looking at the type of
a and finding out whether it is attached or not.

As a consequence of this definition, an expanded type is attached.

As the following semantic definition indicates, the idea of declaring a
type as attached is to guarantee that its values will never be void.

→ “CURRENTTYPE,
FEATURES OF A
TYPE”,  12.11, page
365.

→ “SEMANTICS OF
GENERIC TYPES”,
12.10, page 363.
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11.12 STAND-ALONE TYPES

------------

----

Attached type semantics

Every run-timevalue of anattachedtype is non-void (attached to
an object).

In contrast, values of a detachable type may be void.

These definitions rely on the run-time notion of avaluebeing attached
(to an object) or void. So there is a distinction between thestaticproperty
that an entity is attached (meaning that language rules guarantee that its
run-time values will never be void) or detachable, and thedynamic
property that, at some point during execution, its value will be attached or
not. If there’s any risk of confusion we may say “statically attached” for the
entity, and “dynamically attached” for the run-time property of its value.

The validity and semantic rules, in particular on attachment operations,
ensure that attached types indeed deserve this qualification, by initializing
all the corresponding entities to attached values, and protecting them in the
rest of their lives from attachment to void.

From the above semantics, the! mark appears useless since an absent
Attachment_markhas the same effect. The mark exists to ensure a smooth
transition: since earlier versions of Eiffel did not guarantee void-safety, types
were detachable by default. To facilitate adaptation to current Eiffel and
avoid breaking existing code, compilers may offer a compatibility option
(departing from the Standard, of course) that treats the absence of an
Attachment_markas equivalent to?. You can then use! to mark the types that
you have moved to the attached world and adapt your software at your own
pace, class by class if you wish, to the new, void-safe convention.

Stand-alone type
A Type is stand-alone if and only if it involves neither any
Anchoredtype nor anyFormal_generic_name.
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In general, the semantics of a type may be relative to the text of class in
which the type appears: if the type involves generic parameters or anchors,
we can only understand it with respect to some class context. A stand-alone
type always makes sense — and always makes the same sense —
regardless of the context.

We restrict ourselves to stand-alone types when we want a solidly
defined type that we can use anywhere. This is the case in the validity rules
enabling creation of arootobject for a system, and the definition of aonce
function.
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12
Genericity
12.1 OVERVIEW

The discussion of generically derived types will proceed as with other
kinds of type in the previous chapter: to define the semantics of a type, it
suffices to say whether it is reference or expanded, and to define itsbase
type, always a Class_or_tuple_type. If the type is itself a
Class_or_tuple_type, we must also define itsbase class, which determines
its instances. For exampleLIST[INTEGER] hasLISTas its base class, and
is its own base type.

A subsequent chapter discusses the relatedconformance properties.

12.2 GENERIC CLASSES

To obtain generically derived types, we start fromgeneric classessuch as
LIST, with one or moreformal generic parameterssuch asG.

Generic classes describe flexible structures having variants
parameterized by types. Often these arecontainer data structures, used
to gather objects of various possible types; examples include lists, stacks,
arrays and the like, which contain objects of arbitrary type. The generic
parameters of such classes specify the types of objects to be kept in the
container structures, such as the elements of an array.

The types discussed so far were directly defined by classes. Thegenericity
mechanism, still based on classes, gives us a new level of flexibility
throughtype parameterization. You may for example define a class as
LIST [G], yielding not just one type but many:LIST[INTEGER],
LIST [AIRPLANE] and so on, parameterized byG.

Parameterized classes such asLIST are known asgeneric classes; the
resulting types, such asLIST [INTEGER], are generically derived.
“Genericity” is the mechanism making generic classes and generic
derivations possible.

Two forms of genericity are available: withunconstrainedgenericity,G
represents an arbitrary type; withconstrainedgenericity, you can demand
certain properties of the types represented byG, enabling you to do more
with G in the class text.

→ Chapter14.

Container data struc-
tureswerementioned in
10.8, page 268.
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The following examples from EiffelBase show beginnings
(Class_headerfollowed byFormal_generics) of classes with unconstrained
generic parameters:

In each case,G is a formal generic parameter of the class, representing
the types of objects to be kept in an instance of the class – a tree, a linked
stack, an array. Classes may have more than one formal generic parameter;
the next section will give an example with two parameters.

To derive a type from a generic class — called thebase classof the
derivation — you must provide a type, called anactual generic
parameter, for each of the formal generic parameters of the base class.
This will yield agenerically derivedtype. The derived type is expanded if
the base class is expanded, a reference type otherwise. Generic derivation,
applied to the above base classes, will yield types such as

Instances of the first type represent trees of integers; instances of the
second one represent trees of paragraphs (that is to say, trees of instances
of the reference typePARAGRAPH); and so on. The base classes are,
respectively,TREE, TREE, LINKED_LIST, TREE andARRAY.

Since all these base classes have exactly one formal generic parameter,
each of the above generically derived types is obtained by providing one
actual generic parameter. The actual generic parameters areINTEGERfor
the first example,PARAGRAPHfor the second and third,TREE [TREE
[PARAGRAPH]] for the fourth, LINKED_LIST [TREE [LINKED_LIST
[PARAGRAPH]]]  for the last.

The actual generic parameter is a type; it may itself be generically
derived; the last two examples illustrate this possibility, which leads to
nested genericity without any limit on the depth of nesting.

In the syntax specification, the place where all this appears is the
Class_typeconstruct, introducedearlier as

Actual_generics hasn’t been defined until now. Here it is:

deferred class TREE[G] ...
class LINKED_LIST[G] ...
class ARRAY[G] ...

TREE[INTEGER]
TREE[PARAGRAPH]
LINKED_LIST[PARAGRAPH]]
TREE[TREE[PARAGRAPH]]
ARRAY[LINKED_LIST[TREE[LINKED_LIST[PARAGRAPH]]]]

Class_type=∆ Class_name [Actual_generics]

Actual generic parameters
Actual_generics=∆ "[" Type_list "]"

Type_list =∆ { Type "," …} +

← This was in the pre-
vious chapter, page
328.
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12.3 GENERIC CLASSES AND GENERIC DERIVATIONS

The construct that makes a class generic isFormal_generics, optionally
appearing after theClass_header of aClass_declaration, with this structure:

and a straightforward validity constraint:

The optionalConstraintpart of the form–>CONSTRAINING_TYPEputs
a requirement on acceptable actual generic parameters: they must conform
to theCONSTRAINING_TYPE. If it is not present, any type will do.

Formal generic parameters
Formal_generics=∆ "[" Formal_generic_list "]"

Formal_generic_list=∆ { Formal_generic ","…} +

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

Formal_generic_name=∆ [?] Identifier

Formal Generic rule VCFG

A Formal_genericspart of aClass_declarationis valid if and only
if every Formal_generic_nameG in its Formal_generic_list
satisfies the following conditions:
1 •G is different from the name of any class in theuniverse.

2 •G is different from any otherFormal_generic_nameappearing
in the sameFormal_genericspart.

Adding thefrozen qualification to a formal generic, as inD [frozen G]
rather than justC [G], means that conformance on the corresponding
generically derived classes requires identical actual parameters: whereas
C [U] conforms toC [T] if U conforms toT, D [U] does not conform to
D [T] if U is notT.

Adding the? mark to aFormal_generic_name, as in? G, means that the
class may declareself-initializing variables (variables that will be
initialized automatically on first use) of typeG; this requires that any actual
generic parameter that is an attached type must also be self-initializing, that
is to say, makedefault_create from ANY available for creation.

← Class_declaration
was given in chapter4,
which on page128pre-
viewed the syntax
shown here.

→Arulealsoapplies to
theConstraint part:
“Generic Constraint
rule”,  page 357.
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Let’s make the basic terminology precise:

Among the above examples,PARAGRAPHis non-generic, as a class and as
a type (any non-generic class is also a type).LINKED_LIST, TREEand
ARRAYare generic classes; to produce a generic derivation from one of
them, you choose a suitable actual generic parameter, and get a generically
derived type such asLINKED_LIST[INTEGER].

The expansion status of a generically derived typeT follows from its
base class, independently of the actual generic parameters:T is expanded
if its base class is an expanded class; otherwise it is a reference type.

12.4 SELF-INITIALIZING FORMAL PARAMETERS

---- EXPLAIN

Generic class; constrained, unconstrained
Any class declared with aFormal_genericspart (constrained or
not) is a generic class.
If a formal generic parameter of a generic class is declared with
a Constraint, the parameter isconstrained; if not, it is
unconstrained.
A generic class is itselfconstrained if it has at least one
constrained parameter,unconstrained otherwise.

A generic class does not describe a type but a template for a set of possible
types. To obtain an actual type, you must provide anActual_genericslist,
whose elements are themselves types. This has a name too, per the
following definition.

Generic derivation, non-generic type
The process of producing a type from a generic class by
providing actual generic parameters isgeneric derivation.
A type resulting from a generic derivation is agenerically
derived type, or justgeneric type.
A type that is not generically derived is anon-generic type.

It is preferable to stay away from the term “generic instantiation” (sometimes
used in place of “generic derivation”) as it creates a risk of confusion with the
normal meaning of “instantiation” in object-oriented development: therun-
time process of obtaining an object from a class.
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12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY

If a formal generic parameter is constrained, appearing asG –> T, the
constraintT determines what operations are applicable, in the class to an
entity of typeG: the features ofT. This will be formalized very simply by
defining the base type ofG, in this case, as beingT.

In the case of unconstrained genericity, we don’t know anything about
future actual generic parameters: inC [G], G can represent any type. The
only operations that we can apply in this case are those ofANY, since we
know every Eiffel class conforms toANY. We’ll in fact allow these
operations, and treatG as if it were constrained byANY.

This observation allows us to simplify the validity and semantics by
treating in the same way all formal generic parameters, constrained and
unconstrained, thanks to the following convention, which also allows us in
every case to talk about “the constraint” of a formal generic parameter:

--- For the language description, it’s convenient to avoid treating

A straightforward constraint applies to unconstrained generic derivations:
a generically derived type of the formC [T, …], whereC does not declare
any constraints for its generic parameters if any, is valid if and only if:

• C is indeed a generic class.

• The number ofTypecomponentsT, … in theActual_genericslist is the
same as the number ofFormal_generic parameters in the
Formal_generic_list of C’s declaration.

Self-initializing formal parameter
A Formal_generic_parameteris self-initializing if and only if its
declaration includes the optional? mark.

This is related to the notion of self-initializingtype: a type which makes
default_createfrom ANYavailable for creation. The rule will be that an
actual generic parameter corresponding to a self-initializing formal
parameter must itself, if attached, be a self-initializing type.

Constraint, constraining types of aFormal_generic

The constraint of a formal generic parameter is itsConstraint
part if present, and otherwiseANY.
Its constraining types are all the types listed in its
Constraining_typesif present, and otherwise justANY.

← “Universal Con-
formance principle”,
page 173.
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This property does not appear as a separate validity constraint since, thanks
to the ----- REWRITE notion of unfolded form, it will follow as a special
case of the validity rule for the constrained case, where we treat
unconstrained genericity as constrained byANY.

12.6 CONSTRAINED GENERICITY

In the above unconstrained examples of genericity, any type was acceptable
as actual generic parameter; this is because we do not require any special
property of the objects to be entered into an array, inserted into a tree or
pushed onto a stack. As long as operations applicable to all objects (such
as assignment, copying or equality testing) are available, we can write the
generic class, for exampleTREE[T], without any specific knowledge about
the actual types to be used forT.

In some cases, however, you will need a guarantee that these types
possess specific properties, so that the class text may apply certain
operations to the corresponding objects. A typical example is a generic
classVECTOR[T …] describing vectors, which must support an addition
operation. To add two vectors, you need the ability to add two vector
elements; in other words, you need an addition operation onT. ThenT
cannot be an arbitrary type.

With constrained genericity, you can guarantee thatT supports addition,
by requiring any actual generic parameter forT to be based on a descendant
of a class that includes an addition routine. The class will appear as

in reference to classNUMERICof the Kernel Library, describing numerical
values and having among others a featureplus alias "+" representing
addition. Numerical classes such asINTEGERandREALare descendants of
NUMERIC, as will be any class that you want to declare as providing a
number or number-like facility (for example classVECTORitself). The
Constraint part –> NUMERIC indicates that a generic derivation
VECTOR[SOME_TYPE] will be valid if and only ifSOME_TYPEconforms
to NUMERIC. So you may useVECTOR[INTEGER], VECTOR[REAL], or
evenVECTOR[VECTOR[INTEGER]] if you have madeVECTOR itself
inherit from NUMERIC, but not VECTOR[PARAGRAPH] if class
PARAGRAPHis not a descendant ofNUMERIC.

Class HASH_TABLE of EiffelBase provides another example of
constrained generic class. This class describes tables of elements,
retrievable through associated keys. Its text begins with

class VECTOR[G –> NUMERIC]…

class HASH_TABLE[G; KEY –> HASHABLE]...

This is a"constraint" on
"unconstrained" generic-
ity. Sometimes language
meets metalanguage.
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The class has two generic parameters. The first one,G, plays the same role
as those encountered in the previous section; it stands for the type of table
elements, and is unconstrained. The second one,KEY, is constrained by the
Kernel Library classHASHABLE.

The constraint means that the base class of any actual generic parameter
used forKEYmust be a descendant of the constraining class,HASHABLE.
HASHABLE is a simple Kernel Library class introducing a function

In other words, keys must be "hashable" into integer values. An example of
a class that inherits fromHASHABLEis the Kernel Library classSTRING,
describing character strings, for which a standardhash_codefunction is
provided. An example of a type generically derived fromHASH_TABLEis

As illustrated by these examples, the basic syntax for constrained formal
generic parameters includes, after the parameter, aConstraint of the form

The effect of such aConstraint, if present, is to restrict allowable actual
generic parameters to types that conform to the givenClass_or_tuple_type.

Recall that a typeC conforms to a typeB if the base class ofC is a descendant
of the base class ofB; also, if C is generically derived, its actual generic
parameters must (recursively) conform to those ofB. In theHASH_TABLE
case conformance is ensured by the property thatSTRING, as specified by the
Kernel Library, inherits fromHASHABLE.

Two supplementary facilities are available:

• You can require certain creation procedures.

• You can use multiple constraints.

The first of these enables you to write something like

hash_code: INTEGER
--Hash_code value

deferred
end

HASH_TABLE[PARAGRAPH; STRING]

–> Class_or_tuple_type

class D [G –> CONSTcreatecp1, cp2, … end] …

The –> symbol is remi-
niscent of the arrow
used in inheritance dia-
grams.

The next chapter covers
conformance.

→ See“CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9,page543for a full
discussion.
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wherecp1, cp2, … must be procedures of typeCONST. The purpose — as
explained in detail in the chapter on creation — is to allow creation of
objects of typeG: within the class, withx declared of typeG, you can use
a creation instruction of the formcreatex.cp1 (actuals) and similarly for
the other listed procedures, assuming validactualsarguments. A generic
derivationD [T] will then requireT to declare its versions ofcp1, cp2, …
as creation procedures. InCONSTitself, cp1, cp2, … must be procedures,
but they do not have to becreationprocedures, since what matters is to be
able to use them to create instances of actual generic parameters such asT.

The second facility enables you to specify multiple constraints, as in

meaning that any actual parameterT in a generic derivationD [T] must
conform toall of CONST1, CONST2, CONST3.

It is in fact possible to combine both of these two facilities, as in

More generally, as the rest of this chapter will show, multiple constraints
significantly complicate the syntax and validity of generic constraints, as well
as the definition of the base type for formal generic parameters. This is a typical
“borderline” facility, whose presence in the language is subject to criticism.

Most developments do not need it, but there are cases, mostly involving
libraries, when working without multiple constraints would make things
awkward. When you have control over all classes involved, you can in
principle get away with single constraints only, achieving the effect of
D [G –> {CONST1, CONST2}] by usingD [G –> {CONST12}] , after writing
a classCONST12that inherits fromCONST1andCONST2. But this doesn’t
work with pre-existing classes, especially those from the Kernel Library
and other fundamental libraries: with multiple constraints you can write
D [G –> { COMPARABLE, NUMERIC}] , which will acceptINTEGERor
REAL as an actual generic parameter; but defining a class
COMPARABLE_NUMERIC that inherits from COMPARABLE and
NUMERICwon’t help you sinceINTEGER, REALand the like do not know
it. And you cannot define new classes —NUMERIC_HASHABLEand so on
— for every potentially useful combination.

So even though multiple constraints are useful for only a minority of cases
and users, they arevery desirable to these users for those cases, explaining
why the language supports them in spite of the added complication.

12.7 RULES ON CONSTRAINED GENERICITY

Now for the precise syntax and validity of constrained genericity. The
construct that remains to be specified isConstraint:

class D [G –> {CONST1; CONST2, CONST3}] …

class D [G –> {CONST1; CONST2createcp1, cp2, … end}] …
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There are two validity rules. One governs theConstraintpart of the
declaration of a constrained generic class; the other, complementing the
Unconstrained Genericity rule, governs the validity of a type derived from
In addition, of course, the base class must exist in the universe; this is a
consequence of the Class Type rule. First:

Generic constraints
Constraint=∆ "–>" Constraining_types

[Constraint_creators]

Constraining_types=∆ Single_constraint|Multiple_constraint

Single_constraint=∆ Type[Renaming]

Renaming=∆ Renameend

Multiple_constraint=∆ "{" Constraint_list"}"

Constraint_list=∆ { Single_constraint"," …} +

Constraint_creators=∆ createFeature_listend

Generic Constraint rule VTGC

A Constraintpart appearing in theFormal_genericspart of a class
C is valid if and only if it satisfies the following conditions for
everySingle_constraintlisting a typeT in its Constraining_types:
1 •T involves no anchored type.

2 • If a Renamingclauserename rename_listend is present, a
class definition of the formclassNEW inherit BT rename
rename_listend (preceded bydeferred if the baseclass ofT
is deferred), whereBT is the base class ofT, would be valid.

This is a validity
“constraint” on the
generic “constraints”
of Eiffel classes.
Sometimes language
meets metalanguage.
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The last observation suggests a name for the resulting features:

The usual situation, with a declaration involving aConstraint_creators

the names listed,cp1, cp2, …, should denote procedures ofCONST. They
don’t have to becreationprocedures ofCONST— this will be required
only in the actual generic parameter, as stated by the next rule — and can
in fact be deferred, but they have to be known procedures ofCONSTso that
we can assess the validity of a creation call such ascreatex.cp1(actuals),
especially the validity of the chosenactuals.

--- EXPLAIN CLAUSE 4 (INCLUDING CASE OF TUPLES ---

Next, the rule for generically derived types. The two properties already
cited for the unconstrained case still apply: the number and types of actual
parameters must match those of the formal parameters. In addition:

• Wherever a formal generic parameter is constrained, the corresponding
actual parameter must conform to the constraining type or types.

There is no requirement here on theConstraint_creatorspart, although in
most cases it will list names (afterRenaming) of creation procedures of the
constraining types. The precise requirement is captured by other rules.

Condition2 implies that the features listed in theConstraint_creators
are, after possibleRenaming, names of features of one or more of the
constraining types, and that no clash remains that would violated the rules
on inheritance. In particular, you can use theRenamingeither to merge
features if they come from the same seeds, or (the other way around)
separate them.

If T is based on a deferred class the fictitious classNEW should be
declared asdeferred too, otherwise it would be invalid ifT has deferred
features. On the other hand,NEWcannot be valid ifT is based on a frozen
class; in this case it is indeed desirable to disallow the use ofT as a
constraint, since the purpose of declaring a classfrozen is to prevent
inheritance from it

Constraining creation features
If G is a formal generic parameter of a class, theconstraining
creators of G are the features ofG’s Constraining_types, if any,
corresponding after possibleRenamingto the feature names
listed in theConstraining_creators if present.

Constraining creators should be creation procedures, but not necessarily (as
seen below) in the constraining types themselves; only their instantiatable
descendants are subject to this rule.

class D [G –> CONSTcreatecp1, cp2, … end] …
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• If there is a Constraint_creatorspart requiring some creation
procedures, these must indeed be creation procedures in the actual
generic parameter.

Here is the precise formulation:

At first the phrasing of clause2 seems more complicated than
necessary: why must the actual generic parameter conform not just toD but
to “the type obtained by applying toU by ...”? This is to permitrecursive
generic constraints, as detailed next. For most practical cases, however,
you can understand clause2 as if it just read

The role of this condition is to make sure that if the operations of a class
C […, G, …] may include creations on targets of the formal generic type
G, any associated actual generic parameterT will support such creations.
The basic

Generic Derivation rule VTGD

Let C be a generic class. AClass_typeCThavingC asbaseclass
is valid if and only if it satisfies the following conditions for every
actual generic parameterT and every Single_constraintU
appearing in the constraint for the corresponding formal generic
parameterG:
1 • The number of Type components inCT’s Actual_genericslist

is the same as the number ofFormal_genericparameters in the
Formal_generic_list of C’s declaration.

2 •T conforms to the type obtained by applying toU thegeneric
substitution ofCT.

3 • If C is expanded,CT is generic-creation-ready.

4 • If G is a self-initializing formal parameter andT is attached,
thenT is aself-initializing type.

In the case of unconstrained generic parameters, only condition1 applies,
since the constraint in that case isANY, which trivially satisfies the other
two conditions.

Condition3 follows from thesemanticrule permitting “lazy” creation
of entities of expanded types on first use, throughdefault_create. Generic-
creation-readiness (definednext) is a condition on the actual generic
parameters that makes such initialization safe if it may involve creation of
objects whose type is the corresponding formal parameters.

Condition4 guarantees that ifC relies, for some of its variables of type
G, on automatic initialization on first use,T provides it, if attached
(remember that this includes the case of expanded types), by making
default_createfromANYavailable for creation. IfT is detachable this is not
needed, sinceVoid will be a suitable initialization value.

→ Page360.
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“T conforms to the constraining type”

12.8 CONSTRAINTS AND CREATION

Consider a formal generic parameterG; under what conditions can we
create an object of typeG, for example through an instruction
createx.make(…) with x of type G in one of the routines of the class?
Including a Constraint_creatorsenables you to specify the applicable
creation procedures forG, as in G –> CONSTcreate makeend. The
corresponding actual generic parameters will then have to provide the
listed features, heremake, as creation procedures when needed. This is not
a constraint on all generic derivations, however; only on those raising the
possibility of a creation on the corresponding parameter. So at this stage we
don’t have a constraint, just a definition:

Generic-creation-ready type
A type of base classC is generic-creation-readyif and only if
every actual generic parameterT of its deanchoredform satisfies
the following conditions:
1 • If the specification of the corresponding formal generic

parameter includes aConstraint_creators, theversions inT of
the constraining creators for the corresponding formal
parameter arecreationprocedures,availablefor creation toC,
andT is (recursively) generic-creation-ready.

2 • If T is expanded, it is (recursively) generic-creation-ready.
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--------- NEXT SECTIONS OBSOLETE

Clause --- covers the case of aConstraint including a
Constraint_creatorsand complements the preceding rule (Generic
Constraint). In

the Generic Constraint rule requiredcp1, cp2, … to be procedures of
CONST. In a generic derivationD [T], T must be, as per clause2, a type
conforming toCONST; in addition, clause --- tells us thatT must make sure
to specifycp1, cp2, … as creation procedures. (As a consequence, they
cannot for example be deferred.)

Both of these clauses apply to every constraining type in the case of a
multiple constraintD [G –> {CONST1, CONST2}]

No specific validity rule applies to the generic constraints themselves (CONST,
CONST1, CONST2). A generic constraint must simply be a valid type. It might
even involve a generic parameter, or evenbea generic parameter; this is the
case of “recursive generic constraints”, the topic of the next section.

Although phrased so that it is applicable to any type, the condition is only
interesting for generically derived types of the formC […, T, …]. Non-
generically-derived types satisfy it trivially since there is no applicableT.

The role of this condition is to make sure that if classC […, G , …]
may cause a creation operation on a target of typeG — as permitted only
if the class appears asC […, G –>CONSTcreatecp1, … end, …] — then
the corresponding actual parameters, such asT, will support the given
features — the “constraining creators” — as creation procedures.

It might then appear that generic-creation-readiness is a validity
requirement onany actual generic parameter. But this would be more
restrictive than we need. For exampleT might be a deferred type; then it
cannot have any creation procedures, but that’s still OK because we cannot
create instances ofT, only of its effective descendants. Only if it is possible
to create an actual object of the type do we require generic-creation-
readiness. Overall, we need generic-creation-readiness only in specific
cases, including:

• For the creation type of a creation operation: conditions4 of the
Creation Instruction rule and3 of the Creation Expression rule.

• For aParent in anInheritance part: condition6 of theParent rule.

• For an expanded type: condition3of the just seenGenericDerivationrule.

class D [G –> CONSTcreatecp1, cp2, … end] …

→ Pages553 and562.

← Page178.

← Page359.
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12.9 RECURSIVE GENERIC CONSTRAINTS

(The case described in this section does not arise in elementary uses, and
may be skipped in a first reading.)

To understand the last part of clause2 of the Constrained Genericity
rule, assume you want to define a class as

This makes perfect sense and the intent is clear: you want to allow any type
of the formC [T, U] whereT is an arbitrary type andU is ARRAY[T] or a
type conforming toARRAY[T]. So the following will be valid

But for exampleC [INTEGER, REAL] is not valid. Similarly, you should
be able to define

meaning: the first actual generic parameter must conform to the first, and
conversely. Only derivations of the formC [T, T], using the same type as
actual generic parameter, will be valid. Unlike the first example, this
scheme seems useless, but there is no reason to disallow it.

This explains the phrasing of clause2 of the Constrained Genericity
rule. The simpler phrasing

“T conforms to the constraining type”

is appropriate in ordinary, non-recursive cases; but in our first example
ARRAY[INTEGER] does not conform toARRAY[G]; actually this
conformance question is meaningless since there usually won’t even be a
typeG in the class that wants to useC [INTEGER; ARRAY[INTEGER]] .
Similarly, in theC [G –>H; H –> G] example, if we want to useC [T, T] in
a certain class other thanC, the questions “doesT conform toG?” and
“doesT conform toH?” are meaningless in that class.

For such conformance questions to become meaningful, we must first
replace, in the constraint, any occurrence of a formal parameter by the
corresponding actual parameter. Hence the rephrased clause:

“T conforms to the type obtained from the constraining type by
replacing every ocurrence of a formal generic parameter ofC by the
corresponding actual generic parameter inCT.”

classC [G; H –> ARRAY[G]] ...

C [INTEGER; ARRAY[INTEGER]]
C [POLYGON; ARRAYED_LIST[POLYGON]]

-- WhereARRAYED_LIST is a descendant ofARRAY

classC [G –>H; H –> G] ...

The Class Type rule
appeared on page333.
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12.10 SEMANTICS OF GENERIC TYPES

We must now define the semantics of types involving genericity. This
includes both generically derived types andFormal_generic_name
(covering the formal generic parameters themselves, when used as types
within the class text).

As noted in the previous chapter, defining the semantics of a type involves
saying whether it is expanded or reference, and specifying its base type, as
well as its base class if it is aClass_type.

For a generically derivedClass_typethe definition is an immediate
generalization of thenon-generic case:

The other case is formal generics. In a generic classC […, G, …], a
formal parameterG, constrained or unconstrained (syntactically known as
a Formal_generic_name), stands for any type to be provided as actual
parameter in generic derivations of the class. Within the text ofC, you may
useG wherever the syntax requires a type.

For example, the EiffelBase text of

declares a number of features usingGorKEYas type of an argument, result
or local variable. Typical is the function

whichusesbothof theformalgenericparametersasFormal_generic_nametypes.

It is in fact easier to start with the constrained case. For a constrained
parameter such asKEY, the only available information is provided by the
constraining type, hereHASHABLE; the features of that type’s base class
are the only operations that we know can be applied to entities of the
Formal_generic_nametype. The rule follows, applicable to the case of a
single constraint (the next section will address multiple constraints):

Generically derived class type semantics

A genericallyderivedClass_typeof the formC […], whereC is
a generic class, isexpanded ifC is anexpandedclass,reference
otherwise. It is its ownbase type, and itsbase class isC.

SoLINKED_LIST[POLYGON] is its own base type, and its base class is
LINKED_LIST.

class HASH_TABLE[G; KEY –> HASHABLE]...

item(access_key: KEY): G
-- Item associated withaccess_key, if present;
-- otherwise default value of typeG.

do… Routine body omitted… end

← “Type Semantics
rule”,  page 333.

← “Non-genericclass
typesemantics”,page
335.

The type of the function
result in theactualclass
is notexactlyGbutlike
last_put’ , where
‘ last_put’ is an
attribute of typeG.
See11.10, page 339
below, on such
"anchored" types.
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In C [G –> I, I –> T, H–> E [G, H]] (unlikely to arise in practice):

• The constraint ofI is T (case1).

• Applying constraint ofG is T, the base type ofI: case2 first gives .

• Without the substitutio

As usual for a type that is not aClass_or_tuple_type, the base class of a
Formal_generic_nametype is its base type’s base class. SoHASHABLE, in
the classHASH_TABLE[G; KEY–>HASHABLE], is both the base type
and the base class ofKEY.

What about an unconstrainedFormal_generic_namesuch asG in
HASH_TABLE? Every object ever manipulated by a system is an instance
of some class, and every developer-written class is a descendant of the
universal library classANY. In other words,HASH_TABLEcould be
equivalently declared as

This is a general rule: we consider an unconstrained generic parameter as
if it were constrained byANY. Hence the definition of the base type for
unconstrained generics, a special case of the preceding rule:

Base type of a single-constrained formal generic
Thebasetype of a constrainedFormal_generic_nameG having
as itsconstraining types aSingle_constraint listing a typeT is:
1 • If T is aClass_or_tuple_type: T.

2 • Otherwise (T is aFormal_generic_name): the base type ofT if
it can be determined by (recursively) case1, otherwiseANY.

The definition is never cyclic since the only recursive part is the use of case
1 from case2.

Case1 is the common one: forC [G –> T] we use as base type ofG, in
C, the base type ofT. We need case2 to make sure that this definition is not
cyclic, because we permit cases such asC [G, H–> D [G]] , and as a
consequence cases such asC [G –> H, H–> G] or evenC [G –> G] even
though they are not useful; both of these examples yieldANYas base types
for the parameters.

As a result of thedefinition of “constraining types”, the base type of an
unconstrained formal generic, such asG in C [G], is alsoANY.

class HASH_TABLE[G –> ANY; KEY –> HASHABLE]...

Base type of an unconstrained formal generic
The base type of an unconstrainedFormal_generic_nametype
is ANY.

← See the Base rule,
page332.

← “ANY”,  6.5, page
172;seealsochapter35
for more details.
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This also enables us to consider that every formal generic parameter has a
constraining type, taking it to beANY for an unconstrained parameter.

The last definitions do not give the full semantics of a
Formal_generic_nametype, but only its base type. We also need to specify
whether the type is reference or expanded. This is, however, the one case
in which we can’t know for sure: only the actual parameter passed in a
particular generic derivation will tell.

12.11 CURRENT TYPE, FEATURES OF A TYPE

This discussion of genericity — now complete except for the special case
of multiple constraints covered below — leads to a notion that will be
convenient in future discussions. The presentation of classes noted that
every Eiffel construct is part of a class, thecurrentclass. Often, what we
will need is not just a class but a type. Hence the notion ofcurrent type. As
long as classes were not generic, the current type was the same as the
current class; but now the notion becomes more interesting, although
straightforward.

Assume that we are asked “what is the type of valid targets forf ?”,
wheref is a feature of a generic classC [G]. The answer is, of course,C [G]
itself. Answering “the current class” would not do, sinceC by itself is not
a type — only a type template, which yields a type if we provide an
appropriate generic parameter.

This is one of the lessons of this chapter: the concepts of class and type
— although closely related since every type is based on a class— are not
identical. The difference comes not only from genericity but also from
anchoring; the answer to the question “what is the base type oflike Current
in C?” would also beC [G].

This will be called thecurrent type:

Reference or expanded status of a formal generic
A Formal_generic_namerepresents areference type or
expandedtype depending on the corresponding status of the
associated actual generic parameter in a particulargeneric
derivation.

Current type
Within a class text, thecurrent type is the type obtained from the
current class by providing as actual generic parameters, if
required, the class’s own formal generic parameters.

Clearly, the base class of the current type is always the current class.

← “THE CURRENT
CLASS”,4.5,page117.
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In the same vein, since the type will often be our first source of
information — before the underlying class — it is also useful to allow
ourselves to extend the notion of “features of a class”:

You may note in particular that with genericity we often need to refer to
the type rather than the class. If a generic classC [G] has a feature

then for a of type C [T] (a type generically derived from C by using T as
actual generic parameter) a call of the form

requires an argument y of type T (not G, which is only a placeholder within
the text of class C). This means that to understand f and its type properties
fully we need to consider not just as afeature of a certain class(the class
C) but as afeature of a certain type(the typeC [T]).

12.12 APPLYING GENERICITY TO TYPES

Genericity means that we must be careful when using terms such as “the
type of an expression” or “the type of a feature” if a generic derivation is
involved. Consider a generic class

and a clientD with a declaration

for some typeT, for exampleINTEGERor ARRAY[REAL]. In the context
of classD we may ask the questions:

• What is the type ofx.some_query?

• What expressionsy are valid in a callx.some_routine(y)?

Features of a type
The features of a type are the features of itsbase class.

These are the features applicable to the type’s instances (which are also
instances of its base class).

f (x: G)

a.f (y)

classC [G] feature

some_query: G

some_routine(arg: G) is do … end

… Other features…
end

x: C [T]
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Viewed from withinC the type ofsome_queryis G, but this makes no sense
in the context ofx.some_queryas used inD, where we may consider that
G is simply a placeholder for the actual generic parameter,T in this case -
--- .

Similarly, an argumenty that we will pass in the callx.some_routine(y)
must be of typeG or conforming.

These observations lead to the following substitution rule:

In the examples cited this yields the typeT, as desired, both as the result
type of x.some_queryand as the type to which arguments to
x.some_routine(…) must conform.

12.13 THE CASE OF MULTIPLE CONSTRAINTS

(This last section covers an advanced technique needed only in special
cases. On first reading you may skip to the next chapter.)

As noted, it is possible for aFormal_generic_nameto have several
constraints, as in

The role of the base class and type, as usual, is to tell us what featuresf we
may use for a callx.f (...) for x of typeG. In the case of a single constraint
CONST1, the answer was simply: those ofCONST1.

Here, the basic idea is just as straightforward: we will acceptf as long
as it denotes a feature inany of the constraining types.

Generic substitution
Every typeT defines a mappingσ from names to types known as
its generic substitution:
1 • If T is generically derived, σ associates to every

Formal_generic_name the corresponding actual parameter.

2 • Otherwise,σ is the identity substitution.

Generic Type Adaptation rule

The signature of an entity or featuref of a typeT of baseclassC
is the result of applyingT’s generic substitution to the signature
of f in C.

The signature include both the type of an entity or query, and the argument
types for a routine; the rule is applicable to both parts.

class D [G –> {CONST1, CONST2, CONST3}] …
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Of course, the same feature name might denote features in several of
these types. That’s not to scare us, since we know that any valid actual
generic parameterT for G will have to inherit from all of theCONSTi and
hence resolve the conflicts according to the rules of the preceding chapters
(renaming, sharing or select under repeated inheritance). But this may still
leave some ambiguities as to whatx.f (...)means forx of typeG in classD.
To keep matters simple we take the following rule:

----- TO BE UPDATED TO ACCOUNT FOR NEW RENAMING ----

1 • If all the matchingf in the constraining types have a common seed
(meaning they all come from a single feature of a common ancestor, as
would be the case iff is equalor print from classANY), there won’t be
any problem: in any acceptable actual generic parameterT for G, either
the corresponding version off will be shared, or aselectwill designate
one of the versions as the official one forT.

• Otherwise, there will be a name clash thatT will have to resolve through
renaming, but we don’t want to go into this. We just renounce the
feature for entities of typeG.

• -----------------

•

•

The following validity constraint expresses this rule:

--- EXPLAIN CLAUSE 2 ---

Generically constrained feature name
Consider a generic classC, a constrainedFormal_generic_name
G of C, a typeT appearing as one of theConstraining_typesfor
G, and a featuref of namefnamein the baseclass ofT. The
generically constrained namesof f for G in C are:
1 • If one or moreSingle_constraintclauses forT include a

Renamepart with a clausefname as ename, where the
Feature_namepart of ename(an Extended_feature_name) is
gname: all suchgname.

2 • Otherwise: justfname.
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Can we stop here? Not quite. We do need a precise notion of base type
reflecting the Multiple Constraints rule. Although there is nothing
inherently difficult in the rule, turning it into a definition of the base type
for a multiply constrainedFormal_generic_namerequires some care.
Intuitively this base type should be the “lowest common ancestor” of the
constraintsCONST1, CONST2,…, but there is no such notion: the set of
common ancestors — a non-empty set since it contains at leastANY —
doesn’t necessarily include one that inherits from all the others, as in this
situation if there are no other non-kernel classes involved:

To obtain a theoretical answer (the practical answer being given by the
informal rule above), we simply build a fictitious “lowest common
ancestor” with all conflicts removed. Hence the definition:

Multiple Constraints rule VTMC

A feature of namefnameis applicable in a classC to a targetx
whose type is aFormal_generic_nameG constrained by two or
more typesCONST1, CONST2,…, if and only if it satisfies the
following conditions:
1 • At least one of theCONSTi has a feature available toC whose

generically constrained name forG in C is fname.
2 • If this is the case for two or more of theCONSTi, all the

corresponding features are the same.

Base type of a multi-constraint formal generic type
The basetype of a multiply constrainedFormal_generic_name
type is a type generically derived, with the same actual parameters
as the current class, from a fictitious class with none of the
optional parts except forFormal_genericsand anInheritance
clause that lists all the constraining types as parents, with the
givenRenamingclause if any, and resolves any conflicts between
potentially ambiguous features by further renaming them to new
names not available to developers.

CONST1

A

CONST2

B

No lowest
common
ancestor
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This definition is a little as if we decided to replace the above inheritance
structure by the following one, preventingA andB from resolving, each in
its own desired manner, any name clashes that might arise between features
of CONST1 andCONST2.

FICTITIOUS represents the constraint we would be using if we were
limited to a single constraint forG: features applicable toG, assuming the
declarationclassD [G –> {CONST1, CONST2}] , are those you could use
if the declaration wereclassD [G –> {FICTITIOUS}] .

Even though the basic idea of this definition is simple (you may apply
to a multiply constrainedFormal_genericany of the constraining types’
features that are not ambiguous), the recourse to a fictitious type is not too
pleasant conceptually, and explains the doubt, expressed earlier, whether
multiple constraints are really worth the trouble.

Note that the last validity rule, the Multiple Constraints rule, is
conceptually redundant. The general rule that governs the applicability of
a feature to a target is the Single-Level Call rule which (combined with the
Export rule, both in thechapteron calls) essentially states thatf is a valid
feature for the callx.f (...) if it is a feature of the base type ofx (and is
exported as appropriate). This is in fact the reason why take the trouble to
define the base type — always aClass_or_tuple_type, with clearly
identifiable features — for every kind of type. All that the Multiple
Constraints rule states is the application of the Single Call rule to the case
of a multiply constrainedFormal_generic_name, using the just given
definition of the base type in this case.

But the Single Call rule in this case is so indirect, relying through the
base type on a fictitious class, that compiler writers will likely prefer, for
the error message they display in case of a wrongf, to cite the Multiple
Constraints rule.

Artificial
lowest
common
ancestor

CONST1

A

CONST2

B

FICTITIOUS

→ “Class-Level Call
rule”,  page 636;
“Export rule”,  page
632.
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Tuples
13.1 OVERVIEW

13.2 TUPLES IN A NUTSHELL

The object-oriented type system of Eiffel is based on classes, possibly
equipped with generic parameters. Normally, you will give each class a name
and write a class declaration… classCLASS_NAME… end, as seen in
previous chapters. But in some simple cases it is convenient to define a class
without a name, by merely listing its properties at the place where you need
it. Such anonymous classescan only have elementary features: a few
attributes and the corresponding field-setting procedures. Being anonymous,
they require no specific class declaration: you just use atuple typeof the form

Based on a bare-bones form of class — with no class names — tuple types
provide a concise and elegant solution to a number of issues:

• Writing functions with multiple results, ensuring complete symmetry
with multiple arguments.

• Describing sequences of values of heterogeneous types, or “tuples”,
such as[some_integer, some_string, some_object], convenient for
example as arguments to printing routines.

• Achieving the effect of routines with a variable number of arguments.

• Achieving the effect of generic classes with a variable number of
generic parameters.

• Using simple classes, defined by a few attributes and the corresponding
assigner commands — similar to the “structures” or “records” of non-
O-O languages, but in line with O-O principles — without writing
explicit class declarations.

• Making possible theagent mechanism through which you can handle
routines as objects and define higher-order routines.

TUPLE[x1: T1; x2: T2; … ; xn: Tn]

→ Agents are the topic
of chapter27.
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where theTi are types. This has the same effect as if you were using a type
based on an explicit — non-anonymous — class withn attributes of names
x1, …, xn, of the types given, andn corresponding assigner commands
set_x1, …, set_xn, used to set the field values, with no preconditions. But
you don’t need to invent a class name or write a class declaration. The class
is implicitly defined by the tuple type.

A simple notation exists for describing instances of tuple types:\

wherev1 is of typeT1and so on. This is known as amanifest tuple. Here
you don’t need the labels (x1and so on). In fact you may omit them in the
tuple type too, writing it as justTUPLE[T1; T2; … Tn]; all you lose then
is the notationt.xi to access fields of a tuplet (although you can still uset.
item(i) which returns anANY), and similarly for modifying fields (useput).

The conformance rule for tuple types also ignores the labels:TUPLE[T,
U] conforms toTUPLE [T]; TUPLE [T, U, V] conforms toTUPLE [T, U];
and so on regardless of the presence of any labels.

Short as it is, the preceding description includes the essential properties of
anonymous classes and tuple types; the rest of this chapter gives the details..
On first reading you may move on to the next chapter.

13.3 USING TUPLE TYPES AND TUPLES

The syntax of tuple types is straightforward:

A Type_list, as firstintroduced for actual generic parameters, is a list of
types separated by commas or semicolons.Entity_declaration_listwas
defined inthe discussionof routines where it served to define the formal
arguments of a routine; here is its syntax again:

[v1, v2, …, vn]

Tuple types
Tuple_type=∆ TUPLE[Tuple_parameter_list]

Tuple_parameter_list=∆ "[" Tuple_parameters "]"

Tuple_parameters=∆ Type_list|Entity_declaration_list

Entity declarations
Entity_declaration_list=∆ {Entity_declaration_group";" …}

Entity_declaration_group=∆ Identifier_list Type_mark

Identifier_list =∆ Identifier "," …}*

Type_mark=∆ ":" Type

← Tuple_typeis one of
the variants ofType,
introduced page328.

← Page350.

← This first appeared
on page220.
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Manifest tuples, denoting tuple values, have the following syntax:\

The syntax forTuple_type permits examples such as:

The type names appearing in brackets afterTUPLE, if any, are called the
parameters of the tuple type, by analogy with the actual generic
parameters of a generically derived typeC [TYPE1, TYPE2]. The optional
names attached to individual parameters, such asi, j, r andp in example[3],
are thelabels of these parameters.

The syntactical analogy between tuple types and generically derived
types is intentional, but note that the two categories are different;TUPLE
is not a class name but a reserved word of the language.

Example[1] has no parameters. Examples[1] and[2] have parameters
but no labels. In the last two examples the parameters are labeled:i, r and
so on. Example[4] shows that a tuple type can have arbitrary constituent
types, including another tuple type.

The syntax implies that labels must be either present for all constituent
types, as in examples[3] and[4], or absent for all, as in[1] to [2].

A tuple type covers sequences of values, with types conforming to the
corresponding parameters. So the above examples havedirect instances
such as, respectively:

Manifest tuples
Manifest_tuple=∆ "[" Expression_list "]"

Expression_list=∆ { Expression "," …}*

TUPLE [1]
TUPLE[INTEGER] [1]
TUPLE[INTEGER, REAL, POLYGON] [2]
TUPLE[i, j: INTEGER; r: REAL; p: POLYGON] [3]
TUPLE[i, j: INTEGER; lr : LIST[REAL];

tpi: TUPLE[p: POLYGON; i: INTEGER]] [4]

[ ] -- Empty tuple

[25] -- Tuple with one integer element

[25, –-8.75, pol] -- With pol of typePOLYGON

[25, 32, –-8.75, p1]

[25, –-8.75, lr, [p1, 100]]-- With lr of typeLIST[REAL]
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The type of example[1], TUPLE with no parameters, doesn’t seem so
useful at first since its only direct instance is the empty tuple[ ] . But throw
in conformance and the picture changes. Theconformancerule for tuples,
previewed below, will state thatTUPLE [T1, …, Tn] always conforms to
TUPLE[T1, …, Tm] for n >= m— labels, if present, playing no part here.
So even though thedirect instances ofTUPLE[T1, …, Tm] are sequences
of exactlymvalues of the types given, theinstancesof this type include any
sequence ofmor more values, of which the firstmhave to conform to these
types, the following ones being arbitrary.

So [25, –-8.75, pol], given as a direct instance ofTUPLE [INTEGER,
REAL, POLYGON], is also an instance ofTUPLE [INTEGER, REAL], of
TUPLE [INTEGER], and of justTUPLE. More generally, every tuple type
conforms toTUPLE, and every tuple expression, such as the examples
above, is an instance ofTUPLE, although not a direct instance.

There is no specific validity constraint on tuple types, but theEntity
DeclarationRule requires all parameter labels, if present, to be different.
This doesn’t prevent a label from reappearing in the definition of a
parameter that is itself a tuple type, the wayi reappears in the last parameter
of example[4].

Two notions will help us define this semantics precisely. First, the
sequence of types associated with a tuple type:

This enables us to define the associated sequences of values:

Type sequence of a tuple type
Thetype sequenceof a tuple type is the sequence of types obtained
by listing its parameters, if any, in the order in which they appear,
every labeled parameter being listed as many times as it has labels.

The type sequence forTUPLE is empty; the type sequence for
TUPLE[INTEGER; REAL; POLYGON] is INTEGER, REAL, POLYGON;
the type sequence forTUPLE[i, j: INTEGER; r: REAL; p: POLYGON] is
INTEGER, INTEGER, REAL, POLYGON, whereINTEGERappears twice
because of the two labelsi, j.

Value sequences associated with a tuple type
Thevalue sequencesassociated with a tuple typeTare sequences of
values, each of the type appearing at the corresponding position inT’s
type sequence.

→ “CONFORMANCE
==== T O BE REWRIT-
TEN”, 13.5,page378be-
low (preview), “TUPLE
TYPE CONFORM-
ANCE”,  14.10, page
396 (full rule).

←Page221.



§13.4  ANONYMOUS CLASSES 375
13.4 ANONYMOUS CLASSES

==== THIS SECTION WILL BE REWRITTEN SHORTLY, IGNORE IT!

To capture the precise semantics of tuple types we must realize that the run-
time values they describe, tuples, are not just sequences of values but —
like everything else in a system’s execution — objects.

Like all other objects, these tuples are instances of classes; the only
difference is that you don’t have to write these classes. Instead, any tuple
type implicitly defines a class, said to beanonymous. An anonymous class
has the following features:

• count: INTEGER, the tuple size (number of values in a direct instance
of the tuple type).

• item(i: INTEGER): ANY, returning the value of thei-th item of a tuple,
for i between 1 andcount.

• put (x: ANY; i: INTEGER), to change the value of thei-th item,
applicable only ifx denotes a value whose type conforms to the type of
the corresponding parameter.

• For any labell associated with a parameterT, an attributel of type T,
returning the corresponding tuple item.

• For any such label, an assignment procedureassign"l", to assign values
to the corresponding tuple item.

Parameter labels play no role in the semantics of tuples and their
conformance properties. They never intervene in tuple expressions (such as
[25, –8.75,pol]). Their only use is to allow name-based access to tuple
fields, asyour_tuple.label, guaranteeing statically the type of the result.
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So with the declarations

you can perform the following instructions:

Featureitemandputboth use an integer argumenti indicating the position
of the tuple element to be accessed or replaced. Becausei is variable, these
features can use no type more precise thanANYas the type ofitem’s result
andput’s first argument:

As a result, any practical use ofANYwill need to perform an assignment
attempt on the result, like the assignment topoly2 in the third example
instruction above.

tuple4: TUPLE[i: INTEGER; Ij: NTEGER; r: REAL; p: POLYGON]

c, n: INTEGER

p1, p2, p3: POLYGON

x: SOME_TYPE

tuple4:= [25, –2, r, p1]

c := tuple4.count -- Assigns value 4 toc

if { p5: POLYGON} tuple4.item(4) then
-- Assigns value ofp1 to p5, but
-- note need for object test
-- sinceitem returns anANY

p5.polygon_operation
end

tuple4.put(p2, 4) -- Succeeds in replacing last item byp2
-- sincep2 is of typePOLYGON

tuple4.put (x, 4) -- Violates precondition ifSOME_TYPE
-- does not conform toPOLYGON.

n := tuple4.i -- Assigns value 25 ton

p3 := tuple4.p -- Assigns last item’s value,p2, to
-- p3; no need for object test

tuple4.p := p4 -- Replaces last item byp4

item(i: INTEGER): ANY
-- i-th item of tuple

put (v: ANY; i: INTEGER)
-- Replacei-th element of tuple byv.
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For an unlabeled parameter, you cannot do any better. But this is where
the labels, if present, come in handy: they are treated as attributes with the
associated assignment procedures. The last three examples illustrate this.
Our example typeTUPLE[i: INTEGER; INTEGER; REAL; p: POLYGON] is
equivalent to a class with four attributes, of which the first and last have
been given namesi andp, of respective typesINTEGERandPOLYGON.
This is how we can access the corresponding tuple itemstuple4.i and
tuple4.p, with the exact types — not justANY, and without assignment
attempt. Similarly we can perform procedure assignments, such as the last
example instructiontuple4.p |= poly5, with exact type checking.

Here is the precise definition of the anonymous classes associated with
tuple types. (You may skip the rest of this section on first reading.) The only
one of these classes that your software can explicitly use isANONYMOUS.
Eiffel compilers and tools are not required to build the other classes
explicitly; but the way they handle tuple types must be the same as if the
classes were actually present.

The definition proceeds by induction on the number of parameters.

TypeTUPLE, with no parameters, is considered as an abbreviation for
ANONYMOUS, the name of a Kernel Library class whose features have
been listed above:count, itemand so on. The precise specification of the
class appearsin the Kernel library chapter.

Then typeTUPLE[l1: X1; …; ln: Xn], with n ≥ 1, is defined by induction
as an abbreviation for a class

without thefeature clause if there is no label for the last parameterXn.
In that case, as noted, there is no way to access and modify then-th
component of a corresponding tuple other than throughitem and put,
which treat the item as being of typeANY.

classANONYMOUSn inherit

TUPLE[l1: X1; …; ln–1: Xn–1]

feature -- Access

ln: Xn assign

invariant

large_enough: count>= n

end

→“ANONYMOUS”,
A.6.20 CLASS, page 997.
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13.5 CONFORMANCE ==== TO BE REWRITTEN

TUPLE [l1: X1; …; ln: Xn], with or without labels, conforms to the
following types (the precise wording of the rule will appearin thechapter
on conformance):

1 • Any other tuple type with the same parametersX1, …, Xn. (In other
words: the labels don’t matter at all for conformance.)

2 • Any other tuple typeTUPLE[t1: X1; …; tm: Xm], again with some or all
of the labels possibly absent, form ≤ n. (So TUPLE [X] conforms to
TUPLE; TUPLE[X; Y] conforms toTUPLE[X], and so on.)

3 • Any array typeARRAY[T] such that every one of theXi conforms toT.
(This allows us to treat tuples as arrays if we want to.)

A mathematical note will be of interest to the curious reader (non-
mathematical readers should skip to the following section). The rule in case
2 seems to contradict mathematical intuition. We are used to considering that,
if U conforms toT, the instances ofU form a subset of the instances ofT. Case
2 then doesn’t look right if you think ofTUPLE [X, Y] as representing the
mathematical setX × Y — the cartesian product of the sets represented byX
andY. The rule states thatTUPLE [X, Y] conforms toTUPLE [X], but we do
not normally think ofX × Y as a subset ofX (or X × Y × Z as a subset ofX x
Y, and so on). The trivial relation is the other way around:X is in one-to-one
correspondence with a subset ofX x Y(the subset made of pairs of the form
[x, y0] for some arbitrary elementy0 of Y).

To remove this apparent paradox, it suffices to use another model than
cartesian product. ConsiderTUPLE [X1, …; Xn] as modeling a setTn of
partial functions fromN (the set of natural integers) to the setX of all possible
objects.Tn is the set of all such functionsf whose domain includes the interval
1, 2, …, n. Any tuple may be viewed as such a function; for example, the
tuple[a, b, c] is the functionf whose domain only includes the integers1, 2
and3, such thatf (1) = a, f (2) = b andf (3) = c.

With this interpretation the subsetting relation and the subtyping (conformance)
relation do coincide:TUPLE [X1, …, Xn+1] represents the set of functions
whose domain includes1, 2, …, n+1, a superset ofTUPLE[X1, …, Xn],
containing the functions whose domain includes1, 2, …, n.

13.6 MULTIPLE RESULTS AND VARIABLE NUMBERS OF ARGUMENTS

Tuple types enable us to remove two limitations of routines:

• A routine has either no result (procedure) or one (function); with tuples
we can provide the equivalent of a function with several results.

• A routine has a fixed number of arguments; with tuples we can provide
the equivalent of a variable number of arguments.

→ “TUPLE TYPE
CONFORMANCE”,
14.10, page 396.
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Emulating multiple results

Tuples allows us to handle routine arguments and routine results in a
consistent way. Most programming languages treat these two categories
non-symmetrically: a routine has zero or more arguments. but it has either
no result if it is a procedure, or, if it is a function,exactly oneresult. To
achieve the equivalent of a routine with multiple results you must write a
function that returns a — single — result, which happens to be a complex
object. This is sometimes inconvenient.

Eiffel has a simple rule. Conceptually, as captured by the definition of
“signatureof a feature”.every feature has a single tuple argument and a
single tuple result. This covers all special cases:

• Procedure: the result tuple is empty.

• Routine with no argument: the argument tuple is empty.

• Function with multiple results: the result tuple has more than one element.

Without tuples, we would need to address the last case by introducing a
class to represent the result type, with attributes representing the
components of the result, and procedures to set their values. This technique
works and it is justified if the new class covers a valuable abstraction. But
if not — if the class is just an artefact — it is needlessly heavy. Tuples give
you equivalent benefits without the burden of declaring a new class.

A typical example is a division routine returning both the quotient and
the remainder of a number, or other divisible object, by another. You may
write its header (for a suitableNUMBER type) as

and, in the body of the routine, have assignments of the form

Then you can use the function with

and access the two components of the result throughdiv.quotient and
div.remainder.

Thissymmetricwayofhandlingargumentsandresultspermitsaclearerandmore
concise style.

Note that a manifest tuple is an expression, not aVariable; so an assignment of
the form[a, b, c] := [1, 2, 3], or here[a, b, c] := number1/ number2, would be
syntactically invalid. The target of any assignment must be a single variable,
which here will be of a tuple type; this is the case withResult anddiv above.

dividedalias "/" (other: NUMBER):
TUPLE[quotient: NUMBER; remainder: NUMBER]

Result.quotient:= …
Result.remainder:= …

div := number1/ number2

← “THE SIGNATURE
OF A FEATURE”,
5.13, page 148.
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Emulating a variable number of arguments

A routine has a fixed signature, listing a set of arguments with set types. To
achieve the effect of a variable number of arguments we may, aspreviewed
in the discussion of routines, use an argument of typeTUPLE, and call the
routine with a tuple of arbitrary length, as in

where the corresponding routine might look like this:

13.7 TUPLES AS ARRAYS ==== TO BE REWRITTEN

Another application comes from case3 of the conformance properties
of the previous section, which specifies thatTUPLE[TA, TB, …] conforms
to ARRAY[T] if everyone of the typesTA, TB, … conforms toT. This
means that you can also treat a manifest tuple as amanifest array,
enabling you to initialize an array by giving the list of its elements, as in

with first_primesof type ARRAY[INTEGER]. Similarly, if some_routine
takes a formal argument of typeARRAY[T], you can call it as

where everyti is of a type conforming toT.

write ([your_integer, your_string, your_real])

write ( )
-- Print all elements ofvalues, under givenformat.

local
n: INTEGER; next: ANY

do
from n := 1until n > values.countloop

next := values.item(n)
if { i: INTEGER} nextthen

write_integer (i)
elseif{ r: REAL} nextthen

write_real(r)
… Other cases…
end

end

first_primes:= [1, 2, 3, 5, 7, 11, 13, 17]

some_routine([t1, t2, t3])

“USING A VARIABLE
NUMBER OF ARGU-
MENTS”,8.4,page221.
The example used there
had one more argument.

values: TUPLE
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14
Conformance
14.1 OVERVIEW

If this is your first reading, this simple explanation is probably sufficient to
understand the references to conformance in the rest of this book, and you
may want to move on right away to the next chapter.

These rules appear in the index with other validity codes under “validity
constraints”, as well as separately under “conformance rules”.

Conformance is the most important characteristic of the Eiffel type system:
it determines when a type may be used in lieu of another.

The most obvious use of conformance is to make assignment and
argument passing type-safe: forx of typeT andy of typeV, the instruction
x := y, and the callsome_routine(y) with x as formal argument, will only
be valid if V is compatiblewith T, meaning that it eitherconformsor
converts to T. Conformance also governs the validity of many other
constructs, as discussed below.

Conformance, as the rest of the type system, relies on inheritance. The
basic condition forV to conform toT is straightforward:

• The base class ofV must be a descendant of the base class ofT.

• If V is a generically derived type, its actual generic parameters must
conform to the corresponding ones inT: B [Y] conforms toA [X] only if
B conforms toA andY to X.

• If T is expanded, inheritance is not involved:V can only beT itself.

A full understanding of conformance requires the formal rules
explained below, which take into account the details of the type system:
constrained and unconstrained genericity, special rules for predefined
arithmetic types, tuple types, anchored types.

The following discussion introduces the various conformance rules of the
language as “DEFINITIONS”. Although not validity constraints themselves,
these rules play a central role in many of the constraints, so that language
processing tools such as compilers may need to refer to them in their error
messages. For that reason each rule has a validity code of the formVNCx.
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14.2 CONVERTIBILITY AND COMPATIBILITY

To permit assignment or argument passing, conformance is only one of the
two possibilities; the other isconvertibility , allowing reattachment
operations — assignment and argument passing — that convert the source
to the type of the target. Convertibility is particularly useful for arithmetic
types, allowing us to rely on standard mathematical conventions when
assigning, for example, an integer value to a real target.

Often, as in the rules for assignment and argument passing, we must
state that the type of an expressioneitherconforms or converts to that of an
entity. We need a term that covers both mechanisms:

It is also useful to extend this notion to expressions, so that we can say “y
is compatible withx” rather than “the type ofy is compatible with that of
x”::

For conformance we may define the notion now:

Compatibility between types
A type iscompatiblewith another if it eitherconforms orconverts
to it.

Compatibility between expressions
An expressionb is compatible with an expressiona if and only if
b eitherconforms orconverts toa.

Expression conformance
An expressionexpof typeSOURCEconforms to an expression
ent of type TARGETif and only if they satisfy the following
conditions:
1 •SOURCEconforms toTARGET.

2 • If TARGET is attached, so isSOURCE.

3 • If SOURCEis expanded, its version of the functioncloned
from ANY is available to thecurrent class.
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14.3 APPLICATIONS OF CONFORMANCE

Conformance governs the validity of many language constructs. For any of
the following to be valid,V mustconform toT, with x of typeT andy of
typeV:

• The assignmentx := y.

• The routine callr (…, y, …), wherex is the formal argument declared
in r at the position thaty has in the call.

• The creation instructioncreate { V} x …, which creates an instance of
V and attachesx to it.

• The redeclaration ofx as being of typeV in a proper descendant, where
x is an attribute, a function, or a routine argument.

• Any use ofC […, V, …] with V as actual generic parameter, where the
corresponding formal generic parameter ofC is constrained byT— in
other words, the class is declared asC […, G –> T, …].

As these examples indicate, conformance is originally a relation between
types: the language’s rules specify when a typeV conforms to a typeT.

The rest of this chapter starts with a generalization of the notion of
conformance, originally defined for types, to signatures. The discussion
then covers conformance rules for the various kinds of type studied in the
last three chapters: class types, first without genericity, then with genericity
added to the picture; formal generic parameters; expanded types; tuple
types; anchored types (including expression conformance).

So conformance of expressions is more than conformance of their types.
Both conditions2 and 3 are essential. Condition2 guarantees that
execution will never attach a void value to an entity declared of an attached
type — a declaration intended precisely to rule out that possibility, so that
the entity can be used as target of calls. Condition3 allows us, in the
semantics of attachment, to use a cloning operation when attaching an
object with “copy semantics”, without causing inconsistencies.

A later definition will state what it means for an expressionb to convert
to anothera. As a special case these properties also apply to entities.

Conformance and convertibility areexclusive of each other, so we study
the two mechanisms separately. The rest of the present discussion is
devoted to conformance.

→ “Conversion princi-
ple”,  page 408.

→ In the first two cases
(but none of the others)
VmayalsoconverttoT.
See chapter15.
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14.4 EXPRESSION AND SIGNATURE CONFORMANCE

We have already generalized the notion of conformance from types to
expressions. Another useful generalization is tosignatures. A signature
gives the full type information for a feature: the types of its arguments, if
any, and of its result, if any. Conformance of signatures is important
because it governs redeclaration: whenever you redeclare a feature, the
signature of the new version must conform to the signature of the original.

The definition of conformance for signatures will follow immediately
from the definition for types: a signaturet conforms to a signatures if and
only if every element oft (the type of an argument or result) conforms to
the corresponding element ofs.

More precisely, recall that a signature is a pair of sequences of the form

where all elements involved are types; theAi are the types of the formal
arguments (for a routine) andR is the result type (for a function or an
attribute). Either component of the pair, or both, may be empty (the first is
empty for an attribute or a routine without arguments; the second, for a
procedure). The second component has at most one element, but remember
that this element may be a tuple type, so for all practical purposes we can
deal with multiple-result functions.

Then from a definition of type conformance, as explored in the rest of
this chapter, we immediately infer a definition of signature conformance:

[A1, … An], [R]

Signature conformance VNCS

A signature t = [B1, … Bn], [S] conforms to a signature
s= [A1, … An], [R] if and only if it satisfies the following
conditions:
1 • Each of the two components oft has the same number of

elements as the corresponding component ofs.

2 • Each type in each of the two components oft conformsto the
corresponding type in the corresponding component ofs.

3 • Any Bi not identical to the correspondingAi is detachable.

For a signature to conform: the argument types must conform (for a
routine); the two signatures must both have a result type or both not have it
(meaning they are bothqueries, or both procedures); and if there are result
types, they must conform.

Condition 3 adds a particular rule for “covariant redefinition” of
arguments as defined next.

← The conformance
constraint for signa-
tures is clause2 of the
Redeclaration rule,
page313

← Signatures were
defined in“THE SIG-
NATURE OF A FEA-
TURE”, 5.13,page148.

A “query” is a function
or attribute, i.e. a fea-
ture returning a result.
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---------

14.5 DIRECT AND INDIRECT CONFORMANCE

Conformance is, with one restriction, a reflexive and transitive relation: any
type conforms to itself, and ifV conforms toU andU to T, thenV conforms
to T. (The restriction is thatT must not be expanded; see below.)

Also, replacing an actual generic parameter by a conforming type yields
a conforming type: ifYconforms toX, thenB [Y] conforms toB [X] for a class
B with one generic parameter; this generalizes to any number of parameters.

Covariant argument
In a redeclaration of a routine, a formal argument iscovariant if
its type differs from the type of the corresponding argument in at
least one of theparents’versions.

From the preceding signature conformance rule, the type of a covariant
argument will have to be declared asdetachable: you cannot redefine
f (x: T) into f (x: U) even ifU conforms toT; you may, however, redefine it
to f (x: ?U). This forces the body of the redefined version, when applying
to x any feature off, to ensure that the value is indeed attached to an
instance ofU by applying anObject_test, for example in the form

if { x: U} y then y.feature_of_U else… end

This protects the program fromcatcalls— wrongful uses, of a redefined
feature, through polymorphism and dynamic binding, to an actual
argument of the original, pre-covariant type.

The rule only applies toarguments, not results, which do not pose a risk
of catcall.

This rule is the reason why the Feature Declaration rule requires that if
any routine argument is of an anchored type, that type must be detachable,
since anchored declaration is a shorthand for explicit covariance.
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We may use these properties to simplify the study of conformance rules.
By considering the relationdirect conformance, which only covers the
case of a class conforming to a different one through no intermediary, we
can define general conformance by reflexive transitive closure:

General conformance VNCC

Let T andV be two types.V conforms to T if and only if one of
the following conditions holds:
1 •V andT are identical.
2 •V conforms directly toT.
3 •V is NONE andT is adetachablereference type.
4 •V is B [Y1,… Yn] whereB is a generic class,T is B [X1,… Xn],

and for everyXi the correspondingYi is identical toXi or, if the
corresponding formal parameter does not specifyfrozen,
conforms (recursively) toXi.

5 • For some typeU (recursively),V conforms to U and U
conforms toT.

6 •T or V or both are anchored types appearing in the same class
C, and thedeanchoredform of V in C (recursively) conforms
to the deanchored form ofT.

Cases1 and 2 are immediate: a type conforms to itself, and direct
conformance is a case of conformance.

Case3 introduces theclassNONEdescribing void values for references.
You may assign such a value to a variable of a reference type not declared
as attached (as the role of such declarations is precisely to exclude void
values); an expanded target is also excluded since it requires an object.

Case4 covers the replacement of one or more generic parameters by
conforming ones, keeping the same base class:B [Y] conforms toB [X] if
Y conforms toX. (This does not yet address conformance toB [Y1, … Yn]
of a typeCTbased on a classC different fromB.) Also note that thefrozen
specification is precisely intended to preclude conformance other than
from the given type to itself.

Case5 is indirect conformance through an intermediate typeU.

Finally, case6 allows us to treat any anchored type, for conformance as
for its other properties, as an abbreviation — a “macro” in programmer
terminology — for the type of its anchor.

Thanks to this definition of conformance in terms of direct
conformance, the remainder of the discussion of conformance only needs
to definedirect conformance rules for the various categories of type.

← See“NONE”,  6.6,
page 175.
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The general conformance rules follow: for any typeT, direct
conformance rules will yield the (possibly empty) setSTof types which
conform directly toT; then the types that conform toT areT itself, the
members ofST, and, recursively, ifT is a reference type, any type
conforming to a member ofST.

Before we move on, let’s give a name, “conformance path”, to the
sequence of types appearing implicitly in case5 of the definition. This
notion will be useful in particular in thediscussionof repeatedinheritance:

14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE

Let us begin with the simple but common and important case of
conformance to a reference typeB obtained directly from a non-generic
class. Then direct conformance is essentially inheritance:C conforms
directly toB if C is anheir of B. (As a consequence,D conforms toB if D
is adescendant of B.) C (andD) may be generically derived or not.

Assume for example class declarations beginning with

Then, ifX is any type, andY any type conforming toHASHABLE:

• C1 conforms directly toA1.

• C2 [X] conforms directly toA2.

• C3 [X, Y] conforms directly toA3.

These examples assume that all the types involved areattached (the
default). Indeed if the target type is attached the source type must be
attached too; otherwise — in an attachment made valid by the conformance
— we could end up assigning a void value to an attached entity

Conformance path
A conformance pathfrom a typeU to a typeT is a sequence of
typesT0, T1, … Tn (n ≥ 1) such thatT0 is U, Tn is T, and everyTi
(for 0 ≤ i < n) conformstoTi+1. This notion also applies toclasses
by considering the associatedbase classes.

class C1… inherit  A1…
class C2 [G] … inherit  A2…
expanded class C3 [G, H –> HASHABLE] … inherit  A3…

→ “THE REPEATED
INHERITANCE CON-
SISTENCY CON-
STRAINT”,  16.13,
page 463.

← “CURRENTTYPE,
FEATURES OF A
TYPE”,  12.11, page
365

C3is expanded,C1and
C2 are not; this has no
influence on the discus-
sion.ButA1,A2andA3
must not be expanded.
See14.9, page 394, on
conformance to
expanded types.
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Here then is the rule:

14.7 GENERICALLY DERIVED REFERENCE TYPES

---- SECTION TO BE REWRITTEN OR REMOVED ---

The next typing mechanism to take into account is genericity. A generic
class such as

raises two kinds of conformance issues. One is the conformance to a
generically derived typeBT based onB, of the formB [TK, TL, TM]. The
other is conformance properties of the formal parametersG, H, I …
themselves, which within the class text represent types. This section deals
with the first issue; the next one will cover formal parameters.

Direct conformance: reference types VNCN

A Class_typeCTof baseclassCconforms directly to areference
typeBT if and only if it satisfies the following conditions:
1 • Applying CT’s genericsubstitution to one of theconforming

parents ofC yieldsBT.

2 • If BT is attached, so isCT.

The restriction to a reference type in this rule applies only to the target of
the conformance,BT. The source,CT, may be expanded.

The basic condition,1, is inheritance. To handle genericity it applies the
“genericsubstitution” associated with every type: for example with a class
C [G, H] inheriting fromD [G], the typeC [T, U] has a generic substitution
associatingT to G andU to H. So it conforms to the result of applying that
substitution to theParentD [G]: the typeD [T].

Condition2 guarantees that we’ll never attach a value of a detachable
type — possibly void — to a target declared of an attached type; the
purpose of such a declaration is to avoid this very case. The other way
around, an attached type may conform to a detachable one.

This rule is the foundation of the conformance mechanism, relying on
the inheritance structure as the condition governing attachments and
redeclarations. The other rules cover refinements (involving in particular
genericity), iterations of the basic rule (as with “general conformance”)
and adaptations to special cases (such as expanded types).

class B [G, H –> DT, I] … end

As in the examples.

Conformanceof a
generically derived
type such as BT to a
non-generic one raises
no particular problem
and is covered by the
above rule on non-
generic conformance.
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When does a typeCTconforms toBTof the formB [TK, TL, TM]? For
identicalB andC we already have the answer from case4 of theGeneral
Conformancerule: it tells us that in this caseCT must be of the form
B [TR, TS, TT] with the same number of parameters, withTRconforming
to TK, TS to TL andTT to TM.

Thanks to this first rule, it suffices to examine the case of different base
classes, but the same actual generic parameters. Then to check
conformance of, say,C [Y] to B [X], you will check separately the
conformance ofC [Y] to B [Y], using the rule given below, and then show
thatY conforms toX, which will complete the deduction thanks to case4
of General Conformance.

This is the basic idea for the Generic Substitution rule given below. The
full rule is a little more delicate because of all the parameterization
involved, but the idea is easy to understand intuitively.

The reason we must be careful in stating the rule is that the two classes
involved, hereC and B, may have different formal generic parameters:
different in role, number or both. For example, given the above declaration
for B and

we will want the typeCT defined as

to conform to the typeBT defined above as

even though the number of generic parameters is different for each class.
Why CT should conform toBT is intuitively clear: if we interpret the text
of C for the actual generic parametersTL, corresponding toP, andTN,
corresponding toQ, the ParentB [TK, P, TM] listed in itsInheritanceclause
really stands forB [TK, TL, TM], which is preciselyBT.

On first reading, if you find this example sufficient to give an intuitive
understanding of conformance in such cases, you may wish to skip to the
next section.

class C [P –> DT, Q] inherit
B [TK, P, TM]
…

end

C [TL, TN]

B [TK, TL, TM]

← Page388.

See“EXPANDED
TYPE CONFORM-
ANCE”, 14.9,page394
about the expanded
case, for which con-
formance possibilities
are very limited.

The constraining type
DTplays no role in this
example.



CONFORMANCE §14.7392
As the example shows, we will need to use substitutions (of actual to
formal generic parameters) to ascertain direct conformance rigorously. If
{ x1, … , xn} and{ y1, … , yn} are sets with the same number of elements,
a substitution from the first set to the second is a one-to-one
correspondence between them, associating a different element of the
second to every element of the first. For example, a substitutionσ (among
six possible ones) from{ T, U, V}  to { L, M, N}  is given by the table

-----The notion of substitution serves to specify actual-formal
correspondence rigorously.

As in the non-generic case, you candisableconformance ofCT to BTeven in
the presence an inheritance link by usingnon-conforming inheritance.

To see that the rule is in fact easy to apply, let us use it to check that the type
CT defined in the above example asC [TL, TN] indeed conforms toBT,
defined asB [TK, TL, TM]. The assumption is thatB is declared asB [G, H,
I], with three formal parameters, and thatC [P, Q], with two formal
parameters, listsB [TK, P, TM] asParent.

The application is straightforward. Heren = 3 andm= 2; the types and
Formal_generic names appearing in the definition are:

X1 : TK X2: TL X3 : TM

G1 : G G2: H G3 : I

Y1 : TL Y2: TN

H1 : P H2 : Q

Z1 : TK Z2 : P Z3 : TM

The substitutionσ associatesY1 to H1 andY2 to H2. In other words, it
defines the associations

and leaves other elements unchanged. So applyingσ to theZj yields

σ maps: to:

T M

U N

V L

σ maps: to:

P TL

Q TN

σ maps: to: Comments

Z1 TK σ leavesZ1, i.e.TK, unchanged.

The number of possible
substitutions between
two sets ofnelements is
the factorial ofn, here
3! = 6.

← “NON-CONFORM-
ING INHERITANCE”,
6.8,page180.Theobser-
vation for non-generic
reference types was in
14.6, page 389.
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The three resulting typesTK, TL andTM are indeed, respectively,X1, X2
andX3, showing thatC [TL, TN] does conform directly toB [TK, TL, TM].

To show thatC [TL, TN] conforms toB [SK, SL, SM] if TK conforms to
SK, TL to SLandTM to SM, we would first use the Generic Substitution
rule, as was just done, to show conformance toB [TK, TL, TM], and then
apply case4 of the General Conformance rule to obtain the required actual
generic parameters.

14.8 FORMAL GENERIC PARAMETER CONFORMANCE

The next case is aFormal_generic_nametype: a formal generic parameter
to the enclosing class. In the text of a generic class

you may use the formal generic parametersG andH as types.G andH
illustrate the two kinds of generic parameters, placing different
requirements on the types to be used as the corresponding actual generic
parameters:G, unconstrained, stands for arbitrary types;H, constrained by
CT, stands for types that conform toCT.

As noted in the discussion of genericity, the base type of a constrained
Formal_generic_namesuch asH is the constraining type, hereCT. An
unconstrained genericFormal_generic_namesuch asG is considered to be
constrained by the universal classANY, which serves as its base type.

In both cases, theFormal_generic_namewill conform directly to its
constraining type (CTor ANY). In the reverse direction, however, no direct
conformance is possible: if we allowed assigning to an entity of typeG or
H an expression of a different type, we would have no way of guaranteeing
that this type is compatible for every possible actual generic parameter.

The rule for conformance to and from generic parameters follows from
these observations:

Z2 TL This is the result of applyingσ to Z2, i.e.P.

Z3 TM σ leavesZ3, i.e.TM, unchanged.

class C [G, H –> CT,…] … end

Direct conformance: formal generic VNCF

LetGbe a formal generic parameter of a classC, which in the text
of C may be used as aFormal_generic_name type. Then:
1 • No typeconforms directly to G.

2 •G conforms directly to every type listed in itsconstraint, and
to no other type.

This assumes a single
constraints. Multiple
constraints are
addressed below.

←12.3, page 351 pre-
sented unconstrained,
and12.6,page354con-
strained, genericity.
12.10, page 363
addressed the use of
generic parameters as
types, defining their
base type on page364
(page369for the multi-
constraint case).
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Remember from thegeneraldefinition of conformance that every type
conforms (not directly) to itself.

The last clause of the rule mentions “one or more” constraining types. This
is because we allowmore than one constraint, as in

whereG will conform to every one ofCONST1, CONST2, CONST3. As
noted in the discussion of genericity, this occurs only rarely; most uses of
constrained genericity limit themselves to one constraint as withC above.

In the case ofrecursive generic constraints, as in

the rule is applicable without any need for a special clause: within the text
of C, H represents a type that only conforms directly toARRAY[G]. This
corresponds to the property, ensured by theConstrainedGenericityrule,
that in a generic derivationC [T, U] the typeU must conform toARRAY[T].

14.9 EXPANDED TYPE CONFORMANCE

---------- TO BE REWRITTEN -----------

.

class D [G –> {CONST1, CONST2, CONST3}] …

classC [G, H –> ARRAY[G]] …

← Case1 of General
Conformance rule,
page388.
← “THE CASE OF
MULTIPLE CON-
STRAINTS”,  12.13,
page 367.

← “RECURSIVE
GENERIC CON-
STRAINTS”,  12.9,
page 362.

← Page359

Cannot copy
bigger object
onto smaller
one.

An instance of T

attrib1

attrib2

An instance of V

attrib1

attrib3

attrib2

V

T

Two classes

Typical instances

attrib1

attrib2

attrib3
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What about the reverse direction — conformance of an expanded typeET
to a reference typeRT? Here there is no implementation constraint since it
is always physically possible to reattach a reference to an object of arbitrary
size. But of course the attachment must be compatible with the type
system: the base type ofET must conform toRT.

y
BEFORE

x
AFTER

(Case 1)

(OBJ1)
y

(Case 2)

(OBJ1)

with copy
semantics

with ref
semantics

y

(Case 1)

(OBJ1)

x
(OBJ2)

with copy
semantics

with ref
semantics

y

(Case 2)

(OBJ1)

with copy
semantics
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These are the essential ideas. Now the details.

First let’s review the two forms of expanded type. Examples of the first
are ---- REMOVED ---------

Examples of the second case are

whereA andB have been declared asexpanded class(A non-generic,B
generic). These types are their own base types; the base classes areA and
B. The basic typesBOOLEAN, CHARACTER, INTEGER, REAL and
POINTER fall into this category.

---- REMOVED ------------

14.10 TUPLE TYPE CONFORMANCE

Next consider tuple types. A tuple type is of the form

A
B [X, Y, Z]

Direct conformance: expanded types VNCE

No typeconforms directly to anexpanded type.

From the definition of general conformance, an expanded typeET still
conforms, of course, to itself.ET may also conform to reference types as
allowed by the corresponding rule (VNCN); the corresponding assignments
will use copy semantics. But no other type (except, per General
Conformance, fore of type ET, the typelike e, an abbreviation forET)
conforms toET.

This rule might seem to preclude mixed-type operations of the kind widely
accepted for basic types, such asf (3) where the routinef has a formal
argument of typeREAL, oryour_integer_64:= your_integer_16with a target
of typeINTEGER_64and a source of typeINTEGER_16. Such attachments,
however, involveconversion from one type to another. What makes them
valid is not conformance butconvertibility , which does support a broad
range of safe mixed-type assignments.

TUPLE[label_1: T1; …; label_n: Tn]

→ .

→ Chapter15.
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where: the part in square brackets may be absent, giving the most
general tuple type,TUPLE; the Ti, if present, are types, called the
“parameters” of the tuple type; and any of the label partslabel_i: may
be absent. In fact, the labels will play no role in the conformance rules:
TUPLE [A], TUPLE [x: A] and TUPLE [y: A] are all equivalent for
conformance purposes.We saw that the only role of the labels is to
define assignable attributes in the corresponding types.

There are two sources of conformance for tuple types:

• A tuple type conforms to any other having the same initial sequence of
parametersT1, …, Tn, regardless of the labels present or not in either one.

• In addition, a special rule relates tuples to arrays. If we have a tuple
expression, especially in the form of a manifest tuple[x1, …, xn], it is
useful to treat it as an array. This will provide the equivalent of manifest
arrays — arrays defined by a list of their items — and is permitted by a
rule stating that a tuple type conforms toARRAY[T] if all of its
parameters conform toT.

The conformance rule for tuple types follows

----FOLLOWING NOT TRUE, REPLACE BY DISCUSSION OF
CONVERTIBIITY ---- allows tuples to be treated as arrays. So if every one
of the types ofx1, x2, …, xn conforms toT:

• You can write an assignmenta := [x1, x2, …, xn] wherea is of type
ARRAY[T]. This provides a simple means of array initialization, as in
ia := [1, 2, 3] for ia of typeARRAY[INTEGER].

• You can write a callsome_routine([x1, x2, …, xn]) where the
corresponding formal argument insome_routine is of typeARRAY[T].

Direct conformance: tuple types VNCT

A Tuple_typeU, of type sequenceus, conforms directly to a type
T if and only ifT satisfies the following conditions:
1 •T is a tuple type, of type sequencets.

2 • The length ofus is greater than or equal to the length ofts.

3 • For every elementX of ts, the corresponding element ofus
conforms toX.

No type conforms directly to a tuple type except as implied by
these conditions.

Labels, if present, play no part in the conformance.

← Chapter13 overed
tuples.
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14.11 ANCHORED TYPE CONFORMANCE

Anchored types greatly simplify, as you willremember, the management
of groups of entities that must keep the same type in redeclarations. An
anchored type is of the form

whereanchoris the name of an attribute, function or formal argument, or
Current. Such a declaration describes a type which is the same as the type
of anchor but will automatically follow any redefinition of the type of
anchor in a proper descendant. UsingCurrent as anchor means that the
type will be thecurrent type (class name with generic parameters if any).

There is no need for a special conformance rule, as thelastclause of the
General Conformance rule already told us that, for the purpose of
conformance, we should simply look at the “deanchored form” of an
anchored type.

like anchor

← “ANCHORED
TYPES”,  11.10, page
339.

← “CURRENT TYPE,
FEATURES OF A
TYPE”,  12.11, page
365.
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Convertibility
15.1 OVERVIEW

15.2 WHY IMPLICIT CONVERSION?

Even if you haven’t heard of convertibility before, you probably benefited
from it indirectly, even in elementary applications, if you ever mixed
different arithmetic types. Convertibility is indeed what allows you to write
an assignment of the formyour_real:= 10where the target is of typeREAL,
or a call such asroutine_expecting_a_real(10) where the routine has a
formal argument of typeREAL. In such cases you will expect the integer to
be converted to itsREAL equivalent.

Most programming languages handle such cases throughad hocrules
applying to a fixed set of arithmetic types. But there is no reason to deprive
programmers from applying this mechanism to their own types. It’s not just
a matter of consistency and generality but, as the examples in this chapter
should demonstrate, expressiveness and simplicity

Why indeed stop atINTEGERandREAL? Thanks to convertibility you
can define a classCOMPLEXthat makes the assignmentc := 10 valid for
c of typeCOMPLEX, with the effect of calling a conversion query to assign
to c the complex number[10.0, 0.0]. Similarly, you can write graphics
classes that permit assignments and argument passing between objects
representing images in PNG, JPEG, GIF and other graphics formats.

Complementing theconformancemechanism of the previous discussion,
convertibility lets you perform assignment and argument passing in cases
where conformance does not hold but you still want the operation to
succeed after adapting the source value to the target type.
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You can always in principle do without the conversion mechanism, by
explicitly calling routines to perform the needed transformations. The
semantics clearly defines conversion, in all cases, as anabbreviation for
such an explicit form:c := 10is a shorthand forcreatec.from_integer(10)
where classCOMPLEXhas a creation procedurefrom_integerthat has
been marked as aconversion procedure. In many cases, you may prefer to
stay away from the implicit mechanism, forcing the explicit form because
you feel it reflects more directly what is actually happening. Yet in some
cases the same criteria of expressiveness, clarity and simplicity favor
implicit conversions. This applies in particular when you frequently go
back and forth between two types that map one-to-one into each other’s
values; an example, detailed below, is the use of Eiffel on the Microsoft
.NET environment, which has its own form of string. To pass strings back
and forth between Eiffel and non-Eiffel routines would require, without the
conversion mechanism, polluting the code with countless calls to
from_dotnet and to_dotnet routines. Thanks to the conversion
specifications in classSTRING, you can instead use strings the way you
would in pure Eiffel, and let conversions happen automatically as needed.

In other cases, you will have to decide which is preferable: the
explicitness of routine calls, with the attendant verbosity; or the terseness
of implicit conversion. When you choose the latter, the validity rules ensure
that this cannot cause any ambiguity or surprise.

15.3 CONVERSION BASICS AND EXAMPLES

Here is the basic way to make conversions work. In the class representing
conversion targets, you may add after theCreatorspart, which lists creation
procedures, aConverterspart specifying that some of them areconversion
procedures, each with the types from which it will convert:

expanded class REAL_64inherit … create
from_integer, from_real_32, … Other creation procedures…

feature -- Initialization
from_integer(n: INTEGER)

-- Initialize by converting fromn.
do

… Conversion algorithm…
end

… Similarly for from_real_32…
… Rest of class omitted…
end

convert
from_integer({ INTEGER}),
from_real_32({ REAL_32})
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This suggests some basic terminology:

We’ll say that the conversion types, hereINTEGERandREAL_32, convert
to the current type, hereREAL_64. (Fuller definitionbelow.) The validity
rules imply that every conversion procedure is also a creation procedure.

By listing conversion procedures you permit assignments and argument
passing from the given conversion types to the current type, even though
there is no conformance relation between them. WithREAL_64as shown
the following assignments will be valid:

with exactly the same effect, respectively, as

Here you may omit thecreatein both cases sinceREAL_64is expanded, but
you would need it for a reference target type.

Similarly, you may use calls of the form

with the guarantee that the arguments will be converted toREAL_64, using
from_integer in the first case andfrom_real_32 in the second case.

This is the property that justifies mixed-type arithmetic expressions of
the form

since that notation is really,as you know, a shortcut for a function call

Conversion procedure, conversion type
A procedure whose name appears in aConvertersclause is a
conversion procedure.
A type listed in aConverters clause is aconversion type.

your_real_64:= your_integer
your_real_64:= your_real_32

createyour_real_64.from_integer(your_integer)
createyour_real_64.from_real_32(your_real_32)

routine_expecting_a_real_64(your_integer)
routine_expecting_a_real_64(your_real_32)

your_real + your_integer

your_real.plus(your_integer)

→ Page415.

As before this assumes
your_integer of type
INTEGERand so on.

Similarly: your_real +
your_real_32.
← “OPERATOR FEA-
TURES”,  5.15, page
154;also“THE EQUIV-
ALENT DOT FORM”,
28.8, page 780.
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where the functionplusalias "+" from REAL_64has a formal argument of
typeREAL_64; when we pass anINTEGERas in the above assignments, a
conversion will occur. So everything — well, almost everything — falls
into place: you can continue using arithmetic expressions as you know
them, mixing types if you wish, while respecting the type rules.

Why “almost” everything? Because the rule does not deal with such variants
asyour_integer + your_real: interpreted as a shortcut for the function call
your_integer.plus (your_real) it doesn’t work, sinceplus from INTEGER
expects an integer argument and cannot take aREAL. In such cases we need
the companion technique oftarget conversionpresentedbelow, allowing us
to start by converting the target,your_integer, to REAL, and then use the"+"
function fromREAL.

As a non-arithmetic example of conversion, a classDATE could start

allowing you to initialize a date entity from a[Day, Month, Year] tuple:

As before, this is really just an abbreviation forcreate your_date
te.from_tuple([1, "January", 2000]), but may be convenient, especially if
you move from assignment to argument passing as in

where the routine expects twoDATE arguments. We can express this
without conversions, through creation expressions, but the result is
noticeably heavier:

Some people may still prefer this second form since it makes it clear that
two new objects are being created. Others — including me, at least for such
examples — enjoy the simplicity and concision afforded by conversion.
The design of the mechanism, as detailed below, makes sure that no
surprise or ambiguity can arise.

No ambiguity can arise becauseINTEGER and REAL_32do not
conform to REAL_64, andTUPLE[INTEGER, INTEGER, INTEGER] does
not conform toDATE. So when you see

classDATEcreate
from_tuple, …

…

your_date:= [1, "January", 2000]

compute_revenue([1, "January", 2006], [1, "January", 2007])

compute_revenue(create{DATE}.from_tuple([1, "January", 2006]),
create{DATE}.from_tuple([1, "January", 2007]))

your_real_64:= your_integer

→ “MIXED-TYPE
EXPRESSIONS: TAR-
GET CONVERSION”,
15.12, page 428..

convert
from_tuple({ TUPLE[NATURAL, STRING, NATURAL]})
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or the assignment of a tuple toyour_date, you know immediately they can
only work through conversion. This is not just a feature of these examples
but akey principle of convertibility, ensuring clarity and safety.

15.4 CONVERSION QUERIES

The preceding examples illustrate the basic mechanism to specify that a
type U converts to a typeT: in the base class ofT, include a conversion
procedure allowing conversionfrom U. In principle, this covers all cases.
But a practical consideration suggests that we also need a conceptually
equivalent facility that works in the reverse direction, specifying
conversionsto T. Instead of a conversion procedure this variant will use a
conversion query.The reason we need it is that sometimesU is one of your
types butT is someone else’s, which you can’t modify, even just to add a
conversion procedure. All you can work on isU.

When you have access to bothT and U, the two mechanisms — a
conversion procedure fromU in T, or a conversion query toT in U — you
may use either mechanism for equivalent effect, but in keeping with
general goals of clarity and simplicity the validity rules will ensure that you
use only one.

As a typical example of the need for conversion querys consider type
OTHER_STRINGdenoting strings from some other language or
environment, which can be mapped to Eiffel strings but have their own
internal representation. (This is indeed the case withDOTNET_STRINGin
the version of EiffelStudio for Microsoft .NET, representing native .NET
strings.) In the Eiffel Kernel Library classSTRINGwe can provide a
conversion procedure as well as a function going the other way:

from_other(s: OTHER_STRING)
-- Initialize froms

to_other: OTHER_STRING
-- Representation in “other” form of current string

→ See below“CON-
VERSION PRINCI-
PLES”, 15.6,page408.
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Assuming that eiffel_routine expects an Eiffel STRING and
external_routineexpects anOTHER_STRINGwe could — without taking
advantage of the conversion mechanism yet — satisfy their requirements
through explicit transformations:

Now assume that we prefer the conversions to remain implicit (as is indeed
desirable in the .NET case, since a typical system using Eiffel for .NET
might have thousands of such back-and-forth transformations between the
Eiffel and .NET formats, and the repeated application of the above style
would clutter the code, damaging its readability by detracting from its more
important aspects). To allow replacing the first call[1] by just

it suffices, as illustrated in the previous section, to markfrom_otheras a
conversion procedure. But to allow replacing[2] by

you would need, if restricted to this technique, to add a conversion
procedure toOTHER_STRING. This won’t work if (as in the .NET case)
it’s an external class over which you have no control.

You may in such cases work from the other side — conversion source,
rather than target — by markingto_otheras a conversion query. The syntax
is predictable:

eiffel_string: STRING
external_string: OTHER_STRING
…
eiffel_routine( ) [1]

external_routine( ) [2]

eiffel_routine( ) [3]

external_routine( ) [4]

classSTRINGcreate
from_other, …

convert
from_other({ OTHER_STRING})

…

creates.from_other(external_string)

s.to_other

external_string

s

to_other: { OTHER_STRING}
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This allows[1]; in fact the effect is exactly the same as with the addition of
a creationprocedure to the other class:

but it works even if you can’t touch that other class.

The different syntax for listing the types:

• from_string for a creation procedure;

• to_other for a creation function

reflects the role of the corresponding values: as procedure argument in the
first case, as function result in the second. This is the reason in the procedure
case for using both parentheses and braces.

With conversion querys we must extend the preceding terminology:

Thedefinition ofconversion type, introduced in the context of conversion
procedures, also covers result types of conversion querys.

Another useful piece of terminology, for two typesT and U (non-
generically-derived) of base classesCTandCU: we say thatU converts to
T, and also thatT converts from U, if either:

• CT has a conversion procedure listingU as conversion type.

• CU has a conversion query listingT as conversion type.

These two cases are exclusive: were they to hold for the sameT andU,
conversions would be ambiguous, as they could apply either the procedure
or the function. As we’ll see shortly, the validity rules prohibit this,
removing any such confusion.

class create
from_string, …

convert

…

Conversion query, conversion feature
A query whose name appears in aConverters clause is a
conversion query.
A feature that is either a conversion procedure or a conversion
query is aconversion feature.

OTHER_STRING

from_string({ STRING})

({ STRING})

: {STRING}

← Page401..

→ For the full definition,
integrating genericity,
see below“Converting
to and from a type”,
page 415..
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15.5 USING CONVERSIONS PROPERLY

As noted at the beginning of this chapter you neverhave to include a
conversion facility in a class: whenever you feel you might be creating
confusion in the minds of the clients’ authors minds, you may provide
instead a creation procedure without making it a conversion procedure, or
a function without making it a conversion query. Indeed, in any of the
preceding examples, instead of

you may use one of the explicit forms

You may also choose a hybrid policy: make the creation procedure a
conversion procedure but for some types only, so that the first form is valid
only if the type ofsourceis one of those; the second form, with an explicit
Creation_instruction, remains available for other types, including types
which may conform or convert to the conversion types (an example
involving integer types appears next).

The general advice — a methodological principle, not a language rule
— is that a creation procedure should provide a conversion mechanism
only if the associated operation does not entail any loss of information. For
example it is OK to convert an integer to a 64-bit real silently through an
assignmentyour_real_64:= your_integer, as this can be implemented
without any loss of information. In the other direction, however, you must
choose between various forms of truncation and rounding. For that reason
INTEGERis listed as a convertible type in classREALbut not conversely.
To convert a real source to an integer target you have to use a creation
procedure as above, or something likeyour_integer :=
your_real_64.truncated.

ConvertingINTEGERto REALmay cause loss of information, but tradition,
perhaps misguided, suggests permitting assignment in this case.

target:= source

createtarget.conversion_procedure(source)
target:= source.conversion_query
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Sized INTEGERvariants provides an interesting example. The relevant
part of the inheritance hierarchy is

INTEGER_GENERALis the general notion; the other provide variants for
specific sizes: 8-bit integers and so on (INTEGER is 32 bits).

In classINTEGER_GENERAL you will find the claused

create
from_integer, … Other creation procedures…

convert
from_integer({ INTEGER, INTEGER_8, INTEGER_16,

INTEGER_32, INTEGER_64})
feature -- Initialization

from_integer(n: INTEGER_GENERAL)
-- Set fromn

do … Conversion algorithm… end
… Rest of class omitted…

INTEGER_

INTEGER_
GENERAL

8

INTEGER

INTEGER_
16

INTEGER_
32

INTEGER_
64

Integer type
inheritance
hierarchy

→ Extracted for the fig-
ure of page818, also
coveringREAL and
CHARACTERvariants.

From classINTEGER_
GENERAL
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SinceINTEGER_GENERALdescribes integers with an arbitrary precision,
it is safe to allow conversion from any of the sized integer types. But when
a sized variant is used as target, reattachments frombigger integers would
cause a loss of information (typically they may keep the least significant
digits). So we will only allow conversion from smaller integers; for
example classINTEGER has the clauses

As always with creation procedures, the creation status of a procedure in a
class is independent from the status it had in proper ancestors. SoINTEGER
is free to specify the creation status offrom_integer differently from
INTEGER_GENERAL.

So a reattachment such asyour_integer:= your_integer_8is valid but not
your_integer:= your_integer_64. Note, however, that from_integer
remains a creation procedure inINTEGER, and can take any argument of
type INTEGER_GENERAL, including anINTEGER_64which it will in
this case truncate. (The feature’s header comment mentions this, as header
comments always should in such cases.) So you can still write

(with acreate if you wish). This is a good policy in such cases: making an
conversion operation into a creation procedure, applicable to a wide range
of types, including some for which it may lose information; but specify as
conversion types only those for which there is no information loss.

15.6 CONVERSION PRINCIPLES

To ensure the clarity and safety of the mechanism, it is essential to rule out
any potential ambiguity. Three fundamental properties ensure this. They
are validity properties, but without codes of their own since they simply
follow from the validity rules introduced in the next section.

create
from_integer, … Other creation procedures…

your_integer.from_integer(your_integer_64)

Conversion principle

No type may bothconform andconvert to another.

Conversion Asymmetry principle

No type T may convert to another through both aconversion
procedure and aconversion query.

From classINTEGER
(32-bit).

convert
from_integer({ INTEGER_8, INTEGER_16})

→ “CREATORS AND
INHERITANCE”,
20.5, page 534.
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These principles avoids any surprise for software authors and readers.

As a result of the first principle, when you read

or a corresponding argument passing, forx andy of typesTX andTYwith
base classesCX andCY, you see immediately, which of conformance and
convertibility applies:

• If y conforms tox — becauseTX andTYare the same, or there’s direct
inheritance between their base classes — this is a plain attachment, with
no conversion involved.

• If the class texts specify that TY converts to TY, the attachment will
involve is a conversion

If neither of these cases holds, the attachment is invalid. If either holds, the
other doesn’t, as a result of the Conversion principle. So if an attachment
will cause a conversion, it’salwaysbecause the types don’t conform; since
reattachment otherwise requires conformance, you cannot — when reading
the text — miss the anomaly, immediately alerting you to the presence of
a conversion.

Eiffel tools can provide visual feedback to highlight that conversion;
EiffelStudio uses tooltips for this purpose:

Conversion Non-Transitivity principle

ThatVconvertstoU andU toTdoes not imply thatVconverts toT.

x := y

EiffelStudio:
tooltip
highlighting a
conversion
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Whereas the first principle removes conflicts between conformance and
convertibility, the second one makes sure that a conversion through a
procedure can’t compete with a conversion through a query.

The third principle follows from the observation that convertibility of a
type to another is always the result of an explicitconvert clause as
illustrated by the preceding examples. Conformance, for its part, isusually
transitive: from conformance ofV to U andU to T it generally follows that
V conforms toT, without any special mention in their base classes. That is
not the case for convertibility: all mentions must be explicit. The main
reason is that conversion involves a transformation of values, which should
always be explicit. With transitivity, additional transformations would
occur behind the scene.

When you do want multiple conversions, a specific expression syntax is
available: witht1, u1, v1 of respective typesT, U, V you may not, ifV
doesn’t conform or convert toT, uset1 := v1, but as detailedlater in this
chapter you may (assuming again thatV converts toU andU to T) write

where the expression, using amanifest type{ U} , denotesv1converted to
U. This makes the assignment valid sinceU convert toT. For even more
explicitness you may write{ T} { U} v1 (making the second conversion
explicit too); but this is not necessary since an attachment may always use
one implicit conversion.

15.7 CONVERSION SYNTAX AND VALIDITY

The syntax construct covering the mechanism as seen isConverters, one of
theclauses of aClass_declaration:

A validity rule coversConversion_procedureand another, very similar,
coversConversion_query. Here is the first:

t1 := {U}  v1

Converter clauses
Converters=∆ convert Converter_list

Converter_list=∆ { Converter","…} +

Converter=∆ Conversion_procedure|Conversion_query

Conversion_procedure=∆ Feature_name"(" " {" Type_list"}" " )"

Conversion_query=∆ Feature_name":" "{" Type_list"}"

← As per“General con-
formance”,  page 388.

← “CONVERTINGAN
EXPRESSIONEXPLIC-
ITLY”,  15.9, page 416.

← Page119.
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Even if CX is not expanded you can still letCY be an heir ofCX and
satisfy the rule: simply usenon-conforming inheritance. Under this form
of inheritanceCY has access to the features ofCY, and retains its invariant

Clause3 is the same as clause2 but applied to generic classes. In this
case the type to whichSOURCEmust not conform is, rather than the
current type, a type obtained from it by replacing every generic parameter
by its constraining type (with theusualconvention that an unconstrained
parameter is understood as constrained byANY). Why this clause? In
C [G –> CONSTRAINT] we want to preclude specifying conversion from
a type C [U] if U conforms toCONSTRAINT. This would create an

Conversion Procedure rule VYCP

A Conversion_procedurelisting aFeature_namefnand appearing
in a classC with currenttypeCT is valid if and only if it satisfies
the following conditions, applicable to every typeSOURCElisted
in its Type_list:
1 • fn is the name of acreation procedurecpof C.

2 • If C is not generic,SOURCEdoes notconform toCT.

3 • If C is generic,SOURCEdoes not conform to the type
obtained from CT by replacing every formal generic
parameter by itsconstraint.

4 •SOURCE’s baseclass is different from the base class of any
otherconversiontype listed for aConversion_procedurein the
Convertersclause ofC.

5 • The specification of the base class ofSOURCEdoes not list a
conversion query specifying a type of base classC.

6 •cphas exactly one formal argument, of a typeARG.

7 •SOURCEconforms toARG.

8 •SOURCEinvolves noanchored type.

Conditions2 and3 (the second one covering generic classes) express the
crucial requirement, ensuring the Conversion principle: no type that
conforms to the current type may convert to it.

In many practical uses of conversion the target classCX is expanded;
this is the case withREAL_64, and withREAL_32, to whichINTEGERalso
converts. Such cases satisfy condition2 almost automatically since
essentiallynoothertype conforms to an expanded type. But the validity of
a conversion specification does not require the enclosing class to be
expanded; all that condition2 states is that the conversion types must not
conform to it (more precisely, to the current type).

← “EXPANDEDTYPE
CONFORMANCE”,
14.9, page 394.

←This technique was
described in“NON-
CONFORMING
INHERITANCE”,  6.8,
page 180.

← “SEMANTICS OF
GENERIC TYPES”,
12.10, page 363.
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ambiguity for x := y with x of type C [T] and y of type C [U] whereU
conforms to T, and hence toCONSTRAINT: we would have both
convertibility and conformance, violating the Conversion principle. It is
not enough here, as in clause2, to prohibit conversion types from
conforming to the current type, hereC [G]: they must avoid conformance
to C [CONSTRAINT].

Clause4 further removes possible ambiguity by making sure that if a
class has two or more conversion procedures, as in

all the conversion types involved —T1, U1, T2, T3, U3 — are different. So
when you seex := y wherex is of type C you know which one of the
procedures will be called: the typeTYof y must be one of the conversion
types, and the assignment will use the corresponding creation procedure
(cp1 if T is T1 or U1 and so on).

To get rid of the last possible source of potential ambiguity and ensure
the Conversion Asymmetry principle, clause5 guarantees that
convertibility “from” a type U, as specified inC, doesn’t conflict with
convertibility “to” C specified inT. More precisely we prohibitU from
including a conversion query whose result type isbasedonC. Again this is
is because of the generic case: withC [G], constrained or not, specifying a
conversion fromU, we prohibitU from specifying a conversion toC [T] for
anyT. A less restrictive policy is possible, but it would have to affect the
rule on attachment, and we don’t want to break its simplicity —y can be
attached tox as long as it conforms or converts to it — for the sake of an
unlikely case. (Remember that in principle it would suffice to limit the
language toeither conversion procedures or conversion querys; the only
compelling reason for having both is to manage conversions to or from
classes we don’t control, as in the .NET case. But then we don’t expect, in
those existing classes, to find a conversion to or fromour own new types!)

We only require the conversion types to be different. It’s OK if some of them
conform or convert to others: we look at the exact type ofy and apply the
associated procedure. The Conversion Non-Transitivity principle tells us that
convertibility — unlike conformance — is never indirect. If the typeTYof y
is not one of the conversion types, but conforms to one of them, sayTZ, then
convertibility ofTZ to TXdoesnot makex := y valid. Conversion attachment
requires an exact match to the conversion type.

classC create
cp1, cp2, cp3, , …

convert
cp1({ T1, U1}), cp2({ T2}),  cp3({ T3, U3})

…
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Clause 6 requires every conversion procedure to have exactly one
argument, so that we can interpret an assignmentx := y as a creation call
createx.cp (y).

Clause7 make such an equivalence valid by ensuring that an argument
such asy — of typeTY if the conversion procedure was listed ascp ({TY})
— will be a valid argument tocp. The exact wording is thatTY must be
compatiblewith the formal argument typeARGof cp, meaning that it either
conforms or converts toARG; if it converts toARG, passingy tocpwill imply
another conversion. But that’s all: executingx := y (or, once again, the
corresponding argument passing) may cause at most two conversions. one to
converty to ARGif needed, another to convert the result toTX, the type ofx.
There is no danger of multiple behind-the-scenes conversions, or circularity.

The rule just discussed covers conversion procedures. Here is its
companion for conversion querys:

Conversion Query rule VYCQ

A Conversion_querylisting aFeature_namefn and appearing in
a classC with currenttypeCT is valid if and only if it satisfies the
following conditions, applicable to every typeTARGETlisted in
its Type_list:
1 • fn is the name of a queryf of C.

2 • If C is not generic,CT does notconform toTARGET.

3 • If C is generic, the type obtained fromCT by replacing every
formal generic parameter by itsconstraint does not conform to
TARGET.

4 •TARGET’s baseclass is different from the base class of any
other conversion type listed for aConversion_queryin the
Convertersclause ofC.

5 • The specification of the base class ofTARGETdoes not list a
conversion procedure specifying a type of base classC.

6 • f has no formal argument.

7 • The result type off conforms toTARGET.

8 •TARGETinvolves noanchored type.

Condition5 is redundant with condition5 of the Conversion Procedure rule
but is included anyway for symmetry. In case of violation, a compiler may
refer to either rule.

← “Compatibility
between types”,  page
384.
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Neither rule addresses the issue ofpreconditionsin conversion features. In
general, we don’t want any: an assignmentx := y, or an argument passing,
should not be subject to a precondition, even if it involves a conversion. This
requirement isaddressed a few sections down through the notion of
“converting an expression”.

These rules also enable us to give a precise definition of the principal
notion of this chapter, already used informally: that a type may “convert to”
another. First we define what it mean for a type to convert to aclass:

The preceding validity rules imply that the two cases are exclusive. In

the types that convert to classC are E1, E2 [G, H] and
TUPLE[H, INTEGER].

We must generalize this to the notion that a type converts to another
type. For a non-generic class such asREAL_64it’s the same, but with
genericity and tuples we need a small refinement involving the notion of
substitution, as with the conformance rule for generically derived types in
the discussionof conformance. WithD as shown above, the types
converting to D [X, Y] should be E1, E2 [X, Y], E3 [X] and
TUPLE[U, INTEGER]. Hence the definition:

Converting to a class
A typeT of base classCT converts toa classC if either:
• The deanchoredform of T appears asconversiontype for a

procedure in theConverters clause ofC.

• A typebasedonC appears as conversion type for a query in the
Converters clause ofCT.

class D [G, H] create
cv1, cv2, cv3…

convert
cv1({ E1}),
cv2({ E2 [G, H]},
cv3{ TUPLE[H, INTEGER]

…

← “GENERICALLY
DERIVED REFER-
ENCE TYPES”,  14.7,
page 390..



§15.8  SEMANTICS OF CONVERSION 415
T must be a class type: the target type of a conversion may not be anchored,
or a formal generic parameter. It must be of the formC for a non-generic
classC, orD [T, U] for a generic classD.

Since here are two ways — procedure and function — of specifying
convertibility, it’s convenient to give them names:

15.8 SEMANTICS OF CONVERSION

The specification ofwhento perform a conversion belongs to the semantics
of reattachment operations (assignment and argument passing) and
expressions. Here we should seewhata conversion will do. We define the
“conversion attachment” operation — not a construct of the language but a
purely semantic notion, useful in defining the semantics of reattachment:

Converting to and from a type
A typeU of baseclassD converts toaClass_typeT of base class
C if and only if either:
1 • Thedeanchoredform ofU is the result of applying thegeneric

substitution of the deanchored form ofT to aconversiontype
for a procedurecp appearing in theConverters clause ofC.

2 • The deanchored form ofT is the result of applying the generic
substitution of the deanchored form ofU to a conversion type
for a querycq appearing in theConvertersclause ofD.

A Class_typeT converts from a typeU if and only if U converts
to T.

Converting “through”
A typeU thatconverts to a typeT:
1 • Converts toT through a procedure cp if case 1 of the

definition of “converting to a type” applies.

2 • Converts to T through a query cq if case 2 of the
definition applies.

These terms also apply to “converting from” specifications.

From the definitions and validity rules, it’s clear that ifU converts toT then
it’s either — but not both — “through a procedure” or “through a query”,
and that exactly one routine,cp or f, meets the criteria in each case.
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15.9 CONVERTING AN EXPRESSION EXPLICITLY

When a typeU converts to a typeT, conversions will usually happen
implicitly as a result of a reattachement, as withvar := expwith var of type
T andexpof typeU. In addition, you can in some cases take advantage of
a form of expression that explicitly implies a conversion. There is no need
for a language mechanism to achieve this: a simple library feature does the
job.

Warning: the word “type”, in diverse shapes and colors and occasionally
several times in a row, occurs a lot in this section!

TYPE is a generic class of the Kernel Library, such that an instance of
TYPE[T], for any typeT, is a “type object” describing the properties of
some type conforming to it. (This is a “reflection” mechanism, giving
programs access, at run time, to some of their own properties.)

You can write manifest constants representing types: the notation

is aManifest_type, of typeTYPE[T]; it denotes a type object representingT.

In the declaration ofTYPE [G] we find the following innocent-
looking function:

Conversion semantics

Given an expressioneof typeU and a variablex of typeT, where
U convertsto T, the effect of aconversion attachmentof source
e and targetx is the same as the effect of either:
1 • If U converts toT through a procedurecp: the creation

instructioncreatex.cp (e).

2 • If U converts toT throughaquerycq: the assignmentx := e.cq.

This is an “unfoldedform” specification expressing the semantics of an
operation (conversion attachment) in terms of another: either a creation or
a query call. Both of these operations involve an attachment (argument
passing or assignment) and so may trigger one other conversion.

{ T}

adaptedalias "[]" ( x: G) : G

← “TWO-TIER DEFI-
NITION AND
UNFOLDEDFORMS”,
2.11, page 100

→ =====
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0which for any value of typeG returns a result of the same type. Not only
of the same type, actually, but representing the same value. It can indeed be
implemented just like this:

What then is the purpose? Think conversions (and conformance) and you’ll
see: in a call

whereyour_typeis of typeTYPE[T], representing some type conforming
to T, y must consequently be of typeT — or of a typeU compatiblewith T.
The feature will then return the value ofx, but adapted to typeT through
theprocess of attaching the actual argumentx of typeU to the formal x of
typeT. If U conforms toT the result is its original value; but in the case of
convertibility the routine will perform a conversion.

As an example using aManifest_type, you may write

where the target, a non-basic expression, must be parenthesized by(|…|).
But there’s a more convenient form: the functionadaptedis declared with
a “bracket alias”:adaptedalias "[]" ; this means that — like for theitem
feature of arrays, allowingyour_array [x] as a synonym for
your_array.item (x) — it can be used in bracket notation, yielding just

a simple and clear notation meaning:“ theT version ofy”. Thanks to the
signature of the functionadapted, this is valid if and only if the type ofy is
compatible withT.

adaptedalias "[]" ( x: G) : G
-- Value ofx, adapted if necessary to typeG
-- through conformance or conversion

do end

your_type.adapted(y) [5]

(|{ T}|).adapted(y) [6]

[7]

Result := x

Note the recommended
form: see next.

Note the recommended
form: see next.

{ T} [ y]
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Let us give this a name:

In most usual cases of conversion you do not need to specify such a
Manifest_type; the earlier example showed a routine call of the form

wherecompute_revenueexpects twoDATE arguments; this is valid with
the proper conversion procedure fromTUPLE [NATURAL, STRING,
NATURAL] to DATE. There is no need in this case to specify a
Manifest_type, although it wouldn’t hurt. The need arises because
conversion isnot transiti ve. Assume a routine

which expects a string representing a date in short string format, such as
"01.01.2008"; also assume thatDATE converts to STRING, with a
conversion feature that produces such a string from aDATEobject. With
deadline: DATE you could use

Explicit conversion
The Kernel Library classTYPE[G] provides a function

adaptedalias "[]"  (x: G): G
which can be used for any typeT and any expressionexpof a type
U compatible withT to produce aT version ofexp, written

{ T} [ exp]
If U converts toT, this expression denotes the result of converting
exp to T, and is called anexplicit conversion.

Explicit conversion involves no new language mechanism, simply a feature
of a Kernel Library class and the notion of bracket alias.

For example, assuming a tuple type that converts toDATE, you may use

{ DATE} [[20, "April", 2005]]

TheBasic_expression[20, "April", 2005]is aManifest_tuple. Giving it —
through the outermost brackets — as argument to theadaptedfunction of
{ DATE} turns it into an expression of typeDATE. This is permitted for
example if class DATE specifies a conversion procedure from
TUPLE[INTEGER, STRING, INTEGER].

compute_revenue( , [1, "January", 2007])

process_date_string(s: STRING)

deadline:= [1, "January", 2008]
process_date_string( )

← As in the example of
page402.

[1, "January", 2006]

← “Conversion Non-
Transitivity principle”,
page 409.

deadline
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where the call convertsdeadlineto a STRINGas desired. But you can’t
directly use

because this would requiretwo conversions: tuple toDATE andDATE to
STRING. An actual argument to a routine call must be conform or convert
to the corresponding formal argument. Conformance is transitive but
convertibility is not because, as noted earlier, multiple implicit conversions
would cause confusion for the program reader. You may still, in such a
case, avoid the use of an intermediate variable —deadlinein the example
— by specifying aManifest_type explicitly:

The argument now results from a conversion and is of typeDATE rather
thanTUPLE [INTEGER, STRING, INTEGER]; then we can pass it to the
routine process_string_datewhich expects aSTRING; this triggers a
second conversion. At most one conversion in such a scheme is implicit.

You may specify several conversions in this style, as in

which yields an expression of typeT, assumingV converts toU. Although
such an accumulation of conversions is seldom needed, you can use it to
make the presence of conversions more explicit, rewriting for example the
previous example as

Using one or more such manifest types is useful not only whenV that
converts to U, as in the preceding examples, but also sometimes when it
conforms to U. In an assigment

(with types as implied by the names), or the corresponding argument
passing, you need not prefixof_type_Vby { U} , although again it wouldn’t
hurt; but ifU converts to another typeT, while it is OK to write

(causing a conversion), you may not directly use

process_string_date( )

process_date_string( [[1, "January", 2008]])

{ T} [{ U} [ of_type_V]] -- Type as implied by the name

process_string_date( { DATE} [ 1, "January", 2008])

of_type_U:= of_type_V

of_type_T:= of_type_U

of_type_T:=

Warning:notvalidunder
given assumptions.

[1, "January", 2008]

Now valid.{ DATE}

Now valid.{ STRING}

Warning:notvalidunder
given assumptions.of_type_V
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if U does not itself convert (or conform) toX. The following figure descrites
the situation:

Here too you could use an intermediate variable, but it’s simpler just to write

BecauseV conforms toU, rhe right-hand-side expression actually has the
same value as justof_type_V— no conversion is involved — but its type,
U rather thanV, makes the assignment and associated conversion valid. To
be fully explicit you might again include two manifest types:

This mechanism resembles in some respects thecastsavailable in C and other
languages. A major difference is that a C cast forces a type on an expression,
compatible or not; if not, it can result in serious run-time errors. Here the
validity rules imply that the typealwaysmake sense for the expression, since
the types are compatible. This is a type-safe mechanism, then, which can
cause no such errors.

15.10 EXPRESSION CONVERTIBILITY: THE ROLE OF PRECONDITIONS

We’ve seen the basic notion of convertibility for types: a typeU converts,
or not, to a typeT. Since we will use conversions for attachments, it’s
convenient to extend it to the notion of anexpressionconverting to an
entity, as we did with conformance. The basic idea is the same: an
expression of typeU converts to an entity of typeT if and only ifU converts
to T; but there is a little twist, arising from the possible presence of
preconditions in conversion procedures and functions.

of_type_T:= [of_type_V]

of_type_T:= [{ U} [ of_type_V]]

T
No indirect
compatibility

U

V

Converts

Conforms

No implied relation

Now valid.{ U}

{ T}

← “Compatibility
betweenexpressions”,
page 384.
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In general, it’s a bad idea to have a precondition in a conversion feature.
When you see an assignment or argument passing

with xof typeTXand y of typeTY, you expect that at run time it will always,
without conditions, attachy to x. This should still be the case if the
attachment causes a conversion. After all, if you do expect restrictions, you
can explicitly use a function or procedure, as in

where the procedurefrom_TY and the functionto_TX may have a
precondition, which the caller should then check, rewriting for example as

In this casefrom_TYandto_TXshould not be conversion features; then
TY does not convert toTX, and the implicit form[8] is not valid.

These observations suggest that for clarity and reliability we should
prohibit a conversion feature from having a precondition. This is the basic
rule, but we need to be a bit more tolerant for conversions whose conditions
can be checkedstatically— by the compiler — so that no unpleasant effect
can result at run time. Two important examples illustrate the necessity of
this extra flexibility.

The first example concerns constants of numeric types, in particular
integer types (NATURAL, INTEGER, NATURAL_X, INTEGER_X for
X = 8, 16, 32, 64). With entity types as suggested by the names, you may
use the following assignments:

x := y [8]
p (y) -- With x as the formal argument

create x.from_TY(y) [9]
x := y.to_TX

if then [10]
createx.from_TY(y)

end

of_type_NATURAL_32:= of_type_NATURAL_8
of_type_INTEGER_32:= of_type_INTEGER_8
-- etc.

y.is_acceptable
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This is all valid thanks to the presence of appropriate conversion features:
NATURAL_8conforms toNATURAL_32, INTEGER_8to INTEGER_32
and so on. More generally, you may expect any conversion between basic
types to be available when it does not involve any loss of information (as
well as in conversions fromNATURAL_andINTEGER_types toREAL_
types, for which the loss of information is traditionally considered
acceptable). The other way around you’ll get a validity error, as in

This is as it should be. We could enforce this behavior by providing
conversion features from “lighter” numeric types to “heavier” ones
(consideringNATURAL_mlighter thanNATURAL_nfor m< n and so on),
but not the other way around.

The only problem with this policy is that it would also prevent us from
performing attachments where the source is a numericconstant, as in

1 is very reasonable as a constant of typeNATURAL_8— but it’s not of
that type! Every value in Eiffel must have a well-defined type, and the type
of the constant1 is INTEGER. Sure, ww could in the end get what we want:

• We may use aconstantwith anexplicit type: { NATURAL_8} 1 (not to
be confused with a conversion).

• We may use some transformation function, as into_natural_8(1).

The first alternative is more attractive than the second one, but if you have
to do extensive manipulations of special-size values, for example many
NATURAL_8in some system-level application, you’ll quickly get tired of
having to write the type explicitly. Sometimes a cigar is just a cigar, and
sometimes one — includingNATURAL_8one — is just one.

Another alternative, in the end equivalent to the first but with a more compact
syntax, would be for the language to provide specific syntax for constants of
sized types, such asNATURAL_8; something like8n1, 16n1etc. But with all
the variants available this would cause an explosion of special notations.

The conversion mechanism looks the savior here: if we could convert from
NATURALto NATURAL_8, then we could interpret the assignment[12] as
a conversion, making it valid. Formally using a conversion need not affect
run-time performance: with a reasonably smart compiler, the instruction
can directly assign the 8-bit representation of1 to the target
of_type_NATURAL_8.

of_type_NATURAL_8:= of_type_NATURAL_32 [11]
of_type_INTEGER_8:= of_type_INTEGER_32

of_type_NATURAL_8:= [12]

WARNING: not valid.

1

→ “FORCINGATYPE
ON A CONSTANT”,
29.3, page 789



§15.10  EXPRESSION CONVERTIBILITY: THE ROLE OF PRECONDITIONS 423
Such a conversion-based solution assumes a conversion procedure or
function fromNATURALto NATURAL_8. Not all integer values can be
converted, however — only those between0 and 255. The conversion
feature should express this through a precondition, reading (assuming a
procedure, of argumentx: INTEGER):

This is where we run into conflict with the prior observation that
conversion features should not have preconditions, and indeed we still do
not want to permit[11]

where the right-hand-side is variable. But if it is a constant, as in[12]

we can require that the precondition be checkedstatically — by the
compiler, which should reject the attachment if it can’t prove the
precondition will always hold at run time.

This explains why we need a more flexible version of the rule as
sketched. The first impulse was to prohibit preconditions altogether in
conversion features. The more tolerant attitude will accept a precondition
only if it can be enforced at compile time.

The rule follows directly from this discussion, but let’s look first at the
other major example (besides constants of sized numeric types). Assuming
thatt1, t2 andt3 are all of typeT, the followingManifest_tuple

require
not_too_small: x >= 0
not_too_large: x <= 255

of_type_NATURAL_8:=

of_type_NATURAL_8:=

[t1, t2, t3] [13]

WARNING: not valid.of_type_NATURAL_32

1
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is of typeTUPLE[T, T, T]. Now assume that we want amanifest array of
type ARRAY[T], given by its items, for example these three. How do we
denote it? Rather than introducing a special notation for manifest arrays,
it’s better to reuse[13], converted from the tuple type toARRAY[T]; but
such a conversion can only be defined for tuples in general, and is only
possible if the types of all the elements in a tuple conform to the element
type for the desired array, hereT. We can express this through a
precondition in the conversion procedure. Once again, this would make it
inappropriate to apply the conversion to a variable source, as in

sinceyour_tuplemight or might not satisfy the precondition at run time.
But with a manifest tuple, as in

it is clear at compile time whether the assignment will always work (if and
only if all the types conform toT). This is another example where we need
to accept a conversion feature with a precondition, as long as it is possible
to ascertain the precondition statically.

The constraint applies not directly to conversions, but to attachments.
The relevant rules are theAttachmentrule and, for argument passing, the
Argumentrule: both state that we may attachy to x, through assignment or
argument passing, if and only ify conforms or converts tox. In the
conversion case, this would normally mean that the type ofyconverts to the
type of x, but we make the rule a bit more sophisticated to integrate the
present discussion:

your_tuple: TUPLE; your_array: ARRAY[T]
…

your_array:=

Expression convertibility VYEC

An expressionexpof typeU converts toan entityentof typeT if
and only if U converts to T through a conversion featureconv
satisfying either of the following two conditions:
1 •conv is precondition-free.

2 •expstatically satisfies the precondition.

your_array:= your_tuple

[t1, t2, t3]

→ “Assignmentrule”,
page 590; “Ar gument
rule”,  page 634.

← For thecounterpartof
thisruleforconformance,
see“Compatibility
between expressions”,
page 384
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This definition has a validity code even though it is a definition rather than a
validity rule. This allows compilers, if they find an attachment or argument
passing that would use a conversion, but the source doesn’t convert to the
target, to produce a precise error message referring to this definition, rather
than a general one indicating violation of the Assignment or Argument rule.

In case1, the routine has no precondition, or a precondition guaranteed
always to be true; “precondition-free” is defined precisely below. Case2
provides the extra flexibility resulting from the preceding discussion. It
relies on the following definition:

The two cases cover the two examples discussed.

The definition of expression convertibility also refers to “precondition-free”
routines. The precise definition of this term accounts for the possibility of
overriding the original precondition in the case of an inherited routine:

Statically satisfied precondition
A feature precondition isstatically satisfiedif it satisfies any of
the following conditions:
1 • It applies to a boolean, character, integer or real expression

involving only constants, states that the expression equals a
specific constant value or (in the last three cases) belongs to a
specifiedinterval, and holds for that value or interval.

2 • It applies to the type of an expression, states that it must be one
of a specified set of types, and holds for that type.

The “constants” of the expression can be manifest constants, or they can be
constant actual arguments to a routine — possibly the unfolded form of an
assignment, as inof_type_NATURAL_8:= 1, whose semantics is that of
create of_type_natural.from_INTEGER (1). Without the notion of
“statically satisfied precondition” such instructions would be invalid because
from_INTEGERin classNATURAL_8has a precondition (not every integer
is representable as aNATURAL_8), and arbitrary preconditions are not
permitted for conversion features. This would condemn us to the tedium of
writing { NATURAL_8} 1 and the like for every such case, and would be
regrettable since1 is as a matter of fact acceptable as aNATURAL_8. So the
definition of expression convertibility permits a “statically satisfied”
precondition, making such cases valid.

It would be possible to generalize the definition by making permissible any
precondition that can be assessed statically. But this would leave too much
initiative to individual compilers: a “smarter” compiler might accept a
precondition that another rejects, leading to incompatibilities. It was judged
preferable to limit the rule to the two cases known to be important in practice;
if others appear in the future, the rule will be extended.
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15.11 MULTIPLE CONVERSION TYPES

As noted it is possible to associate two or more conversion types with a
given conversion procedure, as withcp1 ({ T1, U1}) in the last example
sketch. Every one of them must conform or convert to the type of the
procedure’s argument per clause7 of the Conversion Procedure rule.

As an example, assume that classREAL looks like this:

Precondition-free routine VYPF

A featurer of a classC is precondition-free if it is either:
1 • Immediate inC, with either noPreconditionclause or one

consisting of a singleAssertion_clause(introduced by
require) whoseBoolean_expression is the constantTrue.

2 • Inherited, and such that everyprecursor ofr is (recursively)
precondition-free, orr is redeclared inC with a Precondition
consisting of a singleAssertion_clause(introduced by
require else) whoseBoolean_expressionis the constantTrue.

A feature is “immediate” if it is declared in the class itself. In the other case,
“inherited” feature, it’s OK if the feature had a precondition in the parent,
but then the class must redeclare it with a clauserequire else True. A
simplerequire without theelse is not permitted in this case.

A “ precursor” of an inherited routine is its version in a parent; there may
be more than one as a result of feature merging and repeated inheritance.

expanded class REALinherit … create
create

from_integer, …

feature -- Initialization
from_integer(n: INTEGER)

-- Initialize by converting fromn.
do

… Conversion algorithm…
end

… Rest of class omitted…
end

A definition, but with a
validity code for the
same reasons as
VYECabove.

← “Inherited, immedi-
ate; origin; redeclara-
tion; introduce”,  page
133.
←Clause3of“Redecla-
ration rule”,  page 313.

→ “Pr ecursor”,  page
473.

convert
from_integer({ INTEGER}), …
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This means a callroutine_expecting_a_real(10) is valid and will convert
its argument. ClassREAL_64 as given earlier was of the form

but becauseREAL_32itself has the ability to convert an integer we may
omit from_integerand limit ourselves to a single conversion procedure
applicable to two conversion types:

note
version: 1

expanded class REAL_64inherit … create
from_integer, from_real_32, …

feature -- Initialization
from_integer(n: INTEGER)

-- Initialize by converting fromn.
do … Conversion algorithm… end

from_real_32(r: REAL_32)
-- Initialize by converting fromr.

do … Conversion algorithm… end
… Rest of class omitted…

end

note
version: 2

expanded class REAL_64inherit … create
from_real_32, …

feature -- Initialization
from_real_32(r: REAL_32) is … As before…
… Rest of class omitted…

end

convert
from_integerconvert ({ INTEGER}),
from_real_32convert ({ REAL_32}), …

convert
from_real_32({ REAL_32, INTEGER}), …
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It is indeed valid to list INTEGER as one of theConversion_types
associated withfrom_real_32, since this procedure takes aREAL_32
argument andINTEGER converts toREAL_32 (with the version of
REAL_32 given above, through its conversion procedurefrom_integer).

So even though version2 of REAL_64 has shed the conversion
procedurefrom_integerpresent in version1, the following assignment
remains valid sinceINTEGER, the type of10, converts toREAL_64:

There is a difference of semantics, however: in version1, this assignment
was considered a shortcut for

whereas with version2 it means

still valid becauseINTEGERconverts toREAL_64, but implying one more
conversion, since it really stands for

As noted earlier, the game stops here: an assignment may involve no
conversion (if the target conforms to the source), one (as in the case of
your_real_64:= your_real_32) or two (as in the last example), but no more.

In this example the choice between versions1 and2 of REAL_64is not
critical since your may expect a good compiler to know about basic types
and implement the conversionsdirectly, without routine calls. In your own
classes, however, the extra conversion may be worth avoiding.

15.12 MIXED-TYPE EXPRESSIONS: TARGET CONVERSION

Conversions participate in one more mechanism,target conversion,
designed to reconcile the object-oriented type system of Eiffel with the
syntactical conventions of arithmetic expressions. It is only of direct
interest to advanced users and library designers, but if you are a novice you
should still read the beginning of this section to be reassured that when you
write mixed-type arithmetic expressions such asyour_integer + your_real,
with the first operand of typeINTEGERand the second of typeREAL, you
are actually working within the rules of the type system.

Like theManifest_typefacility of the last section, target conversion applies
to theExpressionconstruct, but its semantics is closely related to the other
topics of this chapter.

your_real_64:= 10

createyour_real_64.from_integer(10)

createyour_real_64.from_real_32(10)

createyour_real_64.from_real_32
(create{REAL_64}.from_integer(10))

Because of accuracy
issues, the numerical
effect of such an opera-
tion may be different
under versions1and2.

→ Based on the specifi-
cations of the Kernel
Library in appendixA.
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Using target conversion

We know already, from the discussion in this chapter, is to treat an
expression such asyour_real + your_integer: it is a shortcut for a call

whereplusalias "+" is a function of classREAL. As long as we know how
to make this function accept arguments of typeINTEGERand convert them
to typeREAL this works fine.

The more delicate case isyour_integer + your_real, because here we
don’t want to useplus of classINTEGER, which expects anINTEGER
argument and can in no way handle aREAL. What we really want — more
precisely, what mathematical tradition tells us we should expect — is for
this expression to mean something like

in other words: convert the first operand (the target of the call) toREALso
that can useplus alias "+" from classREAL, which expects aREAL
argument and can hence takemy_real.

The target conversion mechanism makes this possible. This is really all
you need to know on first reading: that a conversion mechanism exists,
permitting you to write mixed-type arithmetic expressions respecting the
long-accepted traditions of mathematics, without departing from the O-O
type rules of Eiffel. The Kernel Library classes defining basic arithmetic
classes —INTEGER, REALand others — use this mechanism as needed
to support the common arithmetic cases; authors of new library classes can
rely on it as well. Reassured that such common practices have received
official O-O blessing and that the Kernel Library classes support them, you
may on first reading skip the rest of this chapter.

The target conversion mechanism is supported syntactically by the
optionalconvert mark of anAlias for an infix feature:

An example is the following function declaration in classINTEGER:

your_real.plus(your_integer)

(my_integer.converted_to_real) + my_real

Operator aliases
Alias =∆ 'alias '" ' Alias_name'" ' [convert]

plusalias "+"  (other: INTEGER): INTEGER
-- Sum of current integer andother

do
… Implementation of integer addition…

end

← Page151.

convert
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The highlightedconvert mark means: if the type of the argument you get is
not the normally expected argument type, hereINTEGER, but one to which
the current type converts, such asREAL and its variants:

1 • Convert the target of the call (the first operand of the operation, here
your_integer) to the applicable conversion type, hereREAL; the validity
rule below ensures that a single, unambiguous conversion procedure is
always available.

2 • Ignore the implementation given here — the part that reads
… Implementation of integer addition… above — as it is irrelevant.

3 • Instead, call the function with the same name from the applicable
conversion type, hereplusalias "+" from REAL.

So with your_integer + your_realthe result will indeed fulfill the intent
expressed above as(your_integer.converted_to_real) + your_real.

Validity of target conversion

No specific validity rule limits our ability to include aconvert mark in an
Alias as long as it applies to a feature with one argument and anOperator
alias. Of course in an example such asyour_integer+ your_realwe expect
the argument typeAT, hereREAL, to include a feature with the given
operator, here+, and the target typeCT, hereINTEGER, to convert toAT.
But we don’t require this ofall types to whichCT converts, because:

• This would have to be checked for every new type (sinceCT may
convert toAT not only through its own “from” specification but also
through a “to” specification inAT).

• In any case, it would be too restrictive:INTEGERmay well convert to
a certain typeAT for which we don’t use target conversion.

Instead, the validity constraints will simply rule out individualcalls that
would require target conversion if the proper conditions are not met. For
example ifREALdid not have a function specifyingalias"+" and accepting
an integer argument, or ifINTEGER did not convert toREAL, the
expression would be invalid.

Remarkably, there is no need for any special validity rule to enforce
these properties. All we’ll need is the definition oftarget-converted form
of a binary expression in the discussion of expressions. The target-
converted form ofx + y (or a similar expression for any other binary
operator) isx + y itself unlessbothof the following properties hold:

• The declaration of “+” for the type ofx specifiesconvert.

→ Page771.
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Target conversion: a discussion

The Target Conversion mechanism deserves some justification. If at first it
sounds “ad hoc”, that’s because it is. Its purpose is to support traditional
conventions of mathematical notation, in particular mixed-type arithmetic
expressions. People manipulating integers, reals and the like are used to
mixing them freely in expressions, with the understanding that any
“ lighter” operand will automatically be converted to the “heavier” operand.

Given that this is the usual expectation for numerical computation, four
approaches are possible in an object-oriented language:

1 • Ignore the issue: Treat arithmetic types as completely different from O-O
types defined through classes. Being outside the normal type system,
arithmetic types don’t need to observe O-O rules and can retain whatever
properties they had in languages such as Fortran, Pascal or C.

2 • Insist on purity : Tell programmers that mixed-type expressions are
“wrong” and that they should use explicit conversions, perhaps in the style
illustrated above as(my_integer.converted_to_real) + my_real.

3 •Provide special rules for basic types: Keep integers, reals and such
within the O-O type system, but introduce special cases in the
conformance and reattachment rules to support the traditional properties
of arithmetic expressions, including automatic conversion.

4 •Provide a general conversion mechanism: As described in this section
andcomplementary ones in other chapters.

• The type ofy doesnot conform or convert to the type of the argument
of the associated function, hereplus, so that the usual interpretation of
the expression as shorthand forx.plus(y) cannot possibly be valid. This
is critical since we don’t want any ambiguity: either the usual
interpretation or the targeted conversion should be valid, but not both.

Under these conditions the targeted-converted form is({ TY} [ x]) + y, using
as first operand the result of convertingx to the typeTY of y. Then:

• The target-converted form is only valid ifTYhas a feature with the “+”
alias, andy is acceptable as an argument of this call. The beauty of this
is that we don’t need any new validity rule: if any of this condition is not
met, the normal validity rules on expressions (involving, through the
notion ofEquivalent Dot Form, the rules on calls) will make it illegal.

• We don’t need any specific semantic rule either: the normal semantic
rules, applied to the target-converted form, yield exactly what we need.

→ Page780.

← Witn a notion of
“weight” as sketched in
15.10, e.g.INTEGER_8
lighter thanINTEGER_
16etc.

→ Chapter15; “CON-
VERSIONS”,  22.6,
page 591.
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Solution1 is used in such languages as Java and C++. Its drawbacks are
obvious: treating arithmetic values as “magic” and somehow different from
everything else yields an inconsistent language and makes it hard to set up
a good genericity mechanism (one that enables you to use
ARRAY[INTEGER] as well as anARRAY[PERSON] and so on).

Solution2might satisfy a theoretician, but experience shows that people
doing numerical computation do want their mixed-type expressions and
automatic conversions. The language design should try to accommodate
this request — if that’s possible within the confines of statically typed
object-oriented software engineering.

Solution 3 was used in Eiffel 3, which defined special conformance
conventions for the basic types —INTEGER conforms toREAL and
DOUBLE, REAL conforms to DOUBLE — with associated implicit
conversions. These rules suffice for cases such asyour_real+your_integer, but
not for your_integer+ your_realsince the first operand (the target of the
call) is lighter than the second (the argument); a special rule, thearithmetic
expression balancing rule, took care of this case. This achieves the basic
aim of finding a place for traditional conventions in the type system of
object technology, but only works for the predefined types. The
programmer who wants to define aCOMPLEXclass and apply the same
standard rules to the corresponding expressions can legitimately bejealous
of the language designer and accuse him of callous selfishness.

Eiffel 3 had only one integer type,INTEGER. With all thesizedvariants, the
conformance and balancing rules would become quite clumsy.

Solution4, chosen here, generalizes solution3: it retains the conformance,
conversion and expression balancing rules expected for integer and real
types, but not any more as “magic” properties of these basic types. Because
they follow from a general language construct,Conversion_types, and the
associated validity and semantic rules, these properties are now a result of
specifications included explicitly in Kernel Library classesINTEGER,
REALand others; such specifications, no longer magic, may appear in any
class that you want to endow with similar benefits.

As explainedelsewhere, Eiffel stays away from any form of in-class
“overloading”: within a class a feature name such asplusmay never denote
more than one feature. The mechanism introduced here doesn’t affect this
rule: what we are doing is catching some calls with an integer target and
processing them through another feature with the same name in classREAL
— similarly non-overloaded in that class.

“Programmer Admits
Guilt in Shooting,
Pleads Crime of Pas-
sion: ‘Selfish Language
Designer was Driving
Me Mad with Jeal-
ousy!’” . National
Enquirer, 3 February
2003, p. 14.

INTEGER, INTEGER
_8, INTEGER_16, INT-
EGER_32, INTEG-
ER_64,NATURAL,
NATURAL_8,NATUR-
AL_16,NATURAL_32,
NATURAL_64

← “NO IN-CLASS
OVERLOADING”,
5.22, page 167.
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Repeated inheritance
16.1 OVERVIEW

The figure on the next page shows examples of repeated inheritance.

The present chapter is thelastof three devoted to inheritance. It doesn’t
introduce any new language construct but explains the validity rules and
semanitcs of repeated inheritance. As a consequence, it will complete our
understanding of two important inheritance concepts:inherited feature
andname clash.

Our view of inheritance will only be final when we have grasped the
semantics of reattachment and feature call, involving the powerful techniques
of polymorphism anddynamic binding.

This chapter is organized in four parts:

• We look into the circumstances of repeated inheritance.

• We identify thetwo questionsthat repeated inheritance implies for an
object-oriented language — Are features shared or replicated? If
replicated, what does this mean for dynamic binding? — and answer
them through simple language rules.

• We explore applications of the resulting techniques.

• We finish off the formal rules.

Inheritance may bemultiple : a class may have any number of parents. A
more restrictive solution would limit the benefits of inheritance, so central
to object-oriented software engineering.

Because of multiple inheritance, it is possible for a class to be a
descendant of another in more than one way. This case is known as
repeated inheritance; it raises interesting issues and yields useful
techniques, which the following discussion reviews in detail.

←Theother twowere6
and10.

→ “POLYMOR-
PHISM”, 22.11,page
606; “D YNAMICBIND-
ING”,  23.12, page 638.
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16.2 CASES OF REPEATED INHERITANCE

TheParentrule indicates that the inheritance graph of a set of classes may
not contain any cycles. It is perfectly possible, however, for two classes to
be connected through more than one path. The figure on the next page
provides two examples.

Here is the definition:

As shown by the two examples in the figure,D can repeatedly inherit from
A directly (a) as well as indirectly(b).

The simplest case, calleddirect repeated inheritanceand makingD a
repeated heirof A, occurs whenD listsA in two or moreParent clauses:

Repeated inheritance, ancestor, descendant
Repeated inheritanceoccurs whenever (as a result ofmultiple
inheritance) two or more of theancestors of a classD have a
commonparentA.
D is then called arepeated descendantof A, andA a repeated
ancestor of D.

class D inherit

A rename… redefine… end

A rename… redefine… end

… Rest of class omitted…

← “Parent rule”,
page 178.

A

D

B

A

D

(a) (b)

f
f

C

Why does the first sen-
tence of the definition
use the word “ances-
tor” rather than
“proper ancestor”?

Direct and
indirect
repeated
inheritance



§16.3  THE TWO QUESTIONS OF REPEATED INHERITANCE 435
The second case,indirect repeated inheritance, arises when at least one
parent ofD is a proper descendant ofA, and at least one other is a
descendant ofA.

The discussion so far has neglected the generic parameters, if any, of the
repeated ancestorA. In reality, aParentis not just a class but aClass_type
— a class name possibly followed by actual generic parameters. Uses ofA
as repeated ancestor with different actual generic parameters still cause
repeated inheritance (D’s ancestors have a common parent class even
though the correspondingParenttypes are different); this case will show up
in the consistency constraints and semantic rules.

16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE

Repeated inheritance, although not a tool for beginners, is in fact a simple
mechanism if approached properly. Only two issues arise, the answers to
which make up this section and the next (and the principal new concepts of
this chapter): does a feature inherited twice yield one feature, or two? If it
yields two, which one should dynamic binding trigger?

First, the matter of repeatedly inherited features:

In the absence of repeated inheritance, the situation was simple: ifY is a
descendant ofX, every feature ofX yieldsatmostone feature ofY. But now
things are not so clear any more. In either of the preceding pictures, what
shouldD get out of a featuref of A: one feature, or two?

The second question arises from the combination of repeated inheritance
and dynamic binding. Assume that in a case of indirect repeated
inheritance,b on the last figure,oneor both of the branches provides a new
version forf:

The first question of repeated inheritance:
Fate of a repeatedly inherited feature

Given a feature from a repeated ancestor, what feature or features
does it yield in a repeated descendant?

→ “THE CASE OF
CONFLICTING
GENERIC DERIVA-
TIONS”, 16.7,page450.

Usuallyone,buttheJoin
mechanism(10.21 and
10.22) may merge sev-
eral inherited features.

The problem arises as
soon asone branch
redefinesf; for symme-
try we assume both do.
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Eiffel’s dynamic binding policy (which suffers no exception) tells us that
the call will use the version off applicable toD (regardless of the
declaration ofa). But now we have two such versions. Hence:

Developing answers to these two questions is our principal task for this
chapter. Both answers will turn out to be remarkably simple, but we must
study the issues carefully before we can deduce the answers.

Also remarkable is that we can for a large part tackle the two questions
separately, as they have little bearing on each other.

16.4 SHARING AND REPLICATION

Consider first the question of the fate of a repeatedly inherited feature. In
the common descendant, does it yield one feature, or two?

We cannot settle for a single, universal answer. Depending on the
context, either solution may be the right one, and you will need some
leeway for choosing between them in any particular case:

1 • In some circumstances you may use repeated inheritance precisely
because you like a feature of an ancestor so much that you want two of it.

2 • Often, however, one copy is enough. For example, the scheme illustrated
onthefigureabovemayarisewhenyouwritebothBandC(the intermediate
ancestors) as heirs ofAbecause each needsA’s features, such asf; D needs
the new features introduced byBandC, but only one copy ofA’s features.

The second question of repeated inheritance:
Ambiguities under dynamic binding

Given a feature repeatedly inherited under two different
redeclarations, which one should a call execute if its target is
statically of the repeated ancestor type and dynamically of the
repeated descendant type?

redefine f

f

redefine f

A

CB

D

Conflicting
redefinitions
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An extreme example of case2 is the universalclassANY of the Kernel
Library, an obligatory ancestor of all Eiffel classes. The presence ofANY
means that any use ofmultiple inheritance is automatically a case of
repeatedinheritance, since even if the two parents,B andC on the figure
below, do not explicitly list a common ancestor, they are automatically
descendants ofANY, makingD a repeated descendant ofANY.

For any non-trivial Eiffel system, the repeated inheritance structure
induced byANY, if we ever tried to draw it, would be rather luxuriant. In
most cases, useful as the features ofANYare, you would not want your
classes to inherit multiple copies of all of them.

The language could of course force you to choose one of the solutions,
1 or 2, globally for all the features from a given repeated ancestor. (This is
roughly the C++ approach, through the notion of “virtual base class”.) But
such a solution would be too restrictive: you may need replication for some
features and sharing for some others. The Eiffel policy uses the expected
default, sharing, but lets you choose the other possibility, replication, for
any specific feature. The criterion is straightforward: is the feature
inherited under a single name, or different names?

← “ANY”,  6.5, page
172;seealsochapter35
for more details.

Any multiple
inheritance
causes
repeated
inheritance
from ANY

ANY

D

B C
Inheritance path
(one or more links)

Homes,
businesses,
and home
businesses

Therenamesubclauses
shown will produce the
desired effect:: sharing
for street_address, rep-
lication for insured_
value. See next.

HOUSE

BUSINESS RESIDENCE

HOME_
BUSINESS

rename insured_value
asbusiness_value

rename insured_value
ashome_value

street_address
insured_value
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To see why we need such flexibility, consider the simple example,
illustrated by the figure. In a system used by an insurance company, a class
HOUSE has heirs RESIDENCE and BUSINESS. A special class
HOME_BUSINESShandles the case of people who run a business from
their house; it is legitimate to write this class as an heir to both of the
previous two. The features ofHOUSEinclude attributesstreet_addressand
insured_value. For the street address, an instance ofHOME_BUSINESS
should inherit a single attribute; but forinsured_valueit needs two, since
the insured value may be different for the two viewpoints.

The repeated inheritance mechanism gives you the desired flexibility:
when writing a repeated descendant such asHOME_BUSINESSyou can
decide which repeatedly inherited features will yield single features
(“sharing”) and which duplicate features (“replication”).

The policy is the simplest possible, and follows once again from theno
overloading principle: within a class, make sure every name denotes a
feature and only one. The principle implies that if the inherited features
have the same final name, theymustdenote the same feature, and so will
cause sharing; if they have different final names, they must yield different
features, and will cause replication.

This is the answer to the first question of repeated inheritance, enabling
us to introduce the principal rule of this chapter:

Repeated Inheritance rule

Let D be a class andB1, … Bn (n ≥ 2) beparents ofD based on
classes having a commonancestorA. Let f1, … fn be features of
these respective parents, all having as one of theirseeds the same
featuref of A. Then:
1 • Any subset of these features inherited byD under thesame

final name inD yields a single feature ofD.
2 • Any two of these features inherited under a different name

yield two features ofD.

This is the basic rule allowing us to make sense and take advantage of
inheritance, based on the programmer-controlled naming policy: inheriting
two features under the same name yields a single feature, inheriting them
under two different names yield two features.

The same reasoning
will apply to routines,
such asupdate_
street_address and
change_insured_value.

←“NAMECLASHES”,
10.23, page 297.

SinceA may be any
ancestor, not just a
proper one, the rule
applies to direct
repeated inheritance,
whereB1, … Bn are all
thesameasA,aswellas
to the indirect case.
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---- REMOVE A fine point about the rule’s phrasing: it refers to “parentsbased
on classeshaving a common ancestor” rather than “parents having a common
ancestor” because aParent is syntactically not a class but a type. With
classD inherit P… we are looking at ancestors not ofP but ofP’s base class.

Also, like all semantic rules, this one assumes that classD is valid. Otherwise.
of course, we would get no feature at all in either case.

The Repeated Inheritance rule applies to attributes as well as to routines. It
provides the designer of a repeatedly inheriting class with all the needed
flexibility through proper choice of names:

• If two or more of the parents ofD happen to have a common ancestor
A, and you do not take any particular renaming action, each feature ofA
will yield just one feature ofD. This will usually be what you want in
simple cases, such as repeated inheritance fromANY as mentioned
above. The rule also renders harmless a common oversight: makingA a
parent ofD becauseD needs the features ofA, forgetting that among the
other parents ofD one is already a descendant ofA.

• If, however, you want two or more versions of a repeatedly inherited
feature, just make sure that it is inherited under different names. This is
the modern version of theloavesandfishes miracle: if you have one of
a good thing, you may turn it into as many as you like, just by asking.

To determine which of the two cases applies, the only criterion that matters
is thefinal name of the feature inD. It will be affected by any renaming
performed inD itself as well as in intermediate ancestors betweenA andD.
This means that, as the author ofD, you are the master when it comes to
setting the fate of a featuref coming from an indirect repeated ancestor
through parentsB andC:

• If f has the same name inB andC, f will normally be shared, but you
may force replication by renaming one of the inherited versions, or
renaming both forms with different names.

• If there has been some renaming betweenA and D’s parents,f will
normally be replicated, but you may force sharing by renaming both
inherited versions to the same name.

Sharing, replication
A repeatedly inherited feature issharedif case1 of the Repeated
Inheritance rule applies, andreplicated if case2 applies.

←Parentsyntax:page171.

"They took up twelve
basketsfulloftheloaves,
and of the fishes", Mark
6:43. Scholars believe
Loaf andFish to be
ancient Aramean for
attributeandroutine.See
Proc. ALOOF 3
(Archaeo-Linguistic
Object-Oriented
Forum), Acapulco,
1998, pp. 798-923.
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The sharing case of the Repeated Inheritance rule enables us to understand
fully the notion of name clash and the prohibition of name clashes. The
guideline (made formal by the Join rule) stated that a name clash is
permissible only in three cases:

1 • At most one of the clashing features is effective.

2 • The class redefines all the clashing features into a common version.

3 • The clashing features are the same feature, inherited without
redeclaration from a common ancestor.

It’s the Repeated Inheritance rule that gives its meaning to the last case:
even though there is an appearance of name clash because two parentsB
andC of a classD have a feature with the same name, in reality they are the
same feature, inherited from a common ancestorA. If D inherits it in both
cases under the same name, there is no real name clash; the sharing part of
the Repeated Inheritance rule implies, naturally enough, thatD will get the
feature fromA, exactly as if it had been declared as a direct heir ofA
without any intermediate classes.

This assumes of course that the feature is not redefined anywhere,
otherwise it wouldn’t be the “same” feature. The next section will study the
case of conflicting redeclarations.

← After thedefinitionof
“Nameclash”onp.297.
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One more general observation is in order on the scope of the Repeated
Inheritance rule. As you will have noted from the definition, the rule only
applies if f is the common seed of the features under consideration or,
equivalently, ifA is their origin.Remember that theseedof a feature is its
original version in the most remote ancestor (the feature’sorigin) where it
appears, regardless of any redeclaration or renaming that it may have
endured between that ancestor and the current class.

This requirement thatA be the origin off is important. Without it, as
illustrated by the preceding figure, the Repeated Inheritance rule would be
ambiguous. In the figure,f is a feature ofA, but it is also a feature (an
inherited one) ofX andY. All three classes are repeated ancestors ofD. To
infer sharing or replication from the rule, we need to know what repeated
ancestor to consider. The rule’s phrasing answers this question precisely:
for f, the only relevant ancestor is classA, the origin of that feature.
Similarly, to determine the fate ofg and h, you must apply the rule
(respectively) toX andY, assumed to be the origins of these features.

← For the precise defi-
nitions see“Origin,
seed”,  page 311. Join-
ing a set of features
gives all of them a new
seed and origin.

Only the seed
and origin
matter

A

X Y

f

hg

CB

D
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16.5 THE CASE OF REDECLARED FEATURES

The Repeated Inheritance rule would define all we need to know about
repeated inheritance were it not for the second question raised at the
beginning of this chapter: ambiguities under dynamic binding.

Here is the picture again. We assume that bothB andC redefinef:

If D inherits the two versions under the same name, it gets a single feature
(sharing); otherwise, two different features (replication). But then what
happens in a call of the forma.f, wherea is declared of typeA but is
attached, at run time, to an instance ofD?

The sharing case is easy because even in the absence of dynamic
binding we have a problem:D gets two features with the same name. We
know this case! It’s anameclash. That the two features originally come
from a common seed, theA version, doesn’t matter here: at the level ofD
they are nowdifferent features.

Studying thejoin rule has taught us that in such a conflict:

• If all of the variants, or all but one, are deferred and still have a single
signature, there is no particular problem. They will all be joined, and
live happily ever after as a single feature.
If some intermediate redefinition has led to different signatures, you may still
use a join, but it will require a redefinition (or effecting) to a feature whose
signature matches all the inherited ones.

• If two or more are effective, the name clash would make the class
invalid. In the general case we could resolve it by renaming, but here
this would mean featurereplication (the case discussed next), whereas
we are explicitly assumingsharing, meaning all variants have the same
final name. To remove the name clash we have to force a join by
undefining all the effective features except at most one.

Conflicting
redefinitions

redefine f

f

redefine f

A

CB

D

←“NAMECLASHES”,
10.23, page 297.

← “Joinrule”, page319.
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So here if both redefined versions are effective you must writeD as either

or the form that undefines theC version instead. You may also redefine
both. If you do not include such an undefinition or redefinition, the class is
invalid. We don’t need any new validity constraint to express this
requirement: the rules of the Feature Adaptation chapter took care of it.

This addresses the sharing case. But what if (as in the following figure)
one or both features are renamed, causing replication?

BecauseD renames the two inherited versions off, we have a case of
replication:f yields two features inD, calledfb andfc. These features are
truly different, since bothB andC redefine their inherited versions off.
Note for generality that:

• The example assumes redefinition, but it would arise in any case of
redeclaration, including conflicting effectings of an inherited feature.

• For symmetry, the example assumes that bothB andC redefinef, but the
problem would arise in the same way if one of these classes redefined
the feature and the other kept the original.

• The renaming takes place at the level ofD, but it could occur anywhere
above, or for only one of the features, as long as the final names inD are
different, causing replication.

• The problem will also arise, even without redefinition, in the case of
attributes, as will be seen next.

class D inherit
B

C
… Rest of class omitted…
end

undefinef end

Redeclaration
and replication

redefine f

rename f as fc

f

redefine f

rename f as fb

A

CB

D

←Redeclarationcovers
redefinition and effect-
ing. See“Redeclare,
redeclaration”,  page
263,
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Only dynamic binding with a target of static type based onA and dynamic
type based onD causes a problem. There is nothing ambiguous about calls
with a target entityd1 of typeD:

The first call will trigger execution of the version off redefined inB, and
the second will use theC version. Nothing new or surprising.

No difficulty arises either with polymorphism and dynamic binding
applied to entities of typesB or C:

To keep things simple, this example assumes thatf is a procedure without
arguments, that the classes involved are all non-generic — so that they are
also types — and thatD has no creation procedure. Also, the classes involved
are all reference (non-expanded); ifB or C were expanded,D would not
conform to them, making the assignments invalid.

The two assignments arepolymorphic, allowing b1 and c1, although
declared of typesB andC, to become attached to an object of typeD. The
type rules permit this sinceD conforms to bothB andC. Complementing
polymorphism,dynamic binding commands that the version executed in
each case is the one redefined by the ancestor closest toD. This means that
(on the last line) the first call will trigger theB version and the second will
trigger theC version. Still no particular problem.

d1: D
…

-- Attachd1 to an object of typeD:
create d1

d1.fb; d1.fc
-- A call of the formd1.f would be invalid,
-- sinceD has no feature of namef.

b1: B; c1: C
…
create d1

-- Attach each entity to an object of typeD:
b1:= d1; c1 := d1

-- The calls of interest:
b1.f ; c1.f

→ “POLYMOR-
PHISM”, 22.11,page
606; “D YNAMICBIND-
ING”,  23.12, page 638.
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Where the situation becomes potentially ambiguous is if you use
polymorphism and dynamic binding to callf on an entitya1of typeA, the
repeated ancestor, as in

Dynamic binding rules indicate that the call should trigger the version off
applicable to the actual object, which here is an instance ofD. But there are
two such versions off resulting from theB andC redefinitions, and none
of them is a priori better than the other.

Here is for example howB, C and D (deprived of any properties not
relevant to this discussion) might appear:

Will the calla1.f print “Yes!”, obeyingB, or will it obeyCand print “No!”?

a1: A; d1: D
…
create d1

-- Attach the entity to an object of typeD:
a1 := d1

-- The call of interest:
a1.f

class B inherit
A redefine f end

feature
f is do print ("Yes!") end

end

class C inherit
A redefine f end

feature
f is do print ("No!") end

end

class D inherit
B

rename f as fb end
C

rename f as fc end
end

WARNING: D as given
is invalid. As explained
next,oneof thebranches
must use non-conform-
ing inheritance.
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One may imagine various language solutions:

• We could rely on the order of theParentclauses forB andC in D But
this is not acceptable: by reversing the order of parents, an innocuous
editing change, you would change the semantics of the class. Besides,
such a convention only makes sense for simple cases such as the above;
with more levels of repeated inheritance, the “order” of ancestors
becomes murky. In theearlierexample, ifB lists its parents in the order
X, Y, butC lists its parents in the reverse order, what is the order ofX and
Y as ancestors ofD?

• We could require the class author to “select” one of the variants for use
in dynamic binding, through a special language construct, every time
such a conflict arises. This solution works and was indeed used in Eiffel
3. But further reflection has shown that a simpler approach was possible.

What makes that approach simpler is that it is more radical:disallow
polymorphismwhenever it could cause dynamic binding trouble. We
suddenly remember that we have a straightforward way to disallow
polymorphism when we don’t want it: instead of plain polymorphic
inheritance, usenon-conforming inheritance, also known asexpanded
inheritancebecause it builds on Eiffel’s notion of expanded class and
indeed uses the keywordexpanded.

A simple way to guarantee that an inheritance branch will not induce
conformance is indeed to add that keyword to the correspondingParent
clause: if you declare a class as

then attachments such asc1 := d1, with c1of typeC andd1of typeD, are
not permitted. Without theexpanded qualification,they would be valid.

To avoid the ambiguity in the previous example it suffices to guarantee
that only one of the two branches is polymorphic, by declaringD as

classD inherit

… No other parents…

class D inherit
B

rename f as fb end

rename f as fc end
end

← Figure page441.

← “NON-CONFORM-
INGINHERITANCE”,
6.8, page 180.

expandedC

This discussion still
assumes that the classes
involved are not them-
selves expanded classes.

expandedC
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This means that we have chosen only one of the two branches as permitting
polymorphic attachment. So in the kind of situations seen above as causing
trouble with polymorphism and dynamic binding:

There is no ambiguity any more:d1 conforms toa1 in only one way,
throughB, so the featuref to be applied is theB version,fb.

The approach just studied implies resolving all potential dynamic binding
ambiguities in favor of the same parent,B in the example. In rare cases you
might wanta1.f to call theB version for some featuresf, buta1.g to use the
C version for a particularg. We will seelaterin thischapter how to adapt the
technique to this case.

The scheme works just as well for direct repeated inheritance:

a1: A; d1: D
…
a1 := d1; a1.f

class D inherit

renamef as f1end

rename
f as f2

redefine
f2

end
… Rest of class omitted…
end

 f

A

CB

D

f

 fb++  f  fc++

Non-conforming inheritance

Renamed into
++ Redefined

Removing
dynamic
binding
ambiguity
through non-
conforming
inheritance

→ “RETAINING VIC-
TORS FROM ALTER-
NATIVEBRANCHES”,
16.11, page 460.

With this form the ver-
sion for dynamic bind-
ing is the redefined one,
f2.Movingexpandedto
the first branch would
select instead the origi-
nal version, under the
namef1.

expandedA

 A
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You must mark one of the twoParentclauses involvingA as cases of non-
conforming inheritance—forexamplebyusingexpandedAashere—tomake
validsuchacase involving replicationandredeclarationofoneormore features.

This is the basic mechanism for resolving conflicts in such cases. Note
that using anexpandedqualification for one of the parent branches is the
means, not the end. What the rule will state is thatconformancemay hold
along at most one branch. If an inheritance branch is non-conforming for
some other reason, then it does not create any conflict and there is no need
for the explicitexpandedqualification. In particular, ifC is an expanded
class — so far this sectionhasassumed that none of the classes involved
were expanded — the applicable conformance rules imply thatD will not
conform toC in spite of inheriting from it, so you may dispense with any
special qualification, writing simply

The rule introduced by this discussion is theRepeatedInheritance
Consistency constraint. The rule will be formulated precisely at the end of
this chapter, but it’s basically what we have just seen.

To gain a full understanding, we must now check what happens in two
specific cases: attributes and conflicting generic derivations.

16.6 THE CASE OF ATTRIBUTES

The last example involved a featuref which was a routine. For attributes, a
similar problem arises even in the absence of redefinition.

You may redefine an attribute, but this is only useful for type redefinition,
since the redefined version must still be an attribute. See condition6 of the
Redeclaration rule.

The cause of ambiguity here is that a replicated attribute will yield two
fields rather than one in the repeated descendant. Then, with dynamic
binding, a reference to such a replicated attribute may become ambiguous
in the same way as a reference to a multiply redeclared routine.

This may occur even with direct repeated inheritance of a classD from
a classA, with a scheme such as this:

note
note: "This version of the example assumes an expanded class C."

class D inherit

rename as fb end

renamef as fc end
end

← The assumption was
made on page444.

 B

 C

→ “Repeated Inherit-
ance Consistency con-
straint”,  page 466

← “Redeclaration
rule”,  page 313.
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A direct instance ofA has only one field, corresponding toattr. In an
instance ofD, however,attr yields two fields, forattr1 andattr2:

As in the case of conflicting redeclarations, it is not clear which one of the
fields the following should print:

Becauseanynewattribute impliesanew field inevery instanceof theapplicable
class, we may view replication, for attributes, as implying a kind of implicit
redefinition, similar in its effects to the explicit redefinition of routines.

Similar problem, same solution: whenever the Repeated Inheritance
rule implies replication of an attribute, theRepeated Inheritance
Consistency constraintwill require that one of the inheritance paths involve
non-conforming inheritance, as in

classA feature
attr: SOME_TYPE
some_procedureis do print (attr) end

end

classD inherit
A

rename attr as attr1 end
A

rename attr as attr2 end
end

a1: A; d1: D
…
create d1; a1 := d1; a1.some_proc

class D inherit
A

rename attr as attr1 end

rename attr as attr2 end
end

WARNING:Dasshown
is invalid. Using non-
conforminginheritance
will make it valid; see
the next version.

Attribute
replication

rename attr
as attr2

attr

attr 1

attr 2

attr An instance ofA

An instance ofD

rename attr
as attr1

A

D

→ “Repeated Inherit-
ance Consistency con-
straint”,  page 466

expandedA
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16.7 THE CASE OF CONFLICTING GENERIC DERIVATIONS

(This section, addresses the semantics of a rare case and may be skipped on
first reading.)

Like attribute replication, differentgenericderivations from a common
generic ancestor cause a form of implicit redefinition.

It is not hard to devise a simple example. Assume thatA is generic, with
one formal generic parameterG, and has a featuref whosesignature
involvesG:

What the body off does is irrelevant; so is the exact nature off — procedure
as above, attribute or function — as long asf’s signature depends onG. The
texts of classesA, B andC as shown only include the properties relevant to
this discussion.

The different generic derivations ofA used in theParentparts ofB andC
causef to have different signatures in these classes:

This means that the namef, in these two classes, denotesdifferent
features: a feature is defined not only by its specification (assertions) and
its implementation, but also by its signature.

What then if you want to write a classD as heir to bothB andC? This
creates a conflict, as in the two previously studied cases (routine
redefinitions and attributes). Because the features are different, sharing is
impossible in this case, but the same replication-based solutions are
available as in the previous two:

1 • Using replication and making sure that at most one of the inheritance
paths uses conforming inheritance.

2 • Letting one of the versions override the other through undefinition.

class A [G] feature
f(x: G)is … Routine body omitted… end

end

class B inherit
A [INTEGER]

end

class Cinherit
A [REAL]

end

in B: [ ], [INTEGER]
in C: [ ], [REAL]

→ Chapter12 studies
generic classes and
generic derivations.

← The signature of a
feature is the specifica-
tion of its argument and
result types. See“Sig-
nature, argument sig-
nature of a feature”,
page 149

←Thereasons thatpre-
clude sharing were
analyzed at the begin-
ning of16.5, page 442.
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The second solution requires special care here because the signatures are
different. The problem is that if a version overrides the other it must have
a conforming signature; but this may not be true because of conflicting
generic derivations. In the above example, indeed, the signatures of theB
andC versions are incompatible since neither of the typesINTEGERand
REALconforms to the other. The only solution is to undefine both features
and provide a fresh redeclaration inD. Here, in the absence of a useful
common descendant toINTEGERandREAL, that fresh feature may only
be of the form

and hence cannot do anything useful with its argumentx. (Recall that
NONEis a common descendant of all classes, but has no exported feature.)

In more favorable cases, one of the actual generic parameters used for
generic derivations ofA in B or C will conform to the other; then you may
use its version off to overtake the other’s. Redefinition into a version whose
signature conforms toboth (if possiblenot just throughNONE)will alsowork.

16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE

The most novel aspect of the Repeated Inheritance rule is the replication
case: here for the first time there is a way for one feature of a parent to yield
two or more features in an heir.

Among other applications, this mechanism enables us to “redefine our
feature and eat it”: provide a new version of an inherited routine, but retain
the original as well.

In the majority of cases, you do not need repeated inheritance to achieve
this goal, because the most common use of the original version is to help
write the redefined version.Wehaveseen the simple language mechanism
that directly addresses this need:Precursor. You will simply write the
redefinition of a routine as

With this technique — applicable only to routines, not attributes — the
inherited version doesnot remain a feature of the new class: all you have is
its implementation, usable only in the corresponding redefinition.

f (x: NONE) is do … Some routine body … end

your_routine(args: …)
do

“Something else”

“Yet something else”
end

← “NONE”, 6.6,page
175.

← “ADDING TO
INHERITED BEHAV-
IOR: PRECURSOR”,
10.24, page 299.

Precursor(…)
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In some cases you may want the heir class to include both the new
version and the old. This scheme is not commonly useful, if only because
it assumes that the old version still makes sense in the new context —do
not forget, in particular, that if it is an exported routine it must preserve the
new invariant as well as the old one! — but the need does occasionally arise.

When this happens, the replication mechanism of repeated inheritance
will provide the solution. The scheme is simple (see the figure below): if
you want classD, an heir ofA, to redefinef while retaining the original
version, makeD inherit a second time from A — the direct form of
repeated inheritance is usually appropriate in this case — and renamef to
a different name, without redefinition, along that second branch.

To satisfy the Repeated Inheritance Consistency constraint, you will
need to make one of the two inheritance branches non-conforming.This
will usually be the second branch (the one that serves to retain the original
version) since we will want the redefined version to serve as “the version
of f” for D and its descendants under dynamic binding.

The outline forD is:

Although this is the common setup, you are free to choose a different
combination of redefinition and renaming.

class D inherit
A

redefinef end

expandedA
rename f as original_f end

… Rest of class text omitted…
end

← “Unfolded form of an
assertion”,  page 287.

Keeping the
original
version
through
replication

f

 f++  f  original_f

Non-conforming inheritance

Renamed into
++ Redefined

A

D
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It’s a very simple setup. You can use it wheneverPrecursordoesn’t suffice
because you want to keep the original as a feature of the new class with all
the associated privileges. For example:

This class illustrates what to do if you want to keep the original version,
here under the namecompute_interest_as_for_plain_savings, for internal
purposes only: hide it from clients at the point of inheritance through a
New_exports clause that stipulates access to no useful clients. This is
required n particular if the original version does not preserve the invariant
of the new class.

16.9 USING REPLICATION: COUNTERS AND ITERATION

The technique studied in the previous section relies on the Repeated
Inheritance rule’s automatic mechanism for duplicating routines and
attributes. Let’s see a couple more applications of this possibility.

The first example is a pedagogical exercise (due to Christine Mingins).
The inheritance hierarchy is shown on the following figure. We have a
general notion ofINTEGER_COUNTER with

• A queryitem giving the current value associated with the counter.

• A procedurestepwith no argument, to advance the counter by one step.

• A querydeltagiving the amount by which astepwill change the value.

For more generality we can makeINTEGER_COUNTERinherit from
COUNTER[INTEGER] and introduce these three features at the level of
the generic classCOUNTER

Right from the start (inCOUNTER), procedurestepshould have a
postcondition statingitem= old item + delta.

class MONEY_MARKET_ACCOUNTinherit

SAVINGS_ACCOUNT
redefinecompute_interestend

expandedSAVINGS_ACCOUNT
rename

compute_interestas
compute_interest_as_for_plain_savings

export
{ NONE}  compute_interest_as_for_plain_savings

end

… Rest of class text omitted…
end

← Compare with the
examples in the discus-
sion ofPrecursorin
10.24, page 299.

← “Adapting the export
status of inherited fea-
tures”,  , page 204.
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The figure is explicit enough that we don’t need to write the actual class texts.
We have two variants ofINTEGER_COUNTER, representing counters that
increment their value by +1 and –1. It suffices inUP_COUNTERto effect
deltaas returning+1, and–1 in DOWN_COUNTER. Procedurestepshould
be effected to executeitem:= item + delta; this may be done in
INTEGER_COUNTER or evenCOUNTER.

Then we want a notion of counter that can count both up and down, with
two proceduresupanddown. It suffices thatUPDOWN_COUNTERinherit
from bothUP_COUNTERandDOWN_COUNTER, renamingstepto up
anddown, anddelta to incrementanddecrement(these two words being
used as nouns, as in “an increment”, not as verbs as in “increment this”).
Both cases are valid uses of inheritance: an updown counter is definitely an
up counter, and a down counter as well. For dynamically bound uses ofstep
anddeltaon updown counters known statically as just counters, we choose
the “up” interpretation, so the inheritance fromUPDOWN_COUNTERto
DOWN_COUNTERis non-conforming. The machinery of repeated
inheritance gives us exactly what we need thanks to replication.

If the postcondition ofstepis to make sense in both versionsupanddownof
this feature, it is critical that the redeclarations ofstepgo hand in hand with
those ofdelta: the postcondition must meanitem= old item + incrementin
UP_COUNTERand item = old item + decrementin DOWN_COUNTER.
This will require asemantic clarification in the next section.

UPDOWN_
COUNTER

UP_
COUNTER

DOWN_
COUNTER

INTEGER_
COUNTER

COUNTER

[INTEGER]

delta*:  G
item*:  G

 delta  increment

[G –>NUMERIC]
step*

ensure
item= old item + delta

∗

delta+ = 1

 step  down

delta+ = –1

 delta  decrement
 step  up

Non-conforming inheritance

Renamed into
∗ Deferred
+ Effected

Counters, up,
down and both

→ “ReplicationSeman-
tics rule”,  page 459.
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The second example deals with multiple iterations. Theagentmechanism
actually provides a more dynamic way to address this issue, but the
technique described here can still be interesting in some cases.

Consider an iterator class providing a way to perform certain
operations on every element of a certain structure. These operations are
denoted in the iterator class by deferred routines; descendants will effect
them to represent the actual operations needed in a particular iteration case.
For example a classLINEAR_ITERATION(such as provided by the
iteration cluster of EiffelBase) may include aproceduredo_untilwith this
general form:

Any effective descendant ofLINEAR_ITERATION, describing an iteration
scheme over a specific kind of data structure — for example a list
implemented by an array with a current positionposition—, will effect
start, forth andoff to provide, for the corresponding iterative structure:

• An implementation ofstart, bringing the cursor iteration to the first
position; in the array case, it will be the assignmentposition:= 1.

• An implementation offorth, to advance the cursor by one position: for
arrays,position:= position + 1.

• An implementation ofoff, to query whether we have exhausted the list
of meaningful cursor positions: for arrays, the testposition > count,
wherecount is the number of occupied positions.

The class providing these effective declarations may be a class
LIST_ITERATION. All that remains to do for a descendant needing actual
iterations is to effect the routines describing the actions and tests to be
performed on every list element:prepare, test, action andwrapup.

But what if a class needstwo variants of the iteration mechanism? It is
possible to use repeated inheritance fromLIST_ITERATION, with sharing
for the traversal routines (start, forth, off) and replication for the operation
routinesprepare, test, actionandwrapup, which need separate versions.

An example is an an application that handles lists of atomic particles, as
described by the class

do_until(s: TRAVERSABLE[T])
-- Iterate ons,  up to and including
-- the first item satisfyingtest.

do
from

start (s); prepare(s)
until  off (s) or else test(s) loop

action(s); forth (s)
end
if not off (s) then action(s) end; wrapup(s)

end

→ Chapter27 covers
agents and include sev-
eral iteration examples.

←Compare tountil_do
in “PARTIALLY
DEFERREDCLASSES
ANDPROGRAMMED
ITERATION”,  10.15,
page 277.
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where the lists are sorted by increasing mass. The application needs both to

1 • Print the mass of all particles in a list, up to and including the first
positively charged one.

2 • Compute the total vector speed of the first fifty particles in the list and
store it into an attributetotal_speed. (To add speeds, we assume a
procedureadd in classVECTOR.)

Using repeated inheritance:

class PARTICLEfeature
mass: REAL; speed: VECTOR
positively_charged: BOOLEAN
… Other attributes and routines…

end

class PARTICLE_LIST_PROPERTIESinherit
LIST_ITERATION[PARTICLE]

rename
do_untilas print_masses, prepareas do_nothing,
testas positive_test, actionas print_one_mass,
wrapupas do_nothing

end

expandedLIST_ITERATION[PARTICLE]
rename

do_untilas add_speeds, prepareas set_speed,
testas at_threshold, actionas add_one_speed,
wrapupas do_nothing

end

feature
positive_test(s: FIXED_LIST[PARTICLE]): BOOLEAN

-- Is particle at current cursor position inspositive?
do

Result:= s.item.positively_charged
end

print_one_mass(s: FIXED_LIST[PARTICLE])
-- Print the mass of particle at cursor position ins.

do
print (s.item.mass)

end

… Rest of class omitted…
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16.10 THE SEMANTICS OF REPLICATION

The Repeated Inheritance rule specifies that a feature inherited repeatedly
under two different names yields two features in the repeated descendant.
We must clarify what replication entails, especially for routines. We need
the corresponding semantic rule to ensure the correct functioning of both
examples reviewed in the last section.

For attributes,we saw that replication is to be taken literally: instances
of the common descendants will have two separate fields.

For routines, we normally do not need to replicate any code. But a
special case arises whentwo or more routines, calling each other, get
replicated along the same branch.

Consider our usual diamond-shaped repeated inheritance structure, with
two featuresr andf wherer is an effective routine;f may be an attribute or
a routine. We assume thatr callsf:

Bothr andf get renamed differently along the two branches, so the Repeated
Inheritance rule implies replication for both. In additionf gets redefined, so
that the Repeated Inheritance Consistency constraint applies. The
constraint states that at most one of the inheritance paths may support
conformance; this is achieved here by using non-conforming inheritance
from D to C. Viewed fromA, then, thedynamicbindingversion off in D
is theB version,fb, in the sense that it’s the feature called bya1.f, for a1:
A dynamically attached to an object of typeD.

All this, aswehaveseen, also applies wheneverf is an attribute, even if
neitherB norC redefines it.

Such situations raise a new problem: sincer callsf, andD now has two
versions of he originalf, which one of these shouldrb andrc call?

← Figure“Attrib ute
replication”, page449.

Multiple
routine
replications

r

 f

A

CB

D

f

 fb++  f  fc++
 r  rb  r  rc

Non-conforming inheritance

Calls

Renamed into
++ Redefined

→ “Dynamic binding
version”,  page 468.

← “THE CASE OF
ATTRIBUTES”,  16.6,
page 448.
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Since the example include no redefinition for the features of seedr (r,
ra, rb), the featuresra andrb are just duplicates of the originalr. If they are
identical, they will call the same version off in D; if so, that version should
presumably, in keeping with the spirit of the Repeated Inheritance
Consistency constraint, befb, asfccomes from the non-conforming branch.

But is this right? Conceptually,D has two versions ofr and two versions
of f. The original property ofr was that it called the corresponding version
of f. There doesn’t seem to be any good reason for a replicated version ofr
to call a version off that results from a mutation of the original along a
different inheritance branch.

A rare but illuminating case is forf to be the same routine asr:

AssumeB redefinesr but (to keep things simple)C retains this originalA
version shown above. It seems reasonable to expected that the highlighted
call to r should still be a recursive call, both inC and inD. Why should we
call the B version? This seems a betrayal of the originally intended
semantics, since the routine would now cease being recursive.

These reflections suggest that we should take the notion of replication
seriously. Compiler writers, of course, will avoid physically duplicating the
code of a routine whenever they can. But an Eiffel programmer should be
able to believe the replication case of the Repeated Inheritance rule
literally, as if it caused code duplication for a routine in the same way it
causes field duplication for an attribute.

------ EXPLAIN

r (args: …)
-- A routine that may call itself recursively

do
…

end

Call Sharing rule VMCS

It is valid for a featuref repeatedlyinherited by a classD from
an ancestorA, such thatf is shared under repeated inheritance
and notredeclared, to involve a featureg of A other than as the
feature of a qualified call if and only if g is, along the
corresponding inheritance paths, also shared.

← “Seed” was defined
on page311. A revised
definition appears on
page below.

r (other_args)
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The following rule expresses this property:

--------------------

Another way to state this is that replication may cause a form ofimplicit
redefinition: if the replicated routiner calls a featuref that has been
redefined, or is an attribute (in either case causing physical replication),
then even ifr has not been redefined anywhere in the process we must
pretend that it has — to versions that call the corresponding versions off.

If you review the examples of the preceding section, you will notice that
they can only work under this rule:

• In the multiple counter example, the postcondition ofup, inherited by
UP_COUNTERfrom COUNTERasitem= old item + delta, must use
the version ofdeltaapplicable toCOUNTER: increment, with value +1;
for DOWN_COUNTER, the corresponding postcondition fordownmust
usedecrement, with value –1.

If gwere duplicated, there would be no way to know which versionf should
call, or evaluate for the assignment. The “selected” version, discussed
below, is not necessarily the appropriate one.

Replication Semantics rule

Let f andg be two features bothrepeatedlyinherited by a classA
and bothreplicated under the Repeated Inheritance rule, with two
respective sets ofdifferent names:f1 andf2, g1andg2.
If the version off in D is the original version fromA and either
contains anunqualifiedcall tog or (if f is an attribute) is thetarget
of an assignment whosesource involvesg, thef1 version will use
g1 for that call or assignment, and thef2 version will useg2.

This rule (which, unlike other semantic rules, clarifies a special case rather
than giving the general semantics of a construct) tells us how to interpret
calls and assignments if two separate replications have proceeded along
distinct inheritance paths.
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• In the multiple iteration example,print_massesandadd_speed, both of
them mere renamings of the general iteration proceduredo_until, must
use the versions of the list item operationsprepare, test, action and
wrapup applicable to its branch.

In both cases this means that even though the calling routine —step, the
seed of bothupanddown, anddo_until, the seed of bothprint_massesand
add_speeds— is never explicitly redefined, it must take into account the
separate redeclarations of features that it calls.

16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES

This is a time for celebration: by now you know all the important concepts
of inheritance and feature adaptation.

There remains to see a technique addressing a fine point of the
combination between dynamic binding and replication (this section) and
the precise rules for the concepts that we have studied but not yet
formalized (next two sections ). All this is material that you can safely skip
on first reading.

In studying the rules for redeclaration under repeated inheritance we
have seen how to avoid ambiguities by forcing all branches but one to
involve non-conforming inheritance. What if we want some of the versions
for dynamic binding to come from another branch?

Let’s consider again our basic figure for such cases:

We have learned how to resolve the potential ambiguity of calls such as
a1.f for a1: A dynamically attached to an object of typeD: make sure that
one of the inheritance paths involves non-conforming inheritance. Then the
call will use the version from the other branch.

The winner
and the loser

This is the figureofpage
447, with a new feature
f and different names
for the intermediate
classes.

 f

A

LOSER

D

f

 fw++  f  fl++

Non-conforming inheritance

Renamed into
++ Redefined

WINNER

 g  gw++  g  gl++

g
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Once we have settled on where to use non-conforming inheritance, this

policy will be the same for all features such asf. To emphasize this

property, the intermediate classes (B andC in the original examples) have

been renamedWINNERandLOSERon the last figure. The choice between

them is indeed absolute: like the America’s cup, this is a race with no

second place.

But what if we want to use theWINNERversion for featuref, and for

another feature subject to the same problem —g on the figure — we want

to retain the version redeclared in the other class,LOSER?

The reason this hasn’t been a major concern until this stage of the

discussion is that the case is not common. Most of the time, in repeated

inheritance situations of the above type with conflicting redeclarations, one

of the parents is indeed the victor, providing all the variants for dynamic

binding. (Sometimes it’s because itsform of inheritance was more for

subtyping, and the loser’s was more implementation inheritance.)

But there will be exceptions to this observation, and we need a way to

address them. The idea is simply to rely on the Join mechanism.

First assume that although you want two versions of the originalf you

need only one ofg, theLOSERversion. Then a simple join will solve the

problem: it suffices to inherit both versions under the same name, and to

undefine the one fromWINNER; the other will take over.

If you want to keep both versions ofg, but makegl the selection for

dynamic binding from higher-ups, you will use essentially the same

technique but in this case you need to inheritonce morefrom WINNER(as

if mere repeated inheritance fromA were not already enough), this time in

non-conforming form:

On various forms of
inheritance see the
inheritance methodol-
ogy chapter inObject-
OrientedSoftwareCon-
struction, 2nd edition” .

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc


REPEATED INHERITANCE §16.11462
This givesD another version ofgw, leaving you free to do whatever you
like with the first — the one used for dynamic binding —so that you can
let it be overriden bygl’s implementation through renaming, undefinition
and join (the loser’s revenge):

You will obtain a similar effect by redefining thegl from LOSERand thegl
renamed fromgw (in the conformingWINNERbranch) into a common
feature. For attributes — which you can’t undefine — this is the only
possible technique.

class D inherit

WINNER
rename

gwas gl
undefine

gl
end

-- One more time, with feeling:
expandedWINNER

-- Not such a total defeat after all:
expandedLOSER

… Rest of class text omitted…
end

 f

A

LOSER

D

f

 fw++  f  fl++

Non-conforming inheritance

Renamed into
++ Redefined

WINNER

 g  gw++  g  gl++

g

 gw  gl–

– Undefined

We like it so
much we want
not just two but
three of it!
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16.12 THE NEED FOR SELECT

--- EXPLAIN !!!

--- EXPLAIN

16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT

Although we have seen all the concepts, it remains to formalize some of the
definitions and rules:

• The versions of a featureand its dynamic binding version in a
descendant of its class of origin.

• The Repeated Inheritance Consistency constraint— the major
constraint on the use of repeated inheritance.

• The precise definition ofinherited features of a class— needed for the
more general notion of “features of a class”

Select clauses
Select=∆ selectFeature_list

TheSelectsubclause serves to resolve any ambiguities that could arise, in
dynamic binding on polymorphic targets declared statically of a repeated
ancestor’s type, when a feature from that type has two different versions in
the repeated descendant.

Select Subclause rule VMSS

A Selectsubclause appearing in theparentpartfor a classB in a
classD is valid if and only if, for everyFeature_namefnamein
its Feature_list, fnameis the final name inD of a feature that has
two or morepotentialversions in D, andfnameappears only once
in theFeature_list.

This rule restricts the use ofSelectto cases in which it is meaningful: two
or more “potential versions”, a term which also has its own precise
definition. We will encounter next, in the Repeated Inheritance
Consistency constraint, the converse requirement that if there is such a
conflict aSelectmust be provided.
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• As a consequence, the precise definition of thefinal name setof a class
and theFeature Name rule, governing the choice of feature names and
avoiding unwanted name clashes.

As noted, this material and the remainder of this chapter are not required on
first reading.

The purpose of the Repeated Inheritance Consistency constraint is to make
sure (by permitting at most one conforming inheritance path) that for any
feature of a class there is at most onedynamic binding versionin any proper
descendant. Before defining “dynamic binding version” we need to know
what a “version” is, but here we’ve essentially done the job already by
introducing the notion of “seed”:

The seed of a featurewasdefined as the original form of the feature in the
class where it was first introduced, prior to any redeclarations, renamings
or other transformations in proper descendants. A version off is a
reincarnation off in a descendant.

The definition of “seed” implies that iff is immediate (introduced by its class
as a new feature) then the common seed off andg mentioned in the above
definition of “version” isf itself.

When may a feature have more than one version in a proper descendant of
its class of origin? The answer was given by the semantic rules of this
chapter: RepeatedInheritance andReplication Semantics rules. The
following rule brings nothing new, but summarizes the consequences of
these previous results.

-- REMOVED CLAUSES:

, and any two among them satisfy any of the following properties:

1 • A redeclaration applied to one has not been applied to the other.

2 • Any of them is anattribute.

3 • They have different signatures.

4 • Any of them calls a feature ofA having (recursively) two or more
versions inD.

Version
A featureg from a classD is aversionof a featuref from anancestor
of D if f andg have a seed in common.

Multiple versions
A classD hasn versions(n ≥ 2) of a featuref of an ancestorA if
and only ifn of its features, all withdifferentfinal names inD,
are allversions off.

← “Origin, seed”,
page 311

← “Repeated Inherit-
ance rule”,  page 438;
“ReplicationSemantics
rule”,  page 459.
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-------- END REMOVED CLAUSES -- DISCUSSION BELOW IS
OBSOLETE

Although this rule doesn’t mention repeated inheritance, it can only be
understood as a consequence of the rules introduced in this chapter: the
only way in whichD may, as required by the definition, have two or more
versions off — meaning, from the definition of “version”, two or more
features with the same seed — is through the replication mechanism of
repeated inheritance.

Case1 is the most common source of multiple versions: the features
have been redeclared in different ways along different inheritance paths, or
one has been redeclared and the others haven’t.

To cover both of these cases, the rule uses careful phrasing: at least one
redeclaration has occurred (along one of the inheritance branches) that
applies to one of the features but not to the other. This may mean, for the
other, no redeclaration at all, or a different redeclaration.

Case2 follows from the discussion ofwhatreplicationmeans in the special
case of attributes. Note that it suffices that one of the features be an
attribute; it may have as its seed a function that, along the other branch, was
either not redeclared or redeclared as a function.

Case3, as stated, sounds very general, but if you reflect about it you will
realize that it is only relevant in the other special case of replication:
conflictinggenericderivations. True, another source of differing signatures
would be redefinition; but then the more general case1 will also apply.

Case4 follows from the discussion ofreplicationsemantics: even if a
routine has not been explicitly redeclared, it may have an implicit
redefinition as a result of replication under repeated inheritance, if it calls
a feature that has been redeclared. This case only applies to routines, since
only a routine may call another feature (routine or attribute). Note that the
call may be in theRoutine_bodybut it might also be, as in theCOUNTER
example, in aPreconditionor Postcondition, as well as in aRescueclause.

For the reader interested in theoretical consistency: clause4 may appear to
risk infinite recursion, since it is possible for a routiner to call a routines
which also callsr. This was the case with the example of a recursive routine
Interpreting the definitionconstructively — as a definition by induction, or a
fixpoint — avoids this problem: to determine the set of features with more
than one version inD we first apply cases1, 2 and3, the non-recursive cases,
to all relevant features; then we repeatedly apply clause4 to include any
features that call a feature already in our set, stopping at the first iteration that
yields nothing new. The process is guaranteed to terminate, since the set of
features ofD (and hence too the transitive closure of the call graph) is finite.

← “THE CASE OF
ATTRIBUTES”,  16.6,
page 448.

← “THE CASE OF
CONFLICTING
GENERIC DERIVA-
TIONS”, 16.7,page450.

← “THE SEMANTICS
OF REPLICATION”,
16.10, page 457.

For an introduction to
fixpoints and the theory
of recursive definitions
seeIntroduction to the
Theory of Program-
ming Languages” .

http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl
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Throughout this chapter we have used the Repeated Inheritance

Consistency constraint, which removed ambiguities for dynamic binding in

the presence of conflicting redeclarations. For all practical purposes the

earlier informal statements of the constraint were sufficient, but now we

can express it in a completely precise form:

A “ conformancepath” is a sequence of classes fromD to A such that each of

the associatedcurrent types conforms to the next. Thanks to the non-

conforming inheritance it is possible forD to have some inheritance paths to

A that are not conformance paths.

According to this constraintit is not invalid for a class to have more than

one conformance path to a proper ancestor if no replication causes any

ambiguity for dynamic binding. As soon as such a potential ambiguity

arises, however, you need to make sure that all inheritance paths, except

possibly one, involve at least one non-conforming link.

Repeated Inheritance Consistency constraint VMRC

It is valid for a classD to have two or moreversions of a feature
f of a proper ancestorA if and only if it satisfies one of the
following conditions:
1 • There is at most oneconformance path fromD to A.

2 • There are two or more conformance paths, and theParent
clause for exactly one of them inD has aSelectclause listing
the name of the version off from the correspondingparent.

← “Conformance
path”, page389; “Cur-
rent type”,  page 365.

A

CB

D
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Conversely, nothing forces you, in a repeated inheritance situation with or

without replication, or in any inheritance situation, to have a conforming

path. A class may inherit from another, singly or multiply, without

conformance of the associated current types. This is the case offacility or

implementation-onlyinheritance, which does not permit subtyping. It is

not the most common use of inheritance, but it is possible:

In this case there is no polymorphism: witha1: A andd1: D, attachments

such asa1 := d1are invalid. (Similarly, with the assumptions of the figure,

a1 := b1 andc1 := d1 with b1: B andc1: C.)

A final comment on the Repeated Inheritance Consistency constraint —

important in particular for compiler writers — is that the rule as stated

might seem to require, for any featuref of a classA, verification inevery
proper descendantE of A, at least everyE such that repeated inheritance

with replication occurs somewhere betweenA andE, even if the culprit is

notE but an intermediate descendantD:

You don’t have to worry about what happens inE, however: thanks to the

definition of “version”, if possible dynamic binding ambiguities arises for

E, that can only be (if the only cases of repeated inheritance are those

appearing on the figure) because they arise forD; once you resolve them

for D in accordance with the Repeated Inheritance Consistency constraint,

that will take care ofE as well.

On varieties of inherit-
ance seeObject-
Oriented Software
Construction” .

More than one
path conforms

A

CB

D

No path
conforms

Suffering from
an proper
ancestor’s
repeated
inheritance?

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
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Thanks to the constraint we can now definethedynamic bindingversion
(note the singular) of a feature in any descendant of its class of origin:

As you will have noted:

• The definition has moved on from classes to types, since this is what
matters for feature calls and dynamic binding. All the concepts
transpose immediately; in particular, “featuresof a type” was defined
precisely in an earlier chapter.

• If T andU are the same type, case1 applies; so the definition indicates
— as it should — thatf is its own dynamic version.

Dynamic binding version
For any featuref of a typeT and any typeU conformingto T, the
dynamic binding version of f in U is the featureg of U defined
as follows:
1 • If f has only oneversion inU, theng is that feature.

2 • If f has two or more versions inU, then theRepeated
InheritanceConsistency constraint ensures that either exactly
one conformance path exists fromU to T, in which caseg is
the version off in U obtained along that path, or that aSelect
subclause name a version off, in which caseg is that version.

A

CB

D

E

← “CURRENT TYPE,
FEATURES OF A
TYPE”,  12.11, page
365.
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The definition enables us to obtain asingle dynamic binding version for
every inherited feature. This is of course the very purpose of the entire
present discussion, and the reason for the Repeated Inheritance
Consistency constraint.

The result is at the very heart of the object-oriented machinery of Eiffel:
when discussing the fundamental computational mechanism, feature call,
we will specify that a calla.f (…) triggers thedynamic binding version
of f in the type of the object dynamically attached toa. Thanks to the
preceding rules and definitions, we now have the guarantee that this notion
will always be unambiguously defined, even under the most sophisticated
forms of multiple and repeated inheritance.

16.14 THE INHERITED FEATURES OF A CLASS

(Like the previous one, you may skip this last section on first reading.)

The final prize we earn from all the work done in this chapter is the
ability to provide a precise, conclusive definition of a key notion: the
features of a class — in particular its inherited features.

As specified in theoriginal discussionof features, the “features of a
class” include its immediate features (those introduced in the class itself),
and its inherited features, which were defined informally as the features
“obtained from” the parents’ features.

The reason for being informal at that earlier stage is now clear: two
mechanisms, repeated inheritance and join, affect how a class may “obtain”
features from its parents. Without these mechanisms, every feature from a
parent (everyprecursor) would yield one feature in the heir. But:

• The join mechanism merges two or more features from parents into a
single one in their common heir.

• With sharing under repeated inheritance, two or more precursors,
inherited from different parents but coming from the same features of a
common ancestor, yield a single feature ofD.

• Conversely, withreplication under direct repeated inheritance (D has
two or moreParentclauses listing the same parent), a single precursor
may yield two or more features ofD.

← Chapter5; see
“IMMEDIA TE AND
INHERITED FEA-
TURES”,5.4,page133.
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Only with the benefit of these observations can we now obtain a precise
definition of the “inherited features of a class”, and hence (since immediate
features — the new, non-inherited ones — raise no particular problem) of
thefeatures of a class. Here is the full definition:

Inherited features
Let D be a class. Letprecursors be the list obtained by
concatenating the lists of features of every parent ofD; this list
may contain duplicates in the case of repeated inheritance. The
list inherited of inherited features of D is obtained from
precursors as follows:

1 • In the list precursors, for any set of two or more elements
representing features that are repeatedly inherited inD under
the samename, so that theRepeatedInheritancerule yields
sharing, keep only one of these elements. TheRepeated
InheritanceConsistency constraint (sharing case) indicates
that these elements must all represent the same feature, so that
it does not matter which one is kept.

2 • For every featuref in the resulting list, ifD undefinesf, replace
f by adeferredfeature with the same signature,specification
andheader comment.

3 • In the resulting list, for any set of deferred features with the
same final name inD, keep only one of these features, with
assertions and header comment joined as per theJoin
Semanticsrule. (Keep the signature, which theJoin rule
requires to be the same for all the features involved after
possible redeclaration.)

4 • In the resulting list, remove anydeferredfeature such that the
list contains aneffective feature with thesamefinal name.
(This is the case in which a featuref, inheritedaseffective,
effects one or more deferred features: of the whole group, only
f remains.)

5 • All the features of the resulting list have different names; they
are the inherited features ofD in their parent forms. From this
list, produce a new one by replacing any feature thatD
redeclares (throughredefinition oreffecting) with the result of
the redeclaration, and retaining any other feature as it is.

6 • The result is the listinherited of inherited features ofD.

← “Join Semantics
rule”,  page 320.
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This definition looks a little like an algorithm, but it’s not; you may view it
as a plain mathematical specification. There is no requirement that
compilers implement the corresponding mechanisms by mimicking the
rule’s successive steps, as long as the result is compatible.

The order of the clauses is significant. Note in particular that the very first
step, clause1, takescare once and forall of repeated inheritance. This removes
a small potential ambiguity, which we may remove through a semantic rule
(not a new property, just a consequence of the preceding definition):

The situation is illustrated by the figure below:f is deferred at the level of
A, and nothing else — renaming, effecting… — happens to it down to the
level of D. It’s a case of sharing under repeated inheritance, but we might
also apply the Join semantics, as always when a class inherits under a
single name a set of features, all deferred (or, although this doesn’t apply
here, all deferred except one). You may have wondered about this case:
which of the two semantic rules should we apply? You may also have
brushed off the question: does it matter at all?

Join-Sharing Reconciliation rule

If a class inherits two or more features satisfying both the
conditions ofsharing under theRepeatedInheritancerule and
those of theJoin rule, the applicable semantics is theRepeated
Inheritance rule.

Join, or
sharing?

A

CB

D

∗ Deferred

f ∗ ∗
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It matters not much, but it matters just a little and we must leave no

semantic stone unturned. The only difference has to do with assertions.

Assume thatf, deferred as it may be, has a postcondition

Then the Join Semantics ruleprescribes combining the header comments

of the joined features, and also their assertions: through anor for the

preconditions, and anand for postcondition. Becausea and a has the same

value asa, no really bad semantic consequence will follow, but for example

a class documentation tool, such as aflat-short form displayer, might

mistakenly display the postcondition off in D as something like:

Not a disaster, but unnecessarily complex. The Join-Sharing

Reconciliation rule explicitly defines the resulting postcondition in such

a case to be justyour_condition, with a similar consequence for

preconditions and header comments.

Let’s come back to more general properties of the definition of Inherited

Features. To understand the definition, note that the lists under

consideration are lists offeatures, not of feature names, although the

features that remain at the end all have different final names inD. The list

inheritedobtained at step6 of the definition may still contain duplicate

features — with different feature names — as a result of repeated

inheritance with replication. This is why we defineprecursorsas a list

rather than a set. (Unlike a set, a list may contain duplicates.)

ensure
your_condition

ensure
-- FromA:

your_condition
and

-- FromA:
your_condition

← “Join Semantics
rule”,  page 320.

← “Contract view, flat-
short form”,  page 216
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In fact these observations also yield a new definition of the “precursors”
of a feature, equivalent to theoriginal one but more precise:

In accordance with this definition the successive steps of the definition of
“inherited features” may only merge features — elements of the list
precusors— if they all have the same final name. This is an important
property because without it the earlier definition of thefinal nameof an
inherited feature would not make sense.

Recall that according to this definition the final namem of a featuref
obtained from a precursor of namen in a parentB is:

• n in the absence of renaming.

• Otherwise, themappearing in aRename_pairof the formrenamen asm
in theParent clause forB in D.

Obviously, if f is obtained from two or more precursors, all this is
meaningless unless we are sure thatm is the same for all these precursors.

This also clarifies the notion offinal name setof a class, originally
introduced — in thesamedefinition as “final name” — as the set of final
names of all the features of a class. These final names are:

• For immediate features, the names under which the class declares them.

• Forinheritedfeatures,theinheritednamesexceptasoverriddenbyrenaming.

Two or more precursors merged into one — because of either a join or
sharing under repeated inheritance — yield just one element of the final
name set. If a feature from a repeated ancestor yields several features under
replication, this adds all the corresponding names to the final name set.

Precursor
A precursor of an inheritedfeature offinal namefnameis any
parent feature — appearing in the listprecursors obtained
through case1 of the definition of “Inheritedfeatures” — that the
feature mergings resulting from the subsequent cases reduce into
a feature of namefname.

← “Pr ecursor (joined
features)”,  page 315.
See also the first, sim-
plified definition on
page268.

← “F inal name,
extended final name,
final name set”,  page
186.

← “F inal name,
extended final name,
final name set”,  page
186.

Both the Repeated
Inheritanceruleandthe
Join rule require all the
merged features tohave
the same final name.
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Finally, we introduce a simple constraint capturing the fundamental rule
on choosing feature names:

Feature Name rule VMFN

It is valid for a featuref of a classC to have a certainfinal name
if and only if it satisfies the following conditions:
1 • No other feature ofC has thatsame feature name.

2 • If f is shared underrepeatedinheritance, itsprecursors all have
either noAlias or thesame alias.

Condition 1 follows from other rules: the Feature Declaration rule, the
Redeclaration rule and the rules on repeated inheritance. It is convenient to
state it as a separate condition, as it can help produce clear error messages
in some cases of violation.

Two feature names are “the same”if the lower-case version of their
identifiers is the same.

The important notion in this condition is “other feature”, resulting
from the abovedefinitionof “inheritedfeatures”. When do we considerg
to be a feature “other” thanf? This is the case wheneverg has been declared
or redeclared distinctly fromf, unless the definition of inherited features
causes the features to be merged into just one feature ofC. Such merging
may only happen as a result of sharing features under repeated inheritance,
or of joining deferred features.

Also, remember that ifC redeclares an inherited feature (possibly
resulting from the joining of two or more), this does not introduce any new
(“other”) feature. This was explicitly stated by thedefinition of
“introducing” a feature.

Condition2 complements these requirements by ensuring that sharing
doesn’t inadvertently give a feature more than one alias.

The Feature Name rule crowns the discussion of inheritance and feature
adaptation by unequivocally implementing the No Overloading Principle:
no two features of a class may have the same name. The only permissible
case is when the name clash is apparent only, but in reality the features
involved are all the same feature under different guises, resulting from a
join or from sharing under repeated inheritance.

← “Same feature
name, same operator,
samealias”, page153.
← “Inherited fea-
tures”,  page 470.

← “Inherited, immedi-
ate; origin; redeclara-
tion; introduce”, page
133
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Consequences of the Feature Name rule includes the following
properties, which for convenience we may group into a new constraint:

Name Clash rule VMNC

The following properties govern thenames of the features of
a classC:
1 • It is invalid for C to introduce two different features with the

same name.

2 • If C introduces a feature with the same name as a feature it
inherits as effective, it must rename the inherited feature.

3 • If C inherits two featuresaseffective from different parents
and they have the same name, the class must also (except
undersharing forrepeatedinheritance) remove the name clash
through renaming.

This is not a new constraint but a set of properties that follow from the Feature
Name rule and other rules. Instead of Eiffel’s customary “This is valid if and
only if …” style, more directly useful to the programmer since it doesn’t just
tell us how to mess things up but also how to produce guaranteeablyvalid
software, the Name Clash rule is of the more discouraging form “You may
not validly write …”. It does, however, highlight frequently applicable
consequences of the naming policy, and compilers may take advantage of it
to report naming errors.

WARNING: not a valid-
ity constraint in the
usual form; see com-
ment at bottom of pre-
ceding page.
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Control structures
17.1 OVERVIEW

17.2 COMPOUND

The first control structure,Compound, enables you to specify a list of
instructions to be executed in a specified order.

From its inconspicuous syntax, you wouldn’t guess that this is a
fundamental program composition mechanism: the instructions of a
Compoundare just written one after another, in the order of their
intended execution. You may emphasize the sequencing of the
instructions by using a separator, the semicolon, which is not only
discreet but optional to boot.

The previous discussions have described the “bones” of Eiffel software: the
module and type structure of systems. Here we begin studying the “meat”:
the elements that govern the execution of applications.

Control structures are the constructs used to schedule the run-time
execution of instructions. There are four of them: sequencing (compound),
conditional, multi-branch choice and loop. A complementary construct is
theDebug instruction.

As made clear by the definition of “non-exception semantics” in the
semantic rule forCompound, which indirectly governs all control
structures (since al instructions are directly or indirectly part of a
Compound), the default semantics assumes that none of the instructions
executed as part of a control structure triggers anexception. If an exception
does occur, the normal flow of control is interrupted, as described by the
rules of exception handling in the discussion of this topic.

→ Chapter26.
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A typical specimen of theCompound construct is:

This Compoundis made of three instructions; it specifies the execution of

these instructions in the order given. The last of the three (aConditional

instruction, as studied below) itself includes a two-instructionCompound.

The use and non-use of semicolons in this example illustrate the

recommended style convention: no semicolon has been included between the

three instructions of the outermostCompoundsince they appear on separate

lines (the most common case), enough to remove any confusion. The two

instructions of the innermostCompound— inside theConditional— appear

on the same line; here the semicolon should be included for the benefit of the

human reader, even though compilers don’t need it.

The syntax forCompoundspecified:

In the common, non-confusing case, thestyle rule is to omit the

semicolons between instructions appearing on separate lines. The

semicolon in that case is just visual noise and actually hampers readability.

For successive instructions on the same line make sure tokeep the

semicolon. The above example illustrated this style rule, observed

throughout this book.

All this does not diminish the role of sequencing as a control structure,

even if the only syntactical trace left in the software text is the textual order

of instructions, indicating the temporal order in which they should be

executed at run time.

window1.display
mouse.wait_for_click(middle)
if not  last_event.is_null then

last_event.handle; screen.refresh
end

Compound=∆ { Instruction ";" …}*

→ “OPTIONAL
SEMICOLONS”,
34.10, page 919.
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There is no validity rule forCompound. The semantic specification follows
from the above explanations:

Aside from its role as a control structure, theCompoundconstruct
serves an frequent syntactical need : allowing any construct that involves
an instruction — so that it may execute it as part of its own execution — to
involve any numberof instructions, including zero. The syntax of Eiffel
consistently adheres to this rule:Instructionnever appears in the definition
of a construct other thanCompound; other construct definitions use
Compound instead. They include:

Compound (non-exception) semantics

The effect of executing aCompound is:
• If it has zero instructions: to leave the state of the computation

unchanged.

• If it has one or more instructions: to execute the first instruction
of theCompound, then (recursively) to execute theCompound
obtained by removing the first instruction.

This specification, thenon-exception semanticsof Compound,
assumes that noexception istriggered. If the execution of any of
the instructions triggers an exception, the Exception Semantics
rule takes effect for the rest of theCompound’s instructions.

Less formally, this means executing the constituent instructions in the order
in which they appear in theCompound, each being started only when the
previous one has been completed.

Note that aCompoundcan be empty, in which case its execution has no
effect. This is useful for examples when refactoring the branches of a
Conditional: you might temporarily remove all the instructions of the
Else_part, but not theElse_partitself yet as you think it may be needed
later.
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• The body of a non-deferred routine (constructInternal).

• TheThen_part andElse_partof aConditional instruction.

• TheWhen_part andElse_part of aMulti_branch instruction.

• TheInitialization andLoop_body of aLoop instruction.

• TheDebug instruction.

• TheRescue clause of a non-deferred routine.

17.3 CONDITIONAL

A basic algorithmic mechanism is the ability to discriminate between a se
of values, executing a different set of instructions in each case. Eiffel
provides three variants of this notion:Conditional, where discriminating
criteria are boolean conditions;Multi_branch, comparing an expression to
a set of specified values; andObject_test, matching a reference against a
specified object type. They’re studied in this section and the next two.

A Conditionalinstruction prescribes execution of one among a number
of possible compounds, the choice being made through boolean conditions
associated with each compound.

You should remain alert to an important aspect of the Eiffel method,
which de-emphasizes explicit programmed choices between a fixed set of
alternatives, in favor of automatic selection at run-time based on the type
of the objects to which an operation may be applied. Such an automatic
selection is achived by the object-oriented techniques of inheritance and
dynamic binding. This methodological guideline, discussed in more detail
below, does not diminish the usefulness ofConditionalinstructions — a
widely used mechanism —but should make you wary of complicated
decision structures with too manyelseifbranches. This applies even more
to theMulti_branch instruction studied next.

An exampleConditional is

whose execution is one among the following: execution of the compound
i1; i2 if x > 0 evaluates to true; execution ofi3 if the first condition does not
hold andx = 0 evaluates to true; execution ofi4; i5; i6 if none of the
previous two conditions holds.

if  x > 0 then
il ; i2

elseif x = 0 then
i3

else
i4; i5; i6

end

← Syntax on page222.

→ Page481.

→ Page481.

→ Page498.→ Page495.

→ Page498.

→ Page701.

→ “USING SELEC-
TIONINSTRUCTIONS
PROPERLY”,  17.6,
page 491.
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There may be zero or more “elseif Compound” clauses. The “else
Compound” clause is optional; if it is absent, no instruction will be
executed when all boolean conditions are false.

The general form of the construct is

Two auxilary notions help define precisely the semantics of this construct.
As the syntax specification shows, aConditional begins with

wherecondition1 is a boolean expression andcompound1 is aCompound.
The remaining part may optionally begin withelseif. If so, we may
consider that it forms a new, simplerConditional, called itssecondary part:

The secondary part of the above exampleConditional is

The other useful notion is ”prevailing immediately”:

Conditionals
Conditional =∆ if Then_part_list [Else_part] end

Then_part_list=∆ { Then_partelseif…} +

Then_part=∆ Boolean_expressionthenCompound

Else_part=∆ elseCompound

if  condition1 then compound1

Secondary part
Thesecondary partof aConditionalpossessing at least oneelseifis
theConditionalobtained by removing the initial “if Then_part_list”
and replacing the firstelseif of the remainder byif .

if  x=0 then
i3

else
i4; i5; i6

end

Prevailing immediately
The execution of aConditionalstarting withif condition1 is said
to prevail immediately if condition1 has value true.
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These conventions enable a simple definition of the semantics:

17.4 MULTI-BRANCH CHOICE

Like the conditional, theMulti_branch supports a selection between a
number of possible instructions. In contrast with theConditional, however,
the order in which the branches are written does not influence the effect of
the instruction. Indeed, the validity constraints seen below guarantee that
at most one of the selecting conditions may evaluate to true.

Like the Conditional, the Multi_branchinstruction is less commonly
used in proper Eiffel style than its counterparts in traditional design and
programming languages. This is explained in more detailbelow.

You may use aMulti_branch if the conditions are all of the form

or all of the form

whereexpis an expression, the same for every branch, thevi are constant
values, different for each branch and (in the second variant) theTi are all
distinct types, not conforming to one another. In such cases, the
Multi_branchprovides a more compact notation than theConditional, and
makes a more efficient implementation possible.

Conditional semantics

The effect of aConditional is:
• If it prevails immediately: the effect of the firstCompoundin

its Then_part_list.

• Otherwise, if it has at least oneelseif: the effect (recursively) of
its secondary part.

• Otherwise, if it has anElsepart: the effect of theCompoundin
thatElse part.

• Otherwise: no effect.

Like the instruction studied next, theConditional is a “multi-branch”
choice instruction, thanks to the presence of an arbitrary number ofelseif
clauses. These branches do not have equal rights, however; their conditions
are evaluated in the order of their appearance in the text, until one is found
to evaluate to true. If two or more conditions are true, the one selected will
be the first in the syntactical order of the clauses.

“Is expequal tovi ?”

“Is expof typeTi ?”

→ “USING SELEC-
TIONINSTRUCTIONS
PROPERLY”,  17.6,
page 491.
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Here is an example of the first kind, assuming an entitylast_inputof
typeCHARACTER:

Depending on the value oflast_input, this instruction selects and executes
one Compound among five possible ones. It selects the first
(command_table…) if last_inputis a lower-case or upper-case letter, that
is to say, belongs to one of the two intervals'a' .. 'z' and'A' .. 'Z', or is an
underscore'_'. It selects the second iflast_inputis a digit. It selects the third
(refresh the screen) for the characterControl_L, and the fourth (exit after
confirmation) for either one of two other control characters; here
Control_L, Control_C andControl_Qmust be constant attributes. In all
other cases, the instruction executes the fifth compound given
(display_proper_usage).

This example discriminates on the value of an expression of type
CHARACTER. Other permitted types include:INTEGER; STRING; and
TYPE[G] for someG, which describe object types (conforming toG). This
last possibility allows you to discriminate on the basis of thetypeof the
object attached at run time to the value of an arbitrary expression, as
illustrated by the following example of dealing with various kinds of
exception object:

inspect
last_input

when 'a' .. 'z', 'A' .. 'Z', '_' then
command_table.item(upper(last_input)).execute
screen.refresh

when '0' .. '9' then
history.item(last_input).display

when Control_Lthen
screen.refresh

when Control_C, Control_Qthen
confirmation.ask
if  confirmation.ok then

cleanup; exit
end

else
display_proper_usage

end
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In this form the “inspect values” — the values listed in thewhen parts —
are type descriptors, each listing a type in braces, as{ OS_SIGNAL} . The
instruction examines the type of the object associated withlast_exception,
as given bylast_exception.type, and if it conforms to one of the types listed
executes the correspondingthenbranch; otherwise the instruction executes
its elsebranch. The validity rule requires that none of the types listed
conform to another, so there can be no ambiguity as to which branch will
be executed.

The expression that determines the choice —last_input and
last_exception.type in these two examples — has a name:

The inspect expressions of the last two examples arelast_choiceand
last_exception. The inspect expression may only be of one of the types
CHARACTER, INTEGER, STRING, TYPE.

The instruction includes one or moreWhen_part, each giving a list of
one or moreChoice, separated by commas, and aCompoundto be executed
when the value of the inspect expression is one of the givenChoicevalues.

EveryChoicespecifies zero or more inspect values. More precisely, a
Choiceis either a single constant (Manifest_constantor constant attribute)
or an interval of consecutive constants yielding all the interval’s elements
as inspect values. If present, the instruction’s optionalElse_partis executed
when the inspect expression is not equal to any of the inspect values.

inspect
last_exception.type

when { DEVELOPER_EXCEPTION} then
process_developer_exception

when { OS_SIGNAL}, { NO_MORE_MEMORY} then
cancel_operation

else
reset

end

Inspect expression
The inspect expressionof a Multi_branch is the expression
appearing after the keywordinspect.
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As the validity constraint will state precisely, all the inspect values must

all be of the same type as the inspect expression: all characters, all integers,

all strings or all types. They must all be different, and non-conforming in the

case of types; this avoids ambiguity, ensuring that the order of theWhen_part

branches has no influence on the semantics of the construct.

Every constant in the preceding examples is either aManifest_type, a

Manifest_constantsuch as'a' whose value is an immediate consequence of

the way it is written, or a constant attribute such asControl_Lwhose value

is given in a constant attribute declaration such as

Now the formal rules. First, the syntax ofMulti_branch:

To discuss the constraint and the semantics, it is convenient to consider the

unfolded formof the instruction. First, constant and type intervals have

similar properties, justifying a general term:

Control_L: CHARACTERis '%/217/'

Multi-branch instructions
Multi_branch =∆ inspectExpression

[When_part_list] [Else_part] end

When_part_list=∆ When_part+

When_part=∆ whenChoicesthen Compound

Choices=∆ { Choice "," …} +

Choice =∆ Constant| Manifest_type|
Constant_interval| Type_interval

Constant_interval=∆ Constant ".." Constant

Type_interval=∆ Manifest_type ".." Manifest_type

Interval
An interval  is aConstant_intervalor Type_interval.

→ On character codes
such as'%/217/' see
32.14, page 894.

ConstructConstant
describes manifest or
symbolic constants and
is studied in“GEN-
ERAL FORM OF
CONSTANTS”,  29.2,
page 787.
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which enables us to define the unfolded form

The last unfolded form is based on another, for intervals:

Unfolded form of a multi-branch
To obtain theunfolded form of aMulti_branchinstruction, apply
the following transformations in the order given:
1 • Replace everyconstantinspect value by itsmanifest value.

2 • If the typeT of the inspect expression is anysizedvariant of
CHARACTER, STRINGor INTEGER, replace every inspect
valuev by { T}  v.

3 • Replace everyinterval by itsunfolded form.

Step2 enables us, with an inspect expression of a type such asINTEGER_8,
to use constants in ordinary notation, such as1, rather than the heavier
{ INTEGER_8} 1. Unfolded form constructs this proper form for us. The
rulesonconstants make this convention safe: a value that doesn’t match the
type, such as1000 here, will cause a validity error.

Unfolded form of an interval
Theunfolded form of aninterval a..b is the following (possibly
empty) list:
1 • If aandbare constants, both of either acharactertype, astring

type or anintegertype, and ofmanifestvaluesva andvb: the
list made up of all valuesi, if any, such thatva ≤ i ≤ vb, using
character, integer or lexicographical order respectively.

2 • If a andb are both of typeTYPE[T] for someT, and have
manifest valuesva and vb: the list containing every
Manifest_typeof the system conforming tovb and to which
vaconforms.

3 • If neither of the previous two cases apply: an empty list.

→ ---- [Add reference]
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An interval may not be empty:

The “manifestvalue” of a constant is the value that has been declared for
it, ignoring anyManifest_type: for example both1 and{ INTEGER_8} 1
have the manifest value 1.

The symbol.. is not a special symbol of the language but an alias for a
feature of the Kernel Library classPART_COMPARABLE, which for any
partially or totally ordered set and yielding the set of values between a
lower and an upper bound. Here, the bounds must be constant.

A note for implementers: type intervals such as{ U} ..{ T} , denoting all
types conforming toTand to whichU conforms, may seem to raise difficult
implementation issues: the set of types, which the unfolded form seems to
require that we compute, is potentially large; the validity (Multi-Branch
rule) requires that all types in the unfolded form be distinct, which seems
to call for tricky computations of intersections between multiple sets; and
all this may seem hard to reconcile with incremental compilation, since a
type interval may include types from both our own software and externally
acquired libraries, raising the question of what happens on delivery of a
new version of such a library, possibly without source code. Closer
examination removes these worries:

• There is no need actually to compute entire type intervals as defined by
the unfolded form. Listing{ U} ..{ T} simply means, when examining a
candidate typeZ, finding out whetherZ conforms toT andU to Z.

• To ascertain that such a type interval does not intersect with another
{ Y} ..{ X} , the basic check is thatY does not conform toT andU does
not conform toX.

• If we add a new set of classes and hence types to a previously validated
system, a new case of intersection can only occur if either: a new type
inherits from one of ours, a case that won’t happen for a completely
external set of reusable classes and, if it happens, should require re-
validating since existingMulti_branchinstructions may be affected; or
one of ours inherits from a new type, which will happen only when we
modify our softwareafter receiving the delivery, and again should
require normal rechecking.

Interval rule VOIN

An Interval is valid if and only if itsunfolded form is not empty.

→ ---- [Add reference]

→ In theKernelLibrary
specifications see
classes
“PART_COMPARABL
E”,  page 977, and
“INTERVAL”,  page
981.
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So of the intervals

the first two unfold into

the third into the (infinite) set of strings lexicographically between"ab" and
"ad", and the last into an emptyChoiceslist. Thanks to unfolding, the
constraint and semantics may limit themselves to the case ofMulti_branch
instructions where everyChoice is aConstant or Manifest_type.

This definition also enables us to say exactly what “inspect values” means:

A Multi_branch must satisfy a validity constraint --- DEFINE
CONSTANT MANIFEST TYPE ---:

--- IN CLAUSE 2: CHECK THAT DEFINITION OF CONSTANT” FOR
TYPES ONLY COVERS CONSTANT TYPES ----

3 .. 5
'i' .. 'n'
"ab" .. "ad"
5 .. 3

3, 4, 5
'i' , 'j', 'k', 'l', 'm' 'n'

Inspect values of a multi-branch
The inspect valuesof a Multi_branch instruction are all the
values listed in theChoicesparts of the instruction’sunfolded
form.

The set of inspect values may be infinite in the case of a string interval, but this poses
no problem for either programmers or compilers, meaning simply that matches will
be determined through lexicographical comparisons.

Multi-branch rule VOMB

A Multi_branchinstruction is valid if and only if its unfolded
form satisfies the following conditions.
1 • Inspect values are all valid.

2 • Inspect values are allconstants.

3 • Themanifest values of any two inspect values are different.

4 • If the inspectexpression is of typeTYPE[T] for some typeT,
all inspect values are types.

5 • If case4 does not apply, the inspect expression is one of the
sized variants ofINTEGER, CHARACTERor STRING.
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The clauses guarantee that there won’t be any ambiguity for choosing the

branch to be executed, if any.

--- NOT TRUE ANY MORE, FIX THIS --- For inspect values of the

Manifest_typekind, such as{ SOME_TYPE} , clause4 requires that none

of the types listed conform to another. It rules out examples such as

where the classYOUR_DEVELOPER_EXCEPTIONinherits from

DEVELOPER_EXCEPTION. This may appear too strong a constraint until

you realize that giving non-ambiguous semantics to such examples would

require that we take into account the order of theWhen_partclauses: the

rule, presumably, would be to select the first one that matches. This

conflicts with the principle stating that the semantics of aMulti_branch

should never depend on the order of thewhen clauses.

If you do want type-based discrimination with more than one possibly

matching type, nestMulti_branch instructions, or use aConditional or

Object_conditional.

To define the semantics of aMulti_branch instruction, we will use the

concept of matching branch:

inspect
last_exception

when { YOUR_DEVELOPER_EXCEPTION} then
“Something”

when { DEVELOPER_EXCEPTION} then
“Something else”

end

Matching branch

During execution, amatching branch of a Multi_branchis a
When_partwp of its unfolded form, satisfying either of the
following for the valueval of its inspect expression:
1 •val ~ i, wherei is one of the non-Manifest_typeinspectvalues

listed in wp.

2 •val denotes aManifest_type listed among the choices ofwp.

WARNING: invalid
with the assumed inher-
itance link.
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Case1 applies to aMulti_branch that lists actual inspect values:
integers, characters or strings. The matching criterion isequality in the
sense ofequal.

Case2 covers aMulti_branchthat discriminates on the type of an object
attached to the value of an expression. Note that a void value will never
have a matching branch.

The specification of aMulti_branch’s effect follows directly from
this definition.

Note the difference between the semantics ofConditionalandMulti_branch
when there’s noElse_partand none of the selection conditions holds:

• A Conditional just amounts to a null instruction in this case

• Multi_branch will fail , triggering an exception.

The reason is a difference in the nature of the instructions. AConditional
tries a number of possibilities in sequence until it finds one that holds. A
Multi_branch selects aCompound by comparing the value of an
expression with a fixed set of constants; theElse_branch, if present,
catches any other values.

The Multi-branch rule is designed to ensure that in any execution there will
be at most one matching branch.

In case1, we look for object equality, as expressed by~. Strings, in
particular, will be compared according to the functionis_equalof STRING.
A void value, even if type-wise permitted by the inspect expression, will
never have a matching branch.

In case2, we look for an exact type match, not just conformance. For
conformance, we have type intervals: to match types conforming to some
T, use{ NONE} ..{ T} ; for types to whichT conforms, use{ T} ..{ ANY} .

Multi-Branch semantics

Executing aMulti_branchwith a matchingbranch consists of
executing theCompoundfollowing thethen in that branch. In the
absence of matching branch:
1 • If the Else_partis present, the effect of theMulti_branchis

that of theCompound appearing in itsElse_part.

2 • Otherwise the executiontriggers an exception of type
BAD_INSPECT_VALUE.

→ “OBJECT EQUAL-
ITY”,  21.6, page 580

→ See26.12,page709,
aboutexceptionobjects.
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If you expect such values to occur and want them to produce a null effect,
you should use anElse_partwith an emptyCompound. By writing a
Multi_branchwithout anElse_part, you state that you donot expect the
expression ever to take on a value not covered by the inspect values. If your
expectations prove wrong, the effect is to trigger an exception — not to smile,
do nothing, and pretend that everything is proceeding according to plan.

17.5 OBJECT TEST

--- SECTION REMOVED, BUT MATERIAL WILL BE REUSED FOR
NEW MECHANISM REPLACING ASSIGNMENT ATTEMPT S----

17.6 USING SELECTION INSTRUCTIONS PROPERLY

If you have accumulated some experience with some of the traditional
design or programming languages, many of which include a "case" or
"switch" instruction, you will recognize theMulti_branchas similar in
syntax and semantics. Similarly, theObject_testmay remind you of
techniques for discriminating between cases based on the type of an object,
sometimes known as “Run-Time Type Idenfification” or RTTI. But when it
comes to writing Eiffel applications, you should be careful to not misuse
these instructions. This warning extends toConditionalinstructions with
many branches.

Staying away from explicit discrimination is an important part of the
Eiffel approach to software construction. When a system needs to execute
one of several possible actions, the appropriate technique is usually not an
explicit test for all cases, as withMulti_branchor Conditional, but a more
flexible inheritance-based mechanism:dynamic binding. With explicit
tests, every discriminating software element must list all the available
choices — a dangerous practice since the evolution of a software project
inevitably causes choices to be added or removed. Dynamic binding avoids
this pitfall.

You should reserveMulti_branchinstructions, then, to simple situations
where a single operation depends on a fixed set of well-understood choices.

When the purpose is to apply a different operation to an object
depending on its type (for example categories of employees, for which a
certain operation, such as paying the salary, has a different effect), then
Multi_branch is not appropriate: instead, you should define different
classes that inherit from a common ancestor — for exampleMANAGER,
ENGINEERetc. all inheriting fromEMPLOYEE —and redefine one or
more features (such aspay_salary) to take care of the local context. Then
dynamic binding guarantees application of the proper variant: the call

Caroline.pay_salary

→ “D YNAMIC BIND-
ING”, 23.12,page638.
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will automatically use the variant ofpay_salaryadapted to the exact type
of the object attached toCarolineat run time (which may be an instance of
MANAGER, orENGINEER etc.).

This is more flexible than aConditionalor Multi_branchthat lists the
choices explicitly, especially if other operations besidespay_salaryhave
variants for the given categories. To add a variant, it suffices to write a new
class, sayINTERN, as a descendantEMPLOYEE, equipped with new
versions of the operations that differ from the defaultEMPLOYEEversion.
Unlike a system that makes explicit choices throughConditional or
Multi_branchinstructions, a system built with this method will only have
to undergo minimal change for such an extension.

Explicit choices do have a role, as illustrated by the earlier examples of
Multi_branch. The first read

This decodes a user input consisting of a single character and executes an
action depending on that character, What is interesting is that the
Multi_branchdoes only the “easy” part: separating the major categories of
characters (letters, digits, control characters).

inspect
last_input

when 'a' .. 'z', 'A' .. 'Z', '_' then
command_table.item(upper(last_input)).execute
screen.refresh

when '0' .. '9' then
history.item(last_input).display

when Control_Lthen
screen.refresh

when Control_C, Control_Qthen
confirmation.ask
if  confirmation.ok then

cleanup; exit
end

else
display_proper_usage

end
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In the branches for letters and characters, however, the finer choice is
made not through explicit instructions but through dynamic binding. For
example, letters are used to index a tablecommand_tableof objects
representing command objects with operations such asexecute. (These
objects might beagents as studied in a later chapter.) After retrieving the
command object associated with the upper-case version of a given letter,
the aboveMulti_branchappliesexecuteto it, relying on dynamic binding
to ensure that the proper action will be selected.

Using aMulti_branchto discriminate between the actions associated
with individual letters 'A', 'B' etc. would have resulted in a more
complicated and inflexible architecture. At the outermost level, however,
the above extract does use aMulti_branch, which appears justified because
of the small number of cases involved and the diversity of actions in each
case, which do not fall into a single category such as “execute the command
attached to the selected object”.

The second example usedManifest_type inspect values:

Even though we are using aMulti_branch to select different actions
depending on the type of an object, we are not doing anything else with the
object in question. The choices, in addition, are from a fixed set of
possibilities — exception types — provided by the Kernel Library, not
under developer control.

If you do anything else with the inspected object, however,
Multi_branchwill cease to be the better choice and you should look into
dynamic binding and associated mechanisms.

inspect
last_exception.type

when { DEVELOPER_EXCEPTION} then
process_developer_exception

when { OS_SIGNAL}, { NO_MORE_MEMORY} then
cancel_operation

else
reset

end

→ Agents are the topic
of chapter27.

See also the Single
Choice principle in
“Object-Oriented Soft-
ware Construction”,
and, in the present book,
“Single choice and fac-
tory objects”,  page 537.
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17.7 LOOP

The next control structure is the only construct (apart from recursive
routine calls) allowing iteration. This is theLoop instruction, describing
computations that obtain their result through successive approximations.

Loop structure and properties

The following example of a search routine illustrates theLoop construct
with all possible clauses:

TheLoopconstruct extends from the keywordfrom  to the firstend.

The Initialization clause (from…) introduces actions, here a call to
procedurechild_start, to be executed before the actual iteration starts. The
Loop_body(loop…) introduces the instruction to be iterated, here a call to
child_forth; this will be executed zero or more times, after theInitialization,
until theExit condition, introduced in theuntil … clause, is satisfied.

The optionalInvariant and Variant clauses help reason about a loop,
ascertain its correctness, and debug it:

search_same_child(sought: like first_child)
-- Move cursor to first child position wheresought

appears
-- at or after current position.
-- If no such position, move cursor after last item.

require
sought_child_exists: sought/= Void

do
from

child_start
invariant

0 <= position
position<= arity + 1

until
child_offor else(sought= child)

loop
child_forth

variant
arity — child_position + 1

end
ensure

(not child_off) implies (sought= child)
end

This example is close to
actual tree searching
routines in EiffelBase.
Actual versions, how-
ever,cancheck forequal
as well as ‘=’.

← “LOOP INVARI-
ANTS AND VARI-
ANTS”,9.11,page250.
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• The keywordinvariant introduces an assertion, describing a property
that must be satisfied by the initialization and maintained by every
execution of the loop body if the exit condition is not satisfied.

• The keywordvariant introduces an integer expression which must be
non-negative after the initialization and will decrease whenever the
body is executed, but will remain non-negative; these properties ensure
that the loop’s execution terminates.

Here is the general form of theLoop construct.

TheInitialization(from clause) is required. If you do not need any specific
initialization, use afrom  clause with an emptyCompound, as in

Loops
Loop =∆ Initialization

[Invariant]
Exit_condition
Loop_body
[Variant]
end

Initialization =∆ from Compound

Exit_condition =∆ until Boolean_expression

Loop_body=∆ loop Compound

from
until

printer.queue_empty
loop

printer.process_next_job
end

← InvariantandVariant
were studied in9.11.
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In general, however, theInitialization does introduce aCompoundof
one or more instructions, as in this example from a list duplication
routine in EiffelBase:

Loop semantics

The optionalInvariantandVariantparts have no effect on the execution of
a correct loop; they describe correctness conditions. Their precise use was
explained in the discussion of assertions and correctness. As a reminder:

• TheInvariantmust be ensured by theInitialization; any execution of the
Loop_bodystarted in a state where theInvariantis satisfied, but not the
Exit condition, must produce a state that satisfies theInvariantagain.

• TheInitialization must produce a state where theVariantexpression is
non-negative; and any execution of theLoop_bodystarted in a state
where theVarianthas a non-negative valuev and theExit condition is
not satisfied must produce a state in which theVariant is still non-
negative, but its new value is less thanv. Since theVariantis an integer
expression, this guarantees termination.

from
mark
Result.start

until
off

loop
Result.put (item)
forth
Result.forth

end

Loop semantics

The effect of aLoop is the effect ofexecuting theCompoundof
its Initialization, then itsLoop_body.
The effect of executing aLoop_body is:
• If the Boolean_expressionof the Exit_conditionevaluates to

true: no effect (leave the state of the computation unchanged).

• Otherwise: the effect ofexecuting theCompoundclause,
followed (recursively) by the effect of executing the
Loop_body again in the resulting state.

← “LOOP INVARI-
ANTS AND VARI-
ANTS”,9.11,page250.
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Ensuring non-void references in a loop

--- [SECTION REMOVED, SOME MATERIAL WILL BE REUSED] ---

17.8 THE DEBUG INSTRUCTION

The Debug instruction serves to request the conditional execution of a
certain sequence of operations, depending on a compilation option.

The existence of this instruction implies an obligation for Eiffel
development environments to include a user option for turning “Debug
mode” on and off and, more generally, to set a “Debug key”. TheLace
control language includes the necessary mechanisms, enabling you to set
the option at all relevant levels:

• Default for an entire system.

• Default for a cluster, overriding the system default.

• Value for a particular class, overriding the cluster default.

The basic form of aDebug instruction is

The instruction will be ignored at execution time if the Debug option is off.
If the option is on, the execution of theDebuginstruction is the execution
of all theinstructioni in the order given, as with aCompound.

A variant of the instruction enables you to exert finer control over the
debugging level by specifying one or more “debug key” in the form of a
Manifest_string in parentheses. For example:

This will be executed if and only if the Debug option has been turned on
either generally as before or specifically for the givenDebug_key. This way
you can exercise various parts of the software separately by playing with
the option, typically in theAce file, without touching the Eiffel text itself.

debug
instruction1
…
instructionn

end

debug("GRAPHICS_DEBUG")
instruction1
…
instructionn

end

→AppendixBdiscusses
Lace; see“SPECIFY-
ING OPTIONS”,  B.9,
page 1028.

→ The Ace file is the
Lace control file used
to set options. See
appendixB.
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Here is the syntax of the instruction:

Key_listwasintroduced in connection with theOnceroutine specification:

Debug instructions
Debug =∆ debug [ "("Key_list ")" ]

Compoundend

Key_list =∆ { Manifest_string "," …} +

Debug semantics

A language processing tool must provide an option that makes its
possible to enable or disableDebuginstructions, both globally
and for individual keys of aKey_list. Such an option may be
settable for an entire system, or for individual classes, or both.
Letter case is not significant for a debug key.
The effect of aDebuginstruction depends on the mode that has
been set for thecurrent class:
• If the Debug option is on generally, or if the instruction

includes aKey_list and the option is on for at least one of the
keys in the list, the effect of theDebuginstruction is that of its
Compound.

• Otherwise the effect is that of a null instruction.

← Page222.
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18
Attributes
18.1 OVERVIEW

This chapter discusses the properties of both two kinds of attribute.

18.2 GRAPHICAL REPRESENTATION

In graphical system representations, you may mark a feature that you know
is a variable attribute by putting its name in a box.

The figure illustrates this convention for attributesfirst andfirst_elementin
a classLINKED_LISTsimilar to the one from EiffelBase. (This is a partial
representation of the class.)

Attributes areone of the two kinds of feature.

When, in the declaration of a class, you introduce an attribute of a
certain type, you specify that, for every instance of the class that may exist
at execution time, there will be an associated value of that type.

Attributes are of two kinds:variable and constant. The difference
affects what may happen at run time to the attribute’s values in instances of
the class: for a variable attribute, the class may include routines that,
applied to a particular instance, will change the value; for a constant
attribute, the value is the same for every instance, and cannot be changed
at run time.

←Theother isroutines,
studied in chapter8.

put_linkable_left:
first: G

first_element:
LINKABLE [like first]

LINKED_LIST
[G] previous: like first_element

like first_element

next: like first_element

Representing
attributes
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As illustrated by this example, putting the attributes of a class next to each
other, each boxed in a rectangle, yields a bigger rectangle that suggests the
form of aninstanceof the class with all its fields. So we get a picture of both
the class (elliptic) and the correspondingobjects(rectangular).

Not boxing a feature does not mean that it is not a attribute. In some
cases, you may choose toleaveunspecified whether a particular feature is
an attribute or a routine. Then the standard representation for features,
unboxed, is appropriate. In the example illustrated above,previousandnext
may be attributes just as well as functions without arguments.

18.3 VARIABLE ATTRIBUTES

Declaring a variable attribute in a class prescribes that every instance of the
class should contain a field of the corresponding type. Routines of the class
can then execute assignment instructions to set this field to specific values.

Here are some variable attribute declarations:

The first introduces a single attributen of type INTEGER. The second
(equivalent, because of theMultiple Declarationsemantics rule, to three
separate declarations) introduces three attributes, all of typeWINDOW.

If these declarations appear in theFeaturesclause of a classC, all
instances ofC will have associated values of the corresponding types; an
instance will look like this:

More generally,asyou mayremember, a feature declaration is a variable
attribute declaration if it satisfies the following conditions:

• There is noFormal_arguments part.

• There is aType_mark part.

• There is noConstant_or_routine part.

18.4 ATTRIBUTES IN FULL FORM

-----------------

n: INTEGER
a, b, c: WINDOW

→ Principle of uniform
access: 23.4, page 624.

← “Unfolded form of a
possibly multiple declara-
tion”,  page 159.

An instance
with its fields

n

a

b

c

620

(references

to instances of
WINDOW)

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.
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18.5 CONSTANT ATTRIBUTES

Declaring a constant attribute in a class associates a certain value with
every instance of the class. Because the value is the same for all instances,
it does not need to be actually stored in each instance.

Since you must specify the value in the attribute’s declaration, the type
of a constant attribute must be one for which the language offers a lexical
mechanism to denote values explicitly. This means one of the following:

• BOOLEAN, with values writtenTrue andFalse.

• CHARACTER,withvalueswrittenascharacters insinglequotes,suchas'A'.

• INTEGER, with values written using decimal digits possibly preceded
by a sign, such as–889.

• REAL, with values such as–889.72.

• STRING, with values made of character strings in double quotes such as
"A SEQUENCE OF $CHARACTERS#".

Attribute bodies
Attribute =∆ attribute Compound

The Compoundis empty in most usual cases, but it is required for an
attribute of an attached type (including the case of an expanded type) that
does not providedefault_createas a creation procedure; it will then serve
to initialize the corresponding field, on first use for any particular object, if
that use occurs prior to an explicit initialization. To set that first value,
assign toResult in theCompound.

Such aCompoundis executed at most once on any particular object
during a system execution.

The construct
Constant_attribute is
introduced in29.2,
page787, as part of the
discussion of expres-
sions.

All these types except
STRING are called
basic types. See, page
338

All these examples use
“manifest”  constants;
see below.



ATTRIBUTES §18.6502
For types other than these, you may obtain an effect similar to that of
constants by using aonce function. For example, assuming a class

you may, in another class, define the once function

which creates aCOMPLEX object on its first call; this call and any
subsequent one return a reference to that object.

Returning to true constant attributes: the declaration of a constant
attribute must determine the attribute’s value, using amanifest constant.

The next section details this case.

18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

A Manifest_constantis a constant given by its explicit value. It may be a
Boolean_constant, Character_constant, Integer_constant, Real_constant
or Manifest_string.

class COMPLEXcreation
make_cartesian, …

feature -- Initialization
make_cartesian(a, b: REAL)

-- Initialize to real parta, imaginary partb.
do

x := a; y := b
end

feature -- Access
x, y: REAL
… Other features and invariant…

end

i: COMPLEXis
-- Complex number of real part 0, imaginary part 1

once
createResult.makecartesian(0, 1)

end

→ See23.15,page647,
about the effect of call-
ing a once function.

Chapter32 describes
theprecise formofman-
ifest constants.
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Here are some constant attribute declarations usingManifest_constant
values:

More generally, a feature declaration is a constant attribute declaration if it
satisfies the following conditions:

• There is noFormal_arguments part.

• There is aType_mark part.

• There is a Constant_or_routine part, which contains a
Manifest_constant.

A straightforward validity constraint governs such declarations:

Terminal_count: INTEGERis 247
Cross: CHARACTERis 'X'
No: BOOLEANis False
Height: REAL is 1.78
Message: STRINGis "No such file"

Manifest Constant rule VQMC

A declaration of a featuref introducing amanifestconstant is
valid if and only if the Manifest_constantm used in the
declaration matches the typeT declared forf in one of the
following ways:
1 •m is aBoolean_constant andT is BOOLEAN.

2 •m is aCharacter_constantandT is one of thesizedvariants of
CHARACTER for whichm is a valid value.

3 •m is anInteger_constantandT is one of thesizedvariants of
INTEGERfor whichm is a valid value.

4 •m is a Real_constantand T is one of thesizedvariants of
REALfor whichm is a valid value.

5 •m is a Manifest_stringandT is one of thesizedvariants of
STRING for whichm is a valid value.

6 •m is aManifest_type, of the form{ Y} for some typeY,andT
is TYPE[X] for somestand-alonetypeX to whichYconforms.

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.
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The “valid values” are determined by each basic type’s semantics; for
example1000 is a valid value forINTEGER_16but not forINTEGER_8.

In case6, we require the type listed in aManifest_type{ Y} to be
constant, meaning that it does not involve any formal generic parameter or
anchored type, as these may represent different types in different generic
derivations or different descendants of the original class. This would not be
suitable for a constant attribute, which must have a single, well-defined
value.
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Objects, values and entities
19.1 OVERVIEW

This chapter and the following one will illustrate the dynamic model
through figures representing values and objects. These figures and the
conventions only serve explanatory purposes. In particular:

• Although they may suggest the actual implementation techniques used
to represent values and objects at run time, they should not be construed
asprescribing any specific implementation.

• Do not confuse these conventions for representingdynamic(that is to
say, run-time) properties of systems with the graphical conventions for
representing classes, features, the client relation, inheritance, and other
static properties of software texts.

Wesaw that it is often convenient, in these representations of the static model,
to pictureattribute features in a form that resembles the representation of
objects in the dynamic model. But this should cause no ambiguity since one
convention applies to classes and the other to run-time objects.

The execution of an Eiffel system consists of creating, accessing and
modifyingobjects.

The following presentation discusses the structure of objects and how
they relate to the syntactical constructs that denote objects in software
texts:expressions. At run time, an expression may take on variousvalues;
every value is either an object or a reference to an object.

Among expressions,entities play a particular role. An entity is an
identifier (name in the software text), meant at execution time to denote
possible values. Some entities areread-only: the execution can’t change
their initial value. Others, calledvariables, can take on successive values
during execution as a result of such operations as creation and assignment.

The description of objects and their properties introduces thedynamic
model of Eiffel software execution: the run-time structures of the data
manipulated by an Eiffel system.

← “GRAPHICAL
REPRESENTATION”,
18.2, page 499.
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19.2 OBJECTS AND THEIR TYPES

During its execution, an Eiffel system will create one or more objects.

There will always be at least one: theroot object created on execution start.

A clear correspondence exists between objects, the dynamic (run-time)
notion, and on the other side types and classes, the static (programming-
time) notions. Every object proceeds from a type, itself based on a class.
The following definitions capture this correspondence:

An object may be aninstanceof many types: if it is an instance ofTC, it is
also an instance of any typeTB to which TC conforms. But it is adirect
instance of only one type, and so has just one generating type.

To obtain the generating type of the object attached tox, you may use:

whose value is an object denoting a type. The querytype, which comes
from the universal classANY, returns an object denoting a type, with the
associated feature; withx declared of typeTX, the type ofx.type itself is

based on the library classTYPE. More precisely,TYPE [TX] covers all
objects representing types thatconform to TX, includingTX itself.

19.3 VALUES AND INSTANCES

We saw in the discussion of types that any possible value for an entity is
either an object or areference. The notion of reference has a
precise definition:

Type, generating type of an object; generator

Every run-time object is adirect instance of exactly onestand-
alone type of the system, called thegenerating type of the
object, or just “the type of the object” if there is no ambiguity.
The baseclass of the generating type is called the object’s
generating class, orgenerator for short.

x.type

TYPE[TX]

←“Systemexecution”,
page 114

← “Direct instance”
wasdefinedonpage329.

← “Instanceofatype”,
page 330.

→ “OBJECT PROP-
ERTIES”,  35.4, page
929

← “Dir ect instances
and values of a type”,
page 329.
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A non-void reference is “attached to” exactly one object, but an object may
be attached to several references.

The reserved wordVoid denotes a void reference. To find out if the value
of e is void, use the boolean expression

Values of anexpanded type can never be void.

The following figure shows conventions for representing a reference: by
an arrow — more precisely, a blue arrow in this book — if attached to an
object, by a special “grounding” symbol if void. Below an object you may
write its generating type, hereTC.

The four values on the figure are the fields of the object on the left. The first
and the third value from the top, labelednextandprevious, are references;
nextis attached to the object on the right, andpreviousis void. The figure
gives no information about the values in the expanded fieldsitem and
count, or about the fields of the object on the right.

The followingproperty is essential to the consistency of the Eiffel type
system and the dynamic model:

In particular, simple values such as integers, booleans and reals are objects.

Reference, void, attached, attached to
A reference is a value that is either:
• Void, in which case it provides no more information.

• Attached, in which case it gives access to an object. The
reference is said to beattached to that object, and the object
attached to the reference.

e= Void

Object principle

Every non-void value is either an object or a referenceattached
to an object.

See chapter35 about
the features of class
ANY. Void may be
implemented as an
attribute or a once func-
tion.

previous (TC)

item

count

Picturing
references,
attached and
void

← Following directly
from the“Instanceprin-
ciple”,  page 331.
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19.4 BASIC TYPES

A number of object types come from classes of the Kernel Library:
BOOLEAN; CHARACTER(64-bit) andCHARACTER_8; INTEGERand its
sized variantsINTEGER_8, INTEGER_16, INTEGER_32, INTEGER_64,
NATURAL, NATURAL_8, NATURAL_16, NATURAL_32,NATURAL_64;
REALand its sized variantsREAL_32 andREAL_64; andPOINTER.

The specification of their direct instances — boolean values, characters,
integers, floating-point numbers, and addresses for passing to external
software — appears in thechapter on basic types.

The specifications of direct instances appearing in the rest of the present
chapter exclude the case of basic types.

19.5 REFERENCE AND COPY SEMANTICS

19.6 COMPOSITE OBJECTS AND THEIR FIELDS

We will use specific terminology for non-basic types:

Consider a class typeTC, of base classC, and an attributea of classC; let
TA be the type ofa. The possible values for the field corresponding to
attributea in a direct instance ofTCdepend on the nature ofTA. There are
three possible cases forTA:

Object semantics
Every run-time object has eithercopy semantics or
reference semantics.
An object has copy semantics if and only if itsgeneratingtype is
anexpanded type.

This property determines the role of the object when used as source of an
assignment: with copy semantics, it will be copied onto the target; with
reference semantics, a reference will be reattached to it.

Non-basic class, non-basic type, field
Any class other than thebasictypes is said to be anon-basic
class. Any type whosebaseclass is non-basic is anon-basic
type, and its instances arenon-basic objects.
A direct instance of a non-basic type is a sequence of zero or
more values, calledfields. There is one field for every attribute of
the type’s base class.

→ Chapter30.

This definition makes
no difference between
variable and constant
attributes. See the end
of this section.
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1 • Reference type.

2 • Expanded type.

3 • Formal generic parameter of classC.

In case1, the field corresponding to attributea is a reference. That
reference may be void, or it may be attached to an instance ofTA’s base type
— not necessarily a direct instance. In the figure on the following page, the
first and third fields from the top are attached to the same object, calledO2.

In case2, the field corresponding to attributea is an instance of the
expanded typeTA. That field, then, is itself an object, called asubobjectof
the enclosing object. There are two cases:

• TAmay be a basic type; then the subobject is a basic object of that type;
the figure shows fields of typeINTEGERandREAL.

• If TA is a non-basic expanded type, the subobject is itself a non-basic
object. This applies to the last field of the left object on the figure. In
this case the enclosing object isacomposite object.

Finally, in case3, TA is a formal generic parameter of classC, the base class
of TC. Depending on whether the actual generic parameter is a reference
type or an expanded type, this will in fact yield either case1 or case2.

Subobject, composite object
Any expandedfield of an object is asubobject of that object.
An object that has anon-basic subobject is said to becomposite.

(TC)

(TA)

O2

of_reference_type

void_of_ref_type

also_of_ref_type

of_type_integer
237

of_type_real
45.46e2

of_some_
expanded_type

An object and
its fields

This represents a par-
tial snapshot taken dur-
ing the execution of a
possible system, illus-
trating some of the var-
ious kinds of field.
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The above definition of fields makes no difference between constant and
variable attributes: an attribute of either kind yields a field in every instance.
In a reasonable implementation, fields for constant attributes, being the same
value for every instance of a class, will not occupy any run-time space. This
indicates again that figures representing objects (such as the ones in this
chapter) do not necessary show actual object implementations. This book
uses "field" in the precise sense defined above, which does not always imply
an actual memory area in an object’s representation.

Here is a summary of the classification of objects:

19.7 REFERENCE ATOMICITY

The dynamic model as illustrated above has both composite objects,
containing subobjects, and references to objects. How do these notions
combine? In particular, can a system produce the run-time situation shown
on the following figure, where a reference is attached to a subobject of
another object?

Object

Basic
Non-basic

Instance of basic type Instance of
programmer-defined class

Non-Composite

Has subobjects No subobjects

composite
also_of_ref_type

of_type_integer
237

of_type_real
45.46e2

such asINTEGER

Kinds of object

(a) (b)

Reference to
subobject

WARNING: This illus-
trates an impossible sit-
uation.
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The answer is no. The semantics of reattachment operations (Assignment,
formal-actual argument association)will guarantee that a reference can
only become attached to a full object. Although objects themselves are not
“atomic”, since clients can modify individual fields by calling the
appropriate routines, the level of atomicity for attachingreferencesis an
entire object.

It is possible to conceive of a model that supports references to subobjects, as
was in fact the case in ISE Eiffel 2. But this significantly complicates the
dynamic model and the implementation, garbage collection in particular,
without bringing a clearly useful improvement in expressive power.

→Seecase[2] ofattach-
ment semantics table on
page598,andthediscus-
sion that follows.
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19.8 EXPRESSIONS AND ENTITIES

The discussion so far has defined the object structures that can be created
during system execution. To denote the objects and their fields in software
texts, you may use expressions — specimens of the constructExpression.

There are several forms of expression, which subsequent chapters cover
in detail. One form, the simplest, is of immediate interest: entities, which
consist of a single name.

Here is the corresponding syntax specification:

Entity, variable, read-only
An entity is anIdentifier, or one of two reserved words (Current
andResult), used in one of the following roles:
1 •Final name of an attribute of a class.

2 •Local variable of a routine orInline_agent, includingResult
for a query.

3 • Formal argument of a routine or inline agent.

4 •Object Test local.

5 •Current , the predefined entity used to represent a reference to
the current object (the target of the latest not yet completed
routine call).

Names of non-constant attributes and local variables arevariable
entities, also called justvariables. Constant attributes, formal
arguments, Object Test locals andCurrent areread-onlyentities.

Two kinds of operation, creation and reattachment, may modify the value
of a variable (a non-constant attribute, part of category1, or local variable,
category2. In the other four cases — constant attributes, formal arguments
(3), Object Test locals (4) andCurrent (5) — you may not directly modify
the entities, hence the nameread-only entity.

The term “constantentity” wouldn’t do, not so much because you can modify
the corresponding objects but because read-only entities (other than constant
attributes) do change at run time: a qualified callreattachesCurrent , and any
routine call reattaches the formal arguments.

Result appearing in thePostconditionof a constant attribute cannot be
changed at execution time, but for simplicity is considered part of local
variables in all cases anyway.

Entities and variables
Entity =∆ Variable | Read_only

Variable =∆ Variable_attribute | Local

Variable_attribute=∆ Feature_name

→ See8.6, page 225,
about local variables
andResult. Inline
agents are an described
in chapter27and
Object Test locals in
24.3, page 658.

→ Creation: chapter
20; reattachment:
chapter22.

→ “Curr entobject,cur-
rent routine”,  page 649
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The constraint on entities indicates that an entity must be of one of the five
forms listed above. In addition, local variables, formal arguments and
Object Test locals are only permitted in certain contexts:

A related rule defines what it means for an entity to be aVariable:

Local =∆ Identifier | Result

Read_only=∆ Formal | Constant_attribute| Current

Formal =∆ Identifier

Constant_attribute=∆ Feature_name

Entity rule VEEN

An occurrence of anentitye in the text of a classC (other than as
the feature of a qualified call) is valid if and only if it satisfies one
of the following conditions:
1 •e is Current .

2 •e is thefinal name of an attribute ofC.

3 •e is the local variableResult, and the occurrence is in a
Feature_body, Postcondition or Rescue part of an
Attribute_or_routinetext for aquery or anInline_agentwhose
signature includes a result type.

4 •e is Result appearing in thePostconditionof a constant
attribute’s declaration.

5 • e is listed in theIdentifier_listof anEntity_declaration_groupin
aLocal_declarationspart of a feature orInline_agentfa, and the
occurrence is in aLocal_declarations, Feature_bodyor Rescue
part forfa.

6 • e is listed in theIdentifier_listof anEntity_declaration_groupin
aFormal_argumentspart for a routiner, and the occurrence is in
adeclaration forr.

7 • e is listed in theIdentifier_listof anEntity_declaration_groupin
theAgent_argumentspart of anAgenta, and the occurrence is in
theAgent_bodyof a.

8 •e is theObject-TestLocal of anObject_test, and the occurrence
is in itsscope.

“Other than as feature of a qualified call” excludes from the rule any attribute,
possibly of another class, used as feature of a qualified call: ina.b the rule
applies toa but not tob. The constraint onb is theGeneralCall rule, requiring
b to be the name of a feature inD’s base class.

→ “ScopeofanObject-
TestLocal”, page661.

→ The General Call
rule is on page681.
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This will determine whether you may useeas the target of anAssignment.
Note thatv in clause2 has to be a local variable (including, as usualResult)
of the immediatelyenclosing routine or agents. Routines may not be
nested, but an agent appears in a routine (and possibly in another agent);
only the local variables of the immediately enclosing scope are assignable.

19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES

The semantic purpose of an entity is to be ready at execution time to deliver
an associated value whenever queried, orevaluated. The validity and
semantic rules of the language must ensure that whenever this happens the
entity denotesexactly one value, and to define what that value will be.

For read-only entities this is achieved through simple properties, whose
details appear in other chapters:

• A constant attribute has the valuespecified in its declaration.

• Current getsattached to the root object on system start, and at the start
of a qualified callx.f (…) denotes the value of the targetx.

• On entry to a routine, a formal argument getsattached to the value of
the corresponding actual.

For a variable, the picture is a bit more subtle. The result of the evaluation
is a consequence of the operations that may have affected the variable:

• Initialization , as it occurs on object creation (for an attribute) or a
routine call (for a local variable).

• Any assignment using the variable as its target.

Assignment has a well-defined semantics, discussed in detail in the
correspondingchapter. But the execution might evaluate the variable
before it has been the target of any explicit assignment; it is the task of
initialization rules to ensure that even in such a case every variable has one
well-defined value.

This is not the case in all programming languages; many leave it to the
programmer to ensure that every variable is assigned before use. In Eiffel, it
is a language design principle that the rules must be sufficient to deduce, for
any evaluation of any variable, a well-defined result.

Variable rule VEVA

A Variableentityv is valid in a classC if an only if it satisfies one
of the following conditions:
1 •v is thefinal name of avariable attribute ofC.

2 •v is the final name of alocal variable of the immediately
enclosing routine or agent.

→ Assignment is dis-
cussed in chapter22.

→ 29.10, page 813.

→ “Curr ent Seman-
tics”,  page 651.

→ “PRECISE CALL
SEMANTICS”,  23.17,
page 652.

→ Chapter22.
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The value of a variable that hasn’t yet been the target of an assignment will
be determined by theinitialization rules that we will now study. These
rules determinewhich valuea variable will hold prior to assignment, and
when exactly that value will be set.

---- TO BE REDONE ---There are two possibilities, depending on the
type of the variable:

• The most common case covers variables ofbasic typesas well as non-
attached ones ofreference types. An attribute of such a type denotes a
field in the corresponding objects, and will accordingly be initialized as
part of object creation. A local variable (includingResultfor a function)
is initialized anew for each call of its routine. In both cases the initial
values are language-specified: zero for numbers, false for booleans, null
character for characters, and for references — covering all other
possibilities — a void reference.

• Expandedtypes raise a special issue because their semantics require
variables, when evaluated, always to be attached to an object of the
corresponding type. Such an object cannot just follow from the
declaration of the variable (like the value0, in the previous case, follows
from the declaration of anINTEGERvariable); it has to come out of a
creation instruction. The rule then is to create an object onfirst
evaluationof the variable — meaning for an attribute the first evaluation
for any given object, and for a local variable the first evaluation in any
given call. The evaluation will cause creation of an object of the
appropriate type, using the proceduredefault_create, which must be
one of the creation procedures of the type.

This is the gist of the rules. Let now see their precise form. First we name
---- REWRITE our two type categories:

Self-initializing type
A type isself-initializing  if it is one of:
1 • A detachable type.

2 • A self-initializing formal parameter.

3 • An attached type (including expanded types and, as a special
case of these, basic types) whosecreationprocedures include a
version ofdefault_createfrom ANYavailablefor creation toC.
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:

A self-initializing type enables us to define a default initialization value:

• Use Void for a detachable type (case1, the easiest but also the least
interesting)

• Execute a creation instruction with the applicable version of
default_createfor the most interesting case:3, attached types, including
expanded types. This case also covers basic types, which all have a
default value given by the following rule.

A “self-initializing formal parameter” (case2) is a generic parameter, so
we don’t exactly know which one of these three semantics will apply; but
we do require, through the Generic Derivation rule, that any attached type
used as actual generic parameter be self-initializing, meaning in this case
that it will providedefault_create.

In the definition, the “creation procedures” of atypeare the creation
procedures of its baseclass or, for a formal generic parameter, its
“constraining creators”, the features listed as available for creation in its
constraining type.

The more directly useful notion is that of a self-initializingvariable,
appearing below.

The term “self-initializing” is justified by the following semantic rule,
specifying the actual initialization values for every self-initializing type.

Default Initialization rule

Every self-initializing type T has adefault initialization value
as follows:
1 • For adetachable type: a void reference.

2 • For a self-initializingattachedtype: an object obtained by
creating an instance ofT throughdefault_create.

3 • For a self-initializing formal parameter: for every generic
derivation, (recursively) the default initialization value of the
corresponding actual generic parameter.

4 • ForBOOLEAN: the boolean value false.

5 • For asized variant ofCHARACTER: null character.

6 • For asized variant ofINTEGER: integer zero.

7 • For asized variant ofREAL: floating-point zero.

8 • ForPOINTER: a null pointer.

9 • ForTYPED_POINTER: an object representing a null pointer.



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 517
The notion generalizes ---- COMPLETE

T

---- EXPLAIN

This rule is the reason why everyone loves self-initializing types: whenever
execution catches an entity that hasn’t been explicitly set, it can (and,
thanks to the Entity Semantics rule, will) set it to a well-defined default
value. This idea gains extra flexibility, in the next definition, through the
notion of attributes with an explicit initialization.

Self-initializing variable
A variable isself-initializing  if one of the following holds:
1 • Its type is a self-initializing type.

2 • It is an attribute declared with anAttribute part such that the
entityResult is properly set at the end of itsCompound.

If a variable is self-initializing, we don’t need to worry about finding it with
an undefined value at execution time: if it has not yet been the target of an
attachment operation, automatic initialization can take over and set it to a
well-defined default value. That value is, in case1, the default value for its
type, and in case2 the result of the attribute’s own initialization. That
initialization must ensure thatResult is “properly set” as defined next
(partly recursively from the above definition) .

Evaluation position, precedes
An evaluation position is one of:
• In aCompound, one of itsInstruction components.

• In anAssertion, one of itsAssertion_clause components.

• In either case, a specialend position.

A position p precedesa positionq if they are both in the same
Compound or Assertion, and either:
• p andq are bothInstructionor Assertion_clausecomponents,

andp appears beforeq in the corresponding list.

• q is the end position andp is not.
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This notion is needed to ensure that entities are properly set before use.

In a compoundi1; i2; i3 we have four positions;i1 precedesi2, i3 and
the end position, and so on.

The relation as defined only applies tofirst-level components of the
compound: ifi2 itself contains a compound, for example if it is of the form
if c then i4; i5 end, theni4 is not an evaluation position of the outermost
compound, and so has no “precedes” relation with any ofi1, i2 andi3.

Setter instruction
A setter instruction is an assignment or creation instruction.
If x is a variable, a setter instruction is asetter for x if its
assignment target orcreation target isx.

Properly set variable
At anevaluationpositionepin a classC, a variablex is properly
set if one of the following conditions holds:
1 •x is self-initializing.

2 •ep is an evaluation position of theCompoundof a feature or
Inline_agentof the Internal form, one of whose instructions
precedesep and is asetter forx.

3 •x is a variable attribute, and is (recursively) properly set at the
end position of everycreation procedure ofC.

4 •ep is an evaluation position in aCompoundthat is part of an
instruction ep’, itself belonging to aCompound, and x is
(recursively) properly set at positionep’.

5 •ep is in a Postconditionof a routine orInline_agentof the
Internal form, andx is (recursively) properly set at the end
position of itsCompound.

6 •ep is an Assertion_clausecontaining Result in the
Postcondition of a constant attribute



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 519
The key cases are2, particularly useful for local variables but also
applicable to attributes, and3, applicable to attributes when we cannot
deduce proper initialization from the enclosing routine but find that every
creation procedure will take care of it. Case4 accounts for nested
compounds. For assertions other than postconditions, which cannot use
variables other than attributes,3 is the only applicable condition. The
somewhat special case6 is a consequence of our classification ofResult
among local variables even in thePostcondition of a constant attribute.

As an artefact of the definition’s phrasing, every variable attribute is
“properly set” in any effective routine of a deferred class, since such a class
has no creation procedures. This causes no problem since a failure to set
the attribute properly will be caught, in the validity rule below, for versions
of the routine in effective descendants.

Variable Initialization rule VEVI

It is valid for an Expression, other than the target of an
Assigner_call, to be also aVariable if it is properly set at the
evaluationposition defined by the closest enclosingInstructionor
Assertion_clause.



OBJECTS, VALUES AND ENTITIES §19.9520
This is the fundamental requirement guaranteeing that the value will be
defined if needed.

Because of the definition of “properly set”, this requirement is
pessimistic: some examples might be rejected even though a “smart”
compiler might be able to prove, by more advanced control and data flow
analysis, that the value will always be defined. But then the same software
might be rejected by another compiler, less “smart” or simply using
different criteria. On purpose, the definition limits itself to basic schemes
that all compilers can implement.

If one of your software elements is rejected because of this rule, it’s a
sign that your algorithms fail to initialize a certain variable before use, or
at least that the proper initialization is not clear enough. To correct the
problem, you may:

• Add a version ofdefault_create to the class, as creation procedure.

• Give the attribute a specific initialization through an explicitAttribute
part that setsResult to the appropriate value.

Variable setting and its value
A setting for a variablex is any one of the following run-
time events, defining in each case thevalue of the setting:
1 • Execution of asetterfor x. (Value: the objectattachedto x by

the setter, or a void reference if none.)

2 • If x is avariableattribute with anAttributepart: evaluation of
that part, implying execution of itsCompound. (Value: the
object attached toResult at the end position of that
Compound, or a void reference if none.)

3 • If the typeT of x is self-initializing: assignment tox of T’s
default initialization value. (Value: that initialization value.)
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As a consequence of case2, an attributea that is self-initializing through
an Attribute part ap is not set until execution ofap has reached its end
position. In particular, it is not invalid (although definitely unusual and
perhaps strange) for the instructionsap to use the valuea: as with a
recursive call in a routine, this will start the computation again at the
beginning ofap. For attributes as for routines, this raises the risk of infinite
recursion (perhaps higher for attributes since they have no arguments) and
it is the programmer’s responsibility to avoid this by ensuring that before a
recursive call the context will have sufficiently changed to ensure eventual
termination. No language rule can ensure this (in either the routine or
attribute cases) since this would amount to solving the “halting problem”,
a provably impossible task.

Another consequence of the same observation is that if the execution of
ap triggers an exception, and hence does not reach its end position, any
later attempt to accessa will also restart the execution ofap from the
beginning. This might trigger the same exception, or succeed if the
conditions of the execution have changed.

Execution context
At any time during execution, the currentexecution contextfor
a variable is the period elapsed since:
1 • For an attribute: the creation of thecurrent object.

2 • For a local variable: the start of execution of thecurrentroutine.

Variable Semantics

The value produced by the run-time evaluation of avariablex is:
1 • If the executioncontext has previously executed at least one

setting forx: thevalue of the latest such setting.

2 • Otherwise, if the typeT of x is self-initializing: assignment to
x of T’s default initialization value, causing a setting ofx.

3 • Otherwise, ifx is a variableattribute with anAttribute part:
evaluation of that part, implying execution of itsCompound
and hence a setting forx.

4 • Otherwise, ifx is Result in the Postconditionof a constant
attribute: thevalue of the attribute.
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The previous rule applies only to variables. We now generalize it to a
general rule governing all entities:

This rule is phrased so that the order of the first three cases is significant: if
there’s already been an assignment, no self-initialization is possible; and if
T has a default value, theAttribute part won’t be used.

The Variable Initialization rule ensures that one of these cases will
apply, so thatx will always have a well-defined result for evaluation. This
property was our main goal, and its achievement concludes the discussion
of variable semantics.

Entity Semantics rule

Evaluating anentity yields avalue as follows:
1 • ForCurrent : a valueattached to thecurrent object.

2 • For a formal argument of a routine orInline_agent: the value
of the corresponding actual at the time of thecurrent call.

3 • For a constant attribute: the value of the associated
Manifest_constantas determined by the Manifest Constant
Semantics rule.

4 • For anObject-TestLocal: as determined by the Object-Test
Local Semantics rule.

5 • For avariable: as determined by the Variable Semantics rule.

This rule concludes the semantics of entities by gathering all cases. It
serves as one of the cases of the semantics of expressions, since an entity
can be used as one of the forms ofExpression.

The Object-Test Local Semantics rule appears in the discussion of the
Object_test construct.

← “Curr entobject,cur-
rentroutine”, page649.
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Creating objects
20.1 OVERVIEW

The dynamic model, whose major properties were reviewed in the
preceding presentations, is highly flexible; your systems may create objects
and attach them to entities at will, according to the demands of their
execution. The following discussion explores the two principal
mechanisms for producing new objects: theCreation_instructionand its
less frequently encountered sister, theCreation_expression.

A closely related mechanism —cloning — exists for duplicating
objects. This will be studied separately, with the mechanism for copying
the contents of an object onto another.

The creation constructs offer considerable flexibility, allowing you to
rely on language-defined initialization mechanisms for all the instances of
a class, but also to override these defaults with your own conventions, to
define any number of alternative initialization procedures, and to let each
creation instruction provide specific values for the initialization. You can
even instantiate an entity declared of a generic type — a non-trivial
problem since, forx declared of typeG in a classC [G], we don’t know
what actual typeG denotes in any particular case, and how one creates and
initializes instances of that type.

In using all these facilities, you should never forget the methodological
rule governing creation, as expressed by the following principle.

Creation principle

Any execution of a creation operation must produce an object that
satisfies the invariant of itsgenerating class.
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20.2 FORMS OF CREATION: AN OVERVIEW

You may use aCreation_instructionto produce a totally new object,
initialize its variable fields to preset values, and attach it to aVariableentity
called thetarget of the creation and named in the instruction.

The examples which follow assume that the target is of a reference
(non-expanded) type. As will be seenbelow, the Creation_instructionis
also applicable to expanded types, although with a less interesting effect.

Syntactically, aCreation_instructionalways begins with the keyword
create, followed by the target. Here are some examples:

With form [1] you create an object of the type declared foraccount1,
initialize it to default values, and attach it toaccount1. The default
initialization is language-defined, although you can override it for any class.

With form [14] you create an object of the type declared forpoint1,
apply the standard default initialization, complement the initialization by
calling make_polar(a procedure of the class, designated as one of its
“creation procedures”) with the given arguments, and attach the object to
point1.

Cases[15] and[16] are respectively similar to the first two, but specify
an explicit type, in braces, for the new object. So ifaccount1is of type
ACCOUNT, form [1] creates an instance of that class, but form[15] creates
an instance ofSAVINGS_ACCOUNT. This requiresSAVINGS_ACCOUNT
to be a descendant ofACCOUNT. Similarly, in form[16], SEGMENTmust
be a descendant of the type, sayFIGURE, declared forfigure1.

--- ADD INTRO TO CREATION EXPRESSIONS ---

Since the run-time effect of a creation instruction or expression is
essentially the same, it is convenient to have a name covering both:

Such is the theoretical role of creation: to make sure that any object we
create starts its life in a state satisfying the corresponding invariant. The
various properties of creation, reviewed next, are designed to ensure this
principle.

create account1 [1]
create point1.make_polar(1, Pi / 4) [14]
create{ SAVINGS_ACCOUNT} account1 [15]
create{ SEGMENT} figure1.make(point1, point2) [16]

Creation operation
A creation operation is a creation instruction or expression.

See20.8, page 542
below, about Creation
instructions applied to
expanded types.

The respective targets
areaccount1, point1,
account1, figure1.
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20.3 BASIC FORM OF CREATION INSTRUCTIONS

Even though example[1] shows the most concise variant, a better place to
start studying theCreation_instructionis the more general variant illustrated
by [14]: createx.creation_procedure(…). Its effect is, in order, to:

1 • Create a new object — a direct instance of the typeT of x.

2 • Initialize all the variable fields of that object to default values.

3 • Call creation_procedureon the object, with the arguments given, to
complete its initialization.

4 • Attachx to the object.

The default initialization values used in step2 are adapted to the type of
each field corresponding to a variable attribute: zero for numbers, false for
booleans, void for references and so on. The full rule will appearlater.

This form of the instruction is only valid if the base classC of x’s type
T lists creation_procedure in itsCreators part.

Such aCreatorspart is permitted only in an effective class (since it
makes no sense to create direct instances of a deferred class).Wehaveseen
that it comes towards the beginning of a class text — just beforeFeatures
but afterInheritance— and consists of at least oneCreation_clause, each
beginning with the keywordcreate followed by a list of zero or more
procedures of the class, as in

where make, execute… are procedures ofC. For the moment we are
restricting ourselves to just oneCreation_clause(the vast majority of
cases). By including such a clause, the author ofC specifies that any
Creation_instructionproducing direct instances of the class must be of one
of the two forms

which will initialize the new object by calling the specified creation
procedure — with actual arguments whose types and number match those
of the formal arguments declared for the procedure.

class C … inherit
…

feature
…

end

createx.make(…)
createx.execute(…)

→ “Default Initializa-
tion rule”,  page 516.

← “PARTS OF A
CLASS TEXT”,  4.7,
page 119.

create
make, execute, …

→Youcanusemorethan
oneCreation_clause;
also, each one may
restrict clients’ creation
privileges. See below
“RESTRICTING CRE-
ATION AVAILABIL-
ITY”, 20.7,page539for
full details.
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The two creation-related constructs,CreatorsandCreation_instruction, both
use the same keywordcreate. This makes things easier to remember than if you
had to learn two keywords. No confusion can result since the constructs appear
in completely different syntactic contexts.

Creation procedures (also known as “constructors” from C++
terminology) serve to apply initializations beyond the default ones if these
do not suffice. For example, the author of a classPOINT in a graphics
system may wish to offer a creation mechanism that not only allocates a
new object but also initializes its fields according to coordinates provided
by the client. Here is an outline of such a class:

class POINTinherit
TRIGONOMETRY

create
make_polar, make_cartesian

feature -- Access
ro, theta: REAL
x, y: REAL

feature -- Element change
make_polar(r, t: REAL)

-- Set to polar coordinatesr, t.
do

ro := r; theta:= t
reset_from_polar

end

make_cartesian(a, b: REAL)
-- Set to cartesian coordinatesa, b.

do
x := a; y := b
reset_from_cartesian

end

… Other exported features…
feature { NONE} -- Implementation

consistent_attributes: BOOLEAN
-- Do polar and cartesian attributes
-- represent same point?

do
Result:= (x = ro *  cos(theta)) and

(y = ro *  sin (theta))
end

Thisexampleassumesa
library classTRIGO-
NOMETRY offering
functions such ascos
andsin. The equality in
consistent_ attributes
shouldbechangedtoan
approximateequality to
account for numerical
precision issues.
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With this design, the author of classPOINT provides clients with two
creation mechanisms: one initializes a point by its polar coordinates, the
other by its cartesian coordinates. Examples ofCreation_instruction,
assuming thatpoint1 is aVariable entity of typePOINT, are

Names of the formmake_somethingare common practice for creation
procedures, although by no means required. When a class has just one
creation procedure, or one more fundamental than the others, the
convention is to call it justmake— although if the procedure has no
arguments your clients can ignore it altogether, if you usedefault_createas
will now be seen.

20.4 OMITTING THE CREATION PROCEDURE

In some common cases you can avoid specifying a creation procedure. This
gives the simplest possible form ofCreation_instruction, illustrated by the
first of our initial examples:

reset_from_polar
-- Update cartesian coordinates from polar ones.

do
x := ro *  cos(theta); y := ro *  sin (theta)

ensure
consistent_attributes

end

reset_from_cartesian
-- Update polar coordinates from cartesian ones.

do
…

ensure
consistent_attributes

end

invariant
consistent: consistent_attributes

end

create point1.make_polar(2, Pi / 4)
create point1.make_cartesian(Sqrt2, Sqrt2)

create x

If Pi andSqrt2are real
constants with the val-
ues suggested by their
names, these instruc-
tions will have the same
effect.
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This form is applicable when the base classC of x’s type doesnot have a
Creatorspart. This is particularly useful for simple classes which do not
need particularly flexible creation mechanisms, but just provide clients
with a standard way to create instances without providing any specific
information. These instances will all be initialized in the same way. A
simple example is

Here a creation instruction, forbt of typeBINARY_TREE[SOME_TYPE],
will simply be

and will set all the fields of the resulting object to their default values: void
references forleft and right, the default value of the actual generic
parameter (whatever it may be) foritem.

note
description: "%[Binary trees with nodes containing

information of type G%]"
class BINARY_TREE[G]… feature -- Access

item: G
-- Node information

left, right: BINARY_TREE[G]
-- Left and right children

feature -- Element change
… Features to set node information and attach children…

end

create bt
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This simple form of theCreation_instructionis appropriate when the
object-creating client is happy to rely on a standard initialization. But even
in this case you may need more fine-tuning, because the language-defined
default initializations might not suit all classes. Consider

We require, as expressed by the invariant, thatmarital_statushave one of
the values listed. Because this attribute is of typeINTEGER, the universal
default initializations would set it to zero —not compatiblewith the
invariant! Remember theCreationprinciple: it is creation’s responsibility
to ensure that every new object satisfies the invariant.

One solution is to use a creation procedure:

Since the class now has aCreatorspart, the abbreviated formcreateemp
(for emp of type EMPLOYEE) is no longer valid: we are back to the
previous technique and must write

classEMPLOYEEinherit
PERSON

feature -- Access
Unknown_marital_status, Single, Widowed, Divorced:

INTEGER --!!!!!  REDO EXAMPLE!!!!!!
marital_status: INTEGER

feature
… Other features…

invariant
meaningful_marital_status:

marital_status>= Unknown_marital_statusand
marital_status<= Divorced

end

class EMPLOYEEinherit
PERSON

feature -- Access
… Other features and invariant as before…

end

Creation principle:
page523.

create
make

feature -- Initialization
make

-- Initialize by setting marital status to “Unknown”.
do

marital_status:= Unknown_marital_status
end



CREATING OBJECTS §20.4530
This approach works but is a bit tedious for the clients since they must
specify a creation procedure for no clear benefit: only one such procedure
is available,make, and it takes no argument.

In such a case — providing a standard initialization, but not necessarily the
universal language-defined one — you can still make the simple creation form
createx valid for your clients. Do not include aCreatorspart; just redefine the
proceduredefault_createwhich, coming from classANY, is a feature of all
classes. This redefinition will specify your desired initializations.

This technique relies on a simple convention: any classC without a
Creatorspart is treated as if it had one of the form

(If default_createhas been renamed, this should use the new name instead.)
In other words, a class which doesn’t list any creation procedures is
considered to have just one — its version ofdefault_create.

Correspondingly, aCreation_instructionof the form create x, which
doesn’t specify a creation procedure, is treated as a shorthand for

for x of a type based onC (again with the understanding that, ifdefault_
createhas been renamed, this unfolded form uses the new name).

With this technique we can adapt classEMPLOYEEso that its clients
can create instances by writing just

with no creation procedure. The new form of the class is almost the same
as the last one seen, but instead of a specific creation proceduremakewe
don’t include anyCreators part and just redefinedefault_create:

create emp.make

create
default_create

create x.default_create

create emp
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Because such a class redeclares a featuredefault_createwhich it inherits in
non-deferred form, it must stateredefine default_create in some
Inheritancepart. HereEMPLOYEEinherits fromPERSON, so we just stick
this clause into the correspondingInheritancepart. If the class didn’t have
anyInheritancepart — meaning that it only has an implicit parent,ANY—
we would have to use the standard idiom enabling such a class to redefine
a feature coming fromANY: include anInheritancepart makingANYan
explicit rather than implicit parent. This would give:

Let’s review the two schemes studied in the previous section and this one:

1 • To provide clients with specific creation procedures, which may take
arguments, include at the beginning of the class aCreatorspart, of the
form createcp1, cp2, … , where thecpi are procedures of the class. A
Creation_instructionin this case must be of the formcreatex.cp (…)
wherecp is one of the specifiedcpi.

2 • To make the simplified formcreatex valid, you do not need to include
anyCreatorspart: this form is equivalent to the previous case using for
cp the proceduredefault_create; and an absentCreators part is
equivalent to one that lists only that procedure.

class EMPLOYEEinherit
PERSON

feature -- Initialization

feature -- Access
… Other features and invariant as before…

end

class EMPLOYEEinherit
-- Here we makeANYan explicit parent:

feature -- Initialization
… Feature clauses and invariant as before…

end

redefinedefault_createend

default_create
-- Initialize by setting marital status to “Unknown”.

do
marital_status:= Unknown_marital_status

end

ANY
redefinedefault_createend
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At first these two cases may seem incompatible, but if you examine them
more closely you will realize they are not. The rule is simply that the
simplified formcreatex is valid if and only ifdefault_create, in its local
version, is one of the creation procedures of the class. You can achieve this
property by not listing any creation procedures at all: this is equivalent to
listing default_createonly. But you can also have aCreatorspart, provided
it lists default_create, possibly among other procedures. This observation
yields a third case, combining the previous two:

3 • To make both forms of creation instruction valid — the form with an
explicit procedure,create x.cpi (…) for somecpi, and the procedure-
less form,createx — simply include aCreatorspart that lists both the
desiredcpi and the class’s version ofdefault_create.

Here is an example of this last scheme, a variation on anearlier class text:

Then all of the following four creation instructions are valid:

Forms2 and3 are exactly equivalent, so there is usually little reason to use
2 except if you insist on including the creation procedure for clarity.

Note that includingdefault_createamong the creation procedures,
hence permitting3, makes sense only because the default initializations
ensure the invariantconsistent_attributes, which states that cartesian and
polar coordinates agree — true if they are all zero, the default. When
thinking about creation, always keep in mind theCreation principle.

class POINTinherit
TRIGONOMETRY

create
make_polar, make_cartesian, default_create

feature
… Features as before…

invariant
consistent: consistent_attributes

end

[1]

create your_point.make_polar(2, Pi/4)
[1]

create your_point.make_cartesian(Sqrt2, Sqrt2)
[2]

create your_point.default_create
[3]

createyour_point

← See the original ver-
sion on page526.

← Creation principle:
page523.
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As a variation on this example, assume that you write a classC that
inherits from a parentB a proceduresetwithout arguments, and wantC to
offer its clients the procedure-less formcreatex so that it will callsetfor
initialization. A simple technique is:

This uses ajoin to merge two inherited features, undefiningdefault_create
along one of the branches so that its joined featureset can override its
previous implementation. Corresponding creation instructions may be
writtencreate x.

We can now summarize the basic rule for validity of a creation
instruction: theinstruction’s creation proceduremust be one of theclass’s
creation procedures, with the understanding that:

1 • Every creation instruction uses a creation procedure — either explicit,
as increatex.cp(…), or implicit, as increatex, where the instruction’s
creation procedure isdefault_create.

2 • Every class lists a set of creation procedures — either explicit, if the
class has aCreatorspart, or implicitly taken to bedefault_createin the
absence of aCreators part.

This also suggests, as a special case, what you should do if for some reason
you donot want clients of a class to create any direct instances of it. Simply
include aCreators part, but make it empty:

class C inherit
B

rename
default_create asdiscarded

end
ANY

rename
default_create as set

undefine
set

select
set

end
feature

…
end

class NOT_INSTANTIABLEcreate
-- Nothing at all listed here!

feature
…

end

← See“THE JOIN
MECHANISM”,
10.21, page 292.

WARNING: not the rec-
ommendedstyle;seenext.
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This falls under the “explicit” case of observation1 above, so that under
observation2 a creation instruction could only be valid if it were of the
form createx.cp (…) wherecp is a creation procedure of the class; but
there is no suchcpsince theCreators part, although present, is empty.

The style guideline in such a case is actually to write

which has exactly the same effect but emphasizes the creation ban by
listing NONEas the single creation (rather, non-creation) client, based on
conventions, seenbelow, for restricting creation availability.

Another way to make a class non-instantiable is to declare it as deferred. But
you might want to prohibit instantiation of a class even if it is effective. Then
you can use the technique just seen.

20.5 CREATORS AND INHERITANCE

(This section is a discussion of theabsenceof dependency between two
language concepts, so it introduces no new mechanism; it is a “comment”
and “methodology” section meant to dispel a possible confusion, which
might in particular follow from experience with other languages.)

You may have been wondering what effect the inheritance structure has
on the creation procedures of a class. The short answer is:no effect. Each
class is free to choose the procedures it wants to offer to its clients for
creation, regardless of its parents’ choices. The creation mechanism does
of course take full advantage of inheritance: creation procedures may be
obtained from parents and adapted through the usual inheritance
mechanisms of redefinition, renaming, effecting and so on. And in some
cases a class’s choice of creation procedures is directly connected to its
parents’ choices:

• A class may list as creation procedures (in itsCreatorspart) some or
even all of a parent’s own creation procedures.

• A redefined creation procedure may need, as part of its execution, to call
the parent’s version, usually through thePrecursor mechanism.

But all this is optional, not required, and neither theoretical analysis nor
analysis of practical examples suggests an obligatory connection. Counter-
examples indeed abound. Just think of a classPOLYGON, where a typical
creation procedure will take a list of vertices; for its heirRECTANGLEthis
is most likely inappropriate, as we might use a center, an orientation and
two side lengths; then for a grandchildSQUAREwe will again need
something different since we can dispense with one of these lengths.

class NOT_INSTANTIABLE

feature
…

end

create{ NONE}

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”,  20.7, page 539.
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So the set of creation procedures of a class is entirely determined by its
Creatorsclause (or lack thereof, as we have seen), without interference
from the parents’ own clauses. This yields a simple semantics and avoids
confusion. Based on the needs of each class, you decide what creation
privileges you award toyour clients; you may reuse the parents’ creation
procedures, unchanged or extended, but only if you find them useful for
your own needs.

Eiffel’s policy on relatingcreation statusto inheritance is similar to its
policy onrelatingexportstatusto inheritance. There too every class is free
to make its own decisions for inherited features, regardless of its parents’
choices. The only difference is the default: inherited features retain their
original export status unless the heir explicitly overrides it (through aNew_
exportsclause); in contrast, a creation procedure loses its creation status
unless the heir explicitly reaffirms it (by listing the procedure in its own
Creatorspart). This difference follows from an analysis of what designers
most commonly need, in each case, in the practice of building systems.

20.6 USING AN EXPLICIT TYPE

In the variants seen so far, the type of the object created by a creation
instructioncreatex … , with or without an explicit creation procedure, is
the typeT declared forx, the instruction’s target. You may want to use
another typeV instead; this will be permitted ifV conforms toT. The form
of the instruction in this case is one of

with the first one valid only ifcp is a creation procedure ofV, and the
second only ifdefault_createis a creation procedure ofV (in particular if
V’s base class has noCreators part).

Specifying the creation type

Assume classSEGMENTis a descendant ofFIGURE, and has a creation
proceduremake, with two formal arguments of typePOINT representing
the end points of a segment. The following will be valid:

create{ V}  x.cp (..)
create{ V}  x

[1]
fig: FIGURE
point1, point2: POINT
…

← “Adapting the export
status of inherited fea-
tures”,  , page 204.

create{ SEGMENT}  fig.make(point1, point2)
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and will have exactly the same effect onfig as

where the last instruction is a polymorphic assignment, permitted by the
Assignment rule sinceseg conforms tofig.

The explicitly typed form1 brings nothing fundamentally new; it is just
an abbreviation for the implicitly typed form2, avoiding the need to
introduce intermediate entities such asseg.

As a consequence of this new form, we candefine thecreation type of a
creation instruction — the type of the object that it will create: in the previous
form createx … , the creation type is the type declared for the target,x; in
the explicit formcreate{ V}  x … , the creation type isV.

Choosing between types

To become really useful the example should include more than one case:
after all, if all you ever want to obtain is an instance ofSEGMENT, then you
do not needfig; seg suffices. Things become more interesting with a
scheme of the following kind, using a local variablefig of typeFIGURE:

HereSEGMENT, TRIANGLE, CIRCLE, … are descendants ofFIGURE,
all with specific creation procedures, andSegment_icon, Triangle_icon,
Circle_icon, … are integer constants with different values. Depending on
the icon selected by an interactive user, the above instruction creates an
object of the appropriate type, and attachesfig to it.

[2]
fig: FIGURE; seg: SEGMENT
point1, point2: POINT
…

[3]
inspect

icon_selected_by_user
when Segment_iconthen

when Triangle_iconthen

when Circle_iconthen

when …
…

end

create seg.make(point, point2)
fig := seg

→TheAssignmentrule,
stating that the type of
an assignment’s source
must conform to that of
its target, isonpage590.

→ Theformaldefinition
willappearonpage551.

create{ SEGMENT} fig.make(point1, point2)

create{ TRIANGLE} fig.make(point1, point2, point3)

create{ CIRCLE} fig.make(point1, radius)
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Were the explicitly typed form of the creation instruction not available,
you could still use the equivalence illustrated by2, rather unpleasant here
because you need to declare a temporary entity (seg, tri , circ, …) for each
of the possible icon types.

Creation and deferred classes

Scheme3 helps understand the role ofdeferred classes and typesvis-à-
vis creation. A class must be declared asdeferred if it has at least one
deferred feature (introduced in the class itself, or inherited from a parent,
and not effected — made effective — in the class). A deferred type is one
based on a deferred class. In our example we may assumeFIGURE to be
deferred, but the concrete descendants used in the creation instructions —
SEGMENTand so one — to be effective. The rule is that:

• Weneverpermit a creation instruction to use a deferred type as creation
type. As noted in the last chapter, creatingdirectinstances of a deferred
type would be asking for trouble, since clients could then call
unimplemented operations on these instances. The creation rules of this
chapter exclude this possibility; withfig of type FIGURE, we are not
permitted to writecreate fig … , with or without a creation procedure.

• We may, however, usefig as target of a creation instruction such as
create { SEGMENT} fig.make(point1, point2) or any of the others
above, even though the type offig is deferred: that’s fine as long as the
creation typeof the instruction is explicit and effective, likeSEGMENT
here. The instruction will create a direct instance of that type, so
everything is in order. Attaching this object to an entityfig of a deferred
type is also in order: it’s simply an application of polymorphism.

In summary: we cannot createobjectsof deferred types, but we can have
entities of such types, which will become attached to instances of
conforming effective types.

Single choice and factory objects

Beyond its applicability to polymorphic entities of deferred types, what
makes scheme3 especially interesting is its connection withdynamic
binding: after executing the aboveMulti_branchinstruction, you normally
should never have to discriminate again on the type offig; instead, to apply
an operation with different variants for the figures involved, you should use
a call of the form

fig.display

←Althoughaclassmay
be declared asdeferred
even without deferred
features, the common
case is for a deferred
class to have one or
more deferred features.
See10.11, page 272.

“Direct instance” is in
factnotevendefined for
deferred types. See
“INSTANCES AND
VALUES”,  11.5, page
329.
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where the operation, heredisplay, is redefined in various ways in
descendants ofFIGURE. This will select the appropriate version
depending on the exact type of the object to whichfig is attached, as a result
of the variable-type creation achieved by3.

This example illustrates an important concept of Eiffel software
development: theSingle Choice principle. The principle states that in a
software system that handles a number of variants of the same notion (such
as the figure types in a graphics system) any exhaustive knowledge of the
set of possible variants should be confined to justone componentof the
system. This is essential to prevent future additions and modifications from
requiring extensive system restructuring.

Often, the component that performs the “Single Choice” will be the one
that initially creates instances of the appropriate objects;3 illustrates one
of the possible schemes.

There is a simpler scheme, avoiding any explicit control structure: the
clonable array technique, implementing what the Design Pattern literature
calls theFactory Pattern, although it was described in Eiffel literature and
widely used in Eiffel programs many years before that term appeared in print.

Here is how it would work in this example. You assign a unique code to
every variant

and create a data structure, most conveniently an array, containing one
direct instance of each variant:

Low_id, Segment_id, Triangle_id, Circle_id, … , High_id:
-- REDO EXAMPLE -----------

[4]
figure_factory: ARRAY[FIGURE]

local
fig: FIGURE

once
Result.make(Low_id, High_id)

-- Create and enter aSEGMENT instance:
create{ SEGMENT}  fig.make(…)
Result.put (fig, Segment_id)

-- Create and enter aTRIANGLEinstance:
create{ TRIANGLE}  fig.make(…)
Result.put (fig, Triangle_id)

… Do the same for each variant…
end

Seealso17.6,page491,
on explicit discrimina-
tion. For further discus-
sion of these issues see
“Object-Oriented Soft-
ware Construction”, in
particular the Open-
Closed Principle. .

WARNING: there is a
muchmoreconciseway
to express this, using
creation expressions
andavoidingaltogether
the need to declare a
localvariablefig.See1,
page 559, which is the
model you should use
for this pattern.
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-

Instead of makingfigure_factorya once function you can declare it as an
attribute, and then initialize it accordingly (with the instructions of the above
routine body, substitutingfigure_factory for Result) in an initialization
module. But initialization modules that take care of initializations for many
different aspects of a system are not good for modular, extensible software
construction. Using a once function is usually a better approach since it has
the same effect but lets the initialization happen automatically the first time
any part of the system needs to accessfigure_factory.

Then, whenever you actually need to select an alternative, you can avoid the
explicit discrimination of3: replace theentireMulti_branch instruction by

wherecodeis the desired figure code (one ofSegment_id, Triangle_idetc.).
Thefunctioncloneappearing on the right-hand side produces a new object
copied from its argument; so each time you use5 you get a new object
which, depending on the value of the indexcode, will be aSEGMENT, or
aTRIANGLE and so on.

20.7 RESTRICTING CREATION AVAILABILITY

The Creatorsparts in the preceding examples had at most oneCreation_
clause, and any client could create direct instances through any of the
creation procedures listed there. It is also possible to define more restrictive
client creation privileges. Let us take a look at this simple facility which,
although not needed in elementary uses, helps build well-engineered
systems that thoroughly apply the principle ofinformation hiding.

You may indeed write aCreatorspart with one or moreCreation_clause
listing procedures available for creation by specific clients, as in

The firstCreation_clausehas no restriction, so that any client can create a
direct instance ofC through an instructioncreatex.make(…) for x of type
C. Because of the restriction in the second clause, however, only the
descendants ofA and B may use the given procedures for creation, in
instructionscreate x.jump_start(…) or create x.bootstrap(…).

[5]
fig := clone(figure_factory @ code)

class C … create
make

jump_start, bootstrap
feature

…
end

figure_factory @ code
denotes the item of
indexcode,also written
figure_factory.item(code);
see36.4, page 934.

→ “CLONING AN
OBJECT”,  21.4, page
575.

← See7.8, page 200,
on information hiding.

create{ A, B}

Remember that descen
dants of a class include
the class itself.
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This possibility of including more than oneCreation_clause, each
specifying that certain procedures of the class are creation procedures and
giving a creation availability status, is, as you will certainly have noted,
patterned after the convention for making the features of a class available
to clients with aspecifiedexport statusfor calls. In the same way that a
Feature_clause may begin with one of

aCreation_clause may begin with one of

Note, however, that such flexibility is not as essential for creation as it is
for feature call. As part of the fundamental O-O principles of abstraction
and information hiding, it is common to have several feature clauses
specifying different levels of call availability: to all clients, to some clients,
to no clients. This is less frequently useful for creation, and in practice
many classes have just oneCreation_clause, or none.

The language supports the full generality of the mechanism anyway,
partly for consistency with the other mechanism, and partly because the
extra control over creation availability is occasionally useful.

[1]

… Declaration of features callable by all clients…

[1]

… Declaration of features callable by no clients…
[2]

… Declaration of features callable by descendants
of X andY …

[1]

… List of procedures available for creation to all clients…
[2]

… List of procedures available for creation to no clients…
[3]

… List of procedures available for creation
to descendants ofX andY…

← “Restricting
exports”,  , page 201.

feature

feature { NONE}

feature { X, Y}

create

create{ NONE}

create{ X, Y}
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Make sure not to confuse the two forms of specifying availability. When
you list a set of creation procedures, as in1, 2 and3 for a classC, you are
only controlling the validity of aCreation_instructioninvolving a creation
call, such as

for x of typeC: valid everywhere in case1, invalid everywhere with2, and
valid only in descendants ofXandYwith 3. This is completely independent
of the availability status for plain (non-creation) calls such as

valid everywhere in case1, invalid everywhere with1, and valid only in
descendants ofX andY with 2. For the samecp, the two properties are
separate. They reflect different semantics:

• The creation callcreate x.cp (…) creates an object and initializes it
usingcp.

• The plain callx.cp(…) usescpto reinitialize an existing object – a right
which, as the designer of a class, you may decide to grant or not to grant
to clients, regardless of the right you have granted regarding the use of
cp for creation-time initialization.

You may indeed be justified in deciding on different privileges in each case.
Consider a class manipulating bank accounts:

[1]

createx.cp (…)

[1]

x.cp (…)

class
ACCOUNT

feature { NONE} -- Initialization
make(initial : AMOUNT)

-- Set balance toinitial .
is do … end

feature -- Element change
withdraw(a: AMOUNT)

-- Record removal ofa units of currency.
do … end

deposit(a: AMOUNT)
-- Record addition ofa units of currency.

do … end
… Other features, invariant…

end-- classACCOUNT

create
make
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The use offeature { NONE} for the declaration of the class’s creation
procedure is a common Eiffel idiom, but surprising at first here: why hide
this fundamental operation on the class? The reason is that we are hiding it
for call, not for creation. TheCreation_instruction

is indeed valid sincemakeappears in an unrestrictedCreatorsclause (lines
3 and 4, highlighted in the class above). What isnot valid is a plain call

which would reinitialize the account tosome_amount. The author of class
ACCOUNThas decided that the only way to affect the balance of an account
is to deposit or withdraw money (adding a value, positive or not, to the
balance, rather than setting it to a specified value). Such policies are often
legitimate and explain whyfeature {NONE} is a common style for declaring
a creation procedure, even one that is unrestrictedly available for creation.

20.8 THE CASE OF EXPANDED TYPES

---- THIS SECTION IS NOW WRONG, REWRITE (lazy initialization) --
-------------

The preceding examples assumed that the type of the target entity was
a reference (non-expanded) type. What if it is expanded?

In this case there is no need to create an object, since the value of the
target is already an object, not a reference to an object that aCreation_
instruction must allocate dynamically.

Rather than disallowingCreation_instructionfor expanded targets, it is
convenient to define a simple semantics for the instruction in this case,
limited to the steps of the above process that still make sense: the
instruction will execute the default initializations on the object attached to
the target, then call the appropriate version ofdefault_create. This
convention also has the advantage that if you change your mind about the
expanded status of a class you can change it without to worry about its
Creation_clause becoming invalid.

As a consequence of this rule, if we have a class whose instances
contain sub-objects, as in

createyour_account.make(some_amount)

your_account.make(some_amount)

class COMPOSITEfeature
a: SOME_REFERENCE_TYPE
b: SOME_EXPANDED_TYPE
…

end

WARNING: not valid
with class text as given.
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then the default initialization rule for theb field of aCOMPOSITEinstance
will be to apply aCreation_instruction, recursively, to the corresponding
sub-object. This creation instruction will use as creation procedure the
version ofdefault_create in the corresponding base class.

--- NO LONGER QUITE TRUE, REWRITE ------This semantic rule
justifies a basic constraint on expanded types (given in the chapter on
classes as theClassHeaderrule): the base class of an expanded typemust
have its version ofdefault_createas one of its creation procedures (either
explicitly in its Creatorspart, or implicitly by not having aCreatorspart).
This does not prevent the class from having other creation procedures if
desired; but for automatic initialization of sub-objects such asb the
procedure to be applied isdefault_create, as any other choice would
require further information from the client (choice of creation procedure
and actual arguments).

20.9 CREATING INSTANCES OF FORMAL GENERICS

More delicate than the expanded types is the case in which we would like
to create an instance of one of theFormal_genericparameter types of a
class, as increatex.. wherex is of typeG in a classC [G].

The problem is thatG, in the class text, denotes not a known type but a
placeholder for many possible types or, in the case of unconstrained
genericity,any valid type. So we have no way to know what creation
procedures will be available on the corresponding instances.

This seems at first to preclude any hope of allowing creation
instructions in this case. Fortunately, constrained genericity allows an
elegant solution.

As youknow, constrained genericity is the mechanism that allows us to
declare a class as

whereCONSTis a type, known as the constraining type for the formal
generic parameterG. Then you may only write a generic derivationC [T],
using a typeT as actual generic parameter, ifT conforms toG. The benefit
is that, within classC, you know that any entityx of type G represents
objects of typeT or conforming, so you may apply tox any of the features
of T — rather than being limited, as in the unconstrained caseC [G], to the
features of classANY, applicable to all types.

A small syntactic extension enables us to take advantage of constrained
genericity to allow creation of objects of generic type. Declare the class as

class C [G –> CONST] …

class D [G –> CONST

← Page126,

← “CONSTRAINED
GENERICITY”,  12.6,
page 354,

createcp1, cp2, … end] …
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to state thatG represents any type that both:

• (As always with constrained genericity) conforms toCONST.

• Admits as creation procedures its versions ofcp1, cp2, … , which must
be procedures ofCONST.

These obligations are enforced: a generic derivationD [T] will only be
valid if (as always)T conforms toCONSTand, in addition, the given
procedurescp1, cp2, … are creation procedures ofT. More precisely, their
versionsin T — which may differ from the originals versions inCONSTas
a result of renaming, redefinition and effecting — must be listed among the
creation procedures ofT.

With D declared as shown, it becomes possible, forx declared of type
G in the text of classD itself, to use a creation instruction

wherecpi is one of the procedures ofD listed in thecreate… endpart for
CONST as shown above, andargs is a valid argument list for that
procedure. The instruction will always make sense dynamically since,
thanks to the preceding rule, the typeT of x — in any valid generic
derivationD [T] — will always be a descendant ofCONST, so that:

• cpi will be one of its procedures, taking the appropriate arguments.

• T will have listedcpi as one of its creation procedures (hence, among
other properties, we may expect thatcpi ensures the invariant ofT).

As a special case, you can permit the procedure-less formcreate x by
includingdefault_create(rather, its name inCONST) among thecpi.

What’s particularly useful in this mechanism is that at the level ofD we
only require the listedcpi to be procedures of the constraining type
CONST— so that we can ascertain, fromD’s text only, the validity ofargs
as arguments in the creation callcreatex.cpi (args): we do not require the
cpi to becreation proceduresof CONST. This last requirement will only
come up where it matters: in typesT, descendants ofCONSTused in actual
generic derivationsD [T]. In such aT, the local version ofcpi must indeed
be one ofT’s creation procedures.

createx.cpi (args)
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This means in particular that the above scheme will work even if
CONST is deferred, as in

We don’t care that the boxed creation instruction works on a targetx whose
typeG is based on a deferred classCONST, and that the creation procedure
cp might itself be deferred inCONST: any typeT used forG in practice
must make its version ofcpa creation procedure. This implies among other
things thatT is an effective class andcp an effective procedure, so
everything will work properly.

Note that this creation mechanism for formal generics assumes
constrainedgenericity. In a classC [G], whereG is an unconstrained
generic parameter, no creation instructioncreatex … is valid forx of type
G. This includes the procedure-less formcreatex: making it valid would
mean assuming thatdefault_createwill be a creation procedures in all
possible types — certainly not true. You can, however, write the class as

thereby unfolding unconstrained genericity into its constrained equivalent.
Then the generic derivationC [T] will be valid for a typeT if and only if
T’s base class doesn’t list any creation procedures, or listsdefault_create
among its creation procedures. With this form ofC’s declaration,createx
is valid in the text of classC.

class
D [G –> CONSTcreatecpend]

feature
some_routine

local
x: G

do
createx.cp (3)

end
end

deferred class CONSTfeature
cp (n: INTEGER)

… Could be effective or deferred…
end

… Other features, possibly including deferred ones…
end

classC [G –> ANYcreate default_create end]
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More generally, remember that the procedure-less formcreatex is only valid,
for xof a formal generic type, if you have explicitly listeddefault_create(under
its local name) in acreatesubclause after the constraint. There is no equivalent
here to the implicit rule of theCreatorspart, where requesting no creation
procedures means requestingdefault_createonly. For generic parameters, you
don’t get creation privileges unless you specify them expressly.

20.10 PRECONDITIONS OF CREATION PROCEDURES

The creation process, when it involves a creation procedure, applies it to an
object caught in its virginal state, just after default initializations. Such a
state does not, in general, satisfy the class invariant; it is indeed the very
purpose of the creation procedure to ensure the invariant from the first time.

A consequence of dealing with an object in such a fragile temporary
state is that the creation procedure must refrain, if it has a precondition,
from including in it certain properties that are meaningful only in later
stages of the object’s life. In particular

• The precondition should not use any feature of the object, since the
client could not legitimately access the value of that feature to ensure
the precondition. Assume for example a creation procedurecp with a
precondition clausea > 0 wherea is an attribute; the client should be
able, before a creation instructioncreatex.cp (…), to test forx.a > 0,
but this makes no sense since the required object doesn’t exist yet. So
we must prohibit the use of anyUnqualified_call, to a feature of any
kind, in the precondition.

• For the same reason, we must prohibit any use ofCurrent, denoting a
current object that doesn’t exist yet.

The precondition can still refer to any properties of the creation procedure’s
arguments, including through feature calls on these arguments.

In addition, we have a requirement similar to the general rule for feature
availability in feature calls. That rulespecified that any featurepused in the
precondition of a featuref must be available to all the clients to whichf
itself is available, so that any client that may callx.f (…) may also check
for x.p. In the case of a creation instructioncreatex.cp (…), we haveseen
that a creation procedurecp must be “available for creation” to the client;
to any such client,p has to be available (for call). This is a new requirement
since it is possible forcp to be “available for creation” to a client, but not
available for call.

These observations lead to a rule on the precondition clauses of any
routine used as a creation procedure:

←PreconditionExport
rule: VAPE, page237.

← “RESTRICTING
CREATIONAVAILABIL-
ITY”,  20.7, page 539
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20.11 CREATION SYNTAX AND VALIDITY

Here now are the precise rules applying toCreatorsparts andCreation
instructions. This section only formalizes previously introduced concepts,
so on first reading you mayskip this section and the next two (which
formalize the semantics).

First, the syntax of aCreatorspart, an optional component of theClass
text, appearing towards thebeginning of a class, afterInheritanceand
beforeFeatures:

Creation Precondition rule VGCP

A Preconditionof a routiner is creation-valid if and only if its
unfolded formuf satisfies the following conditions:
1 • The predefined entityCurrent  does not appear inuf.

2 • NoUnqualified_call appears inuf.

3 • Every feature whose final name appears in theuf is available to
every class to whichr is available for creation.

This definition is not itself a validity constraint, but is used by condition5
of the Creation Clause rulebelow; giving it a code as for a validity constraint
enables compilers to provide a precise error message in case of a violation.

Requiring preconditions to be creation-valid will ensure that a creation
procedure doesn’t try to access, in the object being created, fields whose
properties are not guaranteed before initialization.

The definition relies on the “unfolded form” of an assertion, which
reduces it to a boolean expression with clauses separated byand then.
Because the unfolded form uses the Equivalent Dot Form, condition3 also
governs the use of operators: withplusalias "+", the expressiona + b will
be acceptable only if the featureplus is available for creation as stated.

Creators parts
Creators=∆ Creation_clause+

Creation_clause=∆ create[Clients]
[Header_comment]
Creation_procedure_list

Creation_procedure_list=∆ {Creation_procedure","…}+

Creation_procedure=∆ Feature_name

→ VGCC, page548.

If skipping, go to
“CREATIONEXPRES-
SIONS AND ANONY-
MOUS OBJECTS”,
20.14, page 558.

The structure of aClass
text,with all its parts, is
on page119.

The optionalHeader_
comment emphasizes
the similarity with the
syntax of aFeature_
clause, given page137.
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To talk about the validity and semantics of creation clauses and creation
instructions, it is useful to take care once and for all of the special case of
default_create as creation procedure through the following definition:

With this we can define the constraint onCreators part of a class:

Unfolded Creators part of a class
Theunfolded creators part of a classC is aCreatorsdefined as:
1 • If C has aCreators part c: c.

2 • If C is deferred: an emptyCreators part.

3 • Otherwise, aCreatorspart built as follows,dc_namebeing the
final name inC of its version ofdefault_create from ANY:

create
dc_name

For generality the definition is applicable to any class, even though for a
deferred class (case2) it would be invalid to include aCreatorspart. This
causes no problem since the rules never refer to a deferred class actually
extended with its unfolded creators part.

Case3 reflects theconvention that an absentCreatorspart stands forcreate
dc_name— normally createdefault_create, but dc_namemay be another
name if the class or one of its proper ancestors has renameddefault_create.

Creation Clause rule VGCC

A Creation_clausein theunfoldedcreatorspart of a classC is valid
if and only if it satisfies the following conditions, the last four for
everyFeature_namecp_namein the clause’sFeature_list:
1 •C is effective.

2 •cp_nameappears only once in theFeature_list.

3 •cp_name is the final name of some procedurecpof C.

4 •cp is not aonce routine.

5 • The precondition ofcp, if any, iscreation-valid.

←Discussedinformally
in previous sections.
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Condition 5 is the rule on preconditions of creation procedures, whose
rationale was discussed in the precedingsection.

To complement this study of the syntax and semantics ofCreatorsparts,
it is useful to remind ourselves of their counterpart for generic parameters:
the Constraint_creatorssubclause of the syntax for generic constraints, a
simplified form of theCreators part. Here is the relevant syntax:

The applicable validity rule there was that the elements of theFeature_list
must be the names of distinct procedures of the constraining type —
corresponding to clauses1 and2 of the Creation Clause rule above. There
was no need for an equivalent to the other clauses since they are taken care
of by the Creation Clause rule itself when we provide an actual generic
parameter conforming to the constraining type.

A language design note: it would have been possible to useCreatorsfor
Constraint_creators, permitting a more flexible form of creation availability
specification for a generic parameter — with more than oneCreation_clause,
each listing specific clients and procedures. This would in fact make the
language definition simpler by avoiding the constructConstraint_creators.
The extra capabilities, however, seems useless, and could yield unduly
complicatedFormal_genericsparts, so the language sticks to a primitive form
of Constraint_creators for generic parameters.

As a result of conditions1 and4, a creation procedure may only be of the
do form (the most common case) orExternal.

The prohibition of once creation procedures in condition4 is a
consequence of the Creation principle: with a once procedure, the first
object created would satisfy the invariant (assuming the creation procedure
is correct), but subsequent creation instructions would not execute the call,
and hence would limit themselves to the default initializations, which
might not ensure the invariant.

As a corollary of condition4, a class that has no explicitCreatorspart may
not redefinedefault_createinto a once routine, or inheritdefault_createas a
once routine from one of its deferred parents. (Effective parents would
themselves violate the condition and hence be invalid.)

Formal_generics=∆ "["Formal_generic_list"]"

Formal_generic_list=∆ [Formal_generic","…]

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

Formal_generic_name=∆ Identifier

Constraint=∆ "–>" Class_type[Constraint_creators]

Constraint_creators=∆ createFeature_listend

← “PRECONDI-
TIONSOFCREATION
PROCEDURES”,
20.10, page 546.

← This was first seen in
the chapter on types;
syntax on page351,
validity in “CON-
STRAINEDGENERIC-
ITY”,  12.6, page 354.
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The Creation Clause rule allows us to define the set of creation procedures
of a  class:

Only in the first case (explicitCreatorspart) can the set of creation
procedures be empty: this is achieved, as we have seen, by including a
Creators part, but an empty one, listing no name at all.

We need a small refinement of this definition to extend it to the case of
types, to support the mechanism forcreation on generic parameters:

Creation procedures of a class
Thecreation proceduresof a class are all the features appearing
in anyCreation_clause of itsunfolded creators part.

If there is an explicitCreatorspart, the creation procedures are the
procedures listed there. Otherwise there is only one creation procedure: the
class’s version ofdefault_create.

The following property is a consequence of the definitions of “unfolded
creators part” and “creation procedures of a class”.

Creation procedure property

An effective class has at least onecreation procedure.

Those explicitly listed if any, otherwisedefault_create.

Creation procedures of a type
Thecreation procedures of a typeT are:
1 • If T is aFormal_generic_name, theconstrainingcreatorsfor T.

2 • Otherwise, thecreation procedures ofT’s base class.

The definition of case2 is not good enough for case1, because in the scheme
classD [G –> CONSTcreatecp1, cp2, … end] it would give us, as creation
procedures ofG, the creation procedures ofCONST, and what we want is
something else: the set of procedurescp1, cp2, … specifically listed after
CONST— the “constraining creators forG”. These are indeed procedures of
CONST, but they are not necessarilycreationprocedures ofCONST, especially
sinceCONSTcan be deferred. What matters is that they must be creation
procedures in any instantiatable descendant ofCONSTused as actual generic
parameter forG.

←Seetheexampleclass
NOT_INSTANTIABLE
on page533.

← See“CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9, page 543.



§20.11  CREATION SYNTAX AND VALIDITY 551
Other useful definitions:

Remember, once again, that the descendants of a class include the class
itself. A Creation_clausewith noClientspart, as increatecp1, cp2, …, is
a shortcut for one with aClientspart listing onlyANY, as increate{ ANY}
cp1, cp2, …

Now for theCreation_instruction itself, starting with its syntax:

Every creation instruction has acreation type, explicit or implicit:

Available for creation; general creation procedure
A creation procedure of a classC, listed in aCreation_clausecc
of C’s unfoldedcreatorspart, is available for creation to the
descendants of the classes given in theClientsrestriction ofcc, if
present, and otherwise to all classes.
If there is noClients restriction, the procedure is said to be a
general creation procedure.

Creation instructions
Creation_instruction=∆ create[Explicit_creation_type]

Creation_call

Explicit_creation_type=∆ "{" Type"}"

Creation_call=∆ Variable[Explicit_creation_call]

Explicit_creation_call=∆ "." Unqualified_call

Creation target, creation type
Thecreation target (or just “target” if there is no ambiguity) of
aCreation_instruction is theVariable of itsCreation_call.
Thecreation type of a creation instruction, denoting the type of
the object to be created, is:
• The Explicit_creation_typeappearing (between braces) in the

instruction, if present.

• Otherwise, the type of the instruction’starget.

As with aFeature_
clause, the absence of a
Clients restriction is
equivalent to a restric-
tion of the form{ANY} .
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so that in

the creation types for the four instructions areACCOUNT, POINT,
SAVINGS_ACCOUNTandSEGMENT. The targets areaccount1, point1,
account1 andfigure1.

The creation type of aCreation_instructionis the type of the objects that
it may create. It will always satisfy the following property:

This theorem is corollary1 of the Creation Instruction rule, seen next. That
rule will need one more auxiliary definition:

This definition parallels the earlier one of “unfolded creators part of a class”
and expresses the property, stated informally before, that we understand the
procedure-less form of creationcreatex as a shortcut forcreatex.default_
create (with the new name fordefault_create if different).

A final notion that the Creation Instruction rule will need is a property
defined only in asubsequentchapter, but already presented informally in
the discussion of calls, and in fact rather obvious: the concept of a call
being argument-valid. This property is part of the more complete
definition of call validity; it states that in a callx.f (a, b, c) wherex is of
typeT andf is a feature ofT with formal argumentsu1: T1; u2: T2; u3: T3,

account1: ACCOUNT; point1, point2: POINT; figure1: FIGURE
…
create account1
create point1.make_polar(1, Pi/4)
create{ SAVINGS_ACCOUNT} account1
create{ SEGMENT} figure1.make(point1, point2)

Creation Type theorem

Thecreation type of a creation instruction is alwayseffective.

Unfolded form of a creation instruction
Consider aCreation_instructionci of creation typeCT. The
unfolded form of ci is a creation instruction defined as:
1 • If ci has anExplicit_creation_call, thenci itself.

2 • Otherwise, aCreation_instructionobtained fromci by making
the Creation_callexplicit, using asfeaturename thefinal
name inCT of CT’s version ofANY’s default_create.

→ The corollary is on
page555.

→For thefulldefinition
see the.
→ “Ar gument rule”,
page 634;.
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the number of actual argumentsa, b, c must be the same as the number of
these formal arguments, here three, and each actual’s type must conform to
the corresponding formal’s type — here the type ofa to T1, of b to T2, and
of c to T3. We of course expect this fundamental property to hold for all
calls, and must enforce it for a creation instructioncreate x.f (a, b, c)
involving aCreation_call. This is clause3 of the following rule.

We indeed by now have enough preparation to express the validity rule
for creation instructions:

I can see that puzzled look on your face: surely, with all the possibilities
seen in this chapter, the complete validity constraint for creation
instructions must be longer?

Creation Instruction rule VGCI

A Creation_instructionof creation typeCT, appearing in a class
C, is valid if and only if it satisfies the following conditions:
1 •CT conforms to thetarget’s type.

2 • The feature of theCreation_callof the instruction’sunfolded
form isavailable for creation toC.

3 • ThatCreation_call is argument-valid.

4 •CT is generic-creation-ready.

In spite of its compactness, the Creation Instruction rule suffices in fact
to capture all properties of creation instructions thanks to the auxiliary
definitions of “creation type”, “ unfolded form” of both a Creation_
instructionand aCreatorspart, “available for creation” and others. The
rule captures in particular the following cases:

• The procedure-less formcreate x is valid only if CT’s version of
default_createis available for creation toC; this is because in this case
the unfolded form of the instruction iscreate x.dc_name, wheredc_
name is CT’s name fordefault_create. On CT’s side the condition
implies that there is either noCreatorspart (so thatCT’s own unfolded
form listsdc_nameas creation procedure), or that it has one making it
available for creation toC (through aCreation_clausewith either no
Clients specification or one that lists an ancestor ofC).

• If CT is aFormal_generic_name, its creation procedures are those listed
in thecreatesubclause after the constraint. Socreatex is valid if and
only if the local version ofdefault_createis one of them, and
createx.cp (…) only if cp is one of them.

• If CT is generically derived, and its base class needs to perform creation
operations on targets of some of the formal generic types, the last
condition (generic-creation readiness) ensures that the corresponding
actual parameters are equipped with appropriate creation procedures.

→ Another version of
this ruleappearsbelow,
page555, with clauses
labeled by numbers
rather than letters.
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All together, these conditions do come close to the full set of sufficient
conditions listed in the first variant, but we don’t really care, since that first
variant gives us the “if and only if” property that we need.

The very brevity of this rule may make it less suitable for one of the
applications of validity constraints: enabling compilers to produce precise
diagnostics in case of errors. For this reason a complementary rule,
conceptually redundant since it follows from the Creation Instruction rule,
but providing a more explicit view, appears next. It is stated in “only if”
style rather than the usual “if and only if” of other validity rules, since it
limits itself to a set of necessary validity conditions.
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The number of clauses in this second variant justifiesa contrariousing the
first variant as the official definition. Fundamentally, the rule is
straightforward once you have defined the “creation type”, explicit or implicit
and “unfolded” both the creation instruction and the creation type’s base class
to take care of thedefault_createconvention, so that every class has a list of
creation procedures and every creation instruction lists a creation procedure.
Then the rule is simply that the creation type must be OK for the creation’s

Creation Instruction properties VGCP

A Creation_instructionci of creation typeCT, appearing in a class
C, is valid only if it satisfies the following conditions, assuming
CT is not aFormal_generic_nameand callingBCTthebaseclass
of CT anddc theversion ofANY’s default_create in BCT:
1 •BCT is aneffective class.
2 • If ci includes aType part, the type it lists (which isCT)

conforms to the type of the instruction’starget.
3 • If ci has noCreation_call, thenBCT either has noCreators

part or has one that listsdcas one of the proceduresavailable
to C for creation.

4 • If BCThas aCreatorspart which doesn’t listdc, thenci has a
Creation_call.

5 • If ci has aCreation_callwhose featuref is notdc, thenBCT
has aCreatorspart which listsf as one of the procedures
available toC for creation.

6 • If ci has aCreation_call, that call isargument-valid.

If CT is aFormal_generic_name, the instruction is valid only if it
satisfies the following conditions:
7 •CT denotes aconstrained generic parameter.
8 • The Constraintfor CT specifies one or moreprocedures as

constraining creators.
9 • If ci has noCreation_call, one of the constraining creators is

theConstraint’s version ofdefault_create from ANY.
10 •If ci has aCreation_call, one of the constraining creators is

thefeature of theCreation_call.

Compiler writers may refer, in error messages, to either these “Creation
Instruction Properties” or the earlier “Creation Instruction rule” of which
they are consequences. For the language definition,the official rule is the
Creation Instruction rule , which provides a necessary and sufficient set
of validity conditions.

WARNING: although
this rule looks compli-
cated, it is in fact just a
series of consequences
of a short and simple
rule: the original
“VGCI”,  page 553.
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target, that the creation procedure must be available for creation, and that the
call must have valid arguments. That’s all. The “corollaries” form is long
because it expands the various simplifications (creation type, creation
procedures of a class, creation procedure of an instruction) for the various
possible cases, and treats all these cases individually — accounting for
various errors that an absent-minded developer might make.

20.12 CREATION SEMANTICS

With the preceding validity rules, we can define the precise semantics of a
Creation_instruction.

Creation Instruction Semantics

The effect of a creation instruction oftargetx andcreationtype
TC is the effect of the following sequence of steps, in order:
1 • If there is not enoughmemory available for a new direct

instance ofTC, trigger anexception of type NO_MORE_
MEMORY in the routine that attempted to execute the
instruction. The remaining steps do not apply in this case.

2 • Create a newdirect instance ofTC, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an
expanded type.

3 • Call, on the resulting object, the feature of theUnqualified_
call of the instruction’sunfolded form.

4 •Attachx to the object. ← See19.3, page 506
about a reference being
attached to an object.
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20.13 REMOTE CREATION

The syntax of creation instructions does not support “remote creation”
instructions as in:

The rules requires theeffectdescribed by this sequence of steps; it does not
require that the implementation literally carry out the steps. In particular, if
the target is expanded and has already been set to an object value, the
implementation (in the absence of cycles in the client relation between
expanded classes) maynot have to allocate new memory; instead, it may
be able simply to reuse the memory previously allocated to that object.
(Because only expanded types conform to an expanded type, no references
may exist to the previous object, and hence it is not necessary to preserve
its value.) In that case, there will always at step1 be “enough memory
available for a new direct instance” — the memory being reused — and so
the exception cannot happen.

One might expect, between steps2 and3, a step ofdefault initialization
of the fields of the new object, since this is the intuitive semantics of the
language: integers initialized to zero, detachable references to void etc.
There is no need, however, for such a step since the Variable Semanticsrule
implies that an attribute or other variable, unless previously set by an
explicit attachment, is automatically set on first access. The rule implies for
example that an integer field will be set to zero. More generally, the
semantics of the language guarantees that in every run-time circumstance
any object field and local variable, even if never explicitly assigned to yet,
always has a well-defined value when the computation needs it.

About step3, remember that the notion of “unfoldedform” allows us to
consider that every creation instruction has anUnqualified_call; in the
procedure-less formcreate x, this is a call todefault_create.

Also note the order of steps: attachment to the targetx is the last operation.
Until then, x retains its earlier value, void ifx is a previously unattached
reference.

In step2, “not enough memory available” is a precise notion (the definition
appearsbelow); it means that even after possiblegarbage collectionthe
memory available for the system’s execution is not sufficient for the
requested object creation.

create x1.y1.cp (…)

← Page521.

← Page552.

→ Page564.

WARNING: syntacti-
cally incorrect.
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To obtain an equivalent effect, assuming thatx1 is of typeX and thaty1 is
an attribute of typeY in X, you must introduce a specific procedure inX

so that instead of the above attempt at remote creation clients will use the
instruction

This is in line with the principle of information hiding: deciding whether
or not clients ofX may directly “create” they1 field is the privilege of the
designer ofX who, if the answer is positive, will write a specific procedure
to grant this privilege — restricting its availability if desired.

20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS

We have seen all there is to see about creation instructions, but there
remains to study a variant of the mechanism: creationexpressions.

Creation expressions will provide us withanonymous objects. The
objects that we produce with a creation instructioncreatex… have a name
— x — in the software text. This is usually what we want, because after we
have created the object we will start manipulating it in the same routine, or
others of the same class. But in some cases the name is useless because all
we do with the newly created object is to pass it to another software
element. Having to declare a local variablex just for the purpose of a
creation instruction is a nuisance. A small nuisance to be sure, but whatever
the language can do to avoid writing useless elements will be good for the
quality of your software andyour schedule.

We saw an example of such a situation when examining the clonable
array technique. We had the following scheme

make_y1(arguments: …)
-- Attachy1 to new instance ofY.

do
create y1.cp (arguments)

end

x1.make_y1(…)

“Language terseness
and family vacations”,
in SPOOF 84(Sociol-
ogy and Psychology of
Object-Oriented Fanat-
ics),Martha’sVineyard,
1999, pp. 6574-6598.
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All we usefig for is to create successive objects — instances of descendants
of FIGURE. But as soon as we have produced such an object with a
creation instruction, we store it into the corresponding entry of theResult
array (by passing it to the corresponding assignment procedure), and we
will never, in this routine, need the object again! This is why we can reuse
the same local variable,fig, for everyFIGURE variant.

In this case the entityfig is not needed; neither is a separate creation
instruction. All we really want is an expression denoting the new object,
which we can directly pass to a routine or, as here, assign to an array element.

Creation expressions serve this need. They look like one of

The first variant, as you have guessed, is applicable ifSOME_TYPE’s base
class has noCreatorspart, or one that includesdefault_create; the second,
if creation_procedure is one of its creation procedures.

Note how both variants look like aCreation_instruction:

• The first recalls the instructioncreate { SOME_TYPE} target, with no
explicit Creation_call.

• The second recallscreate{SOME_TYPE} target.creation_procedure(…).

You see the idea: starting from a creation instruction, you will get a creation
expression simply by removing thetarget — a natural convention, since
what you want is an anonymous object.

figure_factory: ARRAY[FIGURE]
local

fig: FIGURE
once

Result.make(Low_id, High_id)

-- Create and enter aSEGMENT instance:
create{ SEGMENT}  fig.make(…)
Result.put (fig, Segment_id)

-- Create and enter aTRIANGLEinstance:
create{ TRIANGLE}  fig.make(…)
Result.put (fig, Triangle_id)

… Do the same for each variant…
end

[1]
create{ SOME_TYPE}

[1]
create{ SOME_TYPE} .creation_procedure(…)

← This was example4,
page 538. Seee simpler
formulation next.
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The constructs given (in any of the two forms[1] and [1]) are

expressions, denoting values that can be assigned to aVariableentity, as in

or, more commonly, passed as arguments to a routine, as in

which has exactly the same effect as

with seg declared of typeFIGURE (or directly of the ancestor type

SEGMENT, in which case we can write the first line as justcreate

seg.make(point1, point2)). With the creation expression we write a single

call instead of three components — the declaration ofseg, the creation

instruction, and the call.

A difference with creation instructions is that for creation expressions

you may not omit theExplicit_creation_type, SOME_TYPEor SEGMENT

in the examples above. This is precisely because the created objects are

anonymous. In the instructioncreatetarget… , if no type is specified, we

use as creation type the type oftarget; but for a creation expression there is

no namedtarget, so youmust specify{ SOME_TYPE}  in all cases.

Here is the clonable array extract rewritten with creation expressions:

x := create{ SEGMENT} .make(point1, point2)

segment_operation(create{ SEGMENT} .make(point1, point2))

create{ SEGMENT} seg.make(point1, point2)
segment_operation(seg)

figure_factory: ARRAY[FIGURE]
once

Result.make(Low_id, High_id)

-- Create and enter an instance of each desired kind:
Result.put(create{SEGMENT}.make(…), Segment_id)
Result.put(create{TRIANGLE}.make(…),Triangle_id)
… Similarly for each variant…

end

Expression form.

Instruction form.

← The original was
example4, page 538,
repeated above on
page559. To use the
array, use clone opera-
tions; see
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The comparison with the original form clearly shows the advantage of
creation expressions in such a case. It’s not so much a matter of writing
less, since Eiffel is happy to be verbose when needed, as when specifying
type properties of every entity, or expressing clear control structures.
Rather, it’s about avoiding elements that bring no useful information and
can in fact, through their verbosity, obscure the text.

Note, however, that creation expressions are useful only in the special
case of creating an object for the sole purpose of passing it to another
software element, without using it further in the given routine. In every
other situation — that is to say, in the vast majority of object creation needs
— you should use a creationinstruction.

Do not then be misled by the observation that you can rewrite any
creation instruction

as

If you are going to do anything else withx, you should stay with the first
form. In any case it saves you the need to specifyX_TYPE, which you have
already specified as the type ofx in its declaration.

In summary: reserve creation expressions for anonymous objects. This
important methodological note is in line with the general Eiffel principle
that the language should provideone good way to address any specific
need. Both creation expressions and creation instructions are useful, each
appropriate in a different situation.

The syntax, validity and semantics of creation expressions will now
follow without further comment, since they are directly deduced from the
corresponding properties of creation instructions.

The concepts introduced for creation instructions transpose directly here:

[1]
create x…

[1]

x := create{ X_TYPE} …

Creation expressions
Creation_expression=∆  createExplicit_creation_type

[Explicit_creation_call]

Properties of a creation expression
The creation type andunfolded form of a creation expression
are defined as for a creation instruction.

Instruction form.

Expression form.
WARNING: this is not
the recommended style.

← Explicit_creation_
type, was defined on
page551 as{Type} .
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 The validity rule is also similar:

Here too it is useful to have an “only if” version:

Creation Expression rule VGCE

A Creation_expressionof creation typeCT, appearing in a class
C, is valid if and only if it satisfies the following conditions:
1 • The feature of theCreation_callof the expression’sunfolded

form isavailable for creation toC.

2 • ThatCreation_call is argument-valid.

3 •CT is generic-creation-ready.

Creation Expression Properties VGCX

A Creation_expressionce of creation typeCT, appearing in a
classC, is valid only if it satisfies the following conditions,
assumingCT is not aFormal_generic_nameand callingBCT
thebaseclass ofCT anddc the version ofANY’s default_create
in BCT:

1 •BCT is aneffective class.

2 • If ce has noExplicit_creation_call, thenBCT either has no
Creatorspart or has one that listsdc as one of the procedures
available toC for creation.

3 • If BCThas aCreatorspart which doesn’t listdc, thencehas
anExplicit_creation_call.

4 • If ce has anExplicit_creation_callwhose featuref is not dc,
then BCT has aCreatorspart which listsf as one of the
proceduresavailable toC for creation.

5 • If cehas anExplicit_creation_call, that call isargument-valid.

If CT is aFormal_generic_name, the expression is valid only if it
satisfies the following conditions:
6 •CT denotes aconstrained generic parameter.
7 • The Constraintfor CT specifies one or moreprocedures as

constraining creators.
8 • If cehas noCreation_call, one of the constraining creators is

theConstraint’s version ofdefault_create from ANY.
9 • If ce has aCreation_call, one of the constraining creators is

thefeature of theCreation_call.

← “Cr eation Instruc-
tion rule”,  page 553.

WARNING: a more
concise formof this rule
appears just before.

← See“Cr eation
Instructionproperties”,
page 555.
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Finally, the semantics:

As with the corresponding “CreationInstructionProperties”, this is not an
independent rule but a set of properties following from previous
constraints, expressed with more detailed requirements that may be useful
for error reporting by compilers.

Creation Expression Semantics

The value of a creation expression of creation typeTC is —
except if step1 below triggers anexception, in which case the
expression has no value — a valueattached to a new object as can
be obtained through the following sequence of steps:
1 • If there is not enoughmemory available for a new direct

instance ofTC, trigger an exceptionof type NO_MORE_
MEMORY in the routine that attempted to execute the
expression. In this case the expression has no value and the
remaining steps do not apply.

2 • Create a newdirect instance ofTC, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an
expanded type.

3 • Call, on the resulting object, the feature of theUnqualified_
call of the expression’sunfolded form.

The notes appearing after the Creation Instruction Semanticsrule also
apply here.

← “Cr eation Instruc-
tionproperties”, ,page
555.

← “Cr eation Instruc-
tionSemantics”,,page
556.
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20.15 GARBAGE COLLECTION

Garbage Collection, not enough memory available
Authors of Eiffel implementation are required to provide
garbage collection, defined as a mechanism that can reuse for
allocating new objects the memory occupied by unreachable
objects, guaranteeing the following two properties:
1 •Consistency: the garbage collector never reclaims an object

unless it is unreachable.

2 •Completeness: no allocation request for an object of a certain
sizeswill fail if there exists an unreachable object of size >=s.

Not enough memory availablefor a certain sizes means that
even after possible application of the garbage collection
mechanism the memory available to the program is not sufficient
for allocating an object of sizes.
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Comparing and duplicating
objects
21.1 OVERVIEW

21.2 COPYING AN OBJECT

---- MOVE AND REWRITE The first operation copies the fields of an
object onto those of another. It is provided by the procedurecopy from
classANY. Descendant classes may redefinecopyto provide a form of copy
specific to object of the corresponding types, but the original version is
always available through the frozen variantidentical_copy.

21.3 EQUALITY EXPRESSIONS

--- MOVED FROM EXPRESSION CHAPTER, NOT UPDATED --

The just studiedCreationinstruction is the basic language mechanism for
obtaining new objects at run time; it produces fresh direct instances of a
given class, initialized from scratch.

Sometimes you will need instead to copy the contents of an existing
object onto those of another. This is thecopying operation.

A variant of copying iscloning, which produces a fresh object by
duplicating an existing one.

For both copying and cloning, the default variants are “shallow”,
affecting only one object, butdeepversions are available to duplicate an
object structure recursively.

A closely related problem is that ofcomparingtwo objects for shallow
or deep equality.

The copying, cloning and comparison operations rely on only one
language construct (the object equality operator~) and are entirely defined
through language constructs but through routines that developer-defined
classes inherit from theuniversal class ANY. This makes it possible,
through feature redefinitions, to adapt the semantics of copying, cloning
and comparing objects to the specific properties of any class.

← “ANY”,  6.5, page
172;seealsochapter35
for more details.
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An Equalityexpression serves to test equality of values with the symbol=,
or their inequality with the symbol/=. Typical examples are

The syntax is straightforward:

Object comparison features fromANY

The features whosecontractviews appear below are provided by
classANY.

default_is_equal(other: like Current)
-- Is other attached to object field-by-field equal
-- to current object?

ensure
same_type:Result impliessame_type(other)
symmetric: Result = other.default_is_equal

(Current )
consistent:Result implies is_equal (other)

is_equal(other: ? like Current)
-- Is other attached to object considered equal
-- to current object?

ensure
same_type:Result impliessame_type(other)
symmetric:Result= other.is_equal(Current )
consistent:default_is_equal(other) implies Result

The original version ofis_equalin ANYhas the same effect as
default_is_equal.

These are the two basic object comparison operations. The difference is
thatdefault_is_equalis frozen, always returning the value of field-by-field
identity comparison (for non-voidother); any class may, on the other hand,
redefineis_equal, in accordance with the pre- and postcondition, to reflect
a more specific notion of equality.

Both functions take an argument of an attached type, so there is no need
to consider void values.

border_color= Black_color
window.height/= 0



§21.3  EQUALITY EXPRESSIONS 567
The operators=, /= and~ have the sameprecedence as relational operators
such as< and>=, higher than the boolean operators such asand andor,
and lower  than arithmetic operators such as+ and∗.

There is no constraint on equality expressions. In particular it is not
necessary that either of the operands conform to the other. If they don’t (or
if one is void and the other attached to an object) the result will be false,
but that doesn’t make the expression illegal: whatever the answer, it’s
permitted to ask the question.

The semantics of the equality operators and~ was explored in detail as
part of the discussion on reattachment. As a reminder,e ~ f is true if and
only if e and f are attached to equal objects, according to theis_equal
function from classANY; as toe= f :

1 • If both e andf are of reference types, the expression denotes reference
equality, true if and only ifeandf are either both void or attached to the
same object.

2 • If either e or f is of an expanded type, the expression denotes object
equality; it returns the same result as .

Equality expressions
Equality =∆ Expression Comparison Expression

Comparison=∆ "=" | "/=" | "~" | "/~"

Equality Expression Semantics

TheBoolean_expressione~ f hasvalue true if and only if thevalues
of e andf are bothattached and such thate.is_equal(f) holds.

The Boolean_expressione = f has value true if and only if the
values ofe andf are one of:
1 • Both void.

2 • Both attached to the same object withreference semantics.

3 • Both attached to objects withcopy semantics, and such that
e~ f holds.

The form with~ always denotes object equality. The form with= denotes
reference equality if applicable, otherwise object equality. Both rely, for
object equality, on functionis_equal— the version that can be redefined
locally in any class to account for a programmer-defined notion of object
equality adapted to the specific semantics of the class.

→ “Pr ecedence and
Parenthesized Form”,
page 767

See22.16, page 618.
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If you need a different notion of equality you will, instead ofe = f, use
equal(e, f) which takes into account possible redefinitions ofequal.

Inequality is defined in terms of equality:

Inequality Expression Semantics

The expressione /= f has value true if and only ife = f has
value false.
The expressione /~ f has value true if and only ife ~ f has
value false.
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Copying and cloning features fromANY

The features whosecontractviews appear below are provided by
classANY assecret features.

copy(other: ? like Current)
-- Update current object using fields of object
-- attached toother, to yield equal objects.

require
exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: is_equal(other)

frozen default_copy(other: ? like Current)
-- Update current object using fields of object
-- attached toother, to yield identical objects.

require
exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: default_is_equal(other)

frozen cloned: like Current
-- New object equal to current object
-- (relies oncopy)

ensure
equal: is_equal(Result)

frozen default_cloned: like Current
-- New object equal to current object
-- (relies ondefault_copy)

ensure
equal: default_is_equal(Result)

The original versions ofcopyandclonedin ANYhave the same
effect asdefault_copy anddefault_clonedrespectively.
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Procedurecopyis called in the formx.copy(y) and overrides the fields of
the object attached tox. Functionclonedis called asx.clonedand returns
a new object, a “clone” of the object attached tox. These features can be
adapted to a specific notion of copying adapted to any class, as long as they
produce a result equal to the source, in the sense of the — also redefinable
— function is_equal. You only have to redefinecopy, sincecloneditself is
frozen, with the guarantee that it will follow any redefined version ofcopy;
the semantics ofcloned is to create a new object and applycopy to it.

In contrast,default_copyanddefault_cloned, which produce field-by-
field identical copies of an object, are frozen and hence always yield the
original semantics as defined inANY.

All these features aresecret in their original classANY. The reason is
that exporting copying and cloning may violate the intended semantics of
a class, and concretely its invariant. For example the correctness of a class
may rely on an invariant property such as

some_circumstanceimplies (some_attribute= Current)

stating that undersome_circumstance(a boolean property) the field
corresponding tosome_attributeis cyclic (refers to the current object
itself). Copying or cloning an object will usually not preserve such a
property. The class should then definitely not exportdefault_copyand
default_cloned, and should not exportcopyandclonedunless it redefines
copy in accordance with this invariant; such redefinition may not be
possible or desirable. Because these features are secret by default, software
authors must decide, class by class, whether to re-export them.

Deep equality, copying and cloning

The featureis_deep_equalof classANY makes it possible to
compare object structures recursively; the features ,deep_copy
anddeep_cloned duplicate an object structure recursively.

The default versions of the earlier features —default_is_equal,
default_copy, default_clonedand the original versions of their non-default
variants — are “shallow”: they compare or copy only one source object.
The “deep” versions recursively compare or copy entire object structures.

Detailed descriptions of the “deep” features appear in the specification
of ELKS.
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Effect of a copy operation

For the copy operation to succeed, both the source and the target must be
attached to objects. (Cloning, however, will work for void sources or targets.)

The figure illustrates the effect of a copy operation withx as target andy as
source. Ifcopyhas not been redefined for the generating class of the object
OX attached tox, you may obtain this effect through the call

Before the call,y was attached to the object labeled OY;x was attached to
the object labeled OX. What the fields of OX contained then does not
matter (since the call overwrites them), but this object must exist. The call
copies every field of OY onto the corresponding field of OX.

Since the argument ofcopyis declared of typelike Current, the type of
OY conforms to the type of OX, but actually a precondition ofcopy
requires more: the types of the two objects must be identical, so that their
fields will be in one-to-one correspondence. On the figure, the type of OX
and OY is calledTC.

x.copy(y)

base

previous
item "ABC"

count

left
right

value
buddy

buddy

value

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

base

previous
item "ABC"

count

(TC)
76

y

x

Pre-existing structure

Effect on target object
of copy operationx.copy(y)

OX

OY
Result of
copying an
object
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The fields of OY include expanded values, such as the integercount, of
value76, and references such asbaseandprevious. In both cases, the copy
operation will simply copy the field. For reference fields, no attempt is
made to duplicate the data structure recursively: as a result, thebasefields
of both OX and OY will, after the call, be attached to the same object of
type TD. Applying copy to any object containing reference fields will,
indeed, always cause sharing of references;later in this chapter we will
encounter recursive copy routines,deep_copyand deep_clone, which
duplicate an entire object structure, following references recursively.

--- FIX --- As noted,copy requires a non-void source and target. For the
target, this is simply part of the general requirement onCall instructions: in
the above example,x, like the target of any other call, must be non-void
under penalty of raising an exception. For the source, the requirement is
expressed by the precondition ofcopy. A void source will trigger an
exception if the execution monitors preconditions.

Specification of default copy

We can now examine the exact specification ofcopy. First, the interface of
the procedure’s version in classANY:

Setting the style for other duplication and comparison routines,copyhas
two versions: one redefinable, the other (whose name begins with
identical_) frozen.

The second precondition clause uses functionsame_typeof ANY. Forx
andy attached to objects OX and OY,x.same_type(y) has value true if and
only if the type of OX has exactly the same type as OY.

copy, frozen identical_copy(other: like Current)
-- Copy fields ofother onto corresponding fields
-- of current object.

require
other_not_void: other/= Void
type identity: same_type(other)

ensure
equal: is_equal(other)

→ See21.5, page 579
below, about deep copy
and clone.

→ See next about the
functionsame_type
usedintheprecondition
and21.6, page 580
about the function
is_equal used in the
postcondition.

← Chapter5discussed
frozen features.

→ same_typeis dis-
cussed in“OBJECT
PROPERTIES”,  35.4,
page 929
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Here now is the precise effect of the standard version. Assumecopyhas
not been redefined and consider a callx.copy (y).

1 • As with any call, the targetx must benon-void (if it were void the call
would cause an exception); the first precondition clause ofcopystates
thaty must also be non-void. Let OX and OY be the attached objects at
the time of the call.

2 • The preconditionsame_typerequires that OX and OY have the same
type; letT be that type.

3 • If T is a basic type (BOOLEAN, CHARACTER, INTEGER, REAL or
POINTER), the effect of the call is to copy the value of OY onto OX.

4 • If OX and OY are special objects (sequences of values used to represent
strings or arrays), it is the implementation’s responsibility to ensure that
whenever such a situation arises — as a result of copying other objects
— the size of OX is at least as large as the size of OY. Then the call
copies the value of OY onto OX.

5 • In the remaining cases OX and OY are objects made of zero or more
fields, and the second precondition clause,other_same_type, implies
that the types of OX and OY are identical, so that for every field of OX
there is a field of the same type in OY. Then the call copies onto every
field of OX the corresponding field of OY.

As a consequence of the preconditionother_same_type, you cannot use a copy
operation to perform aconversion; a callyour_real.copy(your_integer)
is incorrect.

Tuning copy semantics

Any class may redefinecopyto provide a copying operation consistent with
the notion of object equality that has been deemed appropriate for the class.

Copy and equality are indeed intricately connected: the postcondition of
copy, given on the previous page, states that the copy must make the target
object equal to the source in the sense of functionis_equal, another feature
of ANYcovered in detaillater in this chapter. Clearly, if you redefine either
one ofcopyandis_equal, you must redefine the other as well, to maintain
consistent semantics for copying and equality according to the
postcondition redefinition rules.

Special objects are not
directly accessible to
software texts.See19.2,
page 506.

With repeated inherit-
ance, an attribute of TX
may yield two fields in
OY. TheSelect sub-
clause, 16.5, page 442,
determines which one is
thefield"corresponding"
to the relevant OX field.

→“CONVERSIONS”,
22.6, page 591.

←“REDECLARATION
AND ASSERTIONS”,
10.17, page 283.



COMPARING AND DUPLICATING OBJECTS §21.3574
Redefinitions ofcopyand is_equalare of two kinds, going in reverse
directions: one makes the semantics more “shallow” and the other makes it
more “deep”:

• Sometimes you want to loosen the condition under which two instances
of a class are considered equal, by ignoring some fields. Then copy can
be redefined to copy only the relevant fields.

• You may instead want copy and equality to involve not only the original
objects but also others to which they contain references.

In some cases you might want both: ignore some fields of the original objects,
but involve some other objects as well.

Many classes of the Kernel Library and EiffelBase provide examples of the
second kind, as they describe objects which are just headers for complex
structures; copy and equality will then involve complete structures, not just
the headers. For example the semantics of classARRAYsuggests an
implementation as illustrated:

The array object on the left is a header containing some general
information such as the number of elements,count, and a referenceareato
the special object containing the array elements (which are references on
the figure, but could be expanded values, for example of basic types). The
defaultcopywould only copy theARRAYobject; the procedurecopyas
redefined in classARRAYalso duplicates the special object containing the
array elements. The same scheme applies to classSTRING; the version of
copyin list classes such asLINKED_LISTandARRAYED_LISTcopies not
only the list headers but the list cells themselves.

The copy algorithm stops there, however: it doesn’t recursively duplicate the
actual contents of the list. It’s the same for arrays: in the above figure,
rb.copy(ra) will copy the special object shown under “Array elements”, but
not the objects to which its references are attached. For fully recursive
duplication, you can usedeep_copy, presentedlater in this chapter.

Part of the reason for redefininingcopyis indeed that sometimes the default
version — available asidentical_copy— doesn’t duplicate enough, while
deep_copyduplicates too much. By redefiningcopyyou can prescribe the
exact depth you want — in accordance with your desired notion of equality,
expressed by a redefinition ofis_equal — for habitual copy operations.

ra

(ARRAY)

Arraydescriptor
and array
elements

(See chapter36.)

Array elements

area

count

Arrays, strings and the
supporting Kernel
Library classes are cov-
ered in chapter36 and

Arrays, strings and the
supporting Kernel
Library classes are cov-
ered in chapter36 and
and10.

→ “DEEP COPYING
ANDCLONING”, 21.5,
page 579.
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21.4 CLONING AN OBJECT

Instead of copying an object, you can clone it; this creates a new object
rather than updating the fields of an existing object. In classANY, feature
clone is a function, so a call of the form

is syntactically an expression; evaluating it will return a new object, which
is a copy of the object attached toy if any. If y is void, the result is void.

Using cloning

The most obvious use ofclone is in an assignment:

where the type ofy must be a descendant of the type ofx. Thefigure used
to illustratex.copy(y) also describes the effect of this assignment; only now
the object OX represents a new object created by the assignment.

Another use ofclone is to pass a fresh copy of an existing object as
argument to a call, as in

Although closely related, copy and clone differ in three respects:

C1 •Copy modifies an existing object, whereas clone creates a new object.
In the above assignment, any earlier attachment betweenx and some
object is lost.

C2 •For copy to work, the target must be non-void; this is expressed
syntactically by the nature ofcopy, a procedure inANY. In contrast,
clone is a function and does not by itself have a target; it simply
produces a result. When used as part of an assignment of targetx as
above, it does not care whetherx is void or attached.

C3 •Finally, becauseclonedoes not presuppose an existing target object, it
can handle a void source. The result in this case is simply a void
reference.

Like copy, clone does not attempt to follow references for fields of
reference types, but simply copies the fields; a "deep" version isavailable.

As with a Creationinstruction, a call toclonewill fail, triggering an
exception (the same one, of typeNO_MORE_MEMORY) if it attempts to
create a new object and no memory is available for it.

clone(y)

x := clone(y)

some_routine(…, clone(y), …)

← Page571.

→ “DEEP COPYING
ANDCLONING”, 21.5,
page 579.

← “CREATION
SEMANTICS”,  20.12,
page 556.
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Twin

The description ofcloneindicates (propertyC3 above) thatVoid is a valid
argument, for which the function will returnVoid as its result. This is
convenient in the vast majority of cases. If you do know that the source of
the clone operation is not void, you may, instead ofclone (y), use

The only advantage oftwin over clone— apart from being a little more
concise — is that its implementation doesn’t need to test forVoid, so it will
normally be slightly faster. But you should make sure to reservetwin for
cases in which the target is known for sure to be non-void, since a void
target would cause a run-time exception. If the case may arise, useclone,
which handles void references gracefully.

Whenever one of the routines of this chapter handles a certain type of value
and it is possible to define a reasonable default response for cases in which
that value is void, the routine follows the example ofcloneand treats that
value as an argument, not as the target of calls.

For a non-voidy, clone (y) and y.twin, both applicable, are guaranteed
always to yield the same value, thanks to the rules seen next.

Specification of default cloning
Here are the interfaces of functionclone and itstwin variant:

Why are clone and twin frozen? The reason is not that their effect is
immutable, but that you can change that effect without redefining the
functions. To guarantee compatible semantics for cloning and copying,
clone and twin are defined in terms ofcopy, and so will follow any
redefinition ofcopy.

y.twin
-- Defined only ify /= Void; then has same value asclone (y)

frozen clone(other: ANY): like other
--Void if other void; otherwise, new object equal to
-- object attached toother.

ensure
equal: equal(Result, other)
preserves_void: (other= Void) implies (Result=Void)
same_as_twin: (other/= Void) implies

equal(Result, other.twin)

frozen twin: like Current
-- New object equal to current object

ensure
not_void: Result/= Void
equal: Result.is_equal(Current)
same_as_clone: identical(Result, clone(Current))

The function ‘equal’
used in the postcondi-
tion is derived from
‘is_equal’. See below.

A frozen routine may,of
course, call routines
which are not frozen; it
will then be affected by
their redefinitions.



§21.4  CLONING AN OBJECT 577
More precisely, here is the definition of the semantics of a callclone(y):

1 • If the value ofy is void, the call returns a void value.

2 • If the value ofy is attached to an object OY, the call returns a newly
created object of the same type as OY, initialized by applyingcopy to
that object with OY as source.

The second case also defines the semantics ofy.twin. (For void y the
general rules on routine call imply that the call will trigger an exception.)

In exactly the same way, function functionequal, used in the postcondition
of clone, will automatically follow any redefinition ofis_equal, used in the
postcondition ofcopy. As we’ll see in the discussion of equality,equalis to
is_equallike clone to twin: it accepts a void target, but for non-void target
returns the same result.

To guarantee the original semantics of field-by-field duplication and ignore
any redefinition ofcopy, you may use functionidentical_clone, which has
the same signature asclone, and is defined in terms ofidentical_copy
exactly asclone is defined fromcopy.

In principle, clone is superfluous: you could in most cases use a
Creation and copy instead, replacing

In practice, however, several reasons justify a separateclone facility:

• It’s more concise to useclone than a creation followed by a copy,
particularly in an expression, or in an argument to a routine call
r (…, clone(x), …) where the other form would be much more verbose,
requiring the declaration of a local variableyand two extra instructions.

• If the associated class has two or more creation procedures, aCreation
instruction forces you to choose one, although the choice is irrelevant.

• The creation procedure may do some extra work, justified when you
create an object from scratch, but unneeded or harmful when all you
need is a duplicate of an existing object.

• A Creationforces the client to specify the exact type of the new object,
whereas a call toclone, as emphasized next, may dynamically produce
an object of one among several possible types, depending on the type of
the source, selected at run time. This is especially interesting for
Formal_generic_nametypes, sinceclonemay be applicableevenwhen
plain creation isn’t.

create y …
y.copy(x)

→ “OBJECT EQUAL-
ITY”,  21.6, page 580.

← “CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9, page 543.
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Cloning, types and factories

If x is an expression of typeT, and its value is not void, the generating type
of the object created by a call toclone( x) is not necessarilyT: it is the type
U of the object to whichx is attached.U will always (ignoring the
conversion case) conform toT, but may be based on a proper descendant.
In factT might be deferred, in which case there are no objects of generating
typeT.

Assumefig1 andfig2 declared of the deferred typeFIGURE, with fig1
attached, at some point during execution, to an instance of an effective
descendant ofFIGURE, such asCIRCLE. Executing

will attachfig2 to anotherCIRCLE.

In such cases you don’t need to know the exact dynamic type of the
source (herefig1) when writing the instruction; because of polymorphism,
that type may be different for successive executions of the same instruction.

An earlier discussion introduced an important application of these
properties: how to implement afactory of objects through theclonable
array technique. The idea was simply to obtain a fresh instance of a type,
selected from a set of variants by a certaincode, by writing

where thefactoryis an array automatically created on first use — thanks to
the beauties of once functions and creation expressions — through a simple
function, worth showing again:

This provide a simple and easily extendible scheme, compatible with the
Single Choice principle and much preferable to the first form shown, which
used explicit discrimination through aMulti_branch.

fig2 := clone(fig1)

x := clone(factory @ code)

factory: ARRAY[FIGURE]
once

Result.make(Low_id, High_id)

-- Create and enter an instance of each desired kind:
Result.put(create{SEGMENT}.make(…), Segment_id)
Result.put(create{TRIANGLE}.make(…),Triangle_id)
… Similarly for each variant…

end

The generating type of
an object is the type of
which it is a direct
instance.See19.2,page
506.

← “Single choiceand
factoryobjects”, page
537; final, simplified
form on page538.

← First shown on page
538. The example
involves a set of figure
types.

← “Single choiceand
factoryobjects”, page
537; original form[1] ,
page535.
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21.5 DEEP COPYING AND CLONING

The defaultclone and copy are, as noted,shallow: they do not follow
references, just copy fields of the source object as they appear.

You may in some cases need deep versions of these operations, which
will recursively duplicate an entire structure. The routinesdeep_cloneand
deep_copyof classANY, with the same signatures asclone and copy
respectively, fulfill this need. They will replicate an entire data structure,
creating as many new objects as needed.

If we take as an illustration the original exampleused to present shallow
copying, here is the result of a deep clone on the same structure:

Unlike their shallow counterpartsclone and copy, deep_cloneand
deep_copy cannot cause sharing of references between source and target.

The deep versions are frozen. Their postconditions involvedeep_equal,
studiedbelow.

← Page571.
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Your usual supplier of
memory upgrades and
discount disks will be
happy to provide your
staff, at no charge, with
a full training session
on the use ofdeep_copy
anddeep_clone.

Result of deep
cloning

→ “DEEP EQUAL-
ITY”,  21.7, page 582.
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21.6 OBJECT EQUALITY

---- OBSOLETE SECTION, REWRITE WITH ~ -----The discussion of
cloning and copying transposes readily to the problem of comparing
objects for equality. To determine if the objects attached tox and y are
equal, you may use the expression

Here is the result of applying the defaultequalto two valuesx andy.

1 • If any one ofx andy is void, the result is true if the other is also void,
and false otherwise. Cases2 to 5 assume that both arguments are
attached to respective objects OX and OY.

2 • .If the types of OX and OY are not identical, the result is false. For cases
3 to 5 let T be their common type.

3 • If T is a basic type, the result is true if and only if OX and OY are the
same value

4 • If OX and OY arespecialobjects (sequences of values used to represent
strings or arrays), the result is true if and only if the sequences have the
same length, and every field in one is identical to the field at the same
position in the other.

5 • Otherwise OX and OY are standard complex objects, and conformance
of TY to TX implies that for every field of OX there is a corresponding
field in OY. Then the result is true if and only if every reference field of
OX is attached to the same object as the corresponding field in OY, and
every subobject field of OX is (recursively) equal to the corresponding
field in OY.

This definition of equal’s semantics closely parallels the semantic
definition of copy; the five cases in both specifications match each other.
The two are indeed designed to be compatible since, as noted, a call of the
form x.copy(y) must ensure the postconditionequal(x, y).

Like copying, equality does not take conversions into account. The
expressionequal(0.0, 0) — with a real argument and an an integer argument
— will return false. To get different behavior you must take care of the
conversion yourselves.

equal(x, y)

For convenience, the
shortformofthefunction
equal appearsafter this
semantic specification.

← “Basic types”,  ,
page 338

Special objects are not
directly accessible to
software texts.See19.2,
page 506.
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The rejection of any conversions is part of a more general decision reflected
in clause2 above: equality may only hold for objects of the exact same type.
You may be interested to know that the policy was more lax in early versions
of Eiffel (as reflected in the first edition of this book): it specified the value
true forequal(x, y) if the type ofy conforms to the type ofx and two objects
have equal fields for the attributes ofx’s type, even though OY may have more
fields. This policy was more flexible, and did not cause any major problems;
it went well, in particular, with the use ofis_equalas the basic equality
operation, explained next. It was abandoned, however, when critics pointed
out that it madeequala non-symmetric property — it could result inequal(x,
y) being true whileequal(x, y) is not — whereas equality, in mathematics, is
always symmetric. Hence the change to a more restrictive view of equality.

The short form ofequalhas not yet been given because in its postcondition
it mentions the next function of interest,is_equal. Here it is:

Functionis_equal, for its part, has a frozen synonymis_identical, and the
interface form

To change the semantics of equality in a particular class, just redefineis_equal;
you cannot directly redefineequal— as you can see above, it’s frozen — but
its postcondition guarantees thatequalwill follow automatically. An obvious
way to implementequal is indeed to rely onis_equal:

frozen equal(some: ANY; other: like some): BOOLEAN
-- Are some andother either both void or attached
-- to equal objects?

ensure
definition: Result= (some= Voidand other=Void) or

(some/= Voidand other/= Voidand then
some.is_equal(other))

symmetric: Result= equal(some, other)

is_equal( other: like Current): BOOLEAN
-- Is other attached to an object equal to current object?

ensure
only_if_not_void: Resultimplies other /= Void
same_type: Resultimplies same_type(other)
symmetric: Result= other.is_equal(Current)
consistent: is_identical(other) implies Result

if  some= Void then
Result:= (other= Void)

else
Result:= some.is_equal(other)

end
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Functionis_equalhas the same relationship toequalas twin to clone: it
works on a target and an argument as inx.is_equal(y), whereequaluses
two arguments as inequal(x, y). For non-voidx, the two will always yield
the same result, as defined above, but onlyequalaccepts a voidx; is_equal
requires a non-void target. So it is the more basic of the two, butequalis
more general.

Use equal (x, y) when there is any chance thatx could be void.
Otherwise you can still useequalexcept if you are concerned about the
small overhead of testing forVoid. Functionis_equalis the one to redefine
to introduce a specific semantics of equality for instances of a certain class.
As noted, this almost always implies an associated redefinition ofcopy.

Earlier on, we encountered library classes —ARRAY, STRING, list
implementations — that redefinecopyto duplicate not just the header of an
object structure but some of its contents too. These same classes redefine
is_equal to compare the contents and not just the header.

Like copy and clone, functions equal and is_equal have frozen
synonyms: identical and is_identical, both guaranteeing the original
semantics of exact field-by-field comparison.

21.7 DEEP EQUALITY

Like the shallow forms of copy and clone, the just explored shallow form
of equality testing has a deep counterpart inANY:

What exactly are “ isomorphic structures”? Clearly,deep_equalshould
yield true if one of the arguments results from adeep_cloneor deep_copy
applied to the other, asx andy on the figure that illustrated deep_clone. But
we shouldn’t limit ourselves to this case, because it excludes any sharing
between the two object structures, as in the following figure below, where
we are entitled to expect thatdeep_equal(x, y) will yield true.

frozen deep_equal(some: ANY; other: like some): BOOLEAN
-- Are some andother either both void
-- or attached to isomorphic object structures?
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Here is the definition of deep equality (yielding true for such cases). It is
convenient to define the notion separately for references and for objects.

Two referencesx andy are deep-equal if and only if they are either both
void or attached to deep-equal objects.

Two objects OX and OY are deep-equal and only if they satisfy the
following four conditions:

1 • OX and OY have the same exact type.

2 • The objects obtained by setting all the reference fields of OX and OY (if
any) to void references are equal.

3 • For every void reference field of OX, the corresponding field of OY is void.

4 • For every non-void reference field of OX, attached to an object PX, the
corresponding field of OY is attached to an object PY, and it is possible
(recursively) to show, under the assumption that OX is deep-equal to
OY, that PX is deep-equal to PY.

Condition1 is the same as forequal: we want the types to be identical.

Conditions2 and3 express that every expanded or void field must be
equal to the field in the other object.
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item "ABC"

count

left
right

value
buddy

buddy

valuey

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

base

previous
item "ABC"

count

left
right

(TC)

(TD)
76

x

OY

OX

A case of deep
equality



COMPARING AND DUPLICATING OBJECTS §21.7584
Condition4 handles the non-void reference fields. It is a bit subtle, as
often when recursion is involved. The phrasing seems strange: why not just
state that in this case PX must recursively be deep-equal toPY?

The problem is that such a condition, although not wrong, would be
impossible to prove, or disprove, for any cyclic data structures. Consider
the situation picture above, which might be the result of adeep_clone
operation. How can we check that the objects labeled X1 and Y1 are deep-
equal — which they clearly should be?

Condition1 will raise no problem since all objects are of the same type
T. Condition2 is readily satisfied since the only non-reference fields in X1
and Y1, theitemfields, are equal. Condition 3 is also immediate since both
previousfields are void. For condition 4, we must check recursively that the
objects X2 and Y2 are deep-equal.

Conditions2 and3 again hold trivially, covering fieldsitem andnext.
There remains to check condition4, in other words, that thepreviousfields
of X2 and Y2 are attached to deep-equal objects. But now you see the
problem: those attached objects are none other than X1 and Y1, and we are
back to square one.

item

previous

next

item

previous

next

Y1 Y2

(T) (T)

’A’ ’B’

item

previous

next

item

previous

next

X1 X2
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x

Another case
of deep
equality
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The phrasing of condition4 gets us out of this potentially endless
reasoning loop: when checking condition4 on the original objects X1 and
Y1, we only have to check that X2 and Y2 are deep-equalunder the
assumption that X1 and Y1 are themselves deep-equal. So here the
equality of theitem andnext fields suffices to terminate the proof.

If you are looking at this with a programmer’s rather than a
mathematician’s eyes, you will have understood this clause as meaning that
in an abstract traversal algorithm designed to check deep-equality of
objects, you maymark every previously encountered object so as not to
explore it again, avoiding infinite looping.

If, on the other hand, you also master the theoretical background, you
will have recognized the idea of self-conditional recursive proof: a
technique whereby, to prove a propertyR, you must first prove a property
of the form “if R holds, thenP holds” for some other propertyP. This is
exactly the scheme used, inaxiomatic specifications of programming
language semantics, to prove the correctness of a recursive routine.

On this theoretical per-
spective, see the book
“ Introduction to the
Theory of Program-
ming Language”",
eparticularly itssection
: 9.10.6 and the exam-
ple in 9.10.9.
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Attaching values to entities
22.1 OVERVIEW

------- REWRITE ---- You already know everything about the last case.
This chapter explores the other three. It will also examine a closely related
problem, for which the last chapter did the advance work: how to determine
that two entities have the same attachment, or areequal, in any of the
possible interpretations of this general notion.

At any instant of a system’s execution, every entity of the system has a
certain attachment status: it is either attached to a certain object, or void
(attached to no object). Initially, all entities of reference types are void; one
of the effects of aCreation instruction is to attach its target to an object.

The attachment status of an entity may change one or more times during
system execution through aattachment operations, in particular:

• The association of an actual argument of a routine to the corresponding
formal argument at the time of a call.

• TheAssignmentinstruction, which may attach an entity to a new object,
or remove the attachment.

The validity and semantic properties of these two mechanisms are
essentially the same; we study them jointly here.

← Chapter20.
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22.2 ROLE OF REATTACHMENT OPERATIONS

Every reattachment operation has asource(an expression) and atarget (a
Variable entity). When the reattachment is valid, its effect will be ----

This chapter explores reattachment operations: their constraints,
semantics, and syntactic forms.

22.3 FORMS OF UNCONDITIONAL REATTACHMENT

As noted, the two forms of unconditional reattachment,Assignment
instructions and actual-formal association, have similar constraints and
essentially identical semantics, studied in the following sections.

The syntax is different, of course. An assignment appears as

wherex, the target, is aVariableentity andy, the source, is an expression.

Very informally, the semantics of this instruction is to replace the value
of x by the current value ofy; x will keep its new value until the next
execution, if any, of a reattachment (unconditional, conditional, or new
Creation) of which it is the target.

Actual-formal association arises as a byproduct of routine calls. ACall
to a non-external routiner with one or more arguments induces an
unconditional reattachment for each of the argument positions.

Reattachment, source, target
A reattachment operation is one of:
1 • An Assignmentx := y; then y is the attachment’s source and x

its target.

2 • The run-time association, during the execution of a routine
call, of an actual argument (the source) to the corresponding
formal argument (the target).

We group assignment and argument passing into the same category,
reattachment, because their validity and semantics are essentially the same:

• Validity in both cases is governed by the type system: the source must
conformto the target’s type, or at leastconvert to it. The Conversion
principle guarantees that these two cases are exclusive.

• The semantics in both cases is to attach the target to the value of the
source or a copy of that value.

x := y

← Chapter14 pre-
sented both conform-
ance and convertibility.
See“Conversion prin-
ciple”,  page 408.
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Consider any one of these positions, where the routine declaration
(appearing in a classC) gives a formal argumentx:

Then consider a call tor, where the actual argument at the given position is
y, again an expression. The call must be of one of the following two forms,
known as unqualified and qualified:

Qualified or not, the call causes an unconditional reattachment of targetx
and sourcey for the position shown, and similarly for all other positions.

A qualifiedCall also has a “target”, appearing to the left of the period,t in the
second example. Do not confuse this with the target of the actual-formal
attachment induced by the call,x in this discussion.

Informally again, the semantics of this unconditional reattachment is to set
the value ofx, for the whole duration of the routine’s execution caused by
this particular call, to the value ofy at the time of call. No further
reattachment may occur during that execution of the routine. Any new call
executed later will start by setting the value ofx to the value of the new
actual argument.

22.4 SYNTAX AND VALIDITY OF ASSIGNMENT

Here is the syntax of anAssignment instruction:

Actual-formal association does not have a syntax of its own; it is part of the
Call construct.

The syntax ofAssignmentrequires the target to be aVariable. Recall that
aVariableentity is either an attribute of the enclosing class or a local variable
of the immediately enclosing routine or agent. The latter case includes, in a
function, the predefined entityResult. A formal routine argument isnot a
Variable; this property is discussed further in the next section.

r (…, x: T, …) is …

r (…, y, …)
t.r (…, y, …)

-- In this second form,t must conform to a type based onC.

Assignments
Assignment=∆ Variable ":=" Expression

For an external routine,
written in another lan-
guage, the exact seman-
tics depends on the
other language’s rules.

See chapter23 for the
details of Call instruc-
tions and expressions.

→Seechapter23about
Call. Syntax page626.

← 19.8 introduced
Variable entities, with
syntax on page512and
the associated Variable
rule on page514.
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The principal validity constraint in both cases is that the source must
conform or convert to the target. ForAssignmentthis is covered by the
following rule:

The two cases, conformance and convertibility, are complementary:

• Conformance is the more common situation. As you will remember,
typeU conforms to typeT — and, as a consequence, an expression of
the first type to an entity of the second one — if the base class ofU is a
descendant of the base class ofT and, if generic parameters are present,
they also conform; theconformance chapter gave the details.

• Convertibility allows reattachments that also perform a conversion, as
when you are assigning an integer value to a real target.

22.5 THE STATUS OF FORMAL ROUTINE ARGUMENTS

The syntax ofAssignmentrequires the target to be aVariable. This
includes, as noted, attributes and local variables, but not formal arguments
of the enclosing routine. So in the body of a routine

an assignmentx := y, for some expressiony, would not be valid. The only
reattachments to a formal argument occur at call time, through the actual-
formal association mechanism.

It is indeed a general rule of Eiffel that routines may not change the
values of their arguments. A routine is an operation to be performed on
certain operands; arguments enable callers to specify what these operands
should be in a particular application of the operation. Letting the operation
change the operands would be confusing and error-prone.

Assignment rule VBAR

An Assignmentis valid if and only if its source expression is
compatible with its target entity.

To be “compatible”means to conform or convert.

This also applies to actual-formal association: the actual argument in a call
must conform or convert to the formal argument. The applicable rule is
argument validity, part of the generaldiscussion of call validity.

r ( : SOME_TYPE)
…
do

…
end

← “Compatibility
between types”,  page
384.

→ “THE CALL
VALIDITY RULE”,
25.10, page 681.

← Chapter14.

← Chapter15.

x
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Although some programming languages offer “out” and “in-out” modes for
arguments, they are a notorious source of trouble for programmers, and
complicate the language; for example:

•You must have special rules for the corresponding actual arguments (they must
be variable).

•You must prohibit using the same actual argument twice, as inr (e, e), but only
if both of the affected argument positions are “out” or “in out”.

The Eiffel rule does not prohibit a routiner from modifying theobjectsthat
it is passed: if a formal argumentx is a non-void reference,r has access to
the attached object and can perform any valid feature call on it. In the
situation pictured below the body ofr may include a procedure call

whereset_attrib1will update the value of the integer fieldattrib1. What is
not permitted is anAssignmentof target x, which would affect the
reference rather than the object.

22.6 CONVERSIONS

All that beginning Eiffel programmers really need to know about convertibility
is that commonly accepted mixed-type arithmetic assignments with no loss of
information, such asyour_real:= your_integer(but not the other way around,
which requires using a truncation or rounding function) are OK and will cause
the proper conversions. So on first reading you shouldskip this section.

Conformance and convertibility are, as noted, mutually exclusive cases.
Let us start our study of reattachment semantics by the second one — even
though conformance is by far the more common case — because the
discussionof convertibility already told us most of what we need to know.

In that discussion we saw that it is possible for a class to declare,
through its creation procedures, one or morecreation types, as in:

x.set_attrib1(2)

classDATEcreate

…

Object may
change,
reference not

attrib1x

2

Skip to“SEMANTICS
OF REATTACH-
MENT”,  22.7, page
593.

← Chapter15.Seealso
“The Target Conver-
sion mechanism
deserves some justifica-
tion…” , page770.

from_tupleconvert {TUPLE[INTEGER, INTEGER, INTEGER]}
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This is intended to permit attachments from any of the conversion types
(here only one) to the current type, so that you may write

wherecompute_revenueexpects two date arguments. Argument passing in
this case will cause, prior to actual attachment, the creation of a new object
of type DATE and its initialization through the given creation procedure
from_tuple. As was noted in the earlier discussion, this means that the call
is equivalent to

Similarly, a call your_date := [1, "January", 2000] is equivalent to
createyour_date.from_tuple([1, "January", 2000].

It is also possible to specify conversion through a function in the source
type, rather than a procedure in the target type. Between any two given
types, at most one of these possibilities may apply. If it is possible to
convert an expressionexp to an entitye, we say thatexp converts tox,
through a conversion routine (procedure or function).

-------

This semantic specification and the supporting definition rely on the
properties of the conversion mechanism, expressed by theConversion
Procedurerule and the associateddefinitions (convertible types of a class),
which guarantee that everything is unambiguous:

• The definition of “convertible types” tells us thatSOURCEmust appear
among theConversion_typesof a creation procedure of the base class
of TARGET.

• Clause 4 of the Conversion Procedure rule, requiring all the
convertible types of a class to be different, guarantees that there is
only one such procedure, making the definition of “applicable
conversion procedure” legitimate.

• Clauses6and7of theruleguaranteethat thisprocedurehasexactlyoneformal
argument, of a typeARGto whichSOURCEmust conform or convert.

If SOURCEconverts (rather than conforms) toARG, then the attachment
will, as was noted in the earlier discussion, cause two conversions rather
than one, since to the conversion procedure must convert its argument to
typeARG. As was also noted, things stop here: a conversion reattachment
may cause one conversion (the usual case), or two (if theSOURCEtype
converts to theARG type), but no more.

compute_revenue([1, "January", 2000], [1, "January", 2001])

compute_revenue(create{DATE}.from_tuple([1, "January", 2000]),
create{DATE}.from_tuple([1, "January", 2001]))

← “EXPRESSION
CONVERTIBILITY:
THE ROLE OF PRE-
CONDITIONS”,
15.10, page 420.

← “Conversion Proce-
dure rule”,  page 411;
“Converting to and
fromatype”, page415;

← See discussion of
clause6 of the Conver-
sion Procedure rule on
page411.
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This discussion completes the specification of reattachment in the
convertibility case. Since theConversionprinciple tells us that a type may
not both convert and conform to another, we may limit our attention, for the
rest of this chapter, to the more common case: reattachments in which the
source of an assignment or argument passingconforms to the target.

--- TEXT BELOW MAY HAVE TO BE TRANSFERRED ELSEWHERE
---

22.7 SEMANTICS OF REATTACHMENT

Let us examine the precise effect of executing an unconditional reattachment
of either of the two forms, for a source conforming to the target.

Because that effect is the same in both cases — anAssignmentx := y
and a call that usesy as actual argument for the formal argumentx of a
routine — we can use the first as our working example: the assignment

wherex is of typeTX andy of typeTY, which must conform toTX.

The effect depends on the nature ofTXandTY: reference or expanded?
Here is the basic rule, covering the vast majority of practical cases:

• .If both TXandTYare expanded, the assignment copies the value of the
object attached to the source onto the object attached to the target.

• If both are reference types, the operation attachesx to the object
attached toy, or makes it void ify is void.

As an example of the first case, in

the resulting value ofxwill be 4, but the lastAssignmentdoes not introduce
any long-lasting association betweenx andy; this is becauseINTEGERis
an expanded type.

As an example of the second case, ifTC is a reference type, then

will result inx andy becoming attached to the same object:

x := y

x, y: INTEGER
…
y := 4
x := y

x, y: TC
…
createy …
x := y

← “Conversion princi-
ple”,  page 408.

Effect of
reference
reattachment
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This rule addresses the needs of most applications. There remains, of course,
to see what happens when one ofTX and TY is expanded and the other
reference. But it is more important first to understand the reasons for the rule
by exploring what potential interpretations make sense in each case.

Consider first the case of references. We start from the run-time
situation pictured below, with two objects labeled OX and OY, assumed
for simplicity to be of the same typeTY, and accessible through two
referencesx andy. Of course, since the Eiffel dynamic model is fully based
on objects,x andy themselves will often be reference fields of some other
objects, or of the same object; these objects, however, are of no interest for
the present discussion and so they will not appear explicitly.

Three possible kinds of operation may updatex from y: copying, cloning
and reference reattachment.

(TY)

integer_attrib

character_attrib
’A’

OX
x

y

1

Before a
reattachmentinteger_attrib

character_attrib ’A’

OXx 1

(TY)

OYy

(TY)

integer_attrib

character_attrib ’B’

2
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The first, copying, makes sense only if bothx andy are attached (non-
void). Its semantics, seen in thelast chapter, is to copy every field of the
source object onto the corresponding field of the target object. It does not
create a new object, but only updates an existing one.We know how to
achieve it: through procedurecopy of the universal classANY or, more
precisely, its frozen versionidentical_copy, ensuring fixed semantics for
all types (whereascopymay be redefined). The next figure illustrates the
effect of a cally.identical_copy(x) starting in the above situation.

The second operation is a close variant of the first: cloning also has the
semantics of field-by-field copy, but applied to a newly created object. No
existing object is affected. Here too a general mechanism is available to
achieve this: a call to functionclonewhich (anticipating on this section) we
have learned to use in an assignmentx := clone (y). To guard against
redefinition we may use the frozen versionidentical_clone. The result is
shown below; the cloning creates a new object, OZ, a carbon copy of OX.

← See21.2, page 565
oncopy and its frozen
versionidentical_copy.

integer_attrib

character_attrib ’A’ OX

x 1

(TY)
OY

y

(TY)

integer_attrib

character_attrib ’A’

1

y.copy(x)

Effect of
standard copy

← See21.4, page
575,aboutcloneand
identical_clone.

y := clone(x)

integer_attrib

character_attrib ’A’ OX

x 1

(TY)
OY

y

(TY)

integer_attrib

character_attrib ’A’

1

(TY)
OZ

integer_attrib

character_attrib ’A’

1

Effect of
standard clone



ATTACHING VALUES TO ENTITIES §22.7596
Assumingy was previously attached to OY as a result of the preceding
operation, it is natural to ask: “What happens to the object OY?”. This will be
discussed in alater section.

The third possible operation is reference reattachment. This does not affect
any object, but simply reattaches the target reference to a different object.
The result (already visible in the last figure) may be represented as follows:

To devise the proper rule for semantics, we must study which of these
operations make sense in every possible case. Since the source and target
types may each be either expanded or reference, there will be four cases:

SOURCE TYPE→ Reference Expanded

TARGET TYPE↓

Reference [1]

• Copy (if neither
source nor target void)

• Clone

• Reference reattachment

[2]

• Copy (if target not void)

• Clone

Expanded [3]

• Copy (will fail if
source is void)

[4]

• Copy

→ “MEMORY MAN-
AGEMENT”,  22.15,
page 616.

Effect of
reference
reattachment

x

y

y := (x)

integer_attrib

character_attrib ’A’ OX

1

(TY)

Meaningful
possibilities for
the semantics
of reference
reattachment

This list only takes into
account shallow opera-
tions. Deep variants
were discussed in21.5,
page 579.
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If all we were interested in was copying and cloning, we would not need
any new mechanism: routinesidentical_copyand identical_clone, from
ANY, are available for these purposes. The only operation we would miss is
reference reattachment, corresponding to the last figure. This only makes
sense for case1, when both target and source are of reference types: if the
target is expanded, as in cases3 and4, there is no reference to reattach; and
if the source is expanded, as in cases2 and 4, a reattachment would
introduce areference to a sub-object, a casediscussedandrejected in the
discussion of the dynamic model.

In case 1, however, we do need the ability to specify reference
reattachment, not covered bycopy, cloneor their frozen variants. This will
be the semantics of theAssignmentx := y and of the corresponding actual-
formal association when bothx andy are of reference types.

We now have notations for expressing meaningful operations in every
possible case: reference assignment in case1, routinesidentical_copyand
identical_clonein the other cases. At least two reasons, however, indicate
that in addition to these case-specific operations we also need a single
notation applicable to all four cases:

• In a generic class,TXandTYmay be aFormal_generic_name; then the
class text does not reveal whetherx andy denote objects or references,
since this depends on the actual parameter used in each generic
derivation of the class. But it must be possible for this class text to
include anAssignmentx := y, or a callr (…, y,…), with a clearly defined
meaning in all possible cases.

• The availability of general-purpose copying and cloning mechanisms
does not relieve us from the need to define a clear, universal semantics
for actual-formal association.

Examination of the above table suggests a uniform notation addressing
these requirements. What default semantics is most useful in each case?

• In case1, where bothx andy denote references, the semantics should be
reference reattachment, if only (as discussed above) because no other
notation is available for that operation.

• In case4, with bothx andy denoting objects, only one semantics makes
sense for a reattachment operation: copying the fields of the source onto
those of the target.

• In case2, with x denoting a reference andy an object, both copying and
cloning are possible. But copying only works ifx is not void (since there
must be an object on which to copy the source’s fields). Ifx is void,
copying will fail, triggering an exception. It would be unpleasant to
force class designers to test for void references before any such
assignment. Cloning, much less likely to fail, is the preferable default
semantics in this case.

← “REFERENCE
ATOMICITY”,  19.7,
page510; the excluded
case is illustratedby the
figure on page510.

← If the formal
generic isTX, con-
formance requiresTY
to be identical to TX. If
the formal isTY, TXis
eitherTY or an ances-
tor of TY’s constraint
(ANY if TY is uncon-
strained). See“Dir ect
conformance: formal
generic”,  page 393.

Cloning may also fail,
triggeringanexception,
if there is no more mem-
ory available(21.2).
But this is a much less
frequent situation than
the target being a void
reference.
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• In case3, as in case1, the targetx is an object, so copying is again the only
possible operation. In this case it will fail ify is void (since there is no
object to copy), but then no operation exists that would always work.

This analysis leads to the following definition of the semantics of
unconditional reattachment in the case of a sourceconforming to its target.

In this semantic specification, “Copy” and “Clone” refer to the frozen
featuresidentical_copyand identical_clonethat every class inherits from
the universal classANY.

Arguments could be found for using instead the redefinable versioncopy, and
clone which is defined in terms ofcopy: after all, if the author of a class
redefined these routines, there must have been a reason. But it is more prudent
to stick to the frozen versions, so that the language defines a simple and
uniform semantics for assignment and argument passing on entities of all
types. If you do want to take advantage of redefinition, you can always use
the call.copy.( y) instead of the assignmentx := y, or passclone(y) instead
of y as an actual argument to a call. These alternatives to unconditional
reattachment apply of course to reference types as well as expanded ones.

For theexception raised in case3 if the value ofy is void, the Kernel
Library class EXCEPTIONS introduces the integer code
Void_assigned_to_expanded.

This semantic definition yields the most commonly needed effect in
each case. This applies in particular to cases1 and4, which account for the
vast majority of reattachments occurring in practice: for an integer variable
(case4), it is pleasant to be able to write

to produce the effect of

SOURCE TYPE→ Reference Expanded

TARGET TYPE↓

Reference [1]
Reference reattachment

[2]
Clone

Expanded [3]
Copy
(Fails if source void)

[4]
Copy

n := 3

n.copy(3)

→ The table giving
equality semantics on
page619 will be orga-
nizedalongsimilar lines.

← Remember that the
convertibility  case is
distinct(“CONVER-
SIONS”,  22.6, page
591)

The semantics
ofconformance
reattachment
NOT a semantic specifi-
cation but only a list of
available possibilities
for such a specification.
The actual semantics
appears next.

See chapters26 on
exceptions and37 on
classEXCEPTIONS.

Herecopyandident-
ical_copyare the same.
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but uses a commonly accepted notation and has the expected result. For a
reference variabley, it is normal to expect the call

simply to pass tosome_routinea reference to the object attached toy, if any,
rather than to duplicate that object for the purposes of the call. If you do
wish duplication – shallow or deep – to occur, you may make your exact
intentions clear by using one of the calls

An interesting application is the case of generic parameters and generically
derived types. If the type ofx andy is a formal generic parameter of the
enclosing class, as in

the effect of the highlighted assignment may be reference reattachment or
copying depending on the actual generic parameter used forG in the
current generic derivation. (Cloning, which only occurs for reference target
and expanded source, does not apply to this case since, by construction,x
an y are of the same type.) We will shortly come back to the effect of
reattachment semantics on generic programming.

A consequence of the validity and semantics rules is the following
semantic principle, which will be important to understand the run-time
behavior of our systems:

some_routine(y)

some_routine(clone(y))
some_routine(identical_clone(y))
some_routine(deep_clone(y))

class GENERIC_EXAMPLE[G] feature
example_routine

local
x, y: G

do

end
end

Reattachment principle

After a reattachement to a target entityt of type TT, the object
attached tot, if any, is of a typeconforming toTT.

x := y

→ “EFFECT ON
GENERIC PRO-
GRAMMING”, 22.10,
page 604.
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“If any” because the source of the attachment might have been void. If not,
its valuev is of a typeVT that either conforms or converts toTT (but not
both). If it conforms, the operation simply reattachest to v, satisying the
principle. If it converts, the operation produces a new object of typeTT; this
satisfies the principle too sinceTT conforms to itself.

Attaching an entity, attached entity

Attaching an entitye to an objectO is the operation ensuring that
the value ofe becomesattached toO.

Although it may seem tautological at first, this definition simply relates the
two terms “attach”, denoting an operation that can change an entity, and
“attached to an object”, denoting the state of such an entity — as determined
by such operations. These are key concepts of the language since:

• A reattachment operation (see next) may “attach” its target to a certain
object as defined by the semantic rule; a creation operation creates an
object and similarly “attaches” its creation target to that object.

• Evaluation of an entity, per the Entity Semantics rule, uses (partly
directly, partly by depending on the Variable Semantics rule and
through it on the definition of “value of a variable setting”) the object
attachedto that entity. This is only possible by ensuring, through other
rules, that prior to any such attempt on a specific entity there will have
been operations to “attach” the entity or make it void.

Reattachment Semantics

The effect of a reattachment of source expressionsourceand
target entitytarget is the effect of the first of the following steps
whose condition applies:
1 • If sourceconvertsto target: perform aconversionattachment

from source to target.

2 • If the value ofsourceis a void reference: maketarget’s value
void as well.

3 • If the value ofsource is attachedto an object withcopy
semantics: create aclone of that object, if possible, andattach
targetto it.

4 • If the value ofsourceis attached to an object withreference
semantics: attachtargetto that object.
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The semantics of assignment is just a special case of this rule:

22.8 AN EXAMPLE

---- WRONG (OLD SEMANTICS), TO BE REMOVED

As with other semantic rules describing the “effect” of a sequence of steps,
only that effect counts, not the exact means employed to achieve it. In
particular, the creation of a clone in step3 is — as also noted in the
discussion of creation — often avoidable in practice if the target is
expanded and already initialized, so that the instruction can reuse the
memory of the previous object.

Case1 indicates that a conversion, if applicable, overrides all other
possibilities. In those other cases, if follows from theAssignmentrule that
source mustconform to target.

Case2 is, from the validity rules, possible only if bothtargetandsource
are declared ofdetachable types.

In case3, a “clone” of an object isobtained by application of the
functionclonedfrom ANY; expression conformance ensures thatclonedis
available (exported) to the type oftarget; otherwise, cloning could produce
an inconsistent object.

The cloning might be impossible for lack of memory, in which case the
semantics of the cloning operation specifies triggering an exception, of type
NO_MORE_MEMORY. As usual with exceptions, the rest of case3 does not
then apply.

In case4 we simply reattach a reference. Because of the validity rules (no
reference type conforms to an expanded type), the target must indeed be of
an reference type.

This rule defines theeffectof a construct through a sequence of cases,
looking for the first one that matches. As usual with semantic rules, this
only specifies the result, but does not imply that the implementation must
try all of them in order.

Assignment Semantics

The effect of a reassignmentx := y is determined by the
Reattachment Semantics rule, with sourcey and targetx.

The other cases where Reattachment Semantics applies is actual-formal
association, per step5 of the General Callrule.

On the other hand, the semantics ofObject_test, a construct which also
allows aRead_onlyentity to denote the same value as an expression, is
simple enough that it does not need to refer to reattachment.

→ .

→ .

→ “General Call
Semantics”,  page 653.
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To see the effect of reattachment in various cases, consider the run-time
situation pictured below.

All the entities considered are attributes of a classC. OC, the complex
object on the left, is a direct instance of typeTC, of base classC.

The first five attributes (ra, rb, rc, rd, re), whose names begin withr, are of
a reference typeT1. The corresponding fields of OC are references. The four
others (et, ex, ey, ez), whose names begin withe, are expanded. The
corresponding fields are sub-objects of OC, which have been given the names
OBJ2 to OBJ5. The reference fieldra is originally attached to another object
OBJ1, also of typeT2.

Assume that classC has the following routine, usingAssignment
instructions to perform a number of reattachments:

assignmentsis
-- Change various fields.

do
rc := rb
rd := ra
re := et
ex:= ey
ez:= ra

end

ra

rb
rc

rd

re

T1

T1

T1

T1

T1

T2

T2

T2

T2

OBJ2

OBJ1

OBJ4

OBJ5

OBJ3

T2

OC

et

ex

ey

ez

?

?

?

(TC)

A run-time
system
snapshot

OC is not only complex
but composite.
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If applied to the above OC, this procedure will produce the following
situation:

The assignmentre := et, with reference target and expanded source,
produces a duplicate of object OBJ2.

An attempt to executeet := rb, with an expanded target and a void
source, would trigger an exception.

22.9 ABOUT REATTACHMENT

(This section brings no new Eiffel concept. It will only be of interest to
readers who wish to relate the above concepts to the argument passing
conventions of earlier programming languages.)

It may be useful to compare the semantics of unconditional
reattachment to the mechanisms provided by other languages, in particular
to traditional variants of argument passing semantics.

Consider a call of the form

This causes an attachment as a result of actual-formal association between
the expressiony, of typeTY, and the corresponding formal argumentx, of
typeTX.

r (…, y, …)

ra

rb
rc

rd

re

T1

T1

T1

T1

T1

T2

T2

T2

T2

OBJ2

OBJ1

OBJ4

OBJ5

OBJ3

T2

OC

Clone ofOBJ2et

ex

ey

ez

(TC)

Snapshot after
assignments



ATTACHING VALUES TO ENTITIES §22.10604
An examination of the semantics defined above in light of other
argument passing conventions yields the following observations:

• If both TX and TY are reference types (case1 of the table of
reattachmentsemantics), the reattachment causes sharing of objects
through references, also known asaliasing. For actual-formal
association this achieves the effect ofcall by reference, with the target
being protected against further reattachment for the duration of the call.

• If both TXandTYare expanded types (case4), reattachment copies the
content ofy, an object, ontox. This achieves the effect ofcall by value.

• If TX is an expanded type andTYa reference type (case3), the operation
copies ontox the content of the object attached toy (y must be non-
void). This achieves what is often calleddereferencing.

• If TX is a reference type andTYan expanded type (case2), the operation
attaches tox a newly created copy ofy. This case has no direct
equivalent in traditional contexts; it may be viewed as a form of call by
value combined with call by reference.

22.10 EFFECT ON GENERIC PROGRAMMING

The semantics of unconditional reattachment has a direct effect on both the
production and the use of generic classes — a cornerstone of reusable
software production.

For a generic class such asGENERIC_EXAMPLEabove, it may seem
surprising to see a given syntactical notation, the assignment symbol:=,
denote different operations depending on the context, and similarly for
argument passing.

This convention corresponds, however, to the most common needs of
generic programming. The container classes of EiffelBase, such as
LINKED_LIST, TWO_WAY_LIST, HASH_TABLEand many others, used to
store and retrieve values of various types, provide numerous examples.
These classes are all generic and, depending on their generic derivations,
the values they store may be references or objects.

All of these classes have one or more procedures for adding an element
to a data structure; for example, to insert an element to the left of the
current cursor position in a linked list a client will execute

Almost all of these procedures use assignment for fulfilling their task.
Many do this not directly but through a call of the form

some_list.put_left(s)

some_cell.put (x)

← Page596.

← Page599.

The notion of container
data structure was pre-
sented in10.21, page
292, and12.3, page
351.
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wheresome_cell, representing some individual entry of the data structure,
is of a type based on some effective descendant of the deferred generic
classCELL; for example,LINKED_LISTuses the descendantLINKABLE,
describing cells of linked lists. Procedureput comes fromCELL, where it
appears (in effective form) as [

Because the addition of an elementx by putuses assignment, what will be
added to the data structure is an object value ifx is of expanded type, and
otherwise a reference to an object.

This policy means that if you are a “generic programmer” (a developer
or user of generic classes) you must exercise some care, when dealing with
data structures having diverse possible generic derivations, to make sure
you know what is involved in each case: objects or references to objects.
But it provides the most commonly defaults: a call

inserts the value 25, whereas

does not duplicate the object representing the bank account. Storing a
reference in this case is the most conservative default policy. As in earlier
examples, you can always obtain a different policy by using such calls as

which guarantee uniform semantics (duplication, shallow in the first case
and deep in the second) across the spectrum of possible types.

The discussion also applies to the problem ofsearching a data
structure, discussed below.

class CELL [G] feature
item: G;
put (new: G)

-- Replace the cell value bynew
do

ensure
item= new

end
… Other features…

some_list_of_integers.put_left(25)

some_list_of_integers.put_lift (her_bank_account)

some_list_of_integers.put_left( (her_bank_account))
some_list_of_integers.put_left( (her_bank_account))

See page====for an
illustration of a LINK-
ABLE list cell.

This is a slight simplifi-
cation; the type of the
argument ‘new’ is actu-
ally like item, which
has thesameimmediate
effect since item is of
type G.

item:= new

clone
deep_clone

→ End of“SEMAN-
TICSOFEQUALITY”,
22.16, page 618.
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22.11 POLYMORPHISM

The only type constraint on unconditional reattachment is that (aside from
theconvertibility case) the type of the source must conform to the type of
the target.

If the target is expanded, this means that the types must essentially be
the same; the only permitted flexibility is that one may describe objects of
a certain form and the other references to objects of exactly the same form.
This follows directly from the rule defining conformance when an
expanded type is involved.

If the target is a reference, however (cases1 and2 of thereattachment
semanticstable), the situation is more interesting. If the target’s base type
is based on a classC, the validity rules mean that the base class of the
source may be not justC but any proper descendant ofC. This gives a
remarkable flexibility to the type system, while preserving safety thanks to
the conformance restrictions.

As a consequence, an expression declared of typeTC may at run time
denote objects not just of typeTC but of many other types, all based on
descendants of the base class ofTC.

So to study the run-time semantics of Eiffel systems we need to
consider, along with thetypeof an expression (its type as deduced from
declarations in the software text), its possibledynamic types:

This should not be confused with thetypeof x (called itsstatic type if there
is any ambiguity), which for an entity is the type with which it is declared,
and for an expression is the type deduced from the types of its constituents.

An expression has, of course, only one (static) type. But, as a key
property of Eiffel’s object-oriented style of computation, it may have more
than one dynamic type. This is known aspolymorphism.

Dynamic type
The dynamic type of an expressionx, at some instant of
execution, is the type of the object to whichx is attached, or
NONE if x is void.

Polymorphic expression; dynamic type and class sets
An expression that has two or more possible dynamic types is
said to bepolymorphic.
The set of possible dynamic types for an expressionx is called the
dynamic type setof x. The set ofbaseclasses of these types is
called thedynamic class set of x.

← “CONVERSIONS”,
22.6, page 591.

← “General conform-
ance”,  page 388 and
“Dir ectconformance:
expanded types”,
page 396.

← Page596.

→ “Type of an expres-
sion”,  page 783.
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Eiffel has a strongly typed form of polymorphism: the dynamic type set
of an expression is not arbitrary. The type rules are organized to guarantee
that the possible dynamic types forx all conform to the (static) type ofx.
This is how the type system keeps polymorphism is under control.

It is possible to determine the dynamic type set ofx through analysis of
the classes in the system to whichx belongs, by considering all the
attachment and reattachment instructions involvingx or its entities.

22.12 ASSIGNER CALL

You may have noted that the syntax for assignment

only supports assignment to aVariableentity; it does not allow assignment
to a field of an object, as in

Some programming languages permit such assignments, but — if viewed
just as assignments — they violate fundamental rules of methodology
(information hiding, data abstraction): clients of a class should not have the
ability to modify class instances directly; they should only do so through
the exported procedures of the class. A typical client call may be

assuming the author of the class — who is solely responsible for deciding
what clients may and may not do — has provided a procedureset_athat
sets the value of thea field. The procedure might have other properties,
such as imposing requirements on the new values, or triggering a database
update:

some_variable:= some_expression

x.a := b [1]

x. (b) [17]

set_a(x: T)
-- Update a to valuex.

require
“Some condition onx, for example to ensure compliance
with an invariant clause involvinga”

do
a := x
“Possibly some other action, for example updating a log
or database to record thata has been updated”

ensure
set: a = x

end

Warning: invalidexcept
as abbreviation for pro-
cedure call. See below.

set_a
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While [1] is not acceptable as a way to let clients modify fields directly,
some programmers may find it more directly meaningful than[17] as a
notation to represent the procedure call toset_a.

Assigner commandsprovide this syntactic simplification. When you
declare a query in a class, you may associate with it anassignercommand;
in the example this means that the author of the supplier class must have
declareda accordingly, as

which specifiesset_aas the assigner command associated with the query
a. The consequence of this declaration is to make form[17], x.a := b, valid,
with the same semantics as form[1], x.set_a(b).

Form[17] is known as anAssigner_call.

Remember that it is only a syntactical convenience: Eiffel doesn’t
permit violating principles of information hiding and data abstraction, as
would be the case if clients could directly modify fields of objects. You
have no choice but to go through the official interface as defined by the
supplier class author. Assigner call— available only if that author has
decided to provide it, by specifying an assigner command for the query —
simply lets you call the procedure through assignment-like syntax. But the
instruction is still a procedure call, not an assignment.

The instruction is in fact more general than a plain assignment since it
allows you to use arguments. The target query may have any number of
arguments; this is what allows you to write

as a shorthand for the procedure call

This shorthand is made possible by the declaration ofitemin classARRAY,
which specifies put as an assigner command:

In this case thealias “[ ]" specification makes bracket syntax also possible,
allowing the following form as a synonym for[19] and hence for[18]:

which makes traditional array assignment syntax available in a fully object-
oriented context.

a: SOME_TYPEassignset_a

your_array.item(i) := new_value [18]

your_array.put (new_value, i) [19]

item(i: INTEGER): G alias “[ ]" …

your_array := new_value [20]

assignput

[ i ]
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More generally, ifq is a query withn arguments and has an associated
assigner commandp, which must haven + 1 arguments, you may use

as an abbreviation for

The syntax is straightforward:

A Call_chain— the syntaxappears in the study of calls — is a dot-
separated sequence of two or more features, each possibly with arguments;
examples ofCall_chainare

Both the validity and the semantics of anAssigner_callfollow from this
construct’s role as a syntactic simplification for a call.

x. q (a1, a2, …, an) := e

x. p ( , a1, a2, …, an)

Assigner calls
Assigner_call=∆ Expression ":=" Expression

The left-hand side is surprisingly general: any expression. The validity rule
will constrain it to be of a form that can be interpreted as a qualified call to
a query, such asx.a, or x.f (i, j); but the syntactic form can be different,
using for example bracket syntax as ina [i, j] := x.

You could even use operator syntax, as in

a + b := c

assuming that, in the type ofa, the functionplusalias"+" has been defined
with an assigner command, maybe a proceduresubtract. Then the left side
a + b is just an abbreviation for the query call

a.plus(b)

and theAssigner_call is just an abbreviation for the procedure call

a.subtract(c, b)

x.a
your_array.item(i)
x.f (b). g (c, d)

e

→ Page626.
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As implied by the rules on assigner commands,p must have one more
argument than the associated queryq. Here are a few examples of assigner
calls and their unfolded forms:

From this notion we derive the validity rule for assigner calls:

The first two clauses ensures the conditions of the definition of “unfolded
form” above, so it’s indeed legitimate for the third clause to to rely on the
unfolded form of the instruction.

The unfolded form also gives us the semantics:

22.13 SEMI-STRICT OPERATORS

(This section is only for the benefit of readers with a taste for theory, and
may beskipped. They bring new light on earlier concepts, but introduce no
new language rules.)

The application of reattachment semantics to argument passing has the
interesting consequence of makingsemi-strictimplementations possible.
Let us see what this means.

Assigner_call Unfolded form
(assuming q has an assigner
commandp)

x.q := e x.p (e)

x.q (a) := e x.p (e,a)

x.f (a, b).q (c, d) := e x.f (a, b).p (e, c, d)

Assigner Call rule VBAC

An Assigner_callof the formtarget := source, wheretargetand
sourceare expressions, is valid if and only if it satisfies the
following conditions:
1 •source is compatible withtarget.

2 • The Equivalent Dot Form oftarget is a qualifiedObject_call
whose feature has anassigner command.

Assigner Call semantics

The effect of anAssigner_calltarget:=source, where theEquivalent
Dot Form of target is x.f or x.f (args) and f has anassigner
commandp, is, respectively,x.p (source) orx.p (source, args).

This confirms that the construct is just an abbreviation for a procedure call.

If skipping go to“CON-
DITIONAL REAT-
TACHMENT”,  22.14,
page 615.
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The notion of strictness

We may use a definition from programming theory:

Many common operations are strict on all arguments: for example you
cannot compute the sum of two integersm andn unless you know their
values, so this operation is strict on both arguments.

Not all operations are strict on all arguments, however. Consider a
conditional operation

which yieldsm if the value ofc (a boolean) is true,n otherwise. This is
strict onc, but not on the other two arguments, since it does not need to
evaluatem when it finds thatc is false, or  to evaluaten whenc is true.

Detecting that an operation is non-strict on an argument may be
interesting for performance reasons (since it may avoid unnecessary
computations); more importantly, however, non-strict operations may be
more broadly applicable than their strict counterparts. This is immediately
visible on the previous example: a fully strict version of thetest operation
would always start by evaluatingc, m andn; but then it would fail to yield
a result whenc is true andn not defined, and whenc is false andm not
defined. A "semi-strict" version (strict onc but not onm and n) may,
however, yield results in these cases, providedm is defined in the first and
n in the second.

The need for semi-strict operators

How does this apply to Eiffel programming? Here the operations of interest
are calls, of the general form

and the operands are the targett and the actual arguments such asy, if any.
Such a call is always strict on its target (which must be attached to an
object). In a literal sense, it is also strict on its actual arguments, since it will
need to pass their values to the routiner.

Strict, non-strict

An operation isstrict on one of its operands if it is always neces-
sary to know the value of the operand to perform the operation.
It is non-strict on that operand if it may in some cases yield a
result without having to evaluate the operand.

test c yes mno n end

t.r (…, y, …)

For a full discussion see
the book“Intr oduction
to the Theory of Pro-
gramming Languages”.

WARNING: this is a
mathematical notation,
not Eiffel syntax.

http://www.eiffel.com/doc/documentation.html#itpl
http://www.eiffel.com/doc/documentation.html#itpl
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When considering an actual argument such asy, however, it is more
interesting to analyze strictness not for the value ofy but for the attached
object, if any. Then the specification of unconditional reattachment
semantics yields two cases, depending on the types ofy and of the
corresponding formal argument inr:

A •If both are reference types, the call passes tor a reference, not the
attached object (which does not exist if the value ofy is void).

B •If either type is expanded, the call passes the attached object. (The value
of y  may not be void in this case.)

In other words, taking the object to be the operand, actual-formal
association is non-strict ony in caseA, and is strict in caseB.

The call as a whole will be said to be strict if it is strict on all
arguments, andsemi-strict otherwise:

This case is called “semi-strict” rather than non-strict because an Eiffel call
is always strict on at least one of its operands: the call’s target.

If a call may be semi-strict and you want to guarantee strictness on a
particular argument without changing anything in the routine’s text, this is
easy: just use cloning on the actual argument, passingclone(y) rather than
y. Functioncloneis clearly strict. The reverse change is not always possible:
if the routine has a formal argument of expanded type, it will always be strict
on the corresponding actuals.

What does semi-strictness mean in practice? Essentially that if both an
actual argumenty and the corresponding formal argument are of reference
types the implementationmay choose a non-strict argument passing
mechanism, which evaluatesy when and only when the routine actually
needsy’s value.

Such a semi-strict implementation is possible, but, except in one case,
it is not guaranteed. Implementations are not required to use a non-strict
argument passing mechanism even if the formal and actual arguments are
both references. This means that when you write a call of the form

you must make sure that the value ofy, which may be a complex expression,
is always defined at the time of call execution — even in cases for whichr
does not actually need that value. The call may evaluatey anyway.

Semi-strict

A call issemi-strict if it is non-strict on one or more arguments.

t.r (…, y, …)

CaseA corresponds to
case1 of reattachment
semantics, page596,
andcaseBto2,3and4.

If the target is a refer-
ence and the source is
expanded(case2of the
table), actual-formal
association results in
referencereattachment,
but the source must first
be cloned, so that the
operation is indeed
strict ony.

The exception is semi-
strict boolean opera-
tors, as explained
below.
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Consider for example a routine

which returns the value of its last argument if its first argument,i, is within
the bounds of the middle argument, an array, and returns 0.0 (the default
value forREAL) otherwise. Then consider a call in the same class:

If the value ofn may be outside of the bounds ofyour_array, then this call
is not correct sinceyour_array @ n, denoting then-th element of
your_array, is not defined in this case. Semi-strict implementation (non-
strict on the last argument) would avoid evaluation ofsome.array @n and
hence ensure proper execution of the call, returning zero; but you maynot
assume that the implementation uses this policy.

There is, however, one exception. Aswill be seen in detail in the
discussion of operator expressions, three functions of the Kernel Library
classBOOLEAN, are required to be semi-strict (that is to say, non-strict on
their single argument). These are functions representing a variant of the
common boolean operations: and, or, implies. Their declarations in class
BOOLEAN are

too_strict_for_me
(i: INTEGER; arr: ARRAY[REAL]; val: REAL): REAL
do

if then
Result:= val

end
end

your_array: ARRAY[REAL]; a: REAL; n: INTEGER
…
a := too_strict_for_me(n, )

conjunction_semistrictalias "and then"
(other: BOOLEAN): BOOLEANis do … end;

disjunction_semistrictalias "or else"
(other: BOOLEAN): BOOLEANis do … end;

implicationalias "implies"
(other: BOOLEAN): BOOLEANis do … end;

i > = arr.lowerand i < = arr.upper

WARNING: poten-
tially incorrect!

your_array@ n)

→ “SEMISTRICT
BOOLEAN OPERA-
TORS”,28.6,page774.
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The semantics of these functions readily admits a semi-strict interpretation:
a and thenb should yield false whenevera is false, regardless of the value
of b, and similarly for the others. To state this property concisely for all
three operations, it is useful to express the value of each, as applied to
argumentsa andb, in terms of the abovead hoctest notation:

This semi-strictness of these boolean operators is important in practice
because it makes it possible to use them as conditional operators. As a
typical example, again using arrays, it is often convenient to write
instructions of the form

where the last condition is not defined unless the first two are true (because
i would then be outside of the bounds ofarr). In the absence of a semi-strict
version of “and”, it would be much more cumbersome (as Pascal
programmers know) to express such examples.

The discussion of boolean operators will show further uses of this semi-
strict policy, especially for writing iterators on data structures, with
examples from the EiffelBase library.

More on strictness

(This more theoretical section may be skipped on first reading.)

What about the ordinary boolean operatorsandandor? You may expect
them to have a strict semantics, but this is not the case — at least not
necessarily. Here the language definition is simply less tolerant: it makes it
incorrect to evaluate expressionsa and b anda or b whenb is not defined,
even ifahas value false in the first case and ifb has value true in the second
case. There is nothing surprising in this convention, which has its
counterpart in all other forms of expression except those involving semi-
strict operators: no rule in this book will tell you how to compute the value
of m+ n if the value of the integer  expressionn is not defined.

test not a yes false no b end
test a yes true no b end
test not a yes true no b end

if
i >= your_array.lowerand then
i <= your_array.upperand then
(arr @ n).your_property

then
…

Remember that an
operator expression
such asa and thenb
stands for a call of tar-
geta and actual argu-
mentb. This explains
why all the expressions
considered here are
strictona,sinceacall is
always strict on its tar-
get. See“THE EQUIV-
ALENTDOTFORM”,
28.8, page 780.

→ See for example
continue_until from
LINEAR_ITERATION
on page====
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Because the language definition does not cover cases in which the
second operand ofor or and has no value, an implementation that usesand
then to computeand, andor else to computeor, is legitimate; it may
produce results in cases for which a strict implementation would not, but
these cases are incorrect anyway.

The reverse is not true: a correct implementation ofand andor does not
necessarily provide a correct implementation ofand thenandor elsesince
it may be strict. In other words: non-semi-strict does not necessarily mean
strict! If you want to guarantee strictness, it does not suffice to rely on the
operatorand and the operatoror; you should use cloning as suggested
above. (Forimplies, which is semi-strict, there is no equivalent non-semi-
strict operator, but you can usenot a or b.)

It is legitimate to ask why the semi-strict property of three boolean
operators —and then, or else, implies — is not expressed as part of the
language syntax. One could indeed envision a special optional qualifier
nonstrict applicable to formal arguments of reference type:

Such a facility was not, however, deemed worth the trouble, since the
common practice of software development seldom requires semi-strictness
outside of two special cases: the three boolean operators just studied; and,
as we will see in therelevant chapter, concurrent computation.

22.14 CONDITIONAL REATTACHMENT

To complete the study of reattachment, there remains to see one
mechanism which, like the operations examined so far, may reattach a
reference to a different object. The semantics will in fact be reference
reattachment; what differs is the validity constraint under which you may
apply this mechanism, and also the conditional nature of its effect.

--- REPLACE WITH A SHORT PREVIEW OF Object_test

Limitations of unconditional reattachment

The need for a conditional form of reattachment arises when you must
access an object of a certain typeTX, but the only name you have to denote
that object is an expression of typeTY, for two different types with the
“wrong” conformance (TXconforms toTYrather than the reverse), or even
no conformance at all. Normally, you would use the assignment

implicationalias "and then"
(nonstrict other: BOOLEAN): BOOLEAN

x := y

WARNING: not legal
Eiffel!

→ Chapter33.
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with xof typeTX; but this will not work because the fundamental constraint
of unconditional reattachment, expressed in theAssignmentrule, assumes
conformance fromy to x. Calling a routine withy as actual argument
corresponding to a formal argumentx of typeTXwould also be invalid for
the same reason. This conformance property is essential to the soundness
of the type system.

22.15 MEMORY MANAGEMENT

A practical consequence of the reference reattachment mechanism, both in
the unconditional form (assignment, argument passing) and in the
conditional form (assignment attempt), is that some objects may become
useless. This raises the question of how, if in any way, the memory space
they used may be reclaimed for later use by newly created objects.

For example, the reference reattachment illustrated by the figure below
may make the object labeled OY unreachable from any useful object.

In a similar way, the result of a cloning operation may make an object
unreachable. This may be the case with the middle object (also labeled OY)
in the earlierillustration of cloning.

(TY)

integer_attrib

character_attrib
’A’

OX

x

y

1

(TY)

integer_attrib

character_attrib
’B’

OY

2

$

Before

After

Effect of
reference
reattachment

This is the same as the
second figure of page
596.

← First figure on page
595.
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What does it mean for an object to be ‘"useful"?Remember that the
execution of a system is the execution of a creation procedure (the root
creation procedure) on an object (the root object, an instance of the
system’s root class). The root object will remain in place for the entire
duration of the system’s execution. An object is useful if it may be reached
directly or indirectly, following references, from the either root object or
any of the local variables of a currently executing routine. Because a non-
useful object can have no effect on the remainder of the system’s
execution, it is permissible to reclaim the memory space it uses.

Should a reattachment as illustrated above (or its clone variant)
automatically result in freeing the associated storage? Of course not. The
object labeled OY may still be reachable from the root through other
reference paths.

It would indeed be both dangerous and unacceptably tedious to lay the
burden of object memory reclamation on developers. Dangerous because it
is easy for a developer to forget a reference, and to recycle an object’s
storage space wrongly while the object is still reachable, resulting in
disaster when a client later tries to access it; and unacceptably tedious
because, even if you know for sure that an object is unreachable, you
should not just recycle its own storage but also analyze all its references to
other objects, to determine recursively whether other objects have also
become unreachable as a result. This makes the prospect of manual
reclamation formidable.

Authors of Eiffel implementation are encouraged to provide agarbage
collection mechanism which will take care of detecting unreachable
objects. Although many policies are possible for garbage collection, the
following properties are often deemed desirable:

• Efficiency: the overhead on system execution should be low.

• Incrementality: it is desirable to have a collector which works in small
bursts of activity, being triggered at specified intervals, rather than one
which waits for memory to fill up and then takes over for a possibly long
full collection cycle. Interactive applications require bursts to be (at
least on average) of a short enough duration to make them undetectable
at the human scale.

• Tunability: library facilities should allow systems to turn collection off
(for example during a critical section of a real-time application) and on
again, to request a full collection cycle, and to control the duration of
the bursts if the collector is incremental.

←“Systemexecution”,
page 114.

The Kernel Library
class“MEMORY”,
A.6.25 CLASS, page
1006, provides such
facilities.
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22.16 SEMANTICS OF EQUALITY

The previous discussions have shown how to reattach values. A closely
related problem, whose study will conclude this chapter, is tocompare
values, for example to see if they are attached to the same object. This
raises the question of the semantics of the equality operator= and its alter
ego the inequality operator/=.

If you remember how the study of object duplication (copy, cloneand
variants) led us to object comparison (equal and its variants), you will
probably have anticipated the current section: just as the assignment
operator:= has the semantics of reference attachment, copy or clone
depending on the expansion status of its operands, so will the equality
operator= have the semantics of reference or object equality.

We can devote all our attention to equality since inequality follows: the
effect ofx /= y is defined in all cases to be that of

Two meanings of equality area priori possible: reference equality, true if
and only if two references are either attached to the same object or both
void; and object equality.

The previous chapterintroduced a function to test object equality:equal
from the universal classANY, which in its original version will return true
if and only if two objects are field-by-field equal. As with copying and
cloning operations, it is more prudent to rely on the frozen version
identical, guaranteeing uniform semantics. (By redefiningis_equal, you
may provide another version ofequal for a specific class.) For
convenience,identical (like equal) also applies to void values. In the
present discussion, “object equality” denotes an operation that can only
compare two objects, and so must be applied to non-void references.

Here is the table of possibilities, which closely parallels the
corresponding table for unconditional reattachment:

not (x = y)

TYPE OF FIRST→ Reference Expanded

TYPE OF SECOND
↓

Reference [1]

• Reference equality

• Object equality (if
neither void)

[2]

• Object equality

← “OBJECT EQUAL-
ITY”,  21.6, page 580.

← “OBJECT EQUAL-
ITY”,  21.6, page 580.

← Page596.

Possible
semantics for
shallow
equality

NOT a semantic specifi-
cation but only a list of
available possibilities
for such a specification.
The actual semantics
appears next.
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For each of the four cases, we must give a reasonable meaning to the
equality operator=. The line of reasoning applied earlier to unconditional
reattachment yields the following semantics, which again parallels the
table for unconditional reattachment.

So if x andy are references the result of a test

is true if and only ifx andy are either both void or both attached to the same
object; if either or both ofx andy are objects, then the test yields true if and
only if they are attached to field-by-field equal objects, as indicated by
function identical_equal from classANY.

As with unconditional reattachment, the semantics given is the most
frequently needed one for each case, and in particular is usually appropriate
for operations on arguments of aFormal_generic_nametype. For more
specific semantics, you may use one of the calls

Expanded [3]

• Object equality (if
first not void)

[4]

• Object equality

TYPE OF FIRST→ Reference Expanded

TYPE OF SECOND
↓

Reference [1]Reference equality [2]identical

Expanded [3]identical identical

x = y

equal(x, y)
deep_equal(x, y)
identical_equal(x, y)
identical_deep_equal(x, y)

← Page598.
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Many container classes of EiffelBase have routines that query a data
structure such as a list, set, tree or hash table for occurrences of an object
(or more generally a value). This may mean either of two things: does the
structure contain a reference to the object of interest? Does it contain a
reference to an object equal to it? You can switch between these two
interpretations by applying the procedurescompare_objectsand
compare_referencesto a certain container, as inmy_list.compare_objects.
This governs not only searching operations, such as the functionhas, but
also certain insertion and replacement operations that will only add an
element to a structure if it is not already present.

For basic arithmetic types, which are expanded, the= and/= operators
will always call identical. Thanks to the conversion mechanism studied
earlierin thischapter, you may use mixed-type equality expressions within
the limits of the conversions specified in the corresponding classes. For
example the expression1.0 = 1 is valid (and will return true) even though
it has aREAL operand and the other is anINTEGER. This is because
according to the above semantics the expression means1.0.identical (1),
and INTEGER converts to REAL. Thanks to thetarget conversion
mechanism, you may also write1 = 1.0, with the same result.

See“Reusable Soft-
ware” . The notion of
container data struc-
ture was presented in
10.21, page 292, and
12.2, page 349.

← “CONVERSIONS”,
22.6, page 591.

← “Accountingfor tar-
getconversion”, , page
770

http://www.eiffel.com/doc/documentation.html#ru
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Feature call
23.1 OVERVIEW

How does a software system perform its job — its computations?

It must first set the stage: create the needed objects and attach them to
the appropriate entities. The preceding chapters discussed how to do this.
But once it has the objects in place and knows how to access them, the
system should do something useful with them.

One of the risks with calls in object-oriented languages is thevoid call: a run-
time attempt to apply a feature to an object that doesn’t exist because a
reference is void (or, in other terminology, a pointer is null). Eiffel
distinguishes itself by making such a failure impossible thanks to the notion
of attached typeand associated constructs studied in previous chapters. Here
we will reap the benefits of these mechanisms, which ensure statically — at
compile time — that no Eiffel call can apply to a void target. This removes
the principal source of run-time failure in object-oriented programming.

Three topics related to calls merit their own discussions in other chapters:

• The validity of calls raises the general question oftype checking: how
to make sure that the target of every call will be an object equipped with
the appropriate feature.

• A call has atarget, which must be an object. If the target is known
through a reference, we must be sure that the reference will never be
void upon execution of the call.

• Operator expressions are conceptually calls, but use traditional
mathematical syntax. We’ll see them as part of the chapter on
expressions, although there will be little new to learn about their validity
and semantic properties, which are those of calls.

In Eiffel’s model of computation, the fundamental way to do something
with an object is to apply to it an operation which — because the model is
class-based, and behind every run-time object lurks some class of the
system’s text — must be a feature of the appropriate class.

This is feature call, one of the most important constructs in Eiffel’s
object-oriented approach, and the topic of the following discussions.

→ Chapter25.

→ Chapter24.

→ Chapter28.
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23.2 PARTS OF A CALL

A call is the application of a certain feature to a certain object, possibly
with arguments. As a consequence, it has three potential components:

• Thetargetof the call, an expression whose value is attached to the object.

• Thefeature of the call, which must be a feature of the object’s type.

• An actual argument list.

The target and argument list are optional; the feature is required.

Here is a typical example showing all three components:

This call usesdot notation. The target of the call isremote_bank; the
feature of the call istransfer_by_wire; and the actual argument list contains
the two elements20000 andToday.

The target is separated from the feature of the call by a period, ordot,
hence “dot notation”.

If the target is the predefined entityCurrent , representing the “current
object” of system execution, as explained below, you may use, instead of
the fully qualified form

a form which leaves the target implicit:

This is still considered to be a case of dot notation even though the dot is
implicit. If the call does include an explicit target and dot, it isqualified;
otherwise, as in the last example, it isunqualified.

In the presence of run-time assertion monitoring, there is a slight semantic
difference between[1] and[2]: a qualified call causes invariant checking, an
unqualified call doesn’t.

A qualified call may have more than one level of qualification and is then
said to be amultidot  call, as in

For a feature without arguments, the actual argument list will be absent, as
in the source expression of theAssignment

whereauthorization is a query (attribute or function) without arguments.

In some cases we don’t need a target object (as in a qualified call) but
we still need a target type. IfT is a type, the notation

remote_bank.transfer_by_wire(20000, Today)

Current.print (message) [1]

print (message) [2]

paragraphs(2).line (3).second_word.set_font(Bold)

code:= remote_bank.authorization

→ “Curr ent object,
currentroutine”, page
649.
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denotes a call to a featureconstant_or_externalfrom T. This only makes
sense if the feature is either a constant attribute or an external (non-Eiffel)
feature; anything else would require a target object.

Non_object_call is a shorthand for “non-object-oriented call”, as in
{ T} .f (args) where T is a type. The usual object-oriented style of
computation,x.f (args), requires a target object denoted byx.

Calls may appear in syntactic forms other than dot notation:

• Operator expressions, have the semantics of calls:a – b is, with a
featureminusalias "–", equivalent to the dot-notation calla.minus(b).
Similarly, with item alias "[]" , the expressionx [i] has the same
semantics as the dot-notation callx.item[i].

• You may also write anon-object call of the form{ T} .f whereT is a
type andf is either a constant attribute or an external feature ofT. This
is like a call in dot notation that would not need a target, but only a target
type (to determine whichf to use).

23.3 USES OF CALLS

A call may play either of two syntactic roles: instruction and expression.

A call is a specimen of constructCall, covering dot notation, qualified
or unqualified, and non-object calls.

Operator_expression (in prefix or infix notation) and
Bracket_expressionare always used as expressions, but aCall in dot
notation may be either an instruction or an expression. The syntax
productions for both theInstruction and Expressionconstructs indeed
includeCall as one of the choices. To know which one applies, it suffices
to look at the feature of the call:

This rule has a validity code, so that compilers and other language processing
tools may refer to it when detecting an error such as the use of a procedure
call in an expression.

The above examples used calls totransfer_by_wire, print andset_fontas
instructions, and a call toauthorization as an expression. The calls to
minusalias "–" anditemalias "[]" are also expressions. The non-object call
{T} .f is an instruction iff is a procedure ofT and an expression otherwise.

{ T} .constant_or_external

Call Use rule VUCN
A Call of featuref denotes:
1 • If f is aquery (attribute or a function): an expression.

2 • If f is a procedure: an instruction.

Instruction: page228;
Expression: page761.
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23.4 UNIFORM ACCESS

An important property applies to dot-notation calls used as expressions: the
notation is exactly the same whether the feature of aCall is a function with
no arguments or an attribute. The expression

wherep1 is of typePERSONis applicable both if the featureageof class
PERSON is a feature of either kind.

If ageis an attribute, every instance ofPERSONhas a field which gives
the value ofagefor the instance. Ifageis a function, that value is obtained,
when requested, through some computation, presumably of the difference
between the current date and a "‘birth date" field. For a client containing
the above call, however, this makes no difference.

This principle of uniform accessfacilitates smooth evolution of
software projects by protecting classes from internal implementation
changes in their suppliers.

23.5 OPERATOR AND BRACKET FORMS

A call serving as an expression may use, instead of dot notation, the
Operator_expressionform based on unary or binary operators. Both of the
two operator expressions, respectively unary (prefix) and binary (infix)

are calls to functions of the Kernel Library classINTEGER: the first, to the
function negatedalias "–"; the second, tominusalias "–". The Feature
Declarationrule requires a feature associated with a unary or binary
operator to be an attribute or function without argument, likenegated, or a
function with one argument, likeminus. Note that here although both are
associated with the same operator– there is no ambiguity since the same
rule guarantees that there is at most one feature for each of these signatures.

The difference between such an operator expression and aCall is only
syntactical. You may also write the above two expressions as:

with exactly the same effect.

The syntax ofCall requires putting in “targetparentheses”(| … |) around a
Manifest_constant, such as1 or 4, to use it as target of a call.

Similarly, a bracket expression such as

pl.age

– 1
4 – 3

(|1|).negated
(|4|).minus(3)

your_array

← First discussed in
“UNIFORMACCESS”,
23.4, page 624.

← Page162, clause7;
see clause1.of “Alias
Validity rule”,  page
163.

→ “COMPLEX TAR-
GETS”, 23.6,page625
below.

[some_index]
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based on the featureitem alias"[ ]" in classARRAY, has the exact same
semantics as

The discussion of expressions will formalize the correspondence between
the two syntactic forms bydefining anEquivalent Dot Form for any
operator expression.

23.6 COMPLEX TARGETS

In most cases the targetx of a callx.f (…) is just an entity: a local variable,
an attribute, a formal argument. Sometimes you may want to use a non-
elementary expression, such asa + b (wherea and b could be not just
numbers but, for example, of some typeMATRIX). Writing a + b.f (c)
would, according to precedence rules, denote a sum of two elements,a and
the application off to b. If that’s not what you want, you may use a local
variable to specify applyingf instead to the sum ofa andb:

This technique works but forces the introduction of extra local variables.
To avoid them you may use theparenthesized target notation (|
Expression|):

The symbols use parentheses and a vertical bar. They remove any
ambiguity by making clear that the feature,f in this example, is being
applied to the whole expression.

You may also use a parenthesized targetin connection with bracket
notation, as in(| a + b|) [i], assuming the type ofa + b has a bracket feature.

Note that just using parentheses, as in(a + b). f (x), would not be
legal syntactically.

Why indeed not just use plain parentheses? The reason is syntactical. Eiffel
always treats the semicolon separator as redundant, without making any
difference between spaces, new lines and other break characters. If a
parenthesized expression were permitted as target of a call, the assertion

require

h

(a + b).g

your_array

local
sum

do
… sum := a + b
x := sum.f (c) …

end

x := f (c)

.item(some_index)

→ “THE EQUIVA-
LENT DOT FORM”,
28.8, page 780.

(| a + b|).

→ “BRACKET
EXPRESSIONS”,
28.7,page778; see the
syntax on page778.
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0would include two clauses,. But syntactically the beginning could be
parsed ash (a + b), denoting the application of a functionh to an argumenta
+ b, even though the remainder,.g, doesn’t have a proper syntactical
interpretation.

This syntactical problem is typical of the confusion engendered by the dual
use of parentheses, coming from mathematical conventions: as agrouping
mechanism, as in(a + b); and as a notation forfunction application, as inf
(c). The special symbols(| … |) avoid any such ambiguity.

23.7 CALL SYNTAX

We’ll now examine the syntax of the constructCall, describing calls in dot
notation, qualified or not, and non-object calls.

Prefix

, infix and bracket forms are specimens ofExpression; we’ll see their syntax
in the correspondingchapter, which also defines their semantics in terms of
the semantics of calls.

When present, the optionalActuals part gives the list of actual arguments:

Feature calls
Call =∆ Object_call| Non_object_call

Object_call=∆ [Target"."] Unqualified_call

Unqualified_call=∆ Feature_name[Actuals]

Target =∆ Local| Read_only| Call |
Parenthesized_target

Parenthesized_target=∆ "(|" Expression"|)"

Non_object_call=∆ "{" Type"}" "." Unqualified_call

A call is most commonly of the forma.b.… wherea, b … are features,
possibly with arguments.Targetallows aCall to apply to an explicit target
object (rather then the current object); it can itself be aCall, allowing
multidot calls. Other possible targets are a local variable, aRead_only
(including formal arguments andCurrent ) a “non-object call” (studied
below), or a complex expression written as aParenthesized_target(|…|).

Actual arguments
Actuals =∆ "(" Actual_list ")"

Actual_list =∆ { Expression "," …} +

→ “GENERALFORM
OF EXPRESSIONS”,
28.2,page761and rest
s of chapter28.
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As the specification ofActual_listindicates, anActualsargument list may
not be empty: iff has no formal arguments, you must call it asf or x.f, not
f () or x.f (). This is for simplicity and clarity.

An object-oriented call is eitherqualified or not. It’s qualified if it
involves at least one dot:

Of our earlier examples

the first is unqualified and the second qualified. Both are instructions if we
assume thatprint andset_fontare procedures in their respective classes.
The intermediate components of the second example

are all specimens of construct----------- FIX . They may themselves be
viewed as calls; any such intermediate call must be an expression (rather
than an instruction) so that it may serve as the target of further calls.

The features of all examples so far have arguments. Here are two
examples where the call has no argument:

They assume thatindent is a procedure with no arguments and that
current_fontis an attribute or function without arguments. As a result, the
source the following assignment, in the last example, is a call expression.

Unqualified, qualified call
An Object_callisqualified if it has aTarget,unqualified otherwise.

In equivalent terms, a call is “unqualified” if and only if it consists of just
anUnqualified_call component.

The callf (a) is unqualified,x.f (a) is qualified.

Another equivalent definition, which does not explicitly refer to the
syntax, is that a call is qualified if it contains one or more dots, unqualified
if it has no dots — counting only dots at the dot level, not those that might
appear in arguments; for examplef (a.b) is unqualified.

print (message)
paragraph(2).line (3).second_word.set_font(Bold)

paragraph(2)
paragraph(2).line (3)
paragraph(2).line (3).second_word

paragraph(2).indent;
f := that_word.current_font

TheAddress form for
Actual serves to pass
the address of an Eiffel
feature to a foreign
(non-Eiffel) routine.
See31.8, page 833.
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For examples of calls using aParenthesized_target, in addition to
(|1|).negatedand(|4|).minus(3) (more simply written as–4 and4 – 3),
assume a classVECTOR with featuresnorm andplus:

Then witha andb of typeVECTOR[T] for some appropriateT you may
use the expressions

both of which apply functionnorm to the result of applying functionplus
to u with argumentv. The syntax specification allows for at most one
Parenthesized_target, at the beginning of theCall. In the second example
theParenthesized_target is followed by theCall norm.f.h.

Thanks to this mechanism, you may use any valid expression as
qualifier by parenthesizing it. Without parentheses, theCall would be
syntactically illegal, as in3.negated, or legal but with a different
semantics, as withu + v.norm whichappliesnorm to v, not to the sum.

23.8 COMPONENTS OF A CALL

It is convenient to talk about “the target”, “the target type” and “the feature”
of a call.

class VECTOR[G –> X] feature
norm: G is do … end;
plusalias "+" (other: like Current ): like Current

do … end
… Other features…

end

(|u + v|).norm
(|u + v|).norm.f.h.

Target of a call
Any Object_call has atarget, defined as follows:
1 • If it is qualified: itsTargetcomponent.

2 • If it is unqualified:Current .

The target is an expression; ina (b, c).d the target isa (b, c) and in
(| a (b, c) + x |).d the target (case1) is a (b, c) + x. In a multidot case the
target includes theCall deprived of its last part, for examplex.f (args).g in
x.f (args).g.h (args1).

f must be a feature of
classX, hence applica-
ble to(u + v).norm
since the typeG of this
expression, a formal
generic parameter of
VECTOR, is con-
strained byX.

→ The dot has the high-
est precedence of all
operators except paren-
theses, so in the second
case it applies tov, not
u + v. See“SUBEX-
PRESSIONS”,  28.3,
page 764
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A Non_object_calldoes not have a target; this is what distinguishes it
from anObject_call. In both cases, however, there is a targettype:

A call of any kind also has a feature:

23.9 NON-OBJECT CALLS

The remaining sections of this chapter discuss the validity and semantics
of calls. The most interesting cases are the object-oriented form of call,
x.f (args), involving dynamic binding, and its unqualified variantf (args).
They will occupy most of the discussion. Let us dispose first of a specific
case, available mostly to facilitate interaction with non-object-oriented
facilities:Non_object_call. In an example such as

we use aNon_object_callto access directly a constant attribute present in
a “utility class”, CHARACTER_CODES. Were this mechanism not
available in the language, you could still obtain the desired effect by either:

• Making the enclosing class inherit fromCHARACTER_CODES, so that
it can directly access its features such asUnderscore.

Target type of a call
Any Call has atarget type, defined as follows:
1 • For anObject_call: the type of itstarget. (In the case of an

Unqualified_call this is thecurrent type.)

2 • For aNon_object_call having a typeT as itsTypepart:T.

Feature of a call
For anyCall the “feature of the call” is defined as follows:
1 • For anUnqualified_call: its Feature_name.

2 • For a qualified call or Non_object_call: (recursively) the
feature of itsUnqualified_callpart.

Case1 tells us that the feature off (args) is f and the feature ofg, an
Unqualified_call to a feature without arguments, isg.

The term is a slight abuse of language, sincef andg are feature names rather
than features. The actual feature, deduced from the semantic rules given
below and involving dynamic binding. is thedynamic feature of the call.

It follows from case2 that the feature of a qualified callx.f (args) is f. The
recursive phrasing addresses the multidot case: the feature of
x.f (args).g.h (args1) is h.

{ CHARACTER_CODES} .Underscore

→ “Dynamicfeatureof
a call”,  page 639
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• Declaring an entity codes: CHARACTER_CODESand using
codes.Underscore.

Using inheritance as in the first solution is a bit heavy-handed for such a
simple purpose. With the second solution, you must declare an entity that
you won’t use for anything else; in addition, ifCHARACTER_CODESis
not an expanded class, you’ll have to perform a creation instruction
createcodesto obtain the corresponding object. All this is a diversion.
With theNon_object_callyou state, with no fuss, exactly what you need:
featureUnderscore from classCHARACTER_CODES.

The mechanism is applicable only in limited cases: we only allow{ T} .f …
if f is a constant, likeUnderscore, or an external (non-Eiffel) function, as in

The reason is that any feature other than a constant attribute or an external
feature might need to work on the target, which aNon_object_calllacks.
Even an external feature could be a problem through its assertions:
consider a call

whereopen_channel, in classNETWORK_CONTROLLER, is an external
routine with two arguments. The precondition has anUnqualified_callto
valid_state, a function that might use the current object. Or it might not; but
this can be tricky to determine, so we should just ban such assertions.

To specify both the validity and the semantics it is convenient to treat a
Non_object_call as a special case of anObject_call:

{NETWORK_CONTROLLER}.open_channel(port_number, timeout)

open_channel(pn: INTEGER; to: REAL)
-- Open a channel on port numberpn with timeoutto.

require
valid_state

external
"C"

end

Imported form of a Non_object_call

The imported form of a Non_object_callof TypeT and feature
f appearing in a classC is the Unqualified_callbuilt from the
originalActualsif any and, asfeatureof thecall, a fictitious new
feature added toC and consisting of the following elements:
1 • A namedifferent from those of other features ofC .

2 • A Declaration_bodyobtained from theDeclaration_bodyof f
by replacing every type by itsdeanchoredform, then applying
thegeneric substitution ofT.

Warning: makes above
Non_object_call
invalid.
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This notion helps us express the validity rule:

We also use the imported form to define the semantics:

23.10 CLASS VALIDITY

The rest of this chapter considers the most common — but also more
delicate — case: object calls, involving dynamic binding. First, validity.

The basic idea is straightforward: inx.f (args) appearing in a classC,
the base class ofx must have a featuref, that feature must be available
(exported) to C, and the elements ofargs must conform to the
corresponding formal arguments as declared forf; in addition, the type of
x must bestrict to avoid the possibility of calls on a void target. In the
unqualified versionf (args), r must be a feature of the current class and the
arguments must conform. For the overwhelming majority of cases this is
all you need to remember.

This definition in “unfolded” style allows us to view{ T} .f (args) appearing
in a classC as if it were justf (args), anUnqualified_call, but appearing in
C itself, assuming we had movedf over — “imported” it — toC.

In item 2 we use the “deanchored form” of the argument types and
result, since a typelike a that makes sense inT would be meaningless inC.
As defined in the discussion of anchored types, the deanchored version
precisely removes all such local dependencies, making the type
understandable instead in any other context.

Non-Object Call rule VUNO

A Non_object_callof Type T and featurefnamein a classC is
valid if and only if it satisfies the following conditions:
1 • fnameis the final name of a featuref of T.

2 • f is available toC.

3 • f is either a constant attribute or an external feature whose
assertions, if any, use neitherCurrent nor anyunqualifiedcalls.

4 • The call’simported form is a validUnqualified_call.

Condition2 requiresf to have a sufficient export status for use inC; there
will be a similarrequirement forObject_call. Condition3 is the restriction
to constants and externals. Condition4 takes care of the rest by relying on
the rules forUnqualified_call.

Non-Object Call Semantics

The effect of aNon_object_callis that of itsimported form.

← “TWO-TIER DEFI-
NITION AND
UNFOLDEDFORMS”,
2.11, page 100.

← “Deanchoredformof
a type”,  page 344.

→Throughthenotionof
exportvaliditydefinedin
the next section.
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The full story is more subtle; in fact the next two chapters are devoted
to filling in the details. In the present discussion we will examine theClass-
Level validity of a call, which it is convenient to define in four parts:

• Export validity , to ensure thatf is exported to the client class.

• Argument validity , to ensure that theargsare of the right number and type.

• Target validity, to ensure thatx is not void.

Target validity is defined in the next chapter; the following one will tackle
the remaining notion ofSystem-Level validity.

Elsewhere in this book, validity rules are of the form: “A specimen of
constructC is valid if and only if …”. The rules of this section appear
instead as: “ACall is -valid if and only if…”, where is one of Export,
Argument, Target and Class-Level. The following chapter will define aCall
as “valid”, without further qualification, if and only if it is System-Level-
valid and Class-Level-valid. Since the three components of Class-Level
validity address distinct aspects, it is convenient for compilers to produce
error messages that refer to each of them; so you can view the rules below,
as normal validity rules, except that they are “only if” but not “if”.

Export validity

The first of the three components of Class-Level validity, export validity,
ensures that the caller is entitled to use the “feature of the call”:

This defines export validity “for” a certain classC. Usually we consider a call
appearing in a given class text, so we say just “export valid” to mean export-valid
for the current class. In the discussion of type checking, we’ll need to consider
the call, and its export validity, for an arbitrary descendant of the original class.

Export rule VUEX

An Object_callappearing in a classC, with fnameas thefeature
of the call, is export-valid for C if and only if it satisfies the
following conditions.
1 • fname is the final name of a feature of thetarget type of

the call.

2 • If the call isqualified, that feature isavailable toC.

X X



§23.10  CLASS VALIDITY 633
Clause2 only applies to qualified calls. Clearly, a routiner of a classC
can call another routinesof C on the current object unqualified, regardless
of the export status ofs. But in a qualified callx.s (…) the routines must
always be exported toC, even ifx is of typeC.

Because this property sometimes surprises programmers accustomed to
the conventions of other languages, it is useful to make it prominent:

That clause also takes care of the multi-dot case: ina.b.c, the target,
a.b, must itself satisfy the same condition. (This use of recursion is
justified since the target has one more level of dot notation than the original
Call, so the recursion cannot go on forever.)

In such multi-dot calls, all that counts is availability to the classC where
the call appears; availability to intermediate classes is irrelevant. For
example, ifC contains the call

For an unqualified callf or f (args), only condition1 is applicable, requiring
simply (since the target type of an unqualified class is the current type) that
f be a feature, immediate or inherited, of the current class.

For a qualified callx.f with x of type T, possibly with arguments,
condition2 requires that the base class ofT make the featureavailableto
C: export it either generally or selectively toC or one of its ancestors.
(Through the Non-Object Call rule this also governs the validity of a
Non_object_call{ T} .f.)

As a consequence,s (…) might be permitted andx.s (…) invalid, even
if x is Current . The semantics of qualified and unqualified calls is indeed
slightly different; in particular, with invariant monitoring on, a qualified
call will — even withCurrent as its target — check the class invariant, but
an unqualified call won’t.

Export Status principle

The export status of a featuref :

• Constrains allqualifiedcallsx.f (…), including those in which

the type ofx is thecurrent type, or isCurrent  itself.

• Does not constrainunqualified calls.

This is a validity property, but it has no code since it is not a separate rule,
just a restatement for emphasis of condition2 of the Export rule.

next_paragraph.line (3).second_word.set_font(Bold) [3]

← As defined in“Avail-
able for call, avail-
able”,  page 211.



FEATURE CALL §23.10634
where successive features are of typesPARAGRAPH, LINE andWORD,
export validity means thatPARAGRAPHmust make functionline available
to C, LINE must makesecond_wordavailable toC, andWORDmust make
set_fontavailable toC. It does not matter whethersecond_wordis available
to PARAGRAPH, or set_fontis available toLINE. To understand why, note
that any such call may be rephrased in single-dot form:

This shows multi-dot notation as just a notational facility — although an
important one, avoiding the need for intermediate variables such asl andw.

Argument validity

The second component of Class-Level validity ensures that the number and
types of actual arguments match those of formals:

For simplicity, the definition assumes export validity, ensuring thatf exists.

In a generic context, condition2 relies on theGenericTypeAdaptation
rule: in a calla.sf (y) wherea is of typeC [T] andC [G] has the routine
sf (x: G), the type to whichy must conform isT — notG, which makes no
sense outside of the text ofC.

l: LINE; w: WORD
...
l := next_paragraph.line (3)
w := l.second_word
w.set_font(Bold)

Argument rule VUAR

An export-valid call of target typeST and featurefname
appearing in a classC where it denotes a featuresf is argument-
valid if and only if it satisfies the following conditions:
1 • The number of actual arguments is the same as the number of

formal arguments declared forsf.

2 • Every actual argument of the call iscompatiblewith the
corresponding formal argument ofsf.

Condition2 is the fundamental type rule on argument passing, which
allowed thediscussion of direct reattachment to treatAssignmentand
actual-formal association in the same way. An expression iscompatible
with an entity if its type either conforms or converts to the entity’s type.

→TheSinSTandsfisfor
“static”. See“Descen-
dant Argument rule”,
page 667.

← Page“ROLE OF
REATTACHMENT
OPERATIONS”, 22.2,
page 588.

← Page367.
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A call to a feature with no arguments trivially satisfies the Argument rule
if it doesn’t include anyActuals. As noted at the beginning of this chapter,
it’s syntactically illegal to write a call asf () or x.f (); either the feature has
formal arguments and you must specify the correspondingActuals in
parentheses, or it doesn’t and you just don’t include anyActuals list.

A consequence of the Arguments rule is that Eiffel doesn’t directly
allow a routine to be called with a variable numbers of arguments. But
there’s an easy way to achieve this purpose: simply give the routine a
formal argument of a tuple type. With

a corresponding call may have any number of arguments greater than one
as long as the first is aSTRING(representing a format). Clients may call it as

whatever the types ofint, re, str, as long as the routine body handles
them properly.

Target validity and Void-Safe Eiffel

The last component of Class-Level validity guarantees that a callx.f (…) can
never fail at run time becausex turned out to be attached to a void reference:

Another way of expressing this observation is to note that an unqualified call
g (…) is always the result of a qualified callx.f (…) (or of an original root
call to f, startingasystem), wheref, directly or indirectly, callsg unqualified
on the same targetx that was used forf; thatx cannot have been void since
the call tof would then never have started in the first place. Put yet another
way, the unqualified call is generally equivalent toCurrent .g (…) where
Current , representing the current object, is never void.

print_formated(values: TUPLE[STRING])

print_formatted(some_format, int, re, str)

Target rule VUTA

An Object_callis target-valid if and only if either:
1 • It is unqualified.

2 • Its target is anattached expression.

Unqualified calls (case1) are always target-valid since they are applied to
the current object, which by construction is not void.

←“Systemexecution”,
page 114.
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Combining the rules

Class-Level validity is the combination of the previous three constraints,
and is the basic validity rule for calls:

The last requirement, target validity, may raise issues for older Eiffel
systems not yet checked for this property. The Standard, for that reason,
allows compilers to offer a special tolerance, with the associated risk of
run-time failure, as a temporary measure to facilitate transition:

Bla bla bla ==================

23.11 INTRODUCTION TO CALL SEMANTICS

Let us now examine the semantics of calls. This section and the next few
discuss the concepts; the formal rules are collected at theend.

It will suffice to consider as working example a qualifiedCall

For the target expressionx to be “attached”, in case2, means that the
program text guarantees — statically, that is to say through rules enforced
by compilers — thatx will never be void at run time. This may be because
x is an entity declared as attached (so that the validity rules ensure it can
never be attached a void value) or because the context of the call precludes
voidness, as in ifx /= Void then x.f (…) end for a local variablex. The
precisedefinition will cover all these cases.

Class-Level Call rule VUCC

A call of target typeST is class-valid if and only if it is export-
valid, argument-valid andtarget-valid.

Void-Unsafe
A language processing tool may, as a temporary migration facility,
provide an option that waives thetarget validity requirement in
classvalidity. Systems processed under such an option arevoid-
unsafe.

Void-unsafe systems are not valid Eiffel systems. Since void safety was not
enforced by previous versions of Eiffel, compilers may need, all the same,
to provide an option that temporarily lifts this requirement. Including the
notion of “void-unsafe” in the language definition enforces a consistent
way for various compilers to provide this transition facility.

target.fname(y1, …, yn)

→ “PRECISE CALL
SEMANTICS”,  23.17,
page 652.
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wheretarget is an expression,fnameis a feature name of the appropriate
class, and theyi are expressions. We may further assume thattargetis either
aParenthesizedexpression or a singleUnqualified_call, in other words that
theCall is not a multi-dot of the forma.b.c … .fname(…).

Concentrating on this example simplifies the discussion but doesn’t lose
any generality:

• By not considering multi-dot expressions we simply understand a multi-
dot call as a succession of single-dot calls, as in theabove call to
set_font. The formal semantic definition will justify this equivalence.

• We alreadynoted that infix, prefix and bracket expressions always have
an Equivalent Dot Form.

• If there are no arguments, we simply consider thatn is zero.

• Lastly, what of unqualified callsfname(y1 …, yn)? We’ll also be able to
handle them as a special case of qualified calls thanks to the notion of
current objectas discussed below.

We will also assume, on the basis of the preceding discussion of Void-Safe
Eiffel, that at the time of executiontarget will not be void: either it is
expanded, directly denoting an object, or it is a reference attached to an
object. This is a universal requirement on call targets; if you want a feature
to work on a void value for one of its operandsx — definitely a useful
possibility in some cases — you must treatx as an argument, not the target.
You can only usex as target if its static type is an attached. Remember that
this is not necessarily the declared typeT of x: if T is not attached you can
use theObject_test

This discussion leads to our first semantic definition for calls:

“Current object” has only been defined informally so far and its precise
definition isforthcoming. The definitions, however, avoid circularity.

if  x /= Void then
x.f (args)

-- The static type of this occurrence ofx is attachedT
else

… No calls with targetx permitted here…
end

Target Object
Thetarget object of an execution of anObject_call is:
1 • If the call isqualified: the objectattached to itstarget.

2 • If it is unqualified: the current object.

← [3] , page633.

← “OPERATOR AND
BRACKET FORMS”,
23.5, page 624.

→ “Curr ent object,
currentroutine”, page
649.



FEATURE CALL §23.12638
The notion of target object is used in all the semantic specifications for calls
in the rest of this chapter.

In the qualified case (case1) you will use, to obtain the target’s value,
the rules of expression semantics. They yield the target object itself for an
expanded type, and for a reference type a reference attached to that object.

The validity rules, as noted, prevent a void reference. For compilers that
support an option that doesn’t enforce void-safety requirements, we
provide an exception type anyway:

23.12 DYNAMIC BINDING

So we want to execute or evaluatetarget.fname(args) at a certain instant
of system execution, on a non-voidtarget.

"Execute" for an instruction, "evaluate" for an expression. The rest of the
discussion uses the first of these terms for simplicity, except when the context
implies an expression.

Assumed to be non-void,target_valueis attached to a target objectOD. OD
is a direct instance of some typeDT, of base classD. D (the generating class
of OD) must be effective: otherwiseDT could not have any direct instance.

The expressiontarget_valuehas a certain typeST, of base classS.
Recall thatSTis also called — when we need more precision — thestatic
type oftarget, andDT its dynamic type at the time the call is executed. The
static type is obvious from the software text and is fixed for any occurrence
of target in that text; polymorphism means that the dynamic type may
change in successive executions of the call, as a result of reattachments.

The typing constraintsimply thatDT will always conform toST, and
hence thatD is a descendant ofS. The validity rules just seen imply that the
feature of the call,fname, must be the final name inS of a feature ofS,
available to the class which includes the call. Letsf be that feature.

Actually, as you guessed, we couldn’t care less aboutsf. Usingsf for the
call would be committing the gravest possible crime in object technology:
static binding. What matters is not the type oftarget (what was declared
in the software text) but the type of the object attached totarget_value
(what is actually found at run time). Using that type,DT, to determine the
appropriate feature, yields the appropriate policy:dynamic binding.

Failed target evaluation of a void-unsafe system

In the execution of an (invalid) system compiled invoid-unsafe
mode through a language processing tool offering such a migration
option, an attempt to execute a calltriggers, if it evaluates the target
to a void reference, anexceptionof typeVOID_TARGET.

TheD in the type and
class names stands for
"dynamic", theS for
"static".

"Generating class":
19.2, page 506.;
“Dynamic type”, page
606; “Type of an
expression”,page783;
“POLYMORPHISM”,
22.11, page 606

← “Reattachmentprin-
ciple”,  page 599.
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The feature to be used,df, is the version ofsf that applies toD and hence
to DT. The two features will be different ifDT or some intermediate class
has redefinedsf. The purpose of such a redefinition is precisely to ensure
that the feature performs for instances ofDT in a way that differs from its
default behavior for instances ofST. Not using the redefined version would
mean renouncing the power of the inheritance mechanism.

The word "version", as used here, has a precise meaning, defined as part of
inheritance. Every feature of a class has a single “dynamicbindingversion”
in any descendant of that class; that version is the result of applying any
redefinition, undefinition or effecting that may have occurred since the
original introduction of the feature. The definition takes into account the case
of repeated inheritance, for which the Select subclause removes any
ambiguity that could be caused by conflicting redefinitions on different
inheritance paths, or by the replication of an attribute.

The following semantic definition captures dynamic binding:

Dynamic feature of a call
Consider an execution of a callof featurefnameandtargetobject
O. Let STbe itstarget type andDT the type ofO. Thedynamic
feature of the call is thedynamicbinding version inDT of the
feature of namefname in ST.

Behind the soundness of this definition stands a significant part of the
validity machinery of the language:

• Therules on reattachment imply thatDT conforms toST.
• The Export rule imply that fname is the name of a feature ofST

(meaning a feature of the base class ofST).
• As a consequence, this feature has a version inDT; it might have several,

but the definition of “dynamic binding version” removes any ambiguity.
Combining the last two semantic definitions enables the rest of the
semantic discussion to take for granted, for any execution of a qualified
call, that we know both the target object and the feature to execute. In other
words, we’ve taken care of the two key parts ofObject_callsemantics,
although we still have to integrate a few details and special cases.

← “Dynamic binding
version”,  page 468.

← “Reattachmentprin-
ciple”,  page 599.

← “Export rule”, page
632.
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23.13 THE IMPORTANCE OF BEING DYNAMIC

Dynamic binding is not just a useful convention but a condition of
correctness. Every qualified call to an exported routine of a class must
preserve its invariant, so as never to produce an inconsistent object — one
that would not satisfy the invariant of its own generating class. This means
thatsf must preserve the invariantSI of S, anddf the invariantDI of D (a
possiblystrengthened form ofSI). But there is of course no requirement
that sf preserveDI; in fact, the designer ofS usually did not even know
about classD, which may have be written much later by someone else.
Static binding could then apply to an object,OD, a feature,sf, which does
not preserve the invariant of the generating class — the ultimate disaster in
the execution of a software system.

Dynamic binding, then, is the only meaningful policy. In some cases, of
course,sfanddf are the same feature because no redefinition has occurred
betweenSandD, or simply becauseSandD are the same class. Then static
and dynamic binding trivially have the same semantics. A compiler or
other language processing tool which is able to detect such situations
through careful analysis of a system’s source text use this insight to
generate slightly more efficient object code. This is perfectly acceptable as
long as the system’s run-time behavior implements the semantics of
dynamic binding.

Beyond its theoretical necessity, dynamic binding plays an essential
role in the Eiffel approach to software structuring. It means that clients of
a number of classes providing alternative implementations of a certain
facility can let the mechanisms of Eiffel execution select the appropriate
implementation automatically, based on the form of each polymorphic
entity at the time of execution.

← As required by the
definition of“Class
consistency”,  page
247.

← As implied by the
definition of“Unfolded
form of an assertion”,
page 287.
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As a typical example, assume a classCUSTOMERwith a procedureinvoice
used to bill customers. Heirs CHARGE_CUSTOMER and
CASH_CUSTOMERmay redefine this procedure in two different ways to
account for different forms of invoicing. Then aVariable c of type
CUSTOMERmay be attached, at some run-time instant, to an instance of
CHARGE_CUSTOMER or CASH_CUSTOMER. A call of the form

will, thanks to dynamic binding, be treated appropriately in each case.

This is a great advantage for the authors of client classes containing
such calls, since they do not need to test explicitly for every possible case
(charge customer, cash customer), and may integrate the introduction of a
new case — such as check customers — at minimal change in their classes.

23.14 ONCE ROUTINES

We know the target of the call is not void, and we know (through dynamic
binding) what feature was really meant. So the next thing to do is to execute
the associated routine body, right? Wrong. The routine might be aonce
routine, designed to be executed only once, or once in a while.

Once basics

As you will remember, aRoutine_bodymay start (other thandeferred and
external cases) not only withdo but also with the keywordonce, possibly
followed by one or more “once keys” in parentheses as in
once("THREAD").

In the basic case without once keys, this means that you want the
routine’s body to be executed at most once in the entire system execution.
The first time — if at all — someone calls the routine, its body will be
executed, with the actual arguments given if any; if it’s a function, it will
return its result normally. Any subsequent call, however, will not cause any
new execution of the routine body or initialization of local variables; it will
return immediately to the caller, giving as result — if the routine is a
function — the value recomputed by the first call, whether an object (if the
result type is expanded) or an object reference.

A constraint on once functions was introduced as part of theFeature
Declarationrule (condition5): if the enclosing class is generic, the result type
may not be one of the formalgenericparameters. This is necessary for the
function to provide a consistent result: since the first client that calls the
function will determine the result of all later calls, the result type must be
meaningful for all clients; but different clients may use different actual
generic parameters for the class. The formal parameter, which stands for any
possible actual generic parameter, would represent incompatible types.

c.invoice

← “ROUTINE
BODY”, 8.5,page222.

← Page162.
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Once uses

TheOncemechanism is a versatile tool allowing flexible initialization and
access to shared information in an O-O environment. In particular:

• Smart initialization : to make sure that a library works on a properly
initialized setup, write the initialization procedure as aOnceand include
acall to it at thebeginningofeveryexternally callable routineof the library.

The alternative would be to require clients to take care of the setup
themselves by calling an initialization procedure;. Because this is error-
prone, you’ll want to check in the library itself that the initialization has been
done; but then you might just as well take care of it silently and avoid
bothering clients. In any case, you need a way to find out if initialization has
indeed been done, typically through a flag — which must also have been
initialized, only pushing the problem further. Once procedures provide a
general solution.

• Shared objects: To let various components of a system share an object,
represent it as a once function that creates the object. Clients will just
“call” that function, although in all cases but the first such a call just
returns a reference to the object created the first time around.

In this last case, the scheme is a common one in Eiffel programming:

This declaration may for example appear in a service class inherited by the
affected clients.

Predefined once keys

What exactly does “once” mean? By default, the semantics is to execute the
routine body once over every execution of a system. By using once keys,
however, you may exert finer control, specifying an execution every once
in a specific while. For example by declaring a routine as

shared_object: SOME_REFERENCE_TYPE
-- A single object useful to several clients

once
… ; create Result

end

r: SOME_TYPE
-- A single object useful to several clients

once ("OBJECT")
…

end
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you specify that the body will be executed the first time it is called onany
specific instanceof the class. This provides welcome flexibility. Assume
for example that some objects have associated information, much bigger
than the object itself and needed only in certain cases. This could be
(among many other examples) the list of all previous states of an object
stored in a database. It’s not something that you want to load by default into
memory with every object that you retrieve from the database; but it should
be easy to access when you need it. The following function does the job
smoothly and (for the programmer) effortlessly:

Traditional programming techniques — using flags to check whether the
function has been called — would be quite cumbersome here, especially if
you have a need for several such functions.

The following once keys have a preset meaning:

"PROCESS" is the default, equivalent to not specifying a once key.

Further once tuning

For even more flexibility, you may define your own meaning of “while” in
“once in a while”. You’ll do this by choosing as once key an arbitrary
string, beyond the three possibilities listed above. You can take advantage
of this possibility in two ways.

First, you can control the meaning from outside of the Eiffel text, by
defining it in theonceclause of the Ace file. The recommended convention
in this case is to use a once key of the form$KEYNAME, using the dollar
sign that serves in some scripting languages to denote the value of a
variable. The Ace specification can set the key to mean, for example,
THREAD in some executions andPROCESSin others, depending for
example on the amount of multi-threading supported.

In the Eiffel text itself, you can go further by deciding when once is
enough and when you want more of it. More precisely you mayrefresh a
once key; this means that the next call of any once routine that lists it as one

history: ARRAY[like Current )
-- A single object useful to several clients

once ("OBJECT")
create Result (…)

… Retrieve previous values and fillResultwith them…
end

"OBJECT" -- Once for each instance
"THREAD" -- Once per execution of a thread
"PROCESS" -- Once per execution of a process

→ “ONCE CON-
TROL”,  B.11, page
1033.
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of its once keys will execute its body. To refresh keys, classANYhas a
featureoncesof type ONCE_MANAGER(a KernelLibrary class) which
you can use for such calls as

You can also queryonces.nonfresh_keys, returning an array of strings, to
find out what keys have been exercised by at most one function.

A possible way to implement featureoncesin classANYis to make it a once
function itself.

These are clearly advanced techniques, but they can help considerably in
the building of sophisticated systems.

Once routine semantics

In defining the semantics of once routines we will rely on the following
notion whose meaning follows directly from the preceding discussion:

Note thateverycall started so far has to satisfyanyof the conditions listed.
Sor is fresh for example if:

onces.refresh("SOME_KEY")
onces.refresh_some(["SOME_KEY", "OTHER_KEY"])
onces.refresh_all
onces.refresh_all_except(["SOME_KEY", "OTHER_KEY"])

Freshness of a once routine call
During execution, a call whose feature is aonceroutiner is fresh
if and only if every feature call started so far satisfies any of the
following conditions:
1 • It did not user asdynamic feature.

2 • It was in a different thread, andr has the once key"THREAD"
or no once key.

3 • Its target was not the current object, andr has the once key
"OBJECT".

4 • After it was started, a call was executed to one of the
refreshing features ofoncesfrom ANY, including among the
keys to be refreshed at least one of the once keys ofr.

Case2 indicates that “once per thread” is the default in the absence of an
explicit once key

→ONCE_MANAGER,
A.6.29, page 1010.
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• It hasn’t been called at all.

• It has been called on different objects, and is declared
once("OBJECT").

• It’s declaredonce("SOME_KEY") and there has been, since the last
applicable execution ofr, a callonces.refresh("SOME_KEY").

An applicable call — for example, with the once key"OBJECT", a call on
the same object — makesr unfresh again, since the rule’s conditions have
to apply to every call started so far.

The callonces.refresh_all is understood to refresh all once routines,
including those without an explicit once key.

Also note that the condition applies to callsstartedso far; so if a once
routine is directly or indirectly recursive, its self-calls will not execute the
body (in the absence of an intervening explicit refresh) and, for a function,
they will return theResult as computed so far.

From these observations we may define the semantics of a call to a once
routine. For fresh calls a once routine behaves like a non-once routine, and
the rule correspondingly refers to the Non-Once Call Routine Execution
rule appearinglater in this chapter:

Latest applicable target and result of a non-fresh call
Thelatest applicable targetof a non-fresh call to aonceroutine
df to atargetobjectO is the last value to which it wasattached
in the call todf most recently started on:
1 • If df has the once key"OBJECT": O.

2 • Otherwise, ifdf has the once key"THREAD" or no once key:
any target in the current thread.

3 • Otherwise: any target in any thread.

If df is a function, thelatest applicable resultof the call is the
last value returned by a fresh call using as target object its latest
applicable target.

→ “Non-Once Rou-
tine ExecutionSeman-
tics”,  page 652.
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The Once Routine Execution Semantics rule describes the effect of
executing aCall once we know its run-time featuredf, its target objectO
and its argumentsarg_values. For the full context, we need the general
semantics rule for calls, which comes at the end of this chapter and, in the
once case, relies on the above rule to specify the effect of the call once its
components have been determined.

Once Routine Execution Semantics
The effect of executing aonce routinedf on atarget objectO is:
1 • If the call is fresh: that of a non-once call made of the same

elements, as determined byNon-once Routine Execution
Semantics.

2 • If the call is not fresh and the last execution off on thelatest
applicabletarget triggered anexception: to trigger again an
identical exception. The remaining cases do not then apply.

3 • If the call is not fresh anddf is a procedure: no further effect.

4 • If the call is not fresh anddf is a function: to attach the local
variableResult to thelatest applicable result of the call.

Case2 is known as “once an once exception, always a once exception”. If
a call to a once routine yields an exception, then all subsequent calls for the
same applicable target, which would normally yield no further effect (for a
procedure, case3) or return the same value (for a function, case4) should
follow the same general idea and, by re-triggering the exception, repeatedly
tell the client — if the client is repeatedly asking — that the requested
effect or value is impossible to provide.

There is a little subtlety in the definition of “latest applicable target” as
used in case4. For a once function that has already been evaluated (is not
fresh), the specification does not state that subsequent calls return the result
of the first, but that they yield the value of the predefined entityResult.
Usually this is the same, since the first call returned its value through
Result. But if the function isrecursive, a new call may start before the first
one has terminated, so the “result of the first call” would not be a
meaningful notion. The specification states that in this case the recursive
call will return whatever value the first call has obtained so far forResult
(starting with the default initialization). A recursive once function is a bit
bizarre, and of little apparent use, but no validity constraint disallows it,
and the semantics must cover all valid cases.

Had you detected
this case?
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23.15 ATTRIBUTES AND EXTERNALS

We may now concentrate on the case of a qualifiedObject_callwhose
feature is not a once routine. From the discussion of features and routines,
the dynamic feature of the call, if not a “once”, may be one of:

S1 •An attribute

S2 •An external routine (whose implementation is outside the system’s
direct reach, being written in another language).

S3 •A non-once, non-external routine.

The syntax for Routine_bodyincludes a fifth case: a routine with a
deferredbody. This case doesn’t apply here, however, since as noted above
D has a direct instance and hence must be effective.

In caseS1, df is an attribute; the objectOD has a field corresponding to
df. Then the call is an expression, whose value is that field. The sole effect
of the call is to return that value.

In caseS2, df is anexternal routine; execution of the call will mean
passing the values of the actual arguments to that external routine, waiting
for it to complete its execution, and obtaining its result if it is a function.
The semantics of argument passing and of routine execution — which may
depend on the conventions of the routine’s native language — are
examined in thechapter on interfaces with other languages.

Note that the target object isnot passed by default to an external routine. If
it’s needed for the computation, you should pass it as actual argument to the
routine, which should include a corresponding formal.

These two cases will be integrated in the final call semantics rule. For the
moment we may concentrate on the remaining one.

23.16 THE MACHINERY OF EXECUTING CALLS

We’ll investigate the effect of a non-once, non-external routine (S3) of
actual argumentsargs, target objectO and dynamic featuredf. This will
also lead us to the semantic notions of current object and current routine.

Scheme for a routine call

The semantic rule will specify the effect of the call as the result of applying
a sequence of steps. This doesn’t mean that the code must execute these
exact steps, only that its effect must be the same as if it did. Somewhat
informally and ignoring assertion monitoring, the steps are:

← Chapters5 and8.

← Page222.

→ Chapter31.

→ “General Call
Semantics”,  page 653.
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1 • Using the semantics of direct reattachment, attach every formal
argument ofdf to the value of the corresponding actual fromargs.

2 • If df has any local variables, save their current values if any call todf has
been started but not yet terminated; then initialize each local variable to
the default value of its type.

3 • If df is a function, initialize the predefined entityResultto the default
value for the function’s return type.

4 • Execute theCompound of df’s Internal body, according to the
conventions described next.

5 • If df is a function, the call is an expression. The value returned for that
expression is the value ofResult after the previous step.

6 • If the values of local variables have been saved under2, restore the
variables to these earlier values.

TheArgumentrule ensure that in step1 the actual arguments (if any) match
the formals in number, and that each actual is compatible with (conforms
or converts to) the corresponding formal.

In step 2, the default initialization values are the same as for the
initialization of attributes in aCreation instruction.

The saving oflocal variables under2, and their restoring under6, are
necessary because routines may be directly or indirectly recursive: the
body ofdf may contain a call to another routine, and that routine may turn
out to bedf, or it may recursively calldf. As a result, step4 may start the
whole process again on the same routine. The saving and restoring ensure
that each incarnation ofdf recovers its local variables when it is resumed
after a recursive call.

Current object and routine

To interpret theCompoundof a routine’sInternalbody in step4, a little
mystery remains. Assume the text of routinedf, in class D, has the
following simple form:

fname
do

some_proc
x.other_proc

end

← “SEMANTICS OF
REATTACHMENT”,
22.7, page 593.

← Page634.

The local variables
includeResult:
“LOCAL VARIABLES
AND RESULT”,  8.6,
page 225.

The feature name might
be something other
thanfname as a result
of renaming.
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wherex is an attribute ofD, some_proca procedure ofD, andother_proc
is a procedure applicable tox. Step4 — the core of the call’s execution —
consists of executing the two instructions of theCompound.

But what exactly do they mean? What doesx represent? To what object
should the computation applysome_proc?

To answer these questions we must put ourselves in the global context
of system execution and remember how anything ever gets executed.
Quoting from a veryearly part of this book:

In all but trivial cases, the root’s creation procedure will create more
objects and execute more calls. This extremely simple semantic definition
of system execution has as its immediate consequence to yield a precise
definition of thecurrent objectand current routine. At any time during
execution, the current object is the object to which the latest non-completed
routine call applies, and the current routinecr is the feature of that call:

Clause4addresses “constructs whose semantics does not involve a call” (rather
than “constructs other than a call”). This is because the semantics of a construct
that is not a calls may involve a call; this is the case with anExpression, whose
semantics is defined through an Equivalent Dot Form denoting a call.

To execute (or ‘‘run’’) asystem on amachine means to cause the
machine to apply a creation instruction to the system’s root class.

Current object, current routine

At any time during the execution of a system there is acurrent
object CO and acurrent routine cr defined as follows:
1 • At the start of the execution:COis therootobject andcr is the

root procedure.

2 • If cr executes aqualifiedcall: the call’stargetobject becomes
the new current object, and itsdynamicfeature becomes the
new current routine. When the qualified call terminates, the
earlier current object and routine resume their roles.

3 • If cr executes anunqualifiedcall: the current object remains
the same, and thedynamicfeature of the call becomes the
current routine for the duration of the call as in case2.

4 • If cr starts executing any construct whose semantics does not
involve a call: the current object and current routine remain
the same.

←“Systemexecution”,
page 114.
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Note the implicit recursion in case2: to know the target object of a call
target.fname(args), we must evaluatetarget, which may itself be a call,
whose evaluation requires using the above rule recursively.

There appears to be a cycle in the definitions since this definition of current
object and current routine refers to “dynamic feature”,defined in terms of
“target object”, itselfdefined in terms of “current object”. You will note on
closer examination, however, that this is not a real problem: the definition of
target object only refers to the current object in the case of an
Unqualified_call, for which the relevantclause in the definition of current
object retains an object already known from the context.

Naming the current object

Even though the current object is at the heart of the execution machinery,
most calls in dot notation do not refer explicitly to the current object: if you
need aCall with the current object as target, you may just write it as an
Unqualified_call, which does not name its target.

For some other kinds of operation, however, you may need an explicit
notation to refer to the current object. An example is equality comparison.
Assume a function computing the distance between two points, which
might be written in a classPOINT as

The routine’s implementation may need to determine whether theother
point is in fact the same point as the current object:

To express the condition afterif you may use the predefined entityCurrent :

As noted above, anUnqualified_callsuch assome_procor x does not need
to useCurrent  explicitly as its target, although you may if you want to:

distancealias "|–|" (other: POINT): REAL
-- Distance of current point toother.

do
…

end

if then
Result:= “… Normal distance computation…”

end
-- OtherwiseResult will be zero

if then …

Current .some_proc
Current .x

← Page639.

← Page637.

← Clause2, page 637.

← Clause3, page 649.

“other is not the same as the current point”

Current  /= other
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with the only difference that, under assertion monitoring, qualified calls
such as these cause evaluation of the invariant; unqualified calls don’t.

It may also be convenient to useCurrent in connection with binary
features. Thanks to the infix alias"|–|", you may use the abovedistance
function to express the distance of two pointsp1 andp2 asp1 |–| p2. To
express in a similar form the distance top2of the current point, you may write

but even this use ofCurrent is not strictly necessary, since there’s always
an identifier name, heredistance, for such a feature, so that you may also
use the plainUnqualified_call

Similarly, if a class contains a unary functionnegatedalias "–", you may
express the negation of the current object as– Current as well as just
negated.

Current , as indicated by its place in the syntax as one of the choices for
the constructRead_only, is aread-onlyentity: you can’t assign to it, or use
it at the target of a creation instruction. A notation such as

is permitted only ifq is a query of the enclosing class and it has an
associatedassignerprocedure, sayp. Then[1] is simply a shorthand for
an unqualified call

If q has arguments,Current .q (a1,a2) := v is an abbreviation for
p (a1,a2,v). In either case, the instruction can’t changeCurrent .

The following rule gives the precise meaning ofCurrent ,
distinguishing in particular between reference and expanded cases:

Current |–| p2

distance(p2)

Current .q := v [4]

p (v) [5]

Current Semantics

The value of the predefined entityCurrent at any time during
execution is thecurrentobject if thecurrentroutine belongs to an
expanded class, and a reference to the current object otherwise.

← “EXPRESSIONS
AND ENTITIES”,
19.8, page 512.

← “ASSIGNER
CALL”,  22.12, page
607.
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23.17 PRECISE CALL SEMANTICS

We can now collect into precise rules the understanding of call semantics
developed over the preceding sections. The rule for aNon_object_call
appeared at thebeginning of this chapter, so we only need to consider the
case of anObject_call. For once routines we may refer to theearlier rule.

Rule for non-once routines

Assume we have anObject_calland, at a particular stage of execution, we
know the target object, the dynamic feature — which is not a “once” — and
the argument values. Here then is the effect:

General call semantics

We have semantics for executing routines, both once (theearlier rule) and
non-once (the last rule). To have the full semantics of calls we need a more
general rule, since:

• Both of the previous rules assumed that we know the target object, the
dynamic feature, and argument values. But the form of a qualified call,
target.fname(args), doesn’t give us that information; the execution
must obtain the target object fromtarget, the dynamic feature from that
object andfname, and the argument values fromargs. We’ve actually
given ourselvesthe rulesto do this; but to make the semantics precise
we need to specify theorder in which to apply these rules. We’ll require
that the target be evaluated first, giving us the dynamic feature as a
consequence, and then the arguments in the order listed.

• The rules covered non-external routines only; we must include the
attributes and external routines, two cases discussedinformally so far.

• Execution of the feature body (step2 of the last rule) may use the formal
arguments. We need to specify how to attach them to the actuals’ values.

Non-Once Routine Execution Semantics

The effect of executing a non-once routinedf on atargetobjectO
is the effect of the following sequence of steps:
1 • If df has any local variables, includingResult if df is a

function, save their current values if any call todf has been
started but not yet terminated.

2 • Execute the body ofdf.

3 • If the values of any local variables have been saved in step1,
restore the variables to their earlier values.

← “Non-Object Call
Semantics”,page631.;
“Once Routine Execu-
tion Semantics”,  page
646

← “Once RoutineExe-
cution Semantics”,
page 646.

← “Target Object”,
page 637; “Dynamic
feature of a call”,
page 639.

← “ATTRIBUTES
AND EXTERNALS”,
23.15, page 647
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• Finally, the scheme does not yet include assertion monitoring.

The following rule fills these gaps:

For steps1 and3, the “applicable definitions” are those of Target Object
and Dynamic Feature, as recalled above.

General Call Semantics
The effect of anObject_callof featuresf is, in the absence of any
exception, the effect of the following sequence of steps:
1 • Determine thetargetobjectO through the applicable definition.
2 • AttachCurrent  to O.
3 • Determine thedynamic featuredf of the call through the

applicable definition.
4 • For every actual argumenta, if any, in the order listed: obtain

thevaluev of a; then if thetype ofa converts to the type of the
corresponding formal insf, replacev by the result of the
applicable conversion. Letarg_values be the resulting
sequence of all suchv.

5 • Attach every formal argument ofdf to the corresponding
element ofarg_valuesby applying the Reattachment Semantics
rule.

6 • If the call is qualified and class invariant monitoring is on,
evaluate the class invariant ofO’s base type onO.

7 • If precondition monitoring is on, evaluate the precondition of
df .

8 • If df is not an attribute, not aonceroutine and not external,
applyNon-Once Routine Execution Semantics toO anddf .

9 • If df is a once routine, apply theOnceRoutineExecution
Semantics toO anddf.

10 •If df is an external routine, execute that routine on the actual
arguments given, if any, according to the rules of the language
in which it is written.

11 •If df is a self-initializing attribute and has not yet been
initialized, initialize it through theDefault Initialization rule.

12 •If the call isqualified and class invariant monitoring is on,
evaluate the class invariant ofO’s base type onO.

13 •If postcondition monitoring is on, evaluate the postcondition
of df.

An exception occurring during any of these steps causes the
execution to skip the remaining parts of this process and instead
handle the exception according to theException Semantics rule.

← Page637.

← “Reattachment
Semantics”,  page 600.
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There is considerable implicit recursion in this definition: the target and the
argument are expressions, and in many cases they will be calls, or operator
expressions whose semantics is also defined as call semantics. So in steps1,
3 and 4 we are potentially relying on the semantic rules of this chapter,
including the above rule itself. The rule for once routines relies, for fresh
calls, on the rule for non-once routines, so step9 again causes recursion.

Step4 specifies a somewhat subtle but important property: the precedence,
statically, of convertibility over conformance. We know that every actual
argument must becompatible withthe corresponding formal: conform or
convert to it. System validity will ensure that this requirement applies both
to the “static” version of the featuredf and to the “dynamic” versionsf.
Remember thatsf is the feature named known from the text of the call: with
x.f (e1), if x is of typeS, sf is the feature of namef in S; as a result of
dynamic binding, ifx at execution time is attached to an object of a
descendant typeD, thendf is the version inD.

But while we want the typeE of e1 to be compatible with the formal
arguments to both thesf anddf, we want it, for every one of them,in the
same variant: either conformance in both cases, or convertibility in both
cases. AssumeE conforms toT; then it cannot also convert to it. Now
assume thatE does not conform toU, the new formal argument type inD,
but by some twist of fateE actually convert toU. Do we want to accept the
call as descendant-argument-valid forD? System validity tells us “no”.
Accepting this would be confusing for the author ofC, who does not realize
that a conversion might be going on (since there’s none in the case of the
original f).

In addition, although this is not the main concern, the compiler writer would
face the similar problem of not knowing whether to generate conversion code
or not for the call.

So step4 requires that we take care of any conversion on the basis of the
argument types for thestatic featuresf; only then, in step5, do we attach the
values of actuals to formals. Note that the types in these attachments may still
be different, but no further conversion will be involved, only conformance.

S
Effect of
redefinition on
a client call

D

Conforms

f (a: T)

f (a: U)

C x: S
x.f (e1)-- (The “sf” version)

-- (The “df” version)

e1: E

← “Conversion princi-
ple”,  page 408.
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23.18 CALLS AS EXPRESSIONS

The two uses of aCall are, as we know, as anInstructionor as an
Expression, specifically theBasic_expressionvariant. If f is a query
(attribute or routine), a valid call

or any of the other applicable variants — unqualified, non-object, multi-dot
— is an expression, and can be included in a larger expression, such as
a + x.f (args) + b.

For the instruction case we’ve seen all we need about calls. But to
understand an expression we must also know itstypeand itsvalue; these are
defined for every kind of expression and we must now — as the final part of
specifying calls — say what they are for a call used as expression.

First, the type. To make this concept useful in practice we must carry
type analysis across class boundaries by defining the type of a callwith
respect toa certain type. Assume thatx, in a classC, is of typeD [U],
whereD [G] is a generic class with a queryf of typeG. The Call Expression
Type definition given below will tell us that the type ofx.f is the type off
with respect tothe type ofx, that is to say with respect toD [U]. Now f, a
query ofD, is also a query ofD [U] thanks to the definition of “featureof
a type” in the discussion of genericity. Its type as defined inD is G, which
in the context ofD [U] we must understand, through the Generic Type
Adaptation rule, as representing the associated actual generic parameter,U.

The following rule determines the type of a call:

In case2, the recursion applies toa; the type of the part after the dot,e, is
determined through thegeneral Expression Type definition — itself of
course dependent,in severalof its clauses, on the type of call expressions,
causing more recursion.

x.f (args)

Type of aCall used as expression
Consider a call denoting an expression. Itstype with respect to a
typeCT of base classC is:
1 • For anunqualified call, its featuref being aquery ofCT: the

result type of theversion off in C, adapted through thegeneric
substitution ofCT.

2 • For aqualified calla.eof Targeta: (recursively) thetypeof e
with respect to the type ofa.

3 • ForaNon_object_call: (recursively) the typeof itsimportedform.

← “Call Use rule”,
page 623. Instruction:
page228; Expression:
page761.

→ “Type of an expres-
sion”,  page 783 (see
among others its clauses
6and11).
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Finally the semantics. If a call is used as an expression its execution
will, in addition to any other actions, return a result:

For aNon_object_call, whose semantics isdefined in terms of the imported
form, this definition also applies, as a consequence, to the execution of the
imported form.

Functions should not produce any durable change to their environment;
their sole role should be to return their result, and any computation they
perform should be auxiliary to that goal. You may useonly postcondition
clauses to turn this methodological advice into an enforceable rule.

This book often refers, especially in thediscussion of expressions, to the
value of a call used as an expression. Here is what this precisely means:

Call Result

Consider aCall c whosefeature is aquery. An execution ofc
according to theGeneralCall Semantics yields acall result
defined as follows, whereO is thetargetobject determined at step
1 of the rule anddf  thedynamic feature determined at step3:
1 • If df is a non-external, non-oncefunction: the value attached

to the local variableResult of df at the end of step2 of Non-
Once Routine Execution Semantics.

2 • If df is a once function: the value attached toResultas a result
of the application ofOnce Routine Execution Semantics.

3 • If df is an attribute: the correspondingfield in O.

4 • If df is an external function: the result returned by the function
according to the external language’s rule.

Value of a call expression

The value of a Call c used as an expression is, at any run-time
moment, theresult of executingc.

← “Non-Object Call
Semantics”,  page 631

→ Chapter28.
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Eradicating void calls
24.1 OVERVIEW

It has long been considered that this was too hard to do in practice. This
chapter shows otherwise.

The language resulting from the combination of these rules may be
calledVoid-Safe Eiffel; this name is mainly useful for comparison with
earlier versions of Eiffel which did not enjoy void safety. The language as
described in this book guarantees it, so Void-Safe Eiffel is just Eiffel.

In the object-oriented style of programming the basic unit of computation
is a qualified feature call

x.f (args)

which applies the featuref, with the given argumentsargs, to the object
attached tox. Butx can be a reference, and that reference can be void. Then
there isno object attached tox. An attempt to execute the call would fail,
triggering an exception.

If permitted to occur, void calls are a source of instability and crashes in
object-oriented programs. For other potential run-time accidents such as
type mismatches, the compilation process spots the errors and refuses to
generate executable code until they’ve all been corrected. Can we do the
same for void calls?

Eiffel indeed provides a coordinated set of techniques that guarantee the
absence of void calls at execution time. The actual rules are specific
conditions of more general validity constraints — in particular on
attachment and qualified calls — appearing elsewhere; in the following
discussion we look at them together from the viewpoint of ensuring their
common goal: precluding void calls.
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24.2 OVERALL SCHEME

The validity rules ensuring these three properties are: for calls,

24.3 THE OBJECT TEST

This leaves the more subtle case ofObject_test. Such an expression
doubles up as a declaration of a “very local” entity that is guaranteed,
within its scope, to be attached at run time to an object of a specified type.
A typical use of an object test (highlighted) is in the instruction

The value of the expression is true if and only if the expression given,
your_file.last_item, is attached to an object of typeT (and hence not
void). Evaluating the expression in addition makes it possible, within a
smallscope, to usel to denote that value. This is what makes it possible, in
the example, to execute the feature calll.some_feature_of_T: since the
object test, when true, guarantees thatl is attached to an object of typeT,
we may apply the relevant features.

Why this temporary binding of an expression to a local entity ------

The basic idea is simple. Its the combination of three rules:

• A qualified callx.f (args) is target-valid — a required part of being
plain valid — if the type ofx is attached, “Attached” is here a static
property, deduced from the declaration ofx (or, if it is a complex
expression, of its constituents).

• A reference type with a name in the usual form,T, is attached. To obtain
adetachable type — meaning thatVoid is a valid value — use?T.

• The validity rules ensure that attached types — those without a? —
deserve their name: an entity declared asx: T can never take on a void
value at execution time. In particular, you may not assign tox a
detachable value, or ifx is a formal argument to a routine you may not
call it with a detachable actual. (With a detachable target, the other way
around, you are free to use an attached or detachable source.)

if then
other_operations
l.some_feature_of_T

end

Object test
Object_test=∆ "{" Identifier":" Type"}" Expression

{ l: T}  your_file.last_item
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---- ADD EXPLANATIONS ----

An Object_testof the form{ x: T} exp, whereexp is an expression,T is a
type andx is a name different from those of all entities of the enclosing
context, is a boolean-valued expression; its value is true if and onlyexpis
attached to an instance ofT (hence, non-void). In addition, evaluating the
expression has the effect of lettingx denote that value ofexp over the
execution of a neighboring part of the text known as thescopeof the
Object_test. For example, inif { x: T} expthen c1elsec2end the scope of
theObject_testis the compound in thethen part,c1. Within c1, you may
usex as aRead_onlyentity, knowing that it has the valueexp had on
evaluation of theObject_test, that this value is of typeT, and that it cannot
be changed during the execution ofc1.

The following rules define these notions precisely.

Object-Test Local
TheObject-Test Localof anObject_testis itsIdentifiercomponent.

Object Test rule VUOT

An Object_testot of the form{ x: T} expis valid if and only if it
satisfies the following conditions:
1 •x does not have the samelower name as any feature of the

enclosing class, or any formal argument or local variable of
any enclosing feature orInline_agent, or, if ot appears in the
scope of any otherObject_test, its Object-Test Local.

2 •T is anattached type.

Condition 2 reflects the intent of anObject_test: to test whether an
expression isattachedto an instance of a given type. It would make no
sense then to use a detachable type.
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----------------------------- SEE HERE -----------------------------------

In the implicative case the expression is of the forma1 implies a2 anda1
is a semistrict term. Note that because we acceptn = 1 a simple expression
involving none of the given operators (but possibly involvingnot) is both
conjunctive and disjunctive; this is convenient for the following definition.

------------- MORE EXPLANATORY TEXT NEEDED ---------------

Conjunctive, disjunctive, implicative;
Term, semistrict term

Consider anOperator_expressione of boolean type, which after
resolution of any ambiguities throughprecedencerules can be
expressed asa1 § a2 §… §an for n≥ 1, where§represents boolean
operators and everyai, called a term, is itself a valid
Boolean_expression. Thene is:

• Conjunctive if every§ is eitherand or and then.

• Disjunctive if every§ is eitheror or or else.

• Implicative  if n = 2 and§ is implies.

A termai is semistrict if in the corresponding form it is followed
by asemistrict operator.



§24.3  THE OBJECT TEST 661
Scope of an Object-Test Local
The scope of theObject-TestLocal of anObject_testot includes
any applicable program element from the following:
1 • If ot is a semistrict term of a conjunctive expression: any

subsequent terms.

2 • If ot is a term of animplicative expression: the next term.

3 • If not ot is a semistrict term of a disjunctive expressione: any
subsequent terms.

4 • If ot is a term of a conjunctive expression serving as the
Boolean_expressionin the Then_partin a Conditional: the
correspondingCompound.

5 • If not ot is a term of adisjunctive expression serving as the
Boolean_expressionin the Then_partin a Conditional: any
subsequentThen_part andElse_clause.

6 • If not ot is a term of a disjunctive expression serving as the
Exit_condition in aLoop: theLoop_body.

7 • If ot is a term of a conjunctive expression used as
Unlabeled_assertion_clausein aPrecondition: the subsequent
components of theAttribute_or_routine.

8 • If ot is a term of a conjunctive expression used as
Unlabeled_assertion_clausein a Check: the subsequent
components of its enclosingCompound.

The definition ensures that, for anObject_test{ x: T} exp, we can rest
assured that, throughout its scope,x will never at run time have a void
value, and hence can be used as the target of a call.

Object Test semantics

The value of anObject_test{ x: T} expis true if the value ofexp
is attached to aninstance ofT, false otherwise.

In particular, ifx is void (which is possible only ifT is a detachable type),
the result will be false.
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Outside of the scope, the value is not defined. This poses no problem
since the Entity rule makes any use ofx invalid outside of its scope. Note
that within the scope, the value ofx will always — as achieved by the very
definition of scope in its various cases — be attached to an instance ofT.
This is precisely what we want. This value can never change, since an
Object-Test Local is (from the definition of entities) aread-only entity.

24.4 VOID TESTS

Object-Test Local semantics

For anObject_test{ x: T} exp, the value ofx, defined only over its
scope, is the value ofexpat the time of theObject_test’s evaluation.

Read-only void test
A read-only void test is a Boolean_expressionof one of the
formse= Void ande /= Void, wheree is aread-only entity.

Scope of a read-only void test
Thescopeof a read-onlyvoid test appearing in a class text, fore
of typeT, is thescope that theObject-TestLocalot would have if
the void test were replaced by:
1 • Fore= Void: not ({ ot: T} e).

2 • Fore /= Void: { ot: T} e.
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24.5 CERTIFIED ATTACHMENT PATTERNS

----- EXPLAIN

This is useful ifT is a detachable type, providing a simple way to generalize
the notion of scope to common schemes such asif e /= Void then …, where
we know thatecannot be void in theThen_part. Note that it is essential to
limit ourselves to read-only entities; for a variable, or an expression
involving a variable, anything could happen to the value during the
execution of the scope even ife is initially not void.

Of course one could always write anObject_testinstead, but the void
test is a common and convenient form, if only because it doesn’t require
repeating the typeT of e, so it will be important to handle it as part of the
Certified Attachment Patterns discussed next.

Certified Attachment Pattern
A Certified Attachment Pattern (orCAP) for an expressionexp
whose type isdetachable is an occurrence ofexp in one of the
following contexts:
1 •expis anObject-TestLocal and the occurrence is in itsscope.

2 •expis aread-onlyentity and the occurrence is in thescope of
a void test involvingexp.

A CAP is a scheme that has been proved, or certified by sufficiently many
competent people (or computerized proof tools), to ensure thatexp will
never have a void run-time value in the covered scope.

• The CAPs listed here are the most frequently useful and seem beyond
doubt. Here too compilers could be “smart” and find other cases making
exp.f safe. The language specification explicitly refrains, however, from
accepting such supposed compiler improvements: other than the risk of
mistake in the absence of a public discussion, this would result in some
Eiffel texts being accepted by certain compilers and rejected by others.
Instead, a compiler thatacceptsa call to a detachable target that is not
part of one of the official CAPs listed above isnon-conformant.

• The list of CAPs may grow in the future, as more analysis is applied to
actual systems, leading to the identification, and certification by human
or automatic means, of safe patterns for using targets of detachable
types.
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24.6 ATTACHED EXPRESSIONS

Attached expression
An expressionexpof typeT is attached if it satisfies any of the
following conditions:
1 •T is attached.

2 •T is expanded.

3 •exp appears in aCertified Attachment Pattern forexp.

This is the principal result of this discussion: the condition under which an
expression istarget-valid, that is to say, can be used as target of a call
because its value is guaranteed never to be void at any time of evaluation.
It is in an Expanded type’s nature to abhor a void; attached types are
devised to avoid void too; and Certified Attachment Patterns catch a
detachable variable when it is provably not detached.
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Typing-related properties
25.1 OVERVIEW

In discussing calls, the previous chapter covered syntax and semantics, but
set aside any consideration of validity – even though its semantic
definitions only apply to valid constructs. It is time now to come back to
the second horse of our troika and examine what it takes to make a call
meaningful.

Calling features, it was already noted, is the principal means of
performing computations in Eiffel. This is why the title of this chapter does
not just read "validity of calls", but "type checking", since the type safety
of a system is essentially defined by the validity of its calls. This is also
why, in an approach that places so much emphasis on helping developers
produce correct and robust software, it is crucial to ask what could go
wrong at run time with a call – and see what we can dobeforerun time to
prevent it from going wrong.

This Part does not define any new rules, only a few definitions that
facilitate discussion of type issues.

Catcall
A catcall is a run-time attempt to execute aCall, such that the
feature of the call is not applicable to thetarget of the call.

The role of the type system is to ensure that a valid system can never,
during its execution, produce a catcall.

“Cat” is an abbreviation for “Changed Availability or Type”, two
language mechanisms that, if not properly controlled by the type system,
could cause catcalls.
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Consider the basic form of a call in dot notation:

For this to be properly executed,target must be attached to an object
DO, and DO must be equipped with a feature corresponding tofname; that
feature must have a signature (types of arguments and result, if any) and a
specification (precondition and postcondition) compatible with what the
caller expects.

Not all of these requirements may be handled statically by mere analysis
of the software text. To ascertain statically that DO will always exist (that
is to say, thattargetwill never have a void value) and that the assertions will
always be satisfied, we would need theorem and program provers beyond
the reach of current software technology. For these properties, the
presentation has reluctantly settled for run-time checks which, if not
satisfied, may trigger exceptions.

For the remaining properties, however, the picture is brighter. Assuming
the object DO exists, it is a direct instance of a certain classD, and if we
have enough information about the possibleD we will know statically what
features they have. Determining the possible classes and checking that their
features match the corresponding calls will enable us to perform static type
checking. This chapter explains how to achieve this goal.

As usual, we will take an informal look first, then examine the precise
rules.

25.2 SYNTAX VARIANTS

As noted in the previous chapter, dot notation is only one possible form of
call. You may also use operator and bracket expressions, resembling
traditional mathematical and programming language notation. The
difference is just syntactical; anOperator_expression

is semantically a call havinga as its target,plusalias"+" as its feature, and
b as its single argument. The chapter on expressionsformalizes this notion
by defining, for every kind of expression, a call in dot notation with the
same validity properties and semantics: the Equivalent Dot Form.s

For simplicity, this chapter will assume that all expressions are in
Equivalent Dot Form.

target.fname (y1, ..., yn)

a + b

→ “THE EQUIVA-
LENT DOT FORM”,
28.8, page 780.
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25.3 BASIC CONCEPTS

The original notion of argument validity considered, for a callx.fname
with x of typeST, the feature of namefnamein ST. But with polymorphism
and dynamic binding we run into the possibility that we’ll call a feature
with different argument types, from a descendant. As a consequence we
must generalize the concept, making itrelative to a descendant:

DT can, as a special case, beSTitself. In that case the rule is automatically
satisfied as a consequence of theArgumentrule invoked by clause1; clause
2 is then redundant since it follows directly from the second clause of the
Argument rule, which told us that

where compatibility is conformance or convertibility. But if we now
consider a proper descendant, wheresf has been redefined into a new
featuredf, the argument types might be different; with polymorphism and
dynamic binding, we want the call to be argument-valid not only with
respect toST but also for any applicable descendantDT. Hence clause2.

Descendant Argument rule VUDA

Consider a call oftarget typeSTandfeaturefnameappearing in
a classC. Let sf be the feature offinal namefnamein ST. Let DT
be a typeconformingto ST, anddf theversion ofsf in DT. The
call is descendant-argument-valid for DT if and only if it
satisfies the following conditions:

1 • The call isargument-valid.

2 • Every actual argument conforms, after conversion to the
corresponding formal argument ofsf if applicable, to the
corresponding formal argument ofdf.

“Every actual argument of the call is compatible with the
corresponding formal argument ofsf.”

ST stands for Static Type
andDTforDynamicType.

← Page634.
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Why doesn’t that clause transpose its Argument rule counterpart from
sf to dfand just tell us that every actual argument should becompatible with
the corresponding formal fordf? The reason is that while we want
compatibility with both thesf anddf arguments we want it, for every one
of them, in the same variant: either conformance in both cases, or
convertibility in both cases. In a case like this:

the calla.f (e) in the clientC of Sis argument-valid only ifTTconforms or
converts toT, the type declared for the corresponding formal. AssumesTT
conforms toT; then itcannot also convert to it. Now assume thatTT does
not conform toU, the new formal argument type inD, but by some twist of
fateTTactually convert toU. Do we want to accept the call as descendant-
argument-valid forD? The rule tells us “no”. Accepting this would be
confusing for the author of C, who does not realize that a conversion might
be going on (since there’s none in the case of the originalf).

In addition, although this is not the main concern, the compiler writer would
face the similar problem of not knowing whether to generate conversion code
or not for the call.

So clause2 requires more than compability: it wantsconformanceafter
possible conversion to the type of the original formal argument insf. Once
a conversion, always a conversion.

25.4

Like the above validity constraint, the definition relies on further
notions to be defined next: export validity, argument validity and the
dynamic class set.

Single-level Call rule VUSC

A call of targetx is system-valid if for any elementD of the
dynamicclassset ofx it is export-valid for D anddescendant-
argument-valid for D.

S
Effect of
redefinition on
a client call

D

Conforms

f (x: T)

f (x: U)

C
a: S a.f (e)

a: TT

← “Conversion princi-
ple”,  page 408.
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Export validity will require suppliers to make the needed features
available toD; argument validity will require every actual argument to
conform to the corresponding formal argument.

The validity of a call at either level – class or system – will require both
export and argument validity. The only difference is that for class validity
you need only apply these criteria toS, the type declared for the targetx of
the call, whereas for system-level checking you will need to consider all
possible dynamic classes ofx. S

25.5 SYSTEM-LEVEL VALIDITY

Although class-level validity may at first appear sufficient, the typing
problem is in fact less trivial than the above would suggest. The reason is
polymorphism and dynamic binding, which forces us to take into account
not just the declared types of entities, but also their possible dynamic types
(their dynamic type set).

Polymorphism means that the type used to declare thetarget(Sabove)
is not the only possible type for the object DO to which the call will apply.
To see this, let us extend the context introduced above:

where the Assignment rule requiresD to be a descendant ofS. Because of
the possible polymorphism resulting from the assignment ofother to
target, the type of the object DO may now be not justS butT as well.

In other words, we need to consider not only the type oftarget as it
results from the declarations, called thestatic type if there is any
ambiguity, but also the set of all the types thattarget may assume at run-
time as a result of polymorphic attachments. This set was defined in the
discussion of polymorphism as thedynamic type setof target; a member
of that set is said to be a possibledynamic type for target.

The base classes of the possible dynamic types constitute thedynamic
class set of target.

class C feature
target: S; other D -- Dmust be a descendant of S
y: SOME_TYPE
...
routine

do
if  some_testthen target:= otherend;...

target.fname(y);
end

...
end

The Assignment rule is
on page====. Since
the classes are non-
generic, conformance
is the same relation as
"descendant of".
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In this example all types are classes, so that the dynamic type set and
dynamic class set are the same, but with generic derivation, expansion and
anchored types we will need to reintroduce the distinction between types
and classes.

What then is the actual type constraint? It still applies to a classD the
conditions defined above for class-level validity:

• D must have a feature corresponding tofname, available toC.

• That feature must have the required signature.

In a simple world we would expect any class-valid call to be system-
valid. Unfortunately this is not always the case because of two important
properties of the inheritance mechanism:

P1 •A class may override the export policies of its parents; it may for
example make secret its version of a feature which the parent exported.

P2 •A routine redefinition may replace the type of a formal argument by a
type conforming to the original. This is know as thecovariant argument
typing policy.

Although they may seem surprising at first, properties P1 and P2 are
important aspects of the typing policy. The rationale is discussed in detail
below. First, we must understand why they may have unpleasant
consequences if we limit ourselves to class-level validity checking.

25.6 VIOLATING SYSTEM VALIDITY

(If this is your first reading, you may be content with the realization that
type checking is less trivial than it appears at first, and that a systemwide
type checker will detect the non-trivial errors. You may then want to skip
the rest of this chapter.)

It is indeed not hard to put together an example where P1 prevents a
class-valid system from working properly. Similar examples relying on P2
would be almost as immediate.

The common goal of the type mechanisms and rules of the language is to
ensure that every call is both class-valid and system-valid.

Dynamic type sets and
dynamicclasssetswere
defined in22.11, page
606, and are covered
moreextensivelybelow:
first in 25.9, page 677,
and then in25.10,page
681,  for the precise
rules.

On P1, see"adapting
the export status of
inherited features",
page====. On P2, see
the informal discussion
on"typing and redecla-
ration", page====,
and the Redeclaration
rule, page====,clause
2.

25.7, page 672 below,
explains why these
properties are essential
for realistic uses of
object-oriented con-
cepts.
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Consider a classX which exports a procedureproc without arguments,
and its heirY which makesproc secret, as shown by the above figure. To
hideproc, classY will use the New_exports clause:

Then consider a classC which callsprocon a polymorphic entity which
at run time may become attached to an object of typeY. This will be the
case ifC contains the following declarations and instructions, in some
order:

The calla.proc is class-valid sinceX exportsproc. But it is not system-
valid: the instruction labeledβ may attach toban object of typeY(the static
type ofb); the instruction labeledδ may attacha to the same object asb;
then the last instruction may callproc on that object, even though it is an
instance ofY, andproc is secret inY.

This example – or any similar one using P1 or P2 to violate system-level
validity in the presence of polymorphism – immediately brings four
important comments.

classY inherit

X

export {NONE} procend;

... Rest of class omitted ...

a: X
b: Y -- Y is an heir of X
create b -- Instructionβ
a := b -- Instructionδ
a.proc

proc

-NONE-
proc

X

Y

Hiding an
inherited
feature

TheNew_exports
clause of a
Feature_adaptation
part enables a class to
override the export pol-
icies of its parents. See
7.11, page====.

WARNING: this is not a
contiguous extract, just
some lines which may
appear anywhere in a
class text in any order
satisfying the con-
straintsondeclarations
and instructions.
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First, the example is not affected by the order of the offending
instructions (β, δ and the call). As long as they appear in the same system
and may all potentially be executed, the call is system-invalid. For obvious
reasons of simplicity, system-level validity doesnot involve any flow
analysis; even in the extreme case in which the polymorphic assignmentδ
would be replaced by

we would still consider the call to be invalid.

The second comment is that system-level invalidity in such an example
is a serious problem, not just a matter of style. If the author ofY did not
exportproc, we must presume that this was for a good reason. Remember
in particular that an exported routine must preserve the class invariant. So
procpreserved the invariant ofX, but perhaps the invariant ofY is stronger
andproc does not preserve it any more. In this case, applyingproc to an
object of typeY may produce an inconsistent object – one which does not
satisfy the fundamental consistency constraints expressed by the invariant.
This is a potential disaster.

Third, neither the calla.proc nor the polymorphic assignmenta := b is
wrong by itself. The call applies an exported procedure of classX to an
entityaof typeX; the assignment satisfies the type conformance rule. What
is wrong is the possibility for these two individually legitimate constructs
to be executed as part of an execution of the same system. To be more
precise, even that combination would be harmless were it not for the
presence of a third accomplice, the Creation instruction labeledβ, which
raises the possibility forb, and hence fora as well, to become attached to
an object of typeY.

This brings the last comment, addressing a question that may well have
been troubling you for some time now: isn’t the type policywrong? Why
do we allow a class to hide some of its parent’s exported features, or to
replace an argument type by a more specific (conforming) one? Shouldn’t
we have a stricter policy, guaranteeing that class-level validity implies
system-level validity?

As it turns out, however, the type policy, although perhaps surprising at
first, is essential to support the practice of object-oriented software
development. Let us take a closer look at the underlying issues.

25.7 NOTES ON THE TYPE POLICY

You may indeed have wondered what all the fuss was about. Shouldn’t
class-level validity imply system-level validity? Then type checking would
be trivial, involving only local properties of classes.

if Falsethen a := b end

The invariant preserva-
tion requirement is part
of class consistency,
page====.
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The culprits were identified above: the two properties P1 and P2, which
free heirs from some of the export and typing decisions made by their
parents. We should really ask ourselves whether these properties are
appropriate.

Here they are again:

• A class may override the export policies of its parents; it may for
example make secret its version of a feature which the parent exported.

• A routine redefinition may replace the type of a formal argument by a
type conforming to the original (covariant argument policy).

Then if S has an exported routinesf of name fnamewith a formal
argument of typeSOME_TYPEthe call used earlier as example will be
class-valid. Here it is again, with some of the enclosing class text omitted:

But that call is not necessarily system-valid.D may redefinetargetto be of
some typeD; or it may make its version ofsfsecret; or it may redefine this
routine to take an argument of typeB, a proper descendant of
SOME_TYPE. Any of these cases makes the above call system-invalid
since the dynamic class set oftarget, as a result of the polymorphic
assignmenttarget:= other, includesD.

System-level checking will detect the problem and flag the system as
invalid.

The above two properties (P1 and P2) often seem surprising at first.
Why make type checking more difficult, and introduce the distinction
between class-level and system-level validity by allowing classes to choose
export and argument typing policies different from those of its parents?

The answer is that this flexibility is indispensable to the practice of
object-oriented design. Without it, designers would constantly have to
reshuffle inheritance hierarchies, and would have much difficulty
observing the constraints of a typed object-oriented language. P1 and P2
serve to acknowledge the inescapable difficulty of reconciling the goals of
orderly classification (as implemented through inheritance) and safety (as
implemented through typing) with the irregularities and instability of the
real-world situations which our software systems attempt to model through
their inheritance hierarchies.

target: S; other: B; -- D must be a descendant of S
y: SOME_TYPE; ...
routine

do
if  some_testthen target := otherend; ...
target.fname (y); ... Rest of routine omitted ...

A third related property
is that a creation proce-
dure of a class may not
enjoy the status of cre-
ation procedure any
more in a proper
descendant. See the
Creation rule, page
====.
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Although a full discussion of this question falls beyond the scope of this
book, a simple example will serve to illustrate the need for properties P1
and P2.

Assume the two inheritance hierarchies represented above, with
MOTOR_VEHICLEhaving heirsCARandTRUCK, andDRIVERhaving
TRUCK_DRIVERas heir. These classes could be part of the system used
by a company to manage its fleet of vehicles, or by a Department of Motor
Vehicles to keep track of driver registration.

To begin, this raises an obvious case of P2 (covariant argument type
redefinition). ClassMOTOR_VEHICLE has a procedure

which naturally takes an argument of typeDRIVER. For trucks, however,
the driver must be approved for truck driving; accordingly, classTRUCK
redefinesregister_driver to take an argument of typeTRUCK_DRIVER.

The type constraints in such a case permit the above inheritance
structure and the redefinition ofregister_driver– a case of possibility P2.
They even permit such polymorphic assignments as the one in

or Creation instructions such as !TRUCK! a ..., with the same declarations.
What system-level validity will reject is the only case that could lead to an
erroneous call at run time: the presence in the same system of a
polymorphic reattachment such as the above and a Call such as

register_driver (d: DRIVER) is...

a: MOTOR_VIGICLE; t: TRUCK;

...

a := t

a.register_driver (dr1)

register_driver

register_driver

renew_by_mail
DRIVER DRIVER

TRUCK_DRIVER

TRUCK_
DRIVER

MOTOR_
VEHICLE

CAR TRUCK

+

Vehicles and
drivers
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where dr1 is of type DRIVER (not TRUCK_DRIVER). Clearly, the
presence of this Call in a system that may also attach an instance ofTRUCK
to a is erroneous, and will be flagged as invalid. This, however, does not
affect the need for P2-like covariant argument redefinition; in fact, the
system-level validity rule is what makes P2 possible.

Examples of this kind, with two parallel inheritance hierarchies, are a
constant occurrence in the development of systems and their class
hierarchies. Many appear in the Data Structure Library. For example, to
describe doubly linked lists, TWO_WAY_LIST inherits from
LINKED_LIST; to describe two-way chained linked cells,BI_LINKABLE
inherits fromLINKABLE. The list classes have procedures manipulating
list cells, such asput_linkable_left, which quite naturally take arguments
of type LINKABLE in LINKED_LIST and BI_LINKABLE in
TWO_WAY_LIST.

In this case, however, there is no explicit redefinition such as that of
register_driverin TRUCK. The reason is the presence of the Anchored
form of type declaration. ClassLINKED_LIST contains the declarations

so thatTWO_WAY_LISTonly needs to redefinefirst_element(to be of a
type based onBI_LINKABLE); the argumentnewof put_linkable_left, and
all the other entities declaredlike first_elementin LINKED_LIST, follow
automatically. As this example shows, the whole idea of anchored
declarations is based on the principle of covariant argument redefinition.

The example of motor vehicles, trucks and drivers may also provide an
example of the need for policy P1 (independence of heirs’ and parents’
export policies. Assume the permits for motor vehicles can normally be
renewed by mail, hence the presence inMOTOR_VEHICLEof an exported
procedurerenew_by_mail. For trucks, however, this does not apply (the
truck must be inspected for safety, every year at the time of re-registration).
So TRUCK does not exportrenew_by_mail(which might violate an
invariant of this class, although it preserves the invariant of
MOTOR_VEHICLE).

first_element: LINKABLE [like first]

put_linkable_left (new: like first_element) is..

LINKED_LIST and its
use of LINKABLE and
‘put_linkable_left’ are
sketched in5.5, page
134.
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In a case like this, one may always argue that the inheritance hierarchy
was improperly designed, and should have separated renewable-by-mail
vehicles from others, withrenew_by_mail introduced not in class
MOTOR_VEHICLE but one level down:

But forcing this as the only acceptable choice would make the practice
of object-oriented software development almost impossible.

In any practical problem, there will be many possible criteria for
classification; what will happen if, after you have taken apart the original
hierarchy because of the registration-by-mail problem, you must take into
account other, independent criteria? For example, some vehicles will be for
personal use and others for professional use; some will have two wheels
and others will have more; some will pay a road tax and some will not;
some will require smog inspections every three years; and so on. Since the
original designers could not, without perfect foresight, have come up with
the ideal inheritance hierarchy, the developers will find themselves
constantly redoing the structure. The conflicting criteria may in fact make
it impossible to obtain any acceptable inheritance structure at all.

The flexibility of policy P1 makes it possible to handle this problem by
allowing a class to be selective about its inheritance – exporting or hiding
inherited features to its own clients according to its own local properties.
As before, this is an example of transferring part of the burden from
developers (in the form of constant architecture redesign) to the supporting
implementation (in the form of the more sophisticated form of type
checking required by system-level validity).

register_driver

register_driver

renew_by_mail

DRIVER

TRUCK_DRIVER

MOTOR_
VEHICLE

RENEWABLE_ TRUCK

+

CAR MOTORCYCLE

BY_MAIL

Not all
registrations
may be
renewed by
mail
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It should be clear from this discussion that a well-designed inheritance
hierarchy will include few occurrences of classes hiding some of their
parent’s features. If you find yourself constantly at odds with the parent
designers’ decisions, then you should probably consider improving the
inheritance structure (assuming you are permitted to do so). This is why the
default policy for inherited features is to retain the parents’ export status;
to override it, you must include an explicit New_exports clause. But the
ability to do this in the minority of cases which call for it is a key
component in the effort to make object-oriented software construction not
just a pleasant theoretical idea but a practical way to produce real systems.

25.8 WHY DISTINGUISH?

If we accept that system-level validity is the appropriate notion of validity,
it is fair to ask why one should bother at all with class-level validity. Why
not have a single validity condition, as for the other constructs studied in
this book?

The reason is pragmatic, and involves two complementary observations
on possible violations of the validity constraints:

• First, it is easier (for a language processing tool as well as a human
reader) to detect violations of class-level validity, since they only
involve a local analysis of the features one class –S, the base class of
target’s type. In contrast, checking system-level validity may involve
systemwide analysis. The names "class-level" and "system-level"
reflect this difference.

• Second, a study of errors as they occur in actual system development
reveals that system-level validity violations which are not also class-
level violations occur very rarely.

For these reasons, implementors may choose to design class-level and
system-level checking as separate facilities. Class-level checking will
detect a vast majority of errors; the remaining ones will be found by
applying system-level checking.

Of course, to guarantee fully the type safety of a system, you must
check both kinds.

Class-level checking is straightforward. The only non-trivial part of
system-level validity is to determine the dynamic class set. Let us see
concretely how this can be done.

25.9 A LOOK AT THE DYNAMIC CLASS SET

The dynamic class set of an entity is the set of base classes of all types that
the entity may take on at run-time, as a result of polymorphic
reattachements and creation instructions.
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The call validity rule, appearing in the precise discussion at the end of
this chapter, will give a full definition. It is important, however, to get first
an intuitive view of what the base class represents. (Although "intuitive"
this view is not incorrect; it simply misses some details and does not cover
all cases.)

The idea will be to determine in a single process the dynamic class sets
of all entities. The process is iterative; if you have a background in
numerical mathematics, it will remind you of algorithms which compute
the solution to a vector or matrix equation by successive iteration (for
example over a grid); if you are familiar with the theory of programming
languages, it will remind you of fixpoint methods for approximating the
high-level functions and domains of denotational semantics.

An example will serve to illustrate the process. Consider a class extract
containing the following four instructions, in some order:

Each instruction has been identified by a Greek letter. The context is
missing, in particular the declarations; the Creation instructions have an
explicit creation type for clarity, althoughα, for example, could appear as
justcreate a if a is of typeX.

As before, the order of these instructions is irrelevant. If they appear in
the same context, thena, as discussed above, may become attached to an
object of typeY; this means that, for system validity, any routinerout
appearing in a calla.rout usinga must meet the appropriate conditions not
just forX but also forY.

System-level validity analysis will need to determine the base class sets
of a, b andc. The result, obtained through a process explained below, will
be the following:

create{ X} a -- α

create{ Y} b -- β

c := a -- γ

a := b -- δ

a.proc

Fixpoint methods for
denotational semantics
are covered in"Intro-
duction to the Theory of
Programming Lan-
guages". See bibliogra-
phy.

This is a variant of the
example on page====.

The complete form of
this result, given page
====, will include
more information, in
particular references to
iteration steps.a

b

c

X [α] ; Y [δ]

Y [β]

X [γ] ; Y [γ]
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This shows a vector of dynamic class sets, one for each entity. Each class
set contains a list of types. Any type which appears in one of these lists is
there because of one of the instructions; to make this justification clear, the
instruction’s identifying greek letter appears in brackets next to the type.

For b, the class set includes justY, resulting from the Creation
instructionβ. For a, it includes X, resulting from the Creation instruction
α, andY, resulting from the polymorphic assignmentδ which adds all of
b’s class set to the class set ofa. Forc, assignmentγ means that the class
set is the same as that ofa.

How do we determine this result? An iterative process will provide the
solution. Starting from the types given by Creation instructions, we may
repeatedly extend the current sets by adding to the class set of every entity
e the class set of any other entityf such that there is a reattachement off to
e somewhere. We stop when we have reached a "fixpoint", that is to say
when our vector of class sets is stable.

Here is this process applied to the above example. To obtain the initial
vectorv0 of class sets, just look at the creation instructions:

For each type appearing in a class set, a comment in brackets identifies
the instruction which causes the class to be there: the Creation instruction
α putsX in the class set ofa, andβ putsY in the class set ofb. Entity c is
not the target of any Creation, so its class set is empty for the moment.

On each iteration, we will look at every reattachment and extend the
target’s class set with all the classes obtained so far in the source’s class set.
For the first iteration, this gives the new class set vectorv1:

In the restof thissection
"class set" is an abbre-
viation for"dynamic
class set".

a0

b0

c0

X [α]

Y [β]
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The class set ofa now containsY, again identified, for clarity, by its
origin: the comment [δ : ~ b0 ] means thatY comes fromb0, the earlier
class set forb, and has be added toa1, the new class set ofa, because of the
polymorphic assignment a := b (δ). In the same way,X now appears in the
class set ofc because of its presence ina0and of the assignmentc := a (γ).
You may be tempted to addY, which appears ina1, but this would be
cheating: to update a vector at any step, we may only use vector elements
from the previous step.

The next step, producing vectorv2, will indeed usea1andγ to addY to
the class set ofc:

If you apply the mechanism once more, you will find that it does not
bring anything new:v3 is the same asv2. We have put all the available type
information to good use;v2 gives the complete class sets for all entities
involved. (In technical termsv2 is a fixpoint.)

The process as illustrated on this example is not hard to generalize to the
full language. The extension must integrate expressions which are function
calls rather than simple entities; it must also account for the two other
forms of reattachment beside Assignment: actual-formal association,
which raises no particular problem, and Assignment_attempt. For this last
case, the effect of

b: Y;

...

b ?=a

a1

b1

c1

X [α] ; Y [δ : b0]

Y [β]

X [γ : a0]

a2

b2

c2

X [α] ; Y [δ : b0]

Y [β]

X [γ : a0] ; Y [γ : a1]
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to extendb’s class set not with all elements ofa’s class set (as with normal
Assignment), but only with those which are descendants ofY.

This discussion has outlined a way of obtaining the dynamic class sets
of the entities in a system. Two words of warning will serve as its
conclusion:

The precise specification of dynamic class sets appears as part of the
call validity rule below. The iterative process that we have just discussed
is only one concrete interpretation of that specification, although of course
it satisfies that specification.

Although you may view the description of that process as an abstract
algorithm for language processing tools that perform type checking, its
purpose is explanatory only. Implementors of compilers and other type
checking tools may well rely on totally different methods.

By now you should have a good understanding of the practical
implications of type checking. All that remains is to give the rules in their
full and precise form.

25.10 THE CALL VALIDITY RULE

(This last section formalizes the previous discussion of validity, but does
not introduce any new concepts, so that you may safely skip to the next
chapter. In fact this section will be mostly of interest to implementors of
language processing tools.)

This is very general and means that we must now define class-level and
system-level validity.

To remove any ambiguity, we must provide an equally precise
definition of thedynamic class setof an expression. This is the set of base
classes of all elements in thedynamic type setof the expression; the
dynamic type set was itself defined as the set of all possible dynamic types
of the expression, where a possible dynamic type for an expression is the
type of any object to which it may become attached at run time. This
definition is correct, but it does not enable us to determine easily the
dynamic type set, or the dynamic class set, from the software text.

General Call rule VUGC

A call is valid if and only if it is bothclass-valid andsystem-
valid.

Since this general
validity rule is very
abstract, the successive
definitions of this sec-
tion, introducing the
different aspects of call
validity, have received
separate validity codes
for ease of reference.

The original definitions
are in22.11; see page
====.
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The above informal illustration constructed dynamic class sets through
successive vector approximations, until it reached a fixpoint. Since it
assumed all classes to be non-generic, its results were both dynamic classes
and dynamic types. The full definition, which covers anchored and
generically derived types, will yield the the dynamictypesets; to obtain the
corresponding class sets, just replace every type by its base class.

The definition needs the following two notions to deal with genericity.
Let T be a Class_type based on a classC. If C is a generic class C [G1, ...],
T is C .[ A1, ...] for some typesA1, ....; if C is not generic,T is justC. Then:

• If e is an entity or expression appearing in a feature ofC, the "dynamic
type set ofe for T" is the set of dynamic types of objects that may
become attached toe as a result of calls toC’s features on direct
instances ofT. The "dynamic type set ofe", with no further
qualification, is the dynamic type set ofe for C .[ G1, ...], or justC if C
is not generic.

• If U is a type, the notationUT will stand for the type obtained fromU
by substitutingAi for any occurrence ofGi – or justU if C is not generic.
For example, ifU is X .[ G ,, INTEGER] appearing in a feature of class
D .[ G], andT is D .[ REAL], thenUT is X .[ REAL ,, INTEGER].

The iterative process
was described in25.9,
page 677.
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Here is the full definition of dynamic type sets:

Each of the seven cases of this definition, explained in detail below, is
a rule which you may use to bring new elements to the possible dynamic
type sets of the expressions, entities and functions of a system. More
precisely:

• Rules 1, 2 and 3 are non-recursive: they yield elements of the dynamic
type sets without further ado.

Dynamic type set

The dynamic type set of an expressione is the set of types of all objects
that can become attached toe during execution.
1 • The dynamic type sets of the expressions, entities and functions of

a system result from performing all possible applications of the
following rules to everyClass_typeT, of base classC, used in the
system.

2 • If a routine ofC contains a creation instruction, with targetx and
creation typeU, the dynamic type set ofx for T is {UT}.

3 • The dynamic type set forT of an occurrence ofCurrent in the text
of a routine ofC is {T}.

4 • For any entity or expressione of expanded type appearing in the
text ofC, if the typeETof e is expanded, the dynamic type set ofe
for T is {ETT}. (Rules 4 to 7, when used to determine elements of
the dynamic type set of somee, assume thate’s type is not
expanded.)

5 • If a routine ofC contains anAssignmentof targetx and sourcee,
the dynamic type set ofx for T includes (recursively) every member
of the dynamic type set ofe for T.

6 • If a routine ofC contains anAssignment_attemptof targetx, with
type U, and sourcee, the dynamic type set ofx for T includes
(recursively) every type conforming to UT which is also a member
of the dynamic type set ofe for T.

7 • If a routine ofC contains a callh of targetta, U is (recursively) a
member of the dynamic type set ofta for T, andtf is the version of
the call’s feature in the base class ofU, then the dynamic type set
for U of any formal argument oftf includes every member of the
dynamic type set for UT of the corresponding actual argument inh.

8 • If h, tf andU are as in case 6 andtf is an attribute or function, the
dynamic type set ofh for T includes (recursively) every member of
the dynamic type set for UT of theResult entity intf.
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• Rules 3 to 7 are recursive: given known elements of the dynamic type
sets of the expressions of a system, they may add new elements.

In other words, you may view the definition as describing an iterative
process, generalized from the earlier discussion, for building the dynamic
type sets: first apply rules 1 to 3 to every possible case, obtainingv0, the
initial vector of dynamic type sets; then, at each successive stepi, apply
rules 3 to 7 to every possible case, obtaining new elements of the type sets
in vi from elements of the type sets invi - 1. The process terminates if the
resultingvi is the same asvi - 1 – that is to say, the last iteration has brought
nothing new.

This process is finite since the set of types in the system is finite. To get
an upper bound to the number of iterations, call DEPTH be the maximum
depth of a call (number of dots in Call form, number of operators in
Operator_expression form) and ATTACH the maximum length of a non-
cyclic sequenceei such that there is a reattachment fromei + 1 to ei; then
the process will terminate in at most DEPTH + ATTACH steps.

Let us now make sure we understand the seven rules. Rule 1 addresses
creation instructions. It considers that an instruction of the form

adds the creation type, hereU, to the dynamic type set ofx. (If U is absent,
the creation type isx’s base type.) IfC is generic, the rule pertains to the
dynamic type sets relative to some generic derivationT of C; then we must
perform the corresponding substitution of actual for formal generics, so the
rule usesUT rather than justU.

Rule 2 indicates thatCurrent, when used inC, represents an object of
typeT– that is to sayC, with the requested generic derivation if applicable.

Rules 1 and 2 reflect the pragmatism of system-level validity checking.
Class-level checking considers the developer’s intentions (the
declarations); but system-level checking only considers deeds: the types of
the objects that Creation and reattachement instructions may actually
attach to entities.

Rule 3 takes care of expressions of expanded types, which are never
polymorphic. In this case we just take the declarations at face value.

As you may remember, the conformance rule for expanded types allows
for some tolerance in the case of basic arithmetic types. For example you
may attach the integer value3 to an entityr of typeREAL. But this has no
effect on the dynamic type set ofr: such an assignment causes a
conversion, and attaches tor a real value, here3.0. So there is no
polymorphism in this case.

! U ! x

Creation instructions
were discussed in
20.11, with the defini-
tion of"creation type"
appearing on page
====.

See14.9, page====,
about conformance for
basic types.Assignment
semantics in this case
([4] on the table page
317) is copy, implying
conversion to the
"heavier" type(case 2
of copysemantics,page
====).
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Rules 4, 5 and 6 covers the three forms of possibly polymorphic
reattachment: Assignment, Assignment_attempt, and actual-formal
association in a call. For a reattachment of a valuee to an entityx, we must
add all ofe’s possible dynamic types to those ofx. In addition:

• For an Assignment_attempt of the form x ?= e (rule 5), we must only
consider those possible types fore which conform to the type ofx: any
other one would result, in accordance with the semantics of
Assignment_attempt, in no object attachment forta.

• For a call (rule 6),e is an actual argument andx is the corresponding
formal argument in the appropriate version of the routine.

In rule 6, a memberU of the dynamic type set ofta, the call’s target, may
be generically derived; then when need to perform the corresponding type
substitutions in adding the members of the actual argument’s dynamic type
set to the dynamic type set of the formal argument. This is why the rule
considers the dynamic type set ofe (the actual argument) for UT.

A call whose feature is a function is itself an expression, with its own
dynamic type set. Since the expression’s value is the final value ofResult
as used in the function, rule 7 defines the dynamic type set of the expression
as that of Result. As with rule 6, we must perform the appropriate
substitution if the type of the call’s target is generic, hence the use ofUT.

We need one more convention to make the above rule fully applicable
in practice: how to handle the dynamic type sets of array elements. The
relevant features in the Kernel Library classARRAYare put and force,
which set an element’s value, anditem, which returns an element’s value,
as in

x, some_entity: T; i, j: INTEGER; a: ARRAY[T];
...

-- Assign the value ofsome_entity to thei-th element ofa:
a.put (some_entity, i)
...

-- Assign tox the value of thej-th element ofa:
x := a.item(j)

Arrays require a spe-
cific convention since
the Kernel Library
specification covers the
interface of class
ARRAY(A.6.19, page
996) but not its imple-
mentation.

‘put’ assumes that the
index, ‘i’ in the exam-
ple, is within bounds;
‘force’ resizes the array
if necessary. Details in
chapter 28.
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To find out the dynamic type set ofa.item(j) (and hence ofx), note that the
software text usually does not suffice to determine whetheri andj will have
the same value at execution time. So we must treat everyput or force
operation as affecting potentially every array element. Hence the rule:

The rule also applies to manifest arrays. A manifest array is an expression
of the form <<a1 ,, ... ,, an>>, denoting an array ofn elements, containing
the values given. For typing purposes, it will be treated as it had been
initialized explicitly byn calls toput, each of the form

25.11 CREATION VALIDITY (SYSTEM-LEVEL)

(This section explores a specialized type-checking issue and may be
skipped at first reading. Even if you want all the details, you will probably
have to come back after you have read the chapter on type checking, which
is necessary for a full understanding of this discussion.)

Although class-level validity generally suffices to determine the validity
of a Creation, the complete definition will require system-level validity as
well.

For our immediate purposes it suffices to note that some invalid cases
may escape class-level validity checks. The reason is polymorphism. As a
result of assignments of the form

a Variableentity x of type T may become attached to objects ofy’s type
(which the Assignment rule requires to be a descendant ofT). These types,
for all possibley, make up the set of allpossible dynamic typesof x, also
called itsdynamic type set. The dynamic type set may contain types other
thanx’s static type,T.

But aCreation_instruction involving x

Array type rule
To study the effect of array manipulations on dynamic type sets,
assume that in classARRAYfeatureitem is an attribute, and that
put (v, i) andforce(v, i) are both implemented as

item:= v

a.put (ai, i)

x:= y

createx.make (...)

See29.9, page 809,
about manifest arrays.

Chapter25explains the
type checking policy,
with special emphasis
on calls.

Polymorphism is stud-
ied in22.11, page 606.

The rigorous definition
of the dynamic type set
is on page683.
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may be invalid even if it is class-valid. This will be the case, for example,
if in the above assignmenty is of a typeU based on a classD (a proper
descendant ofT’s base class), andD fails to list its version ofmakeas a
creation procedure.

System-level validity avoids any such problem:

In other words, system-level validity is the same property as its class-
level counterpart, but applied to all possible dynamic types of the targetx.
In interpreting conditions on the creation proceduref, we must take into
account thedynamicbinding versionof that procedure in a descendant
class, which may be different from the original because of redeclaration,
and may have a different name because of renaming.

As condition 1 of the definition indicates, the problem of system-level
validity only arises forCreationinstructions with an implicit type. If the
type is explicit, as increate { T} x ..., the possible dynamic types ofx do
not affect the validity of the instruction, which in this case is entirely
covered by class-level validity.

System-level validity, as all other validity properties, is astatic
requirement, which a human reader or language processing tool may
ascertain simply by looking at the software text. Checking it does not
require any control flow analysis: whenever a given context contains both
an assignmentx := y and aCreationwith targetx which would be invalid
for y’s type, theCreationwill be system-invalid – even if clever control
flow analysis would in fact show that no control flow path will ever execute
the assignment and theCreation in sequence. Static validity checking
doesn’t need to be clever; it needs to be safe. This discussion will be
generalized to calls in the discussion of type checking.

Creation System-Validity rule VGCS

A Creation_instructionis system-valid if and only if it satisfies
one of the following two conditions:
C1•Thecreationtype is explicit (in other words, the instruction

begins withcreate{ ET}... for some typeT).

C2•The creation type is implicit (in other words, the instruction
begins withcreate...) and every possibledynamictypeT for
x, with base classC, satisfies conditions 1 to 6 of the
Creation Instruction rule (page \n(9g). In applying
conditions 5 and 6, the feature of the call,f, must be replaced
by its version inC.

← “Dynamic binding
version”,  page 468.



TYPING-RELATED PROPERTIES §25.11688
To be valid, aCreation must satisfy the requirements at both levels:

Creation Instruction rule VGCI

A Creation_instructionis valid if and only if it is both class-valid
and system-valid.
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26
Exception handling
26.1 OVERVIEW

This chapter presents the exception mechanism by explaining what
conditions lead to exceptions, and how systems can be written so as to
handle exceptions.

---- REWRITE It also introduces theEXCEPTIONKernel Library class
and some of its descendants, which provides tools for fine-tuning the
exception mechanism.

When using the exception facility, remember to take its name literally.
The constructs discussed in this chapter — Rescue clause, Retry
instruction — are not control structures on a par with those of the previous
chapter; they should be reserved for those unexpected cases which cannot
be detected a priori. Complex algorithmic structures, if any, should appear
in Feature_bodyparts, not in exception handlers. If your system has many
sophisticated exception handling clauses, it is probably misusing the
mechanism.

During the execution of an Eiffel system, various abnormal events may
occur. A hardware or operating system component may be unable to do its
job; an arithmetic operation may result in overflow; an improperly written
software element may produce an unacceptable outcome.

Such events will usually trigger a signal, orexception, which interrupts
the normal flow of execution. If the system’s text does not include any
provision for the exception, execution will terminate. The system may,
however, be programmed so as tohandleexceptions, which means that it
will respond by executing specified actions and, if possible, resuming
execution after correcting the cause of the exception.
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26.2 WHAT IS AN EXCEPTION?

These categories distinguish the manifestation of the exception, not its
real cause. Causes of exceptions essentially boil down to two possibilities:
an error (a bug) in the software, or the inability of the underlying machine
to carry out a certain operation. Assertion violations are a clear example of
the first cause – a correct program always satisfies its assertions at run time
– whereas running out of memory for a Creation is an example of the
second.

In a way, the second of these types of cause is a variant of the first: if
systems never executed an operation without checking first that it is
feasible, then a correct system would never run into an exception. But it
would be hardly practical to have every Creation instruction preceded by a
check for available space, or every addition preceded by a check that the
result will fit in the machine’s number system – assuming such checks were
possible.

In cases like these, a priori checking is expensive, and only a small
percentage of executions are likely not to pass the checks. These are the
cases requiring exceptions – ways to detect an abnormal situation, and
possibly recover from it,after it has occurred.

Failure, exception, trigger
Under certain circumstances, the execution or evaluation of a
constructspecimen may be unable to proceed as defined by the
construct’s semantics. It is then said to result in afailure .
If, during the execution of a feature, the execution of one of its
components fails, this prevents continuing its execution
normally; such an event is said totrigger anexception.

Examples of exception causes include:

• Assertion violation (in an assertion monitoring mode).

• Failure of a called routine.

• Impossible operation, such as aCreationinstruction attempted when not
enough memory is available, or an arithmetic operation which would
cause an overflow or underflow in the platform’s number system.

• Interruption signal sent by the machine for example after a user has hit
the "break" key or the window of the current process has been resized.

• An exception explicitly raised by the software itself.

Common exception types that donot arise in Eiffel, other than through
mistakes in the definition of the language as specified by the Standard, are
“void calls” (attempts to execute a feature on a void target) and “catcalls”
(attempt to execute a feature on an unsuitable object).

"Failure" is in fact the
more primitive notion;
an exception is the con-
sequence of a failure.

See chapter9 about
assertions.

Seebelowaboutroutine
failure.

"Machine" means
hardware combined
with operating system.
See2.12, page====.

The software may raise
an exception through
procedure ‘raise’ in
class EXCEPTIONS.
See 5.11, page
====below.

In an environment sup-
porting virtual memory
and a garbage collec-
tor, unsuccessful Cre-
ation only occurs when
the system has
exhausted virtual mem-
ory and the collector is
unable to reclaim any
space. See 20.16, page
====.
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26.3 EXCEPTION HANDLING POLICY

What can happen after an exception? In other words, what can we do when
the unexpected occurs?

To answer this question properly, we must remember that a routine or
other software component is not just the description of some computation.
What transcends that particular computation is the goal that it is meant to
achieve – what in the Eiffel theory is called thecontract. The component
provides just one way to achieve the contract; often, other implementations
are possible. For simple components the contract is defined by the
language: for example the contract of a Creation instruction is to create an
object, initialize its fields and attach it to an entity. For more complex
components you may express the contract through assertions: for example,
a routine’s contract may be defined by a precondition, a postcondition, and
the class invariant. Even if there are no explicit assertions, the contract
implicitly exists, perhaps expressed informally by the routine’s
Header_comment.

If we want to remain in control of what our software does, we must
concentrate on the notion of contract to define possible responses to an
exception. The contract of a software component defines the observable
aspects of its behavior, those which its clients expect. Any exception
handling policy must be compatible with that expectation.

An exception is the occurrence of an event which prevents a component
from fulfilling the current execution of its contract. An unacceptable
reaction would be to terminate the component’s execution and to return
silently to the client, which would then proceed on the wrong assumption
that everything is normal. Since things arenot normal – the client’s
expectations were not fulfilled – such a policy would almost inevitably lead
to disaster in the client’s execution.

What then is an acceptable reaction? Depending on the context, only
three possibilities make sense for handling an exception:

• A favorable albeit unlikely case is one in which the exception was in fact
not justified. This is called thefalse alarm.

• When writing the component, you may have anticipated the possibility
of an exception, and provided for an alternative way to fulfil the
contract. Then the execution will try that alternative. This case is called
resumption.

• If you have no way of fulfilling the contract, then you should try to
return the objects involved into an acceptable state, and signal your
failure to the client. This is calledorganized panic.

See"Object-Oriented
SoftwareConstruction"
for more in-depth dis-
cussions of exception
handling principles.
References in appendix
C.
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The language mechanism described below – Rescue clauses and Retry
instructions – directly supports resumption and organized panic. The rather
infrequent case of false alarm is handled through features of the Kernel
Library classEXCEPTIONS.

These mechanisms are defined at the routine level. For components at a
lower level, such as an instruction or a call, you have no language
mechanism to specify potential recovery. This means that for an
unsuccessful attempt at executing such a component (for example an
attempt at object creation when there is not enough memory, or at feature
call on a void target) only policy E3 is possible: the component’s execution
will fail immediately, causing an exception. The exception interrupts the
last started routine, called therecipientof the exception--- NOT TRUE,
SEE FOLLOWING RULES, REMOVE

Depending on the recipient routine and its class, the exception will be
handled through one of the three techniques listed

: above. --- NOT TRUE, SEE FOLLOWING RULES, REMOVE

For the rest of this chapter, then, the unit of discourse is the routine. Any
exception has a recipient, which is a routine. By writing an appropriate
Rescue clause, you may specify the routine’s response as resumption or
organized panic; through the appropriate calls to library features, you may
in some cases proceed with the routine’s execution after a false alarm.

The next sections explain how to specify one of these three possibilities
as your choice for exception handling.

26.4 RESCUE CLAUSES AND ORGANIZED PANIC

The construct which specifies a routine’s response to exceptions that may
occur during an execution of the routine is the Rescue clause.

This is an optional part of a Routine declaration, introduced by the
keywordrescue.

Recipient of an exception

Therecipient of an exception is thecurrentroutine at the time of
the exception.
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Here is a sketch of a routine with a Rescue clause:

Any exception triggered during the execution of theFeature_body(do...
clause) will cause execution of the Rescue clause. Here this clause calls
procedurereset, meant to restore the current object to a stable state; such a
state should satisfy the class invariant.

Termination of the Rescue clause also terminates the routine execution;
in this case, however, as opposed to what would happen if thedo.. clause
was executed to the end with no exception, the call toattempt_transaction
will fail. This is indeed the only way for a routine call to fail: being the
recipient of an exception and executing its Rescue clause to the end, not
ending with a Retry instruction (described below).

In other words, the routine illustrates the policy defined above as
organized panic – put back the object in an acceptable state (satisfying the
invariant) and terminate, notifying your caller, if any, of the failure. The
technique used for this notification is to trigger a new exception, with the
caller as recipient.

As noted, organized panic should restore the invariant. The formal
version of this requirement, given below as part of the definition of
exception correctness, is that any branch of a Rescue clause not terminating
with a Retry should yield a state satisfying the invariant, independently of
the state in which it is triggered.

As you may remember from the definition of class consistency, this
requirement of ensuring the invariant also applies in another context:
creation procedures of a class. This suggests that it is sometimes possible
to write a Rescue clause as a call to a creation procedure, which will reset
the object to a state which it could have reached just after creation. Of
course, other situations may require more specific Rescue clauses, taking
into account the routine that failed and the context of the failure.

attempt_transaction(arg: CONTEXT)
--Try transaction with arg; if impossible,
--reset current object

require
...

do
...

ensure
...

rescue
reset(arg)

end

Class consistency is
defined on page====.
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26.5 THE DEFAULT RESCUE

In most systems, the vast majority of routines will not have an explicit
Rescue clause. What happens if an exception is triggered during the
execution of such a routine?

The convention a routine of a classC is considered, if it has no explicit
Rescue clause, to have an implicit Rescue of the form ‘

where def_rescis the version ofdefault_rescuein the enclosing class.
Proceduredefault_rescueis introduced in theuniversalclassANY, where it
is defined so as to have no effect:

Any developer-defined class, which is automatically a descendant of
ANY, may redefine this routine to serve in case of organized panic. The
redefined version will be called by any routine of the class which does not
have a specific Rescue clause. Like any other routine, the redefined version
is passed on to every heir, which will use it as default Rescue clause unless
there is a new redefinition in the heir.

The reason for using the namedef_rescrather thandefault_rescuein
expressing the above equivalence is that in the process of inheriting from
ANY, directly or indirectly, classes may rename features. For clarity,
however, it is recommended to keep the original namedefault_rescue.

rescue
def_sec

default_rescue
do
end

← “ANY”,  6.5, page
172;seealsochapter35
for more details.

The"version" of a rou-
tine in a descendant of
its class of origin is the
result of any redefini-
tion and renaming that
may have occurred
along the inheritance
path; see 11.12, page
====
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 a Retry
If, following the possibility suggested above, you use a creation
procedure as default Rescue, you may rely on the following scheme, where
default_rescueand the creation procedure are declared as synonym
features:

With this scheme, sincedefault_rescuehas no argument, there must also
be no argument for the creation procedure chosen as synonym, heremake.

Thedefault_rescueconvention explains what happens if a routine such
asattempt_transactionabove fails and its caller had no explicit Rescue.
The caller will simply execute its version ofdefault_rescue– which means
doing nothing at all if it still has the original version inherited fromANY
Then it will fail and trigger an exception in its client, which will itself be
faced with the same situation. The effect of executing this Rescue chain all
the way to the original root call will be described below.

26.6 RETRY INSTRUCTIONS AND RESUMPTION

Sometimes you can do better than just conceding defeat and cutting your
losses. This is where the Retry instruction is useful.

This instruction, which supports the resumption policy, may only appear in
a Rescue clause. It has a very simple form, being just the keyword

The effect of a Retry is to execute again the body of the routine. A Rescue clause which executes
escapes failure – perhaps only temporarily, of course, since the body may again cause an exception.

class C create
make, ... other creation procedures if any...

inherit
ANY

redefine default_rescueend
...
feature

make, default_rescue
-- No precondition
do

... Appropriate implementation;

... must ensure the invariant.
end

. Other features ...
end

retry

Synonyms were dis-
cussed in5.18, page
159.Recall that to rede-
fine a feature from ANY
you must explicitly list
ANY as parent in the
Inheritance clause; see
the end of 6.12.

It is also possible to
undefine
‘default_rescue’ and
rename it as
‘make’.This, however,
would lose the original
name.

‘attempt_ transaction’
was on page====.
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Here is a general scheme that covers many uses of Retry. To solve a
problem, you normally use method 1; if that method does not work,
however, it may trigger an exception, and method 2 may yield the desired
result.

This example relies on the default initialization rules for local variables:
already_tried, being of typeBOOLEAN, is initialized tofalse on routine
entry. This initialization is not repeated if the rescue block executes a
Retry.

If method_2triggers an exception, that is to say if both methods have
failed, the Rescue clause will execute an empty Compound (since the
Conditional has no Else_part). So the routine execution will fail, triggering
an exception in the caller. This is becausetry_once_or_twicehad two
methods to reach a goal, and neither succeeded.

try_once_or_twice
-- Solve problem using method 1 or, if unsuccessful, method 2

local
already_tried: BOOLEAN

do
if not  already_triedthen

method_1
else

method_2
end

rescue
if not  already_triedthen

already_tried:= true
retry

end
end

Local variable initial-
ization is specified in
the discussion of call
semantics, “PRECISE
CALL SEMANTICS”,
23.17, page 652.
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You may of course prefer a routine that behaves less dramatically when
it cannot produce a result. Rather than sending an exception to the caller, it
will just record the result in a boolean attributeimpossibleof the enclosing
class: .

This routine will never fail, since its Rescue clause always terminates
with a Retry. This is not a paradox: the contract here is simply broader. As
opposed to the contract fortry_once_or_twice, it does not require the
routine to solve the problem, but, more tolerantly, either to solve the
problem (and set attributeimpossibleto true) or to setimpossibleto false
if it is unable to solve the problem. Clearly, it is always possible to satisfy
such a requirement; so there is no cause for failure.

try_once_or_twice

-- Solve problem using method 1 or, if
unsuccessful, method 2

--if unsuccessful, method 2. Set
impossible to true

--if neither method succeeded,
false otherwise.

local

already_tried: BOOLEAN

do

if not  already_triedthen

method_1

elseif notimpossiblethen

method_2

end

rescue

if not already_triedthen

impossible:= true;

end;

already_tried := true;

retry

end
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You may easily generalize either version –try_once_or_twice, which
may fail, andtry_and_record, which never fails but sets a boolean success
indicator – to try more than two alternative methods: just replace
already_triedby a local variableattemptsof typeINTEGER, which will be
initialized to zero.

As a special case, the resumption may in some situations simply amount
to trying the same policy again. This applies when the exception was
caused by an intermittent malfunction in external device, for example a
busy communication line, or by an erroneous human input; by trying the
line again, or outputting an error message asking the user to correct his
input, you may hope to succeed. Here is the general scheme:

Maximum is a constant attribute with a positive value. The integer
attributeattempts will be initialized to zero on routine entry.

The strategy used bytry_repeatedly_and_recordderives from
try_and_recordrather thantry_once_or_more: if unable to perform its
duty, it does not fail but simply sets attributeimpossibleto true. Adapting
to the other style, which causes the routine to fail and trigger an exception
in its caller, is easy and is left as an exercise.

26.7 SYSTEM FAILURE AND THE EXCEPTION HISTORY TABLE

In the organized panic case, a failed execution of a routiner triggers an
exception in the caller. But what if there is no caller?

try_repeatedly_and_record
-- Attempt to solve problem in at mostMaximum trials.

local
attempts: INTEGER

do
if  attempts<= Maximumthen

attempt_to_solve
else

impossible:= true
end

rescue
attempts:= attempts + 1
... Other corrective actions, such as outputting
an error message ...
retry

end
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This can occur only if the execution that fails is the "original call": the
execution of the root’s creation procedure which started system execution.
Remember that executing a system means creating an instance of its root
class and applying a creation procedure to that instance. The creation
procedure usually calls other routines, which themselves execute further
calls. This means that any routine execution except the original call has a
caller.

A failure of the original call produces asystem failure. Execution of the
system terminates, producing an appropriate diagnostic about the system’s
inability to fulfil its task.

This rule does not just apply to exceptions triggered directly by the
original call – an infrequent case since root creation procedures tend in
practice to perform only simple actions before creating other objects or
calling other routines. The more interesting case is the failure of a routine
execution deep down in the call sequence, for which all direct and indirect
callers eventually fail because they are not able to apply resumption. Then
the failure bubbles up the call chain until it finally causes system failure.

This scenario in fact applies to the simplest case, in which no routine of
the system has a Rescue clause, and no class redefinesdefault_rescue: then
any exception occurring during execution will propagate to the root’s
creation procedure, and result in a system failure.

What happens after a system failure? As noted, the tool that handles
execution (the run-time system) should produce a diagnostic. The exact
form of that diagnostic is not part of the language specification. Here is the
format used in one particular implementation. After a system failure, that
implementation prints an error message and anexception history table
such as the following:

ObjectClassRoutine Nature of
exceptionEffect

2FB44INTERFACEm_creation
Feature"quasi_inverse":

Called on void
reference.Retry

2F188MATHquasi_inverse
"positive_or_null":

(from BASIC_MATH)
Precondition violated.Fail

Thesemanticsofsystem
execution was defined
on page====.

This is the format used
by ISE’s implementa-
tion. Others may use
different conventions.
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For an exception whose recipient was a routiner, during a call on an
object OBJ, the first column identifies OBJ (through an internal object
identifier), the second column identifies the generating class of OBJ (the
base class of its type), and the "Routine" column identifiesr. The next
column indicates the nature of the exception; for developer-defined
exceptions and assertion violations this includes a tag (the Assertion_tag
for assertions clauses). The last column indicates the effect of the
exception: resumption (appearing asRetry) or organized panic (appearing
asFail).

The table contains not just a trace of the calls that led to the final failure
but also the entire history of recent exceptions. Some exceptions may have
been caught and handled through resumption, only to lead to further
exceptions. This is why the exception history is divided into periods, each
terminated by a Retry. The table shows these periods separated by a double
line; exceptions appear in the order in which they occurred, which is the
reverse of the order of the calls.

2F188MATHraise
"Negative_value":

(from EXCEPTIONS)Developer
exception.Fail

2F188MATHfilter
"Negative_value":

Developer
exception.Retry

2F32MATHnew_matrix
"enough_memory":

(from BASIC_MATH)Check
violated.Fail

2FB44INTERFACEsetRoutine
failureFail

ObjectClassRoutine Nature of
exceptionEffect
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The case illustrated on the table, which resulted from a specially
contrived system meant to illustrate the various possibilities – involving
exceptions of many kinds, and resumptions that trigger new exceptions –
is unusual. Exception handling in well-written systems should remain
simple, and as much effort as possible should go into avoiding exceptions
rather than handling them a posteriori. Exception handling does play a
crucial role, however, for those hard to prevent cases which, in the absence
of an appropriate exception mechanism, would leave defenseless the
system, its users and its developers.

26.8 SYNTAX AND VALIDITY OF THE EXCEPTION CONSTRUCTS

It is time now to look at the precise properties of the two constructs
associated with exceptions: rescue clauses of routines and retry
instructions.

The grammar is straightforward: I

A Rescue clause is part of a Routine. A Retry instruction is one of the
choices for the Instruction construct.

A constraint applies to Rescue clauses:

The constraint on Retry instructions has already been mentioned:

Rescue clauses
Rescue=∆ rescueCompound

Retry =∆ retry

Rescue clause rule VXRC

It is valid for anAttribute_or_routineto include aRescueclause
if and only if its Feature_body is an Attribute or an
Effective_routineof theInternal form.

An Internalbody is one which begins with eitherdo or once. The other
possibilities areDeferred, for which it would be improper to define an
exception handler since the body does not specify an algorithm, and an
External body, where the algorithm is specified outside of the Eiffel
system, which then lacks the information it would need to handle
exceptions.

Retry rule VXRT

A Retry instruction is valid if and only if it appears in aRescue
clause.

See page====for the
syntax of Routine and
page====for the syn-
tax of Instruction.

VXRC

The various kinds of
Feature_body are dis-
cussed in8.5,page222.

VXRT
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26.9 EXCEPTION CORRECTNESS

As described in a later chapter, every routine has arescue block,
syntactically aCompound, which takes over whenever an execution of the
routine triggers an abnormal condition (an exception). The rescue block is
the contents of the routine’s Rescue clause, if any; otherwise it consists of
a call to the routinedefault_rescue, which has a null effect in its default
version (from classANY) but may be redefined by any class.

The execution of the rescue block may end in either of two ways:

1 • A rescue block which executes a Retry instruction causes the
Routine_body to be executed again.

2 • If it terminates without executing a Retry, the rescue block causes the
routine execution to fail, triggering an exception in the routine’s caller
(which will handle it in one of the same two ways).

To be correct, the rescue block must be such that any branch terminating
with --- FiX --- a Retry (case 1) ensures the precondition and the invariant,
and that any other branch (case 2) ensures the invariant. This provides for
a first definition of exception correctness:

26.10 SEMANTICS OF EXCEPTION HANDLING

Because this constraint requires theRetryphysically to appear within the
Rescueclause, it is not possible for aRescueto call a procedure containing
aRetry. In particular, a redefined version ofdefault_rescue(see next) may
not contain aRetry.

Exception-correct
A routine isexception-correctif any branch of theRescueclause
not terminating with aRetry ensures theinvariant.

Default Rescue Original Semantics

Class ANY introduces a non-frozen proceduredefault_rescue
with no argument and a null effect.

As the following semantic rules indicate, an exception not handled by an
explicit Rescueclause will cause a call todefault_rescue. Any class can
redefine this procedure to implement a default exception handling policy
for routines of the class that do not have their ownRescue clauses.

Chapter 15.

See“EXCEPTION
CORRECTNESS”,
26.11, page 707, for a
more precise definition
of exception correct-
ness.
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To define the semantics of exception handling, it is convenient to consider
that every feature has an implicit or explicit "rescue block":

The proceduredefault_rescuein classANYhas, by default, no effect.
Any class can redefine

Rescue block
Any InternalorAttributefeaturef of a classC has arescue block,
aCompounddefined as follows, whererc is C’s version ofANY’s
default_rescue:
1 • If f has aRescueclause: theCompoundcontained in that

clause.

2 • If r is notrc and has noRescueclause: aCompoundmade of
a single instruction: anUnqualfied_callto rc.

3 • If r is rc and has noRescue clause: an emptyCompound.

The semantic rules rely on this definition to define the effect of an
exception as if every routine had aRescueclause: either one written
explicitly, or an implicit one callingdefault_rescue. To this effect they refer
not torescue clauses but to rescue blocks.

Condition3 avoids endless recursion in the case ofdefault_rescueitself.
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Exception Semantics

An exceptiontriggered during an execution of a featuref causes,
if it is neither ignored norcontinued, the effect of the following
sequence of events.
1 • Attach the value oflast_exceptionfrom ANY to a direct

instance of a descendant of the Kernel Library class
EXCEPTION corresponding to the type of the exception.

2 • Unlike in thenon-exceptionsemantics ofCompound, do not
execute the remaining instructions off.

3 • If the recipient of the exception isf, execute therescueblock
of f.

4 • If case3 applies and the rescue block executes aRetry, this
terminates the processing of the exception. Execution
continues with a new execution of theCompoundin the
Feature_body of f.

5 • If neither case3 nor case4 applies (in particular in case3 if
the rescue block executes to the end without executing aRetry),
this terminates the processing of the current exception and the
current execution off, causing afailure of that execution. If the
execution off was caused by a call tof from another feature,
trigger an exception of typeROUTINE_FAILUREin the
calling routine, to be handled (recursively) according to the
present rule. If there is no such calling feature,f is theroot
procedure; terminate its execution as having failed.

After failure and termi-
nation, the run-time
should normally pro-
duce a diagnostic simi-
lar to the exception
history table of page
====.

False alarm was
response E1 introduced
on page====as part of
the exception handling
policydiscussed in255.
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As usual in rules specifying the “effect” of an event in terms of a sequence
of steps, all that counts is that effect; it is not required that the execution
carry out these exact steps, or carry them in this exact order.

In step1, theRetrywill only re-execute theFeature_bodyof r, with all
entities set to their current value; it doesnot repeat argument passing and
local variable initialization. This may be used to ensure that the execution
takes a different path on a new attempt.

In most cases, the “recipient” of the exception (case3) is the current
routine, f. For exception occurring in special places, such as when
evaluating an assertion, the next rule, Exception Cases, tells us whetherf or
its caller is the “recipient”.

In the case of aFeature_bodyof the Onceform, the above semantics
only applies to the first call to every applicable target, where aRetrymay
execute the body two or more times. If that first call fails, triggering a
routine failure exception, the applicable rule for subsequent calls is not the
above Exception Semantics (since the routine will not execute again) but
the Once Routine Execution Semantics, which specifies that any such calls
must trigger the exception again.

Type of an exception
The type of a triggeredexception is thegeneratingtype of the
object to which the value oflast_exceptionis attached per step1
of the Expression Semantics rule.
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alue
Exception Cases

The triggering of anexception in a featuref called by a featurecaller results in the setting of the
following properties, accessible through features of the exception class instance to which the v
of last_exception is attached, as per the following table, where:
• TheRecipient is eitherf or caller.

• “Type” indicates the type of the exception (a descendant ofEXCEPTION).

• If f is theroot procedure, executed during the original system creation call, the value ofcaller as
given below does not apply.

Recipient Type
Exception during evaluation caller [Type of exception as triggered]
of invariant on entry
Invariant violation on entry caller INVARIANT_ENTRY_VIOLATION

Exception during evaluation caller [Type of exception as triggered]
of precondition
Exception during evaluation SeeOld Expression Semantics
of Old expression on entry
Precondition violation caller PRECONDITION_VIOLATION

Exception in body f [Type of exception as triggered]

Exception during evaluation f [Type of exception as triggered]
of invariant on exit
Invariant violation on exit f INVARIANT_EXIT_VIOLATION

Exception during evaluation f [Type of exception as triggered]
of postcondition on exit
Postcondition violation f POSTCONDITION_VIOLATION
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26.11 EXCEPTION CORRECTNESS

The role of Rescue clauses is to cope with unexpected events. Although in
a well-designed system Rescue clauses will only be executed in rare,
special conditions, they still have an obligation to maintain the consistency
of objects.

This rule specifies the precise effect of an exception occurring anywhere
during execution (including some rather extreme cases, such as the
occurrence of an exception in the evaluation of an assertion). Whether the
“recipient” is f or caller determines whether the execution of the current
routine can be “retried”: per case3of the Exception Semantics rule, aRetry
is applicable only if the recipient is itself. Otherwise a
ROUTINE_FAILURE will be triggered in thecaller.

In the case of anOld expression, a special rule, given earlier, requires
the exception to be remembered, during evaluation of the expression on
entry to the routine, for re-triggering during evaluation of the postcondition
on exit, but only if the expression turns out to be needed then.

Exception Properties

The value of the queryoriginal of classEXCEPTION, applicable
to last_exception, is an EXCEPTIONreference determined as
follows after thetriggering of anexception of typeTEX:
1 • If TEXdoes not conform toROUTINE_FAILURE: a reference

to the currentEXCEPTION object.

2 • If TEXconforms toROUTINE_FAILURE: the previous value
of original.

The reason for this query is that when a routine fails, because execution of
a routinef has triggered an exception and has not been able to handle it
through aRetry, the consequence, per case5 of the Exception Semantics
rule, is to trigger a new exception of typeROUTINE_FAILURE, to which
last_exceptionnow becomes attached. Without a provision fororiginal, the
“real” source of the exception would be lost, asROUTINE_FAILURE
exceptions get passed up the call chain. Queryingoriginal makes it
possible, for any other routine up that chain, to find out theUr-exception
that truly started the full process.
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In particular, a routine failure should leave the current object
(corresponding to the target of the latest call) in a consistent state,
satisfying the invariant, so as not to hamper further attempts to use the
object if another routine is able, through resumption, to recover from the
failure. Also, a Retry instruction, which will restart theFeature_body,
should re-establish the routine’s precondition, if any, since the precondition
is required for theFeature_body to operate properly.

These two requirements yield the notion ofexception correctness, one
of the conditions which make up class correctness. As you may recall, a
class is correct if it is consistent (everyFeature_body, started in a state
satisfying the precondition and the invariant, terminates in a state
satisfying the postcondition and the invariant), loop-correct (loops
maintain their invariant and every iteration decreases the variant), check-
correct (the conditions of Check instructions are satisfied) and exception
correct, a notion which was sketched in the general discussion of
correctness but may now be made more precise.

Here .INVC is the class invariant andprer is the precondition ofr.

The definition involves the rescue block of a routine. Remember that
the rescue block always exists: if the routine has a Rescue clause, then its
Compound is the rescue block; otherwise the rescue block is the local
version ofANY’s proceduredefault_rescue.

As with other correctness conditions, exception correctness should
ideally be provable automatically, but in practice you will most likely have
to ascertain it through informal means.

Exception-correct

A routine r of a classC is exception-correct if and only if, for
every branchb of its rescue block:
1 • If b ends with aRetry: { true}  b { INVC and thenprer}

2 • If b does not end with aRetry: { true}  b { INVC}

In this rule, INVC is the invariant of classC and prer is the
precondition ofr.

Chapter9 addressed
correctness, with the
full definition on page
====, as part of 9.16.
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26.12 FINE-TUNING THE MECHANISM

---- REWRITE In some cases it is useful to have finer control over the
handling of exceptions. Features from the Kernel Library class
EXCEPTIONSaddress this need. These features will be available to any
descendant ofEXCEPTIONS: to use them in a classC which is not already
a descendant, just add a Parent part forEXCEPTIONSto the Inheritance
clause ofC.

Let us take a look at the facilities offered. A later chapter gives the full
short-flat form ofEXCEPTIONS.

First,EXCEPTIONSintroduces an integer code for every possible type
of exception. Examples include

Ignoring, continuing an exception
It is possible, through routines of the Kernel Library class
EXCEPTION, to ensure thatexceptions of certain types be:
• Ignored: lead to no change of non-exception semantics.

• Continued: lead to execution of a programmer-specified
routine, then to continuation of the execution according to non-
exception semantics.

The details of what types of exceptions can be ignored and continued, and
how to achieve these effects, belong to the specification of class
EXCEPTION and its descendants.

Precondition (code for a violated precondition)

Routine_failure

Incorrect_inspect_value

Void_call_target

No_more_memory

See chapter37 about
the details of class
EXCEPTIONS.
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The integer-valued featureexceptionis then guaranteed, after an exception
occurs, to have the value of the code for that exception. This makes it
possible to write Rescue clauses such as

The call todefault_rescuein the Else_part is not required, of course, but
as a general guideline if you do need to treat certain categories of exception
in a special way then such treatment should remain simple and apply to a
small number of categories. You should handle the remaining categories
throughdefault_rescue or another general-purpose mechanism.

Another integer-valued feature,original_exception, complements the
information given byexception. It yields the "real" cause of an exception,
disregarding any resulting failures of intermediate routines. Consider for
an example a Postcondition violation which causes a routinet to fail,
triggering an exception whose recipient ist’s caller,s; the Rescue clause of
s, if any, does not execute a Retry, sos in turn fails, sending an exception
to its own caller,r. If the Rescue clause ofr looks atexceptionto determine
what happened, it will find as exception code the value ofRoutine_failure.
This gives the immediate cause ofr’s exception (the failure ofs) but not the
real source of the problem –t’s Postcondition violation. Feature
original_exceptionprovides more precise information in such cases. Its
value is the code of the oldest exception not handled by a Retry. In the
example, this will be the value ofPrecondition.

Features which provide further information about the original exception
includeroutine_name(name of the original recipient) andtag_name(tag
of the violated Assertion_clause, for an assertion violation).

Class EXCEPTIONalso provides a way to raise an exception on
purpose. This is called adeveloper exceptionand is triggered by the
procedure call

rescue

if exception= No_more_memory
then

... Specific treatment...

else

default_rescue

end

raise (code, name)
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whose arguments are an exception codecode, which must be a negative
integer (non-negative values are reserved for predefined exceptions), and a
string namedescribing the nature of the exception. To obtain that string
when handling the exception, use featuredeveloper_exception_name.

To know the general category of an exception given of a givencode
(usuallyexceptionororiginal_exception), use one of the boolean functions

To prescribe afalse alarm response you may use one of the procedure
calls

A call to ignore simply prescribes that later occurrences of the event
with the givencode must not cause an exception.

After a call tocontinuewith codeas argument, any occurrence of the
corresponding signal will cause execution of the appropriate version of
procedurecontinue_action, followed by continuation of theFeature_body
which was the signal’s recipient. Procedurecontinue_actionis introduced
in classEXCEPTIONSwith an empty body, but (likedefault_rescue) may
be redefined in any class to yield specific behavior. The procedure has an
integer argumentcodeto which the exception handling mechanism, when
callingcontinue_actionas a response to an exception for which "continue"
status has been prescribed, will attach the code of that exception.

The false alarm policy would not make sense for exceptions which
cause irrecoverable damage to the current routine execution. For example,
an assertion violation indicates a breach of some consistency condition,
making it impossible to continue normal execution. For this reason,
continuehas the preconditionis_signal(code). No such precondition has
been imposed onignore in deference to the potential needs of developers
of low-level systems software; except in very special cases, however,
ignore must only be applied to signals.

To restore the default behavior after a call toignoreor continue, use the
call

is_assertion_violation(code)
is_developer_exception(code)
is_signal(code)

ignore (code)

continue (code)

catch (code)
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To know the behavior specified forcode, use

whose result, an integer, is given by one of the constantsCaught (the
default),Continued andIgnored.

As a final comment, it is useful to note once again that the best
exception handling is simple and modest. The facilities of class
EXCEPTIONSare there to give you full access to the context of exceptions
if you need it; remember, however, that if you are trying to do something
complicated in a Rescue clause, you are probably misusing the mechanism.

Non-trivial algorithms belong in theFeature_body; the Rescue clause is
there to recover in a simple and non-committing way from abnormal
situations which it was absolutely impossible to avoid.

26.13 OVERVIEW

As explained in the discussion of exceptions, it is sometimes useful to
control the details of the exception handling mechanism. Applications
include:

• Finding out the nature of the latest exception (such as assertion
violation, running out of memory or platform signal) and any other
property, such as the Assertion_tag of a violated assertion clause.

• Handling certain kinds of exception in a special way.

• Raising special developer-defined exceptions.

• Prescribing that certain exceptions must be ignored at run-time, or must
let execution continue after a call to a specified procedure.

All these facilities for fine-tuning the exception mechanism are
available through features of classEXCEPTIONSfrom the Kernel Library,
which is the subject of this chapter. To use these facilities in a classC, it
suffices to ensure thatC is a descendant ofEXCEPTIONS.

Since the key concepts were introduced in the general discussion of
exceptions, the rest of this chapter will simply give the flat-short form of
class EXCEPTIONS, after a few comments about platform-dependent
signal codes.

26.14 PLATFORM-DEPENDENT SIGNAL CODES

The exception codes introduced in classEXCEPTIONS, such as
No_more_memoryor Precondition, cover exceptions which will arise in
the same manner on every platform.

status (code)

Chapter26 discussed
exceptions.

"Platform" means
hardware plus operat-
ing system. See2.12,
page 101.

See the explanations in
26.12, page 709.
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Some platform-dependent machine signals, however, will also trigger
exceptions. Unix systems, for example, may raise signals such as "change
of child process status" or "writing on a pipe with no one to read it".

To enable systems to specify platform-specific exception handling
when appropriate, Eiffel implementations may include library classes
extending the features ofEXCEPTIONSwith platform-specific exception
handling features, in particular exception codes. The recommended names
for such classes are of the formplatform_EXCEPTIONS, for example
UNIX_EXCEPTIONS, MS_DOS_ EXCEPTIONSand so on. Classes which
need the specific features should have one of these classes, in addition to
EXCEPTIONS, as one of their ancestors.

A system which uses one of these platform-specific classes will of
course require some adaptation to be ported to other platforms. If you do
need platform-specific exception handling, you should severely restrict the
number of classes that inherit from the appropriate
platform_EXCEPTIONSclass, so as to facilitate any eventual porting
effort.

No platform-dependent
exceptionclassappears
in this book.
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26.15 CLASSEXCEPTIONS

Here is the short form of classEXCEPTIONS.

-- Facilities for controlling exception handling.
class interface EXCEPTIONSexported features
assertion_violation: BOOLEAN
-- Was last exception due to a violated assertion or
-- non-decreasing variant?
catch (code: INTEGER)
-- Make sure that any exception of code code will be caught.
-- This is the default. (See continue, ignore.)
ensure
status (code) = Caught
Check_instruction: INTEGER
-- Exception code for violated Check
Class_invariant: INTEGER
-- Exception code for violated class invariant
class_name: STRING
-- Name of the class containing the routine which
-- was the recipient of oldest exception not leading to a Retry.
continue (code: INTEGER)
-- Make sure that any exception of code code will cause
-- execution to resume after a call to continue_action (code).
-- This is not the default. (See catch, ignore.)
require
must_be_a_signal: is_signal (code)
ensure
status (code) = Continued
continue_action (code: INTEGER)
-- Action to be executed before resuming  normal execution for an
-- exception of codecode, resulting from a signal,
-- on which contine has been called.
-- By default, does nothing; redefine it to get specific behavior.
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require
must_be_continued: status (code) = Continued
developer_exception_name: STRING
-- Name of last developer-raised exception (see raise)
exception: INTEGER
-- Code of last exception that occurred
ignore (code: INTEGER)
-- Make sure that any exception of code code will be ignored.
-- This is not the default. (See catch, continue.)
ensure
status (code) = Ignored
Incorrect_inspect_value: INTEGER
-- Exception code for inspect value which is not one of the
-- inspect constants, if there is no Else_part
is_developer_exception (code: INTEGER): BOOLEAN
-- Is the code of a developer-defined exception (see raise)?
is_assertion_violation (code: INTEGER): BOOLEAN
-- Is the code of an exception resulting from the violation
-- of an assertion (precondition, postcondition, invariant, check)?
is_signal (code: INTEGER): BOOLEAN
-- Is code the code of an exception due to a hardware
-- or operating system signal?
Loop_invariant: INTEGER
-- Exception code for violated loop invariant
Loop_variant: INTEGER
-- Exception code for non-decreased loop variant
meaning (code): STRING
-- Nature of exception of code code, expressed in plain English
message_on_failure
-- Print an Exception History Table in case of failure.
-- (This is the default; see no_message_on_failure.)
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no_message_on_failure
-- Do not print an Exception History Table in case of failure.
-- (This is not the default; see message_on_failure.)
No_more_memory: INTEGER
-- Exception code for failed memory allocation
original_exception: INTEGER
-- Code of oldest exception not leading to a Retry
Postcondition: INTEGER
-- Exception code for violated postcondition
Precondition: INTEGER
-- Exception code for violated precondition
raise (code: INTEGER; name: STRING)
-- Raise a developer exception of code code and name name.
require
negative_code: code< 0
reset_all_default
-- Make sure that all exceptions will lead to their default handling.
reset_default (code: INTEGER)
-- Make sure that exception of code code will lead
-- to its default action.
Routine_failure: INTEGER
-- Exception code for failed routine
routine_name: STRING
-- Name of routine that was recipient of oldest exception
-- not leading to a Retry
status (code: INTEGER): INTEGER
-- Status currently set for exception of code code (default: Caught)
ensure
Result = Caughtor Result = Continuedor Result = Ignored
Caught, Continued, Ignored: INTEGERis unique
-- Possible status for exception codes
tag_name: STRING
-- Tag of last violated assertion clause
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Void_assigned_to_expanded: INTEGER

-- Exception code for assignment of
void value to expanded entity

Void_call_target: INTEGER

-- Exception code for feature called on
void reference

void_call_feature: STRING

-- Name of feature that was called on a
void reference

end interface -- classEXCEPTIONS
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Agents, iterationand introspection
27.1 OVERVIEW

27.2 A QUICK PREVIEW

Why do we need agents? Here are a few examples. This preview skips
many details but will give you an idea of the power of the mechanism; any
apparent mystery will soon be cleared as you read further into the chapter.

Let’s start with a typical need of graphical user interface (GUI)
programming. Using EiffelVision, the multi-platform graphical library of
Eiffel Software, you may write

to addyour_routine— a routine of your application, executing appropriate
operations — to the list of actions triggered by a mouse click onyour_button.
This is all you need to set up the application’s response to such an event.

Objects represent information equipped with operations. These are clearly
defined concepts; no one would mistake an operation for an object.

For some applications — graphics, numerical computation, iteration,
writing contracts, building development environments, “reflection” (a
system’s ability to explore its own properties) — you may find the
operationsso interesting that you will want to defineobjectsto represent
them, and pass these objects around to software elements, which can use
these objects to execute the operations whenever they want. Because this
separates the place of an operation’sdefinition from the place of its
execution, the definition can be incomplete, since you can provide any
missing details at the time of any particular execution.

You can createagent objects to describe such partially or completely
specified computations. Agents combine the power of higher-level
functionals — operations acting on other operations — with the safety of
Eiffel’s static typing system.

your_button. click_actions.extend( )agent your_routine
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The argument toextend, agentyour_routine, is anagent expression. The
keywordagent avoids confusion with an actual routine call: when calling
extend, you don’t want to callyour_routineyet! Instead you pass toextend
an “agent”, whichextendadds to theclick_actionslist for your_button,
enabling EiffelVision to callyour_routinefor every subsequent occurrence
of a click event on the button. The agent includes any context information that
your_routine may need: cursor position, button number, pressure.

Now a numerical example. Over the interval [0, 1], you want to integrate
a functiong (x: REAL): REAL. With your_integratorof a suitable type
INTEGRATOR (detailed later), just use the expression

Again this doesn’t call the routineg, but enablesintegral to call g when it
pleases, as often as it pleases, on whatever values it pleases. We must tell
integral where to substitute such values forx at the places where its
algorithm needs to evaluateg to approximate the integral. This is the role
of the question mark?, replacing the argument tog.

You may use the same scheme in

to compute the integral , whereh is a three-argument

functionh (a: T1; x: REAL; b: T2): REALandu andv are arbitrary values. As
before you will use a question mark at the “open” position, corresponding to
the integration variablex. Two “closed” positions show actual valuesu andv.

Note the flexibility of the mechanism: it allows you to use the same
routine,integral, to integrate a one-argument function such asf as well as
functions such ash involving extra values.

You can rely on a similar structure to provideiteration mechanisms on
data structures such as lists. Assume a classCC with an attribute

and a function

returning true or false depending on a property involvingi. You may write

to denote a boolean value, true if and only if every integer in the listintlist
satisfiesinteger_property. This expression might be useful, for example, in
a class invariant. It will work for any kind ofinteger_property, even if this
function involves arbitrary features of the current object.

Now assume that inCC you also have a list of employees:

and that classEMPLOYEEhas a functionis_married: BOOLEANwith no
argument, telling us about the current employee’s marital status. Then you
may also write inCC the boolean expression

your_integrator. integral ( )

your_integrator. integral ( )

intlist: LINKED_LIST[INTEGER]

integer_property(i: INTEGER): BOOLEAN

intlist. for_all ( )

emplist: LINKED_LIST[EMPLOYEE]

agent g (?), 0.0, 1.0

agent h (u, ?, v), 0.0, 1.0

h (u, x, v) dx
0

1∫

agent integer_property(?)
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to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature callsome_employee. is_married,
but instead of specifying a particular employee we just give the type
{ EMPLOYEE} , to indicate wherefor_all must evaluateis_married for
successive targets taken from the the list.

The{EMPLOYEE} notation replaces the question mark of the previous
examples. Those examples used an argument as the open operand — the
place where the routine will be evaluated — as ininteger_property(?), where
the argument type is clear from the declaration ofinteger_property. But with
is_marriedthe open operand is the target, so we need to specify the type:
many classes may have a function calledis_married.

Note again the flexibility of the iteration mechanism and its adaptation to
the object-oriented form of computation: you can use the same iteration
routine, herefor_all fromLINKED_LIST, to iterate actions applying to either:

• The target of a feature, as withis_married, a feature of class
EMPLOYEE, to be applied to itsEMPLOYEE target.

• The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumenti — and may or may not, in
addition, involve properties of its target, an object of typeCC.

It seems mysterious that a single iterator mechanism can handle both cases
equally well. We will see how to writefor_all and other iterators
accordingly. The trick is that they simply work on their open operands;
when calling them, you choose what to leave open: either the argument as
with integer_property andintegral, or the target as withis_married.

Now assume that you want topassto someobject the mechanisms
needed to execute the cursor resetting and advance operations,start and
forth, on a particular list. Here nothing is left open: you fix the list, and the
operations have no arguments. You may write

All operands — target and arguments — of the agents passed toobjectare
“closed”, soobject can execute call operations on such objects without
providing any further information.

At the other extreme, you might leave an agent expression fully open, as in

so thatobject, when it desires to apply a call operation, will have to provide
both a linked list and an actual argument to executeextend. When as here
all the arguments are open, you may omit the argument list, writing just
agent{ LINKED_LIST[T]} .extend. Such an agent is a “routine object”:
an object representing the routineextendfrom LINKED_LIST, such as
could be used by browsing tools or otherreflection facilities.

emplist. for_all ( )

object. operation( , )

object. operation( )

agent{ EMPLOYEE} . is_married

This is the iterator style
of the C++ STL(Stan-
dard Template Library).

agentyour_list.start agentyour_list.forth

agent{LINKED_LIST[T]} .extend(?)
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To use an agent, a routine such asoperationcan apply to it the procedure
call, passing a tuple of values for the open operands. This will have the
same effect as an execution of the original feature —f, h, integer_property,
is_married, start, forth, extend… — on all the operands, closed and open.

The notation provides an extra degree of flexibility by letting you define
inline agents, which instead of referring to a feature of the class define a
routine text as part of the agent declaration. Inline agents have the same form
as aRoutine body, as in

In these examples the previous forms were simpler and shorter, but inline
agents are useful when you want to express the computation just for the
agent, without making it a routine of the enclosing class. For example you
may define the inline agent

which could be useful in a postcondition

This states that for every elementi of the intervallower |..| upper the
value of the item at positioni (in a structure such as an array or list) is the
sum of the corresponding values ina andb. To obtain the same semantics
without agent arguments, you would need to express the agent as
agent is_sum_of(?, a, b) and define a functionis_sum_ofsuch that
is_sum_of(i, x, y) is true if and only ifitem (i) = x.item (i) + y.item (i).
The semantics is the same, but if you have many properties of this kind
— for example in contracts — the inline form avoids introducing many
specialized functions such asis_sum_of.

In this example the agent represents a function, with an expression as its
body: item (i) = a.item (i) + b.item (i). It is also possible to use an inline
form for a procedure agent, as in

wheredo_allapplies its agent argument to all successive elements in a list;
this increasessum by the total of all employees’ salaries.

For an agent involving a single routine such asinteger_property,
integral, is_married, extendand the other previous examples, the original
non-inline form is shorter, more abstract, and usually preferable.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

-- Means the same as:agent integer_property(?)

-- Means the same as:agent{ EMPLOYEE} . is_married

(agent (i: INTEGER): BOOLEAN
do Result:= (item(i) = a.item(i) + b.item(i)) end)

summed: (lower |..| upper).for_all
((agent (i: INTEGER): BOOLEAN

do Result:= (item(i) = a.item(i) + b.item(i)) end))

emplist.do_all( )

(agent (i: INTEGER): BOOLEANdoResult:= integer_property (i))

(agent(e: EMPLOYEE): BOOLEANdoResult:= e.is_marriedend)

(agent (e: EMPLOYEE) dosum:=sum + e.salaryend)
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27.3 FROM CALLS TO AGENTS

Feature calls and their operands

First we should remind ourselves of the basic properties offeature calls.
When programming with Eiffel we rely all the time on this fundamental
mechanism of object-oriented computation. We write things like

to mean: call featuref on the object attached toa0, with actual arguments
a1, a2, a3. In Eiffel this is all governed by type rules, checkable statically:
f must be a feature of the base class of the typea0; and the types ofa1and
the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaration off.

In a frequent special casea0, the target of the call, is justCurrent,
denoting the current object. Then we may omit the dot and and the target
altogether, writing the call as just

which assumes thatf is a feature of the class in which this call appears. The
first form, with the dot, is aqualifiedcall; the second form isunqualified
(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expression iff is a function or
an attribute, and an instruction iff is a procedure. Iff has been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actuals,(a1, a2, a3).

The effect of executing such a call is to apply featuref to the target
object, with the actuals given if any. Iff is a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

In the examples the operands area0 (or Current in the unqualified version
[U]), a1, a2anda3. Also convenient is the notion ofpositionof an operand:

[Q] a0.f (a1, a2, a3)

[U] f (a1, a2, a3)

Operands of a call
Theoperandsof a call include itstarget (explicit in aqualified
call, implicit in anunqualified call), and its arguments if any.

Operand position
Thetarget of a call hasposition 0. Thei-th actual argument, for
any applicablei, hasposition i.

← Feature calls were
studied in chapter23
and their type proper-
ties in chapter25.

← EveryObject_call
has a target, as defined
on page628.
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Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

Delaying calls

For a call such as the above, we expect the effect just discussed to occur as a
direct result of executing the call instruction or expression: the computation
is immediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and toexecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of agent expressions, which may be described asdelayed calls.

Why would we delay a call in this way? Here are some typical cases:

A •We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the agent
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known as aniterator .
Functionfor_all, used earlier, was an example of iterator.

B •In an iterator-like scheme for numerical computation, we might use a
mechanism that applies a call to various values in a certain interval, for
example to approximate the integral of a function over that interval. The
first example in this chapter relied on such anintegral function.

C •We might want the call to be executed by another software element:
passing an agent object to that element is a way to give it the right to
operate on some of our own data structures, at a time of its own
choosing. This was illustrated with the calls passing toobject some
agent expressions representing operations applicable toyour_list. GUI
examples also belong to that category: to state that a certain action must
be executed whenever a certain event (such as mouse click) occurs on a
certain graphical object (such as a button), we add an agent representing
the action to a list of agents associated with the object and the event.

D •We might want to ensure that the call is executed only when and if
needed, and then only once for any particular object. This would give us
a “once per object” mechanism along the lines of “once functions”
(which are executed once per system).

E •Finally, we may be interested in the agent as a way to gain information
about the feature itself, whether or not we ever intend to execute the call.
This may be part of the more general goal of providingintr ospective
capabilities: ways to enable a software system to explore and manipulate
information about its own properties.

Introspection is also
calledreflection, but the
first term is more accu-
rate.

Once functions see
“ROUTINE BODY”,
8.5,page222.The once
per object mechanism
using agents is
described below.
Introspection is also
calledreflection, but the
first term is more accu-
rate.

Introspection is also
calledreflection, but the
first term appears more
appropriate.
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These examples illustrate one of the differences between an agent
expression and a plain feature call: to execute a feature call we need the
value of all its operands (target and actuals); but for an agent expression we
may want to leave some of the operands open for later filling-in. This is
clearly necessary for casesA andB, in which the iteration or integration
mechanism will need to apply the feature repeatedly, using different
operands each time. In an integration

we will need to applyg to successive values of the interval[a, b].

Agents and their operands

For an agent we need to distinguish between two moments:

Since the only way to obtain an agent initially is throughagent expressions, as
specified next, it is meaningful to talk about the “agent expression defining it”.

For a normal call the two moments are the same. For an agent we will have
one construction time (zero if the expression is never evaluated), and zero
or more call times. At construction time, we may leave some operands
unspecified; they they will be called theopen operands. At call time,
however, the execution needs all operands, so the call will need to specify
values for the open operands. These values may be different for different
executions (different call times) of the same agent expression (with a single
construction time).

There is no requirement to makeall operands open at construction time:
youmayprovidesomeoperands,whichwill beclosed,and leavesomeothers
open. In the example of computing, for some valuesu andv, the integral

whereh is a three-argument function, we pass to the integration mechanism an
agent that is closed on its first and last operands,u andv, but open onx.

Construction time, call time
The construction time of an agent object is the time of
evaluation of the agent expression defining it.
Its call time is when a call to its associated operation is executed.

g (x) dx
x = a

x = b

∫

→ A precise definition
of “open” and
“closed” operands
appears on page758.

Readers familiar with
lambda calculus may
think of open as “free”
and closed as “bound”.
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Nothing forces you, on the other hand, to leaveany operand open. An
agent with all operands closed corresponds to the kind of application called
C above, in which we don’t want to execute the call ourselves but let
another software element carry it out when it is ready. We choose the
construction time, and package the call completely, including all the
information needed to carry it out; the other software element chooses the
call time. This style is used by iterators in the C++ STL library.

At the other extreme, an agent withall operands open has no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicationE: passing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

27.4 AGENT TYPES

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so it denotes an object.

An agent expression has a different status. Since construction time is
separate from call time, the agent expression can onlydenote an object.
That object (an agent) contains all the information needed to execute the
call later, at various call times. This includes in particular:

• Information about the routine itself and its base type.

• The values of all the closed operands.

h (u,  x, v) dx
x = a

x = b

∫
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What is the type of an agent expression? Four Kernel Library classes are
used to describe such types:ROUTINE, PROCEDURE, FUNCTIONand
PREDICATE. Their class headers start as follows:

In theactualclasstexts, the formal generic matters have namesBASE_TYPE,
OPEN_ARGSand RESULT_TYPEto avoid conflicts with programmer-
chosen class names. This chapter uses shorter names for simplicity.

If the associated feature is a procedure the agent will be an instance of
PROCEDURE; for a function or attribute, we get an instance of
PREDICATEwhen the result is boolean, ofFUNCTIONwith any other
type. Here for ease of reference is a picture of the inheritance hierarchy:

The role of the formal generic parameters is:

• BASE: type (class + generics if any) to which the feature belongs.

• OPEN: tuple of the types of open operands, if any.

• RES: result type for a function.

One of the fundamental features of classROUTINE is

deferred class ROUTINE[BASE, OPEN–> TUPLE]

class PROCEDURE[BASE, OPEN–> TUPLE] inherit
ROUTINE[BASE, OPEN]

class FUNCTION[BASE, OPEN–> TUPLE, RES] inherit
ROUTINE[BASE, OPEN]

class PREDICATE[BASE, OPEN–> TUPLE] inherit
FUNCTION[BASE, OPEN, BOOLEAN]

call (v: OPEN)
--Call featurewithall itsoperands,usingvfor theopenoperands.

→ A.6.30 to A.6.32 in
the ELKS chapter,
starting on page1011.

Agent classes
ROUTINE

PROCEDURE FUNCTION

PREDICATE
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In addition,FUNCTION andPREDICATEhave the feature

and, for convenience, the functionitemcombiningcall andlast_result, with
the following specification:

The formal generic parameters forROUTINE, PROCEDURE, FUNCTION
and PREDICATEprovide what we need to make the agent mechanism
statically type-safe.OPEN, a tuple type, gives the exact list of open operand
types; since the argument tocall anditemis of typeOPEN, it is possible from
the software text to check that the actual arguments tocall will at call time be
of the proper types, conforming to the original feature’s formal argument
types at the open positions. The actuals at closed positions are set at
construction time, again with type checking. So the combination of open and
closed actuals will be type-valid for the feature.

ROUTINE, PROCEDURE, FUNCTION and PREDICATE have more
features than listed above; in particular, they provide introspection facilities,
describing properties of the associated routines and discussed below. For a
complete interface specification, see thecorrespondingsections in the
presentation of Kernel Library classes.

27.5 CALL AGENTS

How do we obtain agent objects? The most common construct is acall agent
expression. (We will see the other case,inline agents, in alater section.)

The basic form of a call agent is very simple: just add the keyword
agentat the beginning of a normal feature call. This yields an agent with
operands all closed. To specify open operands, you may:

• Use a question mark? in lieu of an argument.

• Use a type in braces,{ TYPE} , in lieu of the target.

• Omit the argument list altogether, to make all arguments open.

Let’s examine these variants and the associated semantics.

last_result: RES
-- Function result returned by last call tocall, if any

item(v: like open_operands): RES
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)

ensure
set_by_call: Result= last_result

→ SectionsA.6.30 to
A.6.32, starting on
page1011.

→ “USING INLINE
AGENTS”, 27.8,page
746.
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All-closed agents

If you start from a valid call, either qualified or unqualified

you get an agent expression in each case by adding the keywordagent:

Such an agent expression is not a call (instruction or expression) any more,
but an expression of a new syntactic kind,Feature_agent, denoting an
agent, of aPROCEDUREtype if f is a procedure. and aFUNCTIONor
PREDICATEtype if f is a function. Both of these examples have no
arguments, so they are closed on all operands; we will start adding
arguments soon.

You can do with an agent expression all you are used to do with other
expressions. You can assign it to an entity of the appropriate type;
assumingf is a procedure ofaclassCC, you may write, in classCC itself:

Since all operands are closed — we have specified the targeta0and all the
argumentsa1, a2, a3— the second formal generic is justTUPLE, and the
call tocall takes an empty tuple[ ] .

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

wheredo_something, in the corresponding class, takes a formalpdeclared as

or just

presumably to callcall onp at some later stage, as we will shortly learn to
do. This was the schemecalled C in the presentation of example
applications: passing a completely closed agent to another component of
the system, to let it execute the call when it chooses to. For example you
can passagentyour_list.startor agentyour_list.extend(some_value).

[Q] a0.f (a1, a2, a3)
[U] f (a1, a2, a3)

agenta0.f (a1, a2, a3)
agent f (a1, a2, a3)

p: PROCEDURE[CC, TUPLE]
…
p:=
…
p. call ([ ])

object. do_something( )

p: PROCEDURE[CC, TUPLE]

p: PROCEDURE[ANY, TUPLE]

This example assumes
thatCCis non-generic,
so that it is both a class
and a type.

agenta0.f (a1, a2, a3)

agenta0.f (a1, a2, a3)

← SchemeC wason
page724.
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Keeping operands open

The examples just seen are still of limited interest because all their operands
are closed. But you may want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism.

To specify an open target, you will replace the target by its type in
braces,{ TARGET_TYPE} . This is thebrace convention. To specify an
open argument, you will use thequestion mark convention: just replace
the target by a question mark?.

Here are some examples, obtained by starting from the calla0.f (a1, a2, a3)
and opening the target or some arguments.

The respective types of these call expressions are, assuming thatf is a
procedure declared in the base class ofT0, having formals declared of types
T1, T2 andT3:

If f were a function, the types would useFUNCTION instead of
PROCEDURE, with an extra generic parameter representing the result type
(except for a boolean-valued function, which would usePREDICATE).

-- Start with an agent closed on all operands:
s:= agenta0.f (a1, a2, a3)

-- Next, individually open the target and each successive argument:
t:= agent{ T0} .f (a1, a2, a3)
u:= agenta0.f (?, a2, a3)
v:= agenta0.f (a1, ?, a3)
w:= agenta0.f (a1, p, ?)

-- An example with two open arguments, target closed:
x := agenta0.f (a1, ?, ?)

-- Arguments all open, target still closed:
y := agenta0.f (?, ?, ?)

-- Finally, open everything:
z := agent{ T0} .f (?, ?, ?)

s: PROCEDURE[T0, TUPLE]

t: PROCEDURE[T0, TUPLE[T0]]

u: PROCEDURE[T0, TUPLE[T1]]

v: PROCEDURE[T0, TUPLE[T2]]

w: PROCEDURE[T0, TUPLE[T3]]

x: PROCEDURE[T0, TUPLE[T2, T3]]

y: PROCEDURE[T0, TUPLE[T1, T2, T3]]

z: PROCEDURE[T0, TUPLE[T0, T1, T2, T3]]
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Thefirst genericparameter,T0 in all of these examples, represents the
current type (class with generic parameters if any) of the underlying
feature. Here we assume for simplicity thatf comes from a non-generic
classT0.

The second generic parameter, a tuple type, represent the sequence of
types of open operands. For the first example,t, it’s just TUPLE with no
parameters, since the agent has no open operands. For the other examples
the parameters of theTUPLE type represent the types of the open
operands.They indicate what argument types are permissible in calls tocall
(or itemfor a function) on the corresponding agents.

Here indeed are examples of valid uses ofcall on the previous agent
examples. For each of them, the comment on the next line shows how we
would have obtained the same effect through a normal call (call time same
as construction time, not using agents).

It should be clear by now how mechanisms such asfor_all can manage to
work on operations that work on their target, such asis_married, as well as
others that work on an argument, such asis_positive. The type of an agent
only describes, through theOPEN parameter, the tuple of types of
operands. It doesn’t make any difference whether these open operands
come from a target or an argument.

val_0: T0; val_1: T1; val_2: T2; val_3: T3

… Assign values toval_0, val_1, val2, val_3…
s. call ([]) -- Note empty tuple: no open operands

-- a0.f (a1, a2, a3)

t. call ([val_0])
-- val_0.f (a1, a2, a3)

u. call ([val_1])
-- a0.f (val_1, a2, a3)

v. call ([val_2])
-- a0.f (a1, val_2, a3)

w. call ([val_3])
-- a0.f (a1, a2, val_3)

x.call ([val_2, val_3])
-- a0.f (a1, val_2, val_3)

y. call ([val_1, val_2, val_3])
-- a0.f (val_1, val_2, val_3)

z. call ([val_0, val_1, val_2, val_3]) -- Must provide all operands
-- val_0.f (val_1, val_2, val_3)

→ “THE BASECLASS
AND TYPE”,  27.10,
page 750.

← “CURRENTTYPE,
FEATURES OF A
TYPE”,  12.11, page
365
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For example, both of the following boolean expressions

will be valid if:

• Class EMPLOYEE has, as previously assumed, a feature
is_married: BOOLEAN.

• object is of type SOME_TYPE, and SOME_TYPEhas a feature
is_married(e: BOOLEAN).

The brace convention

Two of the examples used the brace convention to keep the target open:

For the target, as noted, the question mark convention is not applicable,
since the feature name does not suffice to identify the target type: many
classes may have a feature calledf.

For arguments we have no such problem since once we knowf and its
class we know the declared type of each off’s formal arguments. This
justifies the question mark convention for arguments.

Omitting the argument list

A further simplification of the notation is available whenall arguments are
open, as inagent a0.f (?, ?, ?). Then you may omit the parenthesized
argument list, as in

A call of the form a0.f would be invalid, sincef always requires three
actual arguments. But with anagentexpression the convention of omitting
arguments creates no ambiguity; it simply means that we consider an agent
built from f with all arguments open.

emplist. for_all (agent{ EMPLOYEE} . is_married)
emplist. for_all (agent object.is_married(?))

t:= agent{ T0} .f (a1, a2, a3)

z := agent{ T0} . f (?, ?, ?)
-- Also expressible (see below) as just:agent{ T0} . f

agent
-- Abbreviatesagenta0.f (?, ?, ?)

Applicable in any
class text.

a0.f



§27.6  USING AGENTS 733
This fully abbreviated form has the advantage of conveying the idea that
the denoted agent is a true “feature object”, carrying properties of the
feature in its virginal state, not tainted by any particular choice of actual
argument. The last two variants shown do not even name a target. This is
the kind of object that we need for suchintrospectiveapplications as
writing a system that enables its users to browse through its own classes.

A summary of the possibilities

As a summary of the preceding examples, here is a summary of the ways
to build a call agent:

27.6 USING AGENTS

Although we have studied only one of the two syntactical forms of agents,
call agents (the other is inline agents), and not yet taken the trouble to look
at the syntax, validity rules and precise semantics, we have enough
background to explore applications of agents, starting with the examples
sketched at the very beginning of this chapter, which we can now revisit
and extend. We’ll see how to make them work in practice: not just the client
side — registering an action to be executed for a certain GUI event,
integrating a function, iterating an operation — but the suppliers too: the
event processing, the integrator, the iterators.

Syntactical forms for a call agent
A call agent is of the form

agentagent_body
where agent_bodyis a Call, qualified (as in x.r (…)) or
unqualified (as inf (…)) with the following possible variants:
• You may replace any argument by a question mark?, making

the argument open.

• You may replace the target, by{ TYPE} whereTYPE is the
name of a type, making the target open.

• You may remove the argument list(…) altogether, making all
arguments open.

This is not a formal syntax definition, but a summary of the available forms
permitted by the syntax and validity rules that follow.

→ The rules staart with
“AGENT SYNTAX”,
27.11, page 751.
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GUI programming: establishing a direct connection to the Business Model

The first example illustrated the EiffelVisionstyle of GUI programming.
We wrote

to specify thatyour_routinemust be executed whenever thebutton_press
event occurs onyour_buttonduring execution. Here is how things work. In
your application,your_buttondenotes a graphical object, variously known
as a “control” (the Windows terminology), a “widget” (the X Windows
terminology) or a “context”;click denotes one of the events that may occur
on this control. The listyour_button. click_actions contains agents,
representing the actions to be executed when the event occurs on the
control. This is a plain list (from the EiffelBase library), to which we may,
as here, apply the procedureextend, adding a new item at the end.

When EiffelVision detects that the event has occurred on the button, it
will execute, for every elementitem of the list of agents, a callsuch as

For the listitem that representsyour_routine, this will produce what we
wanted: a call toyour_routine in response to the event.

This setup assumes thatyour_routineis a routine without arguments. In
reality, a routine to be executed as a result of a mouse event, such as a click,
may need the x, y mouse coordinates of the event. Let’s call it
your_routine2. What EiffelVision actually executes is

using as arguments the cursor coordinates, part of the event’s information
recorded in the event. This assumes of course thatyour_routine2can deal
with these arguments. Ifyour_routine2indeed takes two real values as
arguments, the previous form of registering the agent

is still applicable; as you will remember, it is a shortcut for

your_button. click_actions.extend(agent your_routine)

item.call ([])

item.call ([mouse_horizontal, mouse_vertical])

your_button. click_actions.extend(agent your_routine2)

your_button. click_actions.extend(agent your_routine(?, ?)

The actual EiffelVision
events areselect and
pointer_button_press..

The actual version
needs arguments to
your_routine; see next..
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Now assume thatyour_routineis a routine from the “Business Model” part
of your application, meaning the part of the software that takes care of
doing the real processing, independently of any GUI. Thex andy values
might be only some of the arguments thatour_routineneeds. For example
your_routine might be the procedure

which, in a cartographical application, computes statistics for a certainyear
for the city closest to positionsx andy on the map for a certaincountry.
When loading the map for that country you may registercompute_stats:

The beauty of the notion of closed and open arguments is that you can set
some values (here the country and the year) at construction time, and leave
others (here the mouse coordinates) to be filled in at call time.

To the EiffelVision mechanism, there is no difference between this case
usingcompute_stats— a routine with four arguments, two of which we
have closed at construction time — and the previous one involving
your_routine2and its two open arguments. The call executed by the
EiffelVision side, shown above as

works properly in both cases.

This scheme, relying on open and closed arguments, has crucial
practical consequences for the programming of GUI applications.
Following the MVC model introduced by Smalltalk, it is often stated that
GUI applications should include three components:

• Model(the acronym’s M), called theBusiness Modelabove: this is the
part that does the actual computation, data manipulation and processing.
A routine such ascompute_stats, describing some important operation
of the Business Model, belongs to this part of the system.

• View(the “V”): the purely graphical part of the application, taking care
of presenting information visually and interacting with users. Notions
such as buttons, other controls and events belong to that part.

• Controller (the “C”): software elements that connect the model with the
view, by specifying what operations from the model must be executed
in response to what user interface events.

compute_stats(country: COUNTRY; year: INTEGER; x, y: REAL)

your_button. click_actions.extend
(agent compute_stats(Usa, 2002, ?, ?))

item.call ([mouse_horizontal, mouse_vertical])
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Without agents, the Controller part, serving as glue between Model and
View, can take up a significant amount of code, based for example on
command classes. As the last example indicates, using agents can bring
the need for such glue code down to a minimum, or even remove it
altogether. The only Controller element that we used in this example to
connect the button and event to the routinecompute_statsfrom our model
was the agentagent compute_stats(Usa, 2002, ?, ?). You don’t have to
write any other code: no new class, not even any special instructions.

This is one of the great benefits of agents for GUI programming, as used
extensively in EiffelVision:you directly connect elements from the
Business Model to elements from the User Interface, without requiring
any “glue code”. The notion of open and closed operands gives us
remarkable flexibility: as long as a routine from the Business Model, such
ascompute_stats, takes arguments representing the coordinates, it doesn’t
matter what positions these arguments have in the routine, and what others
it may have. Just leave thex andy arguments open when you connect the
routine to the interface.

This ability to plug elements of the Business Model directly into the
user interface is one of the principal attractions of the agent model.

One of the uses of command classes is to supportundoing and redoing in an
interactive system. It is easy to see how to provide this through agents too: just
passtwoagents, one representing the “do” operation and the other representing
the “undo”. This technique — whose details the reader is invited to spell out —
is used in many of ISE’s interactive products supporting undo and redo.

Integrating a function

The next set of examples was about integration. We assumed functions

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

We declare

g (x: REAL): REAL
h (x: REAL; a: T1; b: T2): REAL

your_integrator: INTEGRATOR

The command class
technique is described
in detail in the book
“ Object-Oriented Soft-
wareConstruction,2nd
edition.

h (x, u, v) dx
x = 0

x = 1

∫g (x) dx
x = 0

x = 1

∫

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
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and, with the proper definition of functionintegral in classINTEGRATOR,
to be seen shortly, we will obtain the integrals through the expressions

The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values forx when evaluatingg or h.

Note that if we wanted in classD to integrate a real-valued function
from classREAL, such asabs which is declared inREAL as

we would obtain it simply through

Let us now see how to write functionintegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaluatef for various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause stating thatstep
is positive. Then we may writeintegral as:

The boxed expression is where the algorithm needs to evaluate the function
f passed tointegral. Remember thatitem, as defined in classFUNCTION,
calls the associated function, substituting any operands (herex) at the open
positions, and returning the function’s result.The argument ofitem is a
tuple (of typeOPEN, the second generic parameter ofFUNCTION); this is
why we need to enclosex in brackets, giving a one-argument tuple:[x].

In the first two example uses,agent g (?) andagent h (?, u, v), this
argument corresponds to the question mark operands tog andh. In the last
example the call expression passed tointegral was agent { REAL} .abs,
where the open operand is the target, represented by{ REAL} , and
successive calls toitem in integralwill substitute successive values ofx as
targets for evaluatingabs.

In the case ofh, the closed operandsu andv are evaluated at the time of
the evaluation of the expressionagent h (?, u, v), and so they remain the
same for every successive call toitemwithin a given execution ofintegral.

your_integrator. integral (agent g (?), 0.0, 1.0)
your_integrator. integral (agent h (?, u, v), 0.0, 1.0)

abs: REAL
-- Absolute value

do … end

your_integrator. integral (agent{ REAL} .abs, 0.0, 1.0)
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Note the typeFUNCTION [ANY, TUPLE [REAL], REAL] declared in
integral for the argumentf. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameter,ANY) that has one open operand of typeREAL(hence
TUPLE [REAL]) and returns a real result (henceREAL). Each of the three
example functionsg, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Iteration examples

The next set of initial examples covered iteration. In a classCCwe want to
manipulate both a list of integers and a list of employees

and apply the same functionfor_all to both cases:

integral
(f: FUNCTION[ANY, TUPLE[REAL], REAL];
low, high: REAL): REAL

-- Integral off over the interval [low, high]
require

meaningful_interval: low <= high
local

x: REAL
do

from
x := low

invariant
x >= low ; x <= high+ step
-- Result approximates the integral over
-- the interval [low, low.max (x – step)]

until  x > high loop
Result:= Result+ step ∗
x := x + step

end
end

intlist: LINKED_LIST[INTEGER]
emplist: LINKED_LIST[EMPLOYEE]

if intlist. for_all (agent is_positive(?)) then … end
if intlist.for_all (agent over_threshold(?)) then … end

if emplist.for_all (agent{ EMPLOYEE} .is_married) then … end

f.item([x])
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The functionfor_all is one of the iterators defined in classTRAVERSABLE
of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such asTREEand LINKED_LIST. This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

Our examples use three such properties of a very different nature. The
first two are functions of the client classCC, assessing properties of their
integer argument. The result of the first depends only on that argument:

Alternatively the property may, as in the second example, involve other
aspects ofCC, such as an integer attributethreshold:

Hereover_thresholdcompares the value ofi to a field of the current object.
Surprising as it may seem at first, functionfor_all will work just as well in
this case; the key is that the call expressionagentover_threshold(?), open
on its argument, is closed on its target, the current object; so the agent
object it produces has the information it needs to access thethresholdfield.

In the third case, the argument tofor_all is agent
{ EMPLOYEE} .is_married; this time we are not using a function ofCCbut
a functionis_married from another classEMPLOYEE, declared there as

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass it tofor_all: it suffices
to make the target open.

The types of the call expressions are the following:

is_positive(i: INTEGER): BOOLEAN
-- Is i positive?

do Result:= (i > 0) end

over_threshold(i: INTEGER): BOOLEAN
-- Is i greater thanthreshold?

do Result:= (i > threshold) end

is_married: BOOLEANis do ... end

PREDICATE[CC, TUPLE[INTEGER]]
-- In first two examples (is_positive andover_threshold)

PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]]
-- In theis_marriedexample

Thisassumesagain that
CC is non-generic, so
that it is both a class
and a type. Remember
that aPREDICATEis a
FUNCTIONwith a
BOOLEAN result type.
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You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions

assuming inCC andEMPLOYEE, respectively, the functions

for arbitrary typesT1, ...,T5. Since operandse1, ...,e5are closed in the calls,
these types do not in any way affect the types of the call expressions, which
remain as above:PREDICATE [CC, TUPLE [INTEGER]] and
PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLE[G]. Some of the iterators are unconditional, such as

intlist .for_all (agent some_criterion(e1, ?, e2, e3))

emplist. for_all (agent{ EMPLOYEE} .some_function(e4, e5)

some_criterion(a1: T1; i: INTEGER; a2: T2; a3: T3) -- In CC

some_function(a4: T4; a5: T5) -- In EMPLOYEE

do_all (action: ROUTINE[ANY, TUPLE [G]])
-- Apply action to every item of the structure in turn.

require
… Appropriate preconditions …

do
from  startuntil  off loop

action.call ([item])
forth

end
end
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This uses the four fundamental iteration facilities, all declared in the most
general form possible asdeferredfeatures inTRAVERSABLE: start to
position the iteration cursor at the beginning of the structure;forth to
advance the cursor to the next item in the structure;off to tell us if we have
exhausted all items (not off is a precondition offorth); and item to return
the item at cursor position.

The argumentaction is declared asROUTINE [ANY, TUPLE [G]] ,
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter ofTRAVERSABLE,
representing the type of the elements of the traversable structure. Feature
item indeed returns a result of typeG (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expectaction to denote a procedure, so its type could be more
accurately declared asPROCEDURE[ANY, TUPLE [G]] . UsingROUTINE

leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

Wheredo_all appliesaction to all elements of a structure, other iterators
provide conditional iteration, selecting applicable items through another
call expression argument,test. Here is the “while” iterator:

while_do
(action: ROUTINE[ANY, TUPLE[G]]
test: PREDICATE[ANY, TUPLE[G]])

-- Apply action to every item of structure up to,
-- but not including, first one not satisfyingtest.
-- If all satisfytest, apply to all items and moveoff.

require
… Appropriate preconditions …

do
from  startuntil

off or else not
loop

forth
end

end

Descendants ofTRA-
VERSABLEeffect these
featuresinvariousways
to provide iteration
mechanisms on lists,
hash tables, trees and
many other structures.

action. test([item])

action. call ([item])
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Note how the algorithm appliescall to action, representing a routine
(normally a procedure), anditem to test, representing a boolean-valued
function. In both cases the argument is the one-element tuple[item].

The iterators ofTRAVERSABLEcover common control structures:
while_do; do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applyaction to all items up toand includingfirst one
satisfyingtest); until_do; do_until; do_if.

Yet another iterator ofTRAVERSABLEis for_all, used in earlier
examples. It is easy to write afor_all loop algorithm similar to the
preceding ones. Here is another possible definition, in terms ofwhile_do:

using a procedurenothing (x: G) which has no effect (but needs an
argumentx for typing reasons, since the first argument ofwhile_domust be
of type ROUTINE [ANY, TUPLE [G]] ). It is trivial to definenothing in
terms ofproceduredo_nothing, from classANY. We applynothingas long
astestis true of successive items; if we find ourselvesoff, we return true;
otherwise we have found an element not satisfying thetest.

Assuming a proper definition ofdo_until, the declaration ofexists,
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

for_all (test: PREDICATE[G, TUPLE[G]]):  BOOLEAN
-- Do all items satisfytest?

require
… Appropriate preconditions …

do

Result:= off
end

exists(test: PREDICATE[G, TUPLE[G]]):  BOOLEAN
-- Does at least one item satisfytest?

require
… Appropriate preconditions …

do

Result:= not off
end

while_do(agentnothing(?), test)

→ do_nothing is cited
in 35.6, page 930.

It is possible to avoid
defining a procedure
nothing by using an
inline agent.

do_until(agentnothing(?), test)
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27.7 TWO ADVANCED EXAMPLES
Before moving on to the last details of the agent mechanism, let’s gain
further appreciation for its power and versatility by looking at two
interesting applications, error processing and “once per object” (followed
in the next section by examples of the inline form).

Error processing without the mess
The first example addresses a frequent situation in which we perform a
sequence of actions, each of which might encounter an anomaly that
prevents continuing as hoped. The problem here is that it’s difficult to avoid
a complex, deeply nested control structure, since we may have to get out at
any step. The straightforward implementation will look like this:

For example we may want to do something with a file of namepath_name.
We first test that thatpath_nameis not void. Then that the string is not
empty. Then that the directory exists. Then that the file exists. Then that it
is readable. Then that it contains what we need. And so on. A negative
answer at any step along the way must lead to reporting an error situation
and aborting the whole process.

The problem is not so much the nesting itself; after all, some algorithms are
by nature complex. But often the normal processing is not complicated at all; it's
the error processing that messes everything up, hiding the “useful” processing in
a few islands lost in an ocean of error handling. If the error processing is different
in each case (not ok1, not ok2and so on) we can't do much about it. But if it is
alwaysof the form: “Record theerror sourceand terminate thewhole thing”, then
the above structure may seem too complicated. Although we may address this
issue through exceptions, they are often overkill.

An agent-based technique is useful in some cases. It assumes that you
write the various actions —action1 ... action3 above — as procedures,
each with a body of the form

with execution_okrepresenting the condition that must be satisfied for the
processing to continue. Then you can rewrite the processing above as just:

action1
if  ok1then

 action2
if  ok2then

 action3
... More processing, more nesting ...

end
end

...Try to do what's needed...
controlled_check (execution_ok, "...Appropriate message...")
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This linear structure is much simpler than the original.

The features whose names start withcontrolled_come from the EiffelBase
classCONTROLLED_EXECUTION, of which the class containing the above
scheme should be a descendant. These procedures are not difficult to write;
for example controlled_check sets controlled_glitch and
controlled_glitch_message, andcontrolled_execute lookslike this:

Once per object

The second example, also supported by an EiffelBase class, provides a
“once per object” mechanism.

You know, of course, Eiffel’s“once routines”, executed only once per
system execution. They define a “once per class” mechanism: all instances
of a class share the result of a once function. (All these concepts are
applicable to procedures, but for this discussion we restrict ourselves to
functions.) Now assume you need functions that compute a result specific
to each instance of the class, and computed just once for that instance, the
first time it’s requested — if at all.

if controlled_glitchthen
warning(controlled_glitch_message)

-- Procedurewarning is an error reporting mechanism
end

controlled_execute
(actions: ARRAY [PROCEDURE [ANY, TUPLE]])

-- Executeactions, stopping if encountering a glitch.
local

i: INTEGER
do

from
controlled_glitch := False; i := actions.lower

until i > actions.upperor else controlled_glitchloop

i := i + 1
end

end

controlled_execute([
agentaction1,
agentaction2 (...),
agentaction3(...)
])

The routine as it appears
inthelibraryhasafewex-
tra instructions to record
theglitchstepand,onop-
tion, raise an exception.

actions.item(i).call ([ ])

← For an introduction
to once routines see
“ROUTINE BODY”,
8.5, page 222.
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A typical application would be large pieces of information associated
with objects of a certain type, but stored in a database; for example each
instance of a classCOMPANYmay havestock_historyinformation, of type
HISTORY, which may be huge. We only want to retrieve the information on
demand; given the size of the information and the number of instances of
the class, it is not acceptable to load everything ahead of time. Even if an
instance ofCOMPANYis in memory, we want to retrieve the associated
HISTORYfrom the database only when and if we need access to the
company'sstock_history.

Agents provide us with a general solution to all problems of this kind.
In classCOMPANY you will simply declare

and obtain the value, when and if needed, as

Hereretrieved_historyis the function that computes the needed result —
the one that you want to call once for each object. That's all you have to do!
Note that this scheme allows you to have as many “once per object”
functions as you like in any given class. It relies on a general-purpose
EiffelBase classONCE_PER_OBJECT of the following form:

stock_history: ONCE_PER_OBJECT[HISTORY]

stock_history.item(agentretrieved_history)

expanded class
        ONCE_PER_OBJECT[G]
feature -- Access

item(f: FUNCTION [ANY, TUPLE, G]): G
-- Value off, computed once for each object;
-- subsequent calls return same value for same object.

do
if not  computed then

internal_result:= f.item([ ])
computed:= True

end
Result:= internal_result

end
feature { NONE} -- Implementation

computed: BOOLEAN
-- Has  item already been requested?

internal_result: G
-- Result, if already computed

end
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27.8 USING INLINE AGENTS

The agents seen so far are of theCall_agentkind, relying on class features,
such asf andg (integration examples),integer_propertyand is_married
(iterator examples),compute_stats (EiffelVision example) and others.

Sometimes, theonly reason for writing a certain computation is to
define an agent from it. To avoid adding a feature that will make the
enclosing class more complicated, you may write the algorithm within the
agent. The syntactical construct for thisinline case, previewed at the
beginning of this chapter, mirrors the definition of a routine — although,
like any other agent construct, it is syntactically an expression. Here are
some examples of inline agents, all to be used as expressions::

As noted in the comments, the first two of these examples haveCall_agent
equivalents, since they directly rely on existing routines of some class. But
in the last two cases, there are no such routines.

The third agent (for example) denotes an object representing a boolean-
valued operation that, for two objects of typeEMPLOYEE, returns true if and
only it the querysalaryyields a higher result for the first than for the second.

It is still possible to use aCall_agentin these cases, but this requires adding
features to the enclosing class:

(agent(i: INTEGER): BOOLEANdo Result:= is_positive(i) end)
-- Equivalent toagent is_positive(?)

(agent(e: EMPLOYEE): BOOLEANdoResult:= e.is_marriedend)
-- Equivalent toagent{EMPLOYEE} .is_married

(agent(e, f: EMPLOYEE): BOOLEAN
do Result:= (e.salary> f.salary) end)

(agent(e, f: EMPLOYEE; p: POSITION): BOOLEAN
do Result:= (e.job = p) and (f.job = p)) end)

higher_salary(e, f: EMPLOYEE): BOOLEAN
-- Doese have a higher salary thanf?

do
Result:= (e.salary> f.salary)

end

same_job(e, f: EMPLOYEE; pos: POSITION): BOOLEAN
-- Do e andf both have positionpos?

do
Result:= ((e.job = pos) and (f.job = pos))

end

agentis_positivemeans
the same asagent
is_positive(?).
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to enable rewriting the calls asagenthigher_salary(abbreviating, as usual,
agenthigher_salary(?, ?)) andagentsame_job. But if the only use of the
given little algorithms is to define the corresponding agents, for example to
pass them to some iterators, then you may want to avoid burdening the
enclosing class with such routines, using inline agents instead.

The inline agents shown so far denote functions (FUNCTION or
PREDICATE). Here is an example that passes an inline procedure agent to
an iterator, to raise by 50 percent the salary of every employee called “Tina”:

Therequire … do… endpart is a specimen ofRoutine; an inline agent indeed
usesexactly thesameRoutineconstruct as the declaration of aroutine in a
class; so it can have all the applicable clauses, such asPreconditionhere,
but alsoLocal_declarations, Postcondition andRescue.

We can use an inline agent to simplifiy theearlierdefinition of for_all
in terms ofwhile_do, which required a functionnothing (x: G) because
do_nothingfrom ANY, with no argument, has the wrong signature. An
inline agent avoids this:

Inline agents do not give us anything fundamentally new, since we can
always use call agents instead. They are useful if you want to avoid features
such assame_job andnothingwhose only purpose is to define agents.

The methodological adviceis clear: if the computation becomes
complex, it is usually better to add a feature to the class. The agent passed
as argument todo_all in the last example is already complex enough to
justify writing a separate function instead.

The inline form is particularly useful to express advanced contract
specifications. Here is an example. Assume that in a class describing
sequential structures (such asLIST [G] in EiffelBase) you write a
procedure that appends an element. It might include this postcondition:

emplist.do_all
((agente: EMPLOYEE)

require
employee_exists: e /= Void

do
if equal(e.first_name, once"Tina") then

e.set_salary(1.5 ∗ e.salary)
end

end))

for_all (test: PREDICATE[G, TUPLE[G]]):  BOOLEAN
-- Do all items satisfytest?

do
while_do( , test)
Result:= off

end

→Definingthestringas
once is not strictly nec-
essary but improves per-
formance by avoiding
repeated evaluations;
see“Basic manifest
strings”,  page 796

← “FEATURE BOD-
IES”,  5.11, page 143.

← Page742

(agent(x: G) do do_nothingend)
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In the last postcondition clause — the one of interest for this discussion —
1 |..| old countis the interval from 1 toold count, to whose itemsfor_all
applies the agent property on the next line. The property expresses that the
item at positioni, for arbitraryi, is equal to the original item at that position
(more precisely, to the item at positioni in old twin, a copy of the list taken
on entry to the procedure). This is typical of how agents enable us to
express non-trivial postcondition or invariant properties, stating that a
whole set of items have not changed, or have a certain association with the
corresponding set of items in another structure.

We could restate the inline agent (the argument tofor_all) in non-inline
form asagent equal_item(old twin, ?), but this assumes a function

If you want to specify your software completely — expressing not only
straightforward properties such asitem(count) = x, but also those involving
entire substructures — you may end up writing many such functions.
Although they add interesting information, one may also feel that, being
only used for assertions, they needlessly complicate the class. They may
destabilize the software since any effort at better specification may cause
the addition of a whole set of new features, used only in the assertions and
of no other interest to clients of the class. Inline agents solve this problem.

extend(x: G)
-- Add x at end; keep other items

require
…

do
…

ensure
one_more: count= old count + 1
added_at_end: item(count) = x
others_unchanged:
(1 |..| old count).for_all

((agent(i: INTEGER): BOOLEAN
do Result:= equal(item (i), (old twin). item (i)) end))

end

equal_item(l: like Current; i: INTEGER): BOOLEAN
-- Is item at positioni equal to corresponding one inl?

do
Result:= (item (i) = l.item (i))

end
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Here is another example application. The agents described in this
chapter represent delayedcalls; you may have wondered whether we also
need an expression construct to denote delayedobject creation, perhaps
something likeagent create{ SOME_TYPE} .make(a1,?). The answer is
no, since we can achieve the intended effect (assuming we need it) by using
a creation expression as part of an inline agent in

whereB is the type ofmake’s second argument.

You may view inline agents asanonymous routines, similar to
anonymousclasses(tuple types) and anonymousobjects(tuples). This is
particularly clear in theRoutinecase(…) … do … end, which has exactly
the same form as a routine declaration:

(with, as noted, the possibility of including all relevant clauses, such as
precondition, postcondition, rescue, local variable declarations). The only
difference is that the inline agent doesn’t use a routine namer — it doesn’t
need one. When such a routine is used with the sole purpose of being
passed as argument to a routine expecting an agent, the anonymous form
avoids cluttering the class with a full-status routine.

27.9 ACCESSING FEATURE PROPERTIES

ClassROUTINEand its descendants provide a starting point for many of
the introspection needs that Eiffel applications may need.

The first introspection mechanism is a simple way, through class
ROUTINE and its descendants, to gain access to the precondition and
postcondition of a routine:

This enables you to check the precondition before you apply an agent, as in

(agent(b1: B) do create{ SOME_TYPE} .make(a1, b1) end)

r (…) is … do … end

precondition(args: OPEN): BOOLEAN
-- Do args satisfy routine’s precondition in present state?

postcondition(args: OPEN): BOOLEAN
-- Does current state satisfy routine’s postcondition
-- for operandsargs?

if  your_agent.precondition(your_operands) then
your_agent.call (your_operands)

end
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whereyour_agentis an agent expression andyour_operandsis a valid
tuple of operands for that agent.

There is, as will be seen next, a similar facility for class invariants.

27.10 THE BASE CLASS AND TYPE
Introspection support is also one of the concerns behind the first generic
parameter ofROUTINE, PROCEDURE, FUNCTION and PREDICATE.
The specification

includes, as first generic parameter, the typeBASErepresenting the type
(class with generic parameters) to which an agent’sfeature belongs. This is
the type of the target expected by the feature.

The examples seen so far do not useBASEat all, because procedurecall
does not need it. If the agent is closed on its target, as in

then it includes, here througha0, the target information that a later call to
call may require. In the other case — open target — as in

then the target type is specified, hereT0, and provides the information
needed to determine the right version off. In this case theBASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding toOPEN; the type oft, for example, is

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’t need the
BASE generic parameter if all we do with agents is executecall on them.

BASEis useful for other purposes. WithoutBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’s associated feature is defined. To open
the gate to fullintrospectionservices — enabling a system to explore its
own properties — classROUTINE uses a feature

that yields the type to which the agent’s feature belongs. ClassTYPE[G] from
the Kernel Library provides information about a typeG and its base class.

ClassTYPEis, even more fundamentally thanROUTINEand its heirs,
the starting place for introspection. Example features include:

• name: STRING, the upper name of the type’s base class.

ROUTINE[BASE, OPEN–> TUPLE]

y := agenta0.f (a1, ?, ?)

t := agent{ T0} .f (a1, a2, ?)

 ROUTINE[T0, TUPLE[T0, T3]]

base_type: TYPE[BASE]

→ For an inline agent,
the agent’s feature is its
“associated feature”;
see page755.
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• generics: ARRAY[TYPE[ANY]] , the actual generic parameters, if any,
used in the type’s derivation.

• routines: ARRAY[ROUTINE[ANY, TUPLE]] , the routines of a class,
each an instance ofPROCEDURE, FUNCTION or PREDICATE.

• attributes: ARRAY[FUNCTION[ANY]] , the attributes.

• invariant (obj: G): BOOLEAN, telling us whether an instanceobj
satisfies the invariant.

ClassANYhas a feature

which yields an object describing the type of the current object.

So within a class of whichf is a feature,generatorhas the same value as
(agent f). base_type; if a is of typeTandf is a feature ofT, thena.generator
has the same value as(agent{ T} .f ). base_type.

A more complete interface specification ofTYPEappears in the description
of the Kernel Library classes.

Thanks to the presence ofBASEamong the generic parameters of
ROUTINEand its descendants, we can give a proper type tobase_type, and
as a result gain access to a whole library of introspection mechanisms.

27.11 AGENT SYNTAX

The rest of this chapter gives the precise syntax, validity and semantics of
agent expressions. There will be no fundamentally new concept, so the
hurried reader may skip to the next chapter.

The new construct isAgent, a variant ofExpression:

The two variants are call agents and inline agents. In both cases the
keywordagent signals the use of an agent expression.Call_agentis the
keywordagent followed by aCall_agent_body, similar to a call but with
the possibility of using a question mark? in lieu of an argument or a type
in braces{ TYPE} in lieu of the target. AnInline_agentis like an inline
routine declaration. Let’s detail both cases in turn.

generator: TYPE[like Current]

Agents
Agent =∆  Call_agent| Inline_agent

Call_agent=∆ agentCall_agent_body

Inline_agent=∆ agent[Formal_arguments]
[Type_mark]
[Attribute_or_routine]
[Agent_actuals]

→ OnANYand uni-
versal features see
chapter35.

→ On classTYPE see
A.6.2, page 976.
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Syntax of call agents

We have encountered numerous examples ofCall_agent, such as

A Call_agentstarts with the keywordagent. The part that follows, called a
Call_agent_body, closely resembles aCall; we can’t just use that earlier
construct, however, since we must allow for the question mark and brace
conventions, which have no equivalent in normal calls:

--- FIX ---Manifest_type in thesyntax ofMulti_branchas

An Agent_targetmay be of three kinds:Entity, Parenthesizedand
Manifest_type. The third (used in the last example) enables you to specify
an open target by listing a type in braces. For an actual argument, you can
use, besides an actual value, aPlaceholder (question mark).

The possibility of using aManifest_typeor Placeholderto specify open
operands is the principal difference between agent calls and normal calls.
There is another difference, not immediately obvious from the syntax. In a
Call_agentas well as a normalCall, the argument list,Agent_actuals, is
optional. But omitting it doesn’t have the same effect. Iff is declared as
having one or more arguments, a call of the forma.f, or its unqualified
variantf, are invalid since they violate theArgumentrule: you must always
specify actual arguments, as ina0. f (a1, a2, a3). For an agent call,
however, corresponding forms such as

agent f (a1, a2, a3)
agent f
agent{ T0} .f (a1, ?, ?)

Call agent bodies
Call_agent_body=∆  Agent_qualified| Agent_unqualified

Agent_qualified=∆ Agent_target". " Agent_unqualified

Agent_unqualified=∆ Feature_name[Agent_actuals]

Agent_target=∆ Entity | Parenthesized| Manifest_type

Agent_actuals=∆ "(" Agent_actual_list ")"

Agent_actual_list=∆ { Agent_actual "," …} +

Agent_actual=∆ Expression| Placeholder

Placeholder=∆ [Manifest_type] "?"

a0.f
f
{ T0} .f

First three examples
unqualified, last one
qualified.

← The syntax forCall
was on page626.

← Page626.← Page486.

← The Argument rule
was on page634.
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are valid; they are simply convenience abbreviations to indicate that all
arguments are open, meaning respectively the same as

You may in such a case omit the argument list, to indicate that all arguments
(if any) are open. TheAgent Call rule, introduced later in this chapter,
explicitly allows this. It causes no ambiguity and (unless you prefer a fully
explicit style) lets you avoid cluttering your class text with question marks.

A final note on call agent syntax. You may build aCall_agentnot only
from identifier features as in these examples, but also from an operator or
bracket feature. Just designate the feature by its identifier, in conformance
with theFeatureIdentifierprinciple: with a featureyour_namealias"§" for
some binary operator§, use the identifier to build agent expressions such as

and similarly with a featureother_namealias "[]" .

Syntax of inline agents

We have seen that anInline_agentis like a routine declaration, but given
inline, without a name, as in

This is reflected by the syntax given on the previous page, which specifies:

• An optionalFormal_arguments list, as(e, f: EMPLOYEE).

• An optionalType_mark, as in: BOOLEAN. If this part is present, the
associated routine is a function; otherwise it is a procedure.

• A Routine, with all the possible trappings, including Precondition,
Local_declarations,

a0.f (?, ?, ?)
f (?, ?, ?)
{ T0} .f (?, ?, ?)

agenta.your_name (b) -- All closed
agent your_name (?) -- Open on argument
agent { T} .your_name (?) -- Open on target and argument

(agent (e, f: EMPLOYEE): BOOLEAN
-- Is the cumulated salary ofeandf higher thanthreshold?

require
first_exists: e /= Void
second_exists: e /= Void

local
salary_sum: REAL

do
salary_sum:= e.salary+ f.salary
Result:= (salary_sum> threshold)

end)

→ Page754 (see the
explanation about
clause3 of the rule).

← “Feature Identifier
principle”,  page 153.
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As already noted, it is not recommended to have such extensive computations in
inline agents: after all, anAgentis an expression, meant for example to be passed
asargument toa routine.But this is justmethodologicaladvice; thewholeRoutine
syntax is available if you wish to use it, including the optionalPrecondition,
Local_declarations, PostconditionandRescueclauses; evenHeader_comment
andObsolete. The only restriction (stated in the validity constraint given next) is
that the routine must not be deferred.

27.12 AGENT VALIDITY

We may now add the validity rules. It is convenient to deal separately with
Call_agent andInline_agent cases.

Validity of call agents

For call agents, it is useful first to define the notion of target type:

The validity rule follows:

--- REMOVED CONDITION ON SEPARATE --- The rule’s phrasing makes
certain forms of the construct automatically valid:

• If any Agent_actualis of thePlaceholderkind, represented simply by a
question mark, clause4 does not apply, so the argument raises no type
validity problem. This is as expected, since such an argument is left
open for future filling-in.

Target type of an call agent
Thetarget type of aCall_agentis:

1 • If there is noAgent_target, thecurrent type.
2 • If there is anAgent_targetand it is anEntity or Parenthesized,

its type.
3 • If there is anAgent_targetand it is aManifest_type, the type

that it lists (in braces).

Call Agent rule VPCA

A Call_agentinvolving aFeature_namefn, appearing in a classC,
with target typeT0, is valid if and only if it satisfies the following
conditions:
1 • fn is thename of a featuref of T0.
2 • If there is anAgent_target, f is export-valid for T0 in C.
3 • If theAgent_actualspart is present, the number of elements in

its Agent_actual_list is equal to the number of formals off.
4 • Any Agent_actual of the Expression kind is of a type

compatible with the type of the corresponding formal inf.

Like the previous one,
this section is not essen-
tial on first reading.

← The “current type”
is the enclosing class,
withgenericparameters
added if necessary to
make up a type. See
“CURRENT TYPE,
FEATURES OF A
TYPE”,  12.11, page
365.
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• If there is noAgent_actualspart, clauses3 and4 do not apply. Iff has
no formals, we are calling an argumentless feature with no actuals, as
we should. Iff has one or more formal arguments, we view the absence
of explicit actuals of an abbreviation for actuals that are all of the
Placeholderkind (question marks): assumingf takes three arguments,
agenta0.f is simply an abbreviation foragenta0.f (?, ?, ?). In this case
the implicit arguments are all open, and hence automatically valid.

Clause3differs from itscounterpartfor normalcalls, whichrequiredactual
argument list to match the formal list if any. Instead we explicitly allow
omitting actuals altogether, to signify that all arguments are open.

---- Clause---- is a consistency condition for concurrent computation, and
parallels a similar clause discussed in the chapter on normal calls.

Validity of inline agents

To define the validity of inline agents (also their semantics), it is convenient
to consider this case as equivalent to the previous one,Call_agent, by
treating any inline agent as equivalent toagentf (…) wheref is a fictitious
routine added to the class. Here is the definition of this equivalence:

Clause2 lists, as arguments tof, not only the arguments to the inline agent
but also the local variables of the enclosing routine. The local variables will
indeed serve asclosedarguments; this will be specified in the semantics given
in the next section.

The validity rule follows:

Associated feature of an inline agent
Every inline agentia of a classC has anassociated feature,
defined as a fictitious routinef of C, such that:
1 • The name off is chosen not to conflict with any other feature

name inC and its descendants.
2 • The formal arguments off are those ofia.
3 • f is secret (available for call to no class).
4 • The Attribute_or_routine part of f is defined by the

Attribute_or_routine part ofia.
5 • f is a function if ia has aType_mark(its return type being

given by theTypein thatType_mark), aprocedure otherwise.

Inline Agent rule VPIA

An Inline_agenta of associatedfeaturef, is valid in the text of a
classC if and only if it satisfies the following conditions:

1 • f, if added toC, would be valid.

2 • f is notdeferred.

← “Ar gument rule”,
page 634.

← “Exported, selec-
tivelyavailable,secret”,
page 211.
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There is no other condition, since in particular TheRoutinepart must be
valid on its own; in particular, theEntity rule states that any entity
appearing in theAgent_bodymust be a formal argument of the inline agent
itself, such asother andi in

or a local variable of an enclosing agent or routine, or a feature of the
enclosing class.

Here are some properties following from the Inline Agent rule:

27.13 AGENT SEMANTICS

(Like the previous two, this section may be skipped on first reading.) The
final part of the specification addresses the semantics of agents. It is
organized in three parts:

• Call-agent equivalent of an inline agent (enabling the next two parts to
restrict themselves to theCall_agent part).

• Open and closed operands.

• Type and value of an agent.

Call-agent equivalent of an inline agent

To define the validity of an inline agenta, it was convenient to define its
associated feature. Thena itself can be viewed as if it were aCall_agent:

(other: like Current; i: INTEGER)
do Result:= (item (i) = other.item (i)) end

Inline Agent Requirements VPIR

An Inline_agenta must satisfy the following conditions:

1 • No formal argument orlocalvariable ofa has thesamename as
a feature of the enclosing class.

2 • Everyentity appearing in theRoutinepart ofa is the name of
one of: a formal argument ofa; a local variable ofa; a feature
of the enclosing class;Current .

3 • TheFeature_body of a’s Routine is not of theDeferred form.

These conditions are stated as another validity rule permitting compilers to
issue more understandable error messages. It is not in the usual “if and only
if” form (since the preceding rule, the more official one, takes care of this),
but the requirements given cover the most obvious possible errors.

← “Entity rule”,
page 513.
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This allows a simple specification for the semantics of inline agents:

Thanks to this rule, we can focus on call agents when defining the type and
execution effect of agents.

Note how the formal arguments and local variables of the enclosing
routine if any, and of any enclosing agents, serve as closed arguments to the
agent. In reading earlier discussions of inline agents, you may have
pondered two as yet unanswered questions:

• Is it permitted for an inline agent to refer to a local variable of the
enclosing routine, and, if so, what does that mean?

• Call agents may have both closed and open operands. We have seen how
to give an inline agent open operands: just specify them as arguments to
the agent. But is there a way to give it closed operands too?

The rule just given answers both questions at once by giving a status to
local variables of the enclosing routine: treat them as closed operands.

So a routine of the form

will print the successive values inyour_list (assumed to be of typeLIST
[INTEGER]) all incremented by 1, the value of the local variablen at
construction time. As specified by the last rule, this is the same effect as if
the call were

Call-agent equivalent of an inline agent
Thecall-agent equivalentof an inline agentia is theCall_agent

agentf
wheref is theassociated feature ofia.

Semantics of inline agents

The semantic properties of an inline agent are those of itscall-
agent equivalent.

r
local

n: INTEGER
do

n := 1
your_list.do_all ((i: INTEGER) do print (i + n) end)

end

do_all (agentprint_incremented_value(?, n)
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whereprint_incremented_valueis the “fictitious routine” introduced by the
definition of “associated feature” of an inline agent:

In examining the above definition of call-agent equivalent, note that the
validity rule on inline agents guarantees that there can be no name clash
between the formal arguments and local variables of any enclosing agents
and of the enclosing routine if any. (Nesting inline agents doesn’t seem a
desirable use of the mechanism, but no rule disallows it.)

The semantics of inline agents also requires a specific rule on the
meaning ofResult. An inline agent may be embedded in a function of the
class, or even in another function agent, causing a potential ambiguity. We
decide thatResult always refers to the result of the innermost agent:

This is a rather specific case and another approach would be to disallow
function agents within functions or other function agents, or to use a special
notation to remove the ambiguity. The rule as given seems preferable. If you
need to refer to an outerResult, you may assign its value to a local variable
and use that local variable in the innermost agent scope. This causes a little
extra work, but only in a rare and special case.

Open and closed operands

It is useful to define precisely what “open” and “closed” mean for the
operands of an agent expression:

From the definition of call-agent equivalent form we deduce that for an
inline agent:

• The open operands are the agent’s formal arguments, if any.

print_incremented_value(i: INTEGER; n: INTEGER)
do

print (i + n)
end

Use ofResult in an inline function agent

In an agent of theInline_agentform denoting a function, the
local variableResult denotes the result of the agent itself.

Open and closed operands
Theopen operandsof aCall_agent include:
1 • Any Agent_actual that is aPlaceholder.

2 • TheAgent_targetif it is present and is aManifest_type.

Theclosed operands include all non-openoperands.

← “Inline Agent
rule”,  page 755.

← “Open operand posi-
tion” was defined on
page759.

← Theoperands of a
call were defined on
page723 as including
its target, and its argu-
ments if any.
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• The closed operands are the local variables and formal arguments of the
enclosing routine and any enclosing agents.

An earlier definition also introduced the notion ofoperandposition, which
we can now extend to a definition of open and closed positions:

Type and value of an agent expression

The preceding definitions enable us to specify the semantics of an agent
expression. It suffices to give it for aCall_agent:

Open and closed operand positions
The open operand positionsof an Agent are the operand
positions of its open operands, and theclosed operand positions
those of its closed operands.

Type of an agent expression
Consider aCall_agenta, with a target of typeT0. Let i1, …, im
(m≥ 0) be itsopenoperandpositions, if any, and letTi1, ..,Tim be
the types off’s formal arguments at positionsi1, …, im (taking
Ti1 to beT0 if i1 = 0).
The type ofa is:
• PROCEDURE[T0, TUPLE [Ti1, ..,Tim]]  if f is aprocedure.

• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if f is a function of
result typeR other thanBOOLEAN.

• PREDICATE[T0, TUPLE [Ti1, .., Tim]] if f is a function of
result typeBOOLEAN.

Agent Expression semantics

The value of an agent expressiona at a certainconstruction time
yields a reference to an instanceD0 of the type ofa, containing
information identifying:
• Theassociated feature ofa.
• Its open operand positions.
• The values of itsclosed operands at the time of evaluation.

← “Operand position”
wasdefinedonpage723:
the target position is 0,
and the argument posi-
tions start at 1.
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Although this will be an implicit consequence of the last rule, it doesn’t
hurt to state explicitly what some of the information inD0 is good for:
enabling calls on agent objects.

Effect of executingcall on an agent

Let D0 be an agent object with associated featuref and open
positionsi1, …, im (m≥ 0). The information inD0 enables a call
to the procedurecall, executed at anycall time posterior toD0’s
construction time, with targetD0 and (if required) actual
argumentsai1, ..,aim, to perform the following:
• Produce the same effect as a call tof, using theclosedoperands

at theclosedoperandpositions andai1, ..,aim, evaluated at call
time, at theopen operand positions.

• In addition, if f is a function, setting the value of thequery
last_resultfor D0 to the result returned by such a call.

← last_resultfrom class
FUNCTION, giving the
result of the last evalua-
tion, was introduced on
page728.
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Expressions
28.1 OVERVIEW

28.2 GENERAL FORM OF EXPRESSIONS

An expression will use one of the following variants:

Through the various forms ofExpression, software texts can include
denotations of run-time values — objects and references.

Previous discussions havealready introduced some of the available
variants of the construct:Formal, Local, Call, Old, Manifest_tuple, Agent.
The present one gives the full list of permissible expressions and the
precise form of all but one of the remaining categories: operator
expressions, equality and locals. The last category, constants, has its own
separate presentation, just after this one.

Expressions
Expression=∆ Basic_expression| Special_expression

Basic_expression=∆ Read_only| Local | Call | Precursor|
Equality| Parenthesized| Old |
Operator_expression|Bracket_expression|
Creation_expression

Special_expression=∆ Manifest_constant| Manifest_tuple|
Agent|Object_test|Once_string|Address

Parenthesized=∆ "(" Expression ")"

Address=∆ "$" Variable

Once_string=∆ onceManifest_string

Boolean_expression=∆ Basic_expression| Boolean_constant|
Object_test

← Chapter23onCall,
Formaland Local;
““Old” expression”, ,
page239;chapter13on
tuples; chapter27 on
agents.
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“Basic expressions” correspond to the common forms of expression
derived from ordinary mathematical notation, such as variables and
operator expressions. “Special expressions” include manifest constants —
constants given directly by their values — as well as original Eiffel
mechanisms such as agents and tuples.

Summarizing the variants ofBasic_expression:

• Read_only, which includes formal arguments of routines andCurrent,
andLocal variables wereseen in the discussion of entities.

• A Call, denoting afeaturecall, is anExpressionif and only if the feature
of the call is a query, that is to say, an attribute or a function. (Otherwise
it would be anInstruction.)

As a special case ofCall, you may use an attributex as an expression in the
text of its class. (In thesyntaxof Call, just usex as Feature_nameof an
Unqualified_call, withoutParenthesized_qualifier or Actuals.)

• Precursorenables the redefined version of a routine — in the case of
expressions, a function — to refer to the original version. We studied the
mechanism in connection with inheritance.

• Equalityexpressions cover both equality and inequality tests, using the
symbols= /=, as well as ~ and /~ for comparing objects. Although they
are syntactically similar to the next category,Operator_expressions, it is
preferable to treat them separately because their semantics,studied in an
earlier chapter, is not that of a call.

• An Operator_expressionis built using unary and binary operators.
Operator expressions have the semantics of calls but a special syntax,
requiring rules of operator precedence.

• You can useParenthesized subexpressions to override these rules.

• A Bracket_expressionagain has the semantics of a call but uses bracket
syntax, as inyour_table[your_index], typically an abbreviation for a
feature callyour_table.item (your_index)whereitemhas been declared
with a bracket alias:alias "[]" .

• An Old_expression, usable only in a postcondition, denotes the earlier
value of an expression. This wasdiscussed with assertions.

• Creation_expressionyields a newly created object and was studied in
the discussion of creation.

Special_expression completes this panoply:

• A Manifest_constanthas a fixed value, given by the form of the
constant, as in theInteger_constant–87. A special case is a
Manifest_string: we may view as constant because it denotes a fixed
string descriptor object, but it gives access to a character sequence
which may in fact change. (This is a potential source of confusion and
will be explained in detail.)

← “Entity, variable,
read-only”,  page 512.

← Chapters23 for the
basics of calls and25
about their validity.

← Page626.

← “ADDING TO
INHERITED BEHAV-
IOR: PRECURSOR”,
10.24, page 299.

← “EQUALITY
EXPRESSIONS”,
21.3, page 565.

← ““Old” e xpres-
sion”,  , page 239,

← --- FILL IN REFER-
ENCE ---

→ “MANIFEST
STRINGS”,  29.8,
page 794.
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Not all constants are manifest: by declaring aconstant attribute you may
use anIdentifier to denote a constant value. Syntactically, as noted above,
constant attributes used as expressions are a special case ofCall, but it will
be convenient tostudy them together with manifest constants.

• A Manifest_tuple is a tuple given by the list of its elements.

• Agentexpressions, representing partially evaluated calls, were studied
in the previous chapter.

• An Object_test, of the form{ loc: T} expasstudied in the discussion of
eradicating void calls, yields true if and only if the expressionexp is
attached on evaluation to an object of typeT, and then binds it locally to
the entityloc.

• A Once_stringis a manifest string constant qualified by the keyword
once to indicate that if it appears in an expression the string will be
evaluated just once, rather than denoting a new string object for each
evaluation of the expression. Since this notion is closely tied to the
semantics of strings it will bestudied in the next chapter as part of the
general discussionof strings. Non-oncestrings—themorecommoncase
— are examples ofManifest_constant, covered by the previous case.

• Addressexpressions, of the form$f wheref is the name of a feature (or
Currentor Result) serve to pass the address of an Eiffel object to non-
Eiffel sofware.

Finally,Boolean_expressionrequires its own construct because a few other
constructs — assertion clauses,Conditional, Exit conditions of loops —
specifically expect a boolean expression.Object_testis one of the variants.

This chapter needs only occasionally to refer to the variants studied in
depth in their own chapters :Read_only, Local, Call (for which wesaw
how to determine the value and type of aCall serving as an expression),
Precursor(whose validity rulestated under what condition you may use a
Precursoras an expression),Equality, Agent, Old, Object_test, Address,
Creation_expression; for Call, we still need to define explicitly the value of
a call expression. After introducing the notion of “subexpression”, the
following sections will explore the remaining variants in the order of the
syntax. Then we’ll explore general properties of expressions, in particular
the notion of Equivalent Dot Form, how to determine the type of an
expression, and the syntactical benefit (having to do with making
semicolonsalwaysoptional) of the distinction betweenBasic_expression
andSpecial_expression.

As a general note on the use of expressions,remember that if you have
an expression exp of typeU and want to use it as if it were of a typeT to
whichU conforms or converts, you may rely on the notation

{ T} [ exp]

→ “GENERALFORM
OF CONSTANTS”,
page 787,
→ “MANIFEST
TUPLES”,  29.9, page
809,

→ “THE OBJECT
TEST”, 24.3,page658,

→ “Basic manifest
strings”,  page 796,

→ “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 833,

←Unlabeled_assertion_
clause: page232.
Then_part: page481.
Exit: page495.

← Clause5of“Pr ecur-
sor rule”,  page 304,

← “CONVERTING
AN EXPRESSION
EXPLICITLY”,  15.9,
page 416,
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28.3 SUBEXPRESSIONS

This section defines a technical notion; you may skip it on first reading.

For some of the definitions and rules that follow, it is convenient to talk about
the “subexpressions” of an expression: all the components of the expression
that are themselves expressions whose value participates in the evaluation
of the expression as a whole. This notion is mostly useful for operator
expressions, but it’s convenient to define it for all other kinds as well:

Clause4 uses “theUnqualified_callpart of aCall”: both of the available
variants,Object_callandNon_object_call, indeed include anUnqualified_call.

For example the subexpressions ofb + (c ∗ [d, e]) are the whole expression,
b, (c ∗ [d, e]), c, [d, e]), d ande.

Not every expression physically contained in an expression is a
subexpression: according to the rule,a + b + c has no subexpression other
than itself; neither hasx + y ∗ z. Parts such asa + b, b + c, x + y, y ∗ z,
although valid expressions, are not subexpressions. This is because such
examples use more than one binary operator in succession, giving rise to
potential ambiguities; and indeed the partx + y plays no role in
determining the value ofx + y ∗ z.

Subexpression, operand
The subexpressionsof an expressione are e itself and
(recursively) all the following expressions:
1 • For aParenthesized(a) or a Parenthesized_target(|a |): the

subexpressions ofa.
2 • For anEquality or Binary_expressiona § b, where§ is an

operator: the subexpressions ofa and ofb.
3 • For a Unary_expression◊ a, where ◊ is an operator: the

subexpressions ofa.
4 • For aCall: the subexpressions of theActualspart, if any, of its

Unqualified_part.
5 • For aPrecursor: the subexpressions of its unfolded form.
6 • For anAgent: the subexpression of itsAgent_actualsif any.
7 • For aqualified call: the subexpressions of itstarget.
8 • For aBracket_expressionf [a1, … an]: the subexpressions of

f and those of all ofa1, … an.
9 • For anOld expressionold a: a.
10 •For aManifest_tuple[a1, … an]: the subexpressions of all of

a1, … an.
In cases2 and3, theoperands of e area and (in case2) b.

← Syntax: page626.
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The precedence rules which we’ll study shortly let us define a
Parenthesized Formfor any expression, such asx + (y ∗ z) in the second
part, with subexpressionsx and(y ∗ z), both of which participate in the
value of the expression as a whole,

28.4 PARENTHESIZED EXPRESSIONS

You may enclose an arbitrarily complex expression in parentheses without
changing its semantics:

Indeed the parentheses have a syntactic role only. You can use aParenthesized:

• To override default operator precedence in operator expressions as
studied in the next section.

• To apply a certain operation to an expression when the syntax wouldn’t
permit it in the original form of the expression.

An important example of the second case is feature application to a
complex expression. Thesyntax of a query callexp.f (or exp.f (args) with
arguments) restricts the targetexpto just a few possibilities: a single entity,
as inan_attribute.f, or one or more other calls, as ing (x).an_attribute.f.
You may not directly apply the feature to a manifest constant, as in3.f
(invalid) or to an operator expression, as ina + b.f (which, if valid, would
applyf just to b, not to the addition). You can achieve the desired effect by
parenthesizing the target expression, as in

(valid if f is applicable to the respective targets).

Parenthesized Expression Semantics

If e is an expression, the value of theParenthesized(e) is the value
of e.

(3).f
(a + b).f

In addition toy, zand
the whole expression.

← Call and associated
constructs, page626.

← ConstructParenthesi-
zed_qualifier, page626.
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28.5 OPERATOR EXPRESSIONS

You may build operator expressions by combining simpler expressions
through prefix and infix operators, using parentheses to remove
ambiguities if necessary.

Operator expression basics

An example, from the postcondition of procedureput_child_leftin class
LINKABLE of EiffelBase, is

This uses the infix operatorsimplies and+ and the prefix operatornot,
applied to subexpressions involvingOld andEquality.

Semantically, operator expressions bring nothing new: they are simply
a different way to write calls, using conventional operator notation rather
than dot notation. Since every feature with an operator alias also has a
Feature_name(an identifier),you may ignore operators, writing instead
calls in dot notation:

Operator expression syntax

Here is the general form of operator expressions:

Both UnaryandBinary operators can be one of the standard operators, or
a “free” operator that you make up according to very flexiblerules. The list
of standard operators already appeared in the discussion of feature names:

not (child_position= 2) implies
child_position= old child_position +1

((child_position= 2).negated).implication
(child_postion= old (child_position.plus(1)))

Operator expressions
Operator_expression=∆ Unary_expression | Binary_expression

Unary_expression=∆ Unary Expression

Binary_expression=∆ Expression Binary Expression

Operators
Unary =∆ not | "+" | "–" | Free_unary

This appears in class
LINKABLE with some
extra parentheses for
clarity. The effect is the
same, however, thanks
to the precedence rules.

← This syntax
appeared originally on
page154.

→ “F ree operator”,
page 893.
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Precedence and Parenthesized Form

The syntax forOperator_expressionis ambiguous: it would make it
possible to understand an expression such as

in several different ways (expressed with parenthesization):

You can always remove ambiguities by adding parentheses as in these last
forms. In mathematical practice, however, it is customary not to require
parentheses in simple cases based on “precedence”. This custom makes
a + b ∗ c legal and gives it the same meaning asa + (b ∗ c), based on the
convention that∗ “binds tighter” than+ .

To formalize this practice, we complement the syntax byprecedence
rules. Every possible operator has a precedence, a numerical value
between 1 and 13 determined by the table below. The values themselves are
not important; what matters is the comparison of the precedence values of
any two operators appearing consecutively in an expression. For example,
∗ has precedence 8 and+ has precedence 3. In the absence of intervening
parentheses, the one with the higher precedence binds tighter.

Binary =∆ "+" | "–" | "∗" | "/" | | "//" | "\\" | "^"
"<" | ">" | "<=" | ">=" |
and | or | xor | and then | or else| implies |
Free_binary

a + b + c ∗ d

a + (b + (c ∗ d)) [1]
a + ((b + c) ∗ d) [2]

[3]
(a + (b + c)) ∗ d [4]
((a + b) + c) ∗ d [5]

The correct interpreta-
tion, according to the
precedence rules given
below, is [3] .

(a + b) + (c ∗ d)
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“

Operator precedence levels

13 . (Dot notation, inqualified and non-object calls)

12 old (In postconditions)
not + –Used as unary
All free unary operators

11 All free binary operators.

10 ^ (Used as binary: power)

9 ∗ / // \\ (As binary: multiplicative arithmetic operators)

8 + – Used as binary

7 .. (To define an interval)

6 = /= ~ /~ < > <= >=(As binary: relational operators)

5 and and then
(Conjunctive boolean operators)

4 or or else xor
(Disjunctive boolean operators)

3 implies(Implicative boolean operator)

2 [ ] (Manifest tuple delimiter)

1 ; (Optional semicolon between
anAssertion_clause and the next)

This precedence table includes the operators that may appear in an
Operator_expression, the equality and inequality symbols used inEquality
expressions, as well as other symbols and keywords which also occur in
expressions and hence require disambiguating: the semicolon in its role as
separator forAssertion_clause; the old operator which may appear in an
Old expression as part of a Postcondition; the dot. of dot notation, which
binds tighter than any other operator.

The operators listed include both standard operators and predefined
operators (=, /=, ~, /~). For a free operator, you cannot set the precedence:
all free unaries appear at one level, and all free binaries at another level.
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This precedence table is the basis for the rule removing potential syntactic
ambiguities in operator expressions. We’ll just work from a form that adds
parentheses wherever needed:

Since the notion of subexpression was defined recursively, the rewriting
must be applied recursively too. Both notions are interesting for the case of
anOperator_expressionbut are defined for general expressions, allowing
the recursion to work properly.

The Parenthesized Form of

is

The Parenthesized Form is not alwaysfully parenthesized; it only adds the
parentheses necessary to remove ambiguities. Here it doesn’t put any
around the full expression, or around entitiesa, b, c, d.

Operator̂ gets a special treatment in clauses1 and2 of the definition
because basic arithmetic types (INTEGER, REALand their sized variants)

use it aspower operator: the mathematical notationabc
is traditionally

understood as meaninga(bc) — the only interesting interpretation since

(ab)
c
 is justab∗c.

Parenthesized Form of an expression
The parenthesized form of an expression is the result of
rewriting everysubexpression of one of the forms below, where
§ and‡ are different binary operators,◊ and♣ different unary
operators, anda, b, c arbitraryoperands, as follows:
1 • Fora § b § c where§ is not the power operator̂: (a § b) § c

(left associativity).

2 • Fora ^ b ^ c : a ^ (b ^ c) (right associativity).

3 • Fora § b ‡ c: (a § b) ‡ c if the precedence of‡ is lower than
the precedence of§ or the same, anda § (b ‡ c) otherwise.

4 • For◊ ♣ a: ◊ (♣ a)

5 • For◊ a § b: (◊ a) § b

6 • Fora § ◊ b: a § (◊ b)

7 • For a subexpressione to which none of the previous patterns
applies:e unchanged.

a + b ∗ c ^old d

a + (b ∗ (c ^ (old d)))
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Special cases in rules are unpleasant, but it is dangerous to go against long-
standing mathematical conventions. Here a left-associative rule could cause
errors for people trained in mathematics or physics. To avoid worrying about
such issues, just use parentheses wherever there might be any doubt.

Clause4 reflects that, in the above precedence table, all unary operators
have the same precedence; and the last two clauses , that unary operators
bind tighter than all binary operators.

◊ and‡ can be the same operator, used as unary in one case and binary
in the other. So clause6 tells us thata – – b— where the two signsmust be
separated by a break, lest we take them to start a comment — meansa –(– b).

To override the meaning implied by this rule, you may always use
parentheses. For anyBinary operator, the first operand of§ in

is alwaysexp, regardless of the precedence of§ and of the operators
appearing inexp; the last operand of§ in

is alwaysother_exp; and for anyUnaryoperator◊, the expression

always denotes the application of◊ to the value ofexp.

The precedence rules are easy to remember but competent Eiffel
programmers mostly use them to understand the code of their macho
colleagues. Don’t hesitate to put parentheses around subexpressions to
clarify intent and avoid errors. In particular, you should always use
parentheses when a boolean expression uses different conjunctive and
disjunctive operators in succession, as in(a or (b and c)).

We will build the Equivalent Dot Form of an expression, on which its
validity and semantics are based, from its Parenthesized Form. In other
words, thanks to this notion we can for all the rest of the discussion forget
about any matters of ambiguity and operator precedence.

Accounting for target conversion

We need one more definition to handle all cases of operator expressions. It
covers the mechanism that westudied in the chapter of conversions,
allowing you to follow traditional mathematical practice by writing mixed-
mode expressions such asyour_integer + your_realwhen you really mean
to use the “+” operator from classREAL, converting the first operand to
REAL. To make this possible, you must specifyconvert in the declaration
of the operator, in classINTEGER:

(exp) § other_exp

exp§ (other_exp)

◊ (exp)

→ “Syntax (non-pro-
duction):Breakrule”, ,
page 885.

→ Clause“Equivalent
Dot Form of an expres-
sion”,  page 780.

← “MIXED-TYPE
EXPRESSIONS: TAR-
GETCONVERSION”,
15.12, page 428.
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In this case the standard unfolding ofyour_integer + your_realinto
your_integer.plus(your_real) doesn’t apply, sinceREALneither conforms
nor converts toINTEGER. We want to understand the expression as
(your_integer.converted_to_real) + your_real. Because the first unfolding
would be type-wise invalid, there is no danger of confusion.

A simple definition takes care of this case:

(where{ TY} [ x] denotesx converted to typeTY). In fact that’s all we need:
the validity and semantics, in this case, will simply rely — through the
EquivalentDot Form — not on the original expression but on its target-
converted form. There is no need for any special rule, either for validity or
for semantics.

Operator expression validity and semantics

Once no syntactical ambiguity remains, the validity and semantic
properties of an Operator_expressionare essentially those of a
correspondingCall.

plusalias "+"  (other: INTEGER): INTEGER…

Target-converted form of a binary expression
The target-converted form of a Binary_expressionx § y, where
the one-argument feature of alias§ in thebaseclass ofx has the
Feature_namef, is:
1 • If the declaration off includes aconvert mark and the typeTY

of y is notcompatiblewith the type of the formal argument of
f: ({ TY} [ x]) § y.

2 • Otherwise: the original expression,x § y.

({ TY} [ x]) denotesx converted to typeTY. This definition allows us, if the
feature fromx’s type TX cannot accept aTY argument but has explicitly
been specified, through theconvert mark, to allow for target conversion,
andTY does include the appropriate feature accepting aTX argument, to
use that feature instead.

The archetypal example isyour_integer + your_realwhich, with the
appropriateconvert mark in the"+" feature inINTEGER, we can interpret
as ({ REAL} [ your_integer]) + your_real, where"+" represents theplus
feature fromREAL.

convert

← 15.9, page 416.

→ Clause2, page 780.
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For everyOperator_expressionthere will be anEquivalent Dot Form,
syntactically a Call, illustrated above for a postcondition clause of class
LINKABLE. As another example, here is the Equivalent Dot Form of our
earlier expressiona + b + c ∗ d:

This assumes that ifx’s type has a base classC with operator features
plusalias "+" andmultipliedalias "*" .

The next section gives a precise definition of the Equivalent Dot Form,
although the above examples suffice to make the idea clear. Then the
validity constraint on operator expressions is straightforward:

The Feature Declaration ruletells us that a given operator may serve as
alias for a unary feature (a feature without argument), or a binary feature
(with one argument), or both, as in the case of+ in INTEGERandREAL.
In this last case, two features will match the requirement of clause1; but
that’s OK because the form of the expression, unary or binary, will remove
any ambiguity thanks to thedefinition of the Equivalent Dot Form.

This rule ensures that every operator is used with the proper number of
arguments. For exampleINTEGERand other basic arithmetic classes have
a one-argument functionproductalias "∗", but not zero-argument version,
as would be required for aUnary. Then of the expressions

the first is valid but not the second.

The rule also explains why some binary operators can be used as
“multiary” — meaning with three or more operands, of types all
compatible with the type of the first — others are limited to two arguments
An example of multiary operator is+ on integers; relational operators such
as<, on the other hand, are binary but not multiary. This is clear from the
Equivalent Dot Forms. With integer operands, theOperator_expression

(a.plus(b)).plus(c.multiplied(d))

Operator Expression rule VWOE

A Unary_expression§ x or Binary_expressionx § y, for some
operator§, is valid if and only if it satisfies the following
conditions:
1 • A feature of thebase class ofx is declared asalias "§".

2 • The expression’sEquivalent Dot Form is a validCall.

2 ∗ 2
∗ 2

1 + 2 + 3 + 4

← “OPERATOR FEA-
TURES”,  5.15, page
154.

← The validity of calls
was the subject of chap-
ter 25.

← Page162, relying on
definition of“Alias
Validity rule”,  page
163

→ Clause1 and2,
page780.

WARNING: second
expression not valid.
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has theParenthesized Form

yielding the valid Equivalent Dot Form

By the same rules, theOperator_expression

would yield the Equivalent Dot Form

is not valid since the highlighted operand is of typeBOOLEAN, but
BOOLEANdoes not have a function aliased to<, violating clause1 of the
Operator Expression rule.

If BOOLEANhad a functionis_lessalias "<", perhaps withfalseconsidered
less thantrue, this would still not make the expression valid: such a function
would expect an argument of typeBOOLEAN, notINTEGER. In this case it’s
clause2 that would fail. A true multiary operator, such as"+" on integers,
must accept successive operands of the same or compatible type.

In summary, there is no need to define binary and multiary operators as
separate syntactical categories. The grammar lists both kinds asBinary;
whether a given operator may be used in multiary form depends on the
signature of the corresponding function and on the precedence rules.

There remains to define the semantics of anOperator_expression. You
are probably guessing from the preceding discussion that — as with
validity — it is simply the semantics of its Equivalent Dot Form. You are
guessing almost right; “almost” because (life not always being as simple as
we would like) we must account for a special case, semistrict operators:

((1 + 2) + 3) + 4

((1.plus(2)).plus(3)).plus(4)

1 < 2 < 3

 < 3

 Expression Semantics (strict case)

The value of an Expression, other than aBinary_expression
whoseBinary is semistrict, is thevalue of itsEquivalent Dot
Form.

← “Pr ecedence and
Parenthesized Form”,
page 767.

WARNING: this expres-
sion is not valid!

(1.is_less(2))
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28.6 SEMISTRICT BOOLEAN OPERATORS

The semantic rule for operator expressions set out the special case of three
boolean operators, known as “semistrict”. We’ll now take a look at these
operators to understand why they are needed, and obtain the semantic rule
for this case.

The ordinary (“strict”) boolean operatorsnot, and, or andxor, defined
in the Kernel Library classBOOLEAN, define operations on boolean
values. The value ofnot a is true if and only ifa has value false. The others
are binary operators; the value they yield when applied to a first operand of
valuev1 and a second operand of valuev2 is defined as follows:

• For and: true if and only if bothv1 andv2 are false.

• For or: false if and only if eitherv1 or v2 is false.

• For xor: true if and only ifv1 andv2 have different values. In other
words,a xor b has the same value as (a or b) and not (a and b).

Three operators, also defined inBOOLEAN, complementand andor, from
which they differ by a special semantic property known as semistrictness.

For operands of valuesv1 andv2 they yield the following results:

• and then (semistrict conjunction): false ifv1 is false, otherwise the
value ofv2.

This semantic rule and the preceding validity constraint make it possible to
forego any specific semantics for operator expressions (except in one
special case) and define the value of any expression through other semantic
rules of the language, in particular the rules forcalls andentities.

This applies in particular to arithmetic and relational operators (for
which the feature declarations are in basic classes such asINTEGERand
REAL) and to boolean operators (classBOOLEAN): in principle, although
not necessary as implemented by compilers,a + b is just a feature call like
any other.

The excluded case — covered by a separaterule — is that of a binary
expression using one of the threesemistrict operators:and then, or else,
implies. This is because the value of an expression such asa and then b is
not entirely defined by its Equivalent Dot Forma.conjuncted_semistrict(b),
which needs to evaluateb, whereas theand then form explicitly ignoresb
whena has valueFalse, as the value of the whole expression isFalseeven if
bdoes not have a defined value, a case which should not be treated as an error.

Semistrict operators
A semistrict operator is any one of the three operatorsand then,
or else andimplies, applied tooperands of typeBOOLEAN.

← “PRECISE CALL
SEMANTICS”,  23.17,
page 652; “Entity
Semantics rule”,  page
522.

→ “Operator Expres-
sion Semantics (semis-
trict cases)”,page777.

A general presentation
of semistrictness
appeared in22.13,.You
should not have any
trouble understanding
the present section even
if you skipped the ear-
lier, more theoretical
discussion.
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• or else(semistrict disjunction): true ifv1is true, otherwise the value ofv2.

• implies (semistrict implication): true ifv1 is false, otherwise the value
of v2. (In other words,a impliesbhas the same value asnot aor elseb.)

At first sight,and thenseems equivalent toand, or elseto or, andimplies
toor with the first argument negated. The difference is that any one of these
operators may in some cases yield a result on the sole basis of its first
argumentv1, if the value ofv1suffices to determine the outcome – even if
the second argument does not have a value. They are “strict” (demand a
value) for the first argument only, hence the term “semistrict”.

The difference arises forand thenwhenv1 is false (result: false), foror
elsewhenv1 is true (result: true), and forimplies whenv1 is false (result:
true). In these three cases the implementation must not evaluate the second
argumentv2. No such rule applies toand andor, which are not required to
produce any result for an undefined second argument, and so may use a
strict implementation as well as a semistrict one.

As a consequence, the semistrict operators, in contrast with their
counterparts in standard mathematical logic, are not commutative: they do
not treat their operands symmetrically. For example,a and thenb does not
necessarily have the same effect asb and thena. To be more accurate, any
values these expressions yield will be the same, but it is possible for the
second to yield a value when the first does not.

For a more complete
discussion of strictness
see the book"Introduc-
tion to the Theory of
Programming Lan-
guages". For a study of
various degrees of
strictness in boolean
operators see H. Bar-
ringer, J.H. Cheng and
Cliff B. Jones, "A Logic
Covering Undefined-
ness in Program
Proofs", Acta Informat-
ica, 21, 3, October
1984.
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Because they enable you to write two-operand boolean expressions
whose second operand need not have a value if the first operand’s value
leaves only one possible result, semistrict operators are particularly useful
for a certain kind of loop used to traverse a data structure. Here is an
example from a search routine in classLINKED_LIST in EiffelBase:

The loop will terminate whenever the cursor moves after the last element
(off), or hits an element whose value, as given byitem, is equal to the
argumentv. TheExit expression tests for either of these conditions to occur.
When the first condition (off) is true, however, we do not want to evaluate
the second (item = v): not only would its contribution to the result be
useless (since a disjunction with one true operand may have no value other
than true); evaluating it would in fact be improper since functionitem is
only defined when the cursor is on an actual element, which is not the case
when it isoff. (This is reflected in the precondition foritem, which includes
the conditionnot off.)

To guarantee the desired result, theExit condition usesor else rather
thanor. In the same way, the postcondition only makes sense because of
the semistrictness ofimplies. In other words, the semistrict semantics ofor
elseandimplies guarantees thatsearch_samewill work properly even ifv
does not appear in the list.

This common loop scheme is captured byiterator routines of EiffelBase, —
do_all, do_while, for_all and others — declared in high-level classes such as
LINEARand hence available for most practical data structures. To use these
routines, it suffices to pass them the appropriate agents as arguments, as in
your_list.for_all (agent your_condition) which returns true if and only if
every element ofyour_list satisfiesyour_condition.

search_same(v: like first)
-- Move cursor to first position (at or after current one)
-- wherev appears; move "off" if no such position.

do
from

… (Initialization omitted)…
variant

count – position + 1
until

off or else(item= v)
loop

forth
end

ensure
(not off) implies (item= v)

end
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This discussion leads us to the general semantic definition for nonstrict
boolean operators:

Operator Expression Semantics (semistrict cases)

For a andb of typeBOOLEAN:
• The value ofa and then b is: if a has value false, then false;

otherwise the value ofb.

• The value ofa or else b is: if a has value true, then true;
otherwise the value ofb.

• The value ofa implies b is: if a has value false, then true;
otherwise the value ofb.

For each of the three forms, if the first condition listed holds, the
computationof theexpression’svaluemustnotcauseevaluationofb.

The semantics of other kinds of expression, and Eiffel constructs in
general, iscompositional: the value of an expression with subexpressions
a andb, for examplea + b (wherea andb may themselves be complex
expressions), is defined in terms of the values ofa andb, obtained from the
same set of semantic rules, and of the connecting operators, here+. Among
expressions, those involving semistrict operators are the only exception to
this general style. The above rule is not strictly compositional since it tells
us that in certain cases of evaluating an expression involvingb we should
not consider the value ofb. It’s not just that wemayignore the value ofb
in some cases — which would also be true ofaandb (strict) whena is false
— but that wemust ignore it lest it prevents us from evaluating the
expression as a whole.

It’s this lack of full compositionality that makes the above rule more
operational than the semantic specification of other kinds of expression.
Their usual form is “the value of an expression of the formX is Y”, where
Y only refers to values of subexpressions ofX. Such rules normally don’t
mention order of execution. They respect compositionality and leave
compilers free to choose any operand evaluation order, in particular for
performance. Here, however, order matters: the final requirement of the
rule requiresthat the computation first evaluatea. We need this operational
style to reflect the special nature of nonstrict operators, letting us
sometimes get a value for an expression whose second operand does not
have any.
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28.7 BRACKET EXPRESSIONS

What makes a bracket expression possible is a feature declared with a
bracket alias clause, as in

which — if this declaration appears inHASH_TABLE, andyour_tableis of
typeHASH_TABLE[T, U] — allows writingyour_table[your_key] as an
abbreviation foryour_table.item(your_key).

The Kernel Library classARRAY[G] relies on this technique to allow
accessing array elements through the notationyour_array[n] as a synonym
for your_array.item (n) for an integern. You are not limited to one
argument: a classMATRIX3 [G] describing three-dimensional matrices
may have

allowing element access under the formyour_matrix[n1, n2, n3].

This mechanism is also useful in connection with assigner procedures:
addingassignput (afterG) to any of these examples, with a procedureput
having the appropriate signature, allows you to use assignment syntax, as

in the last example, an abbreviation foryour_matrix.put (v, n1, n2, n3).
The left side is, again, aBracket_expression.

The syntax is simple:

itemalias "[ ]"( key: H): G …

itemalias "[ ]" (i, j, k): G …

your_matrix[n1, n2, n3] := v

Bracket expressions
Bracket_expression=∆ Bracket_target "[" Actuals"]"

Bracket_target=∆ Target | Once_string |
Manifest_constant| Manifest_tuple

Targetcovers every kind of expression that can be used as target of a call,
including simple variants likeLocal variables and formal arguments, as
well asCall, representing the application of a query to a target that may
itself be the result of applying calls.

← “BRACKET FEA-
TURE”,  5.17, page
158.
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Examples ofBracket_expression are

In the first two cases, theCall_chainis just a single query,your_tableor
your_matrix; such aBracket_expressioncould appear respectively in class
HASH_TABLEor MATRIX3. The last example, with a longerCall_chain,
assumes that in the base class fortable_listthere’s a functioni_th returning
a table.

TheBracket_targetused to the left of the bracket part allows a number
of expression variants;Call_chainis the most common, permitting bracket
expressions such asf [x] but alsoa.b.f [x] (to be understood again as an
abbreviation: fora.b.f.item(x) for the appropriateitem function). One of
the other possibilities isManifest_tuple, as in[a, b, c] [ i], taking advantage
of a bracket alias foritem in TUPLE. If you want a more complex
expression as target, use aParenthesized_target, as in

which will be valid if the type ofa + b has a bracket feature.

The reason for the restriction ofBracket_targetto specific kinds of
expressions is — as you might not have guessed! — the need to make the
semicolon optional in all cases without causing any syntactical ambiguity. If
you are interested in understanding this fully, you’ll find the details in the
final section of this chapter.

The Equivalent Dot Form of aBracket_expressionsimply involves
replacing the expression by a call in dot notation, using the associated
feature. For the above three examples it is:

These examples all assumeitemas theFeature_namefor the bracket feature;
this is indeed the most common choice, but of course you may choose any
name you like.

your_table[your_key]
your_matrix[n1, n2, n3]
table_list.i_th (i) [your_key]

(|a + b|) [i]

your_table (your_key)
your_matrix (n1, n2, n3)
table_list.i_th (i) (your_key)

→ “EXPRESSIONS
AND THE SEMICO-
LON”, 28.12,page784.

.item
.item

.item
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Here is the validity rule:

The Feature Declaration ruleensures that at most one feature satisfies
clause1. The Equivalent Dot Form, as defined below, relies on that feature.

28.8 THE EQUIVALENT DOT FORM

This section defines precisely the notion of Equivalent Dot Form, already
introduced informally through examples, and used extensively in the
previous sections. It may be skipped on first reading.

For a full specification of the validity and semantics of an
Operator_expressionor Bracket_expression, we need a precise description
of how to obtain its Equivalent Dot Form. Because such expressions may
involve components which are expressions of other kinds (such as calls or
constants), the definition must in fact be applicable to any kind of
expression. In the following definition the most important cases are the first
three, giving dot equivalents for the non-dot forms (operators, bracket):

Bracket Expression rule VWBR

A Bracket_expressionx [i] is valid if and only if it satisfies the
following conditions:
1 • A feature of thebase class ofx is declared asalias "[ ]" .

2 • The expression’s Equivalent Dot Form is a validCall.

Equivalent Dot Form of an expression
Any Expressionehas anEquivalent Dot Form, not involving (in
any of its subexpressions) any Bracket_expressionor
Operator_expression, and defined as follows, whereC denotes
thebaseclass ofx, pedenotes theParenthesizedForm of e, and
x’, y’, c’ denote the Equivalent Dot Forms (obtained recursively)
of x, y, c:
1 • If pe is a Unary_expression§ x: x’.f, where f is the

Feature_nameof the no-argument feature of alias§ in C.
2 • If pe is a Binary_expressionof target-convertedform x § y:

x’.f (y’ ) where f is the Feature_nameof the one-argument
feature of alias§ in C.

3 • If pe is a Bracket_expressionx [y]: x’.f (y’) where f is the
Feature_name of the feature declared asalias "[ ]"  in C.

4 • If pe has nosubexpression other than itself:pe.
5 • In all other cases: (recursively) the result of replacing every

subexpression ofeby its Equivalent Dot Form.

← Page162, clause7;
see clause2.of “Alias
Validity rule”,  page
163
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In the first three cases, the Operator Expression and Bracket Expression
rules seen earlier in this chapter guarantee that there is a featuref of the
given alias. The Feature Declarationrule then ensures that in all of the first
three cases exactly one featuref satisfies the requirements.

The Operator Expression and Bracket Expression rules both rely on the
definition of Equivalent Dot Form, raising the appearance of circular
reasoning. But we are only interested in Equivalent Dot Forms of expressions
that satisfy clause 1 of their respective rules; this is enough to make the
definition of Equivalent Dot Form applicable, and then to use it in the rule’s
second clause. So this mutual dependency does not cause circularity.

In case2 we draw the featuref not from the original expression but from
its target-converted form as presented in the preceding section. It will
usually identical, but allows us for example to acceptyour_integer+
your_real, treating it as(your_integer.converted_to_real) + your_real.

Case4 is the terminal case of the recursion, coveringFormal, Local,
Manifest_constant, and anyCall consisting of a single query with no
arguments. Case5 makes sure that we apply the rule recursively to all
constituents of a complex expression.

Case applies, among others, to aparenthesizedexpression(f), for which it
gives us(f ’ ) wheref ’  is, recursively, the Equivalent Dot Form off.

28.9 BOOLEAN EXPRESSIONS

ForBoolean_expression, the grammar at the beginning of this chapter gave
three kinds:Boolean_constant, Object_testandBasic_expression. The two
boolean constantareTrue andFalse. Object_testhas its own validity rule.
The third case must satisfy an obvious constraint:

Here the “type” of aBasic_expressionis the result of applying the
Expression Type definition appearingbelow.

28.10 ENTITIES

Entities do not appear as a separate case in the syntax for Expression
because they form a special case of Call (more preciselyUnqualified_call).
But their role as expressions or components of expressions deserves a few
comments.

First, as a reminder, the syntactic definition:

Boolean Expression rule VWBE

A Basic_expressionis valid as aBoolean_expressionif and only
if it is of typeBOOLEAN.

← Pages772 and780.

← Page162, relying on
definition of“Alias
Validity rule”,  page
163.

→ Page788.

→ Page“Type of an
expression”, page783.
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The associated constraint, called theEntity rule, required any entity to be
one of: attribute; local variable of the enclosing routine if any (including
Resultif it is a function); formal argument of the enclosing routine or inline
agent; feature of a call;Current.

Together with the Call rule, the Entity rule governs the use of identifiers
in expressions. A simple consequence of these two constraints is:

--- REFERENCE TO ENTITY EVALUATION SEMANTICS

28.11 THE TYPE OF AN EXPRESSION

Every expression has a type; this notion is central to the validity rules
governing (among others) assignment, argument passing and the
construction of larger expressions from smaller ones.

Entities and variables
Entity =∆ Variable | Read_only

Variable =∆ Attribute | Local

Attribute =∆ Identifier

Local =∆ Indentifier | Result

Read_only=∆ Formal | Current

Formal =∆ Indentifier

Identifier rule VWID

An Identifier appearing in an expression in a classC, other than
as thefeatureof aqualifiedCall, must be thename of a feature of
C, or alocalvariable of the enclosing feature or inline agent if any,
or a formal argument of the enclosing reature or inline agent if any,
or theObject-Test Local of anObject_test.

The restriction “other than as the feature of a qualifiedCall” excludes an
identifier appearing immediately after a dot to denote a feature being called
on a target object: ina + b.c (d), the rule applies toa, b (target of aCall)
andd (actual argument), but not toc (feature of a qualifiedCall). Forc the
relevant constraint is the Call rule, which among other conditions requires
c to be a feature of the base class ofb’s type.

The Identifier rule is not a full "if and only if" rule; in fact it is
conceptually superfluous since it follows from earlier, more complete
constraints. Language processing tools may find it convenient as a simple
criterion for detecting the most common case of invalidIdentifier in
expression.

This syntax appeared
originally on page512.

← “Entity rule”, page
513.

In the Equivalent Dot
Form, a actually
appears as target of a
call,andbboth as argu-
mentofacalland target
of another.
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This static type of the expression, entirely deduced from declarations in the
software text, shouldn’t be confused with thedynamictypeof its value at
some instant of execution.

We are now in a position to define precisely the notion of static type for
each kind of expression.

A full definition must remove the effect of genericity: ifa is of type
D [U] andx is an attribute or function declared of typeG in classD [G], the
type we want fora.x is notG — meaningless outside of classC — butU.
This has been taken care of by the Generic Type Adaptation rule, which
tells us to apply the actual-to-formal parameter substitutions whenever our
types involve generic derivations. By referring to this rule, the following
Expression Type definition can ignore genericity for its own specific cases:

Type of an expression
The type of anExpressione is:
1 • For the predefinedRead_onlyCurrent : thecurrent type.
2 • For a routine’sFormalargument : the type declared fore.
3 • For an Object-Test local: its declared type.
4 • ForResult, appearing in the text of a queryf: the result type off.
5 • For alocalvariable other thanResult: the type declared fore.
6 • For aCall: the type ofeas determined by theExpressionCall

Type definition with respect to the current type.
7 • For aPrecursor: (recursively) the type of itsunfolded form.
8 • For anEquality: BOOLEAN.
9 • For aParenthesized(f): (recursively) the type off.
10 •Forold f: (recursively) the type off.
11 •For an Operator_expressionor Bracket_expression:

(recursively) the type of theEquivalent Dot Form ofe.
12 •For aManifest_constant: as given by the definition of the

type of a manifest constant.
13 •For aManifest_tuple[a1, … an] (n ≥ 0): TUPLE[T1, … Tn]

where eachTi is (recursively) the type ofai.
14 •For anAgent: as given by the definition of thetypeof anagent

expression.
15 •For anObject_test: BOOLEAN.
16 •For aOnce_string: STRING.
17 •For an Address $v: TYPED_POINTER[T] where T is

(recursively) the type ofv.
18 •For aCreation_expression: theExplicit_creation_type.

Case6, which refers to a definition given in the discussion of calls, also
determines case11, operator and bracket expressions.

← “Dynamic type”,
page 606.

→ The current type is
obtainedfromthecurrent
class by adding the for-
mal generic parameters,
if any. See12.11, page
365.

← “TypeofaCall used
as expression”,  page
655.

← “Type of an agent
expression”, page759.
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28.12 EXPRESSIONS AND THE SEMICOLON

We end this review of expressions with a syntactical note (which you may
skip on first reading). The distinction betweenBasic_expressionand
Special_expressionhas, among others, a syntactic purpose. Eiffel’s
Semicolon rule specifies that the semicolon as separator is always optional.
It must be applicable to anyAssertion_clause, which can be an
Unlabeled_assertion_clauseand hence directly follow another clause, which
could end with

using aBracket_expression, the application off to x. To a naive parser,
however, this could look like two successive clauses:

without the semicolon. The second line, aManifest_tuple, is also an
expression, and hence a possible assertion clause if it were valid. It isnot
valid, since a tuple cannot be boolean as required for an assertion clause;
but that’s validity information, whereas it should be possible to parse
software texts on the basis of syntactical information only.

Fortunately, the syntax avoids any such problem thanks to the division
between Basic_expression and Special_expression.
Unlabeled_assertion_clause, and every context where similar ambiguities
could arise, only accept aBasic_expression; all the constructs such as
Manifest_tuple that could cause such ambiguities are part of
Special_expression.

This technique no loss of generality because if you do want to start a
component (for example anUnlabeled_assertion_clause) with a legitimate
expression that, syntactically, is aSpecial_expression, you can just put it in
parentheses: asParenthesizedis part ofBasic_expressionthis does the trick.

In some cases, you may also use aParenthesized_target. Note for
example the following assertion, valid iff is of typeBOOLEAN:

This assertion includes two clauses; the first is true if and only if f is true,
and the second is trivially true since it states that a 3-item tuple has a
positive number of items.

Such cases are extreme, and in fact the conscientious programmer
always labels assertion clauses:

… f [x]

… f ;
[x]

require
f -- No semicolon necessary
({[ x, y, z]|).count > 0

require
f
({[ x, y, z]|).count > 0

WARNING: not valid.,

Valid, assuming the
proper declarations
(but not the recom-
mended style).

The recommend style.

property_1:
property_2:
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But this is only a recommendation. The syntax rule guarantee the basic
Eiffel right of omitting semicolons between elements on different lines —
greatly enjoyed by all users of the language.
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29
Constants
29.1 OVERVIEW

29.2 GENERAL FORM OF CONSTANTS

A Constantexpression has a value that does not change at run time, and is
the same for all instances of a class.

The form is:

A Constant_attributedenotes a constant value, specified in the attribute’s
declaration as aManifest_constant. The use of an identifier as
Constant_attribute is subject to an obvious constraint:

To apply this rule, you must look at the declaration of the attribute and
check that, according to the rules for distinguishing between various kinds
of feature, it indeed defines a constant attribute.

Expressions, just studied, include the special case of constants, whose values
cannot directly be changed by execution-time actions. This discussion goes
through the various kinds. Particular attention will be devoted to the various
forms, single- and multi-line, ofstring constant.

Along with constants proper, we will study two notations for “manifest”
objects given by the list of their items: manifest tuples and manifest arrays,
both using the syntax[item1, … itemn].

Constants
Constant=∆ Manifest_constant |

Constant_attribute

Constant_attribute=∆ Feature_name

Constant Attribute rule VWCA

A Constant_attributeappearing in a classC is valid if and only if
its Feature_name is thefinal name of aconstant attribute ofC.

A Constant is required
as"inspect constant" in
Multi_branch instruc-
tions(chapter17).

Constant attributes
were discussed in chap-
ter 18

← The rules for recog-
nizing constant
attributes and other
feature categories were
given in5.12,page145.
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If not a Constant_attribute, a Constantwill be a Manifest_constant,
whose form directly determine both a type and a value:

For clarity and consistency, and to avoid mistakes, we put arestriction —
not expressible in BNF-E — on the use of signs:

Similarly, for characters:

Manifest constants
Manifest_constant=∆ [Manifest_type] Manifest_value

Manifest_type=∆ "{" Type "}"

Manifest_value=∆ Boolean_constant |
Character_constant |
Integer_constant |
Real_constant |
Manifest_string |
Manifest_type

Sign =∆ "+" | "–"

Integer_constant=∆ [Sign] Integer

Character_constant=∆ " ' " Character " ' "

Boolean_constant=∆ True | False

Real_constant=∆ [Sign] Real

Syntax (non-production): Sign Syntax rule

If present, theSignof anInteger_constantor Real_constantmust
immediately precede the associatedInteger or Real, with no
interveningtokens orcomponents (such asbreaks orcomments).

Syntax (non-production): Character Syntax rule

The quotes of aCharacter_constantmust immediately precede
and follow the Character, with no intervening tokens or
components (such asbreaks orcomments).

→ The syntax for
Manifest_string
appears later in this
chapter, page795.

← A similar rule
applied to operators:
“Syntax (non-produc-
tion): Alias Syntax
rule”,  page 151. See
alsorulesoncharacters
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The following sections study the role of the optionalType in braces, then
the various cases, except forBoolean_constant, about which it suffices to
note that this construct only has two specimens,True and False, whose
values are different (when compared for equality).

Beyond basic types, there is also a need for specifying constant values
of complex types. This is addressed throughonce functions. The body of
a once function is executed at most once, to compute the result of the first
call (if any). All subsequent calls return the same result as the first, without
further computation.

For functions of reference types, this yields constantreferences. The
scheme is particularly useful for objects containing shared information and
may be illustrated as follows:

Calls to shared always return a reference to the object created and
initialized by the first call. Only the reference is constant here, not the
object itself since clients can change its fields through procedure calls

29.3 FORCING A TYPE ON A CONSTANT

The syntax forManifest_constant on the preceding page specifies

In general, breaks or comment lines may appear between components
prescribed by a BNF-E production, making the last two rules necessary to
complement the grammar: for signed constants, you must write–5, not– 5
etc. This helps avoid confusion with operators in arithmetic expressions,
which may of course be followed by spaces, as ina – b. Similarly, you must
write a character constant as'A’ , not' A ’ .

To avoid any confusion about the syntax ofCharacter_constant, it is
important tonote that a character code such as%N (New Line) constitutes
a singleCharacter token.

shared: SOME_REFERENCE_TYPE
-- A reference to an object shared by
-- all instances of the enclosing class

once
createResult… (…);
… Further operations onResult, if needed, to update

the attached object…
end

shared.some_procedure(…)

Manifest types
Manifest_constant=∆ [Manifest_type] Manifest_value

→ “Syntax (non-pro-
duction): Manifest
character”,  page 895.

On once functions(and
once routines in gen-
eral) see8.5,page222,
and the semantics of
calls in chapter23.
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A Manifest_valuedirectly specifies a value, for example3.141592or
"ABC". That value always determines a type:REALandSTRINGin these
two examples. Usually this is also the type that you want for the
Manifest_constantas a whole and, if so, you don’t need to qualify the
Manifest_valuefurther. For example if you use1, a specimen of the lexical
construct Integer, as a constant, the type rules imply that it will be
understood as aManifest_constantof type INTEGER. This is usually the
desired result; but if you want the expression to be of a different type — a
sized integer variant — you may specify aManifest_type, as in

This syntax does not imply a conversion, but simplyforces an explicit type.
You will need it in some cases, for example, to specify large integer values.
Depending on a global setting that you can override through a compilation
option,INTEGERis a synonym for eitherINTEGER_32or INTEGER_64.
Assume it is meansINTEGER_32. The maximum value of that type is
approximately231. If you want to express the value232, representable as
an INTEGER_64but not as anINTEGER_32, you may not write
4_294_967_296(even though that’s thecorrect mathematical value) since
it’s invalid as an INTEGER_32, being beyond the bounds. You may,
however, use

29.4 THE TYPE OF A CONSTANT

---- EXPLAIN

1

4_294_967_296

Type of a manifest constant
The type of aManifest_constant of Manifest_valuemv is:
1 • For { T} mv, with the optionalManifest_typepresent:T. The

remaining cases assume this optional component is absent,
and only involvemv.

2 • If mv is aBoolean_constant: BOOLEAN.

3 • If mv is aCharacter_constant: CHARACTER.

4 • If mv is anInteger_constant: INTEGER.

5 • If mv is aReal_constant: REAL.

6 • If mv is aManifest_string: STRING.

7 • If mv is aManifest_type{ T} : TYPE[T].

{ INTEGER_8}

← See also“EXPRES-
SION CONVERTIBIL-
ITY: THE ROLE OF
PRECONDITIONS”,
15.10, page 420.

→ The optional under-
scores let you group
digits for readability.
See“INTEGERS”,
32.16, page 899.

{ INTEGER_64}
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The Manifest_typenotation is only applicable to manifest constants of
types with sized variants:

Do not confuse thisManifest_typenotation{T} const, for a constantconst,
with the mechanism for expressing conversions explicitly: ----- REWRITE
THIS FOR NEW NOTATION ----{ T} [ exp] which simply applies a function
adaptedfrom classTYPEto the targetexp, an arbitrary expression, triggering
any necessary conversion in the process. The{T} constnotation only applies
to constants andwill not cause a conversion, as noted above in the example
of { INTEGER_8} 1.

The effect of adding aManifest_type follows from the informal
description:

As a consequence of cases3 to 6, the type of a character, string or numeric
constant is never one of the sized variants but always the fundamental
underlying type (CHARACTER, INTEGER, REAL, STRING). Language
mechanisms are designed so that you can use such constants without hassle
— for example, without explicit conversions — even in connection with
specific variants. For example:

• You can assign an integer constant such as 10 to a target of a type such
asINTEGER_8 as long as it fits (as enforced by validity rules).

• You can use such a constant for discrimination in a Multi_branch even
if the expression being discriminated is of a specific sized variant; here
too the compatibility is enforced statically by the validity rules.

Case7 involves the Kernel Library classTYPE.

Manifest-Type Qualifier rule VWMQ

It is valid for aManifest_constantto be of the form{T} v (with the
optionalManifest_typequalifier present) if and only if the typeU
of v (as determined by cases2 to 7 of the definition of thetypeof
a manifestconstant) is one ofCHARACTER, STRING, INTEGER
andREAL, andT is one of thesized variants ofU.

The rule states no restriction on the value, even though an example such as
{ INTEGER_8} 256 is clearly invalid, since 256 is not representable as an
INTEGER_8. The Manifest Constant rule addresses this.

Manifest Constant Semantics

Thevalueof aManifest_constantc listing aManifest_valuev is:
1 • If c is of the form{T} v (with the optionalManifest_type

qualifier present): the value of typeT denoted byv.

2 • Otherwise (c is justv): the value denoted byv.

→ “Basic types and
their sized variants”,
page 817.

← “CONVERTINGAN
EXPRESSIONEXPLIC-
ITLY”,  15.9, page 416..
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--- In case2, the lexical rules of the language ensure that the form of the
constants uniquely determines one of the types listed. For example,123 is
an integer, but12.3 is a real;{ T}  is aTYPE; and so on.

Sometimes we just need to refer to the value explicitly listed for a constant,
ignoring anyManifest_type. The following definition captures this notion:

29.5 INTEGER CONSTANTS

An integer constant – a specimen ofInteger_constant– consists of an
Integer, possibly preceded by a sign. (Integer, a lexical construct, describes
unsigned integers.) Example specimens ofInteger_constant are:

29.6 REAL CONSTANTS

A real constant – a specimen ofReal_constant– consists of a Real, possibly
preceded by a sign.

Real, a lexical construct, describes floating-point numbers. Without a
scaling factor, the possible forms of Real are

wherea andb are specimens of Integer. Any of these may be followed by
the letterE, an optional sign and an Integer to indicate scaling by a power
of ten.

Manifest value of a constant
Themanifest value of a constant is:
1 • If it is aManifest_constant: its value.

2 • If it is a constant attribute: (recursively) the manifest value of
theManifest_constant listed in its declaration.

0
253
-57
+253

a.
.b
a.b

Construct Integer is
described as part of the
lexical specification in
32.15, page 898.

Real is described in
32.16, page 899.



§29.7  CHARACTER CONSTANTS 793
Here are some  example specimens ofReal_constant:

29.7 CHARACTER CONSTANTS

A Character_constant is a character enclosed in single quotes, as in

The following constant attribute declarations define symbolic names for
some specimens ofCharacter_constant:

A Character_constantconsists of exactly three characters: the first and the
third are single quotes’ ; the middle one is aCharacterother than a single
quote.

Allowing a quote would not cause any ambiguity (since there are always
exactly three characters altogether), but the rule is consistent with the
convention for double quotes in aManifest_string, as studied in the next
section.

The value of aCharacter_constant is its middleCharacter.

To understand the above syntactic definition, you must realize that a
Character is either a key corresponding directly to a printable character
(such asA or $) or one of a set of multiple-keyspecialcharactercodes
beginning with the percent signpercent. Examples of such codes are:

• %N for a new-line.

• %’  for a single quote.

• %B for a backspace.

• %/ "91" /% for the character of ASCII code 91.

46.
54.
24.36
-34.65
-34.65E-12
45.21E2
+45.21E2

’c’

Upper_z: CHARACTER is ’Z’;
Dollar_sign: CHARACTER is ’$’;
blank: CHARACTER is ’ ’;

→ “Specialcharacters
andtheircodes”, page
897.

91 is the(decimal) code
of theopeningbracket[,
which you may also
write as %(.
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For example, a class text may include constant attribute declarations such
as

Because a new-line is not aCharacter, the three characters of a
Character_constantmust appear on the same line. Of course, you may
define a constant whose value is a new-line character by using %N as
middleCharacter.

In spite of appearances, the presence of %’ in a Character_constant, as
in the declaration ofSingle_quoteabove, does not violate the prohibition
of the quote character as a constant’sCharacter: %’ , as all the special
character codes, is considered to be a single character, although it consists
of two signs (percent and single quote). This is explained in detail in the
specification of characters.

29.8 MANIFEST STRINGS

A Manifest_stringdenotes an instance of the Kernel Library class
STRING, studied in alater chapter.

New_line: CHARACTERis ’%N’;
Single_quote: CHARACTERis ’%’’

As the following syntax indicates, there are two ways to write a
manifest string:

• A Basic_manifest_string, the most common case, is a sequence of
characters in double quotes, as in"This text". Some of the characters
may be special character codes, such as%N representing a new line.
This variant is useful for such frequent applications as object names,
texts of simple messages to be displayed, labels of buttons and other
user interface elements, generally using fairly short and simple
sequences of characters. You may write the string over several lines by
ending an interrupted line with a percent character% and starting the
next one, after possible blanks and tabs, by the same character.

• A Verbatim_stringis a sequence of lines to be taken exactly as they are
(hence the name), bracketed by"{ at the end of the line that precedes the
sequence and}" at the beginning of the line that follows the sequence
(or "[ and"] to left-align the lines). No special character codes apply.
This is useful for embedding multi-line texts; applications include
description entries of Notes clauses, inline C code, SQL or XML
queries to be passed to some external program.

→ See36.7, page 937,
about classSTRING.
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An example of the first of these uses is:

Here are the syntax rules for these two variants:

as

note
description: "[

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.

]"

Manifest strings
Manifest_string=∆ Basic_manifest_string|

Verbatim_string

Basic_manifest_string=∆ ' " ' String_content' "  '

String_content=∆ {Simple_string Line_wrapping_part…}+

Verbatim_string=∆ Verbatim_string_opener
Line_sequence
Verbatim_string_closer

Verbatim_string_opener=∆ ' " ' [Simple_string] Open_bracket

Verbatim_string_closer=∆ Close_bracket[Simple_string] ' " '

Open_bracket=∆ "[" | "{"

Close_bracket=∆ "]" | "}"

In the “basic” case, most examples ofString_contentinvolve just one
Simple_string(a sequence of printable characters, with no new lines, as
defined in the description of lexical components). For generality, however,
String_contentis defined as a repetition, with successiveSimple_string
components separated byLine_wrapping_partto allow writing a string on
several lines. Details below.

In the “verbatim” case,Line_sequenceis a lexical construct denoting a
sequence of lines with arbitrary text. The reason for the
Verbatim_string_openerand theVerbatim_string_closeris to provide an
escape sequence for anextremecase (aLine_sequencethat begins with]" ),
but most of the time the opener is just"[ or "{ and the closer]" or "} . The
difference between brackets and braces is that with"{ … }" the
Line_sequenceis kept exactly as is, whereas with"[ … ]" the lines are left-
aligned (stripped of any common initial blanks and tabs). Details below.

→ The “extreme case”
arises when one of the
lines in theLine_
sequence begins with
]" . See“Verbatim
strings”,  page 798.
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As with some other constructs, we need toclarify the use of breaks
through the definition ofLine_sequence:

and a consistency constraint on manifest strings:

The details of both variants now follow, after an explanation of the
oncekeyword.

Basic manifest strings

To denote the actual string content, you have the choice between
Basic_manifest_string andVerbatim_string.

An exampleBasic_manifest_string is:

The value is aSTRINGobject, which represents a sequence of characters.
In this example the sequence contains all the characters given except for the
two enclosing double quotes, which play a purely syntactical role.

Syntax (non-production): Line sequence

A specimen ofLine_sequenceis a sequence of one or more
Simple_stringcomponents, each separated from the next by a
singleNew_line.

Syntax (non-production): Manifest String rule

In addition to the properties specified by the grammar, every
Manifest_stringmust satisfy the following properties:
1 • The Simple_string components of itsString_contentor

Line_sequencemay not include a double quote character
except as part of the character code%" (denoting a double
quote).

2 • A Verbatim_string_openerorVerbatim_string_closermay not
contain anybreak character.

Like other “non-production” syntax rules, the last two rules capture simple
syntax requirements not expressible through BNF-E productions.

Because aLine_sequenceis made of simple strings separated by a single
New_line in each case, a line in aVerbatim_stringthat looks like a
comment is not a comment but a substring of theVerbatim_string.

"This Manifest_string contains 43 characters"

←Similarrulesapplied
tooperators, in“Syntax
(non-production):Alias
Syntaxrule”, page151,
andtosignedconstants,
in “Syntax (non-pro-
duction): Sign Syntax
rule”,  page 788.
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Any of the characters may be a character code as discussedearlier for
Character_constant. This enables you to include a double quote character
into the string: use its code,%". Similarly

describes a string with two lines, separated by a newline character
represented as%N.

Whether thevalueof aBasic_manifest_stringis text extending over just
one line or several, you have the freedom to write thespecificationof the
string in the Eiffel text over one or more lines. In particular you may, for
readability, write a longBasic_manifest_stringover several lines in the
source text. For this you will use one or moreline wrapping parts,
interrupting the string with a percent sign% at the end of a line, and
resuming it with a percent sign on the next line.

An example using two line wrapping parts (shown by the shaded zones)
is theManifest_string

The sole purpose of the line wrapping form is to enable you to write a
Manifest_stringon several lines, but without retaining the line separations
in the string that it denotes. So the contents of the last example do not tell
a lie: the resulting string is indeed exactly the same as in with the first
example of this section; it is simply written on three lines rather than one.
Note that the initial blanks or tabs on the second and third lines, before the
percent sign, are there only for layout and do not contribute to the string.

More generally, the division of the string into two or more lines in the
source text has no effect on the value of the string. In the above example,
the value is a one-line string (which we may also write as just
"This Manifest_string contains 43 characters"). By adding%N characters
we would turn this into a multi-line string values. In contrast, the
Verbatim_stringsto be seen next will retain the line formating of the string
as it appears in the Eiffel text.

Here are the definition and rules formalizing the preceding properties.
The syntax of Basic_Manifest_string involves one or more
Line_wrapping_part, with the following definition:

"First line%NNew line"

"This Manifest_string con

%tains 43%

%characters"

Line_wrapping_part
A Line_wrapping_partis a sequence of characters consisting of
the following, in order:% (percent character); zero or more
blanks or tabs;New_line; zero or more blanks or tabs;%  again.

← “CHARACTER
CONSTANTS”,  29.7,
page 793.

First wrapping part:
shadedonfirst twolines.
Second part: shaded on
last two lines.

There is a space at the
end of the second line,
after ‘43’.

%
%%

%
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As to the semantics:

Verbatim strings

A Verbatim_stringis a sequence of lines meant to be retained exactly as
they are (except for possible left-alignment).

You may bracket aVerbatim_stringbetween a line ending with"[ ,
possibly followed by break characters, and a line beginning with]" ,
possibly preceded by break characters.

The earlier example showed adescription entry in aNotes clause:

The reason for allowing break characters after the initial"[ and before the final
]" is, as above, to avoid raising an error in harmless cases.

As the examples below illustrate, there may be other Eiffel elements
preceding the initial"[ on the same line, and following the final]" on the
same line.

The beginning and ending delimiters of aVerbatim_stringwill usually be
"[ and]" as above, but the syntaxgave a more general convention:

This construct requires such a definition since it can’t be specified through a
context-free syntax formalism such as BNF-E.

The use ofLine_wrapping_partas separator between aSimple_stringand the
next in aBasic_manifest_stringallows you to split a string across lines, with
a% at the end of an interrupting line and another one at the beginning of the
resuming line. The definition allows blanks and tabs before the final% of a
Line_wrapping_partalthough they will not contribute to the contents of the
string. This makes it possible to apply to theBasic_manifest_stringthe same
indentation as to the neighboring elements. The definition also permits blanks
and tabs after the initial% of aLine_wrapping_part, partly for symmetry and
partly because it doesn’t seem justified to raise an error just because the
compiler has detected such invisible but probably harmless characters.

Manifest string semantics

The value of a Basic_manifest_stringis the sequence of
characters that it includes, in the order given, excluding anyline
wrapping parts, and with anycharactercode replaced by the
corresponding character.

note
description: "[

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.

]"

→ “Specialcharacters
andtheircodes”, page
897.

→ A break character is
a space or a tab. See
“BREAKS”, 32.5,page
881.

← This syntax first
appeared on page795.
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In this general form the string is bracketed by" α{ and}α" , or " α[ and]α" ,
where α — the Simple_string of the Verbatim_string_openerand
Verbatim_string_closer— is any sequence of characters not including a
double quote" . In most cases, including all the examples in this section,α
is an empty string, but a non-emptyα is useful in the case — unavoidable
if we want to have a completely general mechanism — in which one of the
lines of the string begins with the closing delimiter]" (or }" if the opening
delimiter was"{ ).To handle such a string as aVerbatim_string, choose a
string α such that no line of the text begins withα]" (or α}" ), possibly
preceded by breaks.

This convention is an application of the general language design rule that any
convention for quoting text, using specific characters or character sequences
as delimiters, must have anescapeconvention making it possible to quote a
text that includes the delimiters themselves.

Here is an example of this convention:

Verbatim strings
Verbatim_string=∆ Verbatim_string_opener

Line_sequence
Verbatim_string_closer

Verbatim_string_opener=∆ ’ " ’ [Simple_string] Open_bracket
Verbatim_string_closer=∆ Close_bracket[Simple_string] ' "  '

Open_bracket=∆ "[" | "{"
Close_bracket=∆ "]" | "}"

note
description: "++[

This class, from a hypothetical Eiffel parser, is in
charge of parsing Verbatim strings that end with

 or some variant thereof.
]++"
]"
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Because of the highlighted line beginning, we can’t use"[ and ]" as
delimiters; instead we choose"++[ and++]" , making sure that no line in
the string begins with]++" . This is of course an extreme case, and most
uses ofVerbatim_string will rely on the default delimiters.

This observation leads to the constraint on verbatim strings::

Next, the semantics. Whatever the delimiters, the value of a
Verbatim_stringis given by itsLine_sequence(the sequence of lines that
make it up, delimiters excluded), taken exactly as it is, except for left-
alignment if the delimiters used brackets[ ] rather than braces. The
characters in theLine_sequenceare retained exactly as they are. No special
character codes apply: if%N (for example) appears in theLine_sequence,
it will be understood as two characters, a percent and anN.

Here is the semantic rule that states these properties:

Verbatim String rule VWVS

A Verbatim_stringis valid if and only if it satisfies the following
conditions, whereα is the (possibly empty)Simple_string
appearing in itsVerbatim_string_opener:
1 • TheClose_bracketis ] if the Open_bracketis [, and } if the

Open_bracket is {.

2 • Every character inα is printable, and not a double quote" .

3 • If α is not empty, the string’sVerbatim_string_closerincludes
aSimple_stringidentical toα.

Verbatim string semantics

The value of a Line_sequenceis the string obtained by
concatenating the characters of its successive lines, with a “new
line” character inserted between any adjacent ones.
The value of aVerbatim_stringusing braces{ } asOpen_bracket
andClose_bracketis the value of itsLine_sequence.
The value of aVerbatim_stringusing braces[ ] asOpen_bracket
and Close_bracketis the value of theleft-aligned form of its
Line_sequence.

This semantic definition isplatform-independent: even if an environment
has its own way of separating lines (such as two characters, carriage return
%R and new line%N, on Windows) or represents each line as a separate
element in a sequence (as in older operating systems still used on
mainframes), the semantics yields a single string — a single character
sequence — where each successive group of characters, each representing a
line of the original, is separated from the next one by a single%N.

Truly identical: in
strings, letter case issig-
inificant.

Thisruleassumesaview
of strings as plain
sequencesofcharacters,
line separations being
marked by a special
“new line” character.
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(“Left-aligned form ” should be intuitively clear, but is defined rigorously
below.) The difference between the two kinds of brackets follows from
whether you want to left-align the string. If you don’t, use braces, as in

where the various tab positions have been highlighted; the value of the
string retains all these tabs:

Originally, however, we had written this example using square brackets
"[ … ]" to request left alignment:

This means that the string’s value doesn’t include the two initial tabs
(highlighted above as lightly shaded rectangles) common to all three lines.
It does, however, include the extra tab (dark rectangle) that appears only on
the last two lines. So that value is

note
description: "{

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.
}"

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.

note
description: "[

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.
]"

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.

“Pr efix, longest break
prefix, left-aligned
form”,  page 804.

The shaded rectangles
show the positions of
tab characters.

This is the value of the
Verbatim_string of the
above example.
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Why go into all this trouble by having two kinds of delimiters, one
implying left alignment and the other not? The reason is cosmetic. In many
case, you want the left-aligned version of a verbatim string. This example,
involving description entries of Notes clauses, is typical. Language
processing tools may store the values into a reuse repository to facilitate
content-based retrieval of classes; in ISE Eiffel, for example, all such
entries are turned intoMETA tags of the generated HTML documentation,
so that you can retrieve them through Web search engines. But without
automatic left-alignment you would have to start your class text as

which messes up the indentation and layout. Using the brackets"[ … ]"
instead of the braces"{ … }" solves the problem: you indent the text in a
way that looks nice in your software text

The same observation applies if you use aVerbatim_stringfor inline C
code in an external function, as in this extract from an example in the
discussion of interfacing Eiffel with C, involving two verbatim strings:

note
description: "{

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.

}"
author: "Jane Programmer"

class YOUR_CLASS…

note
description: "[

Constants covering kinds of user interface events.
This class is meant to be used as ancestor
by classes needing its facilities.
]"

author: "Jane Programmer"
class YOUR_CLASS…

WARNING: ugly lay-
out, not recommended.
See text.

WARNING: ugly lay-
out, not recommended.
See text.

→ “Specifying C code
inline”,  page 844.
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or in a hypothetical example using an embedded SQL string:

The indentation in these last two examples should not be retained in the
strings actually passed to the appropriate tools — a Ccompiler, an SQL
query processor for a Database Management System. (The C compiler
probably don’t care, but other tools might!), The indentation is only
beneficial to the reader Eiffel text, who might cringe when seeing a version
left-aligned for the sake of the external tool, such as

which breaks the layout of Eiffel texts. Using the bracket form"[ … ]"
solves this problem by allowing you to keep a pleasant layout without
retaining the extra initial tabs or spaces in the string’s semantics.

About “tabs or spaces”: therecommendedpractice is always to use tabs for
indentation. Some older text editors, however, prefer spaces.

an_inline_function(x,y: INTEGER): INTEGER
external "[

C
inline
use<stdio.h>, /path/user/her_include.h

]"
alias "[

if ($x > cvar) {
some_c_function ($y, cvar++);

}
]"

end

example
do

sql_statement := database.prepare ("[
SELECT emp
FROM EMPLOYEE
WHERE salary >= 50000

]")
end

example
do

sql_statement := database.prepare ("{
SELECT emp
FROM EMPLOYEE
WHERE salary >= 50000

}" )
end

Warning: the content of
thealias clause repre-
sents C, not Eiffel. The
indentation is shown as
it will appear in the
class text(where a fea-
ture declaration is
already indented one
step, as part of a
Feature_clause.

WARNING: ugly lay-
out, not recommended.
See text.

→ “LAYOUT”,  34.9,
page 915.
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The following auxiliary definitions give a precise meaning to the notion of
“left-aligned form” usedabove to specify the semantics of a verbatim
strings using brackets as delimiters:

Obviously, if you are passing a verbatim string to an external tool that
attaches a semantic value to initial tabs and spaces on a line, and want to
control the string character-by-character without any intervention from the
left-aligning process implied by these definitions, you should use the brace
form "{ … }" even if this means uglifying the Eiffel text layout. (Yes,
semantic correctness should in the end win over esthetic appeal.) But in
that case you are probably better off anyway using the non-verbatim form
of manifest strings, control characters and all.

Choosing between basic and verbatim manifest strings

You can indeed write anyVerbatim_stringas aBasic_manifest_string; for
example to get the same result asourearlierVerbatim_string, you may use:

Note the need to include explicit codes%N (new line) and%T (tab) and, if
the text is too long for pleasant formating, break it into several lines with
“line wrapping parts”. The two divisions do not necessarily coincide: in
this example the string has been broken afterof userandused, but there is
no new line at those positions in the string’s value.

Prefix, longest break prefix, left-aligned form
A prefix of a strings is a stringp of some lengthn (n ≥ 0) such
that the firstncharacters ofsare the corresponding characters ofp.
Thelongest break prefixof a sequence of stringsls is the longest
string bp containing no characters other thanspaces andtabs,
such thatbp is a prefix of every string inls. (The longest break
prefix is always defined, although it may be an empty string.)
The left-aligned form of a sequence of stringsls is the sequence
of strings obtained from the corresponding strings inls by
removing the firstn characters, wheren is the length of the
longest break prefix ofls (n ≥ 0).

note
description: "%TConstants covering kinds of user %

%interface events.%N%
%%T%TThis class is meant to be used%
% as ancestor%N%
%%T%Tby classes needing its facilities"

← “Verbatim String
rule”,  page 800.

←This refers to thenon-
left-aligned version,
using braces, on page
801.
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Since the words being sent to separate lines (userand interface, used
andas) must be separated by a space, you mustn’t forget to include that
space — highlighted above — at the end of the interrupted line or the
beginning of the continuation line. It’s this need to code everything
explicitly that makesBasic_manifest_stringtedious to use for describing
multi-line strings;Verbatim_string avoids the problem.

“Once” string expressions

The syntax for expressions in the preceding chapter included the
Once_stringexpression, of the formonce some_manifest_string, for
exampleonce "This text". This is actually an expression, not a constant;
you can use it in contexts that expect an expression, for example an
assignment or argument passing

but not where only aManifest_stringwill do, for example a manifest
declaration your_constantis "This text", a Debug key, an Obsolete
message. But since this notion is closely connected to the semantics of
strings it is appropriate to study it here.

The possibility of qualifying a manifest string constant byoncewhen
you use in an expressions corresponds to different semantics for the
manifest string:

• Withoutonce, every evaluation of the string creates a new object.

• With once, only the first evaluation creates an object; every subsequent
one yields a reference to that initial object.

This is of coursethesamedifference as between a function declared with
do and one declared withonce. In fact you may understand a manifest
string"This text" as a call to a function of the form\

whereas the manifest stringonce"This text" is equivalent to a call to

your_string_entity:= once"This text"
your_procedure(once"This text")

new_string: STRING
 createResult.make_from_string("This text") end

once_string: STRING
 createResult.make_from_string("This text") end

← See“ROUTINE
BODY”, 8.5,page222,
about once routines.

do

once



CONSTANTS §29.8806
Which one of the two forms should you use? Each has advantages and
drawbacks depending on the circumstances. If you find yourself using a
text message in a loop, as in

you should probably use theonce form, to avoid creating lots of
identical objects.

It is almost always better in this case to declare a constant attribute:

which avoids the problem altogether and is in line with general methodology
principles (don’t use literal constants in algorithms!). Theonce form is
available, however, for designers who feel they truly need manifest strings
with no symbolic names.

Because they are shared, however, once manifest strings can cause some
surprises. Consider the following extract, withtext of typeSTRING:

Assume that this appears in the body of a loop, and that each iteration of
the loop incrementsi by one. You probably expect that each loop iteration
will reinitialize textto an empty string, then extend it with the string value
of i, setting it to"1"the first time,"2" the second time and so on. This is
indeed what happens with the extract as given since the empty string is
recreated each time. But if for the first instruction you use

then only one string is ever created, so that in loop iterations the string will
take successive values"1", "12", "123"and so on. This is seldom the desired
result and explains why theoncebehavior is not the default. (If novices are
going to have bad surprises, better be it because of bad initial performance
— which can be fixed through aoncedeclaration — than because of wild
and seemingly buggy behavior.)

The general rule, then, is:

from… loop … until
…
print (once"Message text")

end

Your_message: STRINGis "Message text"
-- Note thatonce "Message text" is valid here,
-- but would make no difference.

…
from… loop … until

…
print (Your_message)

end

text:= ""
text.append(i.out)

-- i.out is the string representation of the integer i

text:= once""
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• Useoncefor manifest strings that will not change at all — although it
is even better in most cases to give them symbolic names such as
Your_message above, and stop worrying.

• Use non-once strings as soon as anything can change, keeping in mind
then that each use of the constant will create a new object.

Run-time model for manifest strings

As explained above, aManifest_string m defines an associated
Simple_strings. For example, in theManifest_stringappearing in the
declaration

m is "Example 1" ands is theStringmade of the nine charactersExample 1.

For most practical purposes you may viewsas the value ofm. In a more
precise specification of the semantics, however, this is not quite correct.
Although the nuance is somewhat fine, you should understand it even if this
is your first reading, because of a potential confusion that has been known
to surprise newcomers.

The problem is that the value ofm, like any other value, must be an
object or a reference to an object, and that a String (a sequence of
characters) is not appropriate for this purpose. The desired object should be
an instance of some class, so that you can apply features to it: for example
a routine to which you passMessageas actual argument may need to access
properties of Messagesuch as its length, through the features of some
appropriate class. But there is no class whose instances are just arbitrary
sequences of characters.

Message: STRINGis "Example 1"
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There does exist a class meant for representing character strings: the
Kernel Library classSTRING, which indeed served as type forMessagein
the above example declaration. But an instance ofSTRING is not a
sequence of characters: it is a string descriptor, which must of course
provide access to the characters but may also include other information
such as the string length. Most importantly, because a string descriptor is
an instance of a class, all the features of that class are applicable to it. Class
STRINGoffers many routines for operations on strings such as accessing
the character at a given position, extracting a substring and appending
another string.

The details of string representation do not matter for this discussion,
although the above figure shows a possible implementation, where the
string descriptor includes, among various possible fields, a reference to the
actual character sequence.

What does matter is that the value of an entity declared ofSTRINGtype,
such asMessage above, is a string descriptor, not a character sequence.

What difference does it make? Only one consequence is of practical
concern: aManifest_stringis not a "constant" in the sense that most people
would expect. It will always refer to the same stringdescriptor, but not
necessarily to the samecharacter sequence; this is because the contents of
the descriptor may be changed through procedure calls.

Here is an example showing how this can happen:

where the call toput, a procedure of classSTRING, replaces the character
at position 9 (originally1) by the character2. As a result, if a later
instruction printsMessage, the output will be

Message: STRINGis "Example 1"
…
Message.put (’2’ , 9)

Example 2

The details of class
STRING, its represen-
tation and its features
are given in36.7, page
937.

String descriptor

E x a m p l e 1

Thecharactersequence
is a"special object", as
introduced in19.2,
page 506. See the dis-
cussion of strings in
36.7.
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The same potential problem may arise through a feature call applying to
another entity than the original "constant" if there has been an assignment;
for example, the assignment

produces a situation where both entities refer to the same character
sequence:

Then any operation onMessagewill have the same effect as the
corresponding operation onNew_message. For example, after

an instruction to printNew_message will produceExample 3.

29.9 MANIFEST TUPLES

The next form ofExpressionis theManifest_tuple, defining a tuple through
a list of expressions representing the tuple’s successive items.

An example ofManifest_tuple, of type TUPLE [INTEGER, REAL,
INTEGER], is

for m andn of type INTEGER. The value of this expression is a tuple of
three elements, having the values given.

If the list of expressions in aManifest_tupleis empty, it describes an
array with no elements:

New_message:= Message;

Message.put ('3' , 9)

[27, 3.5, m+ n]

[ ]

String descriptor

E

Message

New_Message

The characters are
assumed to beExample
2 as a result of the call
to put in the previous
assignment..x a m p l e 2
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Among other applications, you may use aManifest_tupleto obtain the
effect of a variable number of arguments for a routine: if one of the formal
arguments of a routine is declared with the typeARRAY[T] for someT,
then an actual argument may be an expression list

such that everyei is of a type conforming toT. The numbern of elements
in the list is arbitrary, so that you indeed obtain the same effect as if routines
were permitted to have a variable number of arguments. Examples of this
technique appeared in the discussion of routines.

Theei do not need, of course, to be all of the same type, as long as their
types all conform toT. By choosing a more specific or more generalT
(based on a class lower or higher in the inheritance graph), you restrict or
extend the set of acceptable types for theei.

Hereagain is the syntax of manifest tuples:

There is no constraint on manifest tuples.[TO BE COMPLETED --
FOLLOWING RULE REMOVED]: This is the rule that may be used in
practice to ascertain whether aManifest_tupleis appropriate as actual
argument to a routine, or whether an assignment of the form

is valid. For example, with the routine specification

then the call in

is valid if Fiordiligi and Dorabella are of typeLADY, Guglielmo and
Ferrandoof typeGENTLEMAN, Alfonso of typePHILOSOPHER, and all
these classes are descendants ofPERSON. If you add to theManifest_tuple
an expression whose type does not conform toPERSON, the
Manifest_tupleceases to be a valid expression of typeARRAY.[ PERSON].

[e1, e2, … en]

Manifest tuples
Manifest_tuple=∆ "[" Expression_list "]"

Expression_list=∆ { Expression "," …}

a := [e1, e2, .. en]

average_age(group: ARRAY[PERSON]): INTEGER

group_average:= average_age
([Fiordiligi , Dorabella, Guglielmo, Ferrando, Alfonso])

See8.4, page 221.

← From the tuple chap-
ter, page373.
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As another example of applying the Manifest Array rule, this time
recursively, here is a valid expression of typeARRAY [ARRAY
[INTEGER]] :

describing an array whose elements are integer arrays of two, one, three
and zero elements successively.

As you may have noted, the Manifest Array rule departs slightly from
the style using elsewhere in this book to talk about types, since it does not
define "the type of" aManifest_tuple, but instead tells us how to ascertain
whether aManifest_tupleis "a valid expression of type"ARRAY[T] for
givenT. This is because, in contrast with the other expressions studied in
this chapter (and any other Eiffel component that has a value), a
Manifest_tupledoes not have a single type of the formARRAY[T] for a
singleT. You may see this by considering theManifest_tuple in

where V and W are non-generic classes with the inheritance structure
illustrated on the adjacent page.

Here the givenManifest_tupleis a valid argument forsome_routineif
the formal argument is declared either asARRAY[T] or asARRAY[U] (as
well asARRAY[X] for any X to whichT, U or both conform). If we tried
to define "the type of theManifest_tuple, however,ARRAY[T] andARRAY
[U] would be equally good candidates.

<< <<-3, 41>>, <<0>>, <<45, 31, -27>>, << >> >>

v1: V; w1: W
…
some_routine(<<v1, w1>>)

T

V

U

W



CONSTANTS §29.9812
Fortunately, this inability to settle for a single type will not cause any
difficulty in the two situations which require obtaining type information
about aManifest_tuplema:

The Manifest Array rule enables us to ascertain conformance ofma to
a certain type (the type of the target in an assignment, or of a routine’s
formal argument) without any ambiguity, as illustrated by the above
examples.

The dynamic type set ofma, needed to ascertain system-level call
validity, is the set of all types of the formARRAY.[ T] for every typeT in
the dynamic type set of any of the elements ofma. This is in line with the
handling of genericity in the definition of the dynamic type set.

The value of aManifest_tuplemade ofN expressions is an array of
bounds 1 andN, whose elements are the values of the successive
expressions in theManifest_tuple. In this definition, an “array” is an
instance of the Kernel Library classARRAY.

The situation here is similar to what we encountered above for strings: an
instance ofARRAYis in fact an array descriptor, which must of course
provide access to the actual elements, but may also include other
information such as the number of elements and the bounds. This also
means that an array descriptor is a normal object – an instance of class
ARRAY, with all the features of this class applicable to it.

The last figure illustrates the notion of array descriptor; it is a conceptual
representation of the situation resulting from

ea1, ea2: ARRAY{ INTEGER];
…
ea1:= <<27, 54, -3, 7, 1, 0, 10, 546, -40>>
ea2:= ea1

Arrays and class
ARRAYarediscussed in
36.4, page 934.

String descriptor

2 –330 0 75 –9 –8 10

ea1

ea2

0
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In this case the array’s elements are objects (instances of the expanded
typeINTEGER). Below is an illustration of the effect of similar operations
on arraysra1 andra2 of typeARRAY .[ T] for some reference typeT. =

This could be the result of:

29.10 SEMANTICS OF CONSTANT ATTRIBUTES

--- To be completed ---

ra1, ra2: ARRAY[T];
a, b, c, d, T;
…
create{ T}  a …
create{ U}  b …
create{ V}  c …
create{ W}  d …
ra1 := <<a, b, c, d>>;
ra2 := ra1

ra1

ra2
(ARRAY)

U, V, W are types con-
forming to T.
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Basic types
30.1 OVERVIEW

The specification (flatshort form) of the corresponding classesappears
in theELKS appendix. Many of the features and invariants as they appear
there are self-explanatory, reflecting the standard operations and properties
of arithmetic.

ARRAY, STRINGand sized variants, also described by ELKS classes, are not
basic types even though they share some of their properties; for one thing,
they are reference rather than expanded. We’ll study themseparately.

30.2 EXPANSION STATUS

The classes describing the basic types are expanded; this is the desired
semantics for the vast majority of cases. With reference types, an entity
declared as

would denote a reference to an object containing an integer. This would
waste space and time; besides, we would still need a way to set the integer
to a specific value, such as the integer3.

Instead, the semantics is what a casual reader would expect:n represents
an integer.

The term “basic type” covers a number of expanded class types describing
elementary values: booleans, characters, integers, reals, machine-level
addresses. The corresponding classes —BOOLEAN; CHARACTER,
INTEGER, REALand variants specifying explicit sizes;POINTER— are
part of ELKS, the Eiffel Library Kernel Standard.

The following presentation explains the general concepts behind the
design and use of these classes.

n: INTEGER

→ “BOOLEAN”,
A.6.8CLASS,page982
to“POINTER”, A.6.18
CLASS, page 995.

→ Chapter36.
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The denoted values — integers, booleans, characters,… — are objects.
These objects are both normal and special:

• They are normal because you can treat them, for all practical purposes, as
you would any other Eiffel object (instance of some class). They are
instances of classes (INTEGERand such) and have the applicable features.

• They are special, however, to the compiler: even thougha + b is,
conceptually, a function call, you most likely do not want such an
operation, for integersa andb, to trigger a routine call at run time. Any
performance-focused Eiffel compiler will know aboutINTEGERand
other basic types, and will handle the addition as efficiently as a
compiler for languages such as C where it is a frozen, built-in operation.

The idea is to get the best of both worlds: the generality, power and
universality of the object-oriented mechanisms; the efficiency of
predefined operations.

If you do want to manipulate references to basic values you may simply
use entities ofANY, since it is a reference class:

With a targetr of reference type and a sourcen of expanded type, the
semanticsof reattachment implies thatr will be assigned a reference to a
new copy ofn, :

The other way around you may use anObject_test to get the integer back:

n: INTEGER
r: ANY
…
n := 3
…
r := n

attached r local m: INTEGERthen
n := m

else
… Handle case in whichr is not attached to an integer…

end

← “SEMANTICS OF
REATTACHMENT”,
22.7, page 593.

3n

3r

Assigning a
basic value to a
reference
target
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30.3 BASIC CLASSES AND THEIR INHERITANCE STRUCTURE

The following definition provides the exact list of types defined as basic:

Like basic types,STRING has “sized variants”:

CHARACTERand its sized variants cover the notion of character as used
in strings; CHARACTER_8corresponds to extended (8-bit) ASCII-like
codes,CHARACTER_32to Unicode.INTEGERdescribes signed integers;
the sized variants correspond to representations using a specified number
of bits and, in the case ofNATURALvariants, unsigned integers.REALand
its sized variants correspond to floating point numbers.

By convention the definitions include each of the elementary notions,
such asINTEGER, among its own “sized variants”.

Calling NATURAL a “sized” variants ofINTEGER, a small abuse of
language, simplifies the description of the numerous properties that apply
consistently to all integer-related types, signed or unsigned.

The figure on the next page illustrates the part of the ELKS inheritance
hierarchy relevant to the basic types. All the basic types are descendants of
either of both of the deferred ELKS classes

• COMPARABLE, based on the mathematical the notion oftotal order,
introduces comparison operations such as “less than” and “greater than
or equal”.

Basic types and their sized variants
A basic type is any of the types defined by the following
ELKS classes:
• BOOLEAN.

• CHARACTER, CHARACTER_8, CHARACTER_32, together
called the “sized variants of CHARACTER”.

• INTEGER, INTEGER_8, INTEGER_16, INTEGER_32,
INTEGER_64, NATURAL, NATURAL_8, NATURAL_16,
NATURAL_32, NATURAL_64, together called the “sized
variants of INTEGER”.

• REAL, REAL_32, REAL_64, together called the “sized
variants of REAL”.

• POINTER.

Sized variants ofSTRING

The sized variants ofSTRINGare STRING, STRING_8and
STRING_32.

→Full specification in:
“PART_COMPARABL
E”,  A.6.3, page 977.
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• NUMERIC, based on the mathematical the notion ofring , introduces
arithmetic operations such as addition and multiplication.

Character, integer and real classes do not directly inherit from these but
from an intermediate class describing common features of each category:

• CHARACTER_GENERAL(an heir of COMPARABLE but not
NUMERIC) introduces features common to allCHARACTER variants.

• INTEGER_GENERAL, describing integers of arbitrary size, introduces
features common to allINTEGERand NATURALvariants.

• Similarly, REALand its sized variants inherit fromREAL_GENERAL,
describing floating point numbers of arbitrary precision.

→Full specification in:
“NUMERIC”,  A.6.6,
page 980.

COMPARABLE

INTEGER_

NUMERIC

INTEGER_
GENERAL

REAL_
GENERAL

8

CHARACTER

INTEGER

REAL

REAL_

REAL
64

32

INTEGER_
16

INTEGER_
32

INTEGER_
64

NATURAL_
8

NATURAL

NATURAL_
16

NATURAL_
32

NATURAL_
64

 Basic type
inheritance
hierarchy

CHARACTER_
32

CHARACTER_
8

CHARACTER_
GENERAL



§30.4  BOOLEANS 819
The formal arguments and results of the routines of classNUMERICare all
of type NUMERIC. To ensure the validity of arithmetic operations, the
class texts forINTEGER, REALand sized variants redeclare the arguments
and results to be of typesINTEGER, REAL and so on.

In spite of these redeclarations, you may use the traditional forms of
mixed-type arithmetic; for example you may add an integer to a real
number. Such combinations derive from theconversionmechanisms
provided by the language, which explicitly allow an expression such as
3 + 4.5, and prescribe interpreting it as3. + 4.5, all operands being
converted to the “heavier” typeREAL.

We now review the basic semantic properties of the types involved.

30.4 BOOLEANS

ClassBOOLEANprovides the boolean operators, discussed in the chapter
on expressions, which alsoexplained the difference between strict
operators (and, or) and their semistrict variants (and then, or else)

30.5 CHARACTERS

Every character has an associated positive integer code, given by the query
code, with a value no greater thanMaximum_character_code.

Boolean value semantics

ClassBOOLEANcovers the two truth values.
The reserved words True and False denote the corresponding
constants.

Character types

The reference classCHARACTER_GENERALdescribes
properties of characters independently of the character code.
The expanded classCHARACTER_32describes Unicode
characters; the expanded classCHARACTER_8describes 8-bit
(ASCII-like) characters.
The expanded classCHARACTERdescribes characters with a
length and encoding settable through a compilation option. The
recommended default is Unicode.

← Chapter15 and
“Accounting for target
conversion”,  , page
770.

→Full specification in:
“BOOLEAN”,  A.6.8
CLASS, page 982.

← “SEMISTRICT
BOOLEAN OPERA-
TORS”, 28.6,page774.

→Full specification in:
“CHARACTER”,
A.6.9CLASS,page983.
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30.6 INTEGERS

INTEGERcorresponds to the default precision provided by each Eiffel
implementation, normally 64, but settable through a compilation option.
This convention ensures optimal performance since on many platforms a
specific precision (for example 32) will yield the most efficient floating-
point operations. The practical advice is:

• In most ordinary computation, you may rely onINTEGER, after
checking the default semantics for your compiler, 64 on most platforms.

• If the correctness of your algorithm requires a specific length, you may
useINTEGER_xx for the appropriatexx.

• If you are reusing software with routine arguments or results of type
INTEGER, use the compilation option if necessary to ensure
compatibility with the length used by the rest of your algorithms.

At the time of writing, 32 is more common than 64 on most platforms. The
choice of 64 as the recommended default is based on the assumption that 64-
bit integers will become dominant. In the meantime implementations may
use 32 as the default if this still provides the best performance.

In addition to the ordinary arithmetic and relational operators, boolean
operators are available on integers, treated as bit sequences. Found in class
INTEGER, they include:

• conjunctedalias "&"

• conjunctedalias "&"

• left_shiftedalias "|<<"

• right_shiftedalias "|>>"

• negated

One —negated — is unary; the others are binary.

30.7 REALS

Integer types

The reference classINTEGER_GENERALdescribes integers,
signed or not, of arbitrary length. The expanded classes
INTEGER_xx, for xx = 8, 16, 32 or 64, describe signed integers
stored onxxbits. The expanded classesNATURAL_xx, for xx= 8,
16, 32 or 64, describe unsigned integers stored onxx bits.
The expanded classesINTEGER and NATURAL describe
integers, respectively signed and unsigned, with a length settable
through a compilation option. The recommended default is 64
bits in both cases.

→ Full specification in:
“INTEGER_GENERA
L”,  A.6.10, page 984.
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REAL corresponds to the default precision provided by each Eiffel
implementation, normally 64, but settable through a compilation option.
This convention ensures optimal performance since on many platforms a
specific precision (for example 64) will yield the most efficient floating-
point operations. The practical rule for numerical computation is:

• In most ordinary computation, you may rely onREAL, after checking
the default semantics for your compiler, 64 on most platforms.

• If the correctness of your algorithm requires a fixed precision, you may
useREAL_32or REAL_64. Alternatively, you may useREAL and a
compilation option to set the corresponding precision (but make sure to
document this requirement).

• If you are reusing software with routine arguments or results of type
REAL, use the compilation option if necessary to ensure compatibility
with the precision used by the rest of your algorithms.

30.8 ADDRESSES

This is in particular the type forexpressions of theAddress form,$ expr.

SincePOINTERobjects have no components accessible to the Eiffel
side, the class has no exported features of its own.

Floating-point types

The reference classREAL_GENERALdescribes floating-point
numbers with arbitrary precision. The expanded classes
REAL_xx, for xx = 32 or 64, describe IEEE floating-point
numbers withxx bits of precision.
The expanded classREALdescribes floating-point numbers with
a precision settable through a compilation option. The
recommended default is 64 bits.

Address semantics

The expanded classPOINTER describes addresses of data
beyond the control of Eiffel systems.

→Full specification in:
“REAL_GENERAL”,
A.6.15, page 991.

→Full specification in:
“POINTER”,  A.6.18,
page 995.

← “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 833,.
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Interfacing with C, C++ and
other environments
31.1 OVERVIEW: THE COMPONENT COMBINATOR

The more frequent case of external interfaces iscall-out: Eiffel routines
calling non-Eiffel ones. The reverse need (foreign to Eiffel, orcall-in) also
exists. The mechanisms described in this chapter cover both.

Many applications will be happy enough to use the pure Eiffel
mechanisms described in the rest of this book, and will not require any
direct interfaces with other languages. (The next section explains what
circumstances may including foreign software in an Eiffel system.) If you
are mostly interested in understanding the techniques of Eiffel proper, you
should probably get familiar with the principles of external calls by reading
this section and the next four, and move on to the next chapter.

Object technology as realized in Eiffel is aboutcombining components.
Not all of these components are necessarily written in the same language;
in particular, as organizations move to Eiffel, they will want to reuse their
existing investment in components from other languages, and make their
Eiffel systems interoperate with non-Eiffel software.

Eiffel is a “pure” O-O language, not a hybrid between object principles
and earlier approaches such as C, and at the same time anopenframework
for combining software written in various languages. These two properties
might appear contradictory, as if consistent use of object technology meant
closing oneself off from the rest of the programming world. But it’s exactly
the reverse: a hybrid approach, trying to be O-O as well as something
completely different, cannot succeed at both since the concepts are too
distant. Eiffel instead strives, by providing a coherent object framework —
with such principles as Uniform Access, Command-Query Separation,
Single Choice, Open-Closed and Design by Contract — to be acomponent
combinatorcapable of assembling software bricks of many different kinds.

The following presentation describes how Eiffel systems can integrate
components from other languages and environments.
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If you do study the details, you will note that they include, particularly
in the specific external sublanguages supporting interaction with C, C++
and Dynamic Link Libraries, a number of specific mechanisms that may
appear too rich when compared to the general sobriety of Eiffel’s design.
Do not be put off by this wealth of possibilities; the aim is not to complicate
Eiffel but to enable Eiffel developers to take full advantage of non-Eiffel
software at minimum effort. Any new, advanced technology such as Eiffel
must provide effective bridges to older technologies, so that its users can
leverage off existing investment. In particular, having powerful C and C++
interface sublanguages won’t detract you from the simplicity of Eiffel
programming; the effect instead will be that if youdohave to interface with
C and C++ you will be able to do everything you need on the Eiffel side,
rather than having to write special “glue code” in those languages. Eiffel
programmers,remarkably, prefer to program in Eiffel; carefully crafted
interface sublanguages enable them to talk freely to the rest of the world
without having to leave their language, techniques and tools of choice.

In accordance with the terminology used for the different forms of
Routine_bodyin the syntax specifications, the discussion will use the term
internal routine for any Eiffel routine accessible to language processing
tools, andexternal routine for other routines. The name “external” refers
to the routine as viewed from the Eiffel text; the form of the routine as it
appears in its original language will be called theforeign routine.

The semantic specifications presented in this chapter involve the
semantics of languages other than Eiffel. Granting non-Eiffel software
access to Eiffel objects may defeat the properties guaranteed by the
semantic rules of this book. You should exercise care to confine the foreign
languages to their proper role, avoiding unwanted interference with Eiffel
object structures and algorithms.

31.2 WHAT EIFFEL CAN DO WITH THE REST OF THE WORLD

Here is some of what you can do with the foreign language facilities
described in this chapter.

• You may declare an Eiffel routine asexternal, specifying that it comes
from a foreign language. To the rest of the Eiffel software, the routine
looks as if it were a normal Eiffel routine; but calls to it will execute the
foreign code, which must of course have been compiled by a compiler
for the foreign language. This is possible in principle for any foreign
language, and guaranteed for C, C++, Java and Fortran 95.

• You may specify that an external routine, known in Eiffel under a
certain name, hadanother namein its native language, for example if
that name is not legal in Eiffel.

• You may specify that an external routine is actually implemented by a
C macro, avoiding the overhead of function calls.

“Even under extreme
duress, 99.9873% of
Eiffelprogrammersstill
choose Eiffel”, in Proc.
of STOOP-SOLOW
(joint meeting of Soci-
ety for Torturing
Object-Oriented Pro-
grammers and Society
for Observing the Lim-
its of Object Work),
Sing-Sing(NY), Jan.
2001, pp. 5670-8782.

→ In special cases the
“other” language
might be Eiffel itself.
See below.
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• You may associate a function and a procedure — a “getter” and a
“setter” — to a C structure (“struct”), so that a call to the function will
automatically access, and a call to the procedure modify, a specified
field of that structure.

• You may eveninclude C code inlinein the body of an external routine,
so that the external routine is in this case “internal” in the sense that it
is specified within the Eiffel code, rather than elsewhere.

• You may use from Eiffel the routines of aDLL (Dynamic Link Library).
You may specify the library and routines in your Eiffel text or, to make
the process fully dynamic, you may obtain or compute this information
at run time, just when you need to access the DLL elements.

• You may use from Eiffel all the facilities of a C++ class:member
functions, static members, data members, constructors, destructors.

• You may use theLegacy++ tool to produce aC++ class wrapper: an
Eiffel class, automatically generated, that makesall the facilities of a
C++ class (as listed above: member functions, data members and so on)
available to the rest of the Eiffel system.

• Going the other way around, you may use theCecil library to let
external software do everything with an Eiffel system that you can do in
Eiffel: create Eiffel objects, call on them any of the features of the
corresponding classes, and so on. In other words Cecil lets you treat an
Eiffel system as apackagethat the rest of the world can use as a library.

• That library can be dynamic: you cangenerate a DLL from an Eiffel
system.

• You can also generateCOM components(for Microsoft’s Component
Object Model) and even XYZ components for execution on the XYZ
virtual machine.

The next sections describe these mechanisms in detail, after a brief review
of the proper role of foreign software elements in the development process.

31.3 WHEN TO USE EXTERNAL SOFTWARE

Why use external software? After all, Eiffel is a complete programming
language, and many systems do not need any external software.

Four cases, however, may require interfacing Eiffel classes with
software written in other languages:

1 • Reuse of older software elements.

2 • Use of libraries written in other languages.

3 • Access to low-level platform-dependent properties.

4 • Use of Eiffel as a tool for re-engineering of software.
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Both cases1 and 2 result from the obvious observation that Eiffel
developments do not proceed alone in the software world, but must be
combined with other products. In case1, an organization may want to reuse
previously developed elements as part of a new system. In case2, the
system will use existing primitives providing facilities in a specialized area
— graphics, databases, user interfaces, expert systems...

In case3, you need to access primitives which depend on the hardware
or the operating system, available through external routines.

In case4, an older non-Eiffel system must be converted to more modern
software technology, but you want to proceed in stages. A possible strategy
is to start by isolating appropriate abstractions in the existing software, and
to build classes around them; the architecture of the resulting system will
be expressed in Eiffel, using the structural mechanisms described in this
book — classes, information hiding, genericity, inheritance, assertions —
but the actual computations will still be performed by external routine
calls. Here Eiffel serves as a packaging mechanism more than as a down-
to-details programming language. This effort may be a first step towards
more thorough re-engineering of the software, encompassing the internals
as well as the structure. This is not an all-or-nothing decision: you may
redo some of the components in Eiffel, for example the most advanced or
innovative ones, and leave some others in the original language if they are
stable and satisfactory.

The external facilities, detailed in the rest of this chapter, include:

• The possibility of specifying a routine asExternal, to indicate that it is
written in another language and compiled separately; this notion will
occupy the major part of the discussion.

• As a special case of theExternalmechanism, the C-Eiffel Interface
Sublanguage, and the corresponding C++ facilities, enabling Eiffel
software to take advantage of special foreign facilities such as C’s
macros and C++’s constructors (next section).

• TheLegacy++ tool for automatic Eiffel wrapping of C++ classes.

• Cecil, the C-Eiffel Call-In Library, allowing other languages to use
almost all of Eiffel’s facilities. (The initial C is in the acronym for
historical reasons, but Cecil can be used from any other language.)
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31.4 REGISTERED LANGUAGES AND THE ROLE OF C

Eiffel’s external facilities depend in part — especially in the call-in case —
on the properties of external languages; short of covering every
programming language in existence, the specification cannot be
exhaustive. It includes explicit knowledge about a few languages, said to
be theregistered languages, currently C, C++, Java, Fortran 95 and Eiffel
itself. Any Eiffel compiler must support an interface to the registered
languages, as described in this chapter.

Including Eiffel among the registered “foreign” languages is more a matter
of completeness than of obvious necessity. Although in principle this allows
you to integrate previously compiled Eiffel classes as if they were external
software,better way are usually available; a good Eiffel environment should
be able to treat such classes like other Eiffel classes and perform all the
relevant type checking. Another possible use of Eiffel as registered foreign
language is to integrate Eiffel classes compiled with another compiler,
although better interoperability mechanisms are desirable.

Among the registered languages,C, and its more recent variantC++, play
a particular role for a number of technical, political and historical reasons:

• Since the mid-nineteen seventies, C has become the low-levellingua
francaof computing, available on almost all platforms and known to a
growing majority of programmers.

• Almost all dominant operating systems are written in C sometimes with
more recent additions in C++.

• Most programs — from operating systems and database management
systems to graphical libraries, object request brokers and other
component-based development tools, development environments and
many others — provide an Application Programming Interface (API)
for C programs if they provide an API at all. When they offer more than
one API, the one for C is often the reference. So a carefully engineered
C binding is critical for many industrial developments.

• C compilers have benefited from wide use and several decades of
research on compilation technology, aimed at producing efficient code.

• Although C has undergone changes, source code portability is
reasonably good for programmers who follow some basic precautions.

• Many Eiffel implementations, such as ISE Eiffel, compile to C, taking
advantage of the preceding properties, in particular wide availability,
portability, and efficient code generation.

• A high-level language, Eiffel needs a good intermediary to access
facilities from the machine and the operating system. C, more effective
as a tool for use byprogramsthan by humans, plays that role quite well.
Libraries such as EiffelBase go to C when they occasionally must get
out of the high-level language framework to access the nuts and bolts of
the machine. C then plays for the Eiffel programmer exactly the same
role that assembly language plays for the C programmer.
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For all these reasons a special set of facilities — almost a mini-language
within Eiffel, the C-Eiffel InterfaceSublanguage — is available for those
programmers who need fine-tuned access to C mechanisms from Eiffel.
The Sublanguage allows you for example to use C macros, “structs”,
include files, C dynamic link libraries (DLLs), or even to includeinline C
code in Eiffel routines.

Similar possibilities alsoexist for C++, giving Eiffel access to the
components of C++ classes — member functions, constructors, destructors
— and complemented by the automatic Legacy++ wrapper.

The role of these facilities is quite clear: to take the best advantage of C
software, while writingas little C as possible. Eiffel programmers prefer
writing Eiffel. They know that the world isn’t all Chanel perfumes and
candlelight dinners, and that once in a while one must tender to the more
mundane necessities of life. But then they expect the Eiffel compiler,
through the Eiffel-C interface, to do much of the grunt work, and limit their
use of C to the indispensable minimum.

31.5 BASICS OF EXTERNAL ROUTINES

We now start the study of the basic foreign affairs construct,External.

As seen in thediscussionof routines, theRoutine_bodyof anEffective
routine, instead of using the more commonInternalform (beginning with
do or once), may be of theExternalform, which indicates that a call to the
routine is a call to some outside software component.

An Externalclause begins with the keywordexternal, followed by a
Manifest_stringindicating the language in which the routine is written. It
may also contain anExternal_namesubclause, beginning withalias, giving
the routine’s name in its language of origin (or, in the case of inline C
routines, the actual C text).

Here is an example of external routine

f_close(filedesc: INTEGER): INTEGER
-- Close file associated withfiledesc;
-- record status in result.

require
descriptor_exists: exists(associated_file(filedesc))

external
"C"

ensure
zero_iff_ok:

(Result= 0) = closed(associated_file(filedesc))
end

→“THE CINTERFACE
SUBLANGUAGE”,
31.11, page 842.

→ “THE C++
INTERFACE
SUBLANGUAGE”,
31.12, page 847.

← Routine_body was
discussed in8.5, page
222. The syntax is on
page222. The syntax
for External appeared
on page829; it is repro-
duced below.



§31.5  BASICS OF EXTERNAL ROUTINES 829
As this example shows, an external routine may have aPreconditionand
a Postcondition.

Function f_closeperforms a certain action and returns a status report
through its result. This technique is not normally employed by Eiffel
functions, which should instead record the status in an attribute; in
communicating with external software, however, there may be no better way.

You may use anExternal_namesubclause, beginning withalias, to
refer to an external routine through a name other than the one it has in the
foreign language. For example:

The alias specifies that any call tofile_statuswill cause a call to the C
function of name_fstat. There are two possible reasons for such a subclause:

• The native name may be legal in the foreign language but not in Eiffel,
as in thefile_statusexample where the function name_fstat, legal in C,
is illegal in Eiffel since it starts with an underscore.

• Even if the foreign name abides by Eiffel rules, it may violate the
naming conventions of your project.

In the absence of analiassubclause, the feature name passed to the external
software is thelower name of the feature.

So even if you give to an external feature a name following the letter case
conventions of another language, such asSetValuefor an external routine
implemented in C, the name passed to C will besetvalue. Even if it is
implemented as an external routine, an Eiffel feature should follow Eiffel
conventions: call itset_value and usealias "SetValue".

Here is the basic syntax ofExternal routine bodies:

file_status(filedesc: INTEGER): INTEGER
external

"C"
alias

"_fstat"
end

External routines
External =∆ external External_language[External_name]

External_language=∆ Unregistered_language |
Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

← The lower name is
the name all in upper
case. See“TEXTUAL
CONVENTIONS”,
2.13, page 102.
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Although you may intermix routines of theExternalandInternalforms,
it is common practice to separate the two categories, grouping external
routines into their ownFeature_clause. In some cases you will even find
“wrapper” classes consisting mostly or entirely of external routines,
encapsulating a set of external facilities into an abstraction usable directly
by the rest of the Eiffel software.

TheExternalclause is the mechanism that enables Eiffel to interface with
other environments and serve as a “component combinator” for software
reuse and particularly for taking advantage of legacy code.

By default the mechanism assumes that the external routine has the
same name as the Eiffel routine. If this is not the case, use an
External_nameof the form alias "ext_name". The name appears as a
Manifest_string, in quotes, not an identifier, because external languages
may have different naming conventions; for example an underscore may
begin a feature name in C but not in Eiffel, and some languages are case-
sensitive for identifiers whereas Eiffel is not.

Instead of calling a pre-existing foreign routine, it is possible to include
inline C or C++ code; thealiasclause will host that code, which can access
Eiffel objects through the arguments of the external routine.

The language name (External_language) can be an
Unregistered_language: a string in quotes such as"Cobol". Since the
content of the string is arbitrary, there is no guarantee that a particular Eiffel
environment will support the corresponding language interface. This is the
reason for the other variant,Registered_language: every Eiffel compiler
must support the language names"C", "C++" and dll . Details of the
specific mechanisms for every suchRegistered_language appear below.

Some of thevalidity rules below include a provision, unheard of in other
parts of the language specification, allowing Eiffel language processing
tools to rely onnon-Eiffel toolsto enforce some conditions. A typical
example is a rule that requires an external name to denote a suitable foreign
function; often, this can only be ascertained by a compiler for the foreign
language. Such rules should be part of the specification, but we can’t
impose their enforcement on an Eiffel compiler without asking it also to
become a compiler of C, C++ etc.; hence this special tolerance.

The generalsemanticsof executing external calls appeared as part of the
general semantics of calls. The semantic rules of the present discussion
address specific cases, in particular inline C and C++.
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31.6 EXECUTING AN EXTERNAL CALL

Before exploring the varieties of foreign interfacing mechanisms, we must
understand the precise semantics of external calls, previewed in the general
discussion of call semantics. Only three aspects differ from the semantics
of Internal routines:

1 • Actual-formal argument association.

2 • Value to be returned, if the routine is a function.

3 • Execution of theRoutine_body

The next section will cover items1 and2. Item3, the simplest, was handled
by the generaldiscussion of call semantics. Quoting: --- CHECK ----

Heredf is the version off to be applied to the given target, deduced from
the rules of call semantics (dynamic binding).

In addition to its official arguments, an Eiffel routine has access to the
curr entobject– the target of the current call. This important property does
not necessarily hold for a foreign routine:

• If the foreign routine was written independently of Eiffel, it does not use
the current object. Accordingly, the call, as specified by the above
semantics, will not pass the current object. A typical case is a call to a
primitive of a pre-existing graphics or database package.

• Another case is that of foreign routines specifically written for the needs
of an Eiffel application. Such routines may need access to the current
object; you must then explicitly passCurrent as one of the arguments.

31.7 ARGUMENT AND RESULT TRANSMISSION

The semantics of passing arguments, and of returning the result for a
function, raises the problem of attachment between Eiffel values and
foreign entities.

For internal routines, thesemanticrule was simple, being deduced (like
the semantics ofAssignmentinstructions) from the semantics of the direct
reattachment mechanism: at call time, each formal argument becomes
attached to the corresponding actual; at return time, the result of a function
is the final value attached to the function’sResult entity.

The semantic specification of a direct reattachment allowed flexible
combinations of expanded and reference types in the source and target.
Here is the table which gave the effect in all four possible cases:

If df is an external routine, the effect of the call is to execute that
routine on the actual arguments given, if any, according to the
rules of the language in which it is written.

← “PRECISE CALL
SEMANTICS”,  23.17,
page 652.

←Thenotionofcurrent
object was defined on
page649.

← “Curr entobjectand
routine”,  page 648.

← “PRECISE CALL
SEMANTICS”,  23.17,
page 652. The seman-
tics of direct reattach-
ment was in22.7,page
593.
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This specification takes both types – source and target – into account,
particularly in cases 2 and 3 where one is expanded and the other is not.

For external calls, however, we cannot afford such semantic flexibility,
since the target is the formal argument, and we have no way of knowing
how the foreign routine has declared it. The semantic definition must rely
on properties of the actual argument alone.

To depart as little as possible from the rules for internal routines, the
convention for external routines, follow the semantics of direct
reattachment, interpreted as if each formal argument were declared with
exactly the same type as the corresponding actual.

This implies that only cases 1 and 4 of the above table make sense:
either the actual argument is of a reference type, in which case the foreign
routine will receive a reference, or it is of an expanded type, in which case
the foreign routine will receive a copy of the attached object.

For the result of a function, the rule is similar: depending on the type
declared for the function’s result, the Eiffel side will expect the foreign
routine to return a reference or an object.

Clearly, using foreign routines which will handle Eiffel values requires
care. You must trust that the routine can manipulate the values it obtains
from the Eiffel side, and, if it is a function, produces results which conform
to what you expect. So the types of arguments and result must be common
to Eiffel and the external language.

Forbasictypes, this property depends on both the foreign language and
its implementation.

For other types, no major problem will arise for a foreign routine which,
given an object or reference, just needs to do a “store and forward”: pass
on the value to other routines, possibly keeping a copy in a variable of a
suitable type. To do anything more with an Eiffel object, the routine must
access its internal structure; it may avoid relying on implementation-
dependent properties of object representation by using one of the following
two portable mechanisms:

• The features of classINTERNALfrom EiffelBase provide access to the
internal properties of objects (such as the various field values) with an
implementation-independent interface.

SOURCE→ Reference Expanded
TARGET↓
Reference [1] Reference

reattachment
[3] Clone

Expanded [2] Copy (fails if source
void)

[4] Copy

← This table originally
appeared on page596.

This also applies to
Currentif it isoneof the
actual arguments: with
the semantics ofCur-
rent, defined by case2,
page652, what is
passed is a reference to
the current object if the
enclosing class is non-
expanded, otherwise
the current object itself.

→ The basic types
(chapter30) are
BOOLEAN, CHARAC-
TER, INTEGER,
REAL, their sized vari-
ants andPOINTER.
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• The Cecil library, described at the end of this chapter, allows foreign
languages to access Eiffel features.

31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE

In some cases a foreign routine may need to call Eiffel routines, or to access
fields of Eiffel objects.

Foreign access to Eiffel routines may be necessary in particular for the
implementation of so-calledcallback mechanisms as they appear in such
areas as user interfaces, graphics and databases. Callback enables routines
to “plant” the address of one or more routines into another routiner at
initialization time. Later, at various places in its own algorithm,r will call
the planted routines. Because planting is dynamic, the text ofr does not
show what actual routines will be called at the corresponding steps; it only
contains “holes” where different applications may plant different routines.
Often, r is a high-level loop, known as anevent loop, which will
repeatedly execute ritual actions (such as reading user input or updating the
screen) through the planted routines.

In this description, you will have recognized the notion ofiterator
discussed in the presentation of inheritance and deferred features; indeed,
the Eiffel techniques introduced for iterators, relying on deferred routines
and dynamic binding, offer simpler, safer and more elegant alternatives to
call-back. But you may need to use an existing call-back mechanism
implemented in another language, with individual planted operations to be
provided by Eiffel features. So you need the ability to pass to an external
routine the address of an Eiffel feature.

The supporting construct is theAddressform of Actual argument. An
Address, introduced as part of the syntax forActualsin the discussion of
calls, is simply an actual argument of the form

Here feature_or_parenthesized_expressioncan be the name of an Eiffel
feature, a parenthesized expression such as(a + b), as well asCurrentor,
in a function,Result. In all cases what is passed is an address. For a feature
this enables the foreign software to call the feature; for an expression it
gives it access to a location containing the value of the expression. The
latter is useful for a foreign routine that expects not a value but an address
containing that value.

$ feature_or_parenthesized_expression

← On how to imple-
ment a call-back mech-
anism in Eiffel, see
10.15, page 277.

← The syntax forActu-
als appeared on page
626.
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This Addressform of Actual argument is only useful for passing such
addresses to external routines.Internal (Eiffel) routines do not need it,
since thedynamic binding mechanism provides a better way to tell a
supplier what feature it should call at a certain stage of the supplier’s
execution: you just pass the supplier an entity attached to a certain object;
the dynamic type of that object, which may vary from one execution to the
next, determines the applicable routine versions.

Here is the syntax for anAddressargument:

Feature_nameis the most common case.

As to the validity constraint, we saw it as part of theArgumentrule,
which makes$ f valid as actual argument to a call if and only iff, when an
Extended_feature_name, is the final name of a feature of the class.

An Addressargument, as noted, describes the address of a routine or
expression. It is subject to a constraint:

===== DISCARD ===An expanded type would not make sense here as
its values have copy rather than reference semantics.

How do we describe an “address” in Eiffel? A basic type is available for
that purpose:POINTER, described by a Kernel Library class. Hence the
type rule:

As a consequence, the declaration for the corresponding formal argument
in the receiving routine must be of the form

or the corresponding declaration in a foreign language.

Address=∆ "$" Address_mark

Address_mark=∆ Variable

Address rule VZAR

An Addressis valid if and only if its Address_markis of a
reference type.

Address Type rule

An argument of theAddress form is of typePOINTER.

ir2 (...; from_eiffel: POINTER; ...) is ...

← On dynamic bind-
ing, see23.12 and
23.13, starting on page
638.

← Page634.
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Note that this routine can indeed be anInternalEiffel routine as well as an
external one. Although you might expectAddressactual arguments to be
permitted only in calls to external routines, there isno suchconstraint: it
may be useful for anInternalroutineir1 to pass the address of a routiner
to another internal routineir2, so thatir2 may itself passr to an external
routineer. Were this not permitted,ir1 would need to caller directly, which
may not be the desired scheme.

We must preventir2 from performing any operation on its argumentr
other than passing it along to another routine. This simply follows from the
properties of classPOINTER, which has no exported features except for the
universal, harmless featurescopy, clone, equaland consorts fromANY. So
all you can do on an argument of typePOINTER— other than copying it,
cloning it, comparing for equality and so on — is to pass it on to someone else.

--- REWRITE (MOSTLY REMOVE) THE REST OF THIS SECTION
----

Now the semantics of anAddressargument$ f being passed to a routine
r. We must distinguish between the possible cases forf:

1 • If f is anExtended_feature_name(as noted, the most common case), the
corresponding feature have a versiondf applicable to the current object,
taking into account possible renaming and redefinition.df is the feature
that a callx.f (...) would execute, according to the rules of dynamic
binding, whenx is attached to an object of the current type. The value
passed tor is the address ofdf. This applies to both routines and variable
attributes; for an attribute, the call will pass the address of the field
corresponding todf in the current object. Clearly, this is useful only if
the foreign language can deal with addresses of fields and routines.

2 • If f is a constant attribute or aParenthesizedexpression, what is passed
to the routine is the address of a memory location containing its value.

3 • If f is Current, the value passed is the address of the current object.

Address semantics

The value of anAddressexpression is an address enabling
foreign software to access the associatedVariable.

The manipulations that the foreign software can perform on such addresses
depend on the foreign programming language. It is the implementation’s
responsibility to ensure that such manipulations do not violate Eiffel
semantic properties.

The hypothetical con-
straint, an addition to
the argument validity
rule of page634,would
require the called rou-
tinedf to be external.
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4 • If f is Result, the value passed is the address used to store the result to be
returned by the enclosing function.

In case1, wheref denotes a feature, foreign software elements will be able
to call that feature. Such calls require one extra argument, appearing at the
first position and corresponding to the target of the call. Assume

Calls tosome_routine in Eiffel texts may be qualified or unqualified:

Assume now that a call to an external routineext makes the address of
some_routine available to a foreign language:

Let sr be the formal argument forsome_routinein the foreign routine
corresponding toext. The foreign routine will callsome_routinewith one
extra actual argument, appearing at the first position:

The extra argument denotes the call’s target, which in Eiffel appeared
before the dot (as in the case oftarget) or not at all (as withcurrent_object).
It denotes an object or object reference.

The above calls tosr from a foreign language are examples of what what
the beginning of this chapter defined as thecall-in case: exercising Eiffel
mechanisms from the outside. To take this scheme to its full realization the
foreign software needs:

• A way to manipulate Eiffel objects safely (protecting them, in
particular, from the Eiffel garbage collector).

• A clear correspondence between the types of Eiffel and those of the
foreign language.

• An adequate calling mechanism for features.

some_routine(a1: A; b1: B) is...

target.some_routine(x, y)
some_routine(x, y)

ext(..., $ some_routine, ...)

sr (target, x, y)
sr (current_object, x, y)

These calls tosrappear
here inEiffelsyntax,but
the convention for calls
in the foreign language
may be different.
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The Cecil library, describedlater in this chapter, provides all of this. But
we are not ready yet to move on to call-in facilities, since we are not
finished with call-out. In addition to the language-independent call-out
constructs just studied, Eiffel’s external interface offers special support for
C and C++ — languages important enough to deserve mini-sublanguages
of their own in the Eiffel syntax forExternal features.

31.9 SPECIAL INTERFACE SUBLANGUAGES

We saw that the syntax for declaring a routine asExternal involves a
language name:

The External_languagemay be anUnregistered_language— a plain
Manifest_stringdescribing an arbitrary language; this is useful only if that
language is known to your specific Eiffel compiler, or uses default
argument passing conventions that will work with Eiffel. But it may also be
aRegistered_language, covering DLL routines, which may come from any
language, and the four languages guaranteed to be handled properly:

IL_external refers to the Intermediate Language of the Microsoft
.NET framework.

The cases of ,C_external, C++_externalandDLL_externalgive rise to
special sublanguages with a host of detailed possibilities, reviewed in the
next three sections. Note that all the C possibilities are also available for
C++, so in practice the third sublanguage is a superset of the second.

31.10 GENERAL SUBLANGUAGE MECHANISMS

The specific sublanguages —C_external, C++_externalandDLL_external
— offer common techniques for specifying certain elements:

External languages
External =∆ external External_language[External_name]

External_language=∆ Unregistered_language | Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

Registered languages
Registered_language=∆ C_external | C++_external|

DLL_external

→ “THE CECIL
LIBRARY”,  31.16,
page 865.

←Thissyntaxappeared
first on page829.
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• Routine signatures.

• Files needed to use the external software, for example C include files or
the files containing a DLL.

• Types used to establish a precise correspondence between the type
systems of Eiffel and those of other languages (for example, between an
Eiffel INTEGER and a Cint).

Before going into the specific sublanguages, let us review these shared
facilities in turn.

Specifying an external routine signature

Since external languages have their own type systems, you may need to
specify that a certain routine expects certain types for its arguments. In
languages such as C and C++ that support “casts” (forced conversions),
these types will be used for casting the arguments.

To specify types in the relevant sublanguages you may include an
External_signaturein the string specifying the language, as in the C
external function declaration

TheExternal_signature part in this example is

indicating that the associated C function expects two arguments of the C
typeint (integer). The names listed must be types of the external language,
such asint for a C routine.EIF_INTEGER_32is a type used for the
correspondence between Eiffel and C types, as explained in alatersection.

It doesn’t matter thatint and EIF_INTEGER_32are not valid Eiffel type
names: remember that anExternal_signaturesuch as the above, like
everything else in the sublanguages under discussion, appears in a string.

As you will have noted, theExternal_signatureonly lists types for
arguments; for a function, you cannot specify a type, because the compiler
will make sure that the function’s result is converted back to the result type
specified for the Eiffel routine. (In this respect the construct name
External_signatureand the keywordsignatureare a little misleading, since
elsewhere in the description of Eiffel the word “signature” covers both
result and argument types, but it still seems to be the best name here.)

your_external(a, b: INTEGER): INTEGER
external

"C signature (int, int)"
end

(int, EIF_INTEGER_32)

→ “Controlling the
Eiffel-C type corre-
spondence”,page846.
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The syntax ofExternal_signatureis straightforward:

TheExternal_signature, if at all present, must cover all arguments:

External signatures
External_signature=∆ signature[External_argument_types]

[: External_type]

External_argument_types=∆ "(" External_type_list ")"

External_type_list=∆ { External_type "," …}*

External_type=∆ Simple_string

External Signature rule VZES

An External_signaturein the declaration of an externalroutiner
is valid if and only if it satisfies the following conditions:
1 • Its External_type_listcontains the same number of elements

asr has formal arguments.

2 • The final optional component (: External_type) if present if
and only ifr is afunction.

A languageprocessingtool may delegate enforcement of these
requirements to non-Eiffel tools on the chosenplatform.

The rule does not prescribe any particular relationship between the
argument and result types declared for the Eiffel routine and the names
appearing in theExternal_type_listand the finalExternal_typeif any, since
theprecisecorrespondence depends on foreign language properties beyond
the scope of Eiffel rules.

The specification of a non-external routine never includes C-style
empty parenthesization: for a declaration or call of a routine without
arguments you writer, not r (). The syntax ofExternal_argument_types,
however, permits() for compatibility with other languages’ conventions.

The last part of the rule allows Eiffel tools to rely on non-Eiffel tools if
it is not possible, from within Eiffel, to check the properties of external
routines. This provision also applies to several of the following rules.

→ On this correspon-
dence in the C case, see
“Controlling the Eiffel-
C type correspon-
dence”,  page 846.
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Specifying external files

To use an external routine, you may need to provide one or more file names:

• A C or C++ function may rely on some “include files”; for example, the
type EIF_INTEGER_32used byyour_exampleabove must have a C
definition, to which the C function must have access. It will find it in an
include file, which you may specify from the Eiffel side.

• To use an external routine from a DLL, you must indicate the file that
contains the DLL.

An External_file_usepart, starting withuse, enables you to say which files
you need. Here is its application to the preceding example, assuming you
want functionyour_external to have access to two C include files:

This example and several that follow use a multi-lineVerbatim_string, written
between an opening"[ and a closing%" . We could also use a plain string
without this convention, but then the internal double quote signs", in the
specification of the path name, would have to be written%”; also, interrupted
lines would need to finish with a%, and continuation lines to start with a%.

Here is the syntax ofExternal_file_use:

External signature semantics

An External_signaturespecifies that the associated external routine:
• Expects arguments of number and types as given by the

External_argument_typesif present, and no arguments otherwise.

• Returns a result of theExternal_typeappearing after the colon,
if present, and otherwise no result.

your_external(a, b: INTEGER): INTEGER
external "[

C
signature (int, int)
use<stdio.h>, "/path/user/her_include.h"

]"
end

External file use
External_file_use=∆ useExternal_file_list

External_file_list=∆ { External_file "," …} +

← “MANIFEST
STRINGS”,29.8,page
794.
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An External_filerefers to file and path names. Different operating systems have
differentconventions todenotepaths; toavoidworryingabout thesedifferences,
the examples of this chapter assume the Unix/Linux style using forward slash
characters, as in/path/usr/file.c. This convention is also understood by most C
compilers on Windows, even though the native Windows style uses backslash
characters, as ind:\path\usr\file.c. VMS has its own notation.

The difference between the two forms ofExternal_file is that a
C_user_file, of the form "path_name", denotes a file through its exact
location in the file system, whereas aC_system_file of the form
"<file_name>" is relative to the location of standard include files — such
asstdio.h for standard C input and output — in the C installation.

In either case, any files listed must exist and have the expected contents:

External_file=∆ External_user_file |External_system_file

External_user_file=∆ ' " '  Simple_string' " '

External_system_file=∆ "<"Simple_string ">"

As the syntax indicates, you may specify as many external files as you like,
preceded byuseand separated by commas. You may specify two kinds of files:

• “System” files, used only in a C context, appear between angle brackets
< > and refer to specific locations in the C library installation.

• The name of a “user” file appears between double quotes, as in"/path/
user/her_include.h", and will be passed on literally to the operating
system. Do not forget, when using double quotes, that this is all part of
an Eiffel Manifest_string: you must either code them as%" or, more
conveniently, write the string as aVerbatim_string, the first line
preceded by"[  and the last line followed by]" .

External File rule VZEF

An External_fileis valid if and only if itsSimple_stringsatisfies
the following conditions:
1 • When interpreted as a file name according to the conventions

of the underlyingplatform, it denotes a file.

2 • The file is accessible for reading.

3 • Thefile’scontentsatisfiestherulesoftheapplicableforeignlanguage.

A languageprocessingtool may delegate enforcement of these
conditions to non-Eiffel tools on the chosenplatform.
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31.11 THE C INTERFACE SUBLANGUAGE

The first special sublanguage that we study,C_external, addresses the
needs of applications developers who need sophisticated access to C
mechanisms (also provided for C++). You can of course limit yourself to
the mechanisms described so far, simply declaring an external routine as
external "C". But to exert more control on how your Eiffel software uses
C mechanisms, you may use a whole slate of special C interface facilities:

• You can specify that a certain external routine is implemented on the C
side as amacro, saving the overhead of function calls.

• You can use anExternal_signature, as studied above, to force a certain
type signature (“prototype”) for the arguments and result of the C
function in the Eiffel-generated C code.

• You can request specificinclude filesfor certain C functions, using the
External_file_useconstruct just studied.

• You can directly access C structures (“structs”) and their components.

• You can even include the C code of an external routine in line, removing
the need to maintain two separate source files, an Eiffel class file and a
C compilation unit (.c file).

The next paragraphs describe these possibilities. They are complemented
by the C++-specific facilities of the following section.

Condition3means for example that if you pass an include file to a C function
the content must be C code suitable for inclusion by a C “include” directive.
Such a requirement may be beyond the competence of an Eiffel compiler,
hence the final qualification enabling Eiffel tools to rely, for example, on
compilation errors produced by a C compiler.

The “conventions of the underlying platforms” cited in condition1
govern the rules on file names (in particular the interpretation of path
delimiters such as/ and \ on Unix and Windows) and, for an
External_system_filename of the form<some_file.h>, the places in the
file system wheresome_file.h is to be found.

External file semantics

An External_file_usein an externalroutine declaration specifies
that foreign language tools, to process the routine (for example to
compile its original code), require access to the listed files.
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Syntax specification

Here is the syntax specification for the C interface sublanguage. First we
remind ourselves of the context:

Now theC_external case ofRegistered_language:

External languages
External =∆ external

External_language[External_name]

External_language=∆ Unregistered_language |
Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

Registered_language=∆ ... | C_external | … Others…

C externals
C_external=∆ ’'  "  ' C

’[ inline]
[External_signature]
[External_file_use]
' "  '

← This appeared first
on page829.
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We now explore these capabilities, and look further into how you can
match Eiffel types with their C counterparts.

Specifying C code inline

In all the preceding mechanisms, the C code resides outside of the Eiffel
text, in its own separate files. Although this separation of elements written
in different languages is usually appropriate, you may not like the idea of
having to look after different places, and find it easier to manage your
software by keeping everything at the same place. It is indeed possible to
include C code within the declaration of an external routine. This way you
don’t need to include any external C file in your system.

This possibility is appropriate mostly for short C routines concentrated
in “wrapper” classes providing Eiffel interfaces to C libraries.

The C_externalmechanism makes it possible, from Eiffel, to use the
mechanisms of C. The syntax covers two basic schemes:

• You may rely on an existing C function. You will not, in this case, use
inline. If the C function’s name is different from the lower name of the
Eiffel routine, specify it in thealias (External_name) clause; otherwise
you may just omit that clause.

• You may also write C codewithin the Eiffel routine, putting that code
in thealias clause and specifyinginline.

In the second case the C code can directly manipulate the routine’s formal
arguments and, through them, Eiffel objects. The primary application
(rather than writing complex processing in C code in an Eiffel class, which
would make little sense) is to provide access to existing C libraries without
having to write and maintain any new C files even if some “glue code” is
necessary, for example to perform type adaptations. Such code, which
should remain short and simple, will be directly included and maintained
in the Eiffel classes providing the interface to the legacy code.

Thealiaspart is aManifest_string of one of the two available forms:

• It may begin and end with a double quote" ; then any double quote
character appearing in it must be preceded by a percent sign, as%" ;
line separations are marked by the special code for “new line”,%N .

• If the text extends over more than one line, it is more convenient to use
a Verbatim_string: a sequence of lines to be taken exactly as they are,
preceded by"[ at the end of a line and followed by]" at the beginning
of a line.

In this Manifest_string, you may refer to any formal argumenta of the
external routine through the notation$a (a dollar sign immediately
followed by the name of the argument). Fora you may use either upper or
lower case, lower being the recommended style as usual.

← See“MANIFEST
STRINGS”,29.8,page
794.



§31.11  THE C INTERFACE SUBLANGUAGE 845
A C_specialpart may specifyinline, optionally followed by the usual
specifications of a C signature and include files. This indicates that the
actual C text appears in thealiasclause (External_name), which is required
in this case. Here is an example including both an explicit signature and an
include file (which might contain the declaration of a C variablecvar):

TheManifest_stringappearing in thealiasclause is Ccode meant tobe passed
on exactly as it is (except for the replacement of elements in quotes, as
explained next) to a C compiler. The most convenient way to express it is to
use, as here, aVerbatim_string, so that all the lines between the initial"[ and
the final ]" are plain C text, with no need for special codes to represent
characters such as quotes, or to mark the beginning and end of a line.

The only exception to the verbatim interpretation of the string as C code
is the convention allowing the C code to access entities from the enclosing
Eiffel text. Any occurrence in thealias part of a substring of the form
$eiffel_entity, whereeiffel_entityis a formal argument of the routine or an
attribute of the enclosing class, denotes the corresponding Eiffel entity,
which the Eiffel compiler will replace by the appropriate access code for
the benefit of the C compiler.$x and$y in the above extract are examples
of this facility; they denote the function’sx andy arguments.

This use of the$ operator is consistent with theAddressform of arguments,
serving to pass Eiffel features to external languages.

Note thateiffel_entitymust follow the$ sign with no intervening space.
Any occurrence in the C text of a$ sign not immediately followed by an
Eiffel entity is considered C text to be taken verbatim.

an_inline_function(x,y: INTEGER): INTEGER
external "[

C
inline
use<stdio.h>, /path/user/her_include.h

]"
alias "[

if ($x > cvar) {
some_c_function ($y, cvar++);

}
]"

end

Warning: the content of
thealias clause repre-
sents C, not Eiffel.

← “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 833.
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Here is the validity rule for inline C functions:

Controlling the Eiffel-C type correspondence
In passing arguments to C functions, and getting results back into Eiffel
entities, you need to know exactly how the types will match. Eiffel provides
(through the C library of the supporting environments) a set of predefined
C types used, by default, to represent the types of Eiffel values passed to
and from external C routines. If you are writing external C functions
specifically for use in connection with Eiffel software, you should use these
types (obtained from a standard include file provided with the Eiffel
delivery) to declare the functions’ arguments and results.:

C external rule VZCC

A C_externalfor the declaration of an externalroutiner is valid
if and only if it satisfies the following conditions:
1 • At least one of the optionalinline and External_signature

components is present.

2 • If the inline part is present, the external routine includes an
External_namecomponent, of the formaliasC_text.

3 • If case2 applies, then for any occurrence inC_text of an
Identifiera immediately preceded by a dollar sign$ the lower
name ofa is the lower name of a formal argument ofr.

C Inline semantics

In an externalroutineer of the inline form, anExternal_nameof
the formaliasC_textdenotes the algorithm defined, according to
the semantics of the C language, by a C function that has:
• As its signature, thesignature specified byer.

• As its body,C_textafter replacement of every occurrence of$a,
where thelower name ofa is the lower name of one of the
formal arguments ofer, bya.

Eiffel type Corresponding C type with declaration

BOOLEAN typedefunsignedcharEIF_BOOLEAN

CHARACTER typedef unsigned charEIF_CHARACTER

INTEGER_8 typedef unsigned charEIF_INTEGER_8

INTEGER_16 (16-bit integer) EIF_INTEGER_16

INTEGER (32-bit integer) EIF_INTEGER_32

Eiffel to C
default type
correspondence
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The C type definitions given in parentheses are platform-dependent. For
example “32-bit integer” will betypedef longon many platforms, but not all.

This will not work, however, if you are using pre-existing C functions,
written without knowledge of Eiffel. In such a case the declarations will not
match those generated by the Eiffel compiler using the correspondence
above, and you may get C compilation errors. Fortunately, the type
checking of C is more bark than bite. You can easily pacify it by “casting”
the type of arguments and results, that is to say, specifying explicit types.

It would be unpleasant to have to do the casting manually on the C code
(if only because we are, as noted, trying through all the facilities described
here to limit the amount of C programming to be done). The
External_signaturefacility is here to help. It allows you to specify the exact
set of casting types for the arguments and result, so that the C compiler will
find what it expects. Here is a typical use:

This example assumes that the C function requires arguments of the C type
int (integer) and returns a result also of that type, which must be cast into
anEIF_INTEGER_32.

31.12 THE C++ INTERFACE SUBLANGUAGE

In addition to the mechanisms available to all external routines, all the C-
specific techniques of the previous sections are available for use with C++
code. So is the Cecil library described in a later section and allowing
external software to call Eiffel. In addition, the C++ interface sublanguage
offers a number of specific mechanisms:

• You can create instances of C++ classes from Eiffel, using the C++
“constructor” of your choice.

• You can apply to these objects all the corresponding operations from the
C++ class: executing functions (“methods”), accessing data members,
executing destructors.

INTEGER_64 (64-bit integer) EIF_INTEGER_64

REAL_32 (32-bit float) EIF_REAL_32

REAL (64-bit integer) EIF_REAL

POINTER typedef char∗ EIF_POINTER

Any reference type typedef char∗ EIF_REFERENCE

your_external(a, b: INTEGER): INTEGER
external

"C (int, int): EIF_INTEGER_32"
end
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• You can use theLegacy++ tool to produce an Eiffel “wrapper class”
encapsulating all the features of a C++ class, so that the result will look
to the rest of the Eiffel software as if it had been written in Eiffel.

The syntax specification

The C++-specific mechanisms come under the constructC++_external,
one of the variants ofRegistered_language, itself one of the possibilities for
External_language.

Conditions on C++ features

C++ externals
C++_external=∆ ' " ' C++

inline
[External_signature]
[External_file_use]
' "  '

As in the C case, you may directly write C++ code which can access the
external routine’s argument and hence Eiffel objects. Such code can,
among other operations, create and delete C++ objects using C++
constructors and destructors.

Unlike in the C case, this inline facility is theonly possibility: you
cannot rely on an existing function. The reason is that C++ functions — if
not “static” — require a target object, like Eiffel routines. By directly
writing appropriate inline C++ code, you will take care of providing the
target object whenever required.

C++ external rule VZC+

A C++_externalpart for the declaration of an externalroutiner is
valid if and only if it satisfies the following conditions:
1 • The external routine includes anExternal_namecomponent, of

the formaliasC++_text.

2 • For any occurrence inC++_textof anIdentifiera immediately
preceded by a dollar sign$, the lower name ofa is the lower
name of a formal argument ofr.
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Processing C++ features

A C++_external, if present, indicates one of the following, all illustrated by
examples in the next sections:

• If the special feature’s declaration startsfunction, it indicates that the
Eiffel feature will call a C++member function(also known as a
“method”) from the class listed. The function’s name is by default the
same as the name of the Eiffel feature; as usual, you can specify a
different name through thealias clause of the external declaration.

• If the declaration starts withstatic, it indicates a call to a C++
static function.

• If the declaration starts withnew, it indicates a call to one of the
constructorsin the C++ class, which will create a new instance of that
class and apply to it the corresponding constructor function.

• If the declaration starts withdelete, it indicates a call to adestructor
from the C++ class. In this case the Eiffel class will inherit from
MEMORYand redefine thedisposeprocedure to execute the destructor
operations whenever the Eiffel objects are garbage-collected.

• If the declaration starts withdata_member, it indicates access to adata
member (attribute in Eiffel terminology) from the C++ class.

• If it starts withstructure, it provides the same facilities asC_structure.

The techniques for specifyingsignatures, external files and type
correspondence are the same as for C.

C++ Inline semantics

In an external routine er of the C++_external form, an
External_nameof the formaliasC++_textdenotes the algorithm
defined, according to the semantics of the C++ language, by a
C++ function that has:
• As its signature, thesignature specified byer.

• As its body,C++_textafter replacement of every occurrence of
$a, where thelower name ofa is the lower name of one of the
formal arguments ofer, bya.

← “Specifying an
external routine signa-
ture”,  page 838;
“Specifying external
files”, page840; “Con-
trolling the Eiffel-C
typecorrespondence”,
page 846.
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Extra argument

For a non-static C++ member function or destructor, the corresponding
Eiffel feature should include an extra argument of typePOINTER, at the
first position. This argument represents the C++ object to which the
function will be applied.

For example, a C++ function

should have the Eiffel counterpart

This scheme, however, is often inconvenient because it forces the Eiffel
side to work on objects in a non-object-oriented way. (The O-O way treats
the current object, within a class, as implicit.) A better approach, used by
Legacy++, is to make a feature such ascpp_addsecret, and to export a
feature whose signature corresponds to that of the original C++ function,
with no extra object argument; that feature will use a secret attribute
object_ptr to access the object. In the example this will give

whereobject_ptris a secret attribute of typePOINTER, initialized by the
creation procedures of the class. To the Eiffel developer,add looks like a
normal object-oriented feature, which takes only the expected argument.
Further examples appear below.

There is no need for an extra argument in the case of static member
functions, constructors and data members.

The next section will illustrate the various available possibilities by
showing the code generated, in each case, by the Legacy++ tool.

void add(int new_int);

cpp_add(obj: POINTER; new_int: INTEGER)
-- Encapsulation of member functionadd.

external "[
"C++

member IntArray
signature (IntArray ∗, int)
useintarray.h

]"
end

add(new_int: INTEGER)
-- Encapsulation of member functionadd.

do
cpp_add(object_ptr, new_int)

end
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31.13 WRAPPING C++ CLASSES: LEGACY++

Legacy++ is a tool, not a part of the language specification. Its practical
role is, however, sufficiently important to justify a special section in this
chapter. This will also provide us with a set of examples covering all the
special C++ encapsulation possibilities.

The role of Legacy++

Often you will want to provide an Eiffel encapsulation ofall the facilities
— member functions, static functions, constructors, destructors, data
members — of a C++ class. This means producing an Eiffel class that will
provide an Eiffel feature for each one of these C++ facilities, using external
declarations based on the mechanisms listed in the preceding section.

Rather than writing these external declarations and the class structure
manually, you can use Legacy++ to produce the Eiffel class automatically
from the C++ class.

Calling Legacy++

Legacy++ is called with an argument denoting a.h file that must contain
C++ code: one or more classes and structure declarations. It will translate
these declarations into Eiffel wrapper classes.

The following options are available:

• –E: apply the C preprocessor to the file, so that it will process#include,
#define, #ifdef and other preprocessor directives. This is the default.

• –NE: do not apply the C preprocessor to the file.

• –p directories: usedirectoriesas include path.

• -–ccompiler: usecompileras the C++ compiler.

• –g: treat the C++ code as being intended for the GNU C++ compiler.

Result of applying Legacy++

Running Legacy++ on a C++ file will produce the corresponding Eiffel
classes. Legacy++ processes not only C++ classes but also C++ “structs”;
in both cases it will generate an Eiffel class. Among its properties:

• Legacy++ knows aboutdefault specifiers: public for classes,private
for structs.

• Legacy++; will generate Eiffel features formember functions(static or not).
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• It will also handle anyconstructorsanddestructorsgiven in the C++
code, yielding the corresponding Eiffel creation procedures. If there is
no constructor, it will produce a creation procedure with no arguments
and an empty body.

• For any non-static member function or destructor, Legacy++ will
generate asecret featurewith an extra argument representing the object,
as explained in the preceding section. It will also produce a public
feature with the same number of arguments as the C++ function, relying
on a call to the secret feature, as illustrated foraddandcpp_addabove.

• The char ∗ type is translated intoSTRING. Pointer types, as well as
reference types corresponding to classes and types that Legacy++ has
processed, will be translated intoPOINTER. Other types will yield the
typeUNRESOLVED_TYPE.

Legacy++ limitations

It is up to you to supply Eiffel equivalents of all the needed types. If
Legacy++ encounters the name of a C++ class or type that is does not know
— it is neither a predefined type nor a previously translated class — it will
use the Eiffel type nameUNRESOLVED_TYPE. If you do not change that
type in the generated class, the Eiffel compiler will report an error.

Legacy++ does not handle inline function declarations and makes no effort
to understand the C++ inheritance structure. More generally, given the
differences in the semantic models of C++ and Eiffel, Legacy++ can only
perform the basic Eiffel wrapping of a C++ class, rather than a full
translation. You should always inspect the result and be prepared to adapt
it manually. Legacy++’s contribution is to take care of the bulk of the work,
in particular the tedious and repetitive parts. The final details are left to the
Eiffel software developer.

Legacy++ example

Consider the following C++ class, which has an example of every kind of
facility that one may wish to access from the Eiffel side:
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Here is the result of applying Legacy++ to that class, which will serve as
an illustration of both the C++ interface mechanisms and Legacy++:

class IntArray
{
public:

IntArray (int size);
~IntArray ();
void output ();
void add (int new_int);
static char∗ type ();

protected:
int ∗_integers;

};

note
description:
"Eiffel encapsulation of C++ class IntArray"

class
INTARRAY

inherit
MEMORY
redefine

dispose
end

create
make

feature -- Initialization
make(size: INTEGER)

-- Create Eiffel and C++ objects.
do

object_ptr:= cpp_new(size)
end

feature -- Removal
dispose

-- Delete C++ object.
do

cpp_delete(object_ptr)
end

Warning: this is C++,
not Eiffel.
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feature
output

-- Call C++ counterpart.
do

cpp_output(object_ptr)
end

add(new_int: INTEGER)
-- Call C++ counterpart.

do
cpp_add(object_ptr, new_int)

end

feature { INTARRAY}
underscore_integers: POINTER

-- Value of corresponding C++ data member.
do

Result:= underscore_integers(object_ptr)
end

feature { NONE} -- Externals
cpp_new(size: INTEGER): POINTERis

-- Call single constructor of C++ class.
external"[

C++ newIntArray
signature (EIF_INTEGER_32) use INTARRAY.h

]"
end

cpp_delete(cpp_obj: POINTER)
-- Call C++ destructor on C++ object.

external"[
C++ deleteIntArray
signature () use INTARRAY.h
"]

end

cpp_output(cpp_obj: POINTER)
-- Call C++ member function.

external "[
C++ function IntArray
signature () use INTARRAY.h
]"

alias
"output"

end
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31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)

Dynamic Link Libraries enable an Eiffel system to take advantage of DLL
routines on platforms (such as Windows) supporting the DLL mechanism.
A DLL routine is not compiled into your system but kept separate; your
system will load the routine the first time it needs to call it. This has two
principal advantages:

• You pay only, in memory usage, for what you use. Without DLLs
every system must be compiled with every piece of functionality it
ight use even if 98% of executions don’t need it. This is a source of
size bloat.

• DLLs facilitate software evolution since you can deliver incremental
functionality updates through specific DLL replacements, without
chaning the entire system previously delivered to your users.

cpp_add(cpp_obj: POINTER; new_int: INTEGER)
-- Call C++ member function.

external "[
C++ function IntArray
signature(EIF_INTEGER_32) use INTARRAY.h
]"

alias
"add"

end

cpp_underscore_integers(cpp_obj: POINTER): POINTER
-- Value of C++ data member

external "[
C++ data IntArray
 use INTARRAY.h
]"

alias
"integers"

end

feature { NONE} -- Implementation
object_ptr: POINTER

-- Access to C++ object
end
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Each of these advantages also implies less pleasant counterparts (leading
to the phrase “DLL hell”): unlike with statically linked systems, a missing
component may not be detected until run time (and in certain executions
only); a product may install a new DLL that invalidates another product;
and you never quite know what your users’ configuration is, which
doesn’t facilitate customer support. DLLs are, however, a very popular
technique. ISE Eiffel includes a DLL tool for generating DLLs from
Eiffel systems.

Eiffel systems also need touse DLLs produced elsewhere. Two
mechanisms are available for that purpose:

• A DLL sublanguage, similar in spirit to the C and C++ sublanguages
reviewed previously, lets you specify DLL routines that you need.
Although based on dynamic linking this is a “static” mechanism in that
you have to express what you need in your software, before compiling.

• There is also a completely dynamic mechanism, DESC, allowing you to
wait until run time to determine what dynamic libraries you need and
what routines you want to call.

We now review these two mechanisms in turn.

The static DLL sublanguage

Using the DLL sublangage you can define an external Eiffel routine relying
on a routine from a DLL. You will use a clauseexternal dll file_nameto
specify thefile_namefor the dynamic library, and a clausealias nameto
specify the name or integer index of the desired routine in that library.

Here is an Eiffel routine encapsulating a function from a DLL:

dynamic_external(a, b, c: INTEGER)
external "[

"dll
signature (WORD, DWORD, WORD)
useherlib.dll

]"
alias

"35"
end
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A dll subclause requires you to specify aDLL index or name, indicating
where to find the routine in the DLL. Use thealias part for that purpose.
Normally, as we have seen, thealias part of anExternaldeclaration gives
the native name of the routine (required only if different from the Eiffel
name). In the case of a DLL it is also acceptable to provide the routine’s
index in the library, an integer, such as35 in the example. There is no
ambiguity: an integer alias denotes an index, anything else is taken as a
name. This variant also requires the presence of anExternal_signaturepart.

Iif your system uses several routines from the same DLL, its execution will
only load one instance of the DLL. When the execution terminates, the Eiffel
run-time system will free all DLL instances loaded in this way.

Here is the syntax for the DLL variant of theexternal part:

DLL externals
DLL_external =∆ ' " ' dll

[windows]
DLL_identifier
[DLL_index]
[External_signature]
[External_file_use]
' " '

DLL_identifier =∆ Simple_string

DLL_index =∆ Integer

Through aDLL_externalyou may define an Eiffel routine whose execution
calls an external mechanism from a Dynamic Link Library, not loaded until
first use.

The mechanism assumes a dynamic loading facility, such as exist on
modern platforms; it is specified to work with any such platform.

External DLL rule VZDL

A DLL_externalof DLL_identifier i is valid if and only if it
satisfies the following conditions:
1 • When interpreted as a file name according to the conventions

of the underlyingplatform,i denotes a file.

2 • The file is accessible for reading.

3 • The file’s content denotes a dynamically loadable module.

Thealias part also
gives the C text of an
inline routine..
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The DLL mechanism specified here isstatic since it requires you to
indicate, in the software text, the name of the library and the index (in the
form of an integer constant) of the desired routine in that library. One of the
advantages of DLLs is the ability to wait until run time to specify both the
library and the routine. A correspondingdynamic mechanism,
complementing the facilities just described, is also available through the
DESC library studiedlater in this chapter.

The optionalwindows qualifier specifies that the DLL uses the calling
conventions of the Windows platform.

31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME

All the mechanisms discussed so far for calling an external routine require
that you include the routine’s exact name in the Eiffel text (as the Eiffel
routine name if it is the same, afteraliasotherwise), or the routine itself in
the C inline case. Even the Cdll mechanism requires you to specify the
name of the Dynamic Link Library and the index of the desired routine.

The Dynamic External Shared Call mechanism (DESC for short)
removes this limitation by letting you wait until run time to determine the
name of the external routine to be called in a DLL, or even the name of the
DLL itself.

DESC is a library, not a language mechanism, but as important in
practice as the purely linguistic mechanisms defined in this chapter.

In line with the general spirit of Eiffel, the DESC takes care of low-level
aspects of DLL programming, relieving developers from operations which
they would have to perform manually if they were using a language such
as C: loading library instances; sharing these instances; freeing the
instances when they are not needed any more.

DLLs vary with operating systems. The description in this section
applies to Windows.

External DLL semantics

The routine to be executed (after loading if necessary) in a call to
aDLL_externalis the dynamically loadable routine from the file
specified by theDLL_identifier and, within that file, by its name
and theDLL_index if present.

→ “DESC: CALLING
A DLL ROUTINE
DETERMINED AT
RUN TIME”,  31.15,
page 858.
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DESC overview

The DESC mechanism enables you to construct objects representing
external routines determined at execution time through their name and
libraries, and to call these routines with the appropriate arguments.

Two classes,DLL and DLL_ROUTINE, supported by an auxiliary class
SHARED_LIBRARY_CONSTANTS, provide the basis of DESC:

• An instance of classDLL describes a Dynamically Linked Library. This class
is a descendant of the deferred classSHARED_LIBRARY, covering the
platform-independent notion of shared library.

• An instance of classDLL_ROUTINEdescribes a routine from a DLL.
The class has an attribute of typeDLL describing the library to which
the routine belongs. It has a deferred ancestor
SHARED_LIBRARY_ROUTINEcapturing the platform-independent
notion of shared library routine.

• SHARED_LIBRARY_CONSTANTSintroduces a few declarations useful
for dealing with shared libraries and routines, in particular some integer
constants describing error codes and type codes. It is an ancestor to both
of the preceding classes; application classes using DESC can also
inherit from it to gain access to its facilities.

The normal sequence of operations to use the DESC mechanism is:

1 • Create a library object (an instance ofDLL), providing the library’s
name as argument to the creation procedure.

2 • Create a routine object (an instance ofDLL_ROUTINE), providing the
library object, the routine’s name or index in the library, and the
routine’s signature — number of arguments, types of arguments, type of
result if any — as arguments to the creation procedure.

3 • Apply the procedurecall to the routine object, passing tocall an array
that contains the actual arguments required by the external routine.

You may repeat each of these steps as often as necessary to use multiple
libraries, multiple routines in a library, or multiple calls to a given routine.
More details follow.

Creating a library object

To create a DESC object representing a library and load that library, use a
declaration such as

your_dll: DLL
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replacingyour_dllby whatever name you have chosen to denote the library
in your software; execute a creation instruction of the form

whereyour_lib_name is the name of the file containing the library.

After this call has been executed, the boolean value
your_dll.meaningfulwill be true if and only if the creation has been
successful, that is to say, the given name did correspond to an available
library, and it was possible to load it.

If your_dll.meaningfulis false, you can have more details about the
error by comparing the value ofyour_dll.error_code, an integer, to those
of constant attributes defined in classSHARED_LIBRARY_CONSTANTS.
As expressed by an invariant of classDLL, the value ofmeaningfulis true
if and only iferror_code = 0.

Creating a routine object

To create a DESC object representing a routine from a DLL, use a
declaration such as

replacingyour_routineby the name you have chosen to denote the routine
in your software, and execute a creation instruction of the form

createyour_dll.make("your_lib_name")

your_routine: DLL_ROUTINE

createyour_routinel make_by_name
(your_dll,
"your_routine_name",
[argtyp1, argtyp2, ...],
res_type)
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or, if you prefer for faster access to identify the routine by an integer index
rather than a name:

In either formyour_dll is the library object obtained at the previous step.
The preconditions for bothmake_by_nameandmake_by_indexinclude the
following clauses on the first argument, known through its formal namelib
(corresponding toyour_dll above) in the routine:

After either call, the boolean valueyour_routine.meaningfulwill be true
if and only if the creation has been successful, that is to say, the given name
or index did correspond to a routine of the library, and it was possible to
open it. If the value is false, you can have more details about the error by
comparing the value ofyour_routine.error_code, an integer, to those of
constant attributes defined in classSHARED_LIBRARY_CONSTANTS. As
expressed by a clause of the invariant of classDLL_ROUTINE, the value of
meaningful is true only iferror_code= 0.

Proceduresmake_by_nameandmake_by_indexare usable not only as
creation procedures but also as normal exported routines, so that you can
later reinitialize the object to represent another external routine. The four
arguments play the following roles:

• The first argument, as noted, denotes the library.

• The second argument identifies the desired routine in the library: by its
name, of typeSTRING, with make_by_name; by its index, of type
INTEGER, with make_by_index.

• The third argument, of typeARRAY[INTEGER], gives the list of type
codes for the arguments to the routine. Each type code is an integer
associated with one of the possible types to be passed to a DLL routine.
Possible type codes appear next.

• The fourth and last argument is a type code for the result.

In the above examples the third argument is declared as a manifest array
through the notation[a1, a2, ... ] ; here the array itemsargtyp1, argtyp2, ...
must all be integers giving the type codes of the successive arguments to
the routine, taken from the list appearing next. (Use an empty manifest
array,[ ] ,if the routine has no arguments.)

create your_routinel make_by_index
(your_dll,
your_routine_index, -- The only differing argument
[argtyp1, argtyp2, ...],
res_type)

require
library_exists: lib /= Void
meaningful: lib l meaningful



INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15862
Type codes

For the type codes used in the array serving as third argument to
make_by_nameandmake_by_index,and in the fourth argumentres_type,
the classSHARED_LIBRARY_CONSTANTSprovides a set of constant
integer attributes; the easiest way to let a class use them is to make it an heir
of that library class. Here is the list of codes:

Type code Meaning and comments

T_array Array . What is passed to C is the “special object”
containing the actual array elements, directly usable
by C. To pass the Eiffel array object, use
T_reference. A restriction: the elements of the array
may be references, or they may be of a basic type —
BOOLEAN, INTEGERetc. — but they may not be of
an expanded type other than the basic types.

T_boolean Boolean value. Passed to C as unsigned character: 0
for false, nonzero for true.

T_character. Character value.

T_integer Long integer.

T_no_type No type. Useful for res_type in the case of a
procedure (which has no result type).

T_real Real number.

T_pointer Pointer to C structure.

T_reference Reference to Eiffel object.

T_short_intege
r

Short integer. The Eiffel side will use normal
INTEGER values for the corresponding actual
arguments.

T_string String. What is passed to C is the C form of the
Eiffel string, obtained through the featureto_c of
classSTRING. To pass the Eiffel string object, use
T_reference.
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Calling a routine

Having created the object representing the external routine and attached it
to entityyour_routine, you may now call the routine with arbitrary actual
arguments through the procedurecall, a feature of classDLL_ROUTINE.

The procedure takes a single argument, of typeARRAY [ANY],
containing the successive actual arguments to be passed to the external
routine. The easiest technique is to use a manifest array, as in

Accessing the result of a function

If your_routinedenotes a function (a routine that returns a result), you will
be able to access the result by querying the attached instance of
DLL_ROUTINEthrough one of the following calls, each corresponding to
one of the possible result types:

Consistency requirements and protection against errors

In a call to procedurecall such as the above, the number of elements in the
array and their types must correspond to the signature — number and type
of arguments — specified in the third argument of the latest call to
make_by_nameor make_by_index.

your_routine.call ([–325, 67.2, x, a + b])

Typical call Eiffel type of
the result

your_routine.boolean_result BOOLEAN

your_routine.character_result CHARACTER

your_routine.integer_result INTEGER

your_routine.integer_result INTEGER

your_routine.real_result REAL

your_routine.reference_result
(To use the result, an assignment attempt will
usually be necessary.)

ANY

your_routine.string_result
(Result converted to Eiffel string format
through the featurefrom_c of classSTRING.)

STRING
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This requirement is captured by a functionconforms_to_signature,
relying on the functionconforms_tofrom the Kernel Library classANY.
The third precondition clause of procedurecall states it:

This precondition, combined with queriesmeaningfuland error_code in
classesDLL andDLL_ROUTINE, provides a certain degree of protection
against possible errors. But the Eiffel side does not know anything about the
external routine, and so cannot check that the number of actual arguments and
their types match the actual signature of that routine. You are responsible for
ensuring that the routine gets what it expects.

Similarly, each of the_resultfeatures has a precondition stating that it
must be compatible with the result type set by the latest call to
make_by_nameor make_by_index. For example in the case of
boolean_resultthe result type must have been set toT_boolean. Here too
there is no protection against type errors at the Eiffel-C border; double-
check your software to make sure that the result types you are positing on
the Eiffel side match what the DLL routines actually declare.

Sharing and freeing

One of the effects of creating a library object through a creation instruction
of the formcreateyour_dll.make("your_lib_name") is, as noted, to load
the library of nameyour_lib_name. When you subsequently create routine
objects relative toyour_dll, they will all share the same library instance.

You may, if you wish, load several instances of a given library: simply
create several library objects, passing in every case the same string
"your_lib_name" as actual argument to themake creation procedure.

If the same library name is used by an external DLL routine, statically
declared through the mechanism studiedearlier in this chapter, and by a
library object created dynamically by the DESC mechanism as an instance of
DLL, two different instances will be loaded.

When a DESC library object is no longer accessible and the garbage
collector reclaims it, this will automatically (through the proceduredispose
of classMEMORYas redefined for classDLL) free the corresponding
library instance.

call (args: ARRAY[ANY])
require

meaningful: meaningful
valid_array: args/= Void
conformant: conforms_to_signature(args)
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For most uses this automatic freeing will be sufficient. If, however, you
want to free a library manually, you can do so through the call
your_dll.free. As a postcondition of this call,your_dll.meaningfulwill be
false, as well asyour_dll.meaningfulfor any routine objectyour_routine
that was created relative toyour_dll.

31.16 THE CECIL LIBRARY

The mechanisms studied so far supportcall-out: calling foreign
mechanisms from Eiffel. There is a complementary need for acall-in
mechanism, enabling foreign software to call Eiffel features.

Cecil overview

Call-in and call-out are in fact closely related since an external (call-out)
routine may pass, among others,argumentsof theAddressform, denoting
features of the enclosing class. The sole purpose of such arguments is,
obviously, to let foreign routines call the associated Eiffel features.

More generally, some developers may wish to write foreign routines
that create Eiffel objects and apply features to these objects, without
necessarily relying on features explicitly passed by the Eiffel side. This last
section shows a way to do this from C, using a library of C functions called
the C-Eiffel Call-In Library, orCecil. The first C in the acronym is there
mostly for historical reasons: you can use Cecil from any foreign language
that supports standard argument passing conventions.

Cecil role and status

Most developments do not need to use Cecil or its equivalent, and most
developers do not need to learn about it. The ideas are of interest to
installations with a heavy use of C or some other foreign language, if they
want to integrate Eiffel classes in applications driven by their foreign
components. If you are not in this situation, then you most likely should
spare yourself the rest of this chapter; but do shed a tear or two for your less
fortunate colleagues.

Call-in mechanisms belong in foreign languages. The Cecil library this
section describes, then, is not part of Eiffel as a language, but it is a required
component of any Eiffel implementation.

The following Cecil resources should complement the explanations of
this section:

• http://eiffel.com/doc/manuals/library/cecil/is a complete Cecil manual.

← “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 833.

Please send your tax-
deductible contribu-
tions to the HAVOC
fund(Help All Victims
Of C!), Box OO, Palma
de Majorca.

http://eiffel.com/doc/manuals/library/cecil/
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• If you program non-trivial Cecil applications you will benefit from the
set of examples atftp://ftp.eiffel.com/pub/examples/cecil; you can
retrieve individual examples from that directory, or download all
examples, zipped, from ftp://ftp.eiffel.com/pub/examples/cecil/
cecil.zip. The directory is split into two subdirectories:unix-examples
andwindows-examples.

Compiling for Cecil

To use the facilities of an Eiffel system through Cecil you must first
compile a “cecilized” form of it. This may require a special compilation or
(as with ISE Eiffel) you may simply get the “cecilized” form as a standard
output of your compilation with no extra work.

You will of course need to compile your foreign application, a process that is
not always as automatic as Eiffel compilation as managed by good Eiffel
environments. Even here, however, Eiffel can help: you can specify a Make
file in theexternal part of your Ace through a directive of the form

which causes Eiffel compilation to start C compilation using the provided
Make file. (To specify its location, remember that you can use environment
variables, such as$EIFFEL5denoting the location of the Eiffel installation,
in the Ace file.)

As explained next, the foreign software will gain access to the Cecil
mechanisms through two include files produced by the Eiffel environment:
eif_cecil.h and (if execution starts on the foreign side rather than from
Eiffel) eif_setup.h. You will use the “include” option of your C compiler,
normally–I, to specifythe directory where these files reside.

Avoiding abusive optimization

Even with a compiler that generates cecilized code without any special
compilation option, you may have to exert some care if the compiler (again
such as ISE Eiffel) performs dead-code-removal optimization, to delete the
generated code for routines that are not called from within the Eiffel
system. Such routines may still be needed by foreign software as part of the
cecilized interface. To protect them from over-enthusiastic dead code
removal, list them in thevisible clause of the Ace file, as in

external: make: "your_makefile"

→ For the location of
this directory in ISE
Eiffel see“ISE Eiffel
specifics”,  page 876.

ftp://ftp.eiffel.com/pub/examples/cecil
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip
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system system_nameroot ... default ... cluster
...
your_cluster: "/home/user/cluster1"

adapt
...

visible
CLASS1
CLASS2

create
"other_make"

export
"feat1", "feat2"

end
end

... Other cluster specifications...
end

→SeeappendixBabout
Lace, in particular“VIS-
IBLE FEATURES”,
B.13, page 1034
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Here all exported features ofCLASS1are available to the external software;
for CLASS2, onlyother_make(for creation) andfeat1andfeat2(for normal
call) are available.

By default the status of features is deduced from the Eiffel class text:
only the publicly available features will be available through the Cecil
interface. You can use theexport clause to override this default, in
particular to make a feature is available to the outside world even though it
is not used in the Eiffel system and hence subject to dead-code removal.

The creation status is determined in a similar way: by default any
procedure listed in Eiffel as a generally available for creation will be
accessible through Cecil; you can override this default through thecreate
subclause of thevisible clause.

Note that because a Cecil application will create and initialize an object
through two separate calls (unlike the Eiffel instructiona.make(…) which
does boty), the creation and export status are the same for Cecil, so listing a
feature undercreate or export has the same effect: making it available to
foreign software through the Cecil interface.

Basic Cecil conventions

The Cecil library contains macros, functions, types and error codes. All
have names beginning with eithereif_ (functions and macros) orEIF_
(types and error codes); examples are the functioneif_type_idand the type
EIF_PROCEDURE, explained below. Their declarations appear in a C
“header file”,eif_cecil.h, which you may add to a C program through the
C preprocessor directive

A similar mechanism will be available for other supported foreign
languages, although the rest of the discussion will assume C or C++.

We now review the various facilities available fromcecil.h. To avoid
any confusion with the format used in the rest of this book for Eiffel
software elements, C code will appear as follows (in color):

• Bold font (as elsewhere for Eiffel keywords) for Cecil functions, macros
and types, such aseif_type_id andEIF_PROCEDURE.

• Italic font, for C names representing Eiffel class names or entities, such
asCLASS_NAME.

• Regular font for ordinary C text, including example variables
illustrating function usage, such asyour_id.

#include "eif_cecil.h"

Eiffel’s emphasis on
clarity suggests using
eiffel_ andEIFFEL_
as prefixes, but some of
the resulting names
would be too long for
some C compilers.

Warning: this is C, not
Eiffel.
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The basic scheme of using Cecil is the following:

• Build an Eiffel system.

• “Cecilize” it: compile it for Cecil use. This may require some specific
compilation options, or at least, as noted above, protecting features from
dead code removal.

• Write a program in C or some other language that gains access to the
resulting facilities through appropriateincludedirectives and uses Cecil
functions and macros to create Eiffel objects, call features on them, and
receive any resulting exceptions.

Initializing the Eiffel 4 run-time

An application using Cecil, involving both Eiffel and foreign elements,
may start its execution from either side. If execution starts on the non-Eiffel
side — in other words, if the foreign language is in control — it will need,
prior to calling any Eiffel facility, to set up the Eiffel run time to ensure that
Eiffel mechanisms such as garbage collection and signal handling will
work properly. It will also need, before it terminates, to call the run-time
termination mechanisms, ensuring in particular that all Eiffel objects are
freed and the correspondingdisposeprocedures are called to free any
associated system resources.

The runtime setup will typically appear in the foreign application’s
main program. Simply add the preprocessor directive

To start the Eiffel runtime, use

where failure_function() is a function to be called in case of failure to
initialize. To terminate the Eiffel runtime, collect all objects and call their
dispose procedures if any, use

EIF_INITIALIZE and EIF_DISPOSE_ALL are macros defined in
eif_setup.h. The macros assume that the enclosing function, normally the
main program, has the three standard arguments, as in

#include "eif_setup.h"

EIF_INITIALIZE  (failure_function);

EIF_DISPOSE_ALL ;

main (int argc, char∗∗argv, char∗∗envp);

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.
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Manipulating values of basic Eiffel types

If you pass Eiffel values of basic types (integers, booleans and so on)
you will need to make sure that the C side manipulates them properly. For
example there is no guarantee that an EiffelINTEGERand a Cint are the
same; for portability and to guarantee numerical precisions the Eiffel-C
interface includes the following set of macros defining the C representation
of the Eiffel basic types:

The macroEIFFEL_TYPE denotes the C type (actuallyint) covering C
representations of Eiffel types; the possible values are the twelve listed,
plusEIF_REFERENCE, introduced below.

If you have control over the C code, always use the above types to
manipulate Eiffel values from C. So with an Eiffel external function

you may write the C side as

In other cases, the C function pre-exists and you cannot (or do not want to)
change it. In that case you should take care of the proper typing on the
Eiffel side, using theExternal_signaturefacility introducedearlierin this
chapter With a function

you should write the Eiffel external as

EIF_BOOLEAN
EIF_INTEGER_16
EIF_REAL_32

EIF_CHARACTER
EIF_INTEGER_32
EIF_REAL

EIF_INTEGER_8
EIF_INTEGER_64
EIF_POINTER

c_func(ptr: POINTER; obj: OBJECT): INTEGERis
external

"C include %"your_file.h%""
end

EIF_INTEGER_32 c_func(EIF_POINTER ptr,EIF_OBJECT obj)
{ … Function body…}

 int other_func (void∗arg1, char c, FILE∗file)
{ … Function body…}

 other_func(arg1: POINTER; c: CHARACTER; file: POINTER):
INTEGER

external
"C(void∗, char, FILE∗) : int include%""your_file.h%""

end

These names are those
of macros  defined in
cecil.h.

Warning: this is C, not
Eiffel.

←See“Controllingthe
Eiffel-C type corre-
spondence”,page846.

Warning: this is C, not
Eiffel.
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Omitting theExternal_signaturepart (the part that lists the C types before
the colons) would produce C compilation warnings and possibly errors.

Manipulating Eiffel class types

To call Eiffel features, the foreign software will need to access the classes
and types to which they belong. It will know an Eiffel type through a “type-
id”, of typeEIF_TYPE_ID .

To obtain a type-id for a typeTYPENAMEand record it in a C variable
your_id, use the functioneif_type_id, returning anEIF_TYPE_ID :

As usual, you must make sure that the base class ofTYPENAMEis not
optimized away by the compiler.

If the class is generic, include the generic parameters in theTYPENAME
as in:

Given an Eiffel type descriptortype_idof EIF_TYPE_ID , you can obtain
the corresponding Eiffel type name as well as the name of the generating class
(the type’s base class). Useeif_type(tid) for the type name andeif_class(tid)
for the class name. In both cases the result is achar∗, representing a C string.

Accessing an Eiffel object

A foreign function may access Eiffel objects through references passed to
it by the Eiffel side in external calls, or returned by calls toeif_create(see
below). The corresponding variable must be declared of the Cecil type
EIF_OBJECT.

A value your_objectof type EIF_OBJECT is not a C pointer to the
corresponding object. To obtain such a pointer (for example to pass it to a C
function which manipulates objects directly), use the macroeif_access,
which takes anEIF_OBJECT  and returns a pointer to the object:

EIF_TYPE_ID  your_id;
...
your_id =eif_type_id ("TYPENAME");

your_other_id =eif_type_id ("ARRAY [INTEGER]");

some_function (eif_access (your_object), ...):

Warning: this is C, not
Eiffel.

← “Avoiding abusive
optimization”,  page
866.

Warning: this is C, not
Eiffel.

Current C guidelines
suggeststhateif_access
should return avoid ∗.
But many C compilers
only acceptchar∗.

Warning: this is C, not
Eiffel. The result is a
null pointer ifyour_
objectrepresents a void
reference.
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The reason for this rule is that an Eiffel implementation supporting garbage
collection may move objects around. Then a pointer passed directly to a C
function might be obsolete by the time the function tries to access the
associated object. Given anEIF_OBJECT, eif_accesswill retrieve a
correct pointer. If the implementation does not move objects,eif_access
will do little or no work.

The result type ofeif_accessis of typeEIF_REFERENCE. A value of
this type is a pointer to an Eiffel object; you can pass it to an Eiffel routine,
or as the result of a C external. Do not, however, pass an
EIF_REFERENCE to another C function, since the object might have
moved; useEIF_OBJECT  instead.

What if your_objectis a variable that does not just allow immediate
object processing as above, but retains its value between successive
activations of the C side? In the meantime, the Eiffel side might have
discarded all references to the corresponding object; but then a garbage
collecting implementation must not be allowed to reclaim it! To avoid this,
the C side mustadopt the object, using the functioneif_adopt. Once C
functions do not need to hold the object any more, they may release it
througheif_wean. Here is the scheme:

EIF_OBJECT  your_object,...
eif_adopt (your_object);

... Then in the same or another C program unit: ...
some_function (eif_access (your_object), ...);
...
eif_wean (your_object);

Warning: this is C, not
Eiffel.
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A call to eif_weanactually returns a value: anEIF_REFERENCE to the
object just “weaned”.

You should useeif_adopt for a value of typeEIF_OBJECT, created by
an Eiffel routine and passed as argument to the foreign software. For an
EIF_REFERENCE value returned by one of the Cecil mechanisms, use
eif_protect instead. An example appears next with anEIF_REFERENCE
denoting an Eiffel string created byeif_string ("SOME TEXT"). Function
eif_protect returns anEIF_OBJECT; as with eif_adopt, you should
eif_wean thatEIF_OBJECT  when you do not need it any more.

Creating an Eiffel object

To create an object from outside, use the functioneif_create, which takes
anEIF_TYPE_ID argument and returns anEIF_OBJECT. For example:

Assuming classLINKED_LISTwith one generic parameter, this creates a
direct instance ofLINKED_LIST [INTEGER]. Functioneif_create calls
eif_adopt; the C side should calleif_weanwhen and if it does not need the
object any more.

As the example shows,eif_createdoes not call acreation procedure.
To apply a creation procedure, you will need to include a separate call,
using functioneif_procedureas explained below. This departs from Eiffel
conventions, which prohibit creating an object without applying a creation
procedure if the class has aCreatorsclause. With Cecil, forgetting to call a
creation procedure aftereif_createmay produce an object which violates
the class invariant, so you must be particularly vigilant to avoid this error
(which cannot occur in Eiffel).

A shortcut is available for the case of string objects. As you will recall,
STRINGis a normal class with its own creation procedures. To avoid going
through the creation of aSTRINGobject and separate initialization, you
can useeif_string as in:

EIF_OBJECT  your_array;
...
your_array =eif_create(eif_type_id ("ARRAY [INTEGER]"));

 EIF_REFERENCE your_string;
EIF_OBJECT  your_string_object;
my_string = eif_string ("SOME TEXT");
your_string_object =eif_protect ("my_string");

Warning: this is C, not
Eiffel.

← About creation rules
inEiffelandtheCreators
clause, see chapter20.
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The result ofeif_string is anEIF_REFERENCE; if you are going to use
it beyond the immediate context, make sure toeif_protect it as shown.
When you do not need it any more, calleif_wean(your_string_object)to
let the Eiffel garbage collector reclaim it once the Eiffel side is also done
with it.

As a related facility, you can produce an Eiffel arrayeif_arrayfrom a C
arrayc_arraythrough the macro call

wheren, an integer, is the number of array elements andtype_id, an integer,
represents is the type of the array elements. The argumenteif_arraymust
be anEIF_REFERENCE denoting an array;c_arraymust be of type
(type_id∗), with enough space available to hold the array values. The value
of type_id must be one of the Eiffel-C interface typesdefinedearlier:
EIF_BOOLEAN etc. for basic types,EIF_REFERENCE for any
reference type.

You can similarly useeif_string_from_c (eif_string, c_string, n)to get the
C string (char∗) equivalent of an Eiffel string.

Calling routines

Having gained access to Eiffel objects, the foreign application will want to
apply Eiffel routines and attributes to them. To do so it needs pointers to
these routines, which it will obtain through one of a set of Cecil functions
provided for this purpose. For example, having obtained the type-id
your_array as shown above, use the following to assign to variable
your_procnamea pointer to the Eiffel procedure whose Eiffel name in
classARRAYis put:

Functioneif_procedureis one of a group of functions, each corresponding
to a different category of Eiffel routines: procedures, functions returning
results of basic types, class types, bit types. Here is the list of these
functions, with their argument and result types:

All these routines have the same arguments: a string (char ∗ in C),
representing a routine name, and a type-id, obtained througheif_type_id.

These functions look for a routine of namerout_namein the base class
of the type corresponding totype_id. If sucharoutineexists, the result will
be a pointer to a C function representing it desired routine; you may then
call that function on appropriate arguments. For example:

eif_array_from_c (eif_array, c_array, n, type_id)

EIF_PROCEDURE your_array_put:
...
your_array_put =eif_procedure ("put", your_array);

← “Manipulating val-
ues of basic Eiffel
types”,  page 870;
“Manipulating Eiffel
classtypes”, page871.

Warning: this is C, not
Eiffel.

→ See“Requesting a
non-existing routine”,
page 875 below about
what happens if the rou-
tine doesn’t exist.
Warning: this is C, not
Eiffel.
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This applies the routine corresponding togo, accessible through
your_array_putas a result of the above call toeif_procedure, to the object
corresponding to your_array, with the actual argument10. The
corresponding call would have been written in Eiffel asyour_array.put
(345,10). In C, do not forget to enclose the name of the function pointer,
hereyour_array_put, in parentheses, and to useeif_access.

As in Eiffel, the call will use dynamic binding: it will trigger the version
of the feature directly adapted to the type of the target object.

Requesting a non-existing routine

The facilities just reviewed —eif_procedure, eif_reference_functionand
so on — enable the foreign side to gain access to an Eiffel feature. What if
the requested feature does not exist in the class specified? If you stay within
Eiffel this case will not arise since the type checking mechanism will detect
the error at compile time; but from a foreign language no such static check
is possible; the error will only become manifest at run time.

For the outcome in such a case you have a choice between two
behaviors, which you can enforce by calling either of two status-setting
procedures (whose effect will last until a call to the other):

EIF_PROCEDURE eif_procedure
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_REFERENCE_FUNCTION eif_reference_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_INTEGER_32_FUNCTION eif_integer_32_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_CHARACTER_FUNCTION eif_character_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_REAL_32_FUNCTION eif_real_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_REAL_FUNCTION eif_real_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_BIT_FUNCTION eif_bit_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_BOOLEAN_FUNCTION eif_boolean_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

EIF_POINTER_FUNCTION eif_pointer_function
(char∗ rout_name,EIF_TYPE_ID  type_id)

(your_array_put) (eif_access (your_array), 365, 10)

Warning: this is C, not
Eiffel.

ThewordPOINTER in
EIF_POINTER_
FUNCTION  refers to
the EiffelPOINTER
type( see31.8 above),
not to C pointers.

Variants ofeif_integ-
er_32_function also
exist for 8, 16 and 64.
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• You can ensure that a request for a non-existent feature will trigger an
exception, passed as a signal to the foreign side. This is not the default
behavior, but you can obtain it by callingeif_enable_visible_exception.

• By default, functions such aseif_procedureand consorts return a null
value if they can’t find the Eiffel feature. You can restore this default
behavior by callingeif_disable_visible_exception.

Accessing field objects

The macroeif_attribute enables the foreign side to access fields of objects,
corresponding to attributes of the generating classes.

You may use the result ofeif_attribute in two different ways: as an
expression, or “r-value” in C terminology; or as aVariableentity, or “l-
value”, which may then be the target of an assignment. Such an assignment
will re-attach the corresponding object field.

The macro requires four arguments:

The object argument denotes the object of which you want to access a
field.;attrib_namedenotes the nameof theattribute in the generating class.

The third argument,type_id, serves to cast the result to the appropriate
type. It must be one of the Eiffel-C interface typesdefined earlier:
EIF_BOOLEAN etc. for basic types,EIF_REFERENCE for any
reference type.EIFFEL_TYPE covers all these type values. In
EIF_REFERENCE case, do not forget toeif_protect it the result if you
will use it further.

The last argument,status, is a result code. Possible values are *status =
EIF_CECIL_OK , indicating success, EIF_NO_ATTRIBUTE ,
indicating that no field exists in the object for the given name, and
EIF_CECIL_ERROR for other Cecil errors. If you have selected
eif_enable_visible_exceptionas explained above, the last two cases will
trigger an exception.

ISE Eiffel specifics

The following comments apply to the use of Cecil with ISE Eiffel and may
not be relevant for other implementations.

eif_attribute
(EIF_REFERENCE object, char∗ attrib_name,
EIFFEL_TYPE  type_id, int const∗ status);

Warning: this is C, not
Eiffel.

← See“Manipulating
values of basic Eiffel
types”,  page 870,
which also introduced
EIFFEL_TYPE , and
“Manipulating Eiffel
classtypes”, page871.
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To will gain access to the Cecil facilities through two include files, both
in $EIFFEL5/bench/spec/$PLATFORM/includewhere$EIFFEL5 is the
Eiffel installation directory and$PLATFORMthe platform code (such as
windows, linux etc.):

• To use Cecil in a C file it suffices to includeeif_eiffel.h.

• The main program may includeeif_setup.h to access facilities for
setting up and terminating the Eiffel run-time. This is not necessary if
execution starts on the Eiffel side; if, however, a C main program starts
execution and needs at some stage to call Eiffel mechanisms it will need
these facilities to get everything initialized on the Eiffel side.

The following Lace options will be useful on Windows:

• Use console_application (yes)if you want to produce a console
application rather than a default (graphical) Windows application.

• UseC_main ("path_name”) to specify that the main program will be the
C file atpath_name.

ISE Eiffel offers three compilation modes: melted (super-fast incremental
recompilation, no C generation), frozen (incremental, C generation),
finalized (full C generation, extensive global optimizations). You can use
Cecil with all three modes.

In the case of a melted system of namesystem_name, you must copy the
file <system_name.melted>from the subdirectoryEIFGEN/W_codeof
your project directory to the directory from which you will execute your C
program. (The execution directory, not the compilation directory). This file
will change after each melting; so on Unix it may be more convenient to
use instead a symbolic link to it, which also saves space.

A limitation exists in case of a melted system: it is not permitted to use
through Cecil any routine that has been melted in the last compilation. This
would raise the run-time exception “$ applied to melted routine”. The
solution is simple: refreeze.

To “cecilize” your system you do not need to use any special Eiffel
compilation option. The only extra concern you need to have is, in finalized
mode, to protect features from the dead-code removal algorithm, as
explained earlier. Compilation produces both C code and a Makefile, in a
subdirectory ofEIFGEN in your project directory:EIFGEN/W_code(in
melted or frozen mode) orEIFGEN/F_code(in finalized mode). To
produce a CECIL library, you must, in a DOS console (Windows) of shell
(Unix), go to the appropriateEIFGEN/x_codedirectory and run the make
utility with the ceciloption:make cecil(Unix), nmake cecil(Windows with
Visual C++ and compatible compilers).
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This generates a Cecil archive whose name derived from the name
system_nameof your Eiffel system: system_name.lib (Windows),
libsystem_name.a (Unix). The archive will include the Eiffel runtime
thanks to theinclude directives listed above. Then it suffices to link the
archive with the rest of your application through the link command
appropriate for your operating system.

On Unix, you should use the–lm option to the link command to include
the C mathematical library, required by the Eiffel runtime. You may need
other libraries too, for example–lbsdon Linux, –lpthread(Posix threads)
on Linux, –lthread (Solaris thread library) on Solaris. The linking
command might look like this:

ld –lm –lbsdyour_application.c libsystem_name.a
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Lexical components
32.1 OVERVIEW

This chapter defines the various kinds of lexical element.

The lexical structure of Eiffel is simple and predictable. For a first
approach to Eiffel, the examples found in the rest of this book should
provide enough models to enable you to write your own class texts without
studying this chapter.

32.2 CHARACTER SETS

Every lexical component is a sequence of characters.

The previous discussions have covered the syntax, validity and semantics
of software systems. At the most basic level, the texts of these systems are
made oflexical components, playing for Eiffel classes the role that words
and punctuation play for the sentences of human language. All construct
descriptions relied on lexical components — identifiers, reserved words,
special symbols… — but their structure has not been formally defined yet.
It is time now to cover this aspect of the language, affecting its most
elementary components.

Syntax (non-production): Character, character set

An Eiffel text is a sequence ofcharacters. Characters are either:
• All 32-bit, corresponding to Unicode and to the Eiffel type

CHARACTER_32.

• All 8-bit, corresponding to 8-bit extended ASCII and to the
Eiffel typeCHARACTER_8.

Compilers and otherlanguageprocessingtools must offer an
option to select onecharacter setfrom these two. The same or
another option determines whether the typeCHARACTERis
equivalent toCHARACTER_32 or CHARACTER_8.
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32.3 CHARACTER CATEGORIES

The discussion will rely on a classification of characters into letters, digits
and other categories:

To avoid such headaches, switch to Unicode (and discover a few
new headaches).

In manifest strings and character constants, characters can be coded either
directly, as a single-key entry, or through a multiple-key character code such
as%N (denoting new-line) or%/59/. The details appear below.

Letter, alpha_betic, numeric, alpha_numeric, printable
A letter is anycharacter belonging to one of the following categories:
1 • Any of the following fifty-two, each a lower-case or upper-case

element of the Roman alphabet:
a b c d e f g h i j k l mn o p q r s t u v w x y z
A B C DE F GHI J K L MN OP QR S T UV WX Y Z

2 • If the underlying characterset is 8-bit extended ASCII, the
characters of codes 192 to 255 in that set.

3 • If the underlying character set is Unicode, all characters defined as
letters in that set.

An alpha_betic character is a letter or an underscore_.
A numeric character is one of the ten characters0 1 2 3 4 5 6 7 8 9.
An alpha_numeric character is alpha_betic or numeric.
A printable character is any of the characters listed as printable in the
definition of the character set (Unicode or extended ASCII).

In common English usage, “alphabetic” and “alphanumeric” characters do
not include the underscore. The spellings “alpha_betic” and
“alpha_numeric” are a reminder that we accept underscores in both
identifiers, as inyour_variable, and numeric constants, as in8_961_226.

“Printable” characters exclude such special characters as new line
and backspace.

Case2 of the definition of “letter” refers to the 8-bit extended ASCII
character set. Only the 7-bit ASCII character set is universally defined; the
8-bit extension has variants corresponding to alphabets used in various
countries. Codes 192 to 255 generally cover letters equipped with
diacritical marks(accents, umlauts, cedilla). As a result, if you use an 8-bit
letter not in the 7-bit character set, for example to define an identifier with
a diacritical mark, it may — without any effect on its Eiffel semantics —
display differently depending on the “locale” settings of your computer.
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32.4 GENERAL FORMAT

At the lexical level, a class text is made oftokens, breaksandcomments.
Tokens are the meaningful components; breaks play a purely lexical role
(separating tokens); comments add informal explanations for the benefit of
human readers.

The next sections examine breaks, comments, layout conventions, the
influence of letter case, and the various categories of token.

32.5 BREAKS

Some platforms do not support the concept of a New Line character, but
represent texts as sequences of lines. On such a platform, you may apply the
rules of this chapter by considering a text as made of the concatenation of all
its lines, with a New Line character between consecutive lines.

Breaksseparate successive tokens. Any break is as good as any other:

32.6 COMMENTS

A class text may contain comments, which have no effect on the semantics
of the classes in whose texts they appear, but provide explanations for the
benefit of readers of these texts.

Break character, break
A break character is one of the following characters:
• Blank (also known as space).
• Tab.
• New Line (also known as Line Feed).
• Return (also known as Carriage Return).

A break is a sequence of one or more break characters that is not part
of a Character_constant, of a Manifest_stringor of a Simple_string
component of aComment.

Break semantics
Breaks serve a purelysyntactical role, to separatetokens. The
effect of a break is independent of its makeup (its precise use of
spaces, tabs and newlines). In particular, the separation of a class
text into lines has no effect on its semantics.

Because the above definition of “break” excludes break characters appearing
in Character_constant, Manifest_string and Comment components, the
semantics of these constructs may take such break characters into account.

→ As detailed below:
“TEXT LAYOUT”,
32.7, page 885.
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Any part of a line beginning with two consecutive hyphens- - and
extending to the end of a line is a comment, as in

or, without any preceding text

Some comments are “expected”, others “free”:

Free comments appear in any position where you feel you should include
some explanations for the reader of your software:

Expected comments are more closely connected to the syntax structure.
The three main examples are informal assertions, feature clause qualifiers
and feature headers. As an example of the first, you may use aComment
(possibly with aTag_mark) as anAssertion_clauseexpressing a property
which you have not been able to write formally as aBoolean_expression;
here is an example fromFIXED_QUEUE in EiffelBase:

Feature comments introduce successive feature categories, each in a
separateFeature_clause, as in

Some other text

Expected, free comment
A comment isexpectedif it appears in aconstruct as part of the
style guidelines for that construct. Otherwise it isfree.

your_array.sort -- Sorting algorithm must be stable.

invariant
0 < = first_index
first_index< = last_index

. … More invariant clauses…

class LINKED_LIST[T] inherit
…

feature
… Feature declarations…

feature
… Feature declarations…

-- A comment

-- A comment

-- If queue is not empty, items are in positions
-- first_index, first_index +1, .…, last_index–1 (modcapacity)

← From the sketch of
LINKED_LIST on
page134.

-- Access

-- Measurement
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Finally the optionalHeader_commentof a feature appears after its
signature and expresses concisely the purpose of the routine, as in:

If a comment is important, it is often advantageous to replace it by anote
clause, which has an official place in the syntactic structure. The
convention in this case is to usewhat as note tag:

The of Free and Expected comments is the same: a comment is made of one
or more line segments, each beginning with two consecutive dash
characters -- and extending to the end of theline

With an auxiliary definition

the following syntax captures the form of comments:

feature { LINKED_LIST}
… Feature declarations…

…
end

convert_to_resolution(res_val: REAL)
-- Convert to world coordinates,
-- usingres_val as resolution.

... Rest of Routine ommitted ...

convert_to_resolution(res_val: REAL)

... Rest of Routine ommitted ...

Syntax (non-production): “Blanks or tabs”, new line

A specimen ofBlanks_or_tabsis any non-empty sequence of
characters, each of which is a blank or a tab.
A specimen ofNew_line is a New Line.

Comments
Comment=∆ "– –" { Simple_string Comment_break…}*

Comment_break=∆ New_line [Blanks_or_tabs] "– –"

-- Implementation

note
what: "[

Convert to world coordinates,
usingres_val as resolution.

]"
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whereSimple_stringdenotes sequences of characters without a new line.

For example, the text extract

contains three-comments as indicated (with a blank line between the
second and the third)..

The Header_commentof a routine is formally equivalent to the more
explicit note form:

This syntax implies that two or more successive comment lines, with
nothing other than new lines to separate them, form a single comment.

c := -- This is comment text
-- This is the first comment’s continuation

a + b -- This is a second comment.

-- This is a third comment.

Syntax (non-production): Free Comment rule

It is permitted to include afree comment between any two
successivecomponents of aspecimen of aconstruct defined by a
BNF-E production, except if excluded by specific syntax rules.

An example of construct whose specimens may not include comments is
Line_sequence, defined not by a BNF-E production but by another “non-
production” syntax rule: no comments may appear between the successive
lines of such a sequence — or, as a consequence, of aVerbatim_string.

Similarly, the Alias Syntax rule excludes any characters — and hence
comments — between anAlias_name and its enclosing quotes.

Header comment rule

A featureHeader_commentis an abbreviation for aNoteclause
of the form

note
what:Explanation

where Explanation is a Verbatim_string with [ and ] as
Open_bracketandClose_bracketand aLine_sequencemade up of
the successive lines (Simple_string) of the comment, each deprived
of its first characters up to and including the first two consecutive
dash characters, and of the space immediately following them if any.
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32.7 TEXT LAYOUT

An Eiffel text is a sequence; each of the elements of the sequence is a break,
a comment or a token.

You may always insert a break between two elements without affecting
the semantics of the text.

A break is not required between two adjacent elements if one is a
comment and the other a token or another comment. Between two
successive tokens, a break may be required or not depending on the nature
of the tokens.

We may divide tokens into two categories:

Then:

Per the syntax, a comment is a succession ofSimple_stringcomponents, each
prefixed by "--" itself optionally preceded, in the second and subsequent lines if any,
by aBlank_or_tabs. To make up theVerbatim_stringwe remove theBlank_or_tabs
and dashes; we also remove one immediately following space, to account for the
common practice of separating the dashes from the actual comment text, as in

-- A comment.

Symbol, word
A symbol is either aspecialsymbol of the language, such as the
semicolon ‘‘;’’ and the ‘‘.’’ of dot notation, or astandardoperator
such as ‘‘+’’ and ‘‘ ∗’’.
A word is any token that is not a symbol. Examples of words
include identifiers,keywords, free operators and non-symbol
operators such asor else.

Syntax (non-production): Break rule

It is permitted to write two adjacenttokens without an
intervening break if and only if they satisfy one of the
following conditions:
1 • One is aword and the other is asymbol.

2 • They are both symbols, and their concatenation is not a symbol.

Without this rule, adjacent words not separated by a break — as inifxthen
— or adjacent symbols would be ambiguous.

→ For the list of sym-
bols see below“SPE-
CIAL SYMBOLS”,
32.11, page 889.
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Between adjacent words or adjacents symbols a break is required. For
example, a break is needed between a keyword and an identifier (both of
which are words); in

the breaks both before and afterx are required. But the assignment

may be written without any break, although thestandardstyleguidelines
suggest using a one-blank break both around the assignment symbol:= and
around every operator.

The syntax actually permits few cases of adjacent symbols; the most common
is a prefix operator appearing after an infix operator, as in3 + –5.

More generally, the physical layout of components should be so designed
as to foster the readability of software texts. For example, indentation
(using tab characters) highlights the structure of nested components. Since
readability will benefit from consistency, this book introduces some
recommended style conventions.

32.8 LETTER CASE

The conventions on letter case were introduced at thebeginning of this
book. Here is the precise rule.

In particular, letter case is not significant for identifiers and for reserved words;
remember the notion of “same feature name”, which ignores letter case.

This policy goes with a precise set ofstyle guidelines enjoining you to use
specific conventions for specific constructs, in particular identifiers (class
names in all upper case, variable identifiers in all lower case etc.).

if x then ...

c:=a+b

Letter Case rule

Letter case is significant for the followingconstructs:
Character_constantand Manifest_string except for special
character codes,Comment.
For all other constructs, letter case is not significant: changing a
letter to its lower-case or upper-case counterpart does not affect
the semantics of aspecimen of the construct.

→ Chapter34.

Appendix A.

← “TEXTUAL CON-
VENTIONS”,  2.13,
page 102.

← “Same feature name,
same operator, same
alias”,  page 153.→ Appearing through-
out the book and col-
lected in chapter34.
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32.9 TOKEN CATEGORIES
Tokens are the basic meaningful elements of software texts.

As noted in the description of general conventions at thebeginning of
this book, tokens are specimens ofterminal constructs. For example the
token8940 is a specimen of the terminal constructInteger. (In contrast,
higher-level syntactical structures, such as class texts or routines, are
specimens of non-terminal constructs such asClassor Routine.) Terminal
constructs do not appear in left sides of the productions of the grammar;
instead, their structure is defined in this chapter.

There are two categories of tokens, fixed and variable:

• Fixed tokenshave a single, frozen form. They include reserved words
such asclassorCurrent, and special symbols such as:=. For fixed tokens
this book not distinguish between the form of a token and the underlying
terminal construct. For example,class is the single specimen of a
construct which could be calledClass_keywordbut remains implicit; an
occurrence of the token in the grammar denotes the construct.

• Variable tokens are specimens of terminal constructs such asInteger,
Identifier, Free_binary, for which this chapter defines a general
structure, within which you can define tokens that fit the needs of your
software. For example, the rules forInteger, given below, permit
specimens made of one or more decimal digits; a token such as327
satisfies this specification.

The following sections examine reserved words, special symbols, and the
various terminal constructs defining variable tokens:Identifier, Integer,
String, Simple_string, Real, Operator, Character.

← “THE LEXICAL
LEVEL”, 2.4,page87.
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32.10 RESERVED WORDS

---- MOVE AND REWRITE The first and simplest tokens are reserved
words, listed in anappendix. Each is a sequence of letters, with in two cases
— and then, or else— an intervening blank (normally just one, but we
tolerate more). Formally:

Reserved words are called that way because you may not choose them
for your own identifiers. They includekeywordsandpredefined names:

Reserved word, keyword
The following names arereserved wordsof the language.
agent alias all and as assign attribute
check class convert create
Current debug deferred
do else elseif end
ensure expanded export
external False feature from
frozen if implies
inherit inspect invariant like
local loop not
note obsolete old once
only or Precursor
redefine rename require rescue
Result retry select
separate then True TUPLE
undefine until variant
Void when xor
The reserved words that serve as purely syntactical markers, not
carrying a direct semantic value, are calledkeywords; they
appear in the above list in all lower-case letters.

The non-keyword reserved words, such asTrue, have a semantics of their
own (True denotes one of the two boolean values).

The Letter Case rule applies to reserved words, so the decision to write
keywords in all lower case is simply a style guideline. Non-keyword
reserved words are most closely related to constants and, like constants,
have — in the recommended style — a single upper-case letter, the first;
TUPLE is most closely related to types and is all upper-case.

→ AppendixL.

See  below on identifi-
ers.



§32.11  SPECIAL SYMBOLS 889
• Keywords, such asclassandfeature, introduce and delimit the various
components of constructs.

• Predefined names come at positions where variable tokens would also
be permissible:Result, denoting the result of a function, may appear in
lieu of a local variable, for example as target of an assignment;
INTEGER may appear at a position where a type is expected.

In accordance with the Letter Case rule, letter case is not significant for
reserved words, so thatCLASS, result or even rEsULt are permissible
forms. According to the style rules, however:

• Keywords appear in lower-case, as withclass. In a typeset text they
should always appear inbold, as in this book.

• Predefined names start with a capital letter; the rest is in lower case (as
with Result), except for types since the general convention for all types
is to use all upper-case (as withINTEGER). When typeset, they appear
in italics.

The following general guidelines presided over the choice of reserved
words and should help you to learn reserved words quickly and remember
them without hesitation:

• Reserved words are simple and common English words. They are never
abbreviations and, with one exception, they are never composite words.

The exception iselseif, denoting a simple idea for which there is no one-word
name in English.

• For simplicity and consistency, the grammatical form is always the
shortest. For a noun it’s the singular, even if the plural might seem more
natural: the clause introducing the features of a class begins with the
keyword feature. For a verb it’s in the infinitive form, as inrequire,
again without an “s”.

32.11 SPECIAL SYMBOLS

A small number of one- and two-character strings, called special symbols,
have a special role in the syntax of various constructs.

Syntax (non-production): Double Reserved Word rule

Thereservedwordsand then andor elseare each made of two
components separated by one or more blanks (but no otherbreak
characters). Every other reserved word is a sequence ofletters
with no interveningbreak character.

The definition of Result
as a special kind of
localvariableappeared
in 8.6, page 114..
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Earlier chapters have introduced these symbols in connection with the
syntactic form of various constructs. Here is the complete list:

The following table gives a reminder of their role and the page where the
corresponding syntax productions appear.

The special symbols must be written as given in the above table, with no
intervening blanks or other characters. They should be typeset in roman.

Special symbol
A special symbolis any of the following character sequences:

– – :  ; , ? ! ' " $ . –> :=
= /= ~ /~ ( ) (| |) [ ] { }

Symbol Name Role Pages
-- Double dash Introduces comments. 883
; Semicolon Separates instructions,declarations,assertionclauses…; alwaysoptional.
, Comma Separates elements in lists of of entities or expressions.
: Colon Separates theType_mark in a declaration, aTag_mark in an

Assertion_clause, and aNote_name term in aNotes clause.
' Single quote Encloses manifest constants.
" Double quote Encloses manifest strings.
% Percent Introduces special character codes.
/ Slash In a special character code, introduces a character through its code.
+ – Plus and minus Signs of integer and real constants. (Also permitted as prefix and

infix operators, appearing in a separate table.)
788

$ Dollar Addressoperator for passing the address of an Eiffel feature or
expression to a routine (usually external).

833

% Percent Introduces a special character code.
/ Slash In a special character, introduces a character by its numerical code.

. Dot Separates target from feature in a feature call or creation call.
Separates integer from fractional part in a real number.

–> Arrow Introduces the constraint of a constrained formal generic parameter.
:= Receives Assignment operator.
= /= Equal, not-equal signs Equality and non-equality operators.
~ /~ Tilde, slash-tilde Object equality and non-equality operators.
( ) Parentheses Group subexpressions in operator expressions; enclose formal and

actual arguments of routines.
(| |) Target parentheses Enclose a constant or non-atomic expression used as target of a

call in dot or bracked notation.
[ ] Brackets Enclose formal and actual generic parameters to classes; enclose

items of a manifest tuple; specify that a feature has aBracketalias.
{ } Braces Enclose types in various contexts:Clientspart,Feature_clauseor

New_export_list, Creation_type.



§32.12  IDENTIFIERS 891
32.12 IDENTIFIERS

So much for fixed tokens; on to variable tokens.

An important category of variable tokens is identifiers, describing
symbolic names which class texts use to denote various components such
as classes, features or entities.

Here are some example identifiers:

The construct is defined as follows:

According to the earlierdefinitions of character categories this implies that
an identifier must start with a letter (not a digit or an underscore) and
continue with zero or more letters, digits and underscores.

Identifiers are subject to a number of restrictions to avoid ambiguity; see
for example theEntity rule, which prevents you from using the same
identifier to declare two entities within a given scope. But these are rules
on higher-level constructs, such asEntity, relying on identifiers. For
themselves, identifiers are only subject to a basic validity constraint on the
choice of name:

Two of the reserved words,and thenandor else, include a blank and would
not be lexically acceptable as identifiers anyway. Their components —and,
or, then, else — are themselves all reserved.

There is no limit to the length of identifiers, and all characters are
significant: to determine whether two identifiers are the same or not, you
must take all their characters — butnot letter case — into account.

A
LINKED_LIST
a
an_identifier
feature_1

Syntax (non-production): Identifier

An Identifier is a sequence of one or morealpha_numeric
characters of which the first is aletter.

Identifier rule VIID

An Identifier is valid if and only if it is not one of the language’s
reserved words.

← “Letter,
alpha_betic, numeric,
alpha_numeric, print-
able”,  page 880.

← “VEEN”, page513.

← “Samefeaturename,
same operator, same
alias”, page153; “Let-
ter Case rule”,  page
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32.13 OPERATORS

Operators appear asalias for identifier features when you wish to let your
clients call the feature in infix or prefix form, as with

which, can then be called under the forminv1 <= inv2 as well as the
standard dot-notation callinv1.no_better_than(inv2).

There are three kinds of operators:predefined, standard andfree.

There are only fourpredefinedoperators:

The standardoperators, used as aliases for features of the basic types
(INTEGERetc.). The listgiven in the discussion of features includes
boolean operators (such asnot, implies, and, or) which lexically are
keywords, leaving the following as standard operators in the lexical sense:

The aboveno_betterexample illustrated such a use asAlias.

no_better_thanalias (other INVESTMENT): BOOLEAN
-- Is other a least as good as current invesment?

... Rest of function declaration omitted ...

Predefined operator
A predefined operatoris one of:

= /= ~ /~

These operators — all “special symbols” — appear inEquality
expressions. Their semantics, reference or object equality or inequality, is
defined by the language (although you can adapt the effect of~and/~since
they follow redefinitions ofis_equal). As a consequence you may not use
them asAlias for your own features.

Standard operator
A standard unary operator is one of:

+ –
A standard binary operator is any one of the following one- or
two-charactersymbols:

+ – * / ^ < >
<= >= // \\ ..

All the standard operators appear asOperatoraliases for numeric and
relational features of the Kernel Library, for exampleless_thanalias"<" in
INTEGERand many other classes. You may also use them asAlias in your
own classes.

"<="

← “OPERATOR FEA-
TURES”,  5.15, page
154.

← Page154.
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Freeoperators allow you to make up your own operators, for example to
support specific notations in mathematics or physics. You can use almost any
combination of “operator symbols”, a notion defined very broadly:

Thanks to this notion, the definition of free operators lets you make up your
own notations as long as they cause no ambiguity:

Operator symbol
An operator symbol is any non-alpha_numericprintable
character that satisfies any of the following properties:
1 • It does not appear in any of thespecial symbols.

2 • It appears in any of thestandard (unary or binary)operators
but is neither a dot. nor an equal sign=.

3 • It is a tilde~, percent% , question mark?, or exclamation mark!.

Condition 1 avoids ambiguities with special symbols such as quotes.
Conditions2 and3 override it when needed: we do for example accept as
operator symbols+, a standard operator, and\ which appears in a standard
operator — but not a dot or an equal sign, which have a set meaning.

Free operator
A free operator is sequence of one or morecharacters satisfying
the following properties:
1 • It isnotaspecialsymbol,standardoperatororpredefinedoperator.

2 • Every character in the sequence is anoperator symbol.

3 • Every subsequence that is not a standard operator or
predefined operator is distinct from all special symbols.

A Free_unaryis a free operator that is distinct from allstandard
unary operators.
A Free_binaryis a free operator that is distinct from allstandard
binary operators.

← From the table in
“SPECIALSYMBOLS”,
32.11, page 889.



LEXICAL COMPONENTS §32.14894
Remember that — style guidelines aside — we donot want to require breaks
between an operator such as+ and the following identifier such asb, so that
we can interpreta+b as an expression.

The last two parts of the definition separate “free” unary and binary
operators from the standard ones. They allow, for example, defining∗ as
unary operator in one of your classes — whether or not it also uses it as
binary operator — even though, in the basic typesINTEGER, REALand
their sized variants, it figures only as binary.

This rule still leaves you considerable room in choosing free operators
to match the needs of just about any application domain, as illustrated by
other examples:∗∗, |–|, <–>, –|–>, => and many others.

General-purpose libraries such as EiffelBase and EiffelVision make
very limited use of free operators; this facility is mostly for specialized
application domains that are accustomed to their own notations.

32.14 CHARACTERS

Characters — specimens of constructCharacter— are used in various
constructs:Character_constant(of which a specimen is aCharacterin
single quotes, as'A'); Manifest_string(zero or more characters in double
quotes, as in"ABC DE!#$"); Identifier.

Condition3 gives us maximum flexibility without ambiguity; for example:
• You may not use – – – as an operator because, its subsequence– –

clashes with the special symbol introducing comments.
• You may similarlynot use– – because the full sequence (which of

course is a subsequence too) could still be interpreted as making the rest
of the line a comment.

• You may, however, use a single–, or define a free operator such as–∗
which does not cause any such confusion.

• You maynot use?, !, = or~, but youmayuse operators containing these
characters, for example!=.

• You may use a percent character% by itself or in connection with other
operator symbols. No confusion is possible with character codes such
as %B and % /123/. (If you use a percent character in anAlias
specification, its occurrences in theAlias_namestring must be written
as%% according to the normal rules for special characters in strings.
For example you may define a featureremainderalias"%% " to indicate
that it has% as anOperatoralias. But any use of the operator outside of
such a string is written just% , for example in the expressiona % b
which in this case would be a shorthand fora.remainder(b).)

Alpha_numeric characters are not permitted. For example, you may not use
+b as an operator: otherwisea+b could be understood as consisting of one
identifier and one operator.

← “Syntax (non-pro-
duction):Breakrule”,
page 885.
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A character is an element of the character set as defined at the beginning
of this chapter: either Unicode or extended ASCII. To define the notion
properly let us assume that the device used to enter software texts is a
keyboard, offering its users a number of keys, each defined by a code. We
must distinguish betweenkeys, which simply serve to enter certain codes,
andcharacters, the atoms of Eiffel lexical elements.

In the simplest and most common case, of course, you enter a character
just by pressing an associated key. For certain characters, however, you
may have to press a succession of two or more keys; and some keys do not
yield a character at all. For example theManifest_string in

includes a non-printable character, Backspace, appearing as%B . For this
character there is in fact a key on usual keyboards, but pressing it does not
yield a character: it simply erases the previous character you have entered.
To make Backspace part of your string, you may represent it by the two-
key sequence%B , as here. Another possibility, using the numerical code
for this character, is to enter it as%/8/.

The definition of “character” must be general enough to encompass all
such cases and address portability problems raised by the different in
keyboards found in various countries:

String_with_backspace: INTEGERis "AAA ZZZ"

Syntax (non-production): Manifest character

A manifest character— specimen of constructCharacter— is
one of the following:
1 • Any key associated with aprintablecharacter, except for the

percent key% .

2 • The sequence%k, wherek is a one-key code taken from the
list of special characters.

3 • The sequence% /code/, wherecodeis an unsignedinteger in
any of the available forms — decimal, binary, octal,
hexadecimal — corresponding to a valid character code in the
chosencharacter set.

%B

Appearing on the
next page.
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Form 1 accepts any character on your keyboard, provided it matches the
character set you have selected (Unicode or extended ASCII), with the
exception of the percent, used as special marker for the other two cases.

Form 2 lets you use predefined percent codes, such as%B for
backspace, for the most commonly needed special characters. The set of
supported codes follows.

Form3 allows you to denote any Unicode or Extended ASCII character
by its integer code; for example%/59/ represents a semicolon (the
character of code 59). Since listings for character codes — for example in
Unicode documentation — often give them in base 16, you may use the
0xNNN convention for hexadecimal integers: the semicolon example can
also be expressed as%/0x3B/, where3B is the hexadecimal code for 59.

Since the three cases define all the possibilities, a percent sign is illegal
in a context expecting aCharacterunless immediately followed by one of
the keys of the following table or by/code/ wherecodeis a legal character
code. For example%? is illegal (no such special character); so is
%0x/FFFFFF/ (not in the Unicode range).

→ Introducedlaterinthis
chapter:“INTEGERS”,
32.16, page 899.
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The major application of forms2 and3 is to express aManifest_string
containing characters that you cannot type directly into the class text. This
includes non-printable characters, such as Backspace (see
String_with_backspaceabove), and others not supported on all keyboards.
If you have an American ASCII keyboard but want to define a
Manifest_stringthat output devices supporting the appropriate codes will
display asambiguïté, with two letters bearing diacritical marks, you may
enter it as the string"ambigu%/139/t%/130/".

Special characters and their codes

Character Code Mnemonic name
@ %A A t-sign
BS %B Backspace
^ %C C ircumflex
$ %D Dollar
FF %F Form feed
\ %H BackslasH
~ %L TiLde
NL (LF) %N Newline
` %Q BackQuote
CR %R Carriage Return
# %S Sharp
HT %T HorizontalTab
NUL %U NUll
| %V Vertical bar
% %% Percent
' %' Single quote
" %" Double quote
[ %( Opening bracket
] %) Closing bracket
{ %< Opening brace
} %> Closing brace

A few of these codes, such as the last four, are present on many keyboards,
but sometimes preempted to represent letters with diacritical marks; using
%(  rather than[ guarantees that you always get a bracket.
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The codes are also useful in defining character intervals for Inspect
instructions, as in

Since this convention is of no particular benefit for entering such tokens as
identifiers, it is reserved for character and string constants:

The use of the percent character

The semantic specification follows the cases of the syntax definition:

32.15 STRINGS

Do not confuseStringor Simple_stringwith Manifest_string, seen in the
discussion of expressions. A specimen ofManifest_string, a non-terminal
construct, is aSimple_string in double quotes, as in"SOME STRING".

In the definition ofString, a “character” is any legal Eiffel character as
defined in the preceding sections. This includes in particular:

• A keyboard key other than%.

inspect
entry -- Of typeCHARACTE

when %/128/ .. %/165/ then
>…

… Other clauses…
end

Syntax (non-production): Percent variants

The percent forms ofCharacterare available for themanifest
characters of aCharacter_constantand of theSimple_string
components of aManifest_string, but not for any othertoken.

The characters “of” such a constant do not include the single' or double"
quotes, which you must enter as themselves.

Manifest character semantics

The value of aCharacter is:
1 • If it is aprintable characterc other than% : c.

2 • If it is of the form%k for a one-key codek: the corresponding
character as given by the table ofspecial characters.

3 • If it is of the form%/code/: the character of codecodein the
chosencharacter set.

← 29.8, page 794.

See32.14,page894, for
the various forms of
characters and the use
of the percent sign.
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• A special character code such as%B

• A character given by its numerical code, such as%/59/ or %/0b3B/.

The semantics is straightforward:

32.16 INTEGERS

Integer, a lexical construct, describes unsigned integer values. You may
express anIntegerin either the usual decimal notation or in one of three
bases other than 10: binary (base 2), octal (base 8), hexadecimal (base 16).

Examples of the most common case, decimal notation are:

Except for underscores, no intervening characters (such as blanks) are
permitted between digits.

You can use underscores to improve readability by dividing a long
integer into pieces. The recommended convention, as in the last example is
to use groups of three digits from the right (so that the leftmost one may be
shorter). Underscores have no effect on the value: the last two examples
denote the same integer value.

Examples in non-decimal notation, all representing the number twenty-
nine, are:

Syntax (non-production): String, simple string

A string — specimen of constructString— is a sequence of zero
or moremanifest characters.
A simple string — specimen ofSimple_string— is a String
consisting of at most one line (that is to say, containing no
embedded new-line manifest character).

String semantics

The value of aString or Simple_stringis the sequence of the
values of itscharacters.

0
327
3197865
3_197_865

0b11101 -- Binary
0c35 -- Octal
0x1D -- Hexadecimal

←DonotconfuseInteger
with Integer_constant,
seen s in“INTEGER
CONSTANTS”,  29.5,
page792.Aspecimenof
Integer_constant, a
non-terminalconstruct,
is anIntegeroptionally
preceded by a sign.
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The convention is clear: the constant starts with the digit0, followed by a
code for the base (b for Binary, c for oCtal, the conventionalx for
heXadecimal), followed by digits meaningful for the appropriate base.

Here too underscores may be used to group digits, as in0b1_1101, with
no particular style guideline.

As with other lexical elements, letter case is not significant for the
Integer_base(so that0X, for example, is acceptable in lieu of0x) and for
the hexadecimal digitsA to F. The forms given, such as0x1D, indicate the
recommended style: lower case for the base and upper case for the digits.

To describe this structure it is best to resort to a syntax production and
a validity rule, with the understanding that unlike with ordinary syntax
productions (and as indicated in the first clause of the validity rule) the
successive elements are not separated by breaks. The syntax is

Integers
Integer=∆ [Integer_base] Digit_sequence

Integer_base=∆ "0" Integer_base_letter

Integer_base_letter=∆ "b" |  "c" |  "x" |  "B" |  "C" |  "X"

Digit_sequence=∆ Digit+

Digit =∆ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" |
"A" | "B" | "C" | "D" | "E" | "F" | "_"

To introduce an integer base, use the digit0 (zero) followed by a letter
denoting the base:b for binary,c for octal,x for hexadecimal. Per the Letter
Case rule the upper-case versions of these letters are permitted, although
lower-case is the recommended style.

Similarly, you may write the hexadecimal digits of the last two lines in
lower or upper case. Here upper case is the recommended style, as in0xA5.

← “Syntax (non-pro-
duction): Double
Reserved Word rule”,
page 889.
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The associated constraint is:

Finally, the semantics:

Integer rule VIIN

An Integer is valid if and only if it satisfies the following
conditions:
1 • It contains nobreaks.

2 • Neither the first nor the lastDigit of theDigit_sequenceis an
underscore “_”.

3 • If there is noInteger_base(decimal integer), everyDigit is
either one of the decimal digits0 to 9 (zero to nine) or
an underscore.

4 • If there is anInteger_baseof the form 0b or 0B (binary
integer), everyDigit is either0, 1 or an underscore.

5 • If there is anInteger_baseof the form0cor 0C (octal integer),
every Digit is either one of the octal digits0 to 7 or
an underscore.

The rule has no requirement for the hexadecimal case, which accepts all the
digits permitted by the syntax.

Integer isa purely lexical construct and does not include provision for a
sign; the constructInteger_constant denotes possibly signed integers.

Integer semantics

The value of anIntegeris the integer constant denoted in ordinary
mathematical notation by theDigit_sequence, without its
underscores if any, in the corresponding base: binary if the
Integer starts with0b or 0B, octal if it starts with0c or 0C,
hexadecimal if it starts with0x or 0X, decimal otherwise.

This definition always yields a well-defined mathematical value,
regardless of the number of digits. It is only at the level ofInteger_constant
that the value may be flagged as invalid, for example{ NATURAL_8} 256,
or 999… 999 with too many digits to be representable as either an
INTEGER_32 or anINTEGER_64.

The semantics ignores any underscores, which only serve to separate groups
of digits for clarity. With decimal digits, the recommended style, if you
include underscores, is to use groups of three from the right.

← “INTEGERCON-
STANTS”,  29.5,
page 792.
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32.17 REAL NUMBERS

Real numbers – specimens of constructReal – define the manifest
constants for the basic typesREAL and its sized variants.

The following are real numbers:

Here is the definition:

The integral part, fractional part and exponent, all specimens ofInteger,
must be expressed in decimal (no binary, octal or hexa).

The denoted value is the expected one:

1.0 1.
0.1 .1
2345.632E-7 2345.632e-7

Syntax (non-production): Real number

A real — specimen ofReal— is made of the following elements,
in the order given:
• An optional decimalInteger, giving the integral part.

• A required ‘‘.’’ (dot).

• An optional decimalInteger, giving the fractional part.

• An optional exponent, which is the lettereor E followed by an
optionalSign(+ or –) and a decimalInteger.

No intervening character (blank or otherwise) is permitted
between these elements. The integral and fractional parts may not
both be absent.

As with integers, you may use underscores to group the digits for
readability. The recommended style uses groups of three in both the
integral and decimal parts, as in45_093_373.567_21. If you include an
exponent,E, rather thane, is the recommended form.

Real semantics

The value of aRealis the real number that would be expressed in
ordinary mathematical notation asi.f 10e, wherei is the integral
part,f the fractional part ande the exponent (or, in each case, zero
if the corresponding part is absent).

As withInteger, there is
no sign; only a
Real_constant may
introduce the sign.
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As with integers, this semantics yields theexact mathematical value.
Approximation to the supported floating-point type —REAL, REAL_32or
REAL_64 — occurs only when you use theReal as aReal_constant.

←“REALCONSTANTS”,
29.6, page 792.
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Concurrency (not done)
33.1 OVERVIEW
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34
Style guidelines(not done)
34.1 OVERVIEW

To facilitate the exchange of Eiffel software, it is preferable to follow a
standardized programming style. This appendix describes a set of
guidelines which help in this effort. Clearly, these rules are not part of the
language definition.

Many of the rules are rather low-level, dealing with such mundane
questions as how to phrase comments, where to put blanks adjacent to
parentheses, and whether to use verbs or nouns for routine names. Modest
as some of these concerns may seem, they are not to be neglected.
Adherence to a uniform style for the more superficial aspects of software
texts may indeed be of great benefit to both readers and writers of Eiffel
software:

In the process of getting acquainted with previously written classes, you
will feel more comfortable if they follow a commonly agreed style,
enabling you to understand the details more accurately, and to move on
without delay to the deeper aspects of the classes under review.

When you write new classes, or modify existing classes, the existence
of simple, well-defined guidelines helps you avoid wasting your time
hesitating on minor issues.

Far from stifling their creativity, then, the style discipline described in
this chapter encourages software developers to apply it to the true
challenges of quality software engineering: design of elegant, modular
system architectures; selection of appropriate data structures; and use of
the best possible algorithms.

34.2 LETTER CASE

Letter case is not significant for entity, feature and type names. The
recommended style observes the following conventions.
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Any identifier that may be used as a type, or part of a type, should be
written all in upper case. This includes:

• Class names, in all possible uses.

• Formal generic parameters, such asG in LIST [G].

• Basic types (BOOLEAN, CHARACTER, INTEGER, REAL, their sized
variants andPOINTER), ARRAY andSTRING.

Constant attributes should be written with an initial capital letter, with
the rest in lower case, as in

Area: REAL is 43_512/.g57;
Red, Green, Blue, Yellow: INTEGER

The same convention, initial upper-case letter, also applies to Void, the
entity of type NONE representing void references, and to the two
predefined entitiesCurrentandResult.

All other features (variable attributes and routines) and local variables
should use all-lower-case names.

34.3 CHOICE OF NAMES

Names for features and entities should be clear and informative. Do not use
abbreviations, except possibly for formal routine arguments, which are
only used in a restricted context.

Complex names should use the underscore character to connect various
components, as in

put_right

The use of internal upper-case letters for the same purpose, as in
putAtRight, contradicts the standard conventions of English and most other
languages and is not part of the recommended style.
.FS
Apart from proper names of the formMacNameor McName, the only
common use of internal upper-case letters seems to be for composite proper
names of French origin as spelled in North American English. This
convention, however, is unknown in actual French.

If two related names have some elements in common, make them differ
at the beginning, rather than at the end; for example, usex_positionand
y_positionrather thanposition_xand position_y. This will decrease the
probability of confusion.
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Clarity does not imply length. Although names may be as long as
needed to avoid ambiguity, you should resist the temptation to overqualify.
In particular, feature names should not include an identification of the
enclosing class. For example, a feature for updating a customer’s invoice in
a class INVOICE should be calledupdate, not update_invoiceor
invoice_update.

The design of the Basic Eiffel Libraries has gone even further in the
direction of simplifying and standardizing feature names. This means in
particular that the Data Structure Library makes little use of the specific
terminology traditionally applied by the computer science literature to each
individual kind of data structure. For example, you willnot find features
called

push, pop, top for stacks.

add, remove, oldest, latest for queues.

enter, entry for arrays.

insert, value, search for lists and hash tables.

Such names, widely used in textbooks about algorithms and data
structures, highlight the differences between the various structures rather
than their common properties.

In contrast, the Eiffel libraries are based on a taxonomy of data
structures, grouped into well-structured families such as “dispensers”,
“chains” and “tables”. The taxonomy is directly implemented into the
library through multiple inheritance from separate hierarchies of deferred
classes.

For an in-depth discussion of these issues and other aspects of library
design, see “Eiffel: The Libraries” and the chapter entitled “Lessons from
the Design of the Eiffel Libraries” in “An Eiffel Collection”. The
references are in the bibliography of appendix ====.

Feature names are in line with this approach; they reflect the deeper
common properties rather than the superficial differences. Some of the
most important universal names are: make (Basic initialization operation;
should be creation procedure)item (Basic access operation.p) count
(Number of significant items in a structure.)put (Basic operation to insert
or replace an item.)force (Like put, but will always succeed when it can.
For example, it may resize the structure if full.)remove(Basic operation for
removing an item.)wipe_out(Basic operation for removing all items.)
empty(Test for absence of significant items. Should return the same value
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ascount= 0.) full (Test for lack of space for more items.)to_external(
Function providing a pointer to actual data structure, for example the
sequence of values making up an array or string, useful for transmission to
external routines. May have language-specific variants such asto_c or
to_fortran. All such functions should have a result of typeNONE to
preclude any feature application on the Eiffel side.)

from_external
(Inverse ofto_external: procedure to reinitialize a data
structure such as a string from an external form. May have
language-specific variants such asfrom_c.)

Although such names asitem, put andremovefor stacks (replacing the
traditionaltop, pushandpop) may be a shock to some users accustomed to
the more traditional terminology, this unifying move was felt inevitable if
client users are to master easily a large number of powerful reusable classes
describing many data structures variants.

The inevitable differences in signatures and specifications should not be
compounded by differences in names which (in a typed language where
incorrect calls will be detected automatically) only stand in the way of
understanding.

If you are familiar with these conventions, you will easily recognize the
purpose of the major routines when you explore a class that follows them,
and you will be able to find out quickly whether the class suits your needs.

Thanks to their systematic presence in the Basic Libraries, these names
have acquired a status which is next in importance to that of the language
keywords. Make sure you use them whenever they are applicable.

34.4 GRAMMATICAL CATEGORIES FOR FEATURE NAMES

Since procedures are commands to perform actions, their names should be
drawn fromverbs in the imperative mode:put, write, remove etc.

In contrast, functions and attributes (which are indistinguishable by
clients, except through the presence or absence of arguments) describe
access to information. A function or attribute of a type other than
BOOLEANshould usually use anoun, possibly qualified by an adjective,
as in itemor last_transaction. Sometimes the noun may be implicit; then
only the adjective or adjectives remain, as inlast_read, which really stands
for last_item_read.

The names of boolean functions or attributes should be of either of two
forms:

The name may suggest a question, usually with the prefixis_, as in
is_leaf for a boolean feature used to determine whether a node is a leaf.
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Adjectives are also appropriate in some cases, as inopenedfor a
boolean feature used to determine whether a file is open.

“opened” rather than “open” because the later might be confused with a
verb, indicating a command to open the file.

Of the two possible names for a boolean feature, the one chosen should
suggest the property which isfalse in the default case. This is because the
default initialization rules will initialize a boolean attribute to false, so that
there will be no need for the creation procedure to include a specific
initialization. For example, if files are to remain closed until some call
explicitly opens them, use an attributeopenedrather thanclosed. Then the
creation procedure of the class does not need to do anything special for this
attribute.
.lA
Using a verb such asget for a function is usually inappropriate. Functions
should not “do” something, but return information in a non-destructive
way.

See “Object-Oriented Software Construction” about side effects in
functions.

For example, a sequential read operation which advances the input
cursor may be implemented as the combination of a procedureget,
changing the state, and an attribute or functionlast_item, returning the last
element read. A call toget updates the value oflast_item, but calling
last_item several times in a row repeatedly yields the same result.

The input routines from the Kernel Library class STANDARD_FILES,
discussed in chapter ====, follow these rules: a procedure such as ‘readint’
will read an element, and an attribute such as ‘lastint’ will give access to
the last value read.

34.5 GROUPING FEATURES

Classes introducing many features should group them into logical
categories. The syntax encourages this by allowing a class to have more
than one Feature_clause, each beginning with a Header_comment. (A
Header_comment has the same form as a free-comment, but appears as an
official although optional component of some construct in the syntax. The
constructs which take header comments are Feature_clause,
Creation_clause and Routine. The next section will examine header
comments of routines.)

Syntax productions: Feature_clause, page====; Creation_clause, page
====; Routine, page====.

The presentation of features sketched a class text organized in this way:
the Data Structure Library classLINKED_LIST, with feature groups
introduced by
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See ====, page ====.

-- Number of elements
-- Special elements
-- Cursor movement
-- Chaining
-- Representation

Such header comments should be short, simple phrases characterizing a
set of logically related features.

In some cases it may be more convenient to read a class text in
alphabetical order of feature names. Part D of this book indeed used this
convention for most of its presentations of library classes in flat-short form.
In the class texts themselves, however, grouping by feature categories is
usually better; then a good language processing tool (for example through
options of the short and flatcommands) will be able to produce
alphabetical output from a class organized by category — the reverse being
of course impossible.

See ====, page ====, aboutshort, and====,page====,aboutflat .

34.6 HEADER COMMENTS

Every routine should begin with a Header_comment. Here is an example:

distance_to_origin: REAL
-- Distance to point (0, 0)
local
origin: POINT
do
create origin/.gset_to_origin;
Result:= distance(origin)
end

Header comments should be informative, clear, and concise. In general,
brevity is one of the essential qualities of comments in programs; over-long
comments tend to obscure the program text rather than help the reader. The
following principles should help achieving brevity.

Avoid repeating information which is obvious from the immediately
adjacent program text. For example, the header comment for a routine
beginning with

tangent_to (c: CIRCLE; p: POINT): LINE

should not be
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-- Tangent to circle c through point p

but just

-- Tangent to c through p

as it is clear from the function header that c is a circle and p is a point.

For the same reason, the header comment should not usually include
restrictions on using the routine (such as “Call only on non-void
argument”) since such restrictions are the business of the Precondition
clause, which will give a more complete and more precise view.

Avoid noise words and phrases. An example is “Return the...” in
explaining the purpose of functions. In the above cases, writing “Return the
distance to point (0, 0)” or “Return the tangent to...” does not bring any
useful information as the reader knows a function must return something.
Another example of a noise phrase is “This routine computes...”, or “This
routine performs...”. Instead of

-- This routine updates the display according to the user’s last input

write

-- Update display according to last user input.

Every header comment should begin with an upper-case letter.

Do not use abbreviations in header comments. The purpose of a
comment is to explain; a reader may not know the meaning of an
abbreviation.

Header comments should have the following syntactical form, which
parallel rules given above for routine names:

The header comment for a procedure should be a sentence in the
imperative, as in the last example. The sentence should end with a period.

The header comment for a non-boolean function should be a nominal
phrase, such as “Tangent...” above. A final period is not necessary in this
case, unless the comment contains more than one sentence.

The header comment for a boolean function should be a question,
ending with a question mark, as in “Is current node a leaf?”.

Header comments should be consistent. If a function of a class has the
comment “Length of string”, a routine of the same class should not say
“Update width of string” if it acts on the same attribute.
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In general, comments should be of a level of abstraction higher than the
code that they document. In the case of header comments, the comment
should concentrate on the what” of the routine rather than the “how” of the
algorithm used.

Finally, remember that much of the important semantic information
about the effect of a routine may be captured more precisely and concisely
through the Precondition and Postcondition clause than through natural
language explanations.

34.7 OTHER COMMENTS

Although this does not appear in the syntax, a class should also begin with
a comment. The class comment should be brief and come before the
beginning of the class text proper. For a class describing a set of objects,
the comment should characterize these objects in the plural, as in

-- Binary search trees, pointer representation

Other parts of class texts may also include free-comments, used to
explain potentially unclear components. They should be indented to the
right of the normal text so as not to interfere with the understanding of the
software text proper.

Classes and routines should have ending comments repeating their
names. These comments are in fact optional parts of the syntax.

See ====, page ==== for comments ending classes and ====, page
==== for comments ending routines.

It is not necessary to label the end of a control structure by a closing
comment (such as in “end -- if”). The nesting depth of control structures
should remain small in well-written Eiffel texts, not requiring any
supplementary help for matching the beginning and end of each structure.

34.8 EIFFEL NAMES IN COMMENTS

In the examples above in the rest of this book, the name of a feature or other
entity appearing in a comment is shown in italics to avoid any confusion
with common words. For example a header comment could be of the form:

-- Recordelement underkey

whereelement andkey are formal arguments of the enclosing routine.

The corresponding convention in actual software texts (where font
variation is not a possibility) is to enclose such an Eiffel name in single
quotes (one opening quote ‘, one closing quote ’). So the actual form of the
above comment in its class text should be:
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-- Recordelement underkey

Language processing tools which produce typesettable forms of classes
should recognize this convention and use italics for Eiffel names quoted in
comments. (As seen below, italics is the recommended convention in
typeset output.)

34.9 LAYOUT

The recommended layout of Eiffel software texts results from the general
form of the syntax, which is essentially an “operator grammar”, meaning
that any text is a succession of alternating “operators” and “operands”. An
operator is a fixed language symbol, such as a keyword (do etc.) or a
separator (semicolon, comma etc.); an operand is a user-chosen symbol
(identifier or constant).

As a consequence, the text should follow a “comb-like” structure where
every syntactical component either fits on a line together with a preceding
operator, or is indented just by itself on one or more lines, as in a comb
whose branches normally begin and end with operators:
.pF ""Comb-like layout"

For an example, depending on the size of its componentsa, b andc, the
same Conditional may be written, among other possibilities, as

if  c then a else b end

or

if
c
then
a
else
b
end

or

if  c then
a
else b end
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For indentation, you should always use tabs, not spaces. (The only
exception is if you are using a text editor that doesn’t handle tabs well.
Most modern tools, however, have no such problem.)

The same principle applies to classes and routines. The following
extract from the ARRAY class of the Kernel Library illustrates the standard
indentation conventions for the different clauses. Ellipses (...) indicate
omitted features.

.t1
-- One-dimensional arrays

.t1
note

.t1
names: array;
access: index;
representation: array;
size: fixed, resizable

.t1
class ARRAY[T] creation

.t1
make

.t1

.t1

inherit

.t1
INDEXABLE[T, INTEGER];

.t1
INDIRECT[T];

.t1
BASIC_ROUT

.t1
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.t1

feature

.t1
make(minindex, maxindex: INTEGER)
-- If minindex <= maxindex, allocate array with bounds
-- lower andupper; otherwise create empty array.
do
upper:= —1;
-- lower initialized to 0 by default, so invariant holds
if  minindex<= maxindexthen
lower := minindex; upper:= maxindex;
actual_lower:= lower; actual_upper:= upper;
allocate(maxindex — minindex + 1)
end
ensure
empty_if_impossible: minindex> maxindeximplies count= 0;
consistent_size: minindex<= maxindeximplies
(lower= minindexand upper= maxindexand
 count= upper — lower + 1)
end;

.t1

.t1

lower: INTEGER;
-- Minimum current legal index

.t1
upper: INTEGER;
-- Maximum current legal index

.t2



§34.9918
item(i: INTEGER): T
-- Entry of indexi, if within bounds
require
index_large_enough: lower<= i;
index_small_enough: i <= upper
do
Result:= ext_item(area, i — lower)
end;

.t2

force(v: T; i: INTEGER)
-- Replacei-th entry byv.
-- Always applicable: resize ifi not in current bounds.
local
extra_block_size: INTEGER
do
extra_block_size:=
max(Block_threshold, Extra_percentage star count %eidiv% Hundred);
if  i < actual_lowerthen
resize(i — extra_block_size, upper);
lower := i
elseif i > actual_upperthen
resize(lower, i + extra_block_size);
upper:= i
else
lower := min (i, lower);
upper:= max(i, upper)
end;
put (v, i);
ensure
inserted: item(i) = v;
higher_count: count>= old count
end;

...

.t1
feature { NONE}  -- Representation details

.t1
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actual_upper: INTEGER;
-- Actual upper bound

.t1

...

.t2

feature -- Obsolete features

.t1
enter_force(i: INTEGER, v: T)
obsolete"Use ‘force(value, index)’ "
do
force(v, i)
ensure
inserted: item(i) = v;
end
...

invariant
consistent_size: count= upper — lower + 1;
non_negative_size: count>= 0
end

Note in particular the indentation used for routine header comments.

The indentation step is the “tab” character. Blank characters should
never be used for indentation.

34.10 OPTIONAL SEMICOLONS

Closely related to layout is the question of optional semicolons. For most
repetition constructs which use the semicolon as separator, semicolons are
optional (except between two adjacent specimens if the second one begins
with an opening parenthesis).

The recommended style is toomit the semicolonsbetween items
appearing on successive lines. Extensive experimentation has shown that
the semicolons impair readability since they add no information and detract
from the meaningful components of the software text.

If successive items appear on the same line — as is sometimes useful
for short multiple declarations or instructions — the semicolon should of
course be included, since mere spaces are not visible enough to delimit the
successive elements clearly.
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Semicolons are optional between feature clauses (page ====), parent
clauses (page ====), declarations of local variables (page ====), assertion
clauses (page ====) and instructions (page ====).

34.11 LEXICAL CONVENTIONS

Lexical conventions follow the practice of ordinary text, both in language
components and in comments. In particular:

There should be a blank before an opening parenthesis, and after a
closing parenthesis, but none after an opening parenthesis or before a
closing one. The same rule applies to square brackets.

A comma should always be followed by a blank, never preceded by one.

In a comment, a period should be followed by a blank, never preceded
by one.

As an exception to non-software textual practice, the dot (period, full
stop) used for qualified feature calls is neither preceded nor followed by a
blank, as in this_window/.gdisplay. As this example indicates, it is
preferable, for typeset texts, to use a very small bullet (appearing in this
book and in the output of theshort command when it is meant for
typesetting), more visible than a dot.

Three further conventions govern the use of blanks:

An Assignment or Assignment_attempt symbol (:= or ?=) should be
preceded and followed by one blank.

These are single symbols: it would be invalid to insert a blank before the
= character.

Arithmetic operators should also have a blank to the left and one to the
right. When typesetting an Eiffel text with asterisks in expressions, make
sure they appear properly as star; by default, typesetting systems will often
print an asterisk as * (appearing too high above the line).

As mentioned on page ====, however, a form with intervening blanks
would be valid.

34.12 FONTS

When Eiffel texts are typeset, as in this book, the following font
conventions should be observed.

Keywords should appear in bold italics:

class

Type, class, feature and entity names (including predefined types and
entities) should appear in italics:
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INTEGER
ARRAY
put
x
Result

Comments, especially header comments of routines, should appear in
roman font, except for identifiers from the software — denoting classes,
features, arguments — which should appear in italics:

-- Change lending rate to highest ofrate1 andrate2.

As mentioned above, these names should appear in single quotes in the
corresponding source texts.

34.13 GUIDELINES FOR ANNOTATING CLASSES

The Notesclause which optionally begins a class text may be used to
record information about the class, for use by class browsing and retrieval
tools. Such tools are important in the Eiffel approach to software
construction, based on the reuse of industrial quality software modules.

The very idea of aNotesclause assumes a degree of standardization of
annotation conventions. This section introduces some important
guidelines.

It is important first to put the overall purpose of theNotesclause in
perspective. The general principle of documenting Eiffel software is that as
much of the documentation as possible should be within the class texts
themselves. Documentation and browsing tools should use these texts as
their primary source of information.

See “Eiffel: The Environment” about documentation and browsing
tools.

Some properties of class designs, however, are of a higher level of
abstraction than what is usually expressed in the class text proper. They
include annotation categories, descriptions of design and implementation
decisions, references to algorithms or data structures as published in the
literature etc. TheNotesclause is meant for such information. It should
record it in a standardized format for use by documentation, archival and
retrieval tools. Such tools should enable users to retrieve archived classes
using query languages that express queries based on<index, value> pairs.

The following guidelines were used in the Basic Eiffel Libraries and are
recommended for other software as well.

• Keep theNotes clauses short (2 to 10 entries is typical).

• Avoid repeating information which is in the rest of the class text.
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• Use a set of standardized indices for properties that apply to many
structures (such as choice of representation).

Such standardized indices are suggested below.

For values, define a set of standardized possibilities for the common
cases.

Include positive information only. For example, arepresentationindex
is used to describe the choice of representation (linked, array, ...). A
deferred class does not have a representation. For such a class the clause
should not contain the entryrepresentation: nonebut simply no entry with
the index representation. A reasonable query language will make it
possible to use a query pair of the form<representation, NONE>.

Here are a few of the standard index terms and typical values.

An entry of indexnamesrecords alternative names for a structure.
Although a class has only one official name, the abstraction it implements
may be commonly known under other names. For example, a “list” is also
called a “sequence”.

An entry of index accessrecords the mode of access of the data
structures. The standard values include the following; more than one value
may be listed.

• fixed(only one element is accessible at any given time, as in a stack or
queue).

• fifo (first-in-first-out policy).

• lifo (last-in-first-out).

• index (access by an integer index).

• key (access by a non-integer key)

• cursor (access through a client-controlled cursor, as with the list
classes).

• membership (availability of a membership test).

• min, max (availability of operations to access the minimum or the
maximum).

An entry of indexsizeindicates a size limitation. Among common values:

• fixedmeans the size of the structure is fixed at creation time and cannot
be changed later (there are few such cases in the library).

• resizablemeans that an initial size is chosen but the structure may be
resized (possibly at some cost) if it outgrows that size. For extendible
structures without size restrictions this entry should not be present.

• An entry of indexrepresentationindicates a choice of representation.
Value array indicates representation by contiguous, direct-access
memory areas. Valuelinked indicates a linked structure.
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• An entry of indexcontentsis appropriate for container data structures,
used to keep objects. It indicates the nature of the contents. Possible
values includegeneric (for generic classes),integer_c, real_c,
boolean_c, character_c(for classes representing containers of objects
of basic types).

The notion of container data structure was presented in ====, page
====, and ====, page ====.

For example, theARRAY_LISTclass describes lists implemented by one
or more arrays, chained to each other. The clause in this case is:

note
names: block_list;
representation: array, linked; -- In this case it is both!
access: fixed, cursor;
size: resizable;
contents: generic
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PART III: KERNEL LIBRARY CLASSES
This third part of the book presents a number of important facilities available to Eiffel
developers not through the language but through a few classes known as the Eiffel Library
Kernel or ELKS for short, where the S stands for Standard since these classes are standardized
(the draft standard is appendixA).

The Kernel Library comprises the classes, closely related to the language, that are useful
to most Eiffel applications. Its role is not to provide a wide-ranging repertoire of algorithms
and data structures. The facilities covered by the Kernel Library, detailed in the following
chapters, include:

• Universal classes (chapter35), defining features inherited by all Eiffel classes, fromclone
andequal to print andtype.

• Arrays and strings (chapter36)

• Tuples (chapter13)

• Exception handling facilities (chapter37)

• Persistence mechanisms (chapter37)

• Basic types such asINTEGER and the like (chapter30).

• ELKS, the Eiffel Kernel Library Standard (appendixA).

The last of these, appendixA, is different from the other chapters of this book: it is meant to
be used not only as part of the book but also as anindependent standard document. This
explains why it uses a legalistic style with limited attempts at pedagogical help for the reader.
This should not cause any problem since you can read detailed presentations of the classes in
chapters35 to 30. You should find appendixA useful as reference material. Its gist is the
formal specification — through flatshort forms — of the ELKS classes.
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35
Universal features and class
ANY(in progress)
35.1 OVERVIEW

Class ANYfrom the Kernel Library is known as a "universal" class since
it is an ancestor of any class that you may ever write.

As you will remember from thediscussion of inheritance, the rule is that
any class which does not include its own Inheritance clause is considered
to have an implicit clause of the form

inherit  ANY

Universal
Class
Structure

Developer-defined
classes

NONE

ANY

A B C

ED

The more complete ver-
sion of this figure,
including class NONE,
appeared on page 85.

← “ANY”,  6.5, page
172.
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Because of this rule,ANYserves as both the most general type, to which
all types conform, and as the most general set of features, since all
developer-defined classes inherit its features.

35.2 INPUT AND OUTPUT FEATURES

This section and the following ones provide an overview of the facilities
offered, beginning with input and output facilities. The full flat-short form
of the class is given at the end of this chapter.

Featureio, of typeSTANDARD_FILES, gives access to standard input
and output facilities. It is appropriate for simple input and output
operations. For example,io.input is the standard input file andio.new_line
will print a line feed on the standard output.

You may think ofio as an attribute, whose value is a standard input-
output environment, made available to any class that may need it. As noted,
however, the standard %ANY% has no variable attributes to avoid
imposing a penalty on every run-time object. Featureio is in fact
implemented as a once function.

Function out, returning a STRING, yields a simple external
representation of any object. For non-voidx of any type, the stringout .( x)
is a printable representation ofx. Becausex is an argument of the call rather
than its target, the function returns a result, an empty string, for voidx.

Function out works for all types: basic types (such asINTEGER),
reference types, Class_type_expanded. For basic types, it gives the
standard representation; for example,x.out, for integer x, is the
representation ofx as a string of decimal digits. For a non-void reference,
or a value of Class_type_expanded,x.out is by default the concatenation of
theout forms of the object attached tox. You may redefineout in a class,
to produce a specific external representation of the instances of the class.

A variant of out is tagged_outwhich, for reference types, normally
produces a more readable representation where each field is tagged by the
corresponding attribute name. This is only intended as a debugging option;
as a consequence, the exact format is not guaranteed, and may under
certain language processing tools be reduced to that ofout.

Procedureprint is a universal output mechanism. The callprint .( x)
achieves the same asio.putstring(x.out), printing a string representation of
x on the standard output.

35.3 DUPLICATION AND COMPARISON ROUTINES

A group of routines (copy, clone, deep_copy, , equaland others) provides
facilities for copying, duplicating and comparing objects.

STANDARD_FILES
and other input-output
facilities are covered in
chapter38.
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The chapter on object duplication and comparison explored the
properties of these routines in detail.

35.4 OBJECT PROPERTIES

A few features give access to general properties of the current object.

Featureobject_id, implemented as a function or attribute, yields a
STRINGresult which is guaranteed to be a different string for distinct
complex objects. The string may be computed from the address of the
memory location used to store the object, but this is not part of the feature’s
specification, which only requires uniqueness of the result for each object.
The value ofx.object_id is only meaningful forx of reference type; if
object_idis used in Unqualified_call form, its value is only meaningful if
the target of the current call is non-expanded.

--- TALK HERE ABOUT “type” ----

Functiongeneratorreturns a string, the name of the current object’s
generating class – that is to say, the base class of the type of which the
object is a direct instance.

Sometimes you may need to determine at run time whether the type of
a certain object conforms to the type of another. The boolean function
conforms_to provides a way to do this under the form

The discussion of object test introduced two complementary techniques
for the same goal: using a succession of assignment attempts, or function
dynamic_typefrom the Kernel Library classINTERNAL. That discussion
also explained in detail why such an operation is seldom required, and
seldom appropriate, in the Eiffel method of software development.

35.5 PLATFORM-DEPENDENT FEATURES

Features introduced in classPLATFORMgive platform-dependent values:

• The integer constantsCharacter_bits, Integer_bits, Real_bits,
Double_bits and Pointer_bits indicate the number of bits used to
represent instances of the basic expanded typesCHARACTER,
INTEGER, REALandPOINTER.

• The integer constantMaximum_character_code, which may not be less
than 128, gives the highest supported character code. Valid character
codes are between 1 and this value.

• For any non-void entitya, the value ofa.bit_sizeis the number of bits
used to storea.

x.conforms_to (y)

See chapter21 about
object duplication and
comparison.

The notion of generator
was defined in19.2,
page====.

See.

See==== about
bit_size.
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35.6 OTHER UNIVERSAL FEATURES

(Needs to definedo_nothing— see reference in the discussion of delayed
calls.)
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36
Arrays and strings (not done)
36.1 OVERVIEW

Arrays and strings are homogeneous sequences of values – characters for
strings, values conforming to an arbitrary type for arrays – accessible
through contiguous integer indices.

The basic operations on arrays and strings are not special language
constructs; instead, two Kernel Library classes,ARRAYand STRING,
describe the corresponding objects and provide features for access and
modification. Although for most purposes you may use these two classes
as any other library classes, one property sets them apart: the language
offers notations formanifest values of typeSTRINGand ARRAY.[ T]
(manifest strings of the form"some text" and manifest arrays of the form
<<element, element, ...>>). This means that language processing tools
must know about these classes.

This chapter presents the features of classesARRAYandSTRINGand
explains how to manipulate the corresponding objects.

36.2 REPRESENTATION

The two classes use the same representation technique. Both are non-
expanded classes, so that the value of an entity of typeSTRINGor ARRAY
.[ T] for someT is a reference to an object. That object isnot, however, the
actual sequence of values (array or string), but a descriptor, which contains
information about the sequence and its properties (such as its length and its
bounds), and provides access to the sequence itself.

A possible representation is shown below for strings; here the descriptor
contains, among other fields, a reference to the sequence of characters, ---
- UPDATE --- which is a special object. A special object is not a direct
instance of a type but simply a sequence of values used only for
implementation purposes, and accessible through a descripto. For an array
the values in the sequence may be of a type other thanCHARACTER.
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The representation shown here is an illustration, not necessarily the
exact physical form of arrays. In particular:

An implementation may choose to store no other information in the
descriptor than the reference to the special object, any other information
(the shaded areas on the figure) being kept in the special object itself.

• Some implementation constraints may require an extra level of
indirection.

• At the other extreme, a compiler may even be able to avoid any
indirection for a certain array (perhaps because it is never resized). This
is permitted as long as the semantic effect of operations on arrays is the
one described in this chapter.

What you must remember in practice is that an entity of typeSTRING
or ARRAY.[ T] does not necessarily give you a direct handle on the actual
sequence of values making up a string or array. These representation issues
are of little consequence as long as you only access these values through
the features of classesSTRINGandARRAY, as given by this chapter in flat-
short form. You need to be careful, however, when writing an Assignment
or Equality test on such structures, since these are defined as operations on
the descriptors rather than the sequences themselves. To obtain operations
on the sequences, use thecopy, clone and equal routines for which, as
explained below, redefinitions in %STRING% and ARRAY yield the
expected semantics.

E ax m p l e 1

s: STRING
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36.3 RESIZING

As noted at the beginning of this chapter, each element in a string or array
has an associated integer index, and the legal indices form a contiguous
interval. In practice, this almost universally means that sequence elements
are stored contiguously in memory. Contiguous memory storage is not
absolute requirement, but the best means known for the only end that really
matters to users of arrays, the guarantee that the time needed to access or
replace an element known by its index is constant, and small.

The price to pay for this guarantee is the difficulty of changing the index
interval – adding elements before, between or after existing ones. If a high
percentage of the operations performed on a data structure are such out-of-
bounds additions, then array or string is probably not the appropriate
representation; many classes of the Data Structure Library provide more
flexible data structures, at some cost in access time, storage occupation, or
both.

To make fast access and replacement possible, then, an Eiffel array or
string is a bounded data structure, the bounds being defined at any time by
the index interval. But bounded does not mean fixed-size. You may resize
an array or string, either explicitly (through procedureresize, available in
both classes) or implicitly, by assigning a value to an array element outside
of the current index interval, using a feature which includes a provision for
automatic resizing.

As an example of implicit resizing,STRINGhas a featureappend,
which concatenates a copy of a string at the end of another string, with no
length restriction;appendwill automatically resize the target string if the
operation causes it to grow beyond its originally assigned capacity.
Similarly, ARRAYhas two features for assigning a value to an element
given by its index: one,put, requires (as part of its precondition) an index
that belongs to the current index interval, but the other,force, has no such
restriction and will automatically resize the array if needed.

In practice, you should keep the following two considerations in mind
when using explicit or implicit resizing:

• Resizing is likely to be much more expensive than the basic array and
string operations of accessing or replacing an element within the current
index interval. In fact the obvious implementation of resizing to a higher
size allocates a fresh array or string and copies the old values, which
implies an access and replacement operation onevery previously
allocated element. This means that the ratio of resizing operations to
non-resizing ones (basic access and replacement) should normally
remain low. For highly dynamic data structures, linked representations
supported by classes of the Data Structure Library such as
LINKED_LIST are usually preferable to arrays.

See"Eiffel: The Librar-
ies" about the Data
Structure Library.

The ‘resize’ procedures
keep existing items,and
hence cannot be used to
make some of the struc-
ture’s storage space
reclaimable. To shrink
an array, use ‘remake’.
For strings, use
‘shrink’,with the string
itself as first argument.
See the class specifica-
tions below.
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• For arrays, the knowledge that a certain array has a fixedlower bound
may allow compilers to generate faster code for access and replacement
operations, especially if that bound is syntactically a constant (rather
than a variable attribute or a local routine entity). A good compiler may
be able to detect that a certain array will always keep its original lower
bound (because it is never resized, or resizing affects its upper bound
only). In this case the penalty for changing the lower bound may be
higher than just the cost of resizing since it means that even basic access
and replacement, although still constant-time, are less efficient than for
an array which has a constant lower bound.

36.4 BASIC ARRAY HANDLING

ClassARRAYrepresents arrays; it is a generic class, with one generic
parameter representing the type of the array elements. The arrays it
describes are one-dimensional; for multi-dimensional arrays, the Data
Structure library offers further classes such asARRAY2, but you may also
useARRAY in a nested form, as inARRAY[ARRAY[T]].

To create an array with boundsm andn (two integer expressions), that
is to say, with an initial index interval consisting of all the valuesi such that
m ~ <= ~ i andi ~ <= ~n, use the creation proceduremake, as in

The current lower and upper bounds are accessible through features
lower and upper, the number of available elements throughcount. An
invariant clause states thatcount is upper ~ - ~ lower ~ + ~1.

The two basic operations on an array are accessing and replacing an
element known by its index:

• Access uses functionitem. To obtain thei-th element ofup_to_date,
write the expression

up_to_date.item(i).

• Replacement uses procedureput. To replace bya the i-th value of
delinquent, write the instruction

delinquent dot put .( a ,, i)

up_to_date, delinquent: ARRAY [ACCOUNT];

m, n: INTEGER;

...

m := ...;n := ...;

createup_to_date.make (1, 300);

createdelinquent.make (m-1, n+1)
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Each of these functions has a precondition stating that the indexi must
have a value between the boundslower and higher. (This means in
particular that by enabling precondition checking on classARRAYyou can
get an implementation to check the legality of your array accesses.)

In contrast withput, procedureforcehas no such precondition. The call

will put valuea at indexi, even if the value ofi is not part of the current
index interval. This may cause resizing. To request resizing explicitly, you
may also use a call of the form

The semantics of this call is to add to the index interval all the integer
values between the arguments given (here1 and2kn), without losing any
previously entered array element. In other words, the call does not
necessarily ensure that the new bounds are1 and2kn, but simply that they
accommodate these values and everything in-between. (The bounds may
even remain unchanged if the existing index interval already includes the
argument values.)

The access functionitemhas a bracket alias ---- COMPLETE ----------
with an infix alias : infix "@". This means that you may express
up_to_date.item(i), if you prefer, as

Since "@", like any free operator, has the highest possible precedence,
you must use parentheses if the index is a non-atomic expression, as in

This presence of two equally acceptable names for a single feature is a
unique occurrence in the Eiffel libraries – an exception to the style rule
which enjoins developers to choose a single name for each feature, and
stick to it. The reason for this rare departure from a general guideline is a
concession to tradition. Althoughitem is the recommended name for the
basic access feature for all data structure classes (and is used consistently
for this purpose in the Data Structure Library and others), many developers
prefer a compact notation for the special and frequent case of array access.

36.5 COPYING AND COMPARING ARRAYS

ClassARRAYredefinescopy and is_equalfrom ANY, so that for arrays
these routines will copy or compare not just the array descriptors but the
actual sequences of values.

delinquent.force (a, i)

delinquent.resize (1,2k n)

up_to_date @ i

up_to_date @ (i - 1)

On run-time assertion
checking see9.13,page
253.

See the table on page
====about operator
precedence. The defini-
tion of free operators is
on page====.

Thestyle rulewasgiven
in the discussion of syn-
onym features: 5.18,
page 159. See also
appendix A about style
guidelines. Remember
that redefininga feature
through one of its name
does not redefine the
synonym.
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Recall that redefining procedurecopyalso implies a new semantics for
functionclone, and that redefiningis_equalalso implies a new semantics
for equal, which is called under the formequal(a, b) and returns the value
of

For example, if the value ofra1 is an array as illustrated on the top
portion of the figure, an instruction of the form

will assign tora2 an identical array, as illustrated by the bottom part. This
is still a comparatively shallow copy: if the array elements are references
(as on the figure), the references are copied but not the objects to which
they are attached (represented by the shaded rectangles).

Function clonealso duplicates the array, and duplicates the descriptor
as well, returning a result attached to the new descriptor.

(a = Voidand b = Void) or

(a /= Void and b/= Void and then
a.is_equal (b))

ra2.copy (ra1)

ra1

ra2

(ARRAY)

(ARRAY)

Array
Duplication

See21.4,page575,and
21.7, page 582.

Acall to ‘copy’ requires
that its target be non-
void.
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In contrast with the semantics ofcopy and clone, an Assignment on
array entities has the semantics of direct reattachment for entities of
reference types, which means that

will attach ra2 to the array descriptor attached tora1. Any later array
operation onra2, for example the call

will have the same effect as the corresponding operation ofra1. The same
behavior results from actual-formal association in a call

wherera1 is the corresponding formal argument in %r%.

As with copy and clone, the version ofequal for ARRAY, using the
redefined version ofis_equal, compares not the descriptors but the actual
arrays, recursively applying the appropriate version ofequal to each
successive pair of elements. (Inequal(ra1, ra2) wherera1 andra2 are of
typeARRAY[T], the comparison applied to element pairs is the version of
equal for T.)

To copy array descriptors rather than arrays, use the routines
standard_clone, standard_copy, standard_equal. To obtain deep
operations, which will recursively duplicate or compare not just the array
values but (if these values are references) the data structures to which they
are attached, usedeep_clone, deep_copy, deep_equal.

36.6 MANIFEST ARRAYS

You may obtain an array simply by giving its values through a manifest
array expression. The expression

denotes an array ofn elements, the values of expressions e1 ,, e2 ,, "..." ~
en. If every ei conforms to a typeT, then the manifest array expression
conforms toARRAY[T]

36.7 STRINGS

ClassSTRING describes character strings.

ra2 := ra1

ra2.put (some_value, some_index)

r (..., ra2, ...)

<< e1, e2, ...en>>

See the table of page
====about the seman-
tics of direct reattach-
ment.

Ontherelationbetween
‘equal’ and ‘is_equal’,
see21.6, page 580.

29.9,page809,covered
manifest arrays.
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In principle, a string could be implemented as an object of typeARRAY
.[ CHARACTER]. Having a special class makes it possible to use a more
compact internal representation and to support many specific string
operations (such as appending another string or extracting substrings)
which are not as interesting for arbitrary arrays.

To create a string, use the creation proceduremake:

This will dynamically allocate a stringtext1with room for n characters.
The argument tomakegives the initial length of the string. This isnot,
however, a hard-wired limit: if further operations result intext1growing
beyondn characters, the string will automatically be resized.

As with arrays, you can also initialize a string by giving its contents: use
a Manifest_string of the form

Remember, when using an assignment on strings, that it will be an
assignment of string descriptors, not a copy. To obtain a fresh copy of a
string, use one of the forms

relying on the redefined version ofcopy (also used byclone), which
duplicates the character sequence, not just the string descriptor.

Similarly, a test of the form

will compare string descriptors, which is not what you will want most of
the time; to compare the actual strings, use

The next section shows the many operations available on strings, such
as concatenation, character or substring extraction, comparison. The
comparison operations (which have infix aliases"<", "<=", ">=", ">" ) use
lexical ordering, based on numerical character codes (ASCII or an
extended version). These functions exist in deferred form in class
COMPARABLE, a parent ofSTRING.

text1.text2: STRING; n: INTEGER
...
create text1.make(n)

example: STRINGis "This string literal contains 42 characters"

text2.copy(text1)
text2:= clone(text1)

if  text1= text2then ...

if  equal(text1, text2) then ...

See29.8 and, starting
on page 391, on mani-
fest strings.

See chapter21 about
‘copy’, ‘clone’, ‘equal’
and ‘is_equal’.

SeeA.6.3, page 977,
aboutCOMPARABLE.
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Functionadapt is useful if you declare a descendant ofSTRING, say
SPECIFIC_STRING, and want to initialize an entitys of type
SPECIFIC_STRINGby giving its characters explicitly. You may not assign
a manifest string such as"Some Text" to s because of the conformance
rules, but you may use

since the formal argument ofadapt is of type like Current; this
anchored declaration ensures automatic adaptation to the type of a
descendant

s := adapt ("Some Text")

See11.10,page339,on
anchored declarations.
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37
Persistence(not done)
37.1 OVERVIEW

When you execute a system which creates objects, you will sometimes find
it necessary to keep some of these objects in secondary storage for later
retrieval by the same or another session.

Mechanisms permitting this belong to the libraries and supporting
environment rather than to the language. The issue is sufficiently
important, however, to justify a presentation in this book. The solutions
presented below are not the only possible ones, but they have proved useful
in practice.

The material presented in this chapter is not part of the specification of
Eiffel.

37.2 CLASSES FOR PERSISTENCE

The relevant facilities come from two classes of the Support Library:
STORABLE andENVIRONMENT.

STORABLEcovers the more elementary situations. It suffices when all
that is needed is to store away an entire object structure, starting at a certain
object attached to %x%. Then an instruction such as

will produce and write onto the file of namesome_filean external form of
the entire object structure starting at the object attached tox. Later, a
system may retrieve the structure by executing

x.store_by_name ("some_file")

retrieve_by_name ("some_file")

On the Support Library
see"Eiffel: The Librar-
ies" (reference in
appendix C).
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The facilities provided byENVIRONMENTare more elaborate. An
instance of this class is a set of objects. If you open an environment, all
objects created thereafter belong to that environment, and you may give
them keys for individual identification. You can then store an external
representation of the environment in a file through astore operation, or
request that the environment be stored automatically on session
termination. The environment can later be retrieved, and its identified
objects accessed individually through their keys.

ENVIRONMENTalso introduces features for querying the current state
of the execution, for example to count the number of instances of a certain
type.

This chapter presents classesSTORABLE andENVIRONMENT.

37.3 OBJECTS AND THEIR DEPENDENTS

Whether you useSTORABLEor ENVIRONMENT, persistence raises an
important practical issue: when an object is stored, what happens to the
references it contains?

In a classC any attribute declared of a reference type, such as

represents a field which, in any run-time instance ofC, contains a reference
to an instance ofSOME_REFERENCE_TYPE (or a void reference).

Such references may give an object direct and indirectdependents. On
the above figure, for example, the object marked OX has one direct
dependent, OD; the whole set of its dependents, direct or indirect, includes
OX itself, OD, OE1 and OE2.

attrib: SOME_REFERENCE_TYPE

Direct and indirect
dependents

base

item"ABC"
previous

previous
item"ABC"

base

count

count

left
right

value
buddy

buddy

valuey

(TC)

(TD) (TE)

(TE)

(TC)

8.1

9.6
76

76

OY

OXx

OD

OEI

OE2

This is derived from the
figure illustrating
object copying on page
====.
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More generally:

Whenever an object is stored by one of the operations described in this
chapter, its reference fields would become meaningless for later retrieval
unless the operation also stores the dependents of the object, direct or
indirect. This imposes a universal rule on the routines of bothSTORABLE
andENVIRONMENT:

In other words, whenever you make a certain object persistent, you
implicitly make all of its dependents persistent as well.

The persistence facilities properly handle shared references (references
to the same object from several sources) and cyclic dependencies (direct or
indirect dependencies from an object to itself).

37.4 RETRIEVAL, TYPING, AND THE ASSIGNMENT ATTEMPT

How do persistence facilities combine with static type checking?

During the execution of a given system, every object of interest is
accessible through one or more entities such as class attributes and routine
arguments. Since the language is typed, the type of any such entity is
known in the corresponding class texts from the entity’s declaration; it
indicates the type of the attached objects, or at least an ancestor of this type,
which may be viewed as an approximation of it.

These compulsory declarations, combined with the type rules for
polymorphic assignment and feature application, make it possible to
guarantee that no operation will be attempted on an object unless it is
indeed applicable to all objects of the corresponding type.

Thedirect dependentsof an objectO, at some time during the
execution of a system, are the objects attached to the reference
fields ofO. Thedependentsof an object are the object itself and
(recursively) the dependents of its direct dependents.

Persistence Completeness rule
Whenever a routine of classSTORABLEor ENVIRONMENT
stores an object into an external file, it stores with it the
dependents of that object. Whenever one of the associated
retrieval routines retrieves a previously stored object, it also
retrieves all its dependents.

Typingwasdiscussedin
chapter25.
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When objects are stored away in persistent memory, however, they lose
their connection with the text of the software system that created them. If
the objects are later retrieved during a session of the same or another
system, their internal format is no longer guaranteed to match the declared
types of the entities attached to them in the new system.

The problem arises when it comes to declaring a type for library
features returning objects from persistent storage: attributeretrieved in
STORABLE, a reference to the retrieved structure, and functionitem in
classENVIRONMENT, accessing an object of an environment through its
key.

These are features of general-purpose library classes and must be
applicable to access retrieved objects of any type. The obvious question is
then: under what types should these features be declared in classes
STORABLE andENVIRONMENT?

The only possible answer is the least committing one: because these two
classes must be universally applicable,itemandretrievedcan only yield a
result of typeANY – the most general type, to which all types conform.

If we stopped here, no useful operation would be possible on the
retrieved objects, since class ANY only provides general-purpose
operations applicable to all types – such as copy, clone, equality
comparison or output in a default format. But when you store objects of a
given type – for example instances of a classBANK_ACCOUNT– it is
because you expect that at retrieval time you will use them according to this
type, applying the corresponding features – such asdeposit, withdraw or
balance. The features ofANY would never suffice.

Yet you will still want the benefits of type checking: if for some reason
a retrieved object is not an instance ofBANK_ACCOUNT, you cannot
accept it blindly and start applyingBANK_ACCOUNTfeatures to it, with
all the possible consequent damages.

The solution, as you will undoubtedly have guessed, is provided by the
Assignment_attemptinstruction. Assume thather_accountis an entity of
type ACCOUNT. Then if retrieved_objectis an expression of typeANY,
built from features ofSTORABLEor ENVIRONMENTand denoting an
object retrieved from persistent storage, the instruction

makesher_accountvoid if retrieved_objectis void, or attached to an object
of a type which does not conform toher_account’s declared type,
ACCOUNT; otherwise, that is to say if the instruction’s source
retrieved_objectis attached to an object of the expected type, the
instruction also attaches the targether_account to the same object.

her_account?= retrieved_object

← “ANY”,  6.5, page
172;seealsochapter35
for more details.

Assignment_ attempt
was introduced in chap-
ter 22.
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Here is a more complete form of the example, showing a typical scheme
for retrieving persistent objects in a type-safe way.

The use of Assignment_attempt achieves the combination of flexibility
and safety required to support persistent objects in a statically typed
context.

37.5 STORING AND RETRIEVING AN ENTIRE STRUCTURE

The features of classSTORABLEmake it possible to store an object
structure consisting of an object and all its dependents, and retrieve it later.

There are two storing procedures, called under the form

The first expects a file specified by its name (a string), and the second
expects an instance of the Support Library classFILE.

In all cases, the base class of the type ofx must be a descendant of class
STORABLEfor these operations to be applicable tox. Only x must satisfy
this constraint: there is no particular requirement on the types of the
dependents of the object attached tox.

old_accounts: HASH_TABLE[BANK_ACCOUNT, STRING];

her_account: BANK_ACCOUNT;

...

retrieve_by_name ("Old_account_file");

old_accounts?= retrieved;

if old accounts+ Voidthen

-- File Old_account_file doesn’t contain what we
thought it did!

...

else

-- Deal normally with the hash-tableold_accounts:

her_account := old_accounts.item ("Sarah")

-- Hereitem is the search function for hash tables.

...

end

x.store_by_name ("file_name")

x.store_by_file (file_object)

See"Eiffel: The Librar-
ies" about FILE.Alternatively, the client
relation could be used:
if st is of type STOR-
ABLE and has been cre-
ated, then the forms
st.x.store_by_nameetc.
will work.
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Retrieval is provided by two procedures corresponding to the two
conventions for referring to files:

In accordance with the methodological advice against functions with
side effects, these features are procedures, not functions; they retrieve a
structure and make it available through an attribute

retrieve_by_name ("file_name")

retrieve_by_file (file_object)

retrieved: like Current

-- Last object retrieved by one of
the retrieval procedures.

See"Object-Oriented
Software Construc-
tion".
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37.6 CLASS STORABLE

The precise specification ofSTORABLE’s exported features, as given by
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the flat-short form of the class, follows.
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-- Facilities for storing and retrieving
object structures

-- in binary format Classes needing
these facilities

-- should inherit from this class.

class interfaceSTORABLEexported
features

retrieve_by_file (f: FILE)

-- Retrieve an object structure
from external

-- representation previously stored
in file f.

require

good_file: f /= Void and then
f.exists

retrieve_by_name (filename:
STRING)

-- Retrieve an object structure
from external representation

-- previously stored in file of name
filename.

require

file_name_not_void: filename /
=Void

retrieved: like Current

-- Last object retrieved by one of
the retrieval procedures

storable_error: BOOLEAN

store_by_file (f: FILE)

-- Produce an external
representation of the entire

-- object structure reachable from
current object.

-- Write this representation onto
file f.

require

good_file: f /= Void and then
f.exists
store_by_name (filename: STRING)

-- Produce an external
representation of the entire

-- object structure reachable from
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37.7 ENVIRONMENTS

When the aim is simply to store away a snapshot of the current object
structure, or part of it, the facilities ofSTORABLEare sufficient.
Environments provide a more flexible and selective approach, with a
number of concrete advantages:

• The objects belonging to a stored environment may be individually
identified by keys. You may then retrieve them selectively through these
keys. (In contrast, the procedures ofSTORABLEproduce external
structures where only one object, the root, is known individually.)

• An environment may be stored not just through an explicit call to astore
procedure, but also automatically on session termination, if you request
it.

• Environments are normal objects and may be manipulated as such.
There is no need to inherit from a special class such asSTORABLE.

• Environments also provide useful information on the objects of a
session, independently from applications to persistence. For example it
is possible to query an environment about the number of objects it
contains, or the number of objects of a certain type.

You may access an environment through an entity of type
ENVIRONMENT. For example:

To create an environment, use the single creation procedure of the class,
make, which takes no argument:

An environment – instance of classENVIRONMENT – simply
represents a set of objects. It is always complete under dependency: in
other words, if an object belongs to an environment, all of its dependents,
direct or indirect, also belong to the environment.

The various operations on environments, described below, may produce
error conditions if the conditions for their application are not met. Class
ENVIRONMENTcontains an integer attributeerror which every operation
sets to the valueNo_error (if all went well) or to one of the error codes
described below. The boolean functionok has the same result as

env: ENVIRONMENT

create env.make

error = No_error
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37.8 OPENING AND CLOSING ENVIRONMENTS

Once an environment has been created, you may open it. This means that
all objects created from then on (until the environment is closed, or another
is opened) will belong to this environment; so will all of their dependents,
direct or indirect.

Only one environment may be open at a time; opening an environment
closes the previously opened one, if any.

To open or close an environmentenv, use

37.9 RECORDING AND ACCESSING OBJECTS IN AN ENVIRONMENT

You may identify objects individually in an environment through keys. The
keys determine what objects will be stored along with the environment, and
make it possible to retrieve stored objects individually.

Because the keys are kept along with the objects when the environment
is stored, they must be of a type available to all systems. For this reason,
keys are restricted to being character strings.

To associate key"KEY1" with the object attached tox in an environment
env, use procedureput, as in

The first formal argument of procedureput is declared of typeANY, so
that any type will be acceptable forx.

After the successful execution of such a call, the object is said to be
recordedunder the given key in the given environment, and the key is said
to bein use for that environment.

A key may be used for only one object in an environment; if you callput
with a key that is already in use, the existing object recordings will not be
changed anderror will be set toConflict. To force the new recording (and
dissociate the key from any previous object recorded under it), use
procedureforce instead ofput.

env.open

env.close

x: SOME_TYPE;

...

create x ... (...);

env.put (x, "KEY1")
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To obtain the object recorded under a certain key, use the functionitem,
which returns a result of typeANY. As discussed above, you will need an
Assignment_attempt to access the objects under their true type, as in

To determine whether a key is in use in an environment, call the
boolean-valued functionhas, as in

To change the key under which an object is recorded, use procedure
change_key, as in

If "old_key" was not in use, thenerror will be set toNot_found.

37.10 THE OBJECTS OF AN ENVIRONMENT

The preceding discussion yields the definitions of what objectsbelong to
an environment, and which ones among these arepersistent.

One of the main uses of recording objects is indeed to make them
persistent in the following sense:

x: SOME_TYPE;

...

x ?= enn.item ("KEY1’);

if x = Void then

... The object recorded under "KEY1" is not of the expected
type

... SOME_TYPE (or the key is not used in the environment)

else

checkx/ = Voidend;

... Here the algorithm may deal withx normally

end

key_used:= env.has ("KEY1")

env.change_key (’old_key", "new_key")

Persistent objects
The persistent objectsof an environment are all the objects
recorded under some key in the environment, and their
dependents.
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As the name indicates, the objects defined as persistent will be kept by
the storing procedures seen in the next section. But the persistent objects of
an environment are not the only ones that belong to it. More generally:

37.11 REQUESTING INFORMATION ABOUT ENVIRONMENTS

Functioncount of classENVIRONMENTmakes it possible to query an
environment about the objects that belong to it, making environments
useful even without any application to the storage and retrieval of
persistent objects. Functionpersistent_counthas the same specification as
count except that it only takes into account an environment’s persistent
object.

A call to count will yield the number of instances of a certain type
belonging to an environment. For example,

will assign toemployee_count(assumed to be an integerVariable) the
number of objects which belong toenv and conform to the type of the
object attached tosome_employee (or 0 if some_employee is void).

The argument ofcountis an expression (here the entitysome_employee)
whose value is used only for the type of the attached object. So if you want
the number of instances of the non-generic classEMPLOYEEin envyou
can use the above instruction preceded by

Recall thatinstancesof a reference type include not just direct instances
but also instances of any conforming type. So the above will count not just
the direct instances ofEMPLOYEE but also those of any descendants.

Objects belonging to an environment
The objectsbelonging to an environment env are defined as
follows.
1 • Any persistent object ofenv belongs toenv.

2 • Any object created whileenv is open belongs toenv.

3 • Any dependent of an object belonging toenv belongs toenv.

4 • No object belongs toenv other than through rules 1, 2 and 3.

employee_count:= env.count(some_employee)

some_employee: EMPLOYEE;

...

create some_employee
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As a consequence, you may usecountto find out about the total number
of objects in an environment: just use as argument a direct instance of
ANY.

Functioncountdoes not count sub-objects, only "outermost" objects.
For examplecount applied to the figure which served to illustrate the
notion of sub-object will take only two objects into consideration (O1 and
O2).

37.12 STORING ENVIRONMENTS

You may store the persistent objects of an environment into a file, and
retrieve the objects of a previously stored environment.

For both storage and retrieval, a file must have been associated with the
environment; it will be used as target for storage, and as source for retrieval.

Use procedureset_file to associate a file with an environment. For
example:

Here f must be attached to an instance of classFILE from the Kernel
Library. There must be a file associated withf, and it must have been
opened in the appropriate read or write mode.

To store the persistent objects of an environment into the file that has
been associated with it, you may use a call of the form:

This is anexplicit store operation. It is also possible to prescribe an
automatic store. By executing one or both of the calls

you ensure that session termination (normal termination in the first case,
abnormal termination in the second) will automatically result in all the
environment’s objects being stored in the associated file.

This is a way to guarantee that all the objects of a session, or a selection
of these objects (as captured by an environment) will be available for the
next session.

env.set_file (f)

env.store

env.store_on_end

env.store_on_failure

See chapter19 on
instances and direct
instances.

See the figure page
====,belonging to the
discussion of complex
objects and their sub-
objects in19.6.

ClassFILEisdescribed
in "Eiffel: The Librar-
ies".



§37.13  RETRIEVING AN ENVIRONMENT 955
In some cases, you may want to use different files for normal and
abnormal termination. Only one file may be associated with a given
environment at any given time (as the result of the last call toset_file). But
you may have two environments sharing the same objects. If bothenv1and
env2 are created environments, executing the call

ensures thatenv1andenv2will contain exactly the same objects under the
same keys. The other properties of these environments, such as the
associated files, remain separate, so that you may obtain the effect of
different normal and abnormal external storage as follows:

37.13 RETRIEVING AN ENVIRONMENT

To make the persistent objects of a previously stored environment
accessible in the same or another session, use procedureretrieve. For
example:

This will load the recorded objects from the file associated withenv. If
this operation does not succeed,error will be set toNot_retrieved.

env1.share (env2)

normal_env, failure_env: ENVIRONMENT;

...

create normal_env.make; create failure_env.make;

failure_env.share (normal_env);

normal_env.set_file (normal_file);

failure_env.set_file (failure_file);
normal_env.store_on_end;
failure_env.store_on_failure;

...

normal_env.open;

...

-- Both environments will contain the same persistent objects.

-- On normal termination, these objects will be stored in
normal_file;

-- On abnormal termination, they will be stored infailure_file.

env.retrieve

The effect of env2.share
(env1) is identical.
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Functionitem is then available to retrieve individual objects from the
environment, using the keys under which they were recorded. The method
was shown above.

37.14 AN ENVIRONMENT EXAMPLE

The following example shows a typical use of environments.C1andC2are
arbitrary reference types.

See page====on how
to use ‘item’ to access
retrieved objects.
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A first session creates a number of objects and records some of them
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under some keys, ensuring that they will persist with the environment.
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env: ENVIRONMENT;

a: C1;

b: C2;

ext_file: FILE;

-- Create an environment

create env.make;

-- Create a file to be associated
with the environment

create ext_file.make ("SESSION1");

ext_file.open_write;

-- Associate file with environment

env.set_file (ext_file);

-- Request that environment be
automatically stored

-- on normal termination.

env.store_on_end;

-- Request that environment be
automatically stored

-- on abnormal termination.

env.store_on_failure;

...

-- Make the objects associated
with a andb,

-- as well as any of their
dependents,

-- persistent in env, with
appropriate keys.

env.put (a, "a_key");

env.put (b, "b_key");

-- The following instructions may
of course modify

-- the objects associated witha, b
and

-- their dependents

...
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The same session (if an explicitstore has been executed) or another
(executed any time later) may now retrieve the stored objects:

37.15 CLASSENVIRONMENT

The precise specification ofENVIRONMENT’s exported features, as given
by the flat-short form of the class, follows.

... The environment may be stored
explicitly through

... env.store

... If not, it will be stored
automatically on session termination.

env: ENVIRONMENT;

a: C1;

b: C2;

ext_file: FILE;

create env.make;

create ext_file.make ("SESSION1");

ext_file.open_read;

env.set_file (ext_file);

-- Load the previously stored
environment.

env.retrieve;

-- Individual objects may now be
accessed through their keys.

-- Their dependents, if any, have
also been loaded.

a ?=env.item ("a_key");

b ?=env.item ("b_key")

...

class interface ENVIRONMENT
creation procedures

make

-- Create a new environment.
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exported features

change_key (old_key, new_key:
STRING)

-- Record under new_key the
object previously

-- recorded underold_key; if no
such object, set

-- error to Not_found.

require

keys_not_void: old_key \= Void
and new_key /= Void

ensure

ok or (error = Not_found) or
(error = conflict)

close

-- Make current environment be no
longer active; if

-- it was.

ensure

closed: not is_open

Conflict: INTEGER is 1

count (obj: ANY): INTEGER

-- Number of objects in the
environment whose type conforms

-- to the type of the object attached
to obj.

-- 0 if the value ofobj is void.

current_keys: ARRAY [STRING]

-- Array of keys in use, starting
from 1

error: INTEGER

-- Code of last error produced by a
routine of the class

force (obj: ANY; key: STRING)

-- Record obj under key in this
environment:

-- Make obj and its dependents

persistent.

-- If keyis already in use, lose the
previous association.

require
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has (key: STRING): BOOLEAN

-- Is key in use?

require

key_not_void: key /= Void

is_open: BOOLEAN

-- Is current environment open?

item (key: STRING): ANY

-- Object recorded underkey.

-- If no suchkey, void value and
error set toNot_found.

require

key_not_void: key /= Void

ensure

(Result= Void) implies (not has
(key))

No_error: INTEGERis 2

no_store_on_end

-- Disable automatic storage on
normal termination.

-- This is the default.

no_store_on_failure

-- Disable automatic storage on
abnormal termination.

-- This is the default.

Not_found: INTEGERis 3

Not_retrieved: INTEGERis 4

Not_stored: INTEGERis 5

ok: BOOLEAN

-- Did last retrieve, store, put or
remove operation succeed?

ensure

Result = (error = no_error)

open

-- Close previous environment if
any, and make current

-- environment the active one:
-- all objects created from now on,
until next call toopen or close,

-- will belong with their
dependents to this environment.
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ensure

open: is_open

persistent_count (t: STRING):
INTEGER

-- Number of persistent objects in the environment whose
type conforms

-- to the type of the object attached
to obj.

-- 0 if the value ofobj is void

put (obj: ANY; key: STRING)

-- Record obj under key in this
environment:

-- Make obj and its dependents
persistent.

-- If keyis already in use, seterror
to Conflict.

require

key_not_void: key /= Void

ensure

okor (error = conflict)

remove (key: STRING)

-- Dissociate key from object
recorded under.

-- If no such object, set error to
Not_found.

require

key_not_void: key /=Void

ensure

okor (error = Not_found)

retrieve

-- Load the environment’s
persistent objects

-- from the associated external file.

ensure

okor (error = Not_retrieved)

set_file (f: FILE)
-- Make f the file where
environment will be stored

-- if requested explicitly or
implicitly.

i
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share (other: like Current)

-- Make Current andother share
the same persistent objects.

store

-- Store the environment’s
persistent objects

-- into the associated external file.

ensure

okor (error = Not_stored)

store_on_end

-- Enable automatic storage on
normal termination.

-- This is not the default.

store_on_failure

-- Enable automatic storage on
abnormal termination.

-- This is not the default.

end interface -- class
ENVIRONMENT
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Input and output (not done)
38.1 OVERVIEW

ClassSTANDARD_FILESfrom the Kernel Library offers a set of simple
but useful input and output facilities.

Another class,FILE, provides much more extensive file handling
operations, and the original implementation ofSTANDARD_FILESrelied
on FILE. By its very nature, however,FILE depends on the operating
system, and its original version is closely patterned after Unix file handling
mechanisms. For this reason, no further description ofFILE appears in this
book; "Eiffel: The Libraries" presentsFILE in detail.

This chapter explains how to perform simple input and output using the
facilities ofANY andSTANDARD_FILES.

38.2 PURPOSE OF THE CLASS

If all you need is to print a value using the standard output format, you will
not even needSTANDARD_FILES: procedureprint from class ANY,
automatically present in every class, provides this facility; for example:

A call print (x) outputs on the standard output file the value ofout (x),
where functionout yields a printable version of any object. You may
redefine this function in a class to yield a specific form of output.

ClassSTANDARD_FILESprovides some further output mechanisms,
still elementary but more varied, as well as basic input features.

print ("Today’s temperature is");

print (temperature);

print ('%N')

See the bibliography of
appendix C for the
exact reference to
"Eiffel: The Libraries".

See35.2, page 928,
about ‘print’ and ‘out’.

%N is the new-line
character. See32.14,
page 894, particularly
the table of special
charactersonpage423.
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The most common way to use the facilities ofSTANDARD_FILESis
through featureio, present in classANYand hence in all developer-defined
classes (unless you remove it explicitly). Featureio is a once function of
typeSTANDARD_FILES. Any class may perform simple input and output
by callingSTANDARD_FILESfeatures onio, as in the following variant of
the above extract:

Among the features ofSTANDARD_FILESare output procedures such
asputstring, putint andputreal, which apply to the standard output, and
input features such asreadintandlastint, used according to the conventions
explained in the next section and applying to the standard input.

The class also offers featuresinput, outputanderror, all of typeFILE,
giving access to the standard input, standard output and standard error files.
These features are implemented as "once" functions; the first call to any of
them opens the corresponding files.

Because of the presence of featureio in classANY, any classC is a direct
client of STANDARD_FILES. You may prefer to avoid dot notation for
calls to input or output features, as inio.some_feature, by makingC an heir
to STANDARD_FILES; this enables you to write such calls as just
some_feature. Some object-oriented purists shun such uses of inheritance,
but it’s really no more than a matter of taste.

38.3 INPUT TECHNIQUES

The input features ofSTANDARD_FILESobserve an important style
guideline of the Eiffel method: avoiding functions with side effects. This
means that to read an input element you must usually execute two calls:

• A procedure call, such asio.read_integeror io.read_real, to advance the
input cursor past the element.

• A call to a function or attribute, as inn := iolastint r n := io.last_real, to
return the value of the element read, with a result of the appropriate type
(INTEGERand REALin the examples).

Successive calls to a feature such asio.last_integeror io.last_realwill
yield the same value if they are not separated by calls to cursor-advancing
procedures.

io.putstring ("Today’s temperature is");

io.putstring (out (temperature)):

io.new_line

See chapter35on ANY;
35.2 presented ‘io’.

See"Object-Oriented
SoftwareConstruction"
on side effects in func-
tions.

The most obvious
implementation of
STANDARD_FILES
uses attributes rather
than functions for
‘lastint’and itsacolytes
(‘lastreal’, ‘last_real’,
‘laststring’, ‘lastchar’).
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To use procedures such asread_integerandread_real, you must know
in advance the types of the input elements to be read. In some cases, of
course, you do not have this information. Other mechanisms are available
for reading elements and determining their types on the fly; they are not
part of the Kernel Library, however, but are provided by the lexical analysis
classes of the  Lexical Library.

See"Eiffel: The Librar-
ies" about the Lexical
Library.
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38.4 CLASSSTANDARD_FILES

Here is the flat-short form ofSTANDARD_FILES.

-- Standard input and output.

class interface STANDARD_FILES
exported features

error: FILE

-- Standard error file

input: FILE

-- Standard input file

lastchar: CHARACTER

-- Last character read byreadchar

lastint: INTEGER

-- Last integer read byreadint

lastreal: REAL

-- Last real read byreadreal

laststring: STRING

-- Last string read byreadstring

new_line

-- Write line feed at end of default
output.

next_line

-- Move to next input line on
standard input.

output: FILE

-- Standard output file

putbool (b: BOOLEAN)

-- Write b at end of default output.

putchar (c: CHARACTER)

-- Write c at end of default output.

putint (i: INTEGER)

-- Write i at end of default output.
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putreal (r: REAL)

-- Write r at end of default output.

putstring (s: STRING

-- Write s at end of default output.

readchar

-- Read a new character from
standard input.

readint

-- Read a new integer from
standard input.

readline

-- Read a line from standard input.

readreal

-- Read a new real from standard
input.

readstring (nb_char: INTEGER)

-- Read a string of at mostnb_char
bound

-- characters from standard input.

readword

-- Read a new word from standard
input.

set_error_default

-- Use standard error as default
output.

set_output_default

-- Use standard output as default
output.

end interface -- class
STANDARD_FILES
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A.1 OVERVIEW

[This Overview is not part of the Standard.]

A.1.1 Purpose
To favor the interoperability between implementations of
Eiffel, it is necessary, along with a precise definition of
the language, to have a well-defined set of libraries
covering needs that are likely to arise in most
applications. This library is known as the Kernel Library.

A.1.2 Application
The present document defines a standard for the Kernel
Library. If an Eiffel implementation satisfies this
Standard — under the precise definition ofKernel
Compatibilitygiven in sectionA.3.2— it will be able to
handle properly any Eiffel system whose use of the
Kernel Library only assumes the library properties
defined in this Standard.

A.1.3 Process
The Eiffel Library standardization process is based on a
dynamic view which, in the spirit of Eiffel’s own
“feature obsolescence” mechanism, recognizes the need
to support evolution while preserving the technology
investment of Eiffel users. One of the consequences of
this dynamic view is to definevintagescorresponding to
successive improvements of the Standard. The present
document describesVintage 2005, valid for the calendar
years 2005-2006.

A.1.4 Copyright status
This Standard is appendixA of the bookEiffel: The
Languageby Bertrand Meyer (Prentice Hall, 2002) and
the copyright belongs to the author. Electronic or paper
reproduction of this Standard is permitted provided the
reproduction includes theentire text of the Standard,
including the present copyright notice and the mention
that the latest version, up-to-date with any error
corrections, may be found athttp://eiffel.com.

A.2 CONTENTS OF THIS STANDARD

A.2.1 Definition: this Standard

The Eiffel Kernel Library Standard, denoted in th
present document by the phrase “this Standard”, is m
up of the contents of sectionsA.2 to A.6 of the present
appendix, with the exception of elements appearing
black between square brackets […] which are comments.

[SectionA.1, and elements playing a pure typesettin
role such as page headers, are not part of this Standa

A.2.2 Scope of this Standard

This Standard defines a number of library-relat
conditions that an Eiffel implementation must satisf
These conditions affect a set of classes known as
kernel library. An implementation that satisfies th
conditions described in this Standard will be said to
kernel-compatible, a phrase that is abbreviated in th
Standard as just “compatible”.

[In other contexts it may be preferable to use the fu
phrase, since the compatibility of an Eiffe
implementation also involves other aspects, such
language compatibility.]

[The terms “compatibility” and “compatible” may be
felt to be less clear than “conformance” an
“conformant”. The former are used here, however, sin
talking about conformance might cause confusions w
the Eiffel notion of a type conforming to another.]

A.2.3 Other documents

The phraseEiffel: The Languageas used in this Standard
refers to the third edition of the bookEiffel: The
Language, Prentice Hall, 2000, ISBN 0-13-xxx-xxx-x.

For the purposes of this Standard, the definition of the Eif
language is the definition given byEiffel: The Language.

In case of contradictions between the libra
specifications given in this Standard and those of t
other chapters ofEiffel: The Language, this Standard
shall take precedence.

http://eiffel.com
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A.3 COMPATIBILITY CONDITIONS

A.3.1 Definitions

A.3.1.1 Required Classes

In this Standard, the phrase “Required Classes” denotes a
set of classes whose names are those listed in sectionA.4.

A.3.1.2 Required Flatshort Form

In this Standard, the phrase “Required Flatshort Forms”
denotes the flatshort forms given for the Required
Classes in sectionA.4.

A.3.1.3 Flatshort Compatibility

In this Standard, a class is said to be Flatshort-
Compatible with one of the short forms given in this
Standard if it satisfies the conditions given in section
A.3 of this Standard.

A.3.1.4 Required Ancestry Links

In this Standard, the expression “Required Ancestry
Links” denotes the inheritance links specified in section
A.5 of this Standard.

[The term “Ancestry” is used rather than “Inheritance”
because the required links may be implemented by
indirect rather than direct inheritance.]

A.3.2 Kernel compatibility
An Eiffel implementation will be said to be kernel-
compatible if and only if it includes a set of classes
satisfying the following five conditions:

A.3.2.1 • For each of the Required Classes, the
implementation includes a class with the same name.

A.3.2.1.1 • All the Required Ancestry Links are
present between these classes.

A.3.2.1.2 •The flatshort form of each one of these
classes is Flatshort-Compatible with the
corresponding Required Flatshort Form.

A.3.2.1.3 • All the dependents of the Required
Classes in the implementation are also included in
the implementation.

A.3.2.1.4 • None of the features appearing in the
Required Flatshort Forms appears in aRenameclause
of any of the implementation’s Required Classes.

[These conditions allow a kernel-compatible
implementation to include inheritance links other than
the ones described in this Standard; conditionA.3.2.1.3
indicates that for any such link the additional proper
ancestors must also be provided by the implementors,
since the dependents of a class include its parents.]

[Condition A.3.2.1.3guarantees that if a feature nam
appears in this Standard both in the Flatshort form o
Required Class and in the flatshort form of one of i
proper ancestors, it corresponds to the same feature o
a redefinition of it.]

A.3.3 Flatshort Conventions

A.3.3.1 Definition

In the process of assessing for Flatshort Compatibility
classC from a candidate implementation, the followin
ten conventions, which have been applied to t
Required Flatshort Forms as they appear in th
Standard, shall be applied:

A.3.3.1.1 •No feature shall be included unless it i
generally available (as defined inEiffel: The Language,
page211) or is a general creation procedure (as defin
in Eiffel: The Language, page550).

A.3.3.1.2 • The Creation clause of the flatshort
specification shall include the full specification of a
general creation procedures ofC.

A.3.3.1.3 •Any feature ofC not inherited fromANY
shall be included in one of theFeature clauses.

[As a consequence of the last two rules the specificat
of a creation procedure that is also generally export
will appear twice: in theCreation clause and in a
Featureclause. Also note that the “features of a clas
include inherited as well as immediate features, so th
all features inherited from an ancestor other thanANY
must appear in the flatshort form.]

A.3.3.1.4 •A featuref from ANYshall be included if
and only ifC redeclaresf.

A.3.3.1.5 • The header comment of any inherite
feature coming from a Required ClassA and having
the same name inC as inA shall end with a line of
the form:

-- (FromA.)

A.3.3.1.6 • The header comment of any inherite
feature coming from a Required ClassA and having
a name inC different from its namex in A shall end
with a line of the form:

-- (Fromx in A.)

[The comments defined in the last two rules a
applicable whether or notC redeclares the feature.]

A.3.3.1.7 •If deferred,Cshall appear asdeferred class.

A.3.3.1.8 • Any deferred feature ofC shall be
marked asdeferred.
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A.3.3.1.9 •In case of precondition redeclaration, the
successive preconditions shall appear as a single
Precondition clause, separated by semicolons.

A.3.3.1.10 •In case of postcondition redeclaration,
the successive preconditions shall appear as a single
Postcondition clause, separated byand then.

A.3.4 Flatshort Compatibility
A.3.4.1 Definition

A class appearing in an Eiffel implementation is said to
be Flatshort-Compatible with a class of the same name
listed in this Standard if and only if any difference that
may exist between its flatshort formic and the flatshort
form sc of the corresponding class as it appears in
section A.6, where both flatshort forms follow the
conventions of sectionA.3.3, belongs to one of the
following eleven categories:

A.3.4.1.1 •A feature that appears inic but not insc,
whoseHeader_commentincludes, as its last line, the
mention:

-- (Feature not in Kernel Library Standard.)

A.3.4.1.2 •An invariant clause that appears inic but
not insc.

A.3.4.1.3 •For a feature that appears in bothic andsc,
a postcondition clause that appears inic but not insc.

A.3.4.1.4 •For a feature that appears in bothic and
sc, a precondition inscthat implies the precondition
in ic, where the implication is readily provable using
rules of mathematical logic.

A.3.4.1.5 •For a feature that appears in bothic and
sc, a postcondition or invariant clause inic that
implies the corresponding clause insc, where the
implication is readily provable using rules of
mathematical logic.

A.3.4.1.6 •A difference between theTag_markof an
Assertion_clause in ic and its counterpart insc.

A.3.4.1.7 •For a feature that appears in bothic and
sc, an argument type insc that is different from the
corresponding type inic but conforms to it.

A.3.4.1.8 •For a feature that appears in bothic and
sc, a result type inic that is different from the
corresponding type insc but conforms to it.

A.3.4.1.9 •For a feature that appears in bothic and
sc, a line that appears in theHeader_commentof ic
but not in that ofsc.

A.3.4.1.10 •A Note_entrythat appears inic but not
in sc.

A.3.4.1.11 • A difference regarding the order in
which a feature appears inic and sc, the
Feature_clause to which it belongs, the
Header_commentof such aFeature_clause, or the
presence inic of a Feature_clausethat has no
counterpart insc.

[As a consequence of sectionA.3.4.1.11, the division of
classes into oneFeature_clauseor more, and the labels
of these clauses, appear in this document for the s
purpose of readability and ease of of reference, but
not part of this Standard.]
[The goal pursued by the preceding definition is to ma
sure that an Eiffel system that follows this Standard w
be correctly processed by any compatib
implementation, without limiting the implementors
freedom to provide more ambitious facilities.]

A.4 REQUIRED CLASSES

The Required Classes are the following thirty class
[ordered from the general to the specific, as in sectionA.6]:

A.4.1 •ANY [flatshort form in sectionA.6.1].

A.4.2 •TYPE[flatshort form in sectionA.6.2].

A.4.3•PART_COMPARABLE[flatshort form in section
A.6.3].

A.4.4•COMPARABLE[flatshort form in sectionA.6.4].

A.4.5 •HASHABLE[flatshort form in sectionA.6.5].

A.4.6 •NUMERIC[flatshort form in sectionA.6.6].

A.4.7 • INTERVAL[flatshort form in sectionA.6.7].

A.4.8 •BOOLEAN [flatshort form in section ].

A.4.9 •CHARACTER[flat short form in sectionA.6.9].

A.4.10 • INTEGER_GENERAL[flatshort form in
A.6.10].

A.4.11 •INTEGER[flatshort form in sectionA.6.11].

A.4.12•INTEGER_8[flatshort forminsectionA.6.12].

A.4.13•INTEGER_16[flatshort forminsectionA.6.13].

A.4.14•INTEGER_64[flatshort forminsectionA.6.14].

A.4.15 •REAL_GENERAL[flatshort form inA.6.15].

A.4.16 •REAL [flatshort form in sectionA.6.16].

A.4.17 •POINTER[flatshort form in sectionA.6.18].

A.4.18 •ARRAY [flatshort form in sectionA.6.19].

A.4.19•ANONYMOUS[flatshort forminsectionA.6.20].

A.4.20 •STRING[flatshort form in sectionA.6.21).

A.4.21 •STD_FILES[flatshort form in sectionA.6.22].

A.4.22 •FILE [flatshort form in sectionA.6.23].
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A.4.23 •STORABLE[flatshort form in sectionA.6.24].

A.4.24 •MEMORY[flatshort form insectionA.6.25].

A.4.25•EXCEPTIONS[flatshort forminsectionA.6.26].

A.4.26•ARGUMENTS[flatshort forminsectionA.6.27].

A.4.27 •PLATFORM[flatshort form in sectionA.6.28]

A.4.28•ONCE_MANAGER[flatshortforminsectionA.6.29].

A.4.29 •ROUTINE[flatshort form in sectionA.6.30].

A.4.30•PROCEDURE[flatshort forminsectionA.6.31].

A.4.31 •FUNCTION[flatshort form insectionA.6.32].

A.4.32 •PREDICATE[flatshort form in sectionA.6.33].

[The classes appear in this section and sectionA.6 in the
following order: universal classes; deferred classes for
basic classes; basic types; arrays and strings; agent and
introspection.]

A.5 REQUIRED ANCESTRY LINKS

The following constitute the required ancestry links
[ordered alphabetically, after the first rule, by the name
of the applicable descendant class]:

A.5.1 •Every Required Class is a descendant ofANY.

A.5.2 • COMPARABLEis a proper descendant of
PART_COMPARABLE.

A .5 .3 • TYPE i s a proper descendan t o f
PART_COMPARABLE.

A.5.4 • BOOLEAN is a proper descendant of
HASHABLE.

A.5.5 • CHARACTERis a proper descendant of
COMPARABLE.

A.5.6 • CHARACTERis a proper descendant of
HASHABLE.

A.5.7 •FILE is a proper descendant ofMEMORY.

A.5.8 • FUNCTION [ BASE, OPEN_ARGS,
RESULT_TYPE] is a proper descendant of
ROUTINE[BASE, OPEN_ARGS].

A.5.9 • INTEGER is a proper descendant of
INTEGER_GENERAL.

A.5.10 • INTEGER_8is a proper descendant of
INTEGER_GENERAL.

A.5.11 • INTEGER_16is a proper descendant of
INTEGER_GENERAL.

A.5.12 • INTEGER_64is a proper descendant of
INTEGER_GENERAL.

A.5.13 • INTEGER_GENERALis a proper
descendant ofCOMPARABLE.

A.5.14 • INTEGER_GENERALis a proper
descendant ofHASHABLE.

A.5.15 • INTEGER_GENERALis a proper
descendant ofNUMERIC.

A.5.16 • POINTER is a proper descendant o
HASHABLE.

A.5.17 • PREDICATE[BASE, OPEN_ARGS] is a
proper descendant ofFUNCTION [ BASE,
OPEN_ARGS, BOOLEAN].

A.5.18 • PROCEDURE[BASE, OPEN_ARGS] is a
proper descendant ofROUTINE[BASE,OPEN_ARGS].

A.5.19 •REAL_GENERALis a proper descendant o
COMPARABLE.

A.5.20 •REAL_GENERALis a proper descendant o
HASHABLE.

A.5.21 •REAL_GENERALis a proper descendant o
COMPARABLE.

A.5.22 • REAL i s a proper descendant o
REAL_GENERAL.

A.5.23•STRINGisaproperdescendantofCOMPARABLE.

A.5.24•STRINGisaproperdescendantofHASHABLE.

A.5.25 • STRING is a proper descendant o
HASHABLE.

A.5.26 •STRINGis a proper descendant ofHASHABLE.

["Proper descendant" is a transitive relation, so that f
example INTEGER_8 is a descendant of
COMPARABLE as a result ofA.5.10 andA.5.13.]

A.6 SHORT FORMS OF REQUIRED
CLASSES

The following pages (sectionsA.6.1 to A.6.33)contain
the short forms of the required classes as defined
preceding sections.
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A.6.1 CLASSANY

note

description: "[
Platform-independent universal properties. This
class is an ancestor to all developer-written classes.
]"

class interface

ANY

feature -- Access

type: TYPE[like Current]
-- Generating type of current object
-- (type of which it is a direct instance)

onces: ONCE_MANAGER
-- Handle on the state of the system’s once routines

feature -- Comparison

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equal
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
same_type:Resultimplies same_type(other)
symmetric:Result= other.is_equal (Current)
consistent:default_is_equal(other) implies Result

frozen default_is_equal(other: ? like Current):
BOOLEAN

-- Is other attached to an object of the same type as
-- current object, and field-by-field identical to it?

ensure
only_if_same_type:Resultimplies same_type(other)
symmetric:Resultimplies other.default_is_equal

(Current)
consistent:Resultimplies is_equal(other)

frozen is_deep_equal(other: ANY): BOOLEAN
-- Are some andother attached to isomorphic
-- structures made of objects considered equal?

ensure
shallow_implies_deep:is_equal (other) implies

Result
same_type: Resultimplies some.same_type

(other)
symmetric:Resultimplies deep_equal(other,

some)

frozen default_is_deep_equal (other: ? ANY):
BOOLEAN

-- Are some andotherattached to isomorphic
-- structures made of field-by-field equal objects?

ensure
shallow_implies_deep:default_is_equal(other)

implies Result
only_if_same_type:Resultimplies same_type(other)
symmetric:Resultimplies other.is_deep_equal

(Current)
feature {NONE} -- Duplication

frozen cloned: like Current
-- New object equal to current one.

ensure
equal: Result~ Current)

copy(other: like Current)
-- Update current object using fields of object
-- attached toother, so as to yield equal objects.

ensure
equal: Current~ other

frozen default_cloned: like Current
--Newobjec field-by-field identical tocurrentobjec

ensure
identical_result: default_is_equal(Result)

frozen default_copy(other: like Current)
-- Copy every field ofotheronto corresponding field
-- of current object.

require
type_identity: same_type(other)

ensure
made_identical: default_is_equal(other)

frozen deep_cloned: like Current
-- New object structure recursively duplicated from
-- current object

ensure
deep_equal: deep_is_equal(Result)

feature -- Basic operations
default_rescue

-- Handle exception if no Rescue clause.
-- (Default: do nothing.)

frozen do_nothing
-- Execute a null action.

feature -- Output
io: STD_FILES

-- Handle to standard file setup
out: STRING

-- New string containing terse printable
-- representation of current object

invariant
reflexive_default_equality: default_is_equal(Current)
reflexive_equality: Current~ Current

end
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A.6.2 CLASS TYPE

note

description: "[
Objects describing types conforming toG.
]"

class interface

TYPE[G]

feature -- Access

adaptedalias "[]" ( x: G) : G
-- Value ofx, adapted if necessary to typeG
-- through conformance or conversion

ensure
consistent:Result = x

class_name: STRING
-- Human-readable form of name of base class
-- (newly created result for every call)

default: G
-- Default value of this type

ensure
consistent:Result.type ~ Current

hash_code: INTEGER
-- Hash code value

ensure
good_hash_value: Result>= 0

name: STRING
-- Human-readable form of this type’s name
-- (newly created result for every call)

up_toalias ".." (other: TYPE[ANY]) :
INTERVAL[TYPE[ANY]]

-- Interval containing all typest in system such that
-- Current<= t and t <= other

feature -- Comparison

conforms_toalias "<" (other: TYPE[ANY]):
BOOLEAN

-- Does current type conform toother?

is_equal(other: TYPE[ANY]): BOOLEAN
-- Is current type identical toother?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
conformance_both_ways:

Result= conforms_to(other) and
other.conforms_to(Current)

yes_if_both_empty_regardless_of_bounds:
is_emptyand other.is_emptyimply Result

end
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A.6.3 CLASSPART_COMPARABLE

note

description: "[
Objects that may be compared according to a partial
order relation
]"

math: "The model is a partial order relation."

comment: [
"The basic operation is"<" (less than); others are
defined in terms of this operation andis_equal.
]"

deferred class interface

PART_COMPARABLE

feature -- Access

up_toalias ".." (other: PART_COMPARABLE) :
INTERVAL[PART_COMPARABLE]

-- Interval containing all valuest, if any, such that
-- Current<= t and t <= other

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Do current object andotherfigure in the relation?

deferred
ensure

definition:Result= (Current< other) or
(Current~ other) or (Current> other))

symmetric:Result= other.is_comparable(Current)

is_lessalias "<" (other: like Current): BOOLEAN
-- Is current object less thanother?

deferred
ensure

asymmetric:Resultimplies not (other< Current)
only_if_comparable:Resultimplies is_comparable

(other)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
ensure

definition: Result= (Current< other) or
(Current~ other)

only_if_comparable:Resultimplies is_comparable
(other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
ensure

definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?

ensure
definition: Result= (other< Current)
only_if_comparable:Resultimplies is_comparable

(other)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equa
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
symmetric:Resultimpliesother.is_equal (Current)
consistent:default_is_equal(other) implies Result

max(other: like Current): like Current
-- The greater of current object andother

require
comparable: is_comparable(other)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother

require
comparable: is_comparable(other)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.

require
comparable: is_comparable(other)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller_negative: (Result= –1) = (Current< other)
greater_positive: (Result= 1) = (Current> other)

invariant

irreflexive_comparison:not (Current< Current)

end



ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.4978
A.6.4 CLASS COMPARABLE

note

description: "[
Objects such that any two can be compared through
to a total order relation
]"

math: "The model is a total order relation."

comment: [
"The basic operation is"<" (less than); others are
defined in terms of this operation andis_equal.
]"

deferred class interface

COMPARABLE

eature-- Access

up_toalias ".." (other: COMPARABLE) :
INTERVAL[COMPARABLE]

-- Interval containing all valuest, if any, such that
-- Current<= t and t <= other
-- Empty ifCurrent> other

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Do current object andotherfigure in the relation?
-- (FromPART_COMPARABLE); here lways true
-- for a total order)

ensure
total_order:Result= True

is_lessalias "<" (other: like Current): BOOLEAN
-- Is current object less thanother?

deferred
ensure

asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
ensure

definition: Result= ((Current< other) or
(Current~ other))

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
ensure

definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?

ensure
definition: Result= (other< Current)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object considered equal
-- to current object?
--Theobjectcomparisonoperator~reliesonthisfunction.

ensure
symmetric:Resultimplies other. is_equal(Current)
consistent:default_is_equal(other) implies Result
trichotomy:Result= (not (Current< other) and not

(other< Current))

max(other: like Current): like Current
-- The greater of current object andother

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current): INTEGER
-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller_negative: (Result= –1) = (Current< other)
greater_positive: (Result= 1) = (Current> other)

invariant

irreflexive_comparison:not (Current< Current)

end
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A.6.5 CLASSHASHABLE

note

description: "[
Values that may be hashed into an integer index, for
use as keys in hash tables
]"

deferred class interface

HASHABLE

feature -- Access

hash_code: INTEGER
-- Hash code value

deferred
ensure

good_hash_value: Result>= 0

end
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A.6.6 CLASSNUMERIC

note

description: "[
Objects to which numerical operations are applicable
]"

math: "The model is a commutative ring."

deferred class interface

NUMERIC

feature -- Access

one:like Current
-- Neutral element for"∗" and"/"

deferred

zero:like Current
-- Neutral element for"+" and"–"

deferred

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?

deferred

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?

deferred

feature -- Basic operations

plusalias "+" (other: like Current): like Current
-- Sum withother(commutative).

deferred
ensure

commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother

deferred
ensure

consistent: Result+ other = Current

productalias "∗" (other: like Current): like Current
-- Product byother

deferred

dividedalias "/" (other: like Current): like Current
-- Division byother

require
good_divisor:divisible(other)

deferred

poweralias " "̂ (other: NUMERIC): NUMERIC
-- Current object to the powerother

require
good_exponent:exponentiable(other)

deferred

identityalias "+": like Current
-- Unary plus

deferred

negatedalias "–": like Current
-- Unary minus

deferred
invariant

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

end
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A.6.7 CLASS INTERVAL

note

description: "[
Sets of values, from a partially or totally
ordered setG, all between two given bounds
]"

class interface

INTERVAL[G –> PART_COMPARABLE]

create

make(l, u: G)
-- Set bounds tol andu;make interval empty ifl > u.

require
comparable:l.is_comparable(u)

ensure
lower_set: lower= l
lower_set: upper= u

feature -- Initialization

make(l, u: G)
-- Set bounds tol andu; make interval empty ifl > u.

require
comparable:l.is_comparable(u)

ensure
lower_set: lower= l
lower_set: upper= u

feature -- Access

lower: G
-- Lower bound

upper: G
-- Upper bound

feature -- Comparison

is_comparable" (other: like Current): BOOLEAN
-- Is either one of current interval andother
-- strictly contained in the other?

ensure
definition:Result= (Current< other) or

((Current~ other)) or (Current> other)

is_subintervalalias "<" (other: like Current):
BOOLEAN

-- Is current interval strictly included inother?
deferred
ensure

definition:Result= lower> other.lowerand upper
< other.upper

is_superintervalalias ">" (other: like Current):
BOOLEAN

-- Does current interval strictly includeother?
ensure

definition: Result= (other< Current)

… OTHER COMPARISON FEATURES
AS IN CLASS PART_COMPARABLE …

feature -- Status report

is_empty: BOOLEAN
-- Does interval contain no values?

invariant

consistent:lower.is_comparable(upper)

empty_if_no_values: is_empty= (lower> upper)

end
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A.6.8 CLASS BOOLEAN

note

description: "Truth values with boolean operations"

expanded class interface

BOOLEAN

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Basic operations

conjunctedalias "and" (other: BOOLEAN):
BOOLEAN

-- Boolean conjunction withother

ensure
de_morgan: Result= not (not Currentor (not

other))
commutative:Result= (otherand Current)
consistent_with_semi_strict:Resultimplies

(Currentand thenother)

conjuncted_semistrictalias "and then" (other:
BOOLEAN): BOOLEAN

-- Boolean semi-strict conjunction withother

ensure
de_morgan:Result= not (not Currentor else(not

other))

implicationalias "implies" (other: BOOLEAN):
BOOLEAN

-- Boolean implication ofother
-- (semi-strict)

ensure
definition: Result= (not Currentor elseother)

negatedalias "not": BOOLEAN
-- Negation.

disjunctedalias "or" (other: BOOLEAN): BOOLEAN
-- Boolean disjunction withother

ensure
de_morgan: Result= not (not Currentand (not

other))
commutative:Result= (otheror Current)
consistent_with_semi_strict:Resultimplies

(Currentor elseother)

disjuncted_semistrictalias "or else" (other:
BOOLEAN): BOOLEAN

-- Boolean semi-strict disjunction withother
ensure

de_morgan: Result= not (not Currentand then
(not other))

disjuncted_exclusivealias "xor" (other: BOOLEAN):
BOOLEAN

-- Boolean exclusive or withother
ensure

definition: Result= ((Currentor other) and not
(Currentand other))

feature -- Output

out: STRING
-- Printable representation of boolean

invariant

involutive_negation:Current~ (not (not Current))

non_contradiction:not (Currentand (not Current))

excluded_middle:Currentor (not Current)

end
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A.6.9 CLASSCHARACTER

note

description: "[
Characters, with comparison operations and an
ASCII code
]"

expanded class interface

CHARACTER

feature -- Access

code: INTEGER
-- Associated integer value

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

up_toalias ".." (other: CHARACTER) :
INTERVAL[CHARACTER]

-- Interval containing all charactersc, if any, such that
-- Current<= c and c <= other
-- Empty ifCurrent> other

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current character?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other:like Current):
BOOLEAN

-- Is current character less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Output

out: STRING
-- Printable representation of character
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

end
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A.6.10 CLASS INTEGER_GENERAL

note

description: "Integer values of set size"

class interface

INTEGER_GENERAL

create

make(b: INTEGER)
-- Initialize with bit sizeb.
-- (No effect on expanded targets.)

require
positive:b > 0

ensure
bit_size_set: bit_size= b

default_create
-- Initialize with default bit size: 32.

ensure
bit_size_set: bit_size= Default_bit_size

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother; do not lose any precision.

ensure
bit_size_set: bit_size= Default_bit_size

feature -- Access

bit_size: INTEGER
-- Number of bits in representation

Default_bit_size: INTEGER
-- Number of bits in representation

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

one: like Current
-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure
value:Result= 1

sign: INTEGER
-- Sign value (0, –1 or 1)

ensure
three_way:Result= three_way_comparison(zero)

up_toalias ".." (other: INTEGER_GENERAL) :
INTERVAL[INTEGER_GENERAL]

-- Interval containing all integersi, if any, such that
-- Current<= i and i <= other
-- Empty ifCurrent> other

zero: like Current
-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure
value:Result= 0

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current integer?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)
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three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= 1) = Current< other
greater_positive: (Result= –1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

ensure
value:Result= (other/= 0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?
-- (FromNUMERIC.)

ensure
safe_values: (other.conforms_to(Current) or

(other.conforms_to(0.0) and (Current>= 0)))
implies Result

bit_one(n: INTEGER): BOOLEAN
-- Is n-th bit (from left, in binary representation)
-- a one?

require
at_most_size:n <= bit_size
at_least_one:n >= 1

feature --Element change

bit_shift(n: INTEGER): like Current
-- Bit-shift n positions, to right if positive,
-- left otherwise.

require
at_most_size:n <= bit_size
at_least_minus_size:n >= –size

bit_shift_left(n: INTEGER): like Current
-- Bit-shift n positions to left.

require
non_negative:n >= 0
at_most_size:n <= bit_size

bit_shift_right(n: INTEGER): like Current
-- Bit-shift n positions to right.

require
non_negative:n >= 0
at_most_size:n <= bit_size

feature -- Basic operations

abs:like Current
-- Absolute value

ensure
non_negative:Result>= 0
same_absolute_value: (Result= Current) or (Result

= –Current)

productalias "∗" (other: like Current): like Current
-- Product byother
-- (FromNUMERIC.)

plusalias "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

ensure
commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

ensure
consistent: Result+ other = Current

dividedalias "/" (other: like Current): REAL
-- Division byother

require
good_divisor:divisible(other)

quotientalias "//" (other: like Current): like Current
-- Integer division of Current byother
-- (From"/" in NUMERIC.)

require
good_divisor:divisible(other)

ensure
result_exists: divisible(other)

remainderalias "\\" (other: like Current): like Current
-- Remainder of integer division of Current byother

require
good_divisor:divisible(other)

poweralias " "̂ (other: NUMERIC): REAL
-- Integer power of Current byother
-- (FromNUMERIC.)

require
good_exponent:exponentiable(other)

identityalias "+": like Current
-- Unary plus
-- (FromNUMERIC.)

negatedalias "–": like Current
-- Unary minus
-- (FromNUMERIC.)

bit_and(i: like Current): like Current
-- Bitwise and withi.

bit_or (i: like Current): like Current
-- Bitwise or withi.
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bit_xor (i: like Current): like Current
-- Bitwise exclusive or withi.

bit_not:like Current
-- One’s complement.

feature -- Output

out: STRING
-- Printable representation of current object
-- (FromANY.)

invariant

bit_size_positive: bit_size> 0

default_bit_size_positive: default_bit_size> 0

irreflexive_comparison:not (Current< Current)

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

sign_times_abs:equal (sign∗ abs, Current)

end
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A.6.11 CLASSINTEGER

note

description: "32-bit integer values"

expanded class interface

INTEGER

create

default_create
-- Initialize with default bit size: 32.

ensure
bit_size_set: bit_size= 32

from_integerconvert (b: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 32

end
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A.6.12 CLASS INTEGER_8

note

description: "8-bit integer values"

expanded class interface

INTEGER_8

create

default_create
-- Initialize with default bit size: 8.

ensure
bit_size_set: bit_size= 8

from_integer(other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 8

end
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A.6.13 CLASS INTEGER_16

note

description: "16-bit integer values"

expanded class interface

INTEGER_16

create

default_create
-- Initialize with default bit size: 16.

ensure
bit_size_set: bit_size= 16

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 16

end
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A.6.14 CLASS INTEGER_64

note

description: "64-bit integer values"

expanded class interface

INTEGER_64

create

default_create
-- Initialize with default bit size: 64.

ensure
bit_size_set: bit_size= 64

from_integerconvert (other: INTEGER_GENERAL)
-- Initialize fromother, losing leftmost part if
-- other is of smaller bit size.

ensure
bit_size_set: bit_size= Default_bit_size

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSINTEGER_GENERAL…

invariant
… SAME INVARIANT CLAUSES
AS CLASSINTEGER_GENERAL, PLUS:

bit_size_definition: bit_size= 64

end
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A.6.15 CLASS REAL_GENERAL

note

description: "Real values, single precision"

expanded class interface

REAL

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

one: like Current
-- Neutral element for"∗" and"/"
-- (FromNUMERIC.)

ensure
value:Result= 1.0

sign: INTEGER
-- Sign value (0,–1 or 1)

ensure
three_way:Result= three_way_comparison(zero)

up_toalias ".." (other: REAL_GENERAL) :
INTERVAL[IREAL_GENERAL]

-- Interval containing all realsr, if any, such that
-- Current<= r and r <= other
Empty if Current> other

zero: like Current
-- Neutral element for"+" and"–"
-- (FromNUMERIC.)

ensure
value:Result= 0.0

feature -- Comparison

is_lessalias "<" (other: like Current): BOOLEAN
-- Is other greater than current real?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)

is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (Current< other) or

(Current~ other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Status report

divisible(other: like Current): BOOLEAN
-- May current object be divided byother?
-- (FromNUMERIC.)

ensure
not_exact_zero:Resultimplies (other/= 0.0)

exponentiable(other: NUMERIC): BOOLEAN
-- May current object be elevated to the powerother?
-- (FromNUMERIC.)

ensure
safe_values: (other.conforms_to(0) or

(other.conforms_to(Current) and (Current>=
0.0))) implies Result
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feature -- Conversion

ceiling: INTEGER
-- Smallest integral value no smaller than
-- current object

ensure
result_no_smaller:Result>= Current
close_enough:Result– Current < one

floor: INTEGER
-- Greatest integral value no greater than
-- current object

ensure
result_no_greater:Result<= Current
close_enough:Current– Result< one

rounded: INTEGER
-- Rounded integral value

ensure
definition:Result= sign∗ ((abs+ 0.5).floor)

truncated_to_integer: INTEGER
-- Integer part (same sign, largest absolute
-- value no greater than current object’s)

feature -- Basic operations

abs: like Current
-- Absolute value

ensure
non_negative:Result>= 0
same_absolute_value: (Result= Current) or (Result

= –Current)

productalias "∗" (other: like Current): like Current
-- Product byother
-- (FromNUMERIC.)

plusalias "+" (other: like Current): like Current
-- Sum withother
-- (FromNUMERIC.)

ensure
commutative:equal(Result, other+ Current)

minusalias "–" (other: like Current): like Current
-- Result of subtractingother
-- (FromNUMERIC.)

ensure
consistent: Result + other= Current

dividedalias "/" (other: like Current): like Current
-- Division byother
-- (FromNUMERIC.)

require
good_divisor:divisible(other)

poweralias " "̂ (other: NUMERIC): REAL
-- Current real to the powerother
-- (FromNUMERIC.)

require
good_exponent:exponentiable(other)

identityalias "+": like Current
-- Unary plus
-- (FromNUMERIC.)

negatedalias "–": like Current
-- Unary minus
-- (FromNUMERIC.)

feature -- Output

out: STRING
-- Printable representation of real value
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

neutral_addition:equal(Current+ zero, Current)

self_subtraction:equal(Current– Current, zero)

neutral_multiplication:equal(Current∗ one, Current)

self_division:divisible(Current) implies equal
(Current/ Current, one)

sign_times_abs:equal (sign∗abs, Current)

end
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A.6.16 CLASSREAL

note

description: "32-bit real values"

expanded class interface

REAL

feature
… SAME FEATURE SPECIFICATIONS
AS CLASSREAL_GENERAL…

end
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A.6.17 CLASS TYPED_POINTER
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A.6.18 CLASSPOINTER

note

description: "[
References to objects meant to be exchanged with
non-Eiffel software
]"

expanded class interface

POINTER

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

feature -- Basid operations

plusalias "+"  (offset: INTEGER): POINTER
-- Pointer to address at current position plus
-- offset bytes

feature -- Output

out: STRING
-- Printable representation of pointer value
-- (FromANY.)

end
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A.6.19 CLASS ARRAY

note

description: "[
Sequences of values, all of the same type or of a
conforming one, accessible through integer indices
in a contiguous interval
]"

class interface

ARRAY[G]

create

make(minindex, maxindex: INTEGER)
-- Allocate array; set index interval to
-- minindex.. maxindex; set all values to default.
-- (Make array empty ifminindex> maxindex.)

ensure
empty_if_bounds_dont_fit: (minindex> maxindex)

implies (count= 0)
bounds_set: (minindex<= maxindex) implies

((lower = minindex )and (upper = maxindex))

from_interval(int: INTERVAL [INTEGER])
-- Allocate array; set index interval toint;
-- set all values to default.
-- (Make array empty if interval is empty.)

ensure
empty_if_bounds_dont_fit: (int.is_empty) implies

(count= 0)
bounds_set:not (int.is_empty) implies

((lower = int.lower)and (upper = int.upper))

feature -- Access

itemalias "[]" assign "put" (i : INTEGER): G
-- Entry at indexi

require
good_key: valid_index(i)

feature -- Measurement

bounds: INTERVAL [INTEGER]
-- Integer interval for indices

count: INTEGER
-- Number of available indices

lower: INTEGER
-- Minimum index

upper: INTEGER
-- Maximum index

feature -- Status report

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the array?

feature -- Element change

force(v: like item; i : INTEGER)
-- Assign itemv to i-th entry.
-- Always applicable: resize the array ifi falls out of
-- currently defined bounds; preserve existing item

ensure
inserted: item(i) = v
higher_count: count>= old count

put (v: like item; i : INTEGER)
-- Replacei-th entry, if in index interval, byv.

require
good_key: valid_index(i)

ensure
inserted: item(i) = v

feature -- Resizing

resize(minindex, maxindex: INTEGER)
-- Rearrange array so that it can accommodate
-- indices down tominindex and up tomaxindex.
-- Do not lose any previously entered item.

require
good_indices: minindex<= maxindex

invariant

consistent_size: count= upper– lower+ 1

non_negative_count: count>= 0

interval_consistent: bounds~ lower..upper

end
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A.6.20 CLASSANONYMOUS

note

description: "[
Tuples: finite sequences of values, each of a specified
type
]"

class interface

ANONYMOUS

feature -- Access

item: ANY

-- i-th element of tuple

require

good_key: valid_index(i)

hash_code: INTEGER

-- Hash code value

-- (FromHASHABLE.)

ensure

good_hash_value: Result>= 0

feature -- Measurement

count: INTEGER

-- Minimum member of items in tuple

feature -- Status report

valid_index(i : INTEGER): BOOLEAN

-- Is i within the bounds of the array?

ensure

ok_if_between_one_and_count:
((i >= 1) and (i <= count)) impliesResult

feature -- Element change

put (v: ANY; i : INTEGER)

-- Replacei-th item byv.

require

good_key: valid_index(i)

ensure

replaced: item(i) = v

end
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A.6.21 CLASSSTRING

note

description: "[
Sequences of characters, accessible through integer
indices in a contiguous range.
]"

class interface

STRING

create

frozen make(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initializeastring-likeobject fromamanifest string.)

feature -- Initialization

from_c(c_string: POINTER)
-- Reset contents of string from contents ofc_string,
-- a string created by some external C function.

frozen remake(n: INTEGER)
-- Allocate space for at leastn characters.

require
non_negative_size: n >= 0

ensure
empty_string: count= 0

from_string(s: STRING)
-- Initialize from the characters ofs.
-- (Useful in proper descendants of classSTRING,
-- to initializeastring-likeobject fromamanifest string.)

feature -- Access

hash_code: INTEGER
-- Hash code value
-- (FromHASHABLE.)

ensure
good_hash_value: Result>= 0

index_of(c: CHARACTER; start: INTEGER):
INTEGER

-- Position of first occurrence ofc at or afterstart;
-- 0 if none.

require
start_large_enough: start>= 1
start_small_enough:start<= count

ensure
non_negative_result:Result>= 0
at_this_position:Result> 0 implies item(Result) = c
--none_before:Foreveryi instart..Result, item(i) /=c
-- zero_iff_absent:
-- (Result= 0)= Foreveryi in1..count, item(i) /=c

itemalias "[ ]" ( i : INTEGER): CHARACTER
-- Character at positioni

require
good_key: valid_index(i)

substring_index(other: STRING; start: INTEGER):
INTEGER

--Positionof firstoccurrenceofotheratorafterstart;
-- 0 if none.

up_toalias ".." (other: STRING) :
INTERVAL[STRING]

-- Interval containing all stringss, if any, such that
-- Current<= sand s<= other
-- Empty ifCurrent> other

feature -- Measurement

count: INTEGER
-- Actual number of characters making up the strin

occurrences(c: CHARACTER): INTEGER
-- Number of timesc appears in the string

ensure
non_negative_occurrences: Result>= 0

feature -- Comparison

is_equal(other: like Current): BOOLEAN
-- Is string made of same character sequence asother?
--Theobjectcomparisonoperator~reliesonthisfunction.

is_lessalias "<" (other: STRING): BOOLEAN
-- Is string lexicographically lower thanother?
-- (FromCOMPARABLE.)

ensure
asymmetric:Resultimplies not (other< Current)
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is_less_equalalias "<=" (other: like Current):
BOOLEAN

-- Is current object less than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition:Result= (Current< other) or (Current~

other)

is_greater_equalalias ">=" (other: like Current):
BOOLEAN

-- Is current object greater than or equal toother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other<= Current)

is_greateralias ">" (other: like Current): BOOLEAN
-- Is current object greater thanother?
-- (FromCOMPARABLE.)

ensure
definition: Result= (other< Current)

max(other: like Current): like Current)
-- The greater of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_smaller: (Current>=other) implies

(Result= Current)
other_if_smaller: (Current< other) implies (Result

= other)

min (other: like Current): like Current)
-- The smaller of current object andother
-- (FromCOMPARABLE.)

ensure
current_if_not_greater: (Current<= other) implies

(Result= Current)
other_if_greater: (Current> other) implies (Result

= other)

three_way_comparison(other: like Current):
INTEGER)

-- If current object equal toother, 0;
-- if smaller,–1; if greater, 1.
-- (FromCOMPARABLE.)

ensure
equal_zero: (Result= 0) = (Current~ other)
smaller: (Result= –1) = Current< other
greater_positive: (Result= 1) = Current> other

feature -- Status report

is_empty: BOOLEAN
-- Does string contain no characters?

valid_index(i : INTEGER): BOOLEAN
-- Is i within the bounds of the string?

feature -- Element change

append_boolean(b: BOOLEAN)
-- Append the string representation ofb at end.

append_character(c: CHARACTER)
-- Appendc at end.

ensure
item_inserted: item(count) = c
one_more_occurrence: occurrences(c) = old

(occurrences(c)) + 1
item_inserted: has(c)

append_integer(i : INTEGER)
-- Append the string representation ofi at end.

append_real(r : REAL)
-- Append the string representation ofr at end.

append_string(s: STRING)
-- Append a copy ofs at end.

ensure
new_count: count= old count+ s.count
-- appended: For everyi in 1..s.count,
-- item (old count+ i) = s. item (i)

fill (c: CHARACTER)
-- Replace every character withc.

ensure
-- allblank: For everyi in 1..count, item(i) = Blank

head(n: INTEGER)
-- Remove all characters except for the firstn;
-- do nothing ifn >= count.

require
non_negative_argument: n >= 0

ensure
new_count: count= n.min (old count)
-- first_kept: Foreveryi in 1..n, item(i) =old item(i)

insert(s: like Current; i : INTEGER)
-- Add s to the left of positioni.

require
index_small_enough: i <= count
index_large_enough: i > 0

ensure
new_count: count= old count+ s.count

insert_character(c: CHARACTER; i : INTEGER)
-- Add c to the left of positioni.

ensure
new_count: count= old count+ 1

left_adjust
-- Remove leading white space.

ensure
new_count: (count/= 0) implies (item(1) /= ’ ’ )
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put (c: CHARACTER; i : INTEGER)
-- Replace character at positioni by c.

require
good_key: valid_index(i)

ensure
insertion_done: item(i) = c

put_substring(s: like Current; start_pos, end_pos:
INTEGER)

-- Copy the characters ofs to positions
-- start_pos.. end_pos.

require
index_small_enough: end_pos<= count
order_respected: start_pos<= end_pos
index_large_enough: start_pos> 0

ensure
new_count:count= old count+ s.count–end_pos

+ start_pos– 1

right_adjust
-- Remove trailing white space.

ensure
new_count: (count/= 0) implies (item(count) /= ’ ’ )

tail (n: INTEGER)
-- Remove all characters except for the lastn;
-- do nothing ifn >= count.

require
non_negative_argument: n >= 0

ensure
new_count: count= n.min (old count)

feature -- Removal

remove(i : INTEGER)
-- Removei-th character.

require
index_small_enough: i <= count
index_large_enough: i > 0

ensure
new_count: count= old count– 1

wipe_out
-- Remove all characters.

ensure
empty_string: count= 0
wiped_out: is_empty

feature -- Resizing

resize(newsize: INTEGER)
-- Rearrange string so that it can accommodate
-- at leastnewsize characters.
-- Do not lose any previously entered character.

require
new_size_non_negative: newsize>= 0

feature -- Conversion

to_boolean: BOOLEAN
-- Boolean value;
-- "true" yieldstrue, "false" yieldsfalse
-- (case-insensitive)

to_integer: INTEGER
-- Integer value;
-- for example, when applied to"123", will yield 123

to_lower
-- Convert to lower case.

to_real: REAL
-- Real value;
-- forexample,whenapplied to"123.0",will yield123.0

to_upper
-- Convert to upper case.

feature -- Duplication

copy(other: like Current)
-- Reinitialize by copying the characters ofother.
-- (This is also used byclone.)
-- (FromANY.)

ensure
new_result_count: count= other.count
-- same_characters: For everyi in 1..count,
-- item(i) = other. item(i)

substring(n1, n2: INTEGER): like Current
-- Copy of substring containing all characters at indic
-- betweenn1 andn2

require
meaningful_origin: 1 <= n1
meaningful_interval: n1<= n2
meaningful_end: n2<= count

ensure
new_result_count: Result.count= n2– n1+ 1
-- original_characters: For everyi in 1..n2–n1,
-- Result. item (i) = item (n1+i–1)

feature -- Output

out: STRING
-- Printable representation
-- (FromANY.)

invariant

irreflexive_comparison:not (Current< Current)

empty_definition: is_empty= (count= 0)

non_negative_count: count>= 0

end
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A.6.22 CLASSSTD_FILES

note

description: "[
Commonly used input and output mechanisms. This
class may be used as either ancestor or supplier by
classes needing its facilities.
]"

class interface

STD_FILES

feature -- Access

default_output: ? FILE
-- Default output.

error: FILE
-- Standard error file

input: FILE
-- Standard input file

output: FILE
-- Standard output file

standard_default: FILE
-- default_output if not void,
-- otherwiseoutput.

feature -- Status report

last_character: CHARACTER
-- Last character read by read_character

last_integer: INTEGER
-- Last integer read by read_integer

last_real: REAL
-- Last real read by read_real

last_string: STRING
-- Last string read by read_line,
-- read_stream, or read_word

feature -- Element change

put_boolean(b: BOOLEAN)
-- Write b at end of default output.

put_character(c: CHARACTER)
-- Write c at end of default output.

put_integer(i : INTEGER)
-- Write i at end of default output.

put_new_line
-- Write line feed at end of default output.

put_real(r : REAL)
-- Write r at end of default output.

put_string(s: STRING)
-- Write s at end of default output.

set_error_default
-- Use standard error as default output.

set_output_default
-- Use standard output as default output.

feature -- Input

read_character
-- Read a new character from standard input.
-- Make result available inlast_character.

read_integer
-- Read a new integer from standard input.
-- Make result available inlast_integer.

read_line
-- Read a line from standard input.
-- Make result available inlast_string.
-- New line will be consumed but not part of
last_string.

read_real
-- Read a new real from standard input.
-- Make result available inlast_real.

read_stream(nb_char: INTEGER)
-- Read a string of at mostnb_charbound characters
-- from standard input.
-- Make result available inlast_string.

to_next_line
-- Move to next input line on standard input.

end
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A.6.23 CLASSFILE

note

description: "[
Files viewed as persistent sequences of characters
]"

class interface

FILE

create

make(fn: STRING)
-- Create file object withfn as file name.

require
string_not_empty:not fn. is_empty

ensure
file_named: name~ n
file_closed: is_closed

create_read_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for both reading and writing;
-- create it if it does not exist.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_append(fn: STRING)
-- Create file object withfn as file name
-- and open file in append-only mode.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_append: is_open_append

open_read(fn: STRING)
-- Create file object withfn as file name
-- and open file in read mode.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read

open_read_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for both reading and writing.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_write(fn: STRING)
-- Create file object withfn as file name
-- and open file for writing;
-- create it if it does not exist.

require
string_not_empty:not fn. is_empty

ensure
exists: exists
open_write: is_open_write

feature -- Access

name: STRING
-- File name

feature -- Measurement

count: INTEGER
-- Size in bytes (0 if no associated physical file)

feature -- Status report

is_empty: BOOLEAN
-- Is structure empty?

end_of_file: BOOLEAN
-- Has an EOF been detected?

require
opened:not is_closed

exists: BOOLEAN
-- Does physical file exist?

is_closed: BOOLEAN
-- Is file closed?

is_open_read: BOOLEAN
-- Is file open for reading?

is_open_write: BOOLEAN
-- Is file open for writing?

is_plain_text: BOOLEAN
-- Is file reserved for text (character sequences)?

is_readable: BOOLEAN
-- Is file readable?

require
handle_exists: exists
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is_writable: BOOLEAN
-- Is file writable?

require
handle_exists: exists

last_character: CHARACTER
-- Last character read byread_character

last_integer: INTEGER
-- Last integer read byread_integer

last_real: REAL
-- Last real read byread_real

last_string: STRING
-- Last string read by read_line,
-- read_stream, or read_word

feature -- Status setting

close
-- Close file.

require
medium_is_open:not is_closed

ensure
is_closed: is_closed

open_read
-- Open file in read-only mode.

require
is_closed: is_closed

ensure
exists:exists
open_read: is_open_read

open_read_append
-- Open file in read and write-at-end mode;
-- create it if it does not exist.

require
is_closed: is_closed

ensure
exists: exists
open_read: is_open_read
open_append: is_open_append

open_read_write
-- Open file in read and write mode.

require
is_closed: is_closed

ensure
exists: exists
open_read: is_open_read
open_write: is_open_write

open_write
-- Open file in write-only mode;
-- create it if it does not exist.

ensure
exists: exists
open_write: is_open_write

feature -- Cursor movement

to_next_line
-- Move to next input line.

require
readable: is_readable

feature -- Element change

change_name(new_name: STRING)
-- Change file name tonew_name

require
file_exists: exists

ensure
name_changed: name ~new_name

feature -- Removal

delete
-- Remove link with physical file; delete physical
-- file if no more link.

require
exists: exists

dispose
-- Ensure this medium is closed when
-- garbage-collected.

feature -- Input

read_character
-- Read a new character.
-- Make result available inlast_character.

require
readable: is_readable
--

require
readable: is_readable

read_integer
-- Read the ASCII representation of a new intege
-- from file. Make result available inlast_integer.

require
readable: is_readable

read_line
-- Read a string until new line or end of file.
-- Make result available inlaststring.
-- New line will be consumed but not part of
last_string.

require
readable: is_readable
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read_real
-- Read the ASCII representation of a new real
-- from file. Make result available inlast_real.

require
readable: is_readable

read_stream(nb_char: INTEGER)
-- Read a string of at mostnb_charbound characters
-- or until end of file.
-- Make result available inlast_string.

require
readable: is_readable

read_word
-- Read a new word from standard input.
-- Make result available inlast_string.

feature -- Output

put_boolean(b: BOOLEAN)
-- Write ASCII value ofb at current position.

require
extendible: extendible

put_character(c: CHARACTER)
-- Write c at current position.

require
extendible: extendible

put_integer(i : INTEGER)
-- Write ASCII value ofi at current position.

require
extendible: extendible

put_real(r : REAL)
-- Write ASCII value ofr at current position.

require
extendible: extendible

put_string(s: STRING)
-- Write s at current position.

require
extendible: extendible

invariant

name_not_empty:not name. is_empty

writable_if_extendible: extendibleimplies is_writable

end
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A.6.24 CLASSSTORABLE

note

description: "[
Objects that may be stored and retrieved along with
all their dependents
]"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

STORABLE

feature -- Access

retrieved(file: FILE): STORABLE
-- Retrieved object structure, from external
-- representation previously stored infile.
-- To access resulting object under correct type,
-- use assignment attempt.
-- Will raise an exception (codeRetrieve_exception)
-- if file content is not aSTORABLE structure.

require
file_exists: file.exists
file_is_open_read: file. is_open_read
file_not_plain_text:not file. is_plain_text

feature -- Element change

basic_store(file: FILE)
-- Produce onfile an external representation of entire
-- object structure reachable from current object.
-- Retrievable within current system only.

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

general_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for same platform
-- (machine architecture).

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

independent_store(file: FILE)
-- Produce onfile an external representation of the
-- entire object structure reachable from current
object.
-- Retrievable from other systems for the same o
other
-- platforms (machine architectures).

require
file_exists: file.exists
file_is_open_write: file. is_open_write
file_not_plain_text:not file. is_plain_text

end
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A.6.25 CLASSMEMORY

note

description: "[
Facilities for tuning up the garbage collection
mechanism
]"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

MEMORY

feature -- Status report

collecting: BOOLEAN
-- Is garbage collection enabled?

feature -- Status setting

collection_off
-- Disable garbage collection.

collection_on
-- Enable garbage collection.

feature -- Removal

dispose
--Action tobeexecuted justbeforegarbagecollection
-- reclaims an object.
-- Default version does nothing; redefine in descendants
-- to perform specific dispose actions. Those actions
-- should only take care of freeing external resources
-- theyshouldnotperformremotecallsonotherobjects
-- since these may also be dead and reclaimed.

full_collect
-- Force a full collection cycle if garbage
-- collection is enabled; do nothing otherwise.

end
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note

description: "[
Facilities for adapting the exception handling
mechanism
]"

usage: "[
Thisclass may be used as ancestor by classes needing
its facilities.
]"

class interface

EXCEPTIONS

feature -- Access

developer_exception_name: STRING
-- Name of last developer-raised exception

require
applicable: is_developer_exception

feature -- Access

Check_instruction: INTEGER
-- Exception code for violated check

Class_invariant: INTEGER
-- Exception code for violated class invariant

Incorrect_inspect_value: INTEGER
-- Exception code for inspect value which is not one
-- of the inspect constants, if there is no Else_part

Loop_invariant: INTEGER
-- Exception code for violated loop invariant

Loop_variant: INTEGER
-- Exception code for non-decreased loop variant

No_more_memory: INTEGER
-- Exception code for failed memory allocation

Postcondition: INTEGER
-- Exception code for violated postcondition

Precondition: INTEGER
-- Exception code for violated precondition

Routine_failure: INTEGER
-- Exception code for failed routine

Void_attached_to_expanded: INTEGER
-- Exception code for attachment of void value
-- to expanded entity

Void_call_target: INTEGER
-- Exception code for feature call on void reference

feature -- Status report

assertion_violation: BOOLEAN
-- Is last exception originally due to a violated
-- assertion or non-decreasing variant?

exception: INTEGER
-- Code of last exception that occurred

is_developer_exception: BOOLEAN
-- Is the last exception originally due to
-- a developer exception?

is_signal: BOOLEAN
-- Is last exception originally due to an external
-- event (operating system signal)?

feature -- Basic operations

die (code: INTEGER)
-- Terminate execution with exit statuscode,
-- without triggering an exception.

raise(name: STRING)
-- Raise a developer exception of namename.

end
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A.6.27 CLASSARGUMENTS

note

description: "Access to command-line arguments"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

ARGUMENTS

feature -- Access

argument(i : INTEGER): STRING
-- i-th argument of command that started system
execution
-- (the command name ifi = 0)

require
index_large_enough: i >= 0
index_small_enough: i <= argument_count

command_name: STRING
-- Name of command that started system execution

ensure
definition: Result= argument(0)

feature -- Measurement

argument_count: INTEGER
--Number ofargumentsgiven tocommand that started
-- system execution (command name does not count)

ensure
non_negative: Result>= 0

end
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A.6.28 CLASSPLATFORM

note

description: "Platform-dependent properties"

usage: "[
This class may be used as ancestor by classes needing
its facilities.
]"

class interface

PLATFORM

feature -- Access

Boolean_bits: INTEGER
-- Number of bits in a value of typeBOOLEAN

ensure
meaningful: Result>= 1

Character_bits: INTEGER
-- Number of bits in a value of typeCHARACTER

ensure
meaningful: Result>= 1
large_enough: 2 ^ Result>=

Maximum_character_code

Integer_bits: INTEGER
-- Number of bits in a value of typeINTEGER

ensure
meaningful: Result>= 1
large_enough:2 ^ Result>= Maximum_integer
large_enough_for_negative:2 ^ Result>= –

Minimum_integer

Maximum_character_code: INTEGER
-- Largest supported code forCHARACTER values

ensure
meaningful: Result>= 127

Maximum_integer: INTEGER
-- Largest supported value of typeINTEGER.

ensure
meaningful: Result>= 0

Minimum_character_code: INTEGER
-- Smallest supported code forCHARACTERvalues

ensure
meaningful: Result<= 0

Minimum_integer: INTEGER
-- Smallest supported value of typeINTEGER

ensure
meaningful: Result<= 0

Pointer_bits: INTEGER
-- Number of bits in a value of typePOINTER

ensure
meaningful: Result>= 1

Real_bits: INTEGER
-- Number of bits in a value of typeREAL

ensure
meaningful: Result>= 1

end
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A.6.29 CLASS ONCE_MANAGER

note

description: "[
Controller of keyed once routines
]"

usage: "[
See featureoncesin classANY.
]"

class interface

ONCE_MANAGER

feature -- Status report

fresh(key: STRING): BOOLEAN
-- Will the presence ofkey among a once routine’s
-- once keys cause execution of the routine’s body?

feature -- Element change

refresh(key: STRING)
-- Reset all once routines that usekey as once key.

ensure
refreshed: fresh(key)

refresh_all
-- Reset all once routines.

refresh_all_except(keys: ARRAY[STRING)]
-- Reset all once routines except those using
-- any of the items ofkeys as once keys.

refresh_some(keys: ARRAY[STRING)]
-- Reset all once routines that use any
-- of the items ofkeys as once keys.

end
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note

description: "[
Objects representing delayed calls to a routine,
with some operands possibly still open
]"

deferred class interface

ROUTINE[BASE_TYPE, OPEN_ARGS –>TUPLE]

feature -- Initialization

adapt(other: ROUTINE[ANY, OPEN_ARGS])
-- Initialize fromother.
-- Useful in descendants.

feature -- Access

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy routine’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy routine’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can routine be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated routine the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this routine?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same routine asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call routine with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call routine withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

deferred
end



ELKS: THE EIFFEL LIBRARY KERNEL STANDARD §A.6.311012
A.6.31 CLASS PROCEDURE

note

description: "[
Objects representing delayed calls to a procedure,
with some operands possibly still open
]"

comment: "[
Features are the same as those ofROUTINE,
with applymade effective, and no further
redefinition ofis_equalandcopy.
]"

class interface

PROCEDURE[BASE_TYPE, OPEN_ARGS –>
TUPLE]

feature -- Access

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

feature -- Status report

callable: BOOLEAN
-- Can procedure be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated procedure the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this procedure?

precondition(args: like operands) BOOLEAN
-- Do args satisfy procedure’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy procedure’s
-- postconditionfor args?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same procedure asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call procedure with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call procedure withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

end
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A.6.32 CLASSFUNCTION

note

description: "[
Objects representing delayed calls to a function,
with some operands possibly still open
]"

comment: "[
Features are the same as those ofROUTINE,
with applymade effective, and the addition
of last_result anditem.
]"

class interface

FUNCTION[BASE_TYPE,
OPEN_ARGS –>TUPLE, RESULT_TYPE]

feature -- Access

last_result: RESULT_TYPE
-- Result of last call, if any.

require
valid_operands:valid_operands(args)
callable:callable

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy function’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy function’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can function be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated function the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this function?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same function asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call function with operandsargs.

require
valid_operands:valid_operands(args)
callable:callable

apply is
-- Call function withoperands as last set.

require
valid_operands:valid_operands(operands)
callable:callable

item(args: like operands)
-- Result of calling function withargs as operands

require
valid_operands:valid_operands(operands)
callable:callable

ensure
set_by_call:Result= last_result

end
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A.6.33 CLASS PREDICATE

note

description: "[
Objects representing delayed calls to boolean-valued
function, with some operands possibly still open
]"

inheritance: "[
This class inherits (see sectionA.5.17) from

FUNCTION[BASE_TYPE, OPEN_ARGS,
BOOLEAN]

]"

comment: "[
Features are the same as those ofFUNCTION,
with RESULT_TYPEreplaced byBOOLEAN,
and no further redefinition ofis_equalandcopy.
]"

class interface

PREDICATE[BASE_TYPE, OPEN_ARGS –>TUPLE]

feature -- Access

last_result: RESULT_TYPE
-- Result of last call, if any.

require
valid_operands:valid_operands(args)
callable:callable

operands: OPEN_ARGS
-- Open operands

target: ANY
-- Target of call

open_operand_type(i: INTEGER): INTEGER
-- Type ofi-th open operand.

require
positive : i >= 1
within_bounds:i <= open_count

hash_code: INTEGER
-- Hash code value

precondition(args: like operands) BOOLEAN
-- Do args satisfy function’s precondition
-- in present state?

postcondition(args: like operands) BOOLEAN
-- Does current state satisfy function’s
-- postconditionfor args?

feature -- Status report

callable: BOOLEAN
-- Can function be called on current object?

is_equal (other: like Current): BOOLEAN
-- Is associated function the same as the one
-- associated withother?
--Theobjectcomparisonoperator~reliesonthisfunction.

valid_operands(args: OPEN_ARGS): BOOLEAN
-- Are args valid operands for this function?

feature -- Measurement

open_count: INTEGER
-- Number of open parameters.

feature -- Element change

set_operands(args: OPEN_ARGS)
-- Useargs as operands for next call.

require
valid_operands:valid_operands(args)

feature -- Duplication

copy(other: like Current)
-- Use same function asother.

feature -- Basic operations

call (args: OPEN_ARGS)
-- Call function with operandsargs.

require
valid_operands:valid_operands(args)

callable:callable

apply is
-- Call function withoperands as last set.

require
valid_operands:valid_operands(operands)

callable:callable

item(args: like operands)
-- Result of calling function withargs as operands

require
valid_operands:valid_operands(operands)

callable:callable

ensure
set_by_call:Result= last_result

end
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PART IV:  THE LACE CONTROL LANGUAGE
........................................
This fourth part of the book contains a single chapter devoted to the description of Lace
(Language for the Assembly of Classes in Eiffel), a simple Eiffel-like control language used
to construct actual executable systems out of Eiffel classes by specifying the files where Eiffel
classes reside, the compilationoptions to be used, the external (non-Eiffel) software elements
to be included, and any other control information that the compiler and other tools may need
to assemble a system from its components.
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Specifying systems in Lace(in progress)
B.1  OVERVIEW

As you start producing clusters of classes, you will expect the supporting
environment to provide language processing tools — compilers,
interpreters, documenters, browsers — to process these classes and
assemble them into systems.

These tools will need a specification of where to find the classes and
what to do with them. Such a specification is called anAssembly of
Classes in Eiffel, or Ace for short. This appendix presents a notation, the
Language for Assembling Classes in Eiffel, or Lace, for writing Aces.
Although Lace is separate from Eiffel, Eiffel environments must support it.

Two words of encouragement if you feel that after reaching page1017
of the description of Eiffel you should not have to learn yet another
language. First, Lace is very much Eiffel-like, so you’ll find yourself
treading familiar ground in this chapter. But more importantly, for anything
other than advanced uses of Eiffel you don’t need to study the details of
Lace — the way you would study a design or programming language —
since you may expect an Eiffel environment to provide an interactive tools
that lets you fill out your project’s specific needs, provides defaults for
everything else, and generates the Ace for you as a result. ISE Eiffel, for
example, provides a graphicalProject Wizard that does all this.

For a good understanding of what’s going on behind the scenes it is
useful to have a basic understanding of Lace. You can obtain it by reading
the basic Ace example of the next section. What comes after that is detailed
reference and may be skipped on first reading.

If you are familiar with Lace basics and simply need a reminder on some
details, you may find it profitable to use thecompleteexample of a later
section. You will find thecomplete Lace grammar at the end of this chapter.
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B.2  A SIMPLE EXAMPLE

Typical elements of an Ace include information about directories and files
containing the text of the system’s clusters and classes, compilation options
(assertion monitoring, debugging etc.) for the classes involved, name of the
root class (used to start off execution), location of non-Eiffel elements such
as external libraries, target file for the compilation’s output.

To help you get quickly a idea of the basic concepts of Lace, here is a
simple but typical Ace.

Although simple, this example includes the Lace facilities that suffice
for many practical Eiffel systems.

This describes a system called browser. The root of this system is a class
called EB. The text of EB is to be found in clusterbrowsing(described a
few lines below in the Ace); this mention of the root class’s cluster, in
parentheses, is optional if the entire system has only one class of the name
given, here EB.

Default compilation options for the classes of this system are: for
assertions, check postconditions (ensure clauses), which also implies
checking preconditions; do not trace execution; enable garbage collection
(collect); do not executedebug instructions.

These options are system-wide defaults; individual clusters may
override them through their owndefault clauses, as does clusterbrowsing.
Individual classes may also override the system and cluster defaults
through theoption clause.

system browserroot
EB (browsing)

default
assertions(ensure); trace (no)
collect (yes); debug (no)

cluster
"$INSTALLATION/library/support"
"$INSTALLATION/library/parsing"

browsing: "tilda/current/browser"
default

assertion(all)
option

debug(yes): LAYOUT, FUNCTIONS
end

end
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The Clusters part, beginning with thecluster Lace keyword
(reminiscent of thefeature keyword introducing a Features part in Eiffel),
defines the set of clusters; clusters, as youremember, are groups of classes,
and the system’s classes are collected from the classes of its clusters.

The specification of the first two clusters only gives directory names,
each written as aManifest_string. By default, the cluster consists of all
classes to be found in the files having names ending with.e in this
directory. Each one of these files may contain one or more classes. The.e
name convention is the default; we shall see below how to include files with
other names, or to exclude some.e files.

A Manifest_stringef

The first two clusters are elements of the Basic Libraries (support and
parsing). Their names use Unix-like conventions for environment variables
(such as$INSTALLATION) to facilitate using the same Ace on different
machines. Clearly, such conventions are operating-system-dependent.

The last cluster also has a directory name (this is always required),
preceded here by aCluster_name, browsing, and a colon. You will need to
include such aCluster_namewhenever other elements of the Ace refer to
the cluster: here, for example, the Root clause refers to clusterbrowsing
through itsCluster_name, to indicate that this is where the root class EB is.

For this cluster, the default assertion monitoring option, overriding the
default specified at the system level, isall (monitor everything).
Furthermore, thedebugoption is enabled for two classes of the cluster,
LAYOUT andFUNCTIONS.

This example is typical of Aces used to assemble and compile systems
without any advanced options.

B.3  ON THE ROLE OF LACE

Before showing the remaining details of Lace, it is important to ponder
briefly over the connection of this description to the rest of this book.

Lace support, it was mentioned above, is not a required element of an
Eiffel implementation. Why then talk about Lace at all as part of a
specification of the Eiffel language? There are two reasons, one
pedagogical and one practical.

The pedagogical reason is that since some Lace-like mechanisms, at
least elementary ones, will be necessary anyway to execute your software,
you would not get a full picture of Eiffel software development without
some understanding of possible assembly mechanisms.

← Chapter3 intro-
duced the structure of
systems and the notion
of cluster.
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the preceding two sections are probably sufficient to get a general idea
of the purpose of Lace, but the rest of this appendix will give more details
for those readers who are seriously interested. As mentioned already, these
details are not essential on first reading, hence theSHORTCUT sign which
signals the rest of this appendix as non-crucial material.

The practical reason for paying attention to Lace involvesportability ,
and should be of particular concern to authors of Eiffel implementations.

True, because of the variety of possible implementation platforms
(hardware, operating systems, user interfaces) and of possible
implementation techniques such as interpretation, compilation to machine
code, compilation to an intermediate assembly-like code such as C etc., one
may not guarantee total portability or enforce a fully general Lace standard.
For one thing, an implementation could altogether bypass text-based
descriptions such as those of Lace, in favor of interactive input of
compilation and assembly options (with a modern graphical or “point and
click” user interface); then it would have no need for a description
languagein the textual sense of this word, even though it will still provide
the Lace semantics — specification of compilation options, class text
location etc. — in some other way.

Even if system descriptions use a textual form, an individual
implementation may have non-portable characteristics, stemming for
example from the peculiarities of the file and directory system of the
underlying platform, or from specific optimization options provided by the
implementor.

Along with such non-portable aspects, however, certain facilities will be
needed in every implementation. For example, it is necessary to let
developers specify whether or not to monitor the assertions of any given
class at run time. Then everyone will benefit if all implementations using
text-based system descriptions rely on a common set of notations and
conventions. This does not guarantee full portability, but avoids unjustified
sources of non-portability.

The design of Lace is a result of these considerations. It suggests a
default notation for the standard components of system descriptions, while
leaving individual implementors the freedom to add platform-dependent or
implementation-specific facilities.

B.4  A COMPLETE EXAMPLE

For ease of reference (especially meant for those readers who already know
the basics of Lace but are coming back to this presentation for a quick and
informal reminder on the form of some clauses), here is a complete Ace
using most of the available possibilities. The various components are
explained in subsequent sections.
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Because it illustrates all the major Lace facilities, this Ace is more
complex than most usual ones, which tend to use the basic facilities
illustrated by the simple example on page

system browserroot
EB (browsing)

default
assertions(ensure)
trace (no)
collect (yes)
debug (no)

cluster
"$INSTALLATION/library/support"
basics: "$INSTALLATION/library/structures"
parsing: "$INSTALLATION/library/parsing"

browsing: "not/current/browser"
use

".lace"
include

"commands"
exclude

"g.t.e"
default

debug("level2"); debug("io_check")

option
assertion (all): CONSTANTS, FULL_TEXT
trace: FUNCTIONS, QUIT, RENAMED
debug(yes): LAYOUT, FUNCTIONS
debug("format"): FULL_TEXT, OUTPUT
debug("numerical_accuracy"): OUTPUT

visible
CONSTANTSas BROWSING_CONSTANTS
LAYOUT
EB

creation
initialize

export
execute, set_target, initialize

end
end
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B.5  BASIC CONVENTIONS

Let us now proceed to the details of Lace.

You should not have been too surprised by the syntax, which is Eiffel-
like. The syntax descriptions below use theconventions applied to Eiffel
throughout the rest of this book.

Comments, as in Eiffel, begin with two consecutive dashes-- and extend
to the end of the line.

The grammar of Lace also uses some of the same basic components as
Eiffel:

• Identifier, such asA_CLASS_NAME

• Manifest_string, such as"A STRING$"

• Integer_constant, such as–4562

As in Eiffel, letter case is not significant for identifiers. The recommended
standard is to use upper case for class names and lower case for everything
else. Letter case is also not significant for strings except when they refer to
outside elements such as file names, directory names or linker options;
such strings will be passed verbatim to outside tools (such as the operating
system or linker), which may or may not treat letter case as significant.

Lace has the following keywords, which you may not use as identifiers:

An important convention applied throughout the Lace syntax is that an
Identifier is syntactically legal wherever aManifest_string is, and
conversely. For this purpose, the grammar productions given below do not
refer directly to these two constructs, but use the construct Name, defined
as

external
Object: "object_name.o", "../basics.o",
"-ltermcap", "otherlib.a"
C: "previous.h", "/usr/$MACHINE/src/scree-.c"
Make: "../Clib/makefile"

generate
executable: "$INSTALLATION/bin"
C (yes): "$INSTALLATION/src/browser/package/eb.c"
Object(no): "$INSTALLATION/bin/browser"

end

adapt  all  as  check  cluster creation default end ensure

exclude  export  external  generate  ignore include invariant keep loop

no  option  require  rename  root system use visible yes

← Chapter2 intro-
duced the conventions
for syntax description.

← “IDENTIFIERS”,
32.12, page 891;
“MANIFEST
STRINGS”,29.8,page
794; “INTEGERS”,
32.16, page 899.
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As a consequence, if your system contains a class called CLUSTER, which
is not a valid Lace identifier since it conflicts with one of the keywords in
the above list, you may still refer to it in the Ace by using theManifest_
string "CLUSTER". Similarly, although you may give a simple file name
such asmy_file as an identifier, one which does not conform to Lace
identifier conventions, such as"tilda/directory/my_file", will have to be
expressed as a string.

For clarity, all the examples of this presentation use strings for file and
directory names.

A consistency condition applies to names used in an Ace: theCluster_
namemust be different for each cluster. It is valid, however, to use the same
identifier in two or more of the roles ofCluster_name, System_name,
Class_name.
ACE STRUCTURE

The structure of an Ace is given by the following grammar.

All clauses were present in the long example above; the earlier, shorter
example had all clauses except Externals and Generation.

The Defaults clause gives general options which apply to all classes in
the system, except where overridden by cluster defaults or options
specified for individual classes. It may also indicate options that apply to
the system as a whole; for example, the option

requests garbage collection to be turned on; this only makes sense for the
whole system. The precise form of options is explainedbelow.

The Clusters part lists individual clusters and the associated options.

The Externals clause gives information about any non-Eiffel software
element needed to assemble the system.

The Generation clause indicates where to store the output of system
assembly and compilation (executable module, object code, code in
another target language). By default the output will be produced in the
directory where the compilation command is executed.

Name =∆ Identifier | Manifest_string

collect (yes)

→ “SPECIFYING
OPTIONS”,  B.9,
page 1028.



SPECIFYING SYSTEMS IN LACE (IN PROGRESS) §B.61024
The order of these clauses should be easy to remember: first you give
the system a name (System) and express where it starts its execution
(Root); then you specify the options that apply across the board, except
where specifically overridden (Defaults); you list the Clusters that make up
the system’s universe; you indicate what else is needed, beyond Eiffel
clusters, to assemble the system (Externals); finally, you indicate where the
outcome of the assembly and compilation process must be generated
(Generation).

The next sections study the various clauses of an Ace.

B.6  BASICS OF CLUSTER CLAUSES

In an Ace containing aClusterspart, the keywordcluster will be followed
by zero or moreCluster_clause, each specifying the location in the file
system of one of the clusters of the universe, and the properties applying to
the classes of that cluster.

Let us examine the possibilities by writing aCluster_clausethrough
successive additions showing most of the available possibilities.

In its simplest form, aCluster_clauseis simply a Directory_name,
expressed as aManifest_string, as in:

On some operating systems, directories may be called differently (for
example “folders”) or replaced by some other mechanism.

If you must refer to the cluster in other clauses of the Ace, you will need
to give it aCluster_name. (This will be the name for Lace, and is distinct
from the cluster’s name for the operating system, which appears as the
Directory_name.) The Cluster_namewill precede theDirectory_name,
separated by a colon. If you want to call the above clusterbrowsing, you
will declare it as

An optionalCluster_propertiespart may then appear, specifying further
properties of the cluster. It may contain the following paragraphs, all
optional, in the order given:Use, Include, Exclude, Name_adaptation,
Defaults, Optionsand Visible. If present, theCluster_propertiespart is
terminated by anend (and, as with an Eiffel routine, a suggested comment
repeating the cluster name).

Here is the syntax of theClusters andCluster_properties parts:

"$INSTALLATION/library/browsing"

browsing: "$INSTALLATION/library/browsing"



§B.6  BASICS OF CLUSTER CLAUSES 1025
The following sections explore the variousCluster_properties
paragraphs. If, in the meantime, you fear that you might forget the order of
paragraphs in aCluster_propertiespart, remember the following simple
principle: the order is the natural one from the point of view of a language
processingtool that must process the cluster. For example, a compiler
which uses aCluster_propertiesspecification to compile the classes a
cluster, and has already obtained any default specifications associated with
the cluster (through theUse paragraph), will take the following actions:

As mentioned earlier, developers should produce an Ace by completing
a pre-filled template, rather than from scratch. The template will have the
paragraphs in the right order.

Find any files to take into account besides the default (Include).

Discard any unneeded files (Exclude).

To prepare for compiling the class texts, find out if any class name
appearing there actually refers to a class having another name (Name_
adaptation).

Find out the cluster-level compilation options (Defaults). and start
compilation of the cluster’s various classes.

When compiling a given class, find out if a specific option applies to it
(Options).

Having compiled classes, decide which ones of their properties, if any,
must be made available to other systems (Visible).

Clusters=∆  cluster {Cluster_clause";" …}

Cluster_clause=∆ [Cluster_tag]
Directory_name
[Cluster_properties]

Cluster_tag=∆ Cluster_name":"

Directory_name=∆ Name
Cluster_properties
[Use]
[Include]
[Exclude]
[Name_adaptation]
[Defaults]
[Options]
 [Visible]
end



SPECIFYING SYSTEMS IN LACE (IN PROGRESS) §B.71026
B.7  STORING PROPERTIES WITH A CLUSTER

TheCluster_properties part may begin with aUse paragraph, as in

to indicate that the cluster’s directory contains a “Use file” (here of
name .lace) containing the specification of some of the cluster’s
properties. The content of a Use file must itself be aCluster_properties
conforming to the Lace syntax. This makes it possible to specify cluster
properties (for example compilation options) in a file that remains stored
with the cluster itself.

In the above example, theCluster_propertiespart for clusterbrowsing
in the Ace has no further paragraphs beside Use, so all the cluster
properties forbrowsingwill be taken from the Use file. In the examples that
follow, however, the Ace will contain other paragraphs forbrowsing, such
as Include, Exclude or Options. In such a case the properties specified in
the Ace are added to those of the Use file, and they take precedence in case
of conflict.

It is a general Lace principle that whenever two comparable properties
may apply (here a property specified in a Use file, and a property specified
in the Ace after the Use paragraph) the one appearing last is added to the
first or, in case of conflict, overrides it.

Here is the syntax of the optionalUseparagraph of aCluster_properties
part:

TheCluster_propertiespart contained in aUsefile may itself contain aUse
paragraph.

B.8  EXCLUDING AND INCLUDING SOURCE FILES

The next two optionalCluster_propertiesparagraphs,IncludeandExclude,
serve to request the explicit inclusion or exclusion of specific source files.
Two important applications are overriding the default naming convention
for files containing class texts, and selecting non-standard versions of a
library class.

browsing: "~/current/browser"
use

"Ace.mswin"
end

Use =∆  useFile

File =∆ Name
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By default, when you list a cluster as part of a system, this includes all
the class texts contained in files having names of a certain standard form in
the cluster’s directory; normally this standard form isxxx.e for any string
xxx, although certain platforms may have different conventions (for
example if periods are not legal characters in file names). The rest of this
presentation assumes thexxx.e convention.
.lY
A xxx.e file may contain one or more classes, written consecutively. It is
often a good idea to have just one class per file, with thexxxpart of the file
name being the lower-case version of theClass_name; for example file
cursor.ewould contain the source text for class CURSOR. In some cases,
however, you may wish to group the texts of a few small and closely related
classes in a single file.

Thexxx.econvention or its equivalent is only the default. You may wish
to remove from consideration a file with a name of this form (because you
do not want to include the corresponding classes in your system, or simply
because the file contains non-Eiffel text); conversely, you may wish to add
to the cluster some classes residing in files having non-conforming names.
Theexclude andinclude clauses achieve this.

Here is a typical use, which excludes fileg.t.e and includes two files
with non-standard names:

browsing: "~/current/browser"
use

"Ace.mswin"
include

"commands"
"states"

exclude
"g.t.e"
end
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You may also apply theExcludefacility when you wish a class from a
certain cluster to override a class from another cluster. If you exclude a file
containing a class of name C, and another cluster contains a class with the
same name, this class will override the original C. This is useful in
particular if you wish to replace a library class by your own version.
Assume for example you want to use your own version ofANY, the
universal class serving as ancestor to all developer-defined classes. You
may achieve this by storing the new version in one of your clusters and
excluding the default one (assumed to be in fileany.e in clusterdefault):

Here is the syntax of the Include and Exclude optional paragraphs of a
Cluster_properties part:

B.9  SPECIFYING OPTIONS

Option values govern actions of the tools that will process the Ace; for
example they may affect compilation, interpretation or linking.

An option specification may appear in any of the following three Ace
components, all optional:

The Ace-levelDefaults clause.

The Defaults paragraph of aCluster_properties part.

The Options paragraph of aCluster_properties part.

In the last two cases, theCluster_propertiesmay be in the Ace itself or
in the Use file for one of its clusters.

If two or more conflicting values are given for an option, the last
overrides any preceding ones. This means that values in the Options
paragraph override cluster-levelDefaultsvalues, which override Ace-level
Defaults values, and that a value in any of these components overrides any
preceding value in the same component.

default: "/usr/local/Eiffel/library/kernel"
exclude

"any.e"
end

Include =∆  include File_list

Exclude =∆  excludeFile_list

File_list =∆ { File ";" …}

←Seechapter35about
classANY.
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Here is a specimen of an Ace-levelDefaults clause already shown
above:

This example enables options as indicated. It is also acceptable as a
cluster-levelDefaults, except for the presence ofcollect (enabling garbage
collection), which may only be given at the Ace-level since garbage
collection applies to an entire system.

To get an example of cluster-levelDefaultsandOptions, let us extend
ourbrowsingCluster_clause example:

TheDefaultsparagraph overrides any Ace-level default for thedebug
option by enabling execution ofDebug instructions in routines of classes
of the cluster, for theDebug_key level2 and theDebug_keyio_check.

The Options paragraph in turn overrides all precedingDefaults. The
syntactic structure of is the same as for aDefaultsparagraph, except that
here everyOption_tag(and optionalOption_valuein parentheses) may be
followed by a Target_list, beginning with a colon, which lists one or more
Name; these must be the names of classes in the cluster. In that case the
option given overrides the default only for the classes given.

If there is noTarget_list, the option applies to all classes in the cluster.

default
assertions(ensure); trace (no)
collect (yes); debug(no);

browsing: "~/current/browser"
use

"Ace.mswin"
include

"commands"
"states"

exclude
"g.t.e"
default

debug("level2");
debug("io_check")

option
assertion (all): CONSTANTS, FULL_TEXT;
trace: FUNCTIONS, QUIT, RENAMED;
debug(yes): LAYOUT, FUNCTIONS;
debug("format"): FULL_TEXT, OUTPUT;
debug("numerical_accuracy"): OUTPUT

end

← “THE DEBUG
INSTRUCTION”,
17.8, page 497.
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Here is the syntax of Options and Defaults paragraphs:

A Target_listmay only appear in an Options paragraph, not in aDefaults
paragraph. ASystem_tagmay only appear in an Ace-levelDefaultsclause.

The syntax permits only oneOption_value, not a list of values, after an
Option_tag. You may obtain the effect of multiple values by repeating the
sameOption_tagwith different values, as was done in the example with the
lines

which imply enabling the debug option for classOUTPUT both for the
Debug_keyformatand for theDebug_keynumerical_accuracy. In case of
conflict, as usual, the last value given overrides any preceding ones.

Defaults =∆  default {Option_clause";" …}

Options =∆  option {Option_clause";" …}

Option_clause=∆ Option_tag [Option_mark] [Target_
list]

Target_list=∆ ":" {Class_name"," …} ""  sup +

Option_tag=∆ Class_tag System_tag

System_tag=∆  collect Free_tag

Class_tag=∆  assertion | debug | optimize | trace |
Free_tag

Free_tag=∆ Name

Option_mark=∆ "(" Option_value")"

Option_value=∆ Standard_value | Class_value

Standard_value=∆  yes | no | all | Free_value

Class_value=∆  require | ensure | invariant  |
loop | check |
Free_value

Free_value=∆ File_name|
Directory_name|
Name

debug("format"): FULL_TEXT, OUTPUT
debug("numerical_accuracy"): OUTPUT
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This syntax shows that for anOption_tagas well as anOption_value
you may use not just predefined forms (such asassertionfor anOption_tag
andno for anOption_value) but alsoFreeforms, each of which is defined
just as aName(Identifieror Manifest_string). This means that along with
general-purpose options which are presumably of interest to all
implementations of Eiffel (level of assertion monitoring, garbage
collection etc.), individual implementors may add their own specific
options.

The predefined possibilities forOption_tag(collect, assertionetc.) are
not Lace keywords, and so may be used as identifiers in an Ace. The
predefined possibilities forStandard_value, however, are keywords; they
appear in bold italics (yes, requireetc.).Remember that you can always
use aManifest_string(such as"YES" or "DEFAULTS") to write a Lace
name, for example the name of a class in the system, which conflicts with
a keyword.

When the predefined forms are supported, they should satisfy the
constraints and produce the effects summarized in the following table.

Option Governs Possible values Default Scope

assertion Level of assertion
monitoring and exe-
cution ofCheck
instructions

no, require, ensure, invariant , loop,
check, all.
Monitoring at each level in this list also
applies to the subsequent levels (ensure
implies precondition checking etc.). Value
invariant  means class invariant;loop
means monitoring of loop invariants and of
loop variant decrease;check adds  execu-
tion of checkinstructions;all means same
ascheck.

require

collect Garbage collection no, yes. yes Entire
system

debug Execution ofDebug
instructions

no, yes, all or aNamerepresenting a
Debug_key.
yes means same asall.

no
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B.10  SPECIFYING EXTERNAL ELEMENTS

To assemble a system you may need “external” elements, written in another
language or available in object form from earlier compilations. The
Externals clause serves to list these elements.

Here is an exampleExternals clause:

Such a clause contains one or moreLanguage_contribution, each being
relative to a certain Language. Every Language is given by an Identifier,
such as:

Object: object code, produced by a compiler for some language, to be
linked with the result of system compilation or included for interpretation.

Remember that letter case is not significant, so that “FORTRAN” and
“make” would also be permitted. Make is a Unix tool, with equivalents on
many other operating systems, which works from a dependency list, or
Makefile, to recompile or reconstruct software. Make and makefiles are
normally not needed for Eiffel classes, but may be needed for external non-
Eiffel software.

Ada: Ada language elements.

Pascal: Pascal language elements.

Fortran: Fortran language elements.

C: C language elements.

optimize Optimize generated
code.

no, yes, all, or a Namerepresenting
specific optimization level offered by
compiler.
In Defaults or Options clause for a given
cluster,yes governs class-level optimiza-
tion andall means same asyes. In Ace-
levelDefaults clause,yes governs system-
wide optimization, andall means same as
yes plus class-level optimization.

no

trace Generate run-time
tracing information.

no, yes or all.
yes means the same asall

external
Object:

"object_name.o"; "../basics.o"
"-ltermcap"; "otherlib.a"

C: "previous.h"; "/usr/$MACHINE/src/scree-.c"
Make: "../Clib/makefile"
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Make: Descriptions of dependencies needed to recompile non-Eiffel
software elements.

The exact list of supported Language possibilities depends on the
implementation.

In each Language_contribution, the Language is followed by a
semicolon and a list of File names containing the corresponding elements.

The syntax of theExternals clause is the following.

The predefined language names (Eiffel , Ada etc.) are not Lace keywords,
and so may be used as identifiers in an Ace.

B.11  ONCE CONTROL

[To be filled in. Remember to update the “complete example” to include
this possibility.]

B.12  GENERATION

The Generation clause indicates what output, if any, should be
generated by the assembly process, and where that output should be stored.

A specimen of the clause is:

This Generation clause requests generation of both an executable
module and a C package containing the translation of the original Eiffel.
Clearly, although any Eiffel environment which is not solely meant for
analysis or design will supportexecutablegeneration, the availability of
any other target language is implementation-dependent.

Externals=∆  external Language_specifics
Language_specifics=∆ { Language_contribution";" …}

Language_contribution=∆ Language":" File_list

Language=∆  Eiffel | Ada | Pascal|
Fortran | C | Object | Make |
Name

generate
Executable: "$INSTALLATION/bin"
C (yes): "$INSTALLATION/src/browser/package"
Object(no): "$INSTALLATION/bin/M_68040/eb"
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ISE’s Eiffel compiler generates executable code as well as C packages
(including a copy of the run-time system, a Make file and all other elements
needed to compile and run the result). The C package generation
mechanism provides support for cross-development.

The generate Target, coming after the colon, is either a Directory, as in
the first example, or a File, as in the second. If it is a directory, the output
will be stored in a file of that directory; the name of that file will normally
be the System_name, here browser. The tools may also use both the
System_nameand the name of the root’s chosen creation procedure to
make up the name of the executable output file.

The Language name (Executable, C or Object in the example) may be
followed by a Generate_option_value, yes or no, in parentheses. The
absence of this component, as in the first two cases of the example, is
equivalent to (yes). The last line requests that noObject package be
generated. The Ace’s author may re-enableObjectgeneration simply by
replacingno by yes.

Here is the syntax of the Generation clause:

B.13  VISIBLE FEATURES

As you generate output from a system, you may want to make some of the
system’s classes available to external software elements that will create
instances of these classes (through creation procedures) and apply features
to those instances (through exported features).
.lP
Using the Visible paragraph of aCluster_propertiespart, you may indicate
which classes of the cluster must be externally visible; this will apply by

Generation=∆  generateGeneration_clauses

Generation=∆ { Language_generation";" …}

Language_generation=∆ Language[Generate_option] ":" Tar-
get

Generate_option=∆ "(" Generate_option_value")"

Generate_option_value=∆  yes| no

Target =∆ Directory| File
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default to all the creation procedures and exported features of these classes,
but you may also request external visibility for some of them only.
Furthermore, you may make some of them externally available under
names which are different from their original names in the class text, for
example if they are to be called from a language whose identifier
conventions differ from those of Eiffel.

Some external software may also need to refer to the class name itself;
this is the case witheif_procand similar functions from theCecil library,
which obtain a routine pointer. If the Eiffel name of the class is not
appropriate for this purpose (in particular when it would cause ambiguity),
you may define a different external class name.

Here is a Visible added to our example, browsing cluster extended with
a Visible paragraph, requesting external visibility for three classes of the
cluster,CONSTANTS, LAYOUT andEB:

For CONSTANTS, you have defined a different external class name,
BROWSING_CONSTANTS, for use by external software such asCecil
functions.

For CONSTANTSand LAYOUT, external software can create objects
using all the creation procedures of these classes (if any), and call all
exported features on these objects. Two features ofLAYOUTare available
to external software (for creation or call) under names different from their
Eiffel names, making them callable from a language which prohibits
underscores _ in identifiers.

browsing: "~/current/browser"
… use, include, exclude, adapt, default, option as before…
visible

CONSTANTSas BROWSING_CONSTANTS;
LAYOUT

rename
choice_menuas"choice.menu",
set_reverseas"set.reverse"

end
EB

create
initialize

export
execute, set_target, initialize

rename
set_targetas"set.target"

end
end

← “THE CECIL
LIBRARY”,  31.16,
page 865.

← “THE CECIL
LIBRARY”,  31.16,
page 865.
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For EB, featureset_targetis also externally renamed. In addition, you
have only requested external availability for specific features of EB: among
creation procedures, you only need initialize to be externally available for
object creation; and among exported features, you only needexecute, set_
target (under its external nameset.target) and initialize to be externally
available for calls.
.lA
External software may never use a feature for creating objects unless the
class text declares it as a creation procedure, and may never use a feature
for calls unless the class text declares it as exported. TheExport_restriction
subclause (beginning withexport) and theCreation_restrictionsubclause
(beginning withcreation) are not permitted to extend external availability
beyond what is implied by the Eiffel class text. (For one thing, a secret
feature is not required to preserve the invariant, so calling it from external
software elements could put an object into an inconsistent state, which is
the first step towards Armageddon.)

An “exported” feature is one that is generally available to all clients
(exported without restriction). A“secret”feature, which is a special case of
non-exported feature, is one which is available to no client exceptNONE.

.lC
It is not incorrect for an implementation to make all exported features of all
classes externally available. With such an implementation, you will usually
not need any Visible paragraph. You may still, however, use an Ace
(perhaps written for another implementation) that has a Visible paragraph:
the semantics of such a paragraph is to specify that certain features should
be externally visible; it does not preclude an implementation from
providing more externally visible features — the implementation just does
more than it has to.

Even an implementation which by default makes all compiled features
externally visible may in fact need to support the Visible paragraph. The
reason is that a compiler may include a global system optimizer, which will
detect routines that are not reachable from the creation procedure of the
system’s root class, and eliminate such routines from the generated code.
The optimizer might also decide to inline all calls to certain routines, and
then remove the object code for these routines. In such cases you will need
to use a Visible paragraph to guarantee that the routines remain available
for use by external software.

The syntax of the optionalVisible paragraph is the following:

Visible =∆  visible {Class_visibility";" …}

← “EXPORT CON-
TROLSANDINFORMA-
TION HIDING”,  7.8,
page 200.
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B.14  COMPLETE LACE GRAMMAR

For ease of reference, you will find below the complete grammar of Lace,
repeating the individual descriptions given earlier in this appendix.

B.15  LACE VALIDITY RULES

The following is a list of Lace validity constraings, presented as a single
rule with multiple clauses. As you know, Eiffel validity constraints are
presented as “if and only if” rules, letting you know not only what youmust
do to strive for validity, but also how much is is enough that you do to be
assuredof validity. The Lace constraints do not follow this style because
some conditions depend on the underlying operating system and its
handling of files, folders and other non-language elements that condition
the workings of Eiffel tool. So the rules simply state what you must do; I
did try to make the rules as complete as possible by including all known
platform-independent conditions, but some conditions may have been
missed.

Ace validity

An Ace must satisfy the following conditions.
1 • All files listed exist.

2 • All files listed are accessible to Eiffel tools for reading.

3 • All directories listed
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PART V: COMPLEMENTS
This fifth part of the book contains complementary material:

• Style rules (appendix34).

• A reflection on language evolution, and its application to Eiffel (appendixC).

• An attempt to credit Eiffel properties to their inventors (appendixD).

• A summary of Eiffel’s background and history (appendixE).

• The list of changes from Eiffel 3 to Eiffel 5 (appendixF).

• The list of changes from earlier versions (appendixG).

• Adetailed Eiffel tutorial (appendixH).

• An Eiffel bibliography (appendixI).

Although this not reference material, it provides important complements to the detailed
description of the preceding parts and the formal reference of the following one.
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On language design and evolution
After an evening at the theater, we may have enjoyed the show or hated it, but meeting
the playwright for a few more explanations at no extra charge — our last chance of
understanding what hereally meant — is not most people’s idea of how to finish off the
evening nicely.

Undaunted by the dangers, however, I have included in this appendix a few comments
on the process of language design, which will perhaps help put the rest of this book in a
broader perspective. The only other aims of this informal and unpretentious discussion
are to encourage further thinking, and to direct the reader’s attention to the seldom
discussed topic of language evolution — what happens after the initial design.

C.1  SIMPLICITY, COMPLEXITY

One view of design holds that good languages should be small. For many years the best way
to discredit any proposed design was to hint at similarity with PL/I. Just uttering that name
from the back of the room was guaranteed to bring laughter to the audience and ridicule to
the presenter. But many successful languages are large and complex; C++ is the most obvious
example, but Java is just as typical; a look at the description of Java initialization semantics
at http://www.javaworld.com/javaworld/jw-03-1998/jw-03-initialization.html should be
enough to dispel any suspicion of simplicity.

Oversize has many damaging consequences: making it harder to learn the language;
causing surprises even to experienced users, since they often will master only a subset,
and may involuntarily use properties they don’t know; increasing the likelihood that
compilers will be buggy, bloated, and late.

But languages should not be too simple, and the language designer should not resist
useful additions on principle. One can conjecture that Pascal could have had a much
more significant industrial role if a few extensions (such as variable-length array access
and an elementary module facility) had been included in the standard in the late
nineteen-seventies or early eighties. They were not, and Pascal was largely displaced by
C, certainly a regrettable development for software engineering.

So the truth has to be somewhere between the monsters of complexity and the zen-
like masterpieces of ascetism — between the bonzai and the baobab.

The classic article
on language design
is C.A.R. Hoare’s
“Hints on Program-
ming Language
Design”, reprinted
in [Hoare’s]
“Essays in Comput-
ing Science”, ed.
C.B Jones,Prentice-
Hall International,
1989, pp. 193-214.
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To complicate the discussion, there is no single definition of size. This book occupies
800 pages, which would seem to suggest that Eiffel is complex. But then most of these
pages are devoted to comments and explanations, and it is possible to talk just about pure
Lisp (or for that matter just about love, another seemingly simple concept) over many more
pages. Then if you consider that the syntax diagrams occupy only four pages, Eiffel is very
simple. From yet another viewpoint, the language properties which enable a beginner to
start writing useful software, may be defined in the 20 pages of chapter1; that is pretty
short too. A “reference only” extract of the book, retaining only the formal rules (syntax,
validity, semantics) interspersed throughout the text, takes up about 40 pages.

We could paraphrase a famous quote and state that a language should be as small as
possible but no smaller. That doesn’t help much. More interesting is the answer Jean
Ichbiah gave to the journalist (for the bulletin of INRIA) who, at the time of Ada’s
original publication, asked him what he had to say to those who criticized the language
as too big and complex: “Small languages”, he retorted, “solve small problems”.

This comment is relevant because Ada, although undoubtedly a “big language”,
differs from others in that category by clearly showing (even to its critics) that it was
designedand has little gratuitous featurism. As with other serious languages, the whole
design is driven by a few powerful ideas, and every feature has a rational justification.
You may disagree with some of these ideas, contest some of the justifications, and dislike
some of the features, but it would be unfair to deny the consistency of the edifice.
Consistency is indeed the key: size, however defined, is a measure, but consistency is the
goal.

C.2  CONSISTENCY

Consistency means having a goal: never departing from a small number of powerful ideas,
taking them to their full realization, and not bothering with anything that does not fit with
the overall picture. Transposed to human affairs this may lead to fanaticism, but for
language design no other way exists: unless you apply this principle you will never obtain
an elegant, teachable and convincing result.

Note the importance for the selected ideas to possess both of the properties
mentioned: each idea should bepowerful, and there should be asmall numberof them.
Eiffel may be defined by something like twenty key concepts. Here, as an illustration,
are a few of them:

• Software architectures should be based on elements communicating
through clearly defined contracts, expressed through formal
preconditions, postconditions and invariants.

• Classes(abstract data types) should serve as both modules and types,
and the modular and typing systems should entirely be based on classes.
(Two immediate consequences are that no routine may exist except as
part of a class defining its target type, and that Eiffel systems do not
have a main program.)
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• Classes should beparameterizableby types to support the construction
of reusable software components.

• Inheritance is both a module extension facility and a subtyping
mechanism. Attempts to restrict the mechanism to only one of these
aspects, in the name of some misdirected attempt at purity, only serve
to trouble the programmer with irrelevant questions. Attempt to portray
multiple inheritance as evil only stem from clearly inadequate uses, or
badly conceived language mechanisms.

• The only way to perform an actual computation is tocall a (dynamically
bound) feature on an object.

• Whenever possible, software systems shouldavoid explicit
discrimination between a fixed list of cases, and instead rely on
automatic selection at run time through dynamic binding.

• Client uses of classes should only rely on the officialinterface.

• A strong distinction should be maintained betweencommands
(procedures) andqueries (functions and attributes).

• A contract violation(exception) should lead to either organized failure
or an attempt to use another strategy.

• It should be possible for a static tool to determine the type consistency
of every operation by examining the software text, before execution
(static typing).

• It should be possible to build sophisticatedrun-time object structures,
modeling the often complex relations that exist in the external systems being
modeled, and to let the supporting implementations take care ofgarbage
collectionto reclaim unused space automatically.

Eiffel is nothing else than these ideas and their companions taken to their full consequences.

Why is consistency so important? One obvious reason is that it determines your
ability to teach the language: someone who understands the twenty or so basic ideas will
have no trouble mastering the details.

Another justification of the consistency principle is that with more than a few basic
ideas the language design becomes simply unmanageable. Language constructs have a
way of interacting with each other which can drive the most careful designers crazy. This
is why the idea of orthogonality, popularized by Algol 68, does not live up to its
promises: apparently unrelated aspects will produce strange combinations, which the
language specification must cover explicitly.

An extreme example in Eiffel is the combination of theobsolete and join
mechanisms, two seemingly unrelated facilities. A class may declare a feature as
obsolete to prepare for its eventual removal without destroying existing software; this is
a fundamental tool for library design and evolution. In the inheritance mechanism, a
class may merge (“join”) features inherited from different parents. No two mechanisms
seem at first sight more “orthogonal” with each other. Yet they raise a specific question:
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the Join rule must give all the properties of the feature that results from joining a few
inherited features, in terms of the properties of the inherited versions; but then one of
these features may be obsolete. Not the most fascinating use of language facilities; but
there is no reason to disallow it. (This would require an explicit constraint anyway, and
simplicity would not be the winner.) Now does this make the joined version obsolete?
The language specification must give an answer. (The answer is no.)

Such cases should suffice to indicate how crucial it is to eliminate anything that is not
essential. Many extensions, which might seem reasonable at first, would raise endless
questions because of their possible interactions with others.

Another interesting example of interference is the absence of garbage collection in
most C++ implementation. Although often justifiedex post factoin the name of the C
philosophy of putting the programmer in control of every detail, this limitation is in
reality a consequence of the language’s design: the presence of C-style casts makes it
possible to disguise a pointer into something else, thus fooling a garbage collector and
leading to serious potential errors. Many programmers do not realize how a seemingly
remote property of the type system exerts such a direct influence on the very practical
issue of memory management.

C.3  UNIQUENESS

Taken to its full consequences, the principle of Consistency implies the principle of
Uniqueness, which states that the language design should provide one good way to
express every operation of interest; it should avoid providing two.

This idea explains, for example, why Eiffel, almost alone among general-purpose
languages, supports only one form of loop. Why offer five or six variants (test at the
beginning, the end or the middle, direct or reverse condition, “for” loop offering
automatic transition to the next element etc.) while a single, general one will be easy to
learn and remember, and everything else may be programmed from it?

The loop example deserves further attention. A well-written Eiffel application will
have few loops: a loop is an iteration mechanism on a data structure (such as a file or
list); it should be written as a general-purpose routine in a reusable class, and then
adapted to specific contexts through the techniques illustrated in the discussion of
iterators. (Such pre-programmed iteration mechanisms are indeed available from
libraries.) Then having to writei := i + 1 manually for the equivalent of a For loop is not
a problem.

This observation, which would not necessarily transpose to another language,
illustrates an important aspect of the Eiffel method, which makes almost all “X
considered harmful” observations, for arbitraryX, obsolete.

The mechanism for marking constructs as harmful is paradoxical: as soon as you
recognize some patternX as useful, this immediately makes it harmful, by suggesting
that you should not from then on reproduceX-like patterns in your software texts, but
instead hideX in a reusable software component and then reuse that component directly.
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Loops are harmful, then, not because they pose a danger by themselves (as may be
argued of goto instructions), but because their very usefulness as a common pattern of
data structure traversal suggests packaging them in reusable components describing
higher-level, more abstract forms of these patterns. The only danger here would be long-
term — not taking advantage of potential reuse.

The principle of Uniqueness is a particularly useful guide for language evolution,
after initial design. It is natural for users of a language to request new facilities that
simplify their job. Most of the time, it was possible to do this job before, which suggests
that the principle requires rejecting these extensions. But that’s not necessarily a correct
interpretation, since the principle requires providing onegoodway of addressing each
need. The question then becomes whether the previous way is good enough.

Creation expressions provide a good example. Until recently, Eiffel had a creation
instruction (to create and initialize an object) but no creation expressions. The initial
version of the present chapter in the first edition of this book explained the rationale in
detail, stating, however, that creation expressions might have a role in the future. That
future has come. Along with a creation instruction

which creates an object of the appropriate type, attaches it tox, and initializes it with the
given procedure and arguments, you may also write

whereTYPE is the type ofx. (In both cases some variations and simplifications are
available.) Is this a violation of the principle of Uniqueness? As presented, yes. But in
practice no good programmer will ever use form [B] in the case given, because there is
a better way: form [A], which avoids the need to specify the type. Why specifyTYPE
since (the language being strongly typed) it follows from the declaration ofx? There is
no good reason.Creationexpressions, however, are useful in another case: creating an
object whose only use is to be passed as an argument to a routine. Then you can write

where the restriction to creation instructions would make things far more cumbersome:

Experienced users found that such schemes occurred frequently and caused useless effort
and distraction. It’s not a matter of keystrokes, as a longer form is preferable when it adds
relevant information; it’s a matter of not wasting one’s time in repetitive schemes that
bring nothing new and obscure the truly relevant parts of the software.

create x.make (...) [A]

x := {TYPE} .make (...) [B]

some_routine(..., {TYPE} .make (...), ...)

new_object: TYPE -- Declare local Variable just for this purpose
...
create new_object.make (...)
some_routine (..., new_object, ...)
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So the two mechanisms, creation instructions and creation expressions, are both
useful because they cover complementary needs.

A similar example is and “Inspect” instructions. Because of Eiffel’s emphasis on
avoiding explicit discrimination and relying on dynamic binding instead, all in the name
of modular, extensible, reusable architectures, the language did not initially (until 1989)
include multi-branch mechanisms. As experience grew, it became clear that such
mechanisms were still needed in some cases, where they did not conflict with object-
oriented principles. Hence the introduction of Inspect instruction (a kind ofcase... of
discriminating on integers or characters). It is significant that the original solution erred
on the side of caution: only when extensive experience clarified the conditions under
which explicit discrimination was still legitimate did we go for the corresponding
extensions. Better be restrictive at first, and loosen the strings later when you fully
understand what’s truly needed and what would be mere featurism.

C.4  TOLERANCE AND DISCIPLINE

Using the word “restrictive” reminds us of the somewhat disciplinarian attitude that is
not infrequent in the software community. One commonly hears such phrases as
“preventing the programmers from doing their dirty tricks”. It is as if language designers
were invested with a moral mission, and languages were a rampart against the threat of
the developers’ natural uncleanliness.

I disagree with this view. (This will seem surprising to those who have heard Eiffel
being categorized, I believe quite wrongly, as a language of the restrictive school.)
Programming language designers are not in the chastity belt business. Their role, to
repeat a comment which I first heard many years ago from C.H.A. Koster, is not to
prevent developers from writing bad software (a hopeless endeavor anyway), but to
enable them to write good software; and perhaps to make the task pleasurable as well.

This must be applied together with the principle of Uniqueness. If you exclude a
certain facility, be it the goto or function pointers, it is not to save humanity from some
abomination (although you may also be doing that) but because you are providing
elsewhere a better way to achieve the goals which the excluded constructs purported to
address. Loops and conditionals are better than gotos, and dynamic binding under the
control of static typing is better than function pointers or explicit discrimination.

In other words, if a design is defined as much by what it leaves out as by what it
includes, one cannot justify the exclusions without knowing the inclusions.

These ideas pervade Eiffel. The language’s ambition is to support an elegant and
powerful method for analysis, design, implementation and reuse, and to help competent
developers produce high-quality software. The method is precisely defined, and the
language does not attempt to promote any other way of developing software; but it also
does not attempt to prevent its users from applying their creativity.

The details of the inheritance mechanism provide a clear example of these principles.
The relation between inheritance and information hiding is a controversial topic; Eiffel
takes the view that descendants should be entirely free to define the export status of inherited
features, without being constrained by their ancestors’ choice. Nothing really forces
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everyone to agree: a project leader may take a more restrictive approach and, for example,
prohibit the hiding of a feature exported by a parent. It is not difficult to write a tool that
will check adherence to this rule. Had the language specification taken the restrictive stand,
it would have been impossible for a project leader to enforce the inverse policy.

In summary: language designers should not exclude “bad” constructs out of a desire
to punish or restrict the users of the language; that is not their job. The exclusions are
justified only by the inclusions: the designer should focus on the constructs that he
deems essential, and his responsibility is then to remove everything else, lest he produce
a monster of complexity.

C.5  METHODOLOGY

In a bad language design, the programmer is presented with a wealth of facilities, and
left to figure out when to use each, when not, and which to choose when more than one
appears applicable.

In a good design, each language facility goes with a precise theory — presumably
explained in the accompanying book or books — of the purpose it serves: when it is
desirable, when it is not.

C.6  MEA CULPA, MEA MAXIMA CULPA

The surest sign of a problematic design is the presence, in a language manual, of
comments stating that some constructs should never be used. A typical example in the
C++ and Java literature is the (justified) advice to avoid direct assignments to fields of
objects, as inx.a := b, which indeed violate all the principles of information hiding and
object technology.

The natural question — especially for such a recent design as Java, which does not
have the excuse of being constrained by the requirement of full compatibility with C
— is how one can justify producing a programming language and immediately starting
to warn users against certain facilities. If the designer truly thinks (asks the naïve
observer) that a certain construct is harmful, could he perhaps not have refrained from
including it in the first place? Is the designer not the one who decides what goes in and
what stays out?

Loving your language means never having to say you’re sorry.

C.7  THE LANGUAGE AND THE LIBRARIES

In a method supporting reusability, it is often possible and desirable to provide a new
feature through a library facility rather than through a language change.

Like some other languages, Eiffel uses libraries for mechanisms such as input and
output, rather than defining language constructs. The inheritance mechanism also
provides a classANY, inherited by all classes and offering them a number of crucial
general-purpose features:copy, clone, deep_clone(producing recursive copies of
arbitrarily large and complex object structures), equality,out (which produces a
printable image of any value or object).
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Other powerful library mechanisms include theSTORABLEclass, providing a
straightforward way to store an object structure — again, arbitrarily large and complex —
into a file, or to transmit it across a network, in a machine-independent format if desired.

A cynic might question the benefit of extending the libraries to keep the language
simple. Indeed, tough problems of consistency and simplicity do arise for libraries.
There is an important difference, however: one of level. The library as well as any user
application are defined with respect to the basis provided by the language. Because
everything else relies on it, this basis must be kept simple at all costs. Complexity should
be avoided in libraries too, of course, but the consequences are less grave.

Mathematical theories provide the appropriate comparison. Adding a language construct
is like adding an axiom, certainly not a decision to be taken lightly. Adding a library class or
routine is simply like adding another theorem, inferred from the current axioms.

The interaction of libraries and language in Eiffel is sometimes intricate. The basic
exception mechanism is very simple; classEXCEPTIONSprovides further tuning, for
example to handle various kinds of exception differently, or to ignore certain signals.
Similarly, MEMORYprovides finer control over the garbage collector.INTERNALgives
access to the internal structure of objects, useful to write system-level tools or interfaces
to databases. Arrays are not a language construct but come from a library classARRAY,
since an array can be described as an abstractly specified object, in the same way as a list
or a stack; this greatly simplifies the language and makes programs more consistent and
readable. The notion ofTUPLE is handled in a similar way. In both cases, there is a
language connection through special syntax for manifest arrays or tuples.

Similarly, all basic types, fromINTEGERto BOOLEANandSTRINGare formally
treated as classes (unlike the solution of C++ and Java, which separates the basic types
from the rest of the type system). To the programmer, these are normal classes, which
can be browsed through the normal tools. The compiler, however, cheats since it knows
about these classes and can generate better code for them. This is an attempt to combine
the best of both worlds: the consistency, simplicity and elegance resulting from a
uniform type system; and the efficiency resulting from special knowledge.

C.8  ON SYNTAX

One of the most amusing characteristics of the software development community, from
a language designer’s viewpoint, is the discrepancy between professed beliefs and real
opinions on the subject of programming language syntax. The official consensus is that
syntax, especially “concrete” syntax (governing the textual appearance of software texts)
does not matter. All that counts is structure and semantics.

Believe this and be prepared for a few surprises. You replace a parenthesis by a square
bracket in the syntax of some construct, and the next day a million people march on
Parliament to demand hanging of the traitors.

Of the pretense (syntax is irrelevant) and the actual reaction (syntax matters), the one
to be believed is the latter. Not that haggling over parentheses is very productive, of
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course, but unsatisfactory syntax usually reflects deeper problems, often semantic ones:
form betrays contents.

Once a certain notation makes its way into the language, it will be used thousands of
times by thousands of people: by readers to discover and understand software texts; by
writers to express their ideas. If its esthetically wrong, it cannot be successful.

There is no recipe for esthetic success, but here again consistency is key. To take just
one example, Eiffel follows Ada in making sure that any construct that requires an
instruction (such as the body of a Loop, the body of a Routine or a branch of a
Conditional) actually takes a sequence of instructions, or Compound. This is one of the
simple and universal conventions which make the language easy to remember.

For syntax, some pragmatism does not hurt. A modern version of the struggle between
big-endians and little-endians provides a good example. The programming language world
is unevenly divided between partisans of the semicolon (or equivalent) as terminator and
the Algol camp of semicolon-as-delimiter. Although the accepted wisdom nowadays is
heavily in favor of the first approach, I belong to the second school. But in practice what
matters is not anyone’s taste but convenience for software developers: adding or forgetting
a semicolon should not result in any unpleasant consequences.

In the syntax of Eiffel, the semicolon is theoretically a delimiter (between
instructions, declarations,Note_valuesclauses,Parentparts); but the syntax was so
designed as to make the semicolon syntactically redundant, useful only to improve
readability; so in most contexts it is optional.

This tolerance is made possible by two syntactical properties: an empty construct is
always legal; and the use of proper construct terminators (oftenend) ensures that no new
component of a text may be mistaken for the continuation of the previous construct. For
example in

there is no syntactic ambiguity, even without a semicolon, since no construct may involve
two adjacent identifiers.

It is interesting to note here that the study often invoked to justify the C-Java-Ada
style of semicolon as terminator (Gannon and Horning, IEEETSE, June 1975) actually
used subjects that were trained in PL/I and a test “separator” language that apparently
treated successive semicolons as an error, a completely unrealistic assumption. This
seems to invalidate the piece of conventional wisdom that asserts separators are better
than terminators. The experience of Eiffel since semicolons were made optional
massively suggests that semicolons are in most cases a mere nuisance.

Another example of the importance of syntax is the dominant practice, in the C-C+-
Java-Perl etc. world, of the equality symbol= as assignment operator, going against
centuries of mathematical tradition. Experienced programmers, so the argument goes,
will never make the error. In fact they make it often. A recent review of the BSD
operating system source, performed over one week-end, identified three cases ofif (x = y)
— a typo forif (x == y) which, unfortunately, is legal in C and C++ although it leads to

.x := y
a := b
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unexpected results. (In Java, at least, the first form is invalid so the error will have no
catastrophic consequence.) Syntax matters.

C.9  THE INVENTOR AND THE ASSEMBLER

One of the most original comments in Hoare’sHints is the suggestion that the two main
tasks of language design are best handled by different people: one proposes constructs,
the other refrains from invention but assembles other people’s suggestions into a coherent
engineering construction.

The design of Eiffel has tried to disprove this rule. Eiffel embodies a significant
number of inventions. Although many have been contributed by other people, a number
of the concepts were devised and integrated in a single process. They include such ideas
as once routines for shared objects and decentralized initialization, the multiple
inheritance mechanism, object-oriented contracts and their relation with inheritance,
renaming, and many others. I hope the result shows that the roles of construct inventor
and system assembler are in fact compatible.

C.10  FROM THE INITIAL DESIGN TO THE ASYMPTOTE

Although the programming literature contains a few references on language design, less
attention has been devoted to the subject of evolution after initial design. Yet successful
languages live and change; none of the major languages in use today still adheres to the
letter of its original definition. How do the design principles governing the childhood of
a language carry over to adolescence and adulthood?

Software developers are inordinately opinionated people, especially on the subject of
languages. Inevitably, they will come up with requests for change and extensions. Add
to this tremendous and constant source of ideas the contribution of co-workers, users,
course participants, colleagues in panels at conferences, and you get a constant influx of
new ideas.

In the current state of technology a new element, exciting and sometimes frightening,
complements these traditional sources of input: the net. Electronic mail and Usenet
forums mean that thousands of people can learn in a few hours about the latest
announcements, ideas, proposals, opinions and suggestions — and react to them. For
Eiffel this has been a tremendous benefit. The number of people who have sent public or
private comments is incomparably greater than what it would have been just a few years
earlier. Even Ada, probably the language most widely and thoroughly debated before its
final design, was born before network access became available on a grand scale, and did
not benefit from the unique combination of breadth, depth and timeliness made possible
by today’s technology.

It is striking to see how many of these ideas are in fact excellent; but this does not
mean that they should all be included!

First they may raise subtle or major incompatibilities with other language features;
but even if this is not the case they will make the language more complex. The designers
must weigh the evidence: is the purported benefit really worth the increase in
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complexity? In nine out of ten cases the answer is no. Again this usually is no reflection
on the quality of the idea. But the designers’ primary responsibility is to keep in mind
the elegance of the overall picture.

What can one do in such a context? The best tactics is to say “no”, explain that you
are on your way to Vladivostok, and emerge some time later to see if there is still anyone
around. This is the basic policy: do not change anything unless you cannot find any more
arguments for the status quo.

But saying “no” most of the time is not an excuse for not listening. Almost any single
criticism or suggestion contains something useful for the language designers. This
includes comments by novices as well as expert users. Most of the time, however, you
must go beyond what the comment says. Usually, what you get is presented as a solution;
you must see through it and discover theproblemthat it obscures. The users and critics
understand many things that the designers do not; the users, in particular, are the ones
who have to live with the language day in and day out. But design is the job of the
designers; you cannot expect users to do it for you. (Sometimes, of course, they will:
someone comes up with just the right suggestion. This happened several times in the
history of Eiffel. Then you can be really grateful.)

So there are deep and shallow comments but almost no useless ones. Sometimes the
solution simply resides in better documentation. Often it lies in a tool, not in any
language change. Even more often, as discussed above, the problem may be handled by
library facilities: after all, this is the aim of an object-oriented language — not to solve
all problems, but to provide the basic mechanisms for solving highly diverse problems.

Once in a while, however, none of this will work. You realize that some facility is
missing, or inadequately addressed. When this happens — and only as a last resort —
the tough conservative temporarily softens his stance. There are two cases, truly
different: an extension, or a change.

C.11  EXTENSIONS

Extensions are the language designer’s secret vice — the dieter’s chocolate mousse on
his birthday. After much remonstrance and lobbying you finally realize what many users
of the language had known for a long time: that some useful type of computation is harder
to express than it should be. You know it is extension season.

There is one and only one kind of acceptable language extension: the one that dawns
on you with the sudden self-evidence of morning mist. It must provide a complete
solution to a real problem, but usually that is not enough: almost all good extensions
solve several potential problems at once, through a simple addition. It must be
straightforward, elegant, explainable to any competent user of the language in a minute
or two. (If it takes three, forget it.) It must fit perfectly within the spirit and letter of the
rest of the language. It must not have any dark sides or raise any unanswerable questions.
And because software engineering is engineering, and unimplemented ideas are worth
little more than the whiteboard marker which serves to sketch them, you must see the
implementation technique. The implementors’ group in the corner of the room is
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grumbling, of course — what good would a nongrumbling implementor be? — but you
and they see that they can do it.

When this happens, then there is only one thing to do: go home and forget about it all
until the next morning. For in most cases it will be a false alarm. If it still looks good
after a whole night, then the current month may not altogether have been lost.

C.12  CHANGES

What happens if you realize that some existing language feature, which may be used by
thousands of applications out in the field, could have been designed better?

The most common answer is that one should forget about it. This is also the path of
least resistance: listening to the Devil of Eternal Compatibility with the Horrors of the
Past, whose constant advice is to preserve at all costs the tranquillity of current users.
The long-term price, however, is languages that forever keep remnants from another age.
For a glimpse of the consequences, it suffices to look at recent versions of Fortran, still
retaining (although they are meant for the most powerful parallel computers of
tomorrow) some constructs reflecting the idiosyncrasies of the IBM 701’s 1951
architecture, or at more recent “object-oriented” extensions of C, faithfully reproducing
all the flaws of their parent, compounded by extra levels of complexity.

The other policy is harder to sustain, but it is also safer for the long term: if something
can indeed be done better, and the difference matters, then change the construct. Such
cases should of course be rare and far between — otherwise one can doubt the very
soundness of the original design. They should meet two conditions:

1 • There must be wide agreement that the new solution is significantly better than the
original one. It must not entail any negative consequence other than its
incompatibility.

2 • The implementors must provide a conversion mechanism for existing software.

If these conditions are met, then I believe one should cut one’s losses and go ahead with
the change. To act otherwise is to act arrogantly (pretending that something is perfect
when it is not), or to sacrifice long-term quality for short-term tranquillity.

All the issues discussed above arose in the transition between successive versions of
Eiffel. It is only for the language users to judge whether the changes and extensions were
justified, and whether they followed the principles discussed here. More striking than the
changes has been the stability of Eiffel: the language’s key properties, especially its
semantics, are essentially identical to what was described in the very first publication.
But the maintainers of Eiffel have not refrained from making changes, including
incompatible ones. It is surprising to see both the intellectual cowardice of many people
in language committees, and the positive reaction of actual users. If a change is
beneficial, clearly explained, carefully prepared, and well organized (avoiding pointing
a gun to their head: changenow or die!), they will go for it.
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C.13  THE POLITICS OF LANGUAGE EVOLUTION

The mention of committees brings in the final observation of this overview,
addressing not the technology of language evolution but its politics. A number of
models are possible:

• The Town Hall model.

Everyone votes, and the majority wins.

• The Venetian model.

The Doges haggle it out between themselves.

• The Tammany Hall model.

Everyone votes, and the bosses haggle it out between themselves.

• The dog pack model.

He who shouts the loudest wins.

• The Usenet model.

He who shouts the longest wins.

• The dictatorship model.

The dictator wins(until toppled).

• The engineering project model.

The chief engineer wins, but only if he can convince the other
engineers most of the time.

• The CEO model

Like the engineering project model, but the board must approve
major decisions.

Without reference to the management of society, where different criteria apply, I have
through my experience come to the conclusion that the appropriate model for language
evolution is one of the last two. Democracy is admirable for the government of humans,
but a language is before all an engineering project, and someone should be in charge. As
in a company, many checks and balances should be provided, and the chief engineer
should very seldom be permitted to pass his views just because he is the chief engineer.
A technical leader who has to govern by fiat — as opposed to convincing the troops on
the sheer strength of technical arguments — will not remain a leader for very long.

Once in a while, hedoesget his druthers on the grounds of authority, simply because
several good choices are available and someone needs to decide; this is usually for
concrete syntax details. Such cases should remain rare. After all, if the chief engineer
deserves the position at all, his ideas, or more commonly his ability to sort out the good
ideas from the bad, regardless of who originated them, should be better than everyone
else’s, so he should expect to win on the merits.
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A brief history of Eiffel
Eiffel was designed on 23 September 1985. It was initially intended as an internal tool for the
newly created ISE (Interactive Software Engineering, based in Santa Barbara, California).
The first internal implementation was ready in mid-1986.

The main influences on the design of Eiffel have been:

• The object-oriented concepts introduced by Simula 67, which I had been able to practice
starting at the end of 1973.

• Work on formal specification, in particular Abrial’s original version of the Z specification
language (which I described in a 1978 book).

• Work on abstract data types by Liskov, Zilles, Guttag and myself.

• The Algol 60-Algol W-Pascal-Ada line of programming languages.

• Work on program proving and axiomatic semantics (Floyd, Hoare, Dijkstra).

• Modern concepts of software engineering, in particular the work on software quality.

A presentation at the first OOPSLA conference (Object-Oriented Programming, Systems,
Languages and Applications, Portland, September 1986) revealed that many of the concepts
and their implementation were ahead of the rest of the industry as well as of academic
research, and led to the transformation of the compiler into a commercial product, which
started to be sold to companies and universities worldwide in December of 1986. Version 2
was introduced in 1988. ISE’s original technology reached its peak with version 2.3, released
in 1990.

The bookObject-Oriented Software Construction, whose first edition was published in
1988, enjoyed a large success and introduced Eiffel to a broader community. (The second,
greatly expanded edition appeared in 1997.)

In 1990, ISE released the language definition to the public domain, spawning several
compiler and library projects. At that time a general cleanup of the language was undertaken,
leading to a number of simplifications and a few extensions (recalled in appendixG). These
changes did not, however, affect the essential concepts and techniques of the language and
method; Eiffel has been remarkably stable, and remains close today to the original 1985
design. The language reference,Eiffel: The Language, the first edition of the present book,
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was published in 1991 (although earlier versions had been available since 1988 as ISE
manuals) and revised the following year.

The first versions of ISE Eiffel, for obvious reasons of necessity, had been written in C.
From 1990 to 1993 the technology was reengineered in Eiffel, using version 2.3 for the initial
bootstrap. This led to ISE Eiffel 3, a complete graphical development environment first
released in 1993, and to its successors ISE Eiffel 4 (1997) and Eiffel 5 (2001). Language
extensions contributed during that period include agents (providing Eiffel with much of the
power of functional languages, and introspection), thePrecursormechanism, a simplification
of some aspects of repeated inheritance, more elaborate facilities for object creation, the
conversion constructs, and other techniques described in detail in this book.

Another notable event was the publication in 1995 of Waldén’s and Nerson’sSeamless
Object-Oriented Software Constructionwhich introduced the Business Object Notation,
prolonging Eiffel on the analysis and design side in a form that is attractive to managers,
analysts and system architects.

Besides ISE, other suppliers of Eiffel tools include Object Tools (Germany) with the
Visual Eiffel environment, a commercial compiler, the successor to EIffel/S; Small Eiffel
from the University of Nancy (France), a free software implementation; and another
commercial offering from Halstenbach GmbH (Germany). Now defunct implementations
have included Eon Eiffel, Tower Eiffel. Libraries are available from numerous sources,
covering areas such as 3D graphics, lexical analysis and parsing (Gobo), DirectX graphics and
several other graphical libraries, variable-precision arithmetic and many others.

Today Eiffel is used to develop some of the largest, most ambitious successful software
projects in the world. Areas of application include banking, financial systems, accounting,
telecommunications, health care, CAD-CAM, simulation, real time, scientific computing,
scientific visualization. Some of the most visible projects, such as CALFP Bank’s Rainbow
system, initially a derivative trading system but having grown to oversee most of the bank’s
operation, have been extensively documented in the press and are also featured at
www.eiffel.com.

Eiffel is also popular as a teaching tool in universities and even high schools. A large
number of universities are in fact using Eiffel as the first programming language taught to
students. Others use it at various levels in the curriculum, aided by attractive packages from
the Eiffel product providers.

The nameEiffel is an homage to Gustave Eiffel, the man who built the eponymous Tower
in Paris as well as many other durable constructions such as the metallic armature of the
Statue of Liberty in New York and a Budapest railway station. The Eiffel Tower, started in
1887 for the 1889 World Fair, was completed on time and within budget; it has survived
political hostility and attempts at destruction; found many new uses (such as radio and
television); proved to be robust and efficient. Built out of a small number of robust, elegant
design patterns, combined and varied repeatedly to yield a powerful result, it is the best
symbol of what Eiffel can achieve for the software world.

http://www.eiffel.com
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Language changes from the
previous edition
F.1  OVERVIEW

Stability has been the principal characteristic of Eiffel’s history since the
language was designed on 27 September 1985. The concepts behind the
language, the structure of software texts, and the principal constructs have
remained the same. There have of course been significant changes:

• ISE Eiffel 2.1 (1988) introduced constrained genericity and the
Assignment Attempt mechanism.

• Versions 2.1 to 2.3 introduced expanded types, double-precision reals,
expanded classes and types, the join mechanism for deferred features,
assignment attempt, theNote clause (thenIndexing), infix and prefix
operators (now treated throughalias clauses), theObsoleteclause,
Unique values (removed in the present iteration), theMulti_branch
instruction.

• The transition from Eiffel 2 to Eiffel 3 (1990-1993) was the opportunity
for a general cleanup of the language, unification and simplification of
the concepts; in particular it made basic types full-fledged classes, to
yield a completely consistent type system, and got rid of special features
such asForget, so that feature call always applies to objects rather than
references. The first edition of this book officially introduced Eiffel 3;
by providing the complete reference for a full-function language, it
permitted the growth of the Eiffel industry and served as the basis for all
current commercial and non-commercial compilers.

• Eiffel 4 (in particular ISE’s Eiffel 4.2 in 1998 and 4.3 to 4.5 in 1999)
introduced thePrecursor construct, recursive generic constraints,
tuples, agents, creation expressions and a new creation syntax.
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• The present edition describes Eiffel 5, which brings a few significant
improvements, although it remains close to previous versions. In the Eiffel
tradition, the changes are not so much extensions (we are constantly wary
of the danger of “creeping featurism”) as efforts to make the language
cleaner, simpler, more consistent, easier to learn, easier to use. This
revision also removesa number of mechanisms (BIT types, Strip
expressions), for which we identified better alternatives.

This appendix describes the language changes from the preceding edition
to the present one, which are also the changes from Eiffel 3 to Eiffel 5.

Since the majority of Eiffel 5 users with pre-Eiffel-5 experience started
with Eiffel 3, the pre-Eiffel-3 changes are of mostly historical interest. For
that reason they appear in a separate appendix.

The presentation of Eiffel 5 changes will successively consider:
removed mechanisms; compatibility issues; new constructs; semantic
changes to existing constructs; lexical and syntactic changes; changes to
validity constraints and conformance rules.

F.2  REMOVED MECHANISMS

It has been a general principle of Eiffel evolution that in spite of its high
expressive power the language should remain of manageable size, allowing
Eiffel programmers to masterall of Eiffel: there must be no dark holes in
the language. In particular, if we find a better way of doing something,
there is no reason to retain the previous constructs, as long as we make the
transition easy for existing programs (see the compatibility notes in the
next section). Along with its introduction of powerful new mechanisms,
Eiffel 5 removes a few that are no longer needed.

The notion of infix and prefix features are now handled by a simpler and
more general mechanism, using the existing keywordalias. The keywords
infix andprefix are, as a consequence, no longer necessary. There is no loss
of functionality — rather, a more general mechanism.

The notion ofBIT type has been removed. It enabled manipulation of bit
sequences. The richer set of features in classINTEGER— bit_and, bit_not
and so on, as well as the creation proceduremakethat sets the bit size to an
arbitrary value — provides a more versatile replacement.

The notion ofStrip expression has been removed. It was mainly useful
in assertions and is advantageously replaced by a combination of tuple and
agent mechanisms.

Type DOUBLE, for “double-precision” reals, has been removed. The
evolution of computer hardware and the needs of numerical computation
lead to making everyREAL64-bit long. The new sized typeREAL_32is
available to declare shorter floating-point numbers.
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Theglobal inheritance structurehas been simplified:ANYno longer has
ancestorsGENERALand PLATFORM. GENERAL is gone, soANY’s
features are declared inANY itself. PLATFORM is still there, but as a
supplier rather than ancestor ofANY, through a new queryplatformof type
PLATFORM in ANY, providing access to platform-specific properties.

F.3  BACKWARD COMPATIBILITY

The transition from Eiffel 2 to Eiffel 3 required changing some ways of
expressing fundamental operations, such as comparison toVoid.
Accordingly, a translator was made available by ISE at the time.

The changes from Eiffel 3 to Eiffel 5 may only cause minor
incompatibilities for existing Eiffel 3 software:

• The following new reserved words may not be used as identifiers:
assign, attached, attribute , create, Precursor, only, note, TUPLE.

The keywordscreation, indexing, infix , prefix and select have been
removed but compilers may continue to support them for a while, so you
should refrain from using them as identifiers.

• If you had a feature calleddefault_create, you should find another
name, unless you wish to use it as a redefinition of the corresponding
feature fromANY.

• If you had classes calledFUNCTION, PROCEDURE, ROUTINEor
TYPE, they will conflict with the corresponding new classes from the
Kernel Library, so you should use a different name.

• In a Note clause (previouslyIndexing) the initial colon-terminated
Note_nameterm, previously optional, is now required; you will have to
add it if missing.

• Creation is now writtencreate x rather than!! x andcreate {TYPE} x
rather than! TYPE! x. This is the most visible syntax change, but does
not raise any immediate concern since compilers should continue to
support the previous syntax for several years. (This is the case with ISE
Eiffel.) A translator does not appear necessary, although some scripts
may be made available to update creation instructions to the new form.

Incompabilities may also result from the removal ofBIT types andStrip
expressions. The new bit manipulation features of classINTEGERprovide
a superior replacement forBIT types;Strip expressions were rarely used
and their effect can be obtained in a simpler way through the agent
mechanism. Here too compilers such as ISE Eiffel will continue to support
the older mechanisms for several years.

Any compatibility problem resulting from the removal ofGENERAL
andPLATFORM should be easy to correct.

AppendixA.
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F.4  NEW CONSTRUCTS

Theagent mechanism (using tuples) is a major addition.

Tuples (anonymous classes) are new.

Thegeneric creationmechanism, making it possible to create objects of
aFormal_generic_name type, is new.

Creation expressionsare new. (Pre-Eiffel-5, only creation instructions
were available.)

Assigner procedures, allowing a procedure callx.put (v, i) to be written
in assignment-like syntax asx.item (i) := v if put has been declared as an
associated procedure for a queryitem, is new.

A related mechanism,bracket syntaxfor queries and commands,
allowing the previous instruction also to be writtenx [i] := v, is new.

A newconversion mechanismgeneralizes the ad hoc conformance rules
that allowed conformance ofINTEGERto REAL and of INTEGERand
REALto DOUBLE, as well as the “balancing rule” which permitted mixed-
mode arithmetic, as inyour_integer+ your_real. Instead, there is now a
general-purpose conversion and expression balancing mechanism, used by
the basic types in the Kernel Library but applicable to any other classes.
The notion of “compatibility”, covering both conformance and
convertibility, is a result of this addition; for assignment and argument
passing, the rule is that the source type must be compatible with the target
type, not just conforming as before.

ThePrecursorconstruct is new, replacing techniques (still applicable in
complex cases) relying on repeated inheritance.

The only postcondition clause, useful to avoid unwanted side effects
especially in assertions and concurrent computation, is new.

The use of aNoteclause (previouslyIndexing) to annotate a feature, a
control structure or the end of a class is new. Previously,Indexingclauses
were applicable at the beginning of a class only.

The ability to declare an attribute explicitly, with the keywordattribute ,
is new. This allows attaching preconditions, postconditions and note
clauses to attributes as well as routines. The previous syntax, justx: A,
remains applicable as a common abbreviation.

Verbatim strings are new.

The sized variants of basic types, such asINTEGER_8andREAL_64
are new.

The~ operator for object equality, associated withis_equal, is new.

Chapter27.

Chapter13.

Chapters12 and20.

20.14, page 558.
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10.24, page 299.
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.29.8, page 794.
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38.5 SEMANTIC EXTENSIONS AND CHANGES

The generic mechanism now explicitly supports “recursive generic
constraints”, in which a constraint for a generic parameter may involve
another (or the same) generic parameter, as inclassC [G, H –>ARRAY[G]] .

The semantics ofcreation has been made simpler, for creation
instructions that do not explicitly list a creation procedure, by assuming
that this uses thedefault_createprocedure, introduced inANY and
redefinable in any class.

A class may now be declared as deferred even if it has no deferred
feature. This makes it non-instantiable like any other deferred class. A
consequence is that it is no longer permitted to have an empty
Creation_procedure_listin a Creation_clause; specifyingclassA create
feature ... with nothing aftercreatewas a way to prohibit instantiating the
class. It now suffices to makeA deferred, even if all its features are
effective.

The anchor of an Anchored typelike anchor may now itself be
anchored, as long as there is no cycle in the anchoring structure. In addition
it is now possible to use an expanded or formal generic anchor. With the
exception of expanded anchors this officializes possibilities that ISE Eiffel
has supported for a long time.

The Feature Identifier principleis new in its full generality. The
difference between operator and identifier features was and is intended for
feature calls only; what is new is that every feature now has an associated
identifier, with the infix, prefix or bracket alias providing only a
simplification for calls. This convention doesn’t just serve consistency, but
also allows, for example, to define agents on features of any kind.

The once routinemechanism has gained new flexibility through the
introduction of “once keys” allowing “once per thread”, “once per object”,
and manual control through the new classONCE_MANAGER.

Multi-branch instructionssupport two new forms, one discriminating
on strings (in addition to the integers and characters previously supported),
the other on the type of an object.

The arithmetic types have been developed and made more precise; this
includes new types such asINTEGER_8noted in the previous section, but
also the specification thatINTEGERmeans 32-bit integer andREALmeans
64-bit real, and also explains the removal ofDOUBLE.

Chapter20.

ClassHeader rule,page
126; creation clause
syntax, page547.

11.10, page 339.

Page153.

“ONCE ROUTINES”,
23.14, page 641.

“MUL TI-BRANCH
CHOICE”, 17.4,page
482.
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Equality semanticsnow specifies that two objects cannot be equal
unless their types are identical; previously, it was possible for an object to
be equal to one of conforming type. The main reason for this change was
to follow mathematical tradition by ensuring that equality is fully
symmetric. Correspondingly,copy semanticsrequires an argument of type
is identical — not just conforming — to the type of the target.

Non-conforming inheritancewas present in the case of inheritance from
an expanded class, but has been generalized to permit aParentclause of the
form inherit { NONE} C, hereby providing a simpler solution to the issues
of repeated inheritance and removing the need forSelect.

The possibility to declare a class — not just a routine — asfrozenis
new.

Although external featureshave always been present, they originally
supported only aLanguage_name, such as"C", and an optionalalias
specification (External_name). The inclusion of mini-sublanguages
allowing detailed C specifications comes from ISE Eiffel 3, which
provided direct support for C macros, include files and DLLs. Changes
from that version include: removing of 16-bit DLL support (technically
obsolete); replacing the keyworddll32 and the class nameDLL_16by dll
and DLL; accepting routine names as well as routine indexes indll
specifications; specifying that in the absence of analias subclause the
name to be passed to the external language is the lower name of the external
Eiffel feature ; replacing the vertical bar|, used to introduce include files,
by the keyword include. ISE Eiffel 4 introduced C++-specific
mechanisms, allowing an Eiffel class to use the member functions, static
functions, data members, constructors and destructors of a C++ class. That
version also introduced the Legacy++ class wrapper and the Java interface.
Eiffel 5 adds support forinline C functions and Cstruct specifications.
The Cecil library mechanisms have also been considerably refined and
extended based on extensive experience with the library.

F.5  KERNEL LIBRARY CHANGES

A number of changes have been brought to the Kernel Library (ELKS);
only the most important ones will be listed here.

“OBJECT EQUAL-
ITY”,  21.6, page 580,
and“COPYING AN
OBJECT”,  21.2, page
565.

“NON-CONFORMING
INHERITANCE”,  6.8,
page 180.; “THE CASE
OFREDECLAREDFEA-
TURES”,  16.5, page 442

“CLASS HEADER”,
4.9, page 124.

Chapter31.

AppendixA.
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The names of features for comparison, object duplication and copying
have been made more consistent, as shown by the following tables.
Asterisks indicate new names — for existing features or, in the case oftwin,
new ones; names in roman and in parentheses indicate previous names.

The purpose of this change is to make the names uniform and easy to remember:

• Add is_for queries applying to the target:equal (x, y) compares its
arguments,x.is_equal(y) compares the argument to the target.

• Useidentical for frozen (non-redefinable) operations, which guarantee
the original semantics of field-by-field equality or copying:equaland
copy are redefinable,identical and identical_copyare not. Note that
cloneand its target-oriented varianttwinare not directly redefinable, but
they follow the redefinitions ofcopy.

---- FIX FIX FIX "~" is a new synonym ofequal, making it a little easier
to express object equality asa }={ b. (The symbol suggests an equal sign
opening up both left and right to embrace the objects denoted by the
operands.)

In addition, as noted in the previous section, copy and equality features now use
type identity rather than type conformance between their arguments. This has led
to a stronger precondition forcopy, usingsame_type rather thanconforms_to.

OBJECT
EQUALITY

FIX FIX FIX FIX!!!!
Between arguments Between target and

argument

Redefinable equal
alias "}={" <––

is_equal

Frozen * identical <––
(standard_equal)

* is_identical <––
(standard_is_equal)

OBJECT
DUPLICATION Of argument Of target

Redefinable clone twin

Frozen * identical_clone
(standard_clone)

* identical_twin

OBJECT
COPY Of argument onto target

Redefinable copy

Frozen identical_copy <––
(standard_copy)

The previous conven-
tions were not bad, but
the new ones seem a lit-
tle better, especially
with the introduction of
twin.
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---- FIX FIX FIX Thanks to the introduction ofClass_type_reference, it
has been possible to remove classesINTEGER_REF, CHARACTER_REF
and so on; the equivalent is now provided by

F.6  LEXICAL AND SYNTACTIC CHANGES

A small change to the method of language description, rather than the
language itself: in the conventions for describing the syntax, a “zero or more”
repetitition is now marked by an asterisk, as in {Type";" …}*, for symmetry
with the convention for “one or more”, which uses a plus sign. Previously, the
asterisk was omitted.

There are eight new reserved words as already noted:agent, attribute ,
create (making a comeback from Eiffel 1 and 2),note, only, Precursor,
reference, TUPLE. Among these,createis a replacement forcreation and
note for indexing.

The wordscreation, noteandselectare no longer keywords (hence no
longer reserved), but compilers will probably treate them as reserved for a
while, the first as a synonym forcreate, the second to support previous
repeated inheritance rules.

The following words are no longer reserved:BOOLEAN, CHARACTER,
INTEGER, REAL, DOUBLE, POINTER. You should still not use them as
class names, since they would conflict with classes that an Eiffel compiler
will expect to find in the Kernel Library, and optimize. But you may now
call a featureinteger (although that’s probably not a good idea).

A Note_entry is of the form

something: a, b, c

wheresomething: is theNote_nameand one or moreNote_itemfollow the
colon. Previously theNote_namepart (including the colon) was optional.
In practice developers included it almost all of the time. It is now required.
This makes the grammar more regular, and facilitates parsing, especially as
the semicolon is optional between aNote_entry and the next.

A syntax rule required underscores, if used in manifest integer and real
numbers, to separate digits by groups of three. It has been replaced by a
mere style recommendation.

The syntax for creation instructions previously used exclamation mark
characters!. For clarity, this has now been replaced by a keyword-based
notation relying on the keywordcreate, permitted for creation expressions as
well (see new constructs below). For consistency and to avoid any confusion,
the keywordcreate is also used to introduce aCreatorspart listing the
creation procedures of a class (previously the keyword there wascreation).

“Repetition produc-
tions”,  page 90.

“ANNOTATING A
CLASS”,4.8,page122.

“INTEGERS”,  32.16,
page 899, and“REAL
NUMBERS”,  32.17,
page 902.
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The recommended separator between successive generic parameters,
either formal as in a class declarationclassC [G; H] … or actual as in a
generic derivationC [TYPE1; TYPE2], is now the semicolon. The comma
(the previous choice) is still supported.

ThePrecursor construct, which may include an explicit type as in

was first introduced inObject-Oriented Software Construction, 2nd edition
(Prentice Hall, 1997), where this form of the construct is written with the
type specification first:{ TYPE} Precursor(…). An early printing even had
double… braces, as in{{ TYPE}} Precursor(…), showing once again that
simple solutions sometimes come last. ISE Eiffel currently supports all
three variants, but with the publication of this book the discarded ones
should quickly disappear from practical use.

The syntax forNew_export_item, in theNew_exportsclause that allows
a class to change the export status of some inherited features, now supports
an optionalHeader_commentto indicate the status of the corresponding
features, such as-- Implementation. This is consistent with the
corresponding convention for labeling feature clauses.

F.7  CHANGES IN VALIDITY CONSTRAINTS AND CONFORMANCE RULES

Some changes, most of them simplifications, have been brought to validity
constraints (including conformance rules, treated in the same style as
validity constraints in chapter14). The changes are summarized in the
following table.

Some of these changes involve a constraint that has beenremoved, for
one of three reasons:

• The constraint was found to be too restrictive, and its removal not to
have any negative effect on software quality.

• The constraint was really a style rule, and users felt it should not be
enforced by compilers.

• Other language changes made the constraint unnecessary.

A few constraints have beenadded to reflect the rules associated with the
new constructs of Eiffel 5.

In addition, the table includes entries for some constraints having
undergone changes affecting only their presentation:

• The order of clauses may have been changed for clearer exposition.

• Every constraint has a name; for consistency, some names have been
changed (or added, in a few cases of originally nameless constraints).

Precursor {TYPE} -- Or the version with arguments:
Precursor {TYPE} ( arguments)

Sections12.2 and12.3.

Examples in, page 204;
syntax on page209.
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• Every constraint has aCxyzcode (previouslyVxyz); in a few cases this
has been changed for better mnemonic value and consistency. (The
table, as noted, only lists a constraint if thexyz part has changed.)

Page numbers insmall italicsin the second column refer to the first edition
of this book and determine the order of entries in the table.

Constraint name Old code,page New
code

Page Explanation

Root Class rule VSRC 36 VSRT 112 Clause3 added to preclude root class of a system
from being deferred, necessary condition omitted
in first edition. Removes limitation to one creation
procedure. Previous clause 2 is now clause2 of new
constraintVSRP (next entry).

Root Procedure rule
(previously covered by
Root Class rule, see
previous entry)

VSRC 36 VSRP 113 New rule covering what was clause 2 of VSRC
(previous entry). Previous phrasing, applying toall
creation procedures of root class, was too
restrictive. Clause2 of new rule governs root
procedure only. Clause1 states that root procedure
must be creation procedure of root class. Clause3
is a new condition, prohibiting preconditions.

Cluster Class Namerule
(previously: no name)

VSCN 51 Removed ---- COMPLETE ----

Class Headerrule VCCH 51 VCCH 126 Loosened to permit the declaration of a class a
deferred even if it has no deferred feature.

(No name) VCRN 53 Removed Required ending comment of class, if present, to
repeat class name. Ending comment has bee
removed, even as a style rule.

Feature Declaration ruleVFFD 69 VFFD 162 Replacement of clauses 5 and 6 by reference t
Alias Validity (see next entry).

Alias validity VFFD
(Clauses
5 and 6))

69 VFAV 163 Revision of part of VFFD accounting for new of
alias clauses replacingprefix and infix and
introducing bracket features.

Parentrule VHPR 81 VHPR 178 The rule now refers to theUnfolded Inheritance
Clauseof a class to account for implicit inheritance
from ANY. Clause2 is new, to take into account the
new notion of frozen class. Clause4 is new, to
ensureVHUC (see next entry). Clause5 should
have been there all along but is new.

Universal Conformance
rule

(NEW) 81 VHUC 173 Theorem, follows from other validity rules. Was
essentially satisfied before, but not stated.

Rename Clauserule VHRC 81 VHRC 185 Two new clauses:3 requires Feature Name rule
(VMFN, page 474) to apply (previously only
expressed as margin comment);4 covers renaming
into feature with operator or bracket alias.
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ClassANYrule VHAY 88 VHCA 173 Code change for clarity.

Expanded Client rule VLEC 94 Removed New semantics of expanded variables makes
possible to accommodate expanded client cycles.

(No name) VLCP 101 Removed Required identifiers listed in aClients part to be
names of classes in the universe. See rationale f
the removal in the paragraphs starting with “There
isno validity constraintonClientsparts”, page209.

Entity Declaration rule VREG 110 VRED 221 Code change for clarity.

Local Variable rule VRLE 115 VRLV 226 Code change for clarity (previous terminology was
“Local Entity”).

Feature Body rule
(replacing Routine rule)

VRRR 113 VFFB 144 New rule is generalization of old one: covers all
features, not just routines. It follows from the
introduction of theattribute keyword, making
some clauses (in particularPrecondition and
Postcondition) applicable to all features.

Old Expressionrule VAOL 124 VAOX 239 Code change for clarity.

Old Expressionrule (NEW) VAON 243 Validity rule for newonly construct.

Precursor rule (NEW) VDPR 304 New rule , covering new construct.

Definition of deferred
and effective class

161 127 (Not validity constraint, but definition used by other
constraints.) Moved to earlier chapter; updated to
permit class to be deferred even without deferre
features. See entry onVCCH above.

Deferred class property (161) 310 (Not separate constraint, but consequence of others
Clarifies that a class can be deferred even withou
deferred features. See previous and next entries.

Effective class property (161) 311 (Not separate constraint, but consequence of others
Clarifies that a class can be deferred even withou
deferred features. See previous two entries.

Redeclaration rule VDRD 163 VDRD 313 Last clause removed; prohibited redefining an externa
feature into an Internal one. This was an
implementation constraint, no longer justified.

Join rule VDJR 165 VDJR 319 Rephrased to take into account two cases missed
original: joining of one effective feature with one or
more deferred ones; redefinition of all. Not language
change but clarification of rule that was always there

Join semantics rule
(not validity constraint
but semantic rule)

166 320 Beginning of rule updated to include cases mentione
in previous entry. ==== FIX ==== Clause 6 added to
cover case of effecting one or more deferred feature

Constraint name Old code,page New
code

Page Explanation
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Name Clash rule
(previously: no name)

VNCN 189 VMNC 475 Name change for consistency. Slight rephrasing, but n
change of substance. This is a redundant rule, followin
fromVMFN/VMFN (Feature Name, unchanged).

Select Subclause rule VMSS 192 Removed Governed a clause,Select, that no longer exists thanks
to simplification of repeated inheritance mechanism.

Unconstrained
Genericity rule

VTUG 201 Removed Now merged withVTGD of which it was a special
case (repeated in its clause1).

Generic Constraint rule (NEW) VTGC 357 New rule taking into account generic creation and
multiple generic constraints.

Genericity Derivation
rule (previously: Cons-
trained Genericity rule)

VTCG 203 VTGD 359 Clause2 amended to permit recursive constraints
as inclassC [G, H –> ARRAY[G]] .

Expanded Type rule VTEC 209 VCCH 126 Rule no longer needed as type rule thanks to remov
of expandedT types (all expanded types are now
based on an expanded class) and removal o
requirement ofdefault_create for expanded types.

Anchored Type rule VTAT 214 VTAT 345 Considerably loosened conditions: anchor chain
now possible (a declaredlike b with b declaredlike
c) if there’s no cycle; anchoring now permitted on
expanded and formal generic. No more anchorin
on arguments. Properties of anchored type now
completely defined by those of its unfolded form.

General conformance VNCC 219 VNCC 388 Clause 3 integrates attached type requirements
new clause6 handles anchored types and allows
removal ofVNCG (see below).

Direct conformance:
class types

VNCN 221 VNCN 390 Simplified thanks to the notion of generic
substitution; also subsumesVNCG (next entry).

Direct conformance:
generic substitution

VNCG 222 Removed Covered by new formulation ofVNCN (see
previous entry).

Direct conformance:
formal generic

VNCF 224 VNCF 393 Simplified thanks to a more general notion of
constraint. Also, addresses multiple constraints.

Direct conformance:
anchored types

VNCH 225 Removed Anchored types are now treated more simply like
“macros”. See clause of

Direct conformance:
expanded types

VNCE 229 VNCE 396 ---- FIX --- Previous clauses 2 and 3 removed as
they are now covered by convertibility rather than
conformance (in a more general form including
new explicitly sized arithmetic types such as
INTEGER_16).

Direct conformance:
Bit types

VNCB 229 Removed No longer applicable since Bit types were removed

Constraint name Old code,page New
code

Page Explanation
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Direct conformance:
tuple types

(NEW) VNCT 397 New rule, covering conformance for new kind of type.

Conversion Procedure
rule

(NEW) VYCP 411 Convertibility is new.

Conversion Query rule (NEW) VYCQ 413 Convertibility is new.

Expression convertibility (NEW) VYEC 424 Convertibility is new.

Precondition-free (NEW) VYPF 426 New concept closely connected with convertibility.

Multi-Branch rule VOMB 239 VOMB 488 Removed all constraints relating to Unique values
no longer present in the language.

Unique declaration rule 266 Removed Removed all constraints relating to Unique values
no longer present in the language.

Unique Declaration rule
(previously: no name)

VQUI 266 Removed Removed all constraints relating to Unique values
no longer present in the language.

Entity rule VEEN 276 VEEN 513 Clearer clause numbering; new clause7 (imitated
from clause6) to cover new notion of inline agent.

Variable rule (NEW) VEVA 514 New rule made necessary by inline agents.

Creation Precondition
rule

(NEW) VGCP 547 New rule restricting what’s permissible in the
precondition of a creation procedure.

Creation Clause rule VGCP 285 VGCC 548 Code change for clarity. Previous clause 4 removed
made unnecessary bydefault_createconvention;
VCCH takes care of the rest. New clause4 added to
preclude using once routines. New clause5 to rule
out unsound precondition clauses. Do notconfuse
with newVGCP(previous entry) or oldVGCC(next
entry).

Creation Instruction ruleVGCC 286 VGCI 553 Code change for clarity. Drastic simplification. Note
that some of the old clauses reappear as “corollaries
of VGCI in the newVGCP, page555. New clause4
takes into account generic creation. Do not confus
with newVGCC (previous entry).

(No name) VGCI 288 Removed System validity part removed. Do not confuse with
clause now calledVGCI (previous entry).

Creation Instruction
Properties

(Partsof
VGCC)

288 VGCP 555 New rule, corollary of VGCI (next-to-previous
entry) and hence redundant, but providing extra
error messages for compilers.

Creation Expression rule (NEW) VGCE 562 Creation expressions are new.

Creation Expression
properties

(NEW) VGCX 562 Same relation toVGCE as VGCP to VGCI (see
previous entries).

Constraint name Old code,page New
code

Page Explanation
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Assigner Call rule (NEW) VBAC 610 Assigner calls are new.

Assignment Attempt ruleVJRV 332 Removed No more assignment attempt (replaced by
Object_test)

Non-Object Call rule (NEW) VUNO 631 Non-object calls are new.

Call Use rule
(previously: no name)

VKCN 368 VUCN 623 Code change for consistency.

Export rule VUEX 368 VUEX 632 Simplification (the former case 2 wasn’t necessary
and addition ofNon_object_callcase.

Argument rule VUAR 369 VUAR 634 Rule simplified thanks to the addition ofVUDA
(see below) for the more complex case. Clause
(redundant) removed. Clause 4 moved to constrain
on Address expression.

Class-Level Call rule (NEW) VUCC 636 Separating class validity from more complex rules

Object Test rule (NEW) VUOT 659 New rule, covering new construct.

Descendant Argument
rule

(VUAR,
p. 367)

367 VUDA 667 Rule split away fromVUAR to separate more
advanced cases from simple ones.

Single-Level Call rule
(previously: no name)

VUCS 367 VUSC 668 Code change; name added.

General Call rule
(previously: Call rule)

VUGV 367 VUGC 681 Name change for consistency.

(No name) VWEQ Removed No more conformance constraint on equality.

Call Agent rule (NEW) VPCA 754 Agents are new.

Inline Agent rule (NEW) VPIA 755 Inline agents are new.

Inline Agent requirements (NEW) VPIR 756 Inline agents are new.

Bracket Expression rule (NEW) VWBE 781 Bracket expressions are new..

Manifest Type rule (NEW) VWM
Q

791 Manifest types for expressions are new..

(No name) VWMS 390 Removed Now handled through syntax and definition of
Line_wrapping_part.

Manifest Array rule VWMA 393 Removed No longer necessary thanks to manifest tuples
Backward compatibility enforced through rule that
manifest tuples conform to manifest arrays.

Identifier rule
(previously: no name)

VIRW 418 VIID 891 Code and name change.

Constraint name Old code,page New
code

Page Explanation
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Changes from early versions
G.1  OVERVIEW

The previous appendix summarized the history of Eiffel versions and
described the changes from Eiffel 3, as described in the first edition of this
book, to Eiffel 5.

The present discussion recalls briefly what had changed from the very
first incarnations of Eiffel, especially ISE Eiffel 2 — used in the first (1988)
edition of the bookObject-Oriented Software Construction, which was
many people’s original introduction to Eiffel — to Eiffel 3. It will provide
current Eiffel users with a glimpse of the language’s early evolution.

G.2  SCOPE OF THE CHANGES

Whereas changes from Eiffel 3 to Eiffel 5 essentially don’t break any
existing code, the changes from Eiffel 2 to Eiffel 3 did not guarantee
backward compatibility, since it was felt appropriate to tune some of the
original constructs. The translation, however, was simple and systematic,
enabling ISE to provide a translator that automatically converted most of a
system and left only a few items for manual programmer action, such as
renaming any identifiers conflicting with new keywords.

The differences were of three kinds:

• Changes to the concrete syntax, improving the consistency of the
language and the clarity of software texts.

• Adjustment or clarification of the semantics of a few constructs, taking
care of cases which proved confusing, such as the combination of
repeated inheritance and redeclaration.

• A few new constructs to increase the expressive power of the language.

For more historical back-
groundseeAppendixE,A
brief history of Eiffel.
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G.3  OLDER POST-OOSC-1 EXTENSIONS

Prior to Eiffel 3, the following mechanisms were added in versions 2.1
(mid-1988), 2.2 (mid-1989) and 2.3 (mid-1990) of ISE Eiffel, after the
original publication of the bookObject-Oriented Software Construction
(hereafterOOSC-1) in March of 1988:

• Constrained genericity, enabling a generic class to place certain
requirements, expressed through inheritance, on possible actual generic
parameters. (OOSC-1in fact mentioned this, but only in an exercise.)

• The Indexingclause (nowNotes) for recording important information
about a class, to be used by archival, browsing and query tools.

• The Assignment_attempt, with its ?= symbol, for type-safe assignments
going against the inheritance hierarchy, widely imitated in other languages.

• Infix and prefix operators, for more flexible call syntax.

• Expanded types, supporting composite objects and avoiding
unnecessary dynamic allocation.

• The Obsoleteclause (in classes and routines) for smooth library
evolution.

• Uniquevalues to define integer codes without having to choose values.

• TheMulti_branchinstruction for discriminating between a set of cases
without using dynamic binding. (This was limited to character and
integer values; the extension to intervals came with Eiffel 3, and to
strings and type descriptors with Eiffel 5.)

• The boolean operator for implication (implies), which was previously
expressed through the operatoror else.

• Support for double-precision reals (typeDOUBLE, later removed).

• Basic expanded classes from the Kernel Library, definingBOOLEAN,
CHARACTER, INTEGER, REAL and (then)DOUBLE.

• The join mechanism for merging one or more inherited deferred
routines with compatible signatures and specifications. (In 2.3 this
required a now obsolete keyword,define, and an effecting of the
resulting features.)

• More flexibility in the interface with other languages, in particular
through the introduction of the$ symbol (@ in 2.3).

The rest of this appendix covers changes from Eiffel 2.3 to Eiffel 3, first
introduced in 1993.
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G.4  SEMICOLONS

Eiffel originally used semicolons as separators. With Eiffel 3, semicolons
were made optional in most cases. For a while, the style rules still
recommended including them, until it was realized — partly from
comments of students in programming classes — that instead of helping
readability they obscured software texts, providing no benefit except in the
rare case of multiple instructions on a single line. Thestyle rules were
revised to reflect this realization that most instruction-separating
semicolons are just noise.

G.5  FEATURE ADAPTATION

Thesyntax of theFeature_adaptationsubclause, in theParentclause of an
Inheritancepart, indicating changes in inherited features, was made more
regular by the introduction of a requiredendterminator, consistent with the
conventions used elsewhere in the language (routine declarations, control
structures). Previously, there was noend; this meant that a mistakenly
added extra semicolon, for example between aRenameand aRedefine
subclauses, could make the construct ambiguous, resulting in minor but
annoying syntactical errors. This is now harmless, and semicolons have, as
noted, been made mostly irrelevant anyway.

G.6  SPECIFYING EXPORT STATUS

Eiffel 3 removed theexport clause which was used, at the beginning of a
class, to specify the export regime of every feature of the class. Instead,
there may be more than oneFeature_clause; each defines the export regime
of the features it introduces. If aFeature_clausejust begins with the
feature keyword with no further qualification, all the features it introduces
are publicly available.

To obtain the effect of a secret feature, begin theFeature_clause with

To obtain the effect of a feature available selectively to specified classes,
begin the Feature_clause with

feature { NONE}

feature { A, B, C}

“OPTIONAL SEMICO-
LONS”, 34.10,page919.

Page171.

Chapter7, Clients and
exports, gives all the
details of how to set the
export status of features.
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This also removed the need for therepeatsubclause (which was part of an
export clause and served to repeat a parent’s export specification). By
default, inherited features keep the export status they had in the parent,
unless they are redefined. The status of a redefined feature is determined by
the qualification of theFeature_clausein which the redefinition occurs. To
change the status of an inherited feature that is not redefined, use anexport
subclause in the Feature_adaptation clause at the point of inheritance, as in

Here all features inherited fromC are secret, except forremoveandcount,
available toA andB, andput, available to all clients

G.7  ADAPTING PRECONDITIONS AND POSTCONDITIONS

Another important language improvement affects the rule on adaptation of
preconditions and postconditions for redefined routines is now alanguage
mechanism, rather than a purely methodological guideline. In pre-version
3, a Preconditionor Postconditionalways appeared in full, even for a
redefined routine for which the assertions had not changed. If they did
change, you were only supposed to replace an original precondition with a
weaker one, or an original postcondition with a stronger one; but the
language did not support these rules directly.

It now does. In a redefined routine, an absent Precondition means “keep
the original’s precondition”, and similarly for an absent postcondition. You
may change these assertions using the forms

which yields as new preconditions and postconditions theor and and,
respectively, of the original versions with the added ones, automatically
enforcing the rule on precondition weakening and postcondition strengthening.

class D inherit
C

export
{ NONE} all
{ A, B}  remove, count
{ ANY}  put

end
…

require else new_precondition_clause
ensure then new_postcondition_clause

“REDECLARATION
AND ASSERTIONS”,
10.17, page 283.
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G.8  REMOVING AMBIGUITIES IN REPEATED INHERITANCE

Separate paths of repeated inheritance may cause a feature to be redefined
in different ways. The 2.3 language specification left it to the
implementation to resolve the dynamic binding conflicts that may arise in
such a case.

To solve this issue, Eiffel 3 introduced aSelectclause, in theInheritance
part for a class. An example, assumingB andD both inherit a featuref from
a common ancestorA and both redefine it, was:

A potential ambiguity arises only with calls of the forma1.f for a declared
of typeA but dynamically attached to an instance ofD. Theselectresolves
this ambiguity by prescribing the use ofbf, theB version, in this case.

Eiffel 5 replaces this mechanism by the mechanism of non-conforming
inheritance, slightly less flexible but simpler.

G.9  RENAMING, REDEFINING, UNDEFINING AND JOINING

In pre-version 3, it was possible to duplicate an inherited feature by
renaming it and keeping the old one under a different name; dynamic
binding would then apply to entities of the parent type will trigger the
redefined version. This mechanism was difficult to explain and was
replaced by theSelect clause just described (then by non-conforming
inheritance). It was in fact unnecessary since repeated inheritance also
achieves feature duplication in a more uniform way.

ComplementingRedefine, a new clause,Undefine, was introduced to
allow de-effecting a feature inherited in effective form, making it deferred.
A related constraint was added to prohibit redefining an effective feature
into a deferred one, since one may now use undefinition instead.

class D inherit
B

renamef as bf selectbf end
-- This select theB version for
-- dynamic binding fromA.

C
renamef as cf end

…

“THE REPEATED
INHERITANCE CON-
SISTENCY CON-
STRAINT”,  16.13,
page 463.

“UNDEFINING A
FEATURE”,  10.19,
page 290.
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In an extension and simplification of the language semantics, inheriting
two or more deferred features under the same name will yield a single
deferred feature. This is known as the join mechanism and is useful to
merge abstractions. An essentially equivalent mechanism existed in pre-
version 3 but required the inheriting class to effect the features and to mark
them using the keyworddefine (not a reserved word any more). These
restrictions do not apply any more.

By combining the previous two possibilities, you may merge a set of
effective features inherited from parents, one of these features imposing its
implementation on the others.

G.10  SYNONYMS

Eiffel 3 introduced thepossibility of introducing two or more features with
a single declaration, as in

This is equivalent to duplicate declarations; the features declared together
are not otherwise connected. Redefining or renaming one in a proper
descendant has no effect on the others.

G.11  FROZEN FEATURES

To preserve not just the specification of a feature (through its assertions)
but also its exact implementation in descendants,you may, since Eiffel 3,
declare it asfrozen. This prevents any redefinition in descendants.
Combined with the synonym mechanism, as in

which preventsf1 from being redefined, but does not so restrictf2, this
makes it possible to provide both a fixed version and a redefinable one. This
scheme can be used for a number of features of the universal classANY,
such as copy, close, is_equal, which have both a standard version and one
adaptable to any class.

G.12  ANCHORING TO A FORMAL ARGUMENT

In an anchoreddeclaration of the formlike anchor, Eiffel 3 made it
possible to useanchor not just Current or an attribute of the enclosing
class, but also, in a routine text, a formal argument of that routine, as in

f1, f2 (…) is …

frozen f1, f2 (…) is …

equal(some: ANY; other: like some): BOOLEANis …
clone(other: ANY): like otheris …

“SYNONYMS AND
MULTIPLE DECLA-
RATION”,  5.18, page
159

“REDECLARATION
RULES”, 10.28,page312.

“ANCHOREDTYPES”,
11.10, page 339.
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In a call toequal, the type of the second actual argument must conform to
that of the first. Iny := clone(x), the type ofx must conform to that ofy.

G.13  CREATION SYNTAX

Eiffel 1 and 2 permitted a single creation mechanism per class, called under
the form x.Create. Eiffel 3 introduced the notion of multiple creation
procedures, and a syntax of the form

or, if D is a descendant of the type declared forx:

The idea was right but the syntax, with its reliance on a special symbol!,
departed from the usual principles of clarity of Eiffel. It was replaced in
Eiffel 5 by akeyword-based form, using the keywordcreate.

G.14  UNIFORM SEMANTICS FOR DOT NOTATION

Thex.Createnotation of Eiffel 1 and 2 was not the only case in which the
dot in x.f had special semantics. For all “normal”f, the notation x dot f
described the application of featuref to the object attached tof, and
requiredx to be non-void, triggering an exception otherwise.

The convention was different, however, for a small set of special
language-defined features:Create, Clone, Forget, Void and Equal. For
these, the operation really applied to the reference value ofx, and was legal
even ifx was void (not attached to any object).

These cases were removed in Eiffel 3 to ensure full consistency: dot
notation always has the semantics of an operation applicable to an object,
and requiresx to be non-void. A voidx will cause an exception.

Clone, Forget, Void and Equal are no longer reserved words of the
language; instead, the operations use features of the universal classANY, of
which all Eiffel classes are descendants. These features’ names (clone,
Voidandequal) are normal identifiers, and proper descendants ofANYmay
rename the features. The cloning instructiony.Clone(x) is now written as
the assignmenty := clone (x). The instructionx.Forget is written as the

! !  x.make(arg1, …)  -- With creation proceduremake
! !  x  -- Without a creation procedure

! TYPE! x.make(arg1, …)
! TYPE! x

Chapter20 discusses
creation.
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assignmentx := Void. FeatureVoidof classANYreturns a reference of type
NONE, the class that has no instances. The test for a void reference,
previously writtenx.Void, is nowx = Void. The object equality test, instead
of x.Equal(y), is nowequal(x, y). Since the routines involved are normal
features ofANY, descendants may redefine them while, as noted, always
retaining their frozen synonyms.

G.15  MANIFEST ARRAYS

In the same way that aSTRINGobject may be given in manifest form (such
as "some string value"), rather than by successive calls to fill its character
positions, Eiffel 3 introduced manifest arrays, such as

which defines an array by its elements. Complemented in Eiffel 5 by tuples,
this provides a simple way to achieve the effect of routines with a variable
number of arguments.

G.16  DEFAULT RESCUE

It is often convenient to define a default exception response for those
routines which do not have a specificRescueclauses. In pre-version 3, this
was done by having aRescueclause at the class level. The rescue clause
was not passed on to descendants because of potential conflicts in the case
of multiple inheritance.

As simpler and more flexibleconvention was introduced by Eiffel 3.
The universal classANY has a proceduredefault_rescue, which does
nothing. Any class may redefine this procedure to perform specific
exception handling actions. Any routine with no Rescue clause is
considered to have aRescueclause that just callsdefault_rescue. This
means that any exception occurring in such a routine will lead to the default
exception handling mechanism defined at the level of its class.

G.17  EXPANDED CLASSES

As a notational facility, Eiffel 3 made it possible todeclarea class as
expanded classE, implying that any type based onE will be expanded.
Previously, you could use the typeexpandedT based on an existing type
T, but you couldn’t specify that a class gives expanded type by default.

G.18  SEMANTICS OF EXPANDED TYPES

In what was probably the only non-trivial modification of an existing
semantic property, the effect of an assignment

<<val1, val2, …>>

ref := exp

“MANIFESTARRAYS”,
36.6, page 937.

“THE DEFAULT RES-
CUE”,  26.5, page 694.

“CLASS HEADER”,
4.9, page 124.
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where the type ofref is a reference type and the type ofexpis expanded, is
specified as creating a new object identical to the value ofexp(a clone) and
attachingref to it.

Previously, no cloning occurred;ref would just become attached to the
value of exp, a sub-object or some other object. This introduced a
possibility for objects to contain references to sub-objects of other objects.
This possibility, of dubious benefit, appears to have been used rarely if
ever; it did, however, considerably complicate the run-time model and the
implementation, in particular the garbage collector.

G.19  FREE INFIX AND PREFIX OPERATORS

Infix and prefix operators, restricted in Eiffel 2 to predefined symbols —
arithmetic such as+, relational such as<, boolean such asand — now
enjoy full syntactic status: you may give an infix or prefix alias to any
function with the appropriate signature (no argument for prefix, one
argument for infix), and define your own “free operators”, whose symbols
must start in Eiffel 3 with one of the four characters@ #|& . Eiffel 5 further
generalized this to almost arbitrary names.

For compatibility with tradition, boolean operators still use alphabetic
keywords (such asand and or else). They are the only ones, however;
integer operators use non-alphabetic symbols:// and \\ replaced thediv and
mod of Eiffel 2.

G.20  OBSOLETE CLAUSE

For consistency, theObsoleteclause of an obsolete routine now appears
after theis keyword rather than before.

A class may also have an obsolete clause, indicating that usage of the
class as a whole is discouraged — because you have written a better version
that is not fully compatible, or just prefer a different class name. The
Obsoleteclause in this case comes just before theClass_header(that is to
say, beforeclass, deferred classor expanded class, but after theNotes
clause if any).

G.21  RESERVED WORDS

The following ten names could be used as identifiers in pre-3 Eiffel. They
became reserved words with Eiffel 3:

alias, all, creation, elseif, frozen, NONE, POINTER, select,
separate, strip

Table titled“The seman-
ticsofconformancereat-
tachment”,  page 598.

“OPERATOR FEA-
TURES”,  5.15, page
154.

“OBSOLETE FEA-
TURES”,5.21,page165.

AppendixL lists
reserved words. See
also, in the appendix
before the present one,
“LEXICAL AND SYN-
TACTIC CHANGES”,
F.6, page 1070.
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The following eleven, decreasing the overall count, ceased to be reserved:

(Other than not being needed any more,name may have been the worst
choice of keyword in the history of programming languages, as every Eiffel
beginner was bound to use it as identifier in a simple application, then
wonder why the compiler was complaining.) The change fromelsif to
elseifreflected the general rule that no Eiffel reserved word should use an
abbreviation, although in the absence of a proper English word for the
associated conceptelseifremains, to this day, the only reserved word in the
language that does not consist of a single English word.

Of the new Eiffel 3 reserved words listed above, several have lost their
reserved status in Eiffel 5:creation (now merged withcreate, coming back
from Eiffel 1 and 2 with a new font style),selectandstrip . Don’t use them
yet as identifiers, however, since compilers such as ISE Eiffel may still for
a while support the Eiffel 3 constructs in the sake of compatibility.

The role ofcreation in Eiffel 3 was to introduce the constructCreatorsthat
lists the creation procedures of a class. It’s simpler and clearer to use the same
keywordcreateas in creation instructions.

G.22  OTHER LEXICAL CHANGES

To improve readability of manifest number constants (integers, reals),
Eiffel 3 introduced the possibility of using underscores to delimit groups of
three digits in both the integral and (for a real constant) decimal parts. The
commas do not affect the value. For example, 62_525_300.751_6 denotes
the same value as 62525300.7516.

The representation ofspecialcharacters uses the percent sign% rather
than the backslash\.

Clone, Create, define, div, elsif, Equal, Forget, mod, name,
Nochange, repeat

ConstructsCreators,
page547,andCreation_
instruction, page551.

“INTEGER CON-
STANTS”,  29.5, page
792.; “REAL CON-
STANTS”,  29.6, page
792

“CHARACTER CON-
STANTS”,  29.7, page
793.
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An Eiffel tutorial
(in progress)

•

For a shorter introduction to Eiffel, see“An Eiffel tutorial”,  1, page 3
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Eiffel bibliography (not done)
I.1  OVERVIEW

The documents listed below describe various aspects of Eiffel: method,
language, diverse user applications, implementation, supporting tools. The
order is not chronological. A code beginning with TR- indicates a technical
report available from Interactive Software Engineering. Works without an
author indication are by the author of the present book.

Not included are the proceedings of theInternational Eiffel User
Conferences(ten sessions as of this writing, in Paris, Sydney, San Diego,
New Orleans, Ottawa, Santa Barbara, Dortmund). These collections of
articles about actual user experiences with Eiffel were distributed to
conference participants but have not been republished as yet.

I.2  BOOKS

I.3  ISE MANUALS

.zX "10" "OO" "ISBN: 0-13-629049-3"
Object-Oriented Software Construction, a book published by Prentice-
Hall. 534+xviii pages. Explains the Eiffel approach to the design and
implementation of high-quality software. !(=====17) .zX 17 RM Version
3, 1991 (=====17) \{.N1 This book.
.N2
.\}
Eiffel: The Language, a book published by Prentice-Hall. Provides a
complete description of the language. (=====20) .zX 3 GI Updated
version appears in ‘‘An Eiffel Collection’’ as ‘‘Invitation to Eiffel’’.
!(=====20) .aX 3 GIEiffel: An Introduction. Presents a brief overview of
the language and ISE’s environment. =====17 (The material is close to
chapter ==== of
.aX "7" "LI" "BOOK"
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Eiffel: The Libraries. Describes the Eiffel Libraries of reusable software
components. Revised version will be published by Prentice-Hall.
.aX "5" "UM" "BOOK"
Eiffel: The Environment. Shows how to use Eiffel in practice through the
tools of ISE’s environment (compiling, debugging, browsing). Revised
version will be published by Prentice-Hall. !(=====17) \{
.aX "4" "IM"
Eiffel Installation Instructions. Describes the procedure for installing ISE’s
tools and environment.
.\}
.aX "20" "EC" "BOOK"
An Eiffel Collection. A collection of articles, many of them previously
published in journals or conferences, about various Eiffel-related topics.
Contains some of the articles in the present list, as indicated below.
.zX "27" "TL" "ISBN: 0-13-498510-9"
Introduction to the Theory of Programming Languages, a book published
by Prentice-Hall. 448+xvi pages. Although not devoted to Eiffel, this book
on the fundamentals of programming language theory (abstract syntax,
denotational and axiomatic semantics, complementarity of methods) may
help understand many of the ideas behind Eiffel software development, in
particular assertions and typing.
.zX "14" "CO" "Version 4, 1991. (Original version, 1987.) Appears in ‘‘An
Eiffel Collection’’."
Design by Contract. Reviews the Eiffel approach to software reliability,
emphasizing assertions, disciplined exceptions and controlled inheritance.
Chapter 1 ofAdvances in Object-Oriented Software Engineering, eds.
Dino Mandrioli and Bertrand Meyer, Prentice-Hall, 1992.
.eC
From Structured Programming to Object-Oriented Design: The Road to
Eiffel. Appeared inStructured Programming, Volume 10, Number 1, pages
19-39, January 1989. A free-form discussion of the thinking that led to the
design of Eiffel.
.eC
Conversation with Editorial Board Member B.M. Appeared inJournal of
Object-Oriented Programming, Volume 2, Number 2, pages 41-42, May-
June 1989. An interview where the author explains some of the background
that led to Eiffel, and his views of the evolution of object-oriented
technology.
.eC
The New Culture of Software Development: Reflections on the Practice of
Object-Oriented Design. Appeared inTOOLS 1(Technology of Object-
Oriented Languages and Systems, Paris, November 1989), SOL, Paris,
pages 13-23, November 1989. Revised version inJournal of Object-
Oriented Programming, Volume 3, Number 4, pages 76-81, November-
December 1990; also as chapter 2 ofAdvances... (see number ====



§I.3  ISE MANUALS 1091
above). Discusses object-oriented programming as a new
\(lqcomponent\(rq culture, a radical departure from the traditional
\(lqproject\(rq culture. Addresses the managerial consequences of an
organization’s move to object-oriented technology and software reuse.
.eC
Sequential and Concurrent Object-Oriented Programming. Appeared in
TOOLS 2(Technology of Object-Oriented Languages and Systems, Paris,
23-26 June 1990), Angkor/SOL, Paris, pages 17-28, June 1990. Justifies
and describes a concurrency mechanism for Eiffel, meant to cover parallel,
coroutine, real-time, distributed and process control applications.
.eC
Tools for the New Culture: Lessons from the Design of the Eiffel Libraries.
Appeared inCommunications of the ACM, Volume 33, No. 9, pages 69-88,
September 1990. Discusses the design and implementation of the Eiffel
libraries, and general principles for developing good libraries of reusable
software components.
.eC
A Development in Eiffel: Design and Implementation of a Network
Simulator, by Cyrille Gindre and Fre\*’de\*’rique Sada. Appeared in
Journal of Object-Oriented Programming, Volume 2, Number 2, pages 27-
33, May-June 1989. A report on the experience of developing an industrial
product with Eiffel at Thomson-CSF. Includes discussion of design issues
and measures of productivity and reusability.

My Life with Eiffel, by Koichiro Yoshida; column inSoftware Design
magazine, Tokyo, appearing in every issue (monthly) since November
1989. In Japanese.
.zX "6" "RE" "Version 1.2, September 1986." "EC"
Reusability: The Case for Object-Oriented Design; appeared inIEEE
Software, March 1987. Analyzes the object-oriented approach to software
reusability, emphasizing the Eiffel approach through examples.
.zX "8" "GI" "Version 2, 1987."
Genericity versus Inheritance, Proceedings of ACM OOPSLA
Conference, Portland, Sept. 1986, SIGPLAN Notices, 21, 10, pp. 391-405;
revised version appeared inJournal of Pascal, Ada and Modula-2, 1987.
Compares the object-oriented notion of inheritance with the genericity
mechanism of Ada. Explains how the two concepts were reconciled by the
design of Eiffel.

Eiffel: Applying the Principles of Object-Oriented Design. Appeared in
Computer Language, pages 81-87, May 1988. A short introduction to
Eiffel and ISE’s environment.
.eC
Bidding Farewell to Globals. Appeared inJournal of Object-Oriented
Programming(Eiffel column), Volume 1, Number 4, pages 73-76, August-
September 1988. An explanation of why global variables, which hamper
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software quality, do not exist in Eiffel, and a presentation of Eiffel
techniques for sharing information between modules.
.eC
Harnessing Multiple Inheritance. Appeared inJournal of Object-Oriented
Programming (Eiffel column), Volume 1, Number 5, pages 48-51,
November-December 1988.
.eC
You can write, but can you type?. Appeared inJournal of Object-Oriented
Programming(Eiffel column), Volume 1, Number 6, pages 58-67, March-
April 1989. An introductory discussion of what typing means in the object-
oriented context.
.zX "18" "ST" "July 1989 (original: Jan. 1989)." "EC"
Static Typing for Eiffel. A detailed technical discussion of some of the more
intricate aspects of static typing for object-oriented programming,
explaining the design choices made in Eiffel.

Writing Correct Software. Appeared inDr. Dobb’s Journal, pages 48-
63, February 1990. An explanation of how assertion and exception
techniques can aid class correctness.
.eC
Pure Object-Oriented Programming with Eiffel. Appeared in
Programmer’s Update, pages 59-69, February 1990. An interview where
the author explains some of the key Eiffel ideas.
.zX "25" "AN" "Version 1, June 1990."
Object-Oriented Analysis: Case Studies, by Jean-Marc Nerson, Tutorial
Notes for TOOLS 2 (Technology of Object-Oriented Languages and
Systems, Paris, 23-26 June 1990). Describes an object-oriented system
analysis method. The notation is Eiffel-based.
.eC
Objective Reality, by Alan Winston. Appeared inUnix World, pages 72-75,
April 1990. Taken from an article on applications of object-oriented
programming, this extract gives the view of a company developing
telecommunication applications in Eiffel.
.eC
The Eiffel Environment. Appeared inUnix Review, Volume 6, Number 8,
pages 44-55, August 1988. Describes the tools supporting software
development in ISE’s implementation, as they existed in 1988.
.zX "33" "AT" "July 1991"
ArchiText User’s Manual. Introduces the general-purpose ArchiText
language-customizable editor, developed in Eiffel; a specialized version of
this editor exists for Eiffel itself.
.zX "19" "ET" "July 1989 (original: March 1989)."
Eiffel Types. A unified view of the type system (version 2.2).
.zX "2" "BR" "Version 2.2, January 1987."
Eiffel: A Language and Environment for Software Engineering. Appeared
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in Journal of Systems and Software, 1988. Offers a detailed introduction to
the language and ISE’s environment as they existed in 1988.
.N1
\(lqAn invitation to Eiffel\(rq is an updated version.
.N2
Eiffel: Programming for Reusability and Extendibility. Appeared inACM
SIGPLAN Notices, Volume 22, Number 2, pages 85-94, February 1987.
The first published introduction to Eiffel.

Eiffel: Object-Oriented Design for Software Engineeringby Bertrand
Meyer, Jean-Marc Nerson and Masanobu Matsuo. Appeared in
Proceedings of ESEC 87 (First European Software Engineering
Conference), Strasbourg, 8-11 September 1987, Springer-Verlag, LNCS,
Berlin-New York, 1987. An overview of the principles of Eiffel, describing
the then current state of ISE’s implementation.
.zX "28" "AD" "Version 1, December 1990"
Extending Eiffel Toward O-O Analysis and Designby Jean-Marc Nerson.
Describes an approach to software systems analysis and design, with the
associated BON graphical formalism (Better Object Notation); covers case
studies.
.zX "16" "22" "August 1989"
Release 2.2 Overview. Surveys the enhancements and extensions
introduced in release 2.2 of Eiffel (August 1989).
.zX "23" "23" "October 1990"
Release 2.3 Overview. Surveys the enhancements and extensions
introduced in release 2.3 of Eiffel (October 1990).

Object-Oriented Software Construction, Bertrand Meyer, Prentice Hall.
First edition, 1988; second, thoroughly revised and extended edition, 1997.
This is not a book about Eiffel per se but about object technology in
general, using the Eiffel approach and relying on the Eiffel notation.

Eiffel: The Language, Bertrand Meyer, Prentice Hall, 1999. This serves as
both a detailed language description and as the language reference.

Object-Oriented Applications, Prentice Hall, 1994, edited by Bertrand
Meyer and Jean-Marc Nerson, is a collection of chapters written by various
project leaders from industrial companies (CAD-CAM,
telecommunications, AI…) and describing Eiffel projects in detail: system
goals, techniques used, issues encountered, architectural decisions,
practical status.

Eiffel: An Introduction, Robert Switzer, Prentice Hall, 1993. A short and
clear presentation of Eiffel, suitable for anyone having had prior experience
in another language. Written by one of the authors of the Eiffel/S system.
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Reusable Software: The Base Object-Oriented Component Libraries,
Bertrand Meyer, Prentice Hall 1994. A discussion of library design
principles as supported by Eiffel, and their application to the EiffelBase
libraries.

Seamless Object-Oriented Software Architecture — Analysis and Design of
Reliable Systems, Kim Waldén and Jean-Marc Nerson, 1995. A lucid
description of issues and principles of object-oriented analysis and design,
using ideas close to those of Eiffel. Introduces the BON method (Business
Object Notation).

Object-Oriented Software Engineering with Eiffel, Jean-Marc Jézéquel,
Addison-Wesley, 1996. Emphasizes the application of the Eiffel method
and modern software engineering principles to the development of large,
mission-critical systems.

Software Development Using Eiffel — There Can Be Life Other than C++,
Richard Wiener, Prentice Hall, 1995. A presentation particularly aimed at
readers already familiar with another O-O language such as C++. Richard
Wiener has also written two textbooks: an introduction to computer science
and programming (An Object-Oriented Introduction to Computer Science
Using Eiffel, Prentice Hall, 1996) and its sequel, on data structures and
algorithms (Data Structures Using Eiffel, Prentice Hall, 1997).

Object Structures: Building Object-Oriented Software Components, Jacob
Gore. Addison-Wesley, 1996. Covers data structures using Eiffel with an
emphasis on abstraction, reusability and the proper use of inheritance.

Two textbooks with the same title,Object-Oriented Programming in Eiffel,
serve as introductions to programming: by Robert Rist and Robert
Terwilliger (Prentice Hall, 1995), with emphasis on software design
principles, and by Pete Thomas and Ray Weedon (Addison-Wesley, 1995),
with emphasis on data abstraction and Design by Contract.

Object Technology for Scientific Computing — Object-Oriented Numerical
Software in Eiffel and C, Paul Dubois, Prentice Hall, 1996. Describes the
application of the Eiffel method and language to numerical computation,
and the design of the EiffelMath library.

I.4  INFORMATION SOURCES

ISE’s home page athttp://eiffel.com is an extensive repository of
information about Eiffel, with numerous introductory presentations on the
technology and its application and on-line technology papers on
concurrency, multithreading, external interfaces, Eiffel projects etc. It also
includes details about the ISE Eiffel environment and its extensive set of
tools and libraries.
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PART VI: REFERENCE
This part of the book is the reference for the Eiffel language.

It contains no new material but only extracts from partII .
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J.1  INTRODUCTION

This appendix provides the full, uncommented reference for the Eiffel language. It only retains, in sectionJ.2, the
formal elements of the language definition appearing in the rest of this book:

• Definitions of technical terms and Eiffel concepts.

• Syntax specifications.

• Validity constraints (with their codes, such asVVBG).

• Semantic specifications.

The material of sectionJ.2is entirely extracted from the other chapters of this book, but discards all comment
discussions. The same material also appears, with basic explanations, in the ECMA standard for Eiffel, also ap
in this book as partVII (starting on page1161). So the text below contains no new elements, but serves as a co
and complete language reference.

Underlined terms have a precise meaning, introduced in one of the definitions.

J.2  LANGUAGE SPECIFICATION
se
ly
f it

ies)
FROM CHAPTER 2: SYNTAX, VALIDITY
AND SEMANTICS

Definition: Syntax, BNF-E 85

Syntax is the set of rules describing the structure of
software texts.

The notation used to define Eiffel’s syntax is called
BNF-E.

Definition: Component, construct, specimen 86

Any class text, or syntactically meaningful part of it,
such as an instruction, an expression or an identifier, is
called acomponent.

The structure of any kind of components is described
by aconstruct. A component of a kind described by a
certain construct is called aspecimenof that construct.

Construct Specimen convention 86

The phrase ‘‘anX’’, where X is the name of a
construct, serves as a shorthand for ‘‘aspecimen ofX’’.

Construct Name convention 86

Everyconstruct has a name starting with an upper-ca
letter and continuing with lower-case letters, possib
with underscores (to separate parts of the name i
uses several English words).

Definition: Terminal, non-terminal, token 87

Specimens of aterminal construct have no further
syntactical structure. Examples include:
• Reserved words such asif andResult.
• Manifestconstants such as the integer234; symbols

such as; (semicolon) and+ (plus sign).
• Identifiers (used to denote classes, features, entit

such asLINKED_LISTandput .
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The specimens of terminal constructs are called
tokens.
In contrast, the specimens of anon-terminal construct
are defined in terms of other constructs.

Definition: Production 89
A production is a formal description of the structure
of all specimens of anon-terminalconstruct. It has the
form

Construct=∆ right-side
whereright-sidedescribes how to obtain specimens of
theConstruct.

Kinds of production 89
A production is of one of the following three kinds,
distinguished by the form of theright-side:
• Aggregate, describing a construct whose specimens

are made of a fixed sequence of parts, some of which
may be optional.

• Choice, describing a construct having a set of given
variants.

• Repetition, describing a construct whose specimens
are made of a variable number of parts, all specimens
of a given construct.

Definition: Aggregate production 90
An aggregateright side is of the formC1 C2 ... Cn (n
> 0), where every one of theCi is aconstruct and any
contiguous subsequence may appear in square brackets
as[Ci ... Cj] for 1 ≤ i ≤ j ≤ n.
Every specimen of the corresponding construct
consists of a specimen ofC1, followed by a specimen
of C2, ..., followed by a specimen ofCn, with the
provision that for any subsequence in brackets the
corresponding specimens may be absent.

Definition: Choice production 90
A choiceright side is of the formC1 | C2 | ... |Cn (n >
1), where every one of theCi is a construct.
Every specimen of the correspondingconstruct
consists of exactly one specimen of one of theCi.

Definition: Repetition production, separator 91
A repetition right side is of one of the two forms

{C § ...}*
{C § ...} +

whereC and§ (theseparator) areconstructs.
Every specimen of the corresponding construct
consists of zero or more (one or more in the second
form) specimens ofC, each separated from the next, if
any, by a specimen of§.
The following abbreviations may be used if the
separator is empty:

C*
C+

Basic syntax description rule 93
Everynon-terminalconstruct is defined by exactly on
production.

Definition: Non-production syntax rule 94
A non-production syntax rule, marked “(non-
production)”, is a syntax property expressed outside
theBNF-E formalism.

Textual conventions 94
The syntax (BNF-E) productions and other rules of t
Standard apply the following conventions:
1 • Symbols of BNF-E itself, such as the vertical bar

signaling a choice production, appear in black (no
bold, non-italic).

2 • Any construct name appears indark green(non-
bold, non-italic), with a first letter in upper case, a
Class.

3 • Any component (Eiffel text element) appears
blue.

4 • The double quote, one of Eiffel’sspecialsymbols,
appears in productions as '" ': a double quote
character (blue like other Eiffel text) enclosed in tw
single quote characters (black since they belong
BNF-E, not Eiffel).

5 • All other special symbols appear in double quote
for example a comma as ",", an assignment symbo
as ":=", a single quote as "'" (double quotes black,
single quote blue).

6 • Keywords and otherreservedwords, such asclass
and Result, appear inbold (blue like other Eiffel
text). They do not require quotes since th
conventions avoid ambiguity with construct name
Class is the name of a construct,classa keyword.

7 • Examples of Eiffel comment text appear in non
bold, non-italic (and in blue), as-- A comment.

8 • Other elements of Eiffel text, such as entities a
feature names (including in comments) appear
non-bolditalic (blue).

The color-related parts of these conventions do n
affect the language definition, which remain
unambiguous under black-and-white printing (than
to the letter-case and font parts of the convention
Color printing is recommended for readability.

-- Update the value ofvalue.
Definition: Validity constraint 96

A validity constraint on aconstruct is a requiremen
that every syntactically well-formedspecimen of the
construct must satisfy to be acceptable as part o
software text.

Definition: Valid 97
A constructspecimen, built according to the synta
structure defined by the construct’s production, is sa
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to be valid, and will be accepted by thelanguage
processingtools of any Eiffel environment, if and only
if it satisfies thevalidity constraints, if any, applying to
the construct.

Validity: General Validity rule VBGV 98

Every validity constraint relative to aconstruct is
considered to include an implicit supplementary
condition stating that everycomponent of the construct
satisfies every validity constraint applicable to the
component.

Definition: Semantics 99

The semantics of a construct specimen that is
syntactically legal andvalid is the construct’s effect on
the execution of a system that includes the specimen.

Definition: Execution terminology 101

• Run time is the period during which asystem is
executed.

• Themachineis the combination of hardware (one or
more computers) and operating system through
which you can execute systems.

• The machine type, that is to say a certain
combination of computer type and operating system,
is called aplatform .

• Language processing tools serve to build,
manipulate, explore and execute the text of an Eiffel
system on a machine.

Semantics: Case Insensitivity principle 102

In writing the letters of anIdentifier serving as name
for a class, feature or entity, or areservedword, using
the upper-case or lower-case versions has no effect on
the semantics.

Definition: Upper name, lower name 102

The upper name of an Identifier or Operatori is i
written with all letters in upper case; itslower name, i
with all letters in lower case.

Syntax (non-production): Semicolon Optionality rule
103

In writing specimens ofany construct defined by a
Repetition production specifying the semicolon ";" as
separator, it is permitted, without any effect on the
syntax structure, validity and semantics of the
software, to omit any of the semicolons, or to add a
semicolon after the last element.

FROM CHAPTER 3: THE
ARCHITECTURE OF EIFFEL
SOFTWARE

Definition: Cluster, subcluster, contains directly,
contains 108

A cluster is a collection of classes, (recursively) othe
clusters called itssubclusters, or both. The cluster is
said tocontain directly these classes and subcluster
A cluster contains a classC if it contains directly
eitherC or a cluster that (recursively) containsC.

Definition: Terminal cluster, internal cluster 109
A cluster isterminal if it contains directly at least one
class.
A cluster is internal if it contains at least one
subcluster.

Definition: Universe 110
A universe is a set of classes.

Syntax: Class names 110

Class_name=∆ Identifier

Validity: Class Name rule VSCN 111

It is valid for auniverse to include a class if and only i
no other class of the universe has the same upper na

Semantics: Class name semantics 111
A Class_nameC appearing in the text of a classD
denotes the class calledC in the enclosinguniverse.

Definition: System, root type name, root procedure
name 111

A system is defined by the combination of:
1 • A universe.
2 • A type name, called theroot type name.
3 • A feature name, called theroot procedure name.

Definition: Type dependency 112
A type T dependson a typeR if any of the following
holds:
1 • R is aparent of thebase classC of T.
2 • T is aclient ofR.
3 • (Recursively) there is a typeSsuch thatT depends

onS andSdepends onR.

Validity: Root Type rule VSRT112

It is valid to designate a typeTN as root type of a
system of universeU if and only if it satisfies the
following conditions:
1 • TN is the name of astand-alone typeT.
2 • T only involves classes inU.
3 • T’s base class is notdeferred.
4 • The base class of any type on whichT depends is in

U.
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Validity: Root Procedure rule VSRP113

It is valid to specify a namepnasrootprocedure name
for a systemS if and only if it satisfies the following
conditions:
1 • pn is the name of acreationprocedurep of S’s root

type.
2 • p has no formal argument.
3 • p is precondition-free.

Definition: Root type, root procedure, root class 114
In asystemSof root type nameTNand root procedure
namepn, theroot type is the type of nameTN, theroot
classis thebaseclass of that root type, and theroot
procedure is the procedure of namepn in that class.

Semantics: System execution 114
To executea system on amachine means to cause the
machine to apply a creation instruction to the system’s
root type.

FROM CHAPTER 4: CLASSES
Definition: Current class 117

Thecurrent classof a constructspecimen is the class
in which it appears.

Syntax: Class declarations 119

Class_declaration=∆ [Notes]
Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end

Syntax: Notes 123

Notes=∆ noteNote_list
Note_list=∆ {Note_entry";" …}*
Note_entry=∆ Note_name Note_values
Note_name=∆ Identifier ":"
Note_values=∆ {Note_item ","…}+

Note_item=∆ Identifier |Manifest_constant
Semantics: Notes semantics 124

A Notespart has no effect onsystem execution.
Syntax: Class headers 124

Class_header=∆ [Header_mark] classClass_name
Header_mark=∆ deferred |expanded| frozen

Validity: Class Header rule VCCH 126

A Class_headerappearing in the text of a classC is
valid if and only if has either nodeferredfeatureor a
Header_mark of thedeferred form.

Definition: Expanded, frozen, deferred, effective
class 127

A class is:
• Expanded if its Class_headeris of the expanded

form.
• Frozen if its Class_headeris of the frozen or

expanded form.
• Deferred if its Class_headeris of thedeferred form.
• Effective if it is not deferred.

Syntax: Obsolete marks 129

Obsolete=∆ obsoleteMessage
Message=∆ Manifest_string

Semantics: Obsolete semantics 129
Specifying anObsoletemark for a class or feature ha
no run-time effect.
When encountering such a mark,languageprocessing
tools may issue a report, citing the obsolescen
Messageand advising software authors to replace t
class or feature by a newer version.

FROM CHAPTER 5: FEATURES
Definition: Inherited, immediate; origin;
redeclaration; introduce 133

Any featuref of a classC is of one of the following two
kinds:
1 • If C obtains f from one of its parents,f is an

inherited feature ofC. In this case any declaration o
f in C (adapting the original properties off for C) is a
redeclaration.

2 • If a declaration appearing inC applies to a feature
that is not inherited, the feature is said to b
immediate in C. Then C is the origin (short for
“class of origin”) off, and is said tointroduce f.

Syntax: Feature parts 137

Features=∆ Feature_clause+

Feature_clause=∆ feature [Clients] [Header_comment]
Feature_declaration_list

Feature_declaration_list=∆ {Feature_declaration ";" …}*
Header_comment=∆ Comment

Feature categories: overview 138
Every feature of a class is either anattribute or a
routine.
An attribute is eitherconstant or variable.
A routine is either aprocedure or afunction.

Syntax: Feature declarations 141

Feature_declaration=∆ New_feature_list Declaration_body
Declaration_body=∆ [Formal_arguments] [Query_mark]

[Feature_value]
Query_mark=∆  Type_mark[Assigner_mark]
Type_mark=∆ ":" Type
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Feature_value=∆ [Explicit_value]
[Obsolete]
[Header_comment]
[Attribute_or_routine]

Explicit_value=∆ "=" Manifest_constant
Syntax: New feature lists 141

New_feature_list=∆ {New_feature "," …}+

New_feature=∆ [frozen] Extended_feature_name
Syntax: Feature bodies 143

Attribute_or_routine=∆ [Precondition]
[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end

Feature_body=∆ Deferred |Effective_routine|Attribute
Validity: Feature Body rule VFFB 144

A Feature_valueis valid if and only if it satisfies one of
the following conditions:
1 • It has an Explicit_value and no

Attribute_or_routine.
2 • It has anAttribute_or_routinewith aFeature_body

of theAttribute kind.
3 • It has no Explicit_value and has an

Attribute_or_routinewith a Feature_bodyof the
Effective_routinekind, itself of the Internal kind
(beginning withdo or once).

4 • It has no Explicit_value and has an
Attribute_or_routine with neither a
Local_declarationsnor a Rescue part, and a
Feature_body that is either Deferred or an
Effective_routine of theExternal kind.

Definition: Variable attribute 145
A Feature_declarationis a variable attribute
declaration if and only if it satisfies the following
conditions:
1 • There is noFormal_arguments part.
2 • There is aQuery_mark part.
3 • There is noExplicit_value part.
4 • If there is a Feature_valuepart, it has an

Attribute_or_routinewith a Feature_bodyof the
Attributekind.

Definition: Constant attribute 146
A Feature_declarationis a constant attribute
declaration if and only if it satisfies the following
conditions:
1 • It has noFormal_arguments part.
2 • It has aQuery_mark part.
3 • There is a Feature_valuepart including an

Explicit_value.

Definition: Routine, function, procedure 147

A Feature_declarationis a routine declaration if and
only if it satisfies the following condition:
• There is a Feature_value including an

Attribute_or_routine, whoseFeature_bodyis of the
Deferredor Effective_routinekind.

If a Query_markis present, the routine is afunction;
otherwise it is aprocedure.

Definition: Command, query 148

A command is aprocedure. Aquery is anattribute or
function.

Definition: Signature, argument signature of a
feature 149

Thesignature of a featuref is a pairargument_types,
result_typewhereargument_typesandresult_typeare
the following sequences of types:
• For argument_types: if f is a routine, the possibly

empty sequence of its formal argument types, in t
order of the arguments; iff is anattribute, an empty
sequence.

• For result_type: if f is a query, a one-element
sequence, whose element is the type off; if f is a
procedure, an empty sequence.

The argument_typespart is the feature’sargument
signature.

Feature principle 150

Every feature has an associated identifier.
Any valid call (qualified orunqualified) to the feature
can be expressed through this identifier.

Syntax: Feature names 151

Extended_feature_name=∆ Feature_name [Alias]
Feature_name=∆ Identifier
Alias=∆ alias '" ' Alias_name'" ' [convert]
Alias_name=∆ Operator |Bracket
Bracket=∆ "[]"

Syntax (non-production): Alias Syntax rule 151

TheAlias_nameof anAlias must immediately follow
and precede the enclosing double quote symbols, w
no interveningcharacters (in particular nobreaks).
When appearing in such anAlias_name, the two-word
operatorsand then andor elsemust be written with
exactly one space (but no other characters) between
two words.

Definition: Operator feature, bracket feature,
identifier-only 152

A feature is an operator feature if its
Extended_feature_namefn includes anOperatoralias,
a bracket feature if fn includes aBracketalias. It is
identifier-only if neither of these cases applies.
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Definition: Identifier of a feature name 153
The Identifier that starts aExtended_feature_nameis
called theidentifier of that Extended_feature_name
and, by extension, of the associated feature.
Given a classC and an identifierf, C contains at most
one featureof identifierf.

Definition: Same feature name, same operator, same
alias 153

Two feature names are considered to be “the same
feature name” if and only if their identifiers have
identicallower names.
Two operators are “the same operator” if they have
identical lower names.
An Alias in an Extended_feature_nameis “the same
alias” as another if and only if they satisfy the
following conditions:
• They are either the sameOperatoror bothBracket.
• If either has aconvert mark, so does the other.

Syntax: Operators 154

Operator=∆ Unary |Binary
Unary=∆ not | "+" | "–" |Free_unary
Binary=∆ "+" | "–" | "*" | "/" | "//" | "\\" | "^" | ".." |

"<" | ">" | "<=" | ">=" |
and |or |xor |and then |or else | implies |
Free_binary

Syntax: Assigner marks 155

Assigner_mark=∆ assign Feature_name

Validity: Assigner Command rule VFAC 156

An Assigner_markappearing in the declaration of a
query q with n arguments (n ≥ 0) and listing a
Feature_namefn, called theassigner commandfor q,
is valid if and only if it satisfies the following
conditions:
1 • fn is theidentifier of acommandc of the class.
2 • c hasn + 1 arguments.
3 • The type ofc’s first argument and the result type of

q have the same deanchored form.
4 • For everyi in 1..n, the type of thei+1-st argument

of c and the type of thei-th argument ofq have the
same deanchored form.

Definition: Synonym 159
A synonymof a feature of a classC is a feature with a
different Extended_feature_namesuch that both
names appear in the sameNew_feature_listof a
Feature_declaration of C.

Definition: Unfolded form of a possibly multiple
declaration 159

The unfolded form of a Feature_declarationlisting
one or more feature names, as in:

f1, f2, … , fn declaration_body (n
≥ 1)
where eachfi is a New_feature, is the corresponding
sequence of declarations naming only one featu
each, and with identical declaration bodies, as in:

f1 declaration_body
f2 declaration_body
...
fn declaration_body

Validity: Feature Declaration rule VFFD 162

A Feature_declarationappearing in a classC is valid if
and only if it satisfies all of the following conditions fo
every declaration of a featuref in its unfolded form:
1 • The Declaration_bodydescribes a feature which

according to the rules given earlier, is one of:variable
attribute,constant attribute,procedure,function.

2 • f does not have thesamefeaturename as any other
feature introduced in C (in particular, any other
feature of the unfolded form).

3 • If f has the same feature name as thefinal name of
any inherited feature, theDeclaration_bodysatisfies
the Redeclaration rule.

4 • If the Declaration_bodydescribes adeferred
feature, then theExtended_feature_nameof f is not
preceded byfrozen.

5 • If the Declaration_bodydescribes aoncefunction,
the result type isstand-alone.

6 • Any anchored type for an argument isdetachable.
7 • TheAlias clause, if present, isalias-valid for f.

Validity: Alias Validity rule VFAV 163

An Alias clause isalias-valid for a featuref of a class
C if and only if it satisfies the following conditions:
1 • If it lists anOperatorop: f is aquery; no other query

of C has anOperatoralias using thesameoperator
and the same number of arguments; and either:op is
aUnaryandf has no argument, orop is aBinaryand
f has one argument.

2 • If it lists a Bracketalias: f is a query with at least
one argument, and no other feature ofChas aBracket
alias.

3 • If it includes aconvert mark: it lists anOperator
andf has one argument.

FROM CHAPTER 6: THE INHERITANCE
RELATION

Syntax: Inheritance parts 171

Inheritance=∆ Inherit_clause+

Inherit_clause=∆ inherit  [Non_conformance] Parent_list
Non_conformance=∆ "{" NONE "}"
Parent_list=∆ {Parent ";" …}+
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Parent=∆ Class_type[Feature_adaptation]
Feature_adaptation=∆ [Undefine]

[Redefine]
[Rename]
[New_exports]
[Select]
end

Syntax (non-production): Feature adaptation 171
A Feature_adaptationpart must include at least one of
the optional components.

Definition: Parent part for a type, for a class 171
If a Parent part p of an Inheritance part lists a
Class_typeT, p is said to be aParentpartfor T, and also
for thebase class ofT.

Validity: Class ANYrule VHCA 173

Everysystem must include a non-generic class called
ANY.

Validity: Universal Conformance principleVHUC 173

Every type conforms toANY.
Definition: Unfolded Inheritance Part of a class 174

Any class C has an Unfolded Inheritance Part
defined as follows:
1 • If C has anInheritancepart: that part.
2 • Otherwise: anInheritancepart of the forminherit

ANY.
Definition: Multiple, single inheritance 175

A class hasmultiple inheritance if it has anUnfolded
InheritancePart with two or moreParentparts. It has
single inheritanceotherwise.

Definition: Inherit, heir, parent 176
A classC inherits from a type or classB if and only if
C’s Unfolded InheritancePart contains aParentpart
for B.
B is then aparent of C (“parent type” or “parent class”
if there is any ambiguity), andC an heir (or “heir
class”) ofB. Any type ofbaseclassC is also an heir of
B (“heir type” in case of ambiguity).

Definition: Conforming, non-conforming parent 176
A parentB in anInheritancepart isnon-conforming if
and only if everyParentpartfor B in the clause appears
in anInherit_clausewith a Non_conformancemarker.
It is conforming otherwise.

Definition: Ancestor types of a type, of a class 177
The ancestor typesof a type CT of baseclass C
include:
1 • CT itself.
2 • (Recursively) The result of applyingCT’s generic

substitution to the ancestor types of everyparenttype
for C.

The ancestor types of aclassare the ancestor types o
its currenttype.

Definition: Ancestor, descendant 177
ClassA is anancestorof classB if and only if A is the
base class of anancestor type ofB.
ClassB is adescendantof classA if and only if A is an
ancestor ofB.

Definition: Proper ancestor, proper descendant 177
The proper ancestorsof a classC are itsancestors
other thanC itself. Theproper descendantsof a class
B are itsdescendants other thanB itself.

Validity: Parent rule VHPR 178

TheUnfoldedInheritancePart of a classD is valid if
and only if it satisfies the following conditions:
1 • In every Parent part for a classB, B is not a

descendant ofD.
2 • Noconforming parent is afrozen class.
3 • If two or moreParentparts are for classes which

have a common ancestorA, D meets the conditions of
the RepeatedInheritanceConsistency constraint for
A.

4 • At least one of theParent parts isconforming.
5 • No two ancestor types ofD are differentgeneric

derivations of the same class.
6 • EveryParent is generic-creation-ready.

Syntax: Rename clauses 183

Rename=∆ renameRename_list
Rename_list=∆ {Rename_pair "," …}+

Rename_pair=∆ Feature_nameasExtended_feature_name
Validity: Rename Clause rule VHRC 185

A Rename_pairof the formold_nameas new_name,
appearing in theRenamesubclause of theParentpart
for B in a classC, is valid if and only if it satisfies the
following conditions:
1 • old_name is thefinal name of a featuref of B.
2 • old_namedoes not appear as the first element

any other Rename_pair in the same Rename
subclause.

3 • new_name satisfies theFeature Name rule forC.
4 • TheAliasof new_name, if present, isalias-valid for

the version off in C.
Semantics: Renaming principle 185

Renaming does not affect the semantics of aninherited
feature.

Definition: Final name, extended final name, final
name set 186

Every featuref of a classC has anextended final
name in C, an Extended_feature_name, and afinal
name, aFeature_name, defined as follows:
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1 • The final name is theidentifierof the extended final
name.

2 • If f is immediate inC, its extended final name is the
Extended_feature_nameunder whichC declares it.

3 • If f is inherited,f is obtained from a feature of a
parent B of C. Let extended_parent_namebe
(recursively) the extended final name of that feature
in B, andparent_nameits final name off in B. Then
the extended final name off in C is:

• If the Parentpart forB in C contains aRename_pair
of the form rename parent_nameas new_name:
new_name.

• Otherwise:extended_parent_name.
The final names of all the features of a class constitute
thefinal name setof a class.

Definition: Inherited name 186

The inherited name of a feature obtained from a
featuref of a parentB is thefinal name off in B.

Definition: Declaration for a feature 188

A Feature_declarationin a class C, listing a
Feature_namefn, is adeclaration for a featuref if and
only if fn is thefinal name off in C.

FROM CHAPTER 7: CLIENTS AND
EXPORTS

Definition: Client relation between classes and types
192

A classC is aclient of a typeS if someancestor ofC
is asimpleclient, anexpandedclient or agenericclient
of S.

Definition: Client relation between classes 193

A classC is aclient of a classB if and only if C is a
client of a type whosebase class isB.
The same convention applies to thesimple client,
expanded client andgeneric client relations.

Definition: Supplier 193

A type or classS is a supplier of a classC if C is a
client of S, with corresponding variants: simple,
expanded, generic, indirect.

Definition: Simple client 194

A classC is asimple clientof a typeSif, in C, Sis the
type of some entity or expression or the
Explicit_creation_typeof a Creation_instruction, or is
one of theConstraining_typesof a formal generic
parameter ofC, or is involved in the Type of a
Non_object_callor of aManifest_type.

Definition: Expanded client 196

A classC is anexpanded clientof a typeS if S is an
expanded type and some attribute ofC is of typeS.

Definition: Generic client, generic supplier 199
A classC is a generic client of a typeS if for some
generically derived typeT of the formB […, S, …] one
of the following holds:
1 • C is aclient ofT.
2 • T is aparent type of anancestor ofC.

Definition: Indirect client 200
A classA is anindirect client of a typeSof baseclass
B if there is a sequence of classesC1 = A, C2, …, Cn =
B such thatn > 2 and everyCi is aclient of Ci+1 for 1
≤ i < n.
The indirect forms of thesimpleclient,expandedclient
andgeneric client relations are defined similarly.

Definition: Client set of aClients part 207
Theclient setof aClientspart is the set ofdescendants
of every class of theuniverse whose name it lists.
By convention, the client set of an absentClientspart
includes all classes of the system.

Syntax: Clients 208

Clients=∆ "{" Class_list "}"
Class_list=∆ {Class_name "," …}+

Syntax: Export adaptation 209

New_exports=∆ export New_export_list
New_export_list=∆ {New_export_item ";" …}+

New_export_item=∆ Clients[Header_comment]
Feature_set

Feature_set=∆ Feature_list |all
Feature_list=∆ {Feature_name "," …}+

Validity: Export List rule VLEL 210

A New_exportsclause appearing in classC in aParent
part for a parentB, of the form
export

{ class_list1}  feature_set1
…
{ class_listn}  feature_setn

is valid if and only if for everyfeature_seti (for i in the
interval1..n) that is aFeature_list (rather thanall):
1 • Every element of the list is thefinal name of a

feature ofC inherited fromB.
2 • No featurename appears more than once in a

such list.
Definition: Client set of a feature 210

Theclient setof a featuref of a classC, of final name
fname, includes the following classes (for all cases th
match):
1 • If f is introduced orredeclared inC: theclientset of

theFeature_clause of thedeclaration forf in C.
2 • If f is inherited: the union of the client set

(recursively) of all itsprecursors fromconforming
parents.
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3 • If the Feature_setof one or moreNew_exports
clauses ofC includesfnameor all, the union of the
client sets of theirClientsparts.

Definition: Available for call, available 211
A featuref is available for call, or justavailable for
short, to a classC or to a typebasedon C, if and only
if C belongs to theclient set off.

Definition: Exported, selectively available, secret211
The export status of a feature of a class is one of the
following:
1 • The feature may beavailableto all classes. It is said

to beexported, orgenerally available.
2 • The feature may be available to specific classes

(other thanNONEandANY) only. In that case it is
also available to thedescendants of all these classes.
Such a feature is said to beselectively availableto
the given classes and their descendants.

3 • Otherwise the feature is available only toNONE. It
is then said to besecret.

Definition: Secret, public 214
A property of a class text issecret if and only if it
involves any of the following, describing information
on which client classes cannot rely to establish their
correctness:
1 • Any feature that is notavailable to the given client,

unless this is overridden by the next case.
2 • Any feature that is notavailablefor creation to the

given client, unless this is overridden by the previous
case.

3 • The body and rescue clause of any feature, except
for the information that the feature is external or
Once and, in the last case, its once keys if any.

4 • For aquery withoutformalarguments, whether it is
implemented as anattribute or afunction, except for
the information that it is aconstant attribute.

5 • Any Assertion_clausethat (recursively) includes
secret information.

6 • Any parentpart for a non-conformingparent (and
as a consequence the very presence of that parent).

7 • The information that a feature is frozen.
Any property of a class text that is not secret ispublic.

Definition: Incremental contract view, short form215
The incremental contract view of a class, also called
its short form , is a text with the same structure as the
class but retaining onlypublic properties.

Definition: Contract view, flat-short form 216
Thecontract view of a class, also called itsflat-short
form , is a text following the same conventions as the
incremental contract view form but extended to
include information aboutinherited as well as

immediate features, the resultingcombined
preconditionsand postconditions and theunfolded
form of the class invariant including inherited clauses

FROM CHAPTER 8: ROUTINES
Definition: Formal argument, actual argument 219

Entities declared in a routine to represent informati
passed by callers are the routine’sformal arguments.
The corresponding expressions in a particular call
the routine are the call’sactual arguments.

Syntax: Formal argument and entity declarations
220

Formal_arguments=∆ "(" Entity_declaration_list ")"
Entity_declaration_list=∆ {Entity_declaration_group ";"

…}+

Entity_declaration_group=∆ Identifier_list Type_mark
Identifier_list=∆ { Identifier "," …}+

Validity: Formal Argument rule VRFA 220

Let fa be theFormal_argumentspart of a routiner in a
classC. Let formals be the concatenation of ever
Identifier_listof everyEntity_declaration_groupin fa.
Thenfa is valid if and only if noIdentifiereappearing
in formals is thefinal name of a feature ofC.

Validity: Entity Declaration rule VRED 221

Let el be anEntity_declaration_list. Let identifiersbe
the concatenation of everyIdentifier_list of every
Entity_declaration_groupin el. Thenel is valid if and
only if no Identifierappears more than once in the lis
identifiers.

Syntax: Routine bodies 222

Deferred=∆ deferred
Effective_routine=∆ Internal |External
Internal=∆ Routine_mark Compound
Routine_mark=∆ do |Once
Once=∆ once[ "("Key_list")" ]
Key_list=∆ {Manifest_string "," …}+

Definition: Once routine, once procedure, once
function 223

A once routine is an Internal routine r with a
Routine_mark of theOnce form.
If r is aprocedure it is also aonce procedure; if r is a
function, it is also aonce function.

Syntax: Local variable declarations 225

Local_declarations=∆ local [Entity_declaration_list]
Validity: Local Variable rule VRLV 226

Let ld be theLocal_declarationspart of a routiner in a
class C. Let locals be the concatenation of ever
Identifier_listof everyEntity_declaration_groupin ld.
Thenld is valid if and only if everyIdentifiere in locals
satisfies the following conditions:
1 • No feature ofC hase as itsfinal name.
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2 • No formal argument ofr hase as itsIdentifier.
Definition: Local variable 226

The local variables of a routine include allentities
declared in itsLocal_declarationspart, if any, and, if it
is a query, the predefined entityResult.

Syntax: Instructions 228

Compound=∆ { Instruction ";" …}*
Instruction=∆ Creation_instruction |Call | Assignment |

Assigner_call|Conditional|Multi_branch|Loop|Debug
|Precursor|Check |Retry

FROM CHAPTER 9: CORRECTNESS AND
CONTRACTS

Syntax: Assertions 232

Precondition=∆ require [else] Assertion
Postcondition=∆ ensure [then] Assertion[Only]
Invariant=∆ invariant Assertion
Assertion=∆ {Assertion_clause ";" …}*
Assertion_clause=∆ [Tag_mark]

Unlabeled_assertion_clause
Unlabeled_assertion_clause=∆ Boolean_expression |

Comment
Tag_mark=∆ Tag ":"
Tag=∆ Identifier

Syntax (non-production): Assertion Syntax rule 233
An Assertionwithout aTag_markmay not begin with
any of the following:
1 • An opening parenthesis "(".
2 • An opening bracket "[".
3 • A non-keywordUnaryoperator that is alsoBinary.

Definition: Precondition, postcondition, invariant 234
The precondition andpostcondition of a feature, or
the invariant of a class, is theAssertion of,
respectively, the corresponding Precondition,
Postconditionor Invariant clause if present and non-
empty, and otherwise the assertionTrue.

Definition: Contract, subcontract 236
Let preandpostbe the precondition and postcondition
of a featuref. Thecontract of f is the pair of assertions
[pre, post].
A contract [pre’, post’] is said to be asubcontract of
[pre, post] if and only if pre implies pre’ and post’
impliespost.

Validity: Precondition Export rule VAPE 237

A Preconditionof a featurer of a classSis valid if and
only if every feature f appearing in every
Assertion_clauseof its unfoldedform u satisfies the
following two conditions for every classC to which r
is available:
1 • If f appears asfeatureof a call in u or any of its

subexpressions,f is available toC.

2 • If u or any of its subexpressions usesf as creation
procedure of aCreation_expression, f is availablefor
creation toC.

Definition: Availability of an assertion clause 238
An Assertion_clausea of a routinePreconditionor
Postconditionis available to a classB if and only if all
the features involved in the Equivalent Dot Form ofa
areavailable toB.

Syntax: “Old” postcondition expressions 239

Old=∆ old Expression
Validity: Old Expression rule VAOX 239

An Old expressionoeof the formold e is valid if and
only if it satisfies the following conditions:
1 • It appears in aPostcondition partpostof a feature.
2 • It does not involveResult.
3 • Replacing oe by e in post yields a valid

Postcondition.
Semantics: Old Expression Semantics, associated
variable, associated exception marker 240

The effect of including anOld expressionoe in a
Postconditionof aneffective featuref is equivalent to
replacing the semantics of itsFeature_bodyby the
effect of a call to a fictitious routine possessing a loc
variableav, called theassociated variableof oe, and
semantics defined by the following succession of ste
1 • Evaluateoe.
2 • If this evaluationtriggers anexception, record this

event in anassociated exception marker for oe.
3 • Otherwise, assign the value ofoe to av.
4 • Proceed with the original semantics.

Semantics: Associated Variable Semantics 241
As part of the evaluation of a postcondition clause, t
evaluation of the associatedvariable of an Old
expression:
1 • Triggers anexception oftype OLD_EXCEPTION

if an associatedexceptionmarker has been recorded
2 • Otherwise, yields the value to which the variab

has been set.
Syntax: “Only” postcondition clauses 242

Only=∆ only [Feature_list]
Validity: Only Clause rule VAON 243

An Only clause appearing in aPostconditionof a
feature of a classC is valid if and only if every
Feature_nameqn appearing itsFeature_listif any
satisfies the following conditions:
1 • There is no other occurrenceof qn in that

Feature_list.
2 • qn is the final name of aquery q of C, with no

arguments.



FROM CHAPTER 9: CORRECTNESS AND CONTRACTS 1107

he

e

or

ny

e

3 • If C redeclaresf from aparentB, q is not a feature
of B.

Definition: Unfolded feature list of anOnly clause244
Theunfolded feature list of anOnly clause appearing
in a Postconditionof a featuref in a classC is the
Feature_listcontaining:
1 • All the featurenames appearing in itsFeature_list

if any.
2 • If f is theredeclaration of one or more features, the

final names inC of all the features whose names
appear (recursively) in theirunfolded Only clauses.

Definition: Unfolded Only clause 244
Theunfolded Only clauseof a featuref of a classC is
a sequence ofAssertion_clausecomponents of the
following form, one for every argument-less queryq of
C that does not appear in theunfoldedfeaturelist of the
Only clause of itsPostcondition if any:

q = (old q)
Definition: Hoare triple notation (total correctness)
247

In definitions of correctness notions for Eiffel
constructs, the notation{ P} A { Q} (a mathematical
convention, not a part of Eiffel) expresses that any
execution of theInstructionor CompoundA started in
a state of the computation satisfying the assertionP
will terminate in a state satisfying the assertionQ.

Semantics: Class consistency 247
A classC is consistent if and only if it satisfies the
following conditions:
1 • For everycreation procedurep of C:

{ prep} dop { INVC and thenpostp} 247
2 • For every featuref of C exported generally or

selectively:
{ INVC and thenpref} dof { INVC and then

postf}
whereINVC is theinvariant ofC and, for any featuref,
pref is theunfoldedform of the precondition off, postf
the unfolded form of its postcondition, anddof its body.

Syntax: Check instructions 249

Check=∆ checkAssertion [Notes] end
Definition: Check-correct 250

An effective routiner is check-correct if, for every
Checkinstructionc in r, any execution ofc (as part of
an execution ofr) satisfies itsAssertion.

Syntax: Variants 251

Variant=∆ variant [Tag_mark] Expression
Validity: Variant Expression rule VAVE 251

A Variantis valid if and only if itsvariantexpression is
of typeINTEGER or one of itssized variants.

Definition: Loop invariant and variant 251
The Assertionintroduced by theInvariantclause of a
loop is called its loop invariant . The Expression
introduced by theVariant clause is called itsloop
variant .

Definition: Loop-correct 252
A routine isloop-correct if every loop it contains, with
loop invariant INV, loop variant VAR, Initialization
INIT, Exit conditionEXIT and body (Compoundpart
of the Loop_body) BODY, satisfies the following
conditions:
1 • { true}  INIT { INV}
2 • { true}  INIT { VAR≥ 0}
3 • { INV and then not EXIT}  BODY{ INV}
4 • { INV and then not EXIT and then (VAR = v)}

BODY{ 0 ≤ VAR < v}
Definition: Correctness (class) 253

A class iscorrect if and only if it is consistent and
every routine of the class ischeck-correct,loop-correct
andexception-correct.

Definition: Local unfolded form of an assertion 254
The local unfolded form of an assertiona — a
Boolean_expression— is theEquivalentDot Form of
the expression that would be obtained by applying t
following transformations toa in order:
1 • Replace anyOnly clause by the corresponding

unfolded Only clause.
2 • Replace anyOld expression by itsassociated

variable.
3 • Replace any clause of theComment form byTrue.

Semantics: Evaluation of an assertion 255
To evaluate an assertion consists of computing th
value of itsunfolded form.

Semantics: Assertion monitoring 256
The execution of an Eiffel system may evaluate,
monitor, specific kinds of assertion, and loopvariants,
at specific stages:
1 • Precondition of a routiner: on starting a call tor,

after argument evaluation and prior to executing a
of the instructions inr’s body.

2 • Postcondition of a routiner: on successful (not
interrupted by an exception) completion of a call tor,
after executing any applicable instructions ofr.

3 • Invariant of a classC: on both start and termination
of aqualifiedcall to a routine ofC.

4 • Invariant of a loop: after execution of the
Initialization, and after every execution (if any) of th
Loop_body.

5 • Assertion in aCheckinstruction: on any execution
of that instruction.
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6 • Variant of a loop: as with the loop invariant.

Semantics: Assertion violation 256

An assertion violationis the occurrence at run time, as
a result of assertion monitoring, of any of the
following:
• An assertion (in the strict sense of the term)

evaluating to false.
• A loop variant found to be negative.
• A loop variant found, after the execution of a

Loop_body, to be no less than in its previous
evaluation.

Semantics: Assertion semantics 257

In the absence of assertion violations, assertions have
no effect on system execution other than through their
evaluation as a result ofassertion monitoring.
An assertion violation causes anexception of type
ASSERTION_VIOLATION or one of itsdescendants.

Semantics: Assertion monitoring levels 258

An Eiffel implementation must provide facilities to
enable or disable assertion monitoring according to
some combinations of the following criteria:
• Statically (at compile time) or dynamically (at run

time).
• Through control information specified within the

Eiffel text or through outside elements such as a user
interface or configuration files.

• For specific kinds as listed in the definition of
assertion monitoring: routine preconditions, routine
postconditions, class invariants, loop invariants,
Check instructions, loop variants.

• For specific classes, specific clusters, or the entire
system.

The following combinations must be supported:
1 • Statically disable all monitoring for the entire

system.
2 • Statically enable precondition monitoring for an

entire system.
3 • Statically enable precondition monitoring for

specified classes.
4 • Statically enable all assertion monitoring for an

entire system.

FROM CHAPTER 10: FEATURE
ADAPTATION

Definition: Redeclare, redeclaration 263

A classredeclaresaninheritedfeature if itredefines or
effects it.
A declarationfor a featuref is aredeclaration of f if it
is either aredefinition or aneffecting off.

Definition: Unfolded form of an assertion 287
Theunfolded form of an assertiona of localunfolded
form ua in a class C is the following
Boolean_expression:
1 • If a is the invariantof C andC hasn parents for

somen ≥ 1: up1 and … and upn and thenua, where
up1, … upn are (recursively) the unfolded forms o
the invariants of theseparents, after application o
any feature renaming specified byC’s corresponding
Parent clauses.

2 • If a is thepreconditionof aredeclared featuref: the
combined precondition fora.

3 • If a is thepostconditionof a redeclared featuref:
thecombined postcondition fora.

4 • In all other cases:ua.
Definition: Assertion extensions 288

For a featuref of a classC:
• If C redeclaresf with a non-emptyPrecondition

(starting with require else), the precondition
extensionof f in C is the correspondingAssertion.

• If C redeclaresf with a non-emptyPostcondition
(starting with ensure then), the postcondition
extensionof f in C is the correspondingAssertion.

In all other cases, the precondition extension off in C
is False and the postcondition extension off in C is
True.

Definition: Covariance-aware form of an assertion
extension 289

Thecovariance-aware formof aninheritedassertion
a is:
1 • If the enclosing routine has one or more argume

x1, … xn redefinedcovariantly to typesU1, … Un: the
assertion

({ x1: U1} y1 and … and { xn: Un} yn ) and then
a’
wherey1, … yn are fresh names anda’ is the result of
substitutingyi for each correspondingxi in a.

2 • Otherwise:a.
Definition: Combined precondition, postcondition
289

Consider a featuref redeclared in a classC. Let f1, …
fn (n ≥ 1) be itsversions inparents,pre1, … pren the
covariance-awareforms of (recursively) the combined
preconditions of theseversions, andpost1, … postn the
covariance-aware forms of (recursively) the
combined postconditions.
Let pre be thepreconditionextension off if defined
and not empty, otherwiseFalse.
Let postbe thepostconditionextension off if defined
and not empty, otherwiseTrue.
Thecombined preconditionof f is theAssertion
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(pre1 or… or pren) or elsepre
The combined postcondition off is theAssertion

(old pre1 implies post1)
and … and
(old pren implies postn)
and thenpost

Definition: Inherited as effective, inherited as
deferred 291

An inheritedfeature isinherited as effectiveif it has
at least oneprecursor that is aneffective feature, and
the correspondingParent part does notundefine it.
Otherwise the feature isinherited as deferred.

Definition: Effect, effecting 291
A classeffectsan inherited featuref if and only if it
inherits f asdeferred and contains adeclarationfor f
that defines aneffective feature.

Definition: Redefine, redefinition 292
A classredefinesaninheritedfeaturef if and only if it
contains adeclarationfor f that is not aneffecting off.
Such a declaration is then known as aredefinition of f

Definition: Name clash 297
A class has aname clashif it inherits two or more
features from differentparents under the samefinal
name.

Syntax: Precursor 303

Precursor=∆ Precursor [Parent_qualification] [Actuals]
Parent_qualification=∆ "{" Class_name "}"

Definition: Relative unfolded form of aPrecursor303
In a class C, consider a Precursor specimen p
appearing in theredefinition of a routiner inherited
from aparent classB. Its unfolded form relative to B
is an Unqualified_call of the form r’ if p has no
Actuals, or r’ (args) if p has actual argumentsargs,
where r’ is a fictitious feature name added, with a
frozen mark, assynonym for r in B.

Validity: Precursor rule VDPR 304

A Precursoris valid if and only if it satisfies the
following conditions:
1 • It appears in the Feature_body of a

Feature_declarationof a featuref.
2 • If the Parent_qualificationpart is present, its

Class_name is the name of aparent classP of C.
3 • Among the features ofC’s parents, limited to

features ofP if condition2 applies, exactly one is an
effective featureredefined byC into f. (The class to
which this feature belongs is called theapplicable
parent of thePrecursor.)

4 • Theunfoldedform relative to the applicable parent
is, as anUnqualified_call, argument-valid.

5 • It is valid as anInstruction if and only if f is a
command, and as anExpressionif and only if f is a
query.

Definition: Unfolded form of a Precursor 306
The unfolded form (absolute) of a validPrecursoris
its unfolded form relative to itsapplicable parent.

Semantics: Precursor semantics 306
The effect of aPrecursoris the effect of itsunfolded
form.

Syntax: Redefinition 307

Redefine=∆ redefineFeature_list

Validity: Redefine Subclause rule VDRS 307

A Redefinesubclause appearing in aParentpart for a
class B in a classC is valid if and only if every
Feature_namefnamethat it lists (in itsFeature_list)
satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.
2 • f was not frozen inB, and was not aconstant

attribute.
3 • fname appears only once in theFeature_list.
4 • The Features part of C contains one

Feature_declarationthat is aredeclaration but not an
effecting off.

5 • If that redeclaration specifies adeferredfeature,C
inheritsf as deferred.

Semantics: Redefinition semantics 308
The effect in a classC of redefining a featuref in a
Parentpart for A is that theversion off in C is, rather
than its version inA, the feature described by th
applicable declaration inC.

Syntax: Undefine clauses 308

Undefine=∆ undefineFeature_list

Validity: Undefine Subclause rule VDUS 308

An Undefinesubclause appearing in aParentpartfor a
class B in a classC is valid if and only if every
Feature_namefnamethat it lists (in itsFeature_list)
satisfies the following conditions:
1 • fname is thefinal name of a featuref of B.
2 • f was notfrozen inB, and was not anattribute.
3 • f waseffective inB.
4 • fname appears only once in theFeature_list.
5 • Any redeclaration off in C specifies adeferred

feature.

Semantics: Undefinition semantics 308
The effect in a classC of undefining a featuref in a
Parentpartfor A is to causeC to inherit fromA, rather
than theversion of f in A, a deferred form of that
version.
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Definition: Effective, deferred feature 309
A featuref of a classC is aneffective featureof C if
and only if it satisfies either of the following
conditions:
1 • C contains a declaration forf whoseFeature_body

is not of theDeferred form.
2 • f is aninheritedfeature, coming from aparentB of

C where it is (recursively) effective, andC does not
undefine it.

f is deferred if and only if it is not effective.
Definition: Effecting 309

A redeclaration into aneffective feature of a feature
inherited as deferred is said toeffect that feature.

Deferred class property 310
A class that has at least onedeferredfeature must have
a Class_headerstarting with the keyworddeferred.
The class is then said to bedeferred.

Effective class property 311
A class whose features, if any, are all effective, is
effective unless itsClass_headerstarts with the
keyworddeferred.

Definition: Origin, seed 311
Every featuref of a classC has one or more features
known as itsseedsand one or more classes known as
its origins, as follows:
1 • If f is immediate inC: f itself as seed;C as a origin.
2 • If f is inherited: (recursively) all the seeds and

origins of itsprecursors.
Validity: Redeclaration rule VDRD 313

Let C be a class andg a feature ofC. It is valid for g to
be aredeclaration of a featuref inherited from aparent
B of C if and only if the following conditions are
satisfied.
1 • No effective feature ofC other thanf andg has the

samefinal name.
2 • Thesignature ofg conforms to the signature off.
3 • ThePreconditionof g, if any, begins withrequire

else(not justrequire), and itsPostcondition, if any,
begins withensure then (not justensure).

4 • If the redeclaration is aredefinition (rather than an
effecting) theRedefinesubclause of theParentpart
for B lists in itsFeature_list thefinal name off in B.

5 • If f is inheritedaseffective, theng is also effective.
6 • If f is anattribute,g is an attribute,f andg are both

variable, and their types are either both expanded or
both non-expanded.

7 • f andg have either both no alias or thesame alias.
8 • If both features are queries with associatedassigner

commandsfpandgp, thengp is theversionof fp in C.

Definition: Precursor (joined features) 315
A precursor of an inherited feature is aversion of the
feature in theparent from which it is inherited.

Definition: Transposition to a class or type 316
The transposition to a classC of a specimens
appearing in aancestorA of C is the specimen obtained
from sby replacing every expression by itsEquivalent
Dot Form, then:
1 • Replacing the arguments of anyCall by

(recursively) their transposition toC.
2 • If s is part of the declaration of a featureg

replicated inC along a certainrepeatedinheritance
path, replacing anyFeature_nameused as name of
the featureof an unqualifiedcall or as anchor of an
anchoredtype by the name resulting from an
renaming of the feature along that path.

3 • Replacing anyFeature_nameused as name of the
feature of an unqualified call or as anchor of a
anchored type, if case2 does not apply, by the resul
of any renaming along applicable inheritance path

4 • In everyqualified call of targett, replacingt by
(recursively) its transpositiont’ to C and the feature
of the call by (recursively) its transposition to th
type oft’ in C.

5 • In everyNon_object_callof targettypeT, replacing
T by (recursively) its transpositionT’ to C and the
feature of the call by (recursively) its transposition
T’.

6 • For every entitye, other than an attribute, such tha
s includes a declaration fore, replacing every
occurrence ofe by a fresh identifier not used inC.

7 • If an ancestorB of C has aparenttype P of base
classA, replacing every occurrence of any gener
parameterG of A by (recursively) the transposition to
C of the application toG of P’s generic substitution.

The transposition to a typeT of aspecimensappearing
in a ancestor of thebaseclassC of T is the result of
applying the generic substitution ofT to the class
transposition of s to C.

Definition: Transposition 317
Thedirect transposition to a classB of a specimens
appearing in aparentclassA of B is the specimen
obtained froms by replacing every expression by it
Equivalent Dot Form, then:
1 • Replacing the arguments of anyCall by

(recursively) their direct transposition toB.
2 • If s is part of the declaration of a featureg

replicated inB along a certainrepeatedinheritance
path, replacing the name of the feature of a
unqualified call by the name of the feature a
resulting from any renaming along that path.
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3 • In everyunqualifiedcall of featuref whosefeature
namefn appears in aRename_pairof the formfn as
gn in a Parentpart for A, such that case2 does not
apply, replacingfn by theidentifier ofgn.

4 • In everyqualified call of targett, replacingt by
(recursively) its class transpositiont’ to B and the
feature of the call by (recursively) its transposition to
the type oft’ in B.

5 • In everyNon_object_callof targettypeT, replacing
T by (recursively) its class transpositionT’ to B and
the feature of the call by (recursively) its
transposition toT’.

6 • For every entitye, other than an attribute, such that
s includes a declaration fore, replacing every
occurrence ofe by a fresh identifier not used inB.

7 • Replacing every occurrence of a formal generic
parameter ofA by the genericsubstitution ofB’s
parent type ofbase classA.

The class transpositionto a classC of a specimens
appearing in an ancestorA of C is:
8 • If A andC are the same class:s.
9 • If A is a parent of anancestorB of C: (recursively)

the transposition toC of thedirect transposition ofs
to B.

The transposition to a type T of a specimens
appearing in a ancestor of thebaseclassC of T is the
result of applying the generic substitution ofT to the
class transposition of s to C.

Definition: Unfolded redeclaration 318
Consider afeature f of a classA. The unfolded
redeclaration of f in an heir C of A is a
Feature_declaration defined as follows:
1 • If C redeclaresf, the declaration off in C.
2 • Otherwise, aFeature_declarationfor a feature with

the sameextendedname, the samesignature asf and
the sameAssigner_markif any, bothtransposedto C,
and anAttribute_or_routine consisting solely of:

• If f is deferred, aFeature_bodyof theDeferredkind.
• If f is an effective routine, ado clause whose

Compoundreads justPrecursor (if f is a procedure)
or Result := Precursor (if f is a function), followed
by the parenthesized list of formal arguments if any.

• If f is an attribute, anattribute clause whose
Compound reads justResult := Precursor.

Validity: Join rule VDJR 319

It is valid for a classC to inherit two different features
under thesamefinal name under and only under the
following conditions:
1 • If both areinheritedaseffective, C redefines both

into a common version.

2 • If both are inherited as deferred, theunfolded
redeclaration inC of each of them is a valid
redeclaration of the other.

3 • Otherwise, theunfoldedredeclaration inC of the
one inherited as effective is a valid redeclaration
the one inherited as deferred.

Semantics: Join Semantics rule 320
Joining in a classC two or more inherited features with
the same final name under the terms of theJoin rule
yields a single feature ofC defined as follows:
1 • If at least one of these features is effective:

unfolded redeclaration inC.
2 • Otherwise: the unfolded redeclaration inC of any

of them.

FROM CHAPTER 11: TYPES
Syntax: Types 328

Type=∆ Class_or_tuple_type |Formal_generic_name |
Anchored

Class_or_tuple_type=∆ Class_type|Tuple_type
Class_type=∆ [Attachment_mark] Class_name

[Actual_generics]
Attachment_mark=∆ "?" |  "!"
Anchored=∆ [Attachment_mark] like Anchor
Anchor=∆ Feature_name |Current

Semantics: Direct instances and values of a type329
The direct instances of a type T are the run-time
objects resulting from: representing amanifest
constant, manifest tuple, Manifest_type, agent or
Addressexpression of typeT; applying a creation
operation to atarget of typeT; (recursively) cloning an
existing direct instance ofT.
Thevaluesof a typeT are the possible run-time value
of an entity or expression of typeT.

Semantics: Instance of a type 330
The instancesof a typeTX are thedirect instances of
any typeconforming toTX.

Semantics: Instance principle 331
Any value of a typeT is:
• If T is reference, either a reference to aninstance of

T or (unlessT is attached) a void reference.
• If T is expanded, an instance ofT.

Definition: Instance, direct instance of a class 331
An instance of a classC is an instance of any typeT
based onC.
A direct instance ofC is a direct instance of any typeT
based onC.

Base principle 332
Any type T proceeds, directly or indirectly, from a
Class_or_tuple_typecalled its base type, and an
underlying class called itsbase class.
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The base class of a type is also the base class of its base
type.

Base rule 332
The base typeof any type is aClass_or_tuple_type,
with noAttachment_mark.
The base class of any type other than a
Class_or_tuple_typeis (recursively) the base class of
its base type.
The direct instancesof a type are those of its base
type.

Validity: Class Type rule VTCT 333

A Class_typeis valid if and only if it satisfies the
following two conditions:
1 • Its Class_nameis the name of a class in the

surroundinguniverse.
2 • If it has a “?” Attachment_mark, that class is not

expanded.
Semantics: Type Semantics rule 333

To define the semantics of a typeT it suffices to
specify:
1 • WhetherT is expanded orreference.
2 • WhetherT, if reference, isattached ordetachable.
3 • What isT’s base type.
4 • If T is a Class_or_tuple_type, what are itsbase

class and its type parameters if any.
Definition: Base class and base type of an expression
334

Any expressione has abase typeand abase class,
defined as thebasetype andbaseclass of thetypeof e.

Semantics: Non-generic class type semantics 335
A non-generic classC used as a type (of theClass_type
category) has the same expansion status asC (i.e. it is
expanded if C is an expanded class, reference
otherwise). It is its ownbasetype (after removal of any
Attachment_mark) andbase class.

Definition: Expanded type, reference type 337
A type T is expanded if and only if it is not a
Formal_generic_nameand the base class of its
deanchored form is anexpanded class.
T is a reference type if it is neither a
Formal_generic_namenorexpanded.

Definition: Basic type 338
The basic types areBOOLEAN, CHARACTERand its
sizedvariants,INTEGERand itssizedvariants,REAL
and itssized variants andPOINTER.

Definition: Anchor, anchored type, anchored entity
339

The anchor of an anchored typelike anchor is the
entity anchor. A declaration of an entity with such a

type is ananchored declaration, and the entity itself
is ananchored entity.

Definition: Anchor set; cyclic anchor 343

The anchor set of a type T is the set ofentities
containing, for every anchored typelike anchor
involved inT:
• anchor.
• (Recursively) the anchor set of the type ofanchor.
An entity a of typeT is acyclic anchor if the anchor
set ofT includesa itself.

Definition: Types and classes involved in a type 343

The typesinvolved in a typeT are the following:
• T itself.
• If T is of the form a T’ where a is an

Attachment_mark: (recursively) the types involved
in T’.

• If T is a generically derived Class_type or a
Tuple_type: all the types (recursively) involved in
any of its actual parameters.

The classesinvolved in T are thebaseclasses of the
types involved inT.

Definition: Deanchored form of a type 344

The deanchored form of a typeT in a classC is the
type (Class_or_tuple_typeor Formal_generic) defined
as follows:
1 • If T is like Current : thecurrent type ofC.
2 • If T is like anchorwhere the typeAT of anchoris

not anchored: (recursively) the deanchored form
AT.

3 • If T is like anchorwhere the typeAT of anchoris
anchored but anchor is not a cyclic anchor:
(recursively) the deanchored form ofAT in C.

4 • If T is a AT, wherea is anAttachment_mark: a DT,
whereDT is (recursively) the deanchored form ofAT
deprived of itsAttachment_mark if any.

5 • If none of the previous cases applies:T after
replacement of any actual parameter by (recursive
its deanchored form.

Validity: Anchored Type rule VTAT 345

It is valid to use an anchored typeAT of the formlike
anchor in a classC if and only if it satisfies the
following conditions:
1 • anchor is eitherCurrent or the final name of a

query ofC.
2 • anchor is not acyclic anchor.
3 • Thedeanchored formUT of AT is valid inC.
Thebase class andbase type ofAT are those ofUT.
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Definition: Attached, detachable 346
A type is detachable if its deanchoredform is a
Class_type declared with the? Attachment_mark.
A type isattached if it is not detachable.

Semantics: Attached type semantics 347
Every run-timevalue of anattachedtype is non-void
(attached to an object).

Definition: Stand-alone type 347
A Typeis stand-aloneif and only if it involves neither
anyAnchoredtype nor anyFormal_generic_name.

FROM CHAPTER 12: GENERICITY
Syntax: Actual generic parameters 350

Actual_generics=∆ "[" Type_list "]"
Type_list=∆ {Type "," …}+

Syntax: Formal generic parameters 351

Formal_generics=∆ "[" Formal_generic_list "]"
Formal_generic_list=∆ {Formal_generic ","…}+

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

Formal_generic_name=∆ [?] Identifier
Validity: Formal Generic rule VCFG 351

A Formal_genericspart of aClass_declarationis valid
if and only if every Formal_generic_nameG in its
Formal_generic_listsatisfies the following conditions:
1 • G is different from the name of any class in the

universe.
2 • G is different from any other

Formal_generic_nameappearing in the same
Formal_genericspart.

Definition: Generic class; constrained, unconstrained
352

Any class declared with aFormal_genericspart
(constrained or not) is a generic class.
If a formal generic parameter of a generic class is
declared with a Constraint, the parameter is
constrained; if not, it isunconstrained.
A generic class is itselfconstrained if it has at least
one constrained parameter,unconstrained otherwise.

Definition: Generic derivation, non-generic type 352
The process of producing a type from a generic class
by providing actual generic parameters isgeneric
derivation.
A type resulting from a generic derivation is a
generically derived type, or justgeneric type.
A type that is not generically derived is anon-generic
type.

Definition: Self-initializing formal parameter 353
A Formal_generic_parameteris self-initializing if and
only if its declaration includes the optional? mark.

Definition: Constraint, constraining types of a
Formal_generic 353

The constraint of a formal generic parameter is it
Constraint part if present, and otherwiseANY.

Its constraining types are all the types listed in its
Constraining_typesif present, and otherwise justANY.

Syntax: Generic constraints 357

Constraint=∆ "–>" Constraining_types
[Constraint_creators]

Constraining_types=∆ Single_constraint|
Multiple_constraint

Single_constraint=∆ Type[Renaming]
Renaming=∆ Renameend
Multiple_constraint=∆ "{" Constraint_list"}"
Constraint_list=∆ {Single_constraint"," …}+

Constraint_creators=∆ createFeature_listend

Validity: Generic Constraint rule VTGC 357

A Constraintpart appearing in theFormal_generics
part of a classC is valid if and only if it satisfies the
following conditions for every Single_constraint
listing a typeT in its Constraining_types:

1 • T involves no anchored type.

2 • If a Renamingclauserename rename_listend is
present, a class definition of the formclass NEW
inherit BT rename rename_listend (preceded by
deferred if the baseclass ofT is deferred), whereBT
is the base class ofT, would be valid.

Definition: Constraining creation features 358

If G is a formal generic parameter of a class, t
constraining creators of G are the features ofG’s
Constraining_types, if any, corresponding after
possibleRenamingto the feature names listed in th
Constraining_creators if present.

Validity: Generic Derivation rule VTGD 359

Let C be a generic class. AClass_typeCThavingC as
baseclass is valid if and only if it satisfies the following
conditions for every actual generic parameterT and
everySingle_constraintU appearing in the constrain
for the corresponding formal generic parameterG:

1 • The number of Type components inCT’s
Actual_genericslist is the same as the number o
Formal_generic parameters in the
Formal_generic_list of C’s declaration.

2 • T conforms to the type obtained by applying toU
thegeneric substitution ofCT.

3 • If C is expanded,CT is generic-creation-ready.

4 • If G is a self-initializing formal parameter andT is
attached, thenT is aself-initializing type.
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Definition: Generic-creation-ready type 360
A type of base classC is generic-creation-ready if
and only if every actual generic parameterT of its
deanchored form satisfies the following conditions:
1 • If the specification of the corresponding formal

generic parameter includes aConstraint_creators, the
versions inT of the constrainingcreatorsfor the
corresponding formal parameter arecreation
procedures,available for creation toC, and T is
(recursively) generic-creation-ready.

2 • If T is expanded, it is (recursively) generic-
creation-ready.

Semantics: Generically derived class type semantics
363

A genericallyderived Class_typeof the formC […],
where C is a generic class, isexpanded ifC is an
expandedclass,reference otherwise. It is its ownbase
type, and itsbase class isC.

Definition: Base type of a single-constrained formal
generic 364

Thebasetype of a constrainedFormal_generic_name
G having as itsconstrainingtypes aSingle_constraint
listing a typeT is:
1 • If T is aClass_or_tuple_type: T.
2 • Otherwise (T is aFormal_generic_name): the base

type ofT if it can be determined by (recursively) case
1, otherwiseANY.

Definition: Base type of an unconstrained formal
generic 364

The base type of an unconstrained
Formal_generic_name type isANY.

Definition: Reference or expanded status of a formal
generic 365

A Formal_generic_namerepresents areferencetype or
expandedtype depending on the corresponding status
of the associated actual generic parameter in a
particulargeneric derivation.

Definition: Current type 365
Within a class text, thecurrent type is the type
obtained from thecurrentclass by providing as actual
generic parameters, if required, the class’s own formal
generic parameters.

Definition: Features of a type 366
The features of a type are the features of itsbaseclass.

Definition: Generic substitution 367
Every typeT defines a mappingσ from names to types
known as itsgeneric substitution:
1 • If T is genericallyderived, σ associates to every

Formal_generic_namethe corresponding actual
parameter.

2 • Otherwise,σ is the identity substitution.

Generic Type Adaptation rule 367

The signature of an entity or featuref of a typeT of
baseclass C is the result of applyingT’s generic
substitution to the signature off in C.

Definition: Generically constrained feature name368

Consider a generic classC, a constrained
Formal_generic_nameG of C, a typeT appearing as
one of theConstraining_typesfor G, and a featuref of
namefnamein the baseclass ofT. The generically
constrained namesof f for G in C are:
1 • If one or moreSingle_constraintclauses forT

include aRenamepart with a clausefnameasename,
where the Feature_namepart of ename (an
Extended_feature_name) is gname: all suchgname.

2 • Otherwise: justfname.

Validity: Multiple Constraints rule VTMC 369

A feature of namefnameis applicable in a classC to a
target x whose type is aFormal_generic_nameG
constrained by two or more typesCONST1,
CONST2,…, if and only if it satisfies the following
conditions:
1 • At least one of theCONSTi has a feature available

to C whosegenericallyconstrainedname forG in C
is fname.

2 • If this is the case for two or more of theCONSTi, all
the corresponding features are the same.

Definition: Base type of a multi-constraint formal
generic type 369

The base type of a multiply constrained
Formal_generic_nametype is a type generically
derived, with the same actual parameters as the cur
class, from a fictitious class with none of the option
parts except forFormal_genericsand anInheritance
clause that lists all the constraining types as paren
with the givenRenamingclause if any, and resolves
any conflicts between potentially ambiguous featur
by further renaming them to new names not availab
to developers.

FROM CHAPTER 13: TUPLES
Syntax: Tuple types 372

Tuple_type=∆ TUPLE[Tuple_parameter_list]
Tuple_parameter_list=∆ "[" Tuple_parameters "]"
Tuple_parameters=∆ Type_list|Entity_declaration_list

Syntax: Manifest tuples 373

Manifest_tuple=∆ "[" Expression_list "]"
Expression_list=∆ {Expression "," …}*

Definition: Type sequence of a tuple type 374

The type sequenceof a tuple type is the sequence o
types obtained by listing its parameters, if any, in th
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order in which they appear, every labeled parameter
being listed as many times as it has labels.

Definition: Value sequences associated with a tuple
type 374

Thevalue sequencesassociated with a tuple typeT are
sequences of values, each of the type appearing at the
corresponding position inT’s type sequence.

FROM CHAPTER 14: CONFORMANCE
Definition: Compatibility between types 384

A type iscompatiblewith another if it eitherconforms
or converts to it.

Definition: Compatibility between expressions 384
An expressionb is compatible with an expressiona if
and only ifb eitherconforms orconverts toa.

Definition: Expression conformance 384
An expressionexpof type SOURCEconforms to an
expressionent of type TARGETif and only if they
satisfy the following conditions:
1 • SOURCEconforms toTARGET.
2 • If TARGET is attached, so isSOURCE.
3 • If SOURCEis expanded, its version of the function

cloned from ANY is available to thecurrent class.

Validity: Signature conformance VNCS 386

A signaturet = [B1, … Bn], [S] conforms toa signature
s = [A1, … An], [R] if and only if it satisfies the
following conditions:
1 • Each of the two components oft has the same

number of elements as the corresponding component
of s.

2 • Each type in each of the two components oft
conforms to the corresponding type in the
corresponding component ofs.

3 • Any Bi not identical to the correspondingAi is
detachable.

Definition: Covariant argument 387
In a redeclaration of a routine, a formal argument is
covariant if its type differs from the type of the
corresponding argument in at least one of theparents’
versions.

Validity: General conformance VNCC 388

Let T andV be two types.V conforms toT if and only
if one of the following conditions holds:
1 • V andT are identical.
2 • V conforms directly toT.
3 • V is NONE andT is adetachablereference type.
4 • V is B [Y1,… Yn] whereB is a generic class,T is

B [X1,… Xn], and for everyXi the correspondingYi is
identical to Xi or, if the corresponding formal

parameter does not specifyfrozen, conforms
(recursively) toXi.

5 • For some typeU (recursively),V conformsto U
andU conforms toT.

6 • T or V or both are anchored types appearing in t
same classC, and thedeanchoredform of V in C
(recursively) conforms to the deanchored form ofT.

Definition: Conformance path 389

A conformance path from a typeU to a typeT is a
sequence of typesT0, T1, … Tn (n ≥ 1) such thatT0 is
U, Tn is T, and everyTi (for 0 ≤ i < n) conformsto Ti+1.
This notion also applies toclassesby considering the
associatedbase classes.

Validity: Direct conformance: reference typesVNCN 390

A Class_typeCTof baseclassC conforms directly to
a referencetype BT if and only if it satisfies the
following conditions:
1 • Applying CT’s genericsubstitution to one of the

conforming parents ofC yieldsBT.
2 • If BT is attached, so isCT.

Validity: Direct conformance: formal genericVNCF 393

Let G be a formal generic parameter of a classC,
which in the text of C may be used as a
Formal_generic_name type. Then:
1 • No typeconforms directly to G.
2 • G conforms directly to every type listed in its

constraint, and to no other type.

Validity: Direct conformance: expanded typesVNCE 396

No typeconforms directly to anexpanded type.

Validity: Direct conformance: tuple types VNCT 397

A Tuple_type U, of type sequenceus, conforms
directly to a type T if and only if T satisfies the
following conditions:
1 • T is a tuple type, of type sequencets.
2 • The length ofus is greater than or equal to the

length ofts.
3 • For every elementX of ts, the corresponding

element ofus conforms toX.
No type conforms directly to a tuple type except a
implied by these conditions.

FROM CHAPTER 15: CONVERTIBILITY
Definition: Conversion procedure, conversion type
401

A procedure whose name appears in aConverters
clause is aconversion procedure.
A type listed in aConvertersclause is aconversion
type.
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Definition: Conversion query, conversion feature405
A query whose name appears in aConvertersclause is
aconversion query.
A feature that is either a conversion procedure or a
conversion query is aconversion feature.
No type may bothconform andconvert to another.
No type T may convert to another through both a
conversion procedure and aconversion query.
ThatV convertsto U andU to T does not imply thatV
converts toT.

Syntax: Converter clauses 410

Converters=∆ convertConverter_list
Converter_list=∆ {Converter","…}+

Converter=∆ Conversion_procedure|Conversion_query
Conversion_procedure=∆ Feature_name"(" "{" Type_list

"}" ")"
Conversion_query=∆ Feature_name":" "{" Type_list"}"

Validity: Conversion Procedure rule VYCP 411

A Conversion_procedurelisting a Feature_namefn
and appearing in a classC with currenttypeCT is valid
if and only if it satisfies the following conditions,
applicable to every typeSOURCE listed in its
Type_list:
1 • fn is the name of acreation procedurecpof C.
2 • If C is not generic,SOURCEdoes notconformto

CT.
3 • If C is generic,SOURCEdoes not conform to the

type obtained fromCT by replacing every formal
generic parameter by itsconstraint.

4 • SOURCE’s baseclass is different from the base
class of any otherconversion type listed for a
Conversion_procedurein theConvertersclause ofC.

5 • The specification of the base class ofSOURCE
does not list aconversionquery specifying a type of
base classC.

6 • cphas exactly one formal argument, of a typeARG.
7 • SOURCEconforms toARG.
8 • SOURCEinvolves noanchored type.

Validity: Conversion Query rule VYCQ 413

A Conversion_querylisting a Feature_namefn and
appearing in a classC with currenttypeCT is valid if
and only if it satisfies the following conditions,
applicable to every typeTARGET listed in its
Type_list:
1 • fn is the name of a queryf of C.
2 • If C is not generic,CT does not conform to

TARGET.
3 • If C is generic, the type obtained fromCT by

replacing every formal generic parameter by its
constraint does not conform toTARGET.

4 • TARGET’s baseclass is different from the base
class of any otherconversion type listed for a
Conversion_queryin theConvertersclause ofC.

5 • The specification of the base class ofTARGETdoes
not list aconversionprocedure specifying a type o
base classC.

6 • f has no formal argument.
7 • The result type off conforms toTARGET.
8 • TARGETinvolves noanchored type.

Definition: Converting to a class 414
A type T of baseclassCT converts to a classC if
either:
• Thedeanchoredform ofTappears asconversiontype

for a procedure in theConverters clause ofC.
• A type basedon C appears as conversion type for

query in theConverters clause ofCT.
Definition: Converting to and from a type 415

A typeU of baseclassD converts toaClass_typeT of
base classC if and only if either:
1 • Thedeanchoredform of U is the result of applying

thegenericsubstitution of the deanchored form ofT
to aconversiontype for a procedurecp appearing in
theConverters clause ofC.

2 • The deanchored form ofT is the result of applying
the generic substitution of the deanchored form ofU
to a conversion type for a querycq appearing in the
Convertersclause ofD.

A Class_typeT converts from a typeU if and only if
U converts toT.

Definition: Converting “through” 415
A typeU thatconverts to a typeT:
1 • Converts toT through a procedurecp if case1 of

the definition of “converting to a type” applies.
2 • Converts toT through a query cq if case2 of the

definition applies.
These terms also apply to “converting from”
specifications.

Semantics: Conversion semantics 416
Given an expressioneof typeU and a variablexof type
T, whereU converts to T, the effect of aconversion
attachment of sourcee and targetx is the same as the
effect of either:
1 • If U converts toT through a procedurecp: the

creation instructioncreatex.cp (e).
2 • If U converts to T through a query cq: the

assignmentx := e.cq.
Definition: Explicit conversion 418

The Kernel Library classTYPE[G] provides a function
adaptedalias "[]"  (x: G): G
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which can be used for any typeT and any expression
exp of a type U compatible withT to produce aT
version ofexp, written

{ T} [ exp]
If U converts toT, this expression denotes the result of
converting exp to T, and is called anexplicit
conversion.

Validity: Expression convertibility VYEC 424

An expressionexpof typeU converts toan entityent
of type T if and only if U converts to T through a
conversion featureconv satisfying either of the
following two conditions:
1 • conv is precondition-free.
2 • expstatically satisfies the precondition.

Definition: Statically satisfied precondition 425
A feature precondition isstatically satisfied if it
satisfies any of the following conditions:
1 • It applies to a boolean, character, integer or real

expression involving only constants, states that the
expression equals a specific constant value or (in the
last three cases) belongs to a specifiedinterval, and
holds for that value or interval.

2 • It applies to the type of an expression, states that it
must be one of a specified set of types, and holds for
that type.

Validity: Precondition-free routine VYPF 426

A featurer of a classC is precondition-free if it is
either:
1 • Immediate inC, with either noPreconditionclause

or one consisting of a singleAssertion_clause
(introduced byrequire) whoseBoolean_expression
is the constantTrue.

2 • Inherited, and such that everyprecursor ofr is
(recursively) precondition-free, orr is redeclared in
C with a Precondition consisting of a single
Assertion_clause(introduced byrequire else) whose
Boolean_expression is the constantTrue.

FROM CHAPTER 16: REPEATED
INHERITANCE

Definition: Repeated inheritance, ancestor,
descendant 434

Repeated inheritanceoccurs whenever (as a result of
multiple inheritance) two or more of theancestors of a
classD have a commonparentA.
D is then called arepeated descendantof A, andA a
repeated ancestor of D.

Semantics: Repeated Inheritance rule 438
Let D be a class andB1, … Bn (n ≥ 2) beparents ofD
based on classes having a commonancestorA. Let f1,

… fn be features of these respective parents, all hav
as one of theirseeds the same featuref of A. Then:
1 • Any subset of these features inherited byD under

thesamefinal name inD yields a single feature ofD.
2 • Any two of these features inherited under

different name yield two features ofD.
Definition: Sharing, replication 439

A repeatedly inherited feature issharedif case1 of the
Repeated Inheritance rule applies, andreplicated if
case2 applies.

Validity: Call Sharing rule VMCS 458

It is valid for a featuref repeatedlyinherited by a class
D from an ancestorA, such thatf is shared under
repeated inheritance and notredeclared, to involve a
featureg of A other than as the featureof a qualified
call if and only if g is, along the corresponding
inheritance paths, also shared.

Semantics: Replication Semantics rule 459
Let f andg be two features bothrepeatedlyinherited by
a classA and both replicated under the Repeate
Inheritance rule, with two respective sets ofdifferent
names:f1 andf2, g1andg2.
If the version off in D is the original version fromA
and either contains anunqualifiedcall tog or (if f is an
attribute) is thetarget of an assignment whosesource
involvesg, the f1 version will useg1 for that call or
assignment, and thef2 version will useg2.

Syntax: Select clauses 463

Select=∆ selectFeature_list
Validity: Select Subclause rule VMSS463

A Selectsubclause appearing in theparentpart for a
classB in a classD is valid if and only if, for every
Feature_namefnamein its Feature_list, fnameis the
final name inD of a feature that has two or more
potentialversions in D, andfnameappears only once in
theFeature_list.

Definition: Version 464
A featureg from a classD is a version of a featuref
from anancestor ofD if f andghave a seed in common

Definition: Multiple versions 464
A classD hasn versions (n ≥ 2) of a featuref of an
ancestorA if and only if n of its features, all with
different final names inD, are allversions off.

Validity: Repeated Inheritance Consistencyconstraint VMRC 466

It is valid for a classD to have two or moreversions of
a featuref of a proper ancestorA if and only if it
satisfies one of the following conditions:
1 • There is at most oneconformancepath fromD toA.
2 • There are two or more conformance paths, and

Parentclause for exactly one of them inD has a
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Selectclause listing the name of the version off from
the correspondingparent.

Definition: Dynamic binding version 468

For any featuref of a typeTand any typeU conforming
to T, the dynamic binding version of f in U is the
featureg of U defined as follows:

1 • If f has only oneversion inU, theng is that feature.

2 • If f has two or more versions inU, then the
RepeatedInheritanceConsistency constraint ensures
that either exactly one conformance path exists from
U to T, in which caseg is the version off in U
obtained along that path, or that aSelectsubclause
name a version off, in which caseg is that version.

Definition: Inherited features 470

Let D be a class. Letprecursorsbe the list obtained by
concatenating the lists of features of every parent ofD;
this list may contain duplicates in the case of repeated
inheritance. The listinheritedof inherited featuresof
D is obtained fromprecursors as follows:

1 • In the listprecursors, for any set of two or more
elements representing features that are repeatedly
inherited in D under thesamename, so that the
RepeatedInheritancerule yieldssharing, keep only
one of these elements. TheRepeatedInheritance
Consistency constraint (sharing case) indicates that
these elements must all represent the same feature, so
that it does not matter which one is kept.

2 • For every featuref in the resulting list, if D
undefinesf, replacef by a deferredfeature with the
same signature,specification andheader comment.

3 • In the resulting list, for any set of deferred features
with the same final name inD, keep only one of these
features, with assertions and header comment joined
as per theJoin Semanticsrule. (Keep the signature,
which theJoinrule requires to be the same for all the
features involved after possible redeclaration.)

4 • In the resulting list, remove anydeferredfeature
such that the list contains aneffectivefeature with the
samefinal name. (This is the case in which a feature
f, inheritedaseffective,effects one or more deferred
features: of the whole group, onlyf remains.)

5 • All the features of the resulting list have different
names; they are the inherited features ofD in their
parent forms. From this list, produce a new one by
replacing any feature thatD redeclares (through
redefinition or effecting) with the result of the
redeclaration, and retaining any other feature as it is.

6 • The result is the listinheritedof inherited features
of D.

Semantics: Join-Sharing Reconciliation rule 471
If a class inherits two or more features satisfying bo
the conditions of sharing under theRepeated
Inheritance rule and those of theJoin rule, the
applicable semantics is theRepeated Inheritance rule

Definition: Precursor 473
A precursor of an inherited feature of final name
fname is any parent feature — appearing in the li
precursorsobtained through case1 of the definition of
“ Inherited features” — that the feature mergings
resulting from the subsequent cases reduce into
feature of namefname.

Validity: Feature Name rule VMFN 474

It is valid for a featuref of a classC to have a certain
final name if and only if it satisfies the following
conditions:
1 • No other feature ofC has thatsame feature name.
2 • If f is shared underrepeated inheritance, its

precursors all have either noAlias or thesame alias.
Validity: Name Clash rule VMNC 475

The following properties govern thenames of the
features of a classC:
1 • It is invalid forC to introduce two different features

with thesame name.
2 • If C introduces a feature with the same name a

feature it inherits as effective, it must rename the
inherited feature.

3 • If C inherits two featuresaseffective from different
parents and they have the same name, the class m
also (except undersharing forrepeatedinheritance)
remove the name clash through renaming.

FROM CHAPTER 17: CONTROL
STRUCTURES

Semantics: Compound (non-exception) semantics479
The effect of executing aCompound is:
• If it has zero instructions: to leave the state of th

computation unchanged.
• If it has one or more instructions: to execute the fir

instruction of theCompound, then (recursively) to
execute theCompoundobtained by removing the
first instruction.

This specification, thenon-exception semanticsof
Compound, assumes that noexception istriggered. If
the execution of any of the instructions triggers a
exception, the Exception Semantics rule takes eff
for the rest of theCompound’s instructions.

Syntax: Conditionals 481

Conditional=∆ if Then_part_list [Else_part] end
Then_part_list=∆ {Then_partelseif…}+

Then_part=∆ Boolean_expressionthenCompound
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Else_part=∆ elseCompound
Definition: Secondary part 481

The secondary part of a Conditional possessing at
least one elseif is the Conditional obtained by
removing the initial “if Then_part_list” and replacing
the firstelseif of the remainder byif .

Definition: Prevailing immediately 481
The execution of aConditional starting with if
condition1 is said toprevail immediately if condition1
has value true.

Semantics: Conditional semantics 482
The effect of aConditional is:
• If it prevails immediately: the effect of the first

Compound in itsThen_part_list.
• Otherwise, if it has at least oneelseif: the effect

(recursively) of its secondary part.
• Otherwise, if it has anElse part: the effect of the

Compound in thatElse part.
• Otherwise: no effect.

Definition: Inspect expression 484
The inspect expressionof a Multi_branch is the
expression appearing after the keywordinspect.

Syntax: Multi-branch instructions 485

Multi_branch=∆ inspectExpression[When_part_list]
[Else_part] end

When_part_list=∆ When_part+

When_part=∆ whenChoicesthenCompound
Choices=∆ {Choice "," …}+

Choice=∆ Constant|Manifest_type|Constant_interval|
Type_interval

Constant_interval=∆ Constant ".." Constant
Type_interval=∆ Manifest_type ".." Manifest_type

Definition: Interval 485
An interval  is aConstant_intervalor Type_interval.

Definition: Unfolded form of a multi-branch 486
To obtain the unfolded form of a Multi_branch
instruction, apply the following transformations in the
order given:
1 • Replace everyconstant inspect value by its

manifest value.
2 • If the typeT of the inspect expression is anysized

variant of CHARACTER, STRING or INTEGER,
replace every inspect valuev by { T}  v.

3 • Replace everyinterval by itsunfolded form.
Definition: Unfolded form of an interval 486

The unfolded form of an interval a..b is the
following (possibly empty) list:
1 • If a andb are constants, both of either acharacter

type, astringtype or anintegertype, and ofmanifest
valuesva andvb: the list made up of all valuesi, if

any, such thatva ≤ i ≤ vb, using character, integer o
lexicographical order respectively.

2 • If a andb are both of typeTYPE[T] for someT, and
have manifest valuesva andvb: the list containing
everyManifest_typeof the system conforming tovb
and to whichvaconforms.

3 • If neither of the previous two cases apply: an emp
list.

Validity: Interval rule VOIN 487

An Interval is valid if and only if itsunfoldedform is
not empty.

Definition: Inspect values of a multi-branch 488

The inspect valuesof a Multi_branchinstruction are
all the values listed in theChoices parts of the
instruction’sunfolded form.

Validity: Multi-branch rule VOMB 488

A Multi_branchinstruction is valid if and only if its
unfolded form satisfies the following conditions.

1 • Inspect values are all valid.

2 • Inspect values are allconstants.

3 • Themanifestvalues of any two inspect values ar
different.

4 • If the inspectexpression is of typeTYPE [T] for
some typeT, all inspect values are types.

5 • If case4 does not apply, the inspect expression
one of the sized variants ofINTEGER, CHARACTER
or STRING.

Semantics: Matching branch 489

During execution, a matching branch of a
Multi_branchis aWhen_partwpof its unfoldedform,
satisfying either of the following for the valueval of its
inspect expression:

1 • val ~ i, where i is one of the non-Manifest_type
inspect values listed in wp.

2 • val denotes aManifest_type listed among the
choices ofwp.

Semantics: Multi-Branch semantics 490

Executing aMulti_branch with a matching branch
consists of executing theCompoundfollowing the
then in that branch. In the absence of matching branc

1 • If the Else_part is present, the effect of the
Multi_branchis that of theCompoundappearing in
its Else_part.

2 • Otherwise the executiontriggers anexceptionof
typeBAD_INSPECT_VALUE.
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Syntax: Loops 495

Loop=∆ Initialization
[Invariant]
Exit_condition
Loop_body
[Variant]
end

Initialization=∆ from Compound
Exit_condition=∆ until Boolean_expression
Loop_body=∆ loopCompound

Semantics: Loop semantics 496
The effect of aLoop is the effect ofexecuting the
Compound of its Initialization, then itsLoop_body.
The effect of executing aLoop_body is:
• If the Boolean_expressionof the Exit_condition

evaluates to true: no effect (leave the state of the
computation unchanged).

• Otherwise: the effect ofexecuting theCompound
clause, followed (recursively) by the effect of
executing theLoop_bodyagain in the resulting state.

Syntax: Debug instructions 498

Debug=∆ debug [ "("Key_list")" ] Compoundend
Semantics: Debug semantics 498

A language processing tool must provide an option that
makes its possible to enable or disableDebug
instructions, both globally and for individual keys of a
Key_list. Such an option may be settable for an entire
system, or for individual classes, or both.
Letter case is not significant for a debug key.
The effect of aDebuginstruction depends on the mode
that has been set for thecurrent class:
• If the Debug option is on generally, or if the

instruction includes aKey_list and the option is on
for at least one of the keys in the list, the effect of the
Debug instruction is that of itsCompound.

• Otherwise the effect is that of a null instruction.

FROM CHAPTER 18: ATTRIBUTES
Syntax: Attribute bodies 501

Attribute=∆ attribute Compound
Validity: Manifest Constant rule VQMC 503

A declaration of a featuref introducing amanifest
constant is valid if and only if theManifest_constantm
used in the declaration matches the typeT declared for
f in one of the following ways:
1 • m is aBoolean_constant andT is BOOLEAN.
2 • m is aCharacter_constantandT is one of thesized

variants of CHARACTERfor which m is a valid
value.

3 • m is anInteger_constantandT is one of thesized
variants ofINTEGERfor whichm is a valid value.

4 • m is a Real_constantand T is one of thesized
variants ofREALfor whichm is a valid value.

5 • m is a Manifest_stringand T is one of thesized
variants ofSTRING for whichm is a valid value.

6 • m is aManifest_type, of the form{ Y} for some type
Y,andT is TYPE[X] for somestand-alonetypeX to
whichY conforms.

FROM CHAPTER 19: OBJECTS, VALUES
AND ENTITIES

Semantics: Type, generating type of an object;
generator 506

Every run-time object is adirect instance of exactly
one stand-alone type of the system, called the
generating typeof the object, or just “the type of the
object” if there is no ambiguity.
The baseclass of the generating type is called th
object’sgenerating class, orgenerator for short.

Definition: Reference, void, attached, attached to507
A reference is a value that is either:
• Void, in which case it provides no more information
• Attached, in which case it gives access to an objec

The reference is said to beattached to that object,
and the object attached to the reference.

Semantics: Object principle 507
Every non-void value is either an object or a referenc
attached to an object.

Definition: Object semantics 508
Every run-time object has eithercopy semanticsor
reference semantics.
An object has copy semantics if and only if it
generating type is anexpanded type.

Definition: Non-basic class, non-basic type, field508
Any class other than thebasictypes is said to be anon-
basic class. Any type whosebaseclass is non-basic is
a non-basic type, and its instances arenon-basic
objects.
A direct instance of a non-basic type is a sequence
zero or more values, calledfields. There is one field for
every attribute of the type’s base class.

Definition: Subobject, composite object 509
Any expandedfield of an object is asubobjectof that
object.
An object that has anon-basic subobject is said to b
composite.

Definition: Entity, variable, read-only 512
An entity is anIdentifier, or one of two reserved words
(Current and Result), used in one of the following
roles:
1 • Final name of an attribute of a class.



FROM CHAPTER 19: OBJECTS, VALUES AND ENTITIES 1121

as

lt
l

2 • Local variable of a routine orInline_agent,
includingResult for a query.

3 • Formal argument of a routine or inline agent.
4 • Object Test local.
5 • Current , the predefined entity used to represent a

reference to the current object (the target of the latest
not yet completed routine call).

Names of non-constant attributes and local variables
are variable entities, also called justvariables.
Constant attributes, formal arguments, Object Test
locals andCurrent  areread-only entities.

Syntax: Entities and variables 512

Entity=∆ Variable |Read_only
Variable=∆ Variable_attribute |Local
Variable_attribute=∆ Feature_name
Local=∆ Identifier |Result
Read_only=∆ Formal |Constant_attribute|Current
Formal=∆ Identifier
Constant_attribute=∆ Feature_name

Validity: Entity rule VEEN 513

An occurrence of anentity e in the text of a classC
(other than as the feature of a qualified call) is valid if
and only if it satisfies one of the following conditions:
1 • e is Current .
2 • e is thefinal name of an attribute ofC.
3 • e is the local variableResult, and the occurrence is

in aFeature_body, PostconditionorRescuepart of an
Attribute_or_routine text for a query or an
Inline_agent whosesignature includes a result type.

4 • e is Result appearing in thePostconditionof a
constant attribute’s declaration.

5 • e is listed in the Identifier_list of an
Entity_declaration_groupin a Local_declarations
part of a feature orInline_agent fa, and the
occurrence is in aLocal_declarations, Feature_body
or Rescue part forfa.

6 • e is listed in the Identifier_list of an
Entity_declaration_groupin a Formal_arguments
part for a routiner, and the occurrence is in a
declaration forr.

7 • e is listed in the Identifier_list of an
Entity_declaration_groupin the Agent_arguments
part of anAgent a, and the occurrence is in the
Agent_bodyof a.

8 • e is theObject-TestLocal of anObject_test, and the
occurrence is in its scope.

Validity: Variable rule VEVA 514

A Variableentity v is valid in a classC if an only if it
satisfies one of the following conditions:
1 • v is thefinal name of avariable attribute ofC.

2 • v is the final name of alocal variable of the
immediately enclosing routine or agent.

Definition: Self-initializing type 515

A type isself-initializing  if it is one of:
1 • A detachable type.
2 • A self-initializing formal parameter.
3 • An attached type (including expanded types and,

a special case of these, basic types) whosecreation
procedures include aversion ofdefault_createfrom
ANYavailable for creation toC.

Semantics: Default Initialization rule 516

Every self-initializing type T has a default
initialization value as follows:
1 • For adetachable type: a void reference.
2 • For a self-initializing attachedtype: an object

obtained by creating an instance ofT through
default_create.

3 • For aself-initializing formal parameter: for every
generic derivation, (recursively) the defau
initialization value of the corresponding actua
generic parameter.

4 • ForBOOLEAN: the boolean value false.
5 • For asizedvariant ofCHARACTER: null character.
6 • For asized variant ofINTEGER: integer zero.
7 • For asized variant ofREAL: floating-point zero.
8 • ForPOINTER: a null pointer.
9 • For TYPED_POINTER: an object representing a

null pointer.

Definition: Self-initializing variable 517

A variable isself-initializing if one of the following
holds:
1 • Its type is a self-initializing type.
2 • It is an attribute declared with anAttribute part

such that the entityResult is properlyset at the end
of its Compound.

Definition: Evaluation position, precedes 517

An evaluation position is one of:
• In aCompound, one of itsInstruction components.
• In an Assertion, one of its Assertion_clause

components.
• In either case, a specialend position.
A positionp precedesa positionq if they are both in
the sameCompound or Assertion, and either:
• p and q are bothInstruction or Assertion_clause

components, andp appears beforeq in the
corresponding list.

• q is the end position andp is not.



LANGUAGE REFERENCE1122

a

t

of

d
t

e

an
Definition: Setter instruction 518
A setter instruction is an assignment or creation
instruction.
If x is avariable, a setter instruction is asetter for x if
its assignment target orcreation target isx.

Definition: Properly set variable 518
At anevaluationpositionepin a classC, a variablex is
properly set if one of the following conditions holds:
1 • x is self-initializing.
2 • ep is an evaluation position of theCompoundof a

feature orInline_agentof the Internal form, one of
whose instructionsprecedesep and is asetter forx.

3 • x is a variable attribute, and is (recursively)
properly set at theend position of everycreation
procedure ofC.

4 • ep is an evaluation position in aCompoundthat is
part of an instructionep’, itself belonging to a
Compound, and x is (recursively) properly set at
positionep’.

5 • epis in aPostconditionof a routine orInline_agent
of the Internal form, andx is (recursively) properly
set at the end position of itsCompound.

6 • ep is anAssertion_clausecontainingResult in the
Postcondition of a constant attribute

Validity: Variable Initialization rule VEVI 519

It is valid for anExpression, other than the target of an
Assigner_call, to be also aVariableif it is properlyset
at the evaluation position defined by the closest
enclosingInstruction or Assertion_clause.

Definition: Variable setting and its value 520
A setting for a variablex is any one of the following
run-time events, defining in each case thevalue of the
setting:
1 • Execution of asetter for x. (Value: the object

attachedto x by the setter, or a void reference if
none.)

2 • If x is a variableattribute with anAttribute part:
evaluation of that part, implying execution of its
Compound. (Value: the object attached toResult at
the end position of that Compound, or a void
reference if none.)

3 • If the typeT of x is self-initializing: assignment to
x of T’s default initialization value. (Value: that
initialization value.)

Definition: Execution context 521
At any time during execution, the currentexecution
context for a variable is the period elapsed since:
1 • For an attribute: the creation of thecurrent object.
2 • For a local variable: the start of execution of the

current routine.

Semantics: Variable Semantics 521
The value produced by the run-time evaluation of
variablex is:
1 • If the executioncontext has previously executed a

least onesettingfor x: the value of the latest such
setting.

2 • Otherwise, if the typeT of x is self-initializing:
assignment tox of T’s default initialization value,
causing a setting ofx.

3 • Otherwise, if x is a variable attribute with an
Attribute part: evaluation of that part, implying
execution of itsCompoundand hence a setting forx.

4 • Otherwise, ifx is Result in thePostconditionof a
constant attribute: thevalue of the attribute.

Semantics: Entity Semantics rule 522
Evaluating anentity yields avalue as follows:
1 • ForCurrent : a valueattachedto thecurrentobject.
2 • For a formal argument of a routine orInline_agent:

the value of the corresponding actual at the time
thecurrent call.

3 • For aconstantattribute: the value of the associate
Manifest_constantas determined by the Manifes
Constant Semantics rule.

4 • For anObject-Test Local: as determined by the
Object-Test Local Semantics rule.

5 • For a variable: as determined by the Variabl
Semantics rule.

FROM CHAPTER 20: CREATING
OBJECTS

Semantics: Creation principle 523
Any execution of a creation operation must produce
object that satisfies the invariant of itsgeneratingclass.

Definition: Creation operation 524
A creation operation is a creation instruction or
expression.

Validity: Creation Precondition rule VGCP 547

A Preconditionof a routiner is creation-valid if and
only if its unfolded form uf satisfies the
following conditions:
1 • The predefined entityCurrent does not appear in

uf.
2 • NoUnqualified_call appears inuf.
3 • Every feature whose final name appears in theuf is

available to every class to whichr is available for
creation.

Syntax: Creators parts 547

Creators=∆ Creation_clause+

Creation_clause=∆ create[Clients] [Header_comment]
Creation_procedure_list
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Creation_procedure_list=∆ {Creation_procedure","…}+

Creation_procedure=∆ Feature_name
Definition: Unfolded Creatorspart of a class 548

Theunfolded creators part of a classC is aCreators
defined as:
1 • If C has aCreators part c: c.
2 • If C is deferred: an emptyCreators part.
3 • Otherwise, a Creators part built as follows,

dc_namebeing thefinal name inC of its version of
default_create from ANY:

create
dc_name

Validity: Creation Clause rule VGCC 548

A Creation_clausein the unfoldedcreatorspart of a
classC is valid if and only if it satisfies the following
conditions, the last four for everyFeature_name
cp_namein the clause’sFeature_list:
1 • C is effective.
2 • cp_nameappears only once in theFeature_list.
3 • cp_nameis the final name of some procedurecpof

C.
4 • cp is not aonce routine.
5 • The precondition ofcp, if any, iscreation-valid.

Definition: Creation procedures of a class 550
Thecreation proceduresof a class are all the features
appearing in anyCreation_clauseof its unfolded
creators part.

Creation procedure property 550
An effective class has at least onecreation procedure.

Definition: Creation procedures of a type 550
Thecreation procedures of a typeT are:
1 • If T is a Formal_generic_name, the constraining

creators forT.
2 • Otherwise, thecreation procedures ofT’s base

class.
Definition: Available for creation; general creation
procedure 551

A creation procedure of a classC, listed in a
Creation_clausecc of C’s unfolded creatorspart, is
available for creation to the descendants of the
classes given in theClientsrestriction ofcc, if present,
and otherwise to all classes.
If there is noClientsrestriction, the procedure is said
to be ageneral creation procedure.

Syntax: Creation instructions 551

Creation_instruction=∆ create[Explicit_creation_type]
Creation_call

Explicit_creation_type=∆ "{" Type"}"
Creation_call=∆ Variable[Explicit_creation_call]
Explicit_creation_call=∆ "." Unqualified_call

Definition: Creation target, creation type 551
The creation target (or just “target” if there is no
ambiguity) of aCreation_instructionis theVariableof
its Creation_call.
The creation type of a creation instruction, denoting
the type of the object to be created, is:
• The Explicit_creation_type appearing (between

braces) in the instruction, if present.
• Otherwise, the type of the instruction’starget.

Semantics: Creation Type theorem 552
The creationtype of a creation instruction is alway
effective.

Definition: Unfolded form of a creation instruction
552

Consider aCreation_instructionci of creation typeCT.
The unfolded form of ci is a creation instruction
defined as:
1 • If ci has anExplicit_creation_call, thenci itself.
2 • Otherwise, aCreation_instructionobtained fromci

by making theCreation_callexplicit, using asfeature
name thefinal name inCT of CT’s version ofANY’s
default_create.

Validity: Creation Instruction rule VGCI 553

A Creation_instructionof creation typeCT, appearing
in a classC, is valid if and only if it satisfies the
following conditions:
1 • CT conforms to thetarget’s type.
2 • The feature of theCreation_callof the instruction’s

unfolded form isavailable for creation toC.
3 • ThatCreation_call is argument-valid.
4 • CT is generic-creation-ready.

Validity: Creation Instruction properties VGCP 555

A Creation_instructionci of creation type CT,
appearing in a classC, is valid only if it satisfies the
following conditions, assumingCT is not a
Formal_generic_nameand callingBCT thebaseclass
of CT anddc the version ofANY’s default_createin
BCT:
1 • BCT is aneffective class.
2 • If ci includes aTypepart, the type it lists (which is

CT) conforms to the type of the instruction’starget.
3 • If ci has noCreation_call, thenBCT either has no

Creatorspart or has one that listsdc as one of the
proceduresavailable toC for creation.

4 • If BCT has aCreatorspart which doesn’t listdc,
thenci has aCreation_call.

5 • If ci has aCreation_callwhose featuref is notdc,
thenBCThas aCreatorspart which listsf as one of
the procedures available toC for creation.

6 • If ci has aCreation_call, that call isargument-valid.



LANGUAGE REFERENCE1124

lue
the

ion
y.

e

o

ry
the

s

t

If CT is aFormal_generic_name, the instruction is
valid only if it satisfies the following conditions:
555

7 • CT denotes aconstrained generic parameter.
8 • The Constraint for CT specifies one or more

procedures asconstraining creators.
9 • If ci has noCreation_call, one of the constraining

creators is theConstraint’s version ofdefault_create
from ANY.

10 •If ci has aCreation_call, one of the constraining
creators is thefeature of theCreation_call.

Semantics: Creation Instruction Semantics 556
The effect of a creation instruction oftarget x and
creationtypeTC is the effect of the following sequence
of steps, in order:
1 • If there isnot enoughmemoryavailable for a new

direct instance ofTC, trigger anexceptionof type
NO_MORE_MEMORYin the routine that attempted
to execute the instruction. The remaining steps do not
apply in this case.

2 • Create a newdirect instance ofTC, with reference
semantics if CT is a reference type and copy
semantics ifCT is anexpanded type.

3 • Call, on the resulting object, the feature of the
Unqualified_call of the instruction’sunfolded form.

4 • Attachx to the object.

Syntax: Creation expressions 561

Creation_expression=∆  createExplicit_creation_type
[Explicit_creation_call]

Definition: Properties of a creation expression 561
The creation type and unfolded form of a creation
expression are defined as for a creation instruction.

Validity: Creation Expression rule VGCE 562

A Creation_expressionof creation typeCT, appearing
in a classC, is valid if and only if it satisfies the
following conditions:
1 • The feature of theCreation_callof the expression’s

unfolded form isavailable for creation toC.
2 • ThatCreation_call is argument-valid.
3 • CT is generic-creation-ready.

Validity: Creation Expression Properties VGCX 562

A Creation_expressionce of creation type CT,
appearing in a classC, is valid only if it satisfies the
following conditions, assumingCT is not a
Formal_generic_nameand callingBCT thebaseclass
of CT anddc the version ofANY’s default_createin
BCT:
1 • BCT is aneffective class.

2 • If cehas noExplicit_creation_call, thenBCTeither
has noCreatorspart or has one that listsdcas one of
the proceduresavailable toC for creation.

3 • If BCT has aCreatorspart which doesn’t listdc,
thencehas anExplicit_creation_call.

4 • If cehas anExplicit_creation_callwhose featuref
is notdc, thenBCThas aCreatorspart which listsf
as one of the proceduresavailable toC for creation.

5 • If ce has anExplicit_creation_call, that call is
argument-valid.

If CT is aFormal_generic_name, the expression is
valid only if it satisfies the following conditions:
562

6 • CT denotes aconstrained generic parameter.
7 • The Constraint for CT specifies one or more

procedures asconstraining creators.
8 • If cehas noCreation_call, one of the constraining

creators is theConstraint’s version ofdefault_create
from ANY.

9 • If ce has aCreation_call, one of the constraining
creators is thefeature of theCreation_call.

Semantics: Creation Expression Semantics 563

The value of a creation expression of creation typeTC
is — except if step1 below triggers anexception, in
which case the expression has no value — a va
attached to a new object as can be obtained through
following sequence of steps:
1 • If there isnot enoughmemoryavailable for a new

direct instance ofTC, trigger an exceptionof type
NO_MORE_MEMORYin the routine that attempted
to execute the expression. In this case the express
has no value and the remaining steps do not appl

2 • Create a newdirect instance ofTC, with reference
semantics if CT is a reference type and copy
semantics ifCT is anexpanded type.

3 • Call, on the resulting object, the feature of th
Unqualified_call of the expression’sunfolded form.

Definition: Garbage Collection, not enough memory
available 564

Authors of Eiffel implementation are required t
providegarbage collection, defined as a mechanism
that can reuse for allocating new objects the memo
occupied by unreachable objects, guaranteeing
following two properties:
1 • Consistency: the garbage collector never reclaim

an object unless it is unreachable.
2 • Completeness: no allocation request for an objec

of a certain sizes will fail if there exists an
unreachable object of size >=s.
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Not enough memory availablefor a certain sizes
means that even after possible application of the
garbage collection mechanism the memory available to
the program is not sufficient for allocating an object of
sizes.

FROM CHAPTER 21: COMPARING AND
DUPLICATING OBJECTS

Object comparison features fromANY 566
The features whosecontractviews appear below are
provided by classANY.

default_is_equal(other: like Current)
-- Is other attached to object field-by-

field equal
-- to current object?

ensure
same_type:Result implies same_type

(other)
symmetric: Result =

other.default_is_equal(Current )
consistent: Result implies is_equal

(other)
is_equal(other: ? like Current)

-- Isotherattached to object considered
equal

-- to current object?
ensure

same_type:Result implies same_type
(other)

symmetric: Result = other.is_equal
(Current )

consistent: default_is_equal (other)
implies Result
The original version ofis_equalin ANYhas the same
effect asdefault_is_equal.

Syntax: Equality expressions 567

Equality=∆ Expression Comparison Expression
Comparison=∆ "=" | "/=" | "~" | "/~"

Semantics: Equality Expression Semantics 567
TheBoolean_expressione~ f hasvalue true if and only
if the values ofe andf are bothattached and such that
e.is_equal(f) holds.
TheBoolean_expressione= f has value true if and only
if the values ofe andf are one of:
1 • Both void.
2 • Both attached to the same object withreference

semantics.
3 • Both attached to objects withcopy semantics, and

such thate~ f holds.

Semantics: Inequality Expression Semantics 568

The expressione /= f has value true if and only ife = f
has value false.
The expressione /~ f has value true if and only ife ~ f
has value false.

Copying and cloning features fromANY 569

The features whosecontractviews appear below are
provided by classANY assecret features.

copy(other: ? like Current)
-- Update current object using fields o

object
-- attached toother, to yield equal

objects.
require

exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: is_equal(other)

frozen default_copy(other: ? like Current)
-- Update current object using fields o

object
-- attached toother, to yield identical

objects.
require

exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: default_is_equal(other)

frozen cloned: like Current
-- New object equal to current object
-- (relies oncopy)

ensure
equal: is_equal(Result)

frozen default_cloned: like Current
-- New object equal to current object
-- (relies ondefault_copy)

ensure
equal: default_is_equal(Result)

The original versions ofcopyandclonedin ANYhave
the same effect asdefault_copyand default_cloned
respectively.

Deep equality, copying and cloning 570

The featureis_deep_equalof class ANY makes it
possible to compare object structures recursively;
features ,deep_copyand deep_clonedduplicate an
object structure recursively.
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FROM CHAPTER 22: ATTACHING
VALUES TO ENTITIES

Definition: Reattachment, source, target 588
A reattachment operation is one of:
1 • An Assignmentx := y; then y is the attachment’s

source and x its target.
2 • The run-time association, during the execution of a

routine call, of an actual argument (the source) to the
corresponding formal argument (the target).

Syntax: Assignments 589

Assignment=∆ Variable ":=" Expression
Validity: Assignment rule VBAR 590

An Assignment is valid if and only if its source
expression iscompatible with its target entity.

Semantics: Reattachment principle 599
After a reattachement to a target entityt of typeTT, the
object attached tot, if any, is of a typeconformingto
TT.

Semantics: Attaching an entity, attached entity 600
Attaching an entitye to an objectO is the operation
ensuring that the value ofe becomesattached toO.

Semantics: Reattachment Semantics 600
The effect of a reattachment of source expression
sourceand target entitytarget is the effect of the first
of the following steps whose condition applies:
1 • If sourceconvertsto target: perform aconversion

attachment fromsource to target.
2 • If the value ofsource is a void reference: make

target’s value void as well.
3 • If the value ofsourceis attachedto an object with

copy semantics: create aclone of that object, if
possible, andattachtargetto it.

4 • If the value ofsourceis attached to an object with
reference semantics: attachtargetto that object.

Semantics: Assignment Semantics 601
The effect of a reassignmentx := y is determined by the
Reattachment Semantics rule, with sourcey and target
x.

Definition: Dynamic type 606
Thedynamic type of an expressionx, at some instant
of execution, is the type of the object to whichx is
attached, orNONE if x is void.

Definition: Polymorphic expression; dynamic type
and class sets 606

An expression that has two or more possible dynamic
types is said to bepolymorphic.
The set of possible dynamic types for an expressionx
is called thedynamic type setof x. The set ofbase
classes of these types is called thedynamic class setof
x.

Syntax: Assigner calls 609

Assigner_call=∆ Expression ":=" Expression
Validity: Assigner Call rule VBAC 610

An Assigner_callof the formtarget := source, where
targetandsourceare expressions, is valid if and only
if it satisfies the following conditions:
1 • source is compatible withtarget.
2 • The Equivalent Dot Form oftarget is a qualified

Object_callwhose feature has anassignercommand.
Semantics: Assigner Call semantics 610

The effect of anAssigner_calltarget := source, where
theEquivalentDot Form of target is x.f or x.f (args)
andf has anassignercommandp, is, respectively,x.p
(source) or x.p (source, args).

FROM CHAPTER 23: FEATURE CALL
Validity: Call Use rule VUCN 623

A Call of featuref denotes:
1 • If f is a query (attribute or a function):

an expression.
2 • If f is a procedure: an instruction.

Syntax: Feature calls 626

Call=∆ Object_call| Non_object_call
Object_call=∆ [Target"."] Unqualified_call
Unqualified_call=∆ Feature_name[Actuals]
Target=∆ Local|Read_only|Call |Parenthesized_target
Parenthesized_target=∆ "(|" Expression"|)"
Non_object_call=∆ "{" Type"}" "." Unqualified_call

Syntax: Actual arguments 626

Actuals=∆ "(" Actual_list ")"
Actual_list=∆ {Expression "," …}+

Definition: Unqualified, qualified call 627
An Object_call is qualified if it has a Target,
unqualified otherwise.

Definition: Target of a call 628
Any Object_call has atarget, defined as follows:
1 • If it is qualified: itsTargetcomponent.
2 • If it is unqualified:Current .

Definition: Target type of a call 629
Any Call has atarget type, defined as follows:
1 • For anObject_call: the type of itstarget. (In the

case of anUnqualified_call this is thecurrent type.)
2 • For aNon_object_callhaving a typeT as itsType

part:T.
Definition: Feature of a call 629

For anyCall the “feature of the call” is defined as
follows:
1 • For anUnqualified_call: its Feature_name.
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2 • For a qualified call or Non_object_call:
(recursively) the feature of itsUnqualified_callpart.

Definition: Imported form of a Non_object_call 630

The imported form of a Non_object_callof Type T
and feature f appearing in a classC is the
Unqualified_callbuilt from the originalActualsif any
and, asfeatureof thecall, a fictitious new feature added
to C and consisting of the following elements:
1 • A namedifferent from those of other features ofC .
2 • A Declaration_body obtained from the

Declaration_bodyof f by replacing every type by its
deanchored form, then applying the generic
substitution ofT.

Validity: Non-Object Call rule VUNO 631

A Non_object_callof Type T and featurefnamein a
classC is valid if and only if it satisfies the following
conditions:
1 • fnameis the final name of a featuref of T.
2 • f is available toC.
3 • f is either a constant attribute or an external feature

whose assertions, if any, use neitherCurrent nor any
unqualified calls.

4 • The call’s imported form is a valid
Unqualified_call.

Semantics: Non-Object Call Semantics 631

The effect of aNon_object_callis that of itsimported
form.

Validity: Export rule VUEX 632

An Object_callappearing in a classC, with fnameas
thefeatureof thecall, isexport-valid for C if and only
if it satisfies the following conditions.
1 • fnameis the final name of a feature of thetarget

type of the call.
2 • If the call isqualified, that feature isavailableto C.
The export status of a featuref:
• Constrains allqualified calls x.f (…), including

those in which the type ofx is thecurrenttype, or is
Current  itself.

• Does not constrainunqualified calls.

Validity: Argument rule VUAR 634

An export-valid call of target typeST and feature
fnameappearing in a classC where it denotes a feature
sf is argument-valid if and only if it satisfies the
following conditions:
1 • The number of actual arguments is the same as the

number of formal arguments declared forsf.
2 • Every actual argument of the call iscompatible

with the corresponding formal argument ofsf.

Validity: Target rule VUTA 635

An Object_callis target-valid if and only if either:
1 • It is unqualified.
2 • Its target is anattached expression.

Validity: Class-Level Call rule VUCC 636

A call of target typeSTis class-validif and only if it is
export-valid, argument-valid andtarget-valid.

Definition: Void-Unsafe 636
A language processing tool may, as a tempora
migration facility, provide an option that waives th
target validity requirement inclassvalidity. Systems
processed under such an option arevoid-unsafe.

Definition: Target Object 637
Thetarget object of an execution of anObject_callis:
1 • If the call is qualified: the objectattachedto its

target.
2 • If it is unqualified: the current object.

Semantics: Failed target evaluation of a void-unsafe
system 638

In the execution of an (invalid) system compiled i
void-unsafe mode through a language processing t
offering such a migration option, an attempt to execu
a call triggers, if it evaluates the target to a voi
reference, anexceptionof typeVOID_TARGET.

Definition: Dynamic feature of a call 639
Consider an execution of a callof featurefnameand
target objectO. Let STbe its target type andDT the
type of O. The dynamic feature of the call is the
dynamicbindingversion inDT of the feature of name
fname in ST.

Definition: Freshness of a once routine call 644
During execution, a call whose feature is aonceroutine
r is fresh if and only if every feature call started so fa
satisfies any of the following conditions:
1 • It did not user asdynamic feature.
2 • It was in a different thread, andr has the once key

"THREAD" or no once key.
3 • Its target was not the current object, andr has the

once key"OBJECT".
4 • After it was started, a call was executed to one

the refreshing features ofoncesfrom ANY, including
among the keys to be refreshed at least one of
once keys ofr.

Definition: Latest applicable target and result of a
non-fresh call 645

The latest applicable targetof a non-fresh call to a
onceroutinedf to atargetobjectO is the last value to
which it wasattached in the call todf most recently
started on:
1 • If df has the once key"OBJECT": O.
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2 • Otherwise, ifdf has the once key"THREAD" or no
once key: any target in the current thread.

3 • Otherwise: any target in any thread.
If df is a function, thelatest applicable resultof the
call is the last value returned by a fresh call using as
target object its latest applicable target.

Semantics: Once Routine Execution Semantics 646

The effect of executing aonceroutinedf on a target
objectO is:
1 • If the call is fresh: that of a non-once call made of

the same elements, as determined byNon-once
Routine Execution Semantics.

2 • If the call is not fresh and the last execution off on
thelatestapplicabletargettriggered anexception: to
trigger again an identical exception. The remaining
cases do not then apply.

3 • If the call is not fresh anddf is a procedure: no
further effect.

4 • If the call is not fresh anddf is a function: to attach
the local variableResult to the latest applicable
result of the call.

Semantics: Current object, current routine 649

At any time during the execution of a system there is a
current object COand acurrent routine cr defined as
follows:
1 • At the start of the execution:CO is theroot object

andcr is theroot procedure.
2 • If cr executes aqualified call: the call’s target

object becomes the new current object, and its
dynamic feature becomes the new current routine.
When the qualified call terminates, the earlier current
object and routine resume their roles.

3 • If cr executes anunqualifiedcall: the current object
remains the same, and thedynamicfeature of the call
becomes the current routine for the duration of the
call as in case2.

4 • If cr starts executing any construct whose
semantics does not involve a call: the current object
and current routine remain the same.

Semantics: Current Semantics 651

The value of the predefined entityCurrent at any time
during execution is thecurrent object if the current
routine belongs to an expanded class, and a reference
to the current object otherwise.

Semantics: Non-Once Routine Execution Semantics
652

The effect of executing a non-once routinedf on a
targetobjectO is the effect of the following sequence
of steps:

1 • If df has any local variables, includingResult if df
is a function, save their current values if any call todf
has been started but not yet terminated.

2 • Execute the body ofdf.
3 • If the values of any local variables have been sav

in step1, restore the variables to their earlier value

Semantics: General Call Semantics 653

The effect of anObject_callof featuresf is, in the
absence of anyexception, the effect of the following
sequence of steps:
1 • Determine the target object O through the

applicable definition.
2 • AttachCurrent  to O.
3 • Determine thedynamic feature df of the call

through the applicable definition.
4 • For every actual argumenta, if any, in the order

listed: obtain thevaluev of a; then if thetype of a
converts to the type of the corresponding formal insf,
replacev by the result of the applicable conversion
Let arg_valuesbe the resulting sequence of all suc
v.

5 • Attach every formal argument ofdf to the
corresponding element ofarg_valuesby applying the
Reattachment Semantics rule.

6 • If the call is qualified and class invarian
monitoring is on, evaluate the class invariant ofO’s
base type onO.

7 • If precondition monitoring is on, evaluate th
precondition ofdf .

8 • If df is not an attribute, not aonceroutine and not
external, apply Non-Once Routine Execution
Semantics toO anddf .

9 • If df is a once routine, apply theOnce Routine
Execution Semantics toO anddf.

10 •If df is an external routine, execute that routine o
the actual arguments given, if any, according to t
rules of the language in which it is written.

11 •If df is aself-initializing attribute and has not yet
been initialized, initialize it through theDefault
Initialization rule.

12 •If the call is qualified and class invarian
monitoring is on, evaluate the class invariant ofO’s
base type onO.

13 •If postcondition monitoring is on, evaluate th
postcondition ofdf.

An exception occurring during any of these ste
causes the execution to skip the remaining parts of t
process and instead handle the exception accordin
theException Semantics rule.
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Definition: Type of a Call used as expression 655
Consider a call denoting an expression. Itstype with
respect to a typeCT of base classC is:
1 • For anunqualified call, its featuref being aquery of

CT: the result type of theversion off in C, adapted
through thegeneric substitution ofCT.

2 • For aqualified calla.e of Targeta: (recursively)
thetype ofewith respect to the type ofa.

3 • For aNon_object_call: (recursively) the type of its
imported form.

Semantics: Call Result 656
Consider aCall c whose feature is aquery. An
execution ofc according to theGeneralCall Semantics
yields acall result defined as follows, whereO is the
targetobject determined at step1 of the rule anddf the
dynamic feature determined at step3:
1 • If df is a non-external, non-oncefunction: the value

attached to the local variableResult of df at the end
of step2 of Non-OnceRoutineExecutionSemantics.

2 • If df is a once function: the value attached to
Resultas a result of the application ofOnceRoutine
Execution Semantics.

3 • If df is an attribute: the correspondingfield in O.
4 • If df is an external function: the result returned by

the function according to the external language’s
rule.

Semantics: Value of a call expression 656
Thevalue of a Call c used as an expression is, at any
run-time moment, theresult of executingc.

FROM CHAPTER 24: ERADICATING
VOID CALLS

Syntax: Object test 658

Object_test=∆ "{" Identifier":" Type"}" Expression
Definition: Object-Test Local 659

The Object-Test Local of an Object_test is its
Identifier component.

Validity: Object Test rule VUOT 659

An Object_testot of the form{ x: T} expis valid if and
only if it satisfies the following conditions:
1 • x does not have the samelowername as any feature

of the enclosing class, or any formal argument or
local variable of any enclosing feature or
Inline_agent, or, if ot appears in the scope of any
otherObject_test, its Object-Test Local.

2 • T is anattached type.
Definition: Conjunctive, disjunctive, implicative;
Term, semistrict term 660

Consider anOperator_expressione of boolean type,
which after resolution of any ambiguities through
precedencerules can be expressed asa1 § a2 §… § an

for n ≥ 1, where§ represents boolean operators an
every ai, called a term, is itself a valid
Boolean_expression. Thene is:
• Conjunctive if every§ is eitherand or and then.
• Disjunctive if every§ is eitheror or or else.
• Implicative  if n = 2 and§ is implies.
A term ai is semistrict if in the corresponding form it
is followed by asemistrict operator.

Definition: Scope of an Object-Test Local 661
The scope of theObject-TestLocal of anObject_testot
includes any applicable program element from t
following:
1 • If ot is a semistrict term of a conjunctive

expression: any subsequent terms.
2 • If ot is a term of animplicativeexpression: the next

term.
3 • If not ot is a semistrict term of a disjunctive

expressione: any subsequent terms.
4 • If ot is a term of a conjunctive expression servin

as theBoolean_expressionin the Then_partin a
Conditional: the correspondingCompound.

5 • If not ot is a term of adisjunctive expression
serving as theBoolean_expressionin theThen_part
in a Conditional: any subsequentThen_partand
Else_clause.

6 • If not ot is a term of a disjunctive expressio
serving as theExit_condition in a Loop: the
Loop_body.

7 • If ot is a term of a conjunctive expression used
Unlabeled_assertion_clausein a Precondition: the
subsequent components of theAttribute_or_routine.

8 • If ot is a term of a conjunctive expression used
Unlabeled_assertion_clausein a Check: the
subsequent components of its enclosingCompound.

Semantics: Object Test semantics 661
The value of anObject_test{ x: T} exp is true if the
value of exp is attached to aninstance ofT, false
otherwise.

Semantics: Object-Test Local semantics 662
For anObject_test{ x: T} exp, the value ofx, defined
only over itsscope, is the value ofexpat the time of the
Object_test’s evaluation.

Definition: Read-only void test 662
A read-only void test is aBoolean_expressionof one
of the formse = Void ande /= Void, wheree is aread-
only entity.

Definition: Scope of a read-only void test 662
Thescopeof a read-onlyvoid test appearing in a class
text, for e of type T, is thescope that theObject-Test
Localot would have if the void test were replaced by
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1 • Fore= Void: not ({ ot: T} e).
2 • Fore /= Void: { ot: T} e.

Definition: Certified Attachment Pattern 663
A Certified Attachment Pattern (or CAP) for an
expression exp whose type is detachable is an
occurrence ofexp in one of the following contexts:
1 • expis anObject-TestLocal and the occurrence is in

its scope.
2 • expis aread-onlyentity and the occurrence is in the

scope of a void test involvingexp.
Definition: Attached expression 664

An expressionexpof typeT is attached if it satisfies
any of the following conditions:
1 • T is attached.
2 • T is expanded.
3 • expappears in aCertifiedAttachmentPatternfor

exp.

FROM CHAPTER 25: TYPING-RELATED
PROPERTIES

Definition: Catcall 665
A catcall is a run-time attempt to execute aCall, such
that thefeatureof thecall is not applicable to thetarget
of the call.

Validity: Descendant Argument rule VUDA 667

Consider a call oftarget type ST and featurefname
appearing in a classC. Let sf be the feature offinal
namefnamein ST. Let DT be a typeconformingto ST,
anddf theversion ofsf in DT. The call isdescendant-
argument-valid for DT if and only if it satisfies the
following conditions:
1 • The call isargument-valid.
2 • Every actual argument conforms, after conversion

to the corresponding formal argument ofsf if
applicable, to the corresponding formal argument of
df.

Validity: Single-level Call rule VUSC 668

A call of targetx is system-validif for any elementD
of thedynamicclassset ofx it is export-valid for D and
descendant-argument-valid for D.

FROM CHAPTER 26: EXCEPTION
HANDLING

Definition: Failure, exception, trigger 690
Under certain circumstances, the execution or
evaluation of aconstructspecimen may be unable to
proceed as defined by the construct’s semantics. It is
then said to result in afailure .
If, during the execution of a feature, the execution of
one of its components fails, this prevents continuing its

execution normally; such an event is said totrigger an
exception.

Syntax: Rescue clauses 701

Rescue=∆ rescueCompound
Retry=∆ retry

Validity: Rescue clause rule VXRC 701

It is valid for an Attribute_or_routineto include a
Rescueclause if and only if itsFeature_bodyis an
Attribute or anEffective_routineof theInternal form.

Validity: Retry rule VXRT 701

A Retry instruction is valid if and only if it appears in
aRescue clause.

Definition: Exception-correct 702
A routine is exception-correct if any branch of the
Rescueclause not terminating with aRetryensures the
invariant.

Semantics: Default Rescue Original Semantics 702
Class ANY introduces a non-frozen procedur
default_rescue with no argument and a null effect.

Definition: Rescue block 703
Any Internalor Attribute featuref of a classC has a
rescue block, a Compounddefined as follows, where
rc is C’s version ofANY’s default_rescue:
1 • If f has aRescueclause: theCompoundcontained

in that clause.
2 • If r is notrc and has noRescueclause: aCompound

made of a single instruction: anUnqualfied_callto
rc.

3 • If r is rc and has noRescueclause: an empty
Compound.

Semantics: Exception Semantics 704
An exceptiontriggered during an execution of a featur
f causes, if it is neitherignored norcontinued, the effect
of the following sequence of events.
1 • Attach the value oflast_exceptionfrom ANY to a

direct instance of a descendant of the Kernel Libra
classEXCEPTIONcorresponding to the type of the
exception.

2 • Unlike in the non-exception semantics of
Compound, do not execute the remaining
instructions off.

3 • If the recipient of the exception isf, execute the
rescue block off.

4 • If case3 applies and the rescue block executes
Retry, this terminates the processing of th
exception. Execution continues with a new executi
of theCompound in theFeature_body of f.

5 • If neither case3 nor case4 applies (in particular in
case3 if the rescue block executes to the end witho
executing aRetry), this terminates the processing o
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the current exception and the current execution off,
causing afailure of that execution. If the execution of
f was caused by a call tof from another feature,
trigger an exception of typeROUTINE_FAILUREin
the calling routine, to be handled (recursively)
according to the present rule. If there is no such
calling feature,f is theroot procedure; terminate its
execution as having failed.

Definition: Type of an exception 705
Thetypeof atriggeredexception is thegeneratingtype
of the object to which the value oflast_exceptionis
attached per step1 of the Expression Semantics rule.

Semantics: Exception Cases 706
Thetriggering of anexception in a featuref called by
a featurecaller results in the setting of the following
properties, accessible through features of the exception
class instance to which the value oflast_exceptionis
attached, as per the following table, where:
• TheRecipient is eitherf or caller.
• “Type” indicates the type of the exception (a

descendant ofEXCEPTION).
• If f is therootprocedure, executed during the original

system creation call, the value ofcaller as given
below does not apply.

Recipient
Type
Exception during evaluation caller
[Type of exception as triggered]
of invariant on entry
Invariant violation on entry caller
INVARIANT_ENTRY_VIOLATION
Exception during evaluation caller
[Type of exception as triggered]
of precondition
Exception during evaluation SeeOld Expression
Semantics
of Old expression on entry
Precondition violation caller
PRECONDITION_VIOLATION
Exception in body f
[Type of exception as triggered]
Exception during evaluation f
[Type of exception as triggered]
of invariant on exit
Invariant violation on exit f
INVARIANT_EXIT_VIOLATION
Exception during evaluation f
[Type of exception as triggered]
of postcondition on exit
Postcondition violation f
POSTCONDITION_VIOLATION

Semantics: Exception Properties 707
The value of the queryoriginal of classEXCEPTION,
applicable to last_exception, is an EXCEPTION
reference determined as follows after thetriggering of
anexception of typeTEX:
1 • If TEXdoes not conform toROUTINE_FAILURE:

a reference to the currentEXCEPTION object.
2 • If TEX conforms to ROUTINE_FAILURE: the

previous value oforiginal.
Definition: Ignoring, continuing an exception 709

It is possible, through routines of the Kernel Librar
classEXCEPTION, to ensure thatexceptions of certain
types be:
• Ignored: lead to no change of non-exceptio

semantics.
• Continued: lead to execution of a programmer

specified routine, then to continuation of th
execution according to non-exception semantics.

FROM CHAPTER 27: AGENTS,
ITERATION AND INTROSPECTION

Definition: Operands of a call 723
Theoperandsof a call include itstarget (explicit in a
qualifiedcall, implicit in an unqualifiedcall), and its
arguments if any.

Definition: Operand position 723
The target of a call hasposition 0. The i-th actual
argument, for any applicablei, hasposition i.

Definition: Construction time, call time 725
Theconstruction time of an agent object is the time o
evaluation of the agent expression defining it.
Its call time is when a call to its associated operation
executed.

Syntactical forms for a call agent 733
A call agent is of the form

agentagent_body
whereagent_bodyis aCall, qualified (as inx.r (…))
or unqualified (as inf (…)) with the following possible
variants:
• You may replace any argument by a question mark?,

making the argument open.
• You may replace the target, by{ TYPE} whereTYPE

is the name of a type, making the target open.
• You may remove the argument list(…) altogether,

making all arguments open.
Syntax: Agents 751

Agent=∆  Call_agent| Inline_agent
Call_agent=∆ agentCall_agent_body
Inline_agent=∆ agent[Formal_arguments] [Type_mark]

[Attribute_or_routine] [Agent_actuals]
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Syntax: Call agent bodies 752

Call_agent_body=∆  Agent_qualified|Agent_unqualified
Agent_qualified=∆ Agent_target". " Agent_unqualified
Agent_unqualified=∆ Feature_name[Agent_actuals]
Agent_target=∆ Entity |Parenthesized|Manifest_type
Agent_actuals=∆ "(" Agent_actual_list ")"
Agent_actual_list=∆ {Agent_actual "," …} +

Agent_actual=∆ Expression|Placeholder
Placeholder=∆ [Manifest_type] "?"

Definition: Target type of an call agent 754

Thetarget type of aCall_agentis:
1 • If there is noAgent_target, thecurrent type.
2 • If there is anAgent_targetand it is anEntity or

Parenthesized, its type.
3 • If there is an Agent_target and it is a

Manifest_type, the type that it lists (in braces).

Validity: Call Agent rule VPCA 754

A Call_agentinvolving aFeature_namefn, appearing
in a classC, with target typeT0, is valid if and only if
it satisfies the following conditions:
1 • fn is thename of a featuref of T0.
2 • If there is anAgent_target, f is export-valid for T0

in C.
3 • If the Agent_actualspart is present, the number of

elements in itsAgent_actual_listis equal to the
number of formals off.

4 • Any Agent_actualof the Expressionkind is of a
type compatiblewith the type of the corresponding
formal in f.

Definition: Associated feature of an inline agent 755

Every inline agentia of a classC has anassociated
feature, defined as a fictitious routinef of C, such that:
1 • The name off is chosen not to conflict with any

other feature name inC and its descendants.
2 • The formal arguments off are those ofia.
3 • f is secret (available for call to no class).
4 • TheAttribute_or_routinepart off is defined by the

Attribute_or_routine part ofia.
5 • f is afunction if ia has aType_mark(its return type

being given by theType in that Type_mark), a
procedure otherwise.

Validity: Inline Agent rule VPIA 755

An Inline_agenta of associatedfeaturef, is valid in the
text of a classC if and only if it satisfies the following
conditions:
1 • f, if added toC, would be valid.
2 • f is notdeferred.

Validity: Inline Agent Requirements VPIR 756

An Inline_agent a must satisfy the following
conditions:
1 • No formal argument orlocal variable ofa has the

same name as a feature of the enclosing class.
2 • Everyentity appearing in theRoutinepart of a is

the name of one of: a formal argument ofa; a local
variable of a; a feature of the enclosing class
Current .

3 • The Feature_bodyof a’s Routine is not of the
Deferred form.

Definition: Call-agent equivalent of an inline agent
757

Thecall-agent equivalentof an inline agentia is the
Call_agent

agentf
wheref is theassociated feature ofia.

Semantics: Semantics of inline agents 757

The semantic properties of an inline agent are those
its call-agent equivalent.

Semantics: Use ofResult in an inline function agent
758

In an agent of theInline_agent form denoting a
function, the local variableResultdenotes the result of
the agent itself.

Definition: Open and closed operands 758

Theopen operandsof aCall_agent include:
1 • Any Agent_actual that is aPlaceholder.
2 • The Agent_target if it is present and is a

Manifest_type.
Theclosed operands include all non-openoperands.

Definition: Open and closed operand positions 759

The open operand positionsof an Agent are the
operandpositions of its open operands, and theclosed
operand positions those of its closed operands.

Definition: Type of an agent expression 759

Consider aCall_agenta, with a target of typeT0. Let
i1, …, im (m≥ 0) be itsopenoperandpositions, if any,
and letTi1, .., Tim be the types off’s formal arguments
at positionsi1, …, im (takingTi1 to beT0 if i1 = 0).
The type ofa is:
• PROCEDURE[T0, TUPLE [Ti1, .., Tim]] if f is a

procedure.
• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if f is a

function of result typeR other thanBOOLEAN.
• PREDICATE [T0, TUPLE [Ti1, .., Tim]] if f is a

function of result typeBOOLEAN.
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Semantics: Agent Expression semantics 759
The value of an agent expressiona at a certain
construction timeyields a reference to an instanceD0
of the type ofa, containing information identifying:
• Theassociated feature ofa.
• Its open operand positions.
• The values of itsclosed operands at the time of

evaluation.
Semantics: Effect of executingcall on an agent 760

Let D0 be an agent object with associated featuref and
open positionsi1, …, im (m ≥ 0). The information in
D0 enables a call to the procedurecall, executed at any
call time posterior toD0’s construction time, with
targetD0 and (if required) actual argumentsai1, ..,aim,
to perform the following:
• Produce the same effect as a call tof, using theclosed

operands at theclosedoperandpositions andai1, ..,
aim, evaluated at call time, at theopen operand
positions.

• In addition, if f is afunction, setting the value of the
querylast_resultfor D0 to the result returned by such
a call.

FROM CHAPTER 28: EXPRESSIONS
Syntax: Expressions 761

Expression=∆ Basic_expression|Special_expression
Basic_expression=∆ Read_only|Local|Call | Precursor|

Equality| Parenthesized|Old | Operator_expression |
Bracket_expression|Creation_expression

Special_expression=∆ Manifest_constant| Manifest_tuple|
Agent| Object_test| Once_string| Address

Parenthesized=∆ "(" Expression ")"
Address=∆ "$" Variable
Once_string=∆ onceManifest_string
Boolean_expression=∆ Basic_expression|

Boolean_constant| Object_test
Definition: Subexpression, operand 764

Thesubexpressionsof an expressionearee itself and
(recursively) all the following expressions:
1 • For aParenthesized(a) or a Parenthesized_target

(|a |): the subexpressions ofa.
2 • For anEqualityor Binary_expressiona § b, where

§ is an operator: the subexpressions ofa and ofb.
3 • For aUnary_expression◊ a, where◊ is an operator:

the subexpressions ofa.
4 • For aCall: the subexpressions of theActualspart,

if any, of itsUnqualified_part.
5 • For aPrecursor: the subexpressions of its unfolded

form.
6 • For an Agent: the subexpression of its

Agent_actualsif any.

7 • For aqualified call: the subexpressions of itstarget.
8 • For a Bracket_expressionf [a1, … an]: the

subexpressions off and those of all ofa1, … an.
9 • For anOld expressionold a: a.
10 •For a Manifest_tuple [a1, … an]: the

subexpressions of all ofa1, … an.
In cases2 and3, theoperandsof e area and (in case
2) b.

Semantics: Parenthesized Expression Semantics765

If e is an expression, the value of theParenthesized(e)
is the value ofe.

Syntax: Operator expressions 766

Operator_expression=∆ Unary_expression |
Binary_expression

Unary_expression=∆ Unary Expression
Binary_expression=∆ Expression Binary Expression

Operator precedence levels 768

13 . (Dot notation, in qualified and non-
object calls)
12 old (In postconditions)

not + – Used as unary
All free unary operators

11 All free binary operators.
10 ^ (Used as binary: power)
9 ∗ / // \\ (As binary: multiplicative arithmetic
operators)
8 + – Used as binary
7 .. (To define an interval)
6 = /= ~ /~ < > <= >=(As binary:
relational operators)
5 and and then

(Conjunctive boolean operators)
4 or or else xor

(Disjunctive boolean operators)
3 implies (Implicative boolean operator)
2 [ ] (Manifest tuple delimiter)
1 ; (Optional semicolon between

anAssertion_clause and the next)

Definition: Parenthesized Form of an expression769

Theparenthesized formof an expression is the resul
of rewriting everysubexpression of one of the forms
below, where§ and‡ are different binary operators,◊
and♣ different unary operators, anda, b, c arbitrary
operands, as follows:
1 • Fora § b § c where§ is not the power operator̂: (a

§ b) § c (left associativity).
2 • Fora ^ b ^ c : a ^ (b ^ c) (right associativity).
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3 • Fora § b ‡ c: (a § b) ‡ c if the precedence of‡ is
lower than the precedence of§ or the same, anda §
(b ‡ c) otherwise.

4 • For◊ ♣ a: ◊ (♣ a)
5 • For◊ a § b: (◊ a) § b
6 • Fora § ◊ b: a § (◊ b)
7 • For a subexpressioneto which none of the previous

patterns applies:e unchanged.
Definition: Target-converted form of a binary
expression 771

The target-converted form of a Binary_expressionx
§ y, where the one-argument feature of alias§ in the
base class ofx has theFeature_namef, is:
1 • If the declaration off includes aconvert mark and

the typeTYof y is notcompatiblewith the type of the
formal argument off: ({ TY} [ x]) § y.

2 • Otherwise: the original expression,x § y.
Validity: Operator Expression rule VWOE 772

A Unary_expression§xorBinary_expressionx§y, for
some operator§, is valid if and only if it satisfies the
following conditions:
1 • A feature of thebaseclass ofx is declared asalias

"§".
2 • The expression’sEquivalent Dot Form is a valid

Call.
Semantics:  Expression Semantics (strict case) 773

The value of an Expression, other than a
Binary_expressionwhoseBinary is semistrict, is the
value of itsEquivalent Dot Form.

Definition: Semistrict operators 774
A semistrict operator is any one of the three operators
and then, or elseandimplies, applied tooperands of
typeBOOLEAN.

Semantics: Operator Expression Semantics
(semistrict cases) 777

Fora andb of typeBOOLEAN:
• The value ofa and thenb is: if a has value false, then

false; otherwise the value ofb.
• The value ofa or elseb is: if a has value true, then

true; otherwise the value ofb.
• The value ofa implies b is: if a has value false, then

true; otherwise the value ofb.
Syntax: Bracket expressions 778

Bracket_expression=∆ Bracket_target "[" Actuals"]"
Bracket_target=∆ Target | Once_string|

Manifest_constant| Manifest_tuple
Validity: Bracket Expression rule VWBR 780

A Bracket_expressionx [i] is valid if and only if it
satisfies the following conditions:

1 • A feature of thebaseclass ofx is declared asalias
"[ ]" .

2 • The expression’s Equivalent Dot Form is a val
Call.

Definition: Equivalent Dot Form of an expression780
Any Expressione has anEquivalent Dot Form, not
involving (in any of its subexpressions) any
Bracket_expressionor Operator_expression, and
defined as follows, whereC denotes thebaseclass ofx,
pedenotes theParenthesizedForm of e, andx’, y’, c’
denote the Equivalent Dot Forms (obtaine
recursively) ofx, y, c:
1 • If peis aUnary_expression§x: x’.f, wheref is the

Feature_nameof the no-argument feature of alias§
in C.

2 • If pe is a Binary_expressionof target-converted
form x § y: x’.f (y’ ) wheref is theFeature_nameof
the one-argument feature of alias§ in C.

3 • If pe is aBracket_expressionx [y]: x’.f (y’) where
f is theFeature_nameof the feature declared asalias
"[ ]"  in C.

4 • If pe has nosubexpression other than itself:pe.
5 • In all other cases: (recursively) the result o

replacing everysubexpression ofe by its Equivalent
Dot Form.

Validity: Boolean Expression rule VWBE 781

A Basic_expressionis valid as aBoolean_expressionif
and only if it is of typeBOOLEAN.

Validity: Identifier rule VWID 782

An Identifier appearing in an expression in a classC,
other than as thefeatureof aqualifiedCall, must be the
name of a feature ofC, or a local variable of the
enclosing feature or inline agent if any, or a form
argument of the enclosing reature or inline agent if an
or theObject-Test Local of anObject_test.

Definition: Type of an expression 783
The type of anExpressione is:
1 • For the predefinedRead_onlyCurrent : thecurrent

type.
2 • For a routine’sFormalargument : the type declared

for e.
3 • For an Object-Test local: its declared type.
4 • For Result, appearing in the text of a queryf: the

result type off.
5 • For a local variable other thanResult: the type

declared fore.
6 • For a Call: the type ofe as determined by the

ExpressionCall Type definition with respect to the
current type.
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7 • For a Precursor: (recursively) the type of its
unfolded form.

8 • For anEquality: BOOLEAN.
9 • For aParenthesized(f): (recursively) the type off.
10 •Forold f: (recursively) the type off.
11 •For an Operator_expression or

Bracket_expression: (recursively) the type of the
Equivalent Dot Form ofe.

12 •For aManifest_constant: as given by the definition
of thetype of a manifest constant.

13 •For a Manifest_tuple [a1, … an] (n ≥ 0):
TUPLE[T1, … Tn] where eachTi is (recursively) the
type ofai.

14 •For anAgent: as given by the definition of thetype
of an agent expression.

15 •For anObject_test: BOOLEAN.
16 •For aOnce_string: STRING.
17 •For anAddress$v: TYPED_POINTER[T] whereT

is (recursively) the type ofv.
18 •For a Creation_expression: the

Explicit_creation_type.

FROM CHAPTER 29: CONSTANTS
Syntax: Constants 787

Constant=∆ Manifest_constant |Constant_attribute
Constant_attribute=∆ Feature_name

Validity: Constant Attribute rule VWCA 787

A Constant_attributeappearing in a classC is valid if
and only if its Feature_nameis the final name of a
constant attribute ofC.

Syntax: Manifest constants 788

Manifest_constant=∆ [Manifest_type] Manifest_value
Manifest_type=∆ "{" Type "}"
Manifest_value=∆ Boolean_constant |

Character_constant |
Integer_constant |
Real_constant |
Manifest_string |
Manifest_type

Sign=∆ "+" | "–"
Integer_constant=∆ [Sign] Integer
Character_constant=∆ "'" Character "'"
Boolean_constant=∆ True |False
Real_constant=∆ [Sign] Real

Syntax (non-production): Sign Syntax rule 788

If present, the Sign of an Integer_constantor
Real_constant must immediately precede the
associatedIntegeror Real, with no interveningtokens
or components (such asbreaks orcomments).

Syntax (non-production): Character Syntax rule 788
The quotes of aCharacter_constantmust immediately
precede and follow theCharacter, with no intervening
tokens orcomponents (such asbreaks orcomments).

Definition: Type of a manifest constant 790
The type of aManifest_constantof Manifest_valuemv
is:
1 • For { T} mv, with the optional Manifest_type

present:T. The remaining cases assume this option
component is absent, and only involvemv.

2 • If mv is aBoolean_constant: BOOLEAN.
3 • If mv is aCharacter_constant: CHARACTER.
4 • If mv is anInteger_constant: INTEGER.
5 • If mv is aReal_constant: REAL.
6 • If mv is aManifest_string: STRING.
7 • If mv is aManifest_type{ T} : TYPE[T].

Validity: Manifest-Type Qualifier rule VWMQ 791

It is valid for aManifest_constantto be of the form{ T}
v (with the optionalManifest_typequalifier present) if
and only if the typeU of v (as determined by cases2 to
7 of the definition of thetypeof amanifestconstant) is
one ofCHARACTER, STRING, INTEGERandREAL,
andT is one of thesized variants ofU.

Semantics: Manifest Constant Semantics 791
The value of a Manifest_constantc listing a
Manifest_valuev is:
1 • If c is of the form { T} v (with the optional

Manifest_typequalifier present): the value of typeT
denoted byv.

2 • Otherwise (c is justv): the value denoted byv.
Definition: Manifest value of a constant 792

Themanifest value of a constant is:
1 • If it is aManifest_constant: its value.
2 • If it is a constant attribute: (recursively) th

manifest value of theManifest_constantlisted in its
declaration.

Syntax: Manifest strings 795

Manifest_string=∆ Basic_manifest_string|Verbatim_string
Basic_manifest_string=∆ ' " ' String_content' "  '
String_content=∆ {Simple_string Line_wrapping_part

…}+

Verbatim_string=∆ Verbatim_string_openerLine_sequenc
Verbatim_string_closer

Verbatim_string_opener=∆ ' " ' [Simple_string]
Open_bracket

Verbatim_string_closer=∆ Close_bracket[Simple_string] '
"  '

Open_bracket=∆ "[" | "{"
Close_bracket=∆ "]" | "}"
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Syntax (non-production): Line sequence 796

A specimen ofLine_sequenceis a sequence of one or
moreSimple_stringcomponents, each separated from
the next by a singleNew_line.

Syntax (non-production): Manifest String rule 796

In addition to the properties specified by the grammar,
every Manifest_string must satisfy the following
properties:
1 • The Simple_string components of its

String_contentor Line_sequencemay not include a
double quote character except as part of the character
code%"  (denoting a double quote).

2 • A Verbatim_string_opener or
Verbatim_string_closermay not contain anybreak
character.

Definition: Line_wrapping_part 797

A Line_wrapping_partis a sequence of characters
consisting of the following, in order:% (percent
character); zero or more blanks or tabs;New_line; zero
or more blanks or tabs;%  again.

Semantics: Manifest string semantics 798

The value of aBasic_manifest_stringis the sequence
of characters that it includes, in the order given,
excluding any line wrapping parts, and with any
character code replaced by the
corresponding character.

Validity: Verbatim String rule VWVS800

A Verbatim_stringis valid if and only if it satisfies the
following conditions, whereα is the (possibly empty)
Simple_string appearing in its
Verbatim_string_opener:
1 • TheClose_bracketis ] if the Open_bracketis [, and

} if theOpen_bracket is {.
2 • Every character inα is printable, and not a double

quote" .
3 • If α is not empty, the string’s

Verbatim_string_closerincludes a Simple_string
identical toα.

Semantics: Verbatim string semantics 800

The value of aLine_sequenceis the string obtained by
concatenating the characters of its successive lines,
with a “new line” character inserted between any
adjacent ones.
The value of aVerbatim_stringusing braces{ } as
Open_bracketand Close_bracketis the value of its
Line_sequence.
The value of aVerbatim_stringusing braces[ ] as
Open_bracketand Close_bracketis the value of the
left-aligned form of itsLine_sequence.

Definition: Prefix, longest break prefix, left-aligned
form 804

A prefix of a strings is a stringp of some lengthn
(n ≥ 0) such that the firstn characters ofs are the
corresponding characters ofp.
The longest break prefixof a sequence of stringsls is
the longest stringbp containing no characters othe
thanspaces andtabs, such thatbp is a prefix of every
string inls. (The longest break prefix is always define
although it may be an empty string.)
Theleft-aligned form of a sequence of stringsls is the
sequence of strings obtained from the correspond
strings inls by removing the firstn characters, wheren
is the length of the longest break prefix ofls (n ≥ 0).

FROM CHAPTER 30: BASIC TYPES
Definition: Basic types and their sized variants 817

A basic type is any of the types defined by the
following ELKS classes:
• BOOLEAN.
• CHARACTER, CHARACTER_8, CHARACTER_32,

together called the “sized variants of
CHARACTER”.

• INTEGER, INTEGER_8, INTEGER_16,
INTEGER_32, INTEGER_64, NATURAL,
NATURAL_8, NATURAL_16, NATURAL_32,
NATURAL_64, together called the “sized variantsof
INTEGER”.

• REAL, REAL_32, REAL_64, together called the
“sized variants of REAL”.

• POINTER.

Definition: Sized variants ofSTRING 817

The sized variants ofSTRINGareSTRING, STRING_8
andSTRING_32.

Semantics: Boolean value semantics 819

ClassBOOLEANcovers the two truth values.
The reserved words True and False denote the
corresponding constants.

Semantics: Character types 819

The reference class CHARACTER_GENERAL
describes properties of characters independently of
character code.
The expanded classCHARACTER_32 describes
Unicode characters; the expanded cla
CHARACTER_8 describes 8-bit (ASCII-like)
characters.
The expanded classCHARACTERdescribes characters
with a length and encoding settable through
compilation option. The recommended default
Unicode.
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Semantics: Integer types 820
The reference classINTEGER_GENERALdescribes
integers, signed or not, of arbitrary length. The
expanded classesINTEGER_xx, for xx = 8, 16, 32 or
64, describe signed integers stored onxx bits. The
expanded classesNATURAL_xx, for xx = 8, 16, 32 or
64, describe unsigned integers stored onxx bits.
The expanded classesINTEGER and NATURAL
describe integers, respectively signed and unsigned,
with a length settable through a compilation option.
The recommended default is 64 bits in both cases.

Semantics: Floating-point types 821
The reference classREAL_GENERAL describes
floating-point numbers with arbitrary precision. The
expanded classesREAL_xx, for xx= 32 or 64, describe
IEEE floating-point numbers withxx bits of precision.
The expanded classREAL describes floating-point
numbers with a precision settable through a
compilation option. The recommended default is 64
bits.

Semantics: Address semantics 821
The expanded classPOINTERdescribes addresses of
data beyond the control of Eiffel systems.

FROM CHAPTER 31: INTERFACING
WITH C, C++ AND OTHER
ENVIRONMENTS

Syntax: External routines 829

External=∆ external External_language[External_name]
External_language=∆ Unregistered_language |

Registered_language
Unregistered_language=∆ Manifest_string
External_name=∆ aliasManifest_string

Semantics: Address semantics 835
The value of anAddressexpression is an address
enabling foreign software to access the associated
Variable.

Syntax: Registered languages 837

Registered_language=∆ C_external |C++_external|
DLL_external

Syntax: External signatures 839

External_signature=∆ signature
[External_argument_types] [: External_type]

External_argument_types=∆ "(" External_type_list ")"
External_type_list=∆ {External_type "," …}*
External_type=∆ Simple_string

Validity: External Signature rule VZES 839

An External_signaturein the declaration of an external
routiner is valid if and only if it satisfies the following
conditions:

1 • ItsExternal_type_listcontains the same number o
elements asr has formal arguments.

2 • The final optional component (: External_type) if
present if and only ifr is afunction.

A languageprocessingtool may delegate enforcemen
of these requirements to non-Eiffel tools on the chos
platform.

Semantics: External signature semantics 840
An External_signaturespecifies that the associate
external routine:
• Expects arguments of number and types as given

the External_argument_typesif present, and no
arguments otherwise.

• Returns a result of theExternal_typeappearing after
the colon, if present, and otherwise no result.

Syntax: External file use 840

External_file_use=∆ useExternal_file_list
External_file_list=∆ {External_file "," …}+

External_file=∆ External_user_file |External_system_file
External_user_file=∆ ' " '  Simple_string' " '
External_system_file=∆ "<"Simple_string ">"

Validity: External File rule VZEF 841

An External_file is valid if and only if its
Simple_stringsatisfies the following conditions:
1 • When interpreted as a file name according to t

conventions of the underlyingplatform, it denotes a
file.

2 • The file is accessible for reading.
3 • The file’s content satisfies the rules of th

applicable foreign language.
A languageprocessingtool may delegate enforcemen
of these conditions to non-Eiffel tools on the chose
platform.

Semantics: External file semantics 842
An External_file_usein an externalroutine declaration
specifies that foreign language tools, to process
routine (for example to compile its original code
require access to the listed files.

Syntax: C externals 843

C_external=∆ ’' "  'C
’[ inline]
[External_signature] [External_file_use]
' "  '

Validity: C external rule VZCC 846

A C_externalfor the declaration of an externalroutine
r is valid if and only if it satisfies the following
conditions:
1 • At least one of the optional inline and

External_signature components is present.
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2 • If the inline part is present, the external routine
includes anExternal_namecomponent, of the form
aliasC_text.

3 • If case2 applies, then for any occurrence inC_text
of an Identifier a immediately preceded by a dollar
sign $ the lower name ofa is the lower name of a
formal argument ofr.

Semantics: C Inline semantics 846
In an externalroutine er of the inline form, an
External_nameof the form alias C_textdenotes the
algorithm defined, according to the semantics of the C
language, by a C function that has:
• As its signature, thesignature specified byer.
• As its body, C_text after replacement of every

occurrence of$a, where thelower name ofa is the
lower name of one of the formal arguments ofer, by
a.

Syntax: C++ externals 848

C++_external=∆ ' " ' C++
inline
[External_signature]
[External_file_use]
' "  '

Validity: C++ external rule VZC+ 848

A C++_externalpart for the declaration of an external
routiner is valid if and only if it satisfies the following
conditions:
1 • The external routine includes anExternal_name

component, of the formaliasC++_text.
2 • For any occurrence inC++_textof an Identifier a

immediately preceded by a dollar sign$, the lower
name ofa is the lower name of a formal argument of
r.

Semantics: C++ Inline semantics 849
In an externalroutineer of theC++_externalform, an
External_nameof the formaliasC++_textdenotes the
algorithm defined, according to the semantics of the
C++ language, by a C++ function that has:
• As its signature, thesignature specified byer.
• As its body, C++_text after replacement of every

occurrence of$a, where thelower name ofa is the
lower name of one of the formal arguments ofer, by
a.

Syntax: DLL externals 857

DLL_external=∆ ' " ' dll
[windows]
DLL_identifier
[DLL_index]
[External_signature]
[External_file_use]
' " '

DLL_identifier=∆ Simple_string
DLL_index=∆ Integer

Validity: External DLL rule VZDL 857

A DLL_external of DLL_identifier i is valid if and
only if it satisfies the following conditions:
1 • When interpreted as a file name according to t

conventions of the underlyingplatform, i denotes a
file.

2 • The file is accessible for reading.
3 • The file’s content denotes a dynamically loadab

module.

Semantics: External DLL semantics 858

The routine to be executed (after loading if necessa
in a call to aDLL_externalis the dynamically loadable
routine from the file specified by theDLL_identifier
and, within that file, by its name and theDLL_index if
present.

FROM CHAPTER 32: LEXICAL
COMPONENTS

Syntax (non-production): Character, character set
879

An Eiffel text is a sequence ofcharacters. Characters
are either:
• All 32-bit, corresponding to Unicode and to th

Eiffel typeCHARACTER_32.
• All 8-bit, corresponding to 8-bit extended ASCII an

to the Eiffel typeCHARACTER_8.
Compilers and otherlanguageprocessingtools must
offer an option to select onecharacter setfrom these
two. The same or another option determines whet
the type CHARACTER is equivalent to
CHARACTER_32 or CHARACTER_8.

Definition: Letter, alpha_betic, numeric,
alpha_numeric, printable 880

A letter is any character belonging to one of th
following categories:
1 • Any of the following fifty-two, each a lower-case o

upper-case element of the Roman alphabet:
a b c d e f g h i j k l mn o p q r s t u v wx y z
A B CDE F GHI J KL MNOP QR S T UV WXY Z

2 • If the underlyingcharacterset is 8-bit extended
ASCII, the characters of codes 192 to 255 in that s

3 • If the underlying character set is Unicode, a
characters defined as letters in that set.

An alpha_betic characteris a letter or an underscore
_.
A numeric character is one of the ten characters0 1
2 3 4 5 6 7 8 9.
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An alpha_numeric character is alpha_betic or
numeric.
A printable character is any of the characters listed as
printable in the definition of the character set (Unicode
or extended ASCII).

Definition: Break character, break 881
A break character is one of the following characters:
• Blank (also known as space).
• Tab.
• New Line (also known as Line Feed).
• Return (also known as Carriage Return).
A break is a sequence of one or more break characters
that is not part of a Character_constant, of a
Manifest_stringor of aSimple_stringcomponent of a
Comment.

Semantics: Break semantics 881
Breaks serve a purelysyntactical role, to separate
tokens. The effect of a break is independent of its
makeup (its precise use of spaces, tabs and newlines).
In particular, the separation of a class text into lines has
no effect on its semantics.

Definition: Expected, free comment 882
A comment isexpectedif it appears in aconstruct as
part of the style guidelines for that construct.
Otherwise it isfree.

Syntax (non-production): “Blanks or tabs”, new line
883

A specimen ofBlanks_or_tabsis any non-empty
sequence ofcharacters, each of which is a blank or a
tab.
A specimen ofNew_line is a New Line.

Syntax: Comments 883

Comment=∆ "––" {Simple_string Comment_break…}*
Comment_break=∆ New_line [Blanks_or_tabs] "––"

Syntax (non-production): Free Comment rule 884
It is permitted to include afreecomment between any
two successivecomponents of aspecimen of a
construct defined by a BNF-Eproduction, except if
excluded by specific syntax rules.

Header comment rule 884
A featureHeader_commentis an abbreviation for a
Noteclause of the form

note
what:Explanation

whereExplanationis aVerbatim_stringwith [ and] as
Open_bracketandClose_bracketand aLine_sequence
made up of the successive lines (Simple_string) of the
comment, each deprived of its first characters up to and
including the first two consecutive dash characters, and
of the space immediately following them if any.

Definition: Symbol, word 885
A symbol is either aspecialsymbol of the language,
such as the semicolon ‘‘;’’ and the ‘‘.’’ of dot notation,
or astandard operator such as ‘‘+’’ and ‘‘ ∗’’.
A word is any token that is not a symbol. Examples
words include identifiers,keywords,freeoperators and
non-symbol operators such asor else.

Syntax (non-production): Break rule 885
It is permitted to write two adjacenttokens without an
interveningbreak if and only if they satisfy one of the
following conditions:
1 • One is aword and the other is asymbol.
2 • They are both symbols, and their concatenation

not a symbol.
Semantics: Letter Case rule 886

Letter case is significant for the followingconstructs:
Character_constantand Manifest_string except for
special character codes,Comment.
For all other constructs, letter case is not significa
changing a letter to its lower-case or upper-cas
counterpart does not affect the semantics of aspecimen
of the construct.

Definition: Reserved word, keyword 888
The following names arereserved words of the
language.
agent alias all and as
assign attribute
check class convert create Current
debug deferred
do else elseif end ensure
expandedexport
external False feature from frozenif
implies
inherit inspect invariant like local
loop not
note obsolete old once only or
Precursor
redefine rename require rescue Result
retry select
separate then True TUPLE undefine
until variant
Void when xor
The reserved words that serve as purely syntacti
markers, not carrying a direct semantic value, a
calledkeywords; they appear in the above list in al
lower-case letters.

Syntax (non-production): Double Reserved Word
rule 889

The reserved words and then and or else are each
made of twocomponents separated by one or mo
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blanks (but no otherbreak characters). Every other
reserved word is a sequence ofletters with no
interveningbreak character.

Definition: Special symbol 890

A special symbol is any of the following character
sequences:

– – :  ; , ? ! ' " $ . –> :=
= /= ~ /~ ( ) (| |) [ ] { }

Syntax (non-production): Identifier 891

An Identifier is a sequence of one or more
alpha_numericcharacters of which the first is aletter.

Validity: Identifier rule VIID 891

An Identifier is valid if and only if it is not one of the
language’sreserved words.

Definition: Predefined operator 892

A predefined operatoris one of:
= /= ~ /~

Definition: Standard operator 892

A standard unary operator is one of:
+ –

A standard binary operator is any one of the
following one- or two-charactersymbols:

+ – * / ^ < >
<= >= // \\ ..

Definition: Operator symbol 893

An operator symbol is any non-alpha_numeric
printablecharacter that satisfies any of the following
properties:
1 • It does not appear in any of thespecial symbols.
2 • It appears in any of thestandard (unary or binary)

operators but is neither a dot. nor an equal sign=.
3 • It is a tilde ~, percent% , question mark?, or

exclamation mark!.
Definition: Free operator 893

A free operator is sequence of one or morecharacters
satisfying the following properties:
1 • It is not a special symbol, standardoperator or

predefined operator.
2 • Every character in the sequence is anoperator

symbol.
3 • Every subsequence that is not a standard operator

or predefined operator is distinct from all special
symbols.

A Free_unaryis a free operator that is distinct from all
standard unary operators.
A Free_binaryis a free operator that is distinct from all
standard binary operators.

Syntax (non-production): Manifest character 895
A manifest character — specimen of construct
Character — is one of the following:
1 • Any key associated with aprintable character,

except for the percent key% .
2 • The sequence%k, wherek is a one-key code taken

from the list ofspecial characters.
3 • The sequence% /code/, wherecodeis an unsigned

integer in any of the available forms — decima
binary, octal, hexadecimal — corresponding to
valid character code in the chosencharacter set.

Special characters and their codes 897
Character Code Mnemonic name
@ %A A t-sign
BS %B Backspace
^ %C C ircumflex
$ %D Dollar
FF %F Form feed
\ %H BackslasH
~ %L TiLde
NL (LF) %N Newline
` %Q BackQuote
CR %R Carriage Return
# %S Sharp
HT %T HorizontalTab
NUL %U NUll
| %V V ertical bar
% %% Percent
' %' Single quote
" %" Double quote
[ %( Opening bracket
] %) Closing bracket
{ %< Opening brace
} %> Closing brace

Syntax (non-production): Percent variants 898
The percent forms ofCharacterare available for the
manifestcharacters of aCharacter_constantand of the
Simple_stringcomponents of aManifest_string, but
not for any othertoken.

Semantics: Manifest character semantics 898
The value of aCharacter is:
1 • If it is aprintable characterc other than% : c.
2 • If it is of the form %k for a one-key codek: the

corresponding character as given by the table
special characters.

3 • If it is of the form %/code/: the character of code
code in the chosencharacter set.

Syntax (non-production): String, simple string 899
A string — specimen of constructString — is a
sequence of zero or moremanifest characters.
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A simple string — specimen ofSimple_string— is a
String consisting of at most one line (that is to say,
containing no embedded new-line manifest character).

Semantics: String semantics 899
The value of aStringor Simple_stringis the sequence
of the values of itscharacters.

Syntax: Integers 900

Integer=∆ [Integer_base] Digit_sequence
Integer_base=∆ "0" Integer_base_letter
Integer_base_letter=∆ "b" |  "c" |  "x" |  "B" |  "C" |  "X"
Digit_sequence=∆ Digit+

Digit =∆ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" |
"A" | "B" | "C" | "D" | "E" | "F" | "_"

Validity: Integer rule VIIN 901

An Integer is valid if and only if it satisfies the
following conditions:
1 • It contains nobreaks.
2 • Neither the first nor the lastDigit of the

Digit_sequence is an underscore “_”.
3 • If there is noInteger_base(decimal integer), every

Digit is either one of the decimal digits0 to 9 (zero
to nine) or an underscore.

4 • If there is anInteger_baseof the form 0b or 0B
(binary integer), everyDigit is either 0, 1 or an
underscore.

5 • If there is anInteger_baseof the form 0c or 0C
(octal integer), everyDigit is either one of the octal
digits0 to 7 or an underscore.

Semantics: Integer semantics 901
The value of anIntegeris the integer constant denoted
in ordinary mathematical notation by the
Digit_sequence, without its underscores if any, in the
corresponding base: binary if theIntegerstarts with0b
or 0B, octal if it starts with0cor 0C, hexadecimal if it
starts with0x or 0X, decimal otherwise.

Syntax (non-production): Real number 902
A real — specimen ofReal— is made of the following
elements, in the order given:
• An optional decimalInteger, giving the integral part.
• A required ‘‘.’’ (dot).
• An optional decimalInteger, giving the fractional

part.
• An optional exponent, which is the lettere or E

followed by an optionalSign(+ or –) and a decimal
Integer.

No intervening character (blank or otherwise) is
permitted between these elements. The integral and
fractional parts may not both be absent.

Semantics: Real semantics 902
The value of aReal is the real number that would be
expressed in ordinary mathematical notation asi.f 10e,
wherei is the integral part,f the fractional part ande
the exponent (or, in each case, zero if th
corresponding part is absent).
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Do not reproduce or distribute.
Syntax in alphabetical order
ing in
ared.
K.1  OVERVIEW

This appendix gives the entire syntax specification, with the various productions appear
alphabetical order of construct names, each with the number of the page where it appe

K.2  SYNTAX

Actual_generics=∆ "[" Type_list "]" 350

Actual_list =∆ { Expression "," …} + 626

Actuals =∆ "(" Actual_list ")" 626

Address =∆ "$" Variable 761

Agent =∆  Call_agent| Inline_agent 751

Agent_actual=∆ Expression| Placeholder 752

Agent_actual_list=∆ { Agent_actual "," …} + 752

Agent_actuals=∆ "(" Agent_actual_list ")" 752

Agent_qualified =∆ Agent_target". " Agent_unqualified 752

Agent_target=∆ Entity | Parenthesized| Manifest_type 752

Agent_unqualified=∆ Feature_name[Agent_actuals] 752

Alias =∆ alias '" ' Alias_name'" ' [convert] 151

Alias_name =∆ Operator | Bracket 151

Anchor =∆ Feature_name | Current 328

Anchored =∆ [Attachment_mark] like Anchor 328

Assertion =∆ { Assertion_clause ";" …}* 232

Assertion_clause=∆ [Tag_mark] Unlabeled_assertion_clause 232

Assigner_call =∆ Expression ":=" Expression 609

Assigner_mark=∆ assign Feature_name 155

Assignment =∆ Variable ":=" Expression 589
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Attachment_mark=∆ "?" |  "!" 328

Attribute =∆ attribute Compound 501

Attribute_or_routine=∆ [Precondition]
[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end 143

Basic_expression=∆ Read_only| Local | Call | Precursor| Equality| Parenthesized| Old |
Operator_expression | Bracket_expression| Creation_expression761

Basic_manifest_string=∆ ' " ' String_content' "  ' 795

Binary =∆ "+" | "–" | "* " | "/" | "//" | "\\" | "^" | ".." |
"<" | ">" | "<=" | ">=" |
and | or | xor | and then | or else | implies |
Free_binary 154

Binary_expression=∆ Expression Binary Expression 766

Boolean_constant=∆ True | False 788

Boolean_expression=∆ Basic_expression| Boolean_constant| Object_test 761

Bracket =∆ "[ ] " 151

Bracket_expression=∆ Bracket_target "[" Actuals"]" 778

Bracket_target=∆ Target | Once_string | Manifest_constant| Manifest_tuple 778

C++_external =∆ ' " ' C++
inline
[External_signature]
[External_file_use]
' "  ' 848

C_external =∆ ’'  "  ' C
’[ inline]
[External_signature] [External_file_use]
' "  ' 843

Call =∆ Object_call| Non_object_call 626

Call_agent =∆ agentCall_agent_body 751

Call_agent_body=∆  Agent_qualified| Agent_unqualified 752

Character_constant=∆ " ' " Character " ' " 788

Check =∆ checkAssertion [Notes] end 249

Choice =∆ Constant| Manifest_type| Constant_interval| Type_interval 485

Choices =∆ { Choice "," …} + 485
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Class_declaration=∆ [Notes]
Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end 119

Class_header=∆ [Header_mark] classClass_name 124

Class_list =∆ { Class_name "," …} + 208

Class_name=∆ Identifier 110

Class_or_tuple_type=∆ Class_type| Tuple_type 328

Class_type=∆ [Attachment_mark] Class_name [Actual_generics] 328

Clients =∆ "{" Class_list "}" 208

Close_bracket=∆ "]" | "}" 795

Comment =∆ "– –" { Simple_string Comment_break…}* 883

Comment_break=∆ New_line [Blanks_or_tabs] "– –" 883

Comparison=∆ "=" | "/=" | "~" | "/~" 567

Compound =∆ { Instruction ";" …}* 228

Conditional =∆ if Then_part_list [Else_part] end 481

Constant =∆ Manifest_constant | Constant_attribute 787

Constant_attribute=∆ Feature_name 513

Constant_attribute=∆ Feature_name 787

Constant_interval=∆ Constant ".." Constant 485

Constraining_types=∆ Single_constraint| Multiple_constraint 357

Constraint =∆ "–>" Constraining_types[Constraint_creators] 357

Constraint_creators=∆ createFeature_listend 357

Constraint_list =∆ { Single_constraint"," …} + 357

Conversion_procedure=∆ Feature_name"(" " {" Type_list"}" " )" 410

Conversion_query=∆ Feature_name":" "{" Type_list"}" 410

Converter =∆ Conversion_procedure| Conversion_query 410

Converter_list =∆ { Converter","…} + 410

Converters=∆ convert Converter_list 410

Creation_call =∆ Variable[Explicit_creation_call] 551
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Creation_clause=∆ create[Clients] [Header_comment] Creation_procedure_list 547

Creation_expression=∆  createExplicit_creation_type[Explicit_creation_call] 561

Creation_instruction=∆ create[Explicit_creation_type] Creation_call 551

Creation_procedure=∆ Feature_name 547

Creation_procedure_list=∆ { Creation_procedure","…} + 547

Creators =∆ Creation_clause+ 547

Debug =∆ debug [ "("Key_list ")" ] Compoundend 498

Declaration_body=∆ [Formal_arguments] [Query_mark] [Feature_value] 141

Deferred =∆ deferred 222

Digit =∆ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" |
"A" | "B" | "C" | "D" | "E" | "F" | "_" 900

Digit_sequence=∆ Digit+ 900

DLL_external =∆ ' " ' dll
[windows]
DLL_identifier
[DLL_index]
[External_signature]
[External_file_use]
' " ' 857

DLL_identifier =∆ Simple_string 857

DLL_index =∆ Integer 857

Effective_routine =∆ Internal | External 222

Else_part =∆ elseCompound 481

Entity =∆ Variable | Read_only 512

Entity_declaration_group=∆ Identifier_list Type_mark 220

Entity_declaration_list=∆ { Entity_declaration_group ";" …} + 220

Equality =∆ Expression Comparison Expression 567

Exit_condition =∆ until Boolean_expression 495

Explicit_creation_call =∆ "." Unqualified_call 551

Explicit_creation_type=∆ "{" Type"}" 551

Explicit_value =∆ "=" Manifest_constant 141

Expression=∆ Basic_expression| Special_expression 761

Expression_list=∆ { Expression "," …}* 373

Extended_feature_name=∆ Feature_name [Alias] 151

External =∆ external External_language[External_name] 829

External_argument_types=∆ "(" External_type_list ")" 839
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External_file =∆ External_user_file | External_system_file 841

External_file_list =∆ { External_file "," …} + 840

External_file_use=∆ useExternal_file_list 840

External_language=∆ Unregistered_language | Registered_language 829

External_name=∆ aliasManifest_string 829

External_signature=∆ signature [External_argument_types] [: External_type] 839

External_system_file=∆ "<"Simple_string ">" 841

External_type=∆ Simple_string 839

External_type_list=∆ { External_type "," …}* 839

External_user_file=∆ ' " '  Simple_string' " ' 841

Feature_adaptation=∆ [Undefine]
[Redefine]
[Rename]
[New_exports]
[Select]
end 171

Feature_body=∆ Deferred | Effective_routine| Attribute 143

Feature_clause=∆ feature [Clients] [Header_comment] Feature_declaration_list 137

Feature_declaration=∆ New_feature_list Declaration_body 141

Feature_declaration_list=∆ { Feature_declaration ";" …}* 137

Feature_list=∆ { Feature_name "," …} + 209

Feature_name=∆ Identifier 151

Feature_set=∆ Feature_list | all 209

Feature_value=∆ [Explicit_value]
[Obsolete]
[Header_comment]
[Attribute_or_routine] 141

Features=∆ Feature_clause+ 137

Formal =∆ Identifier 513

Formal_arguments=∆ "(" Entity_declaration_list ")" 220

Formal_generic=∆ [frozen] Formal_generic_name[Constraint] 351

Formal_generic_list=∆ { Formal_generic ","…} + 351

Formal_generic_name=∆ [?] Identifier 351

Formal_generics=∆ "[" Formal_generic_list "]" 351

Header_comment=∆ Comment 137

Header_mark=∆ deferred | expanded| frozen 124

Identifier_list =∆ { Identifier "," …} + 220
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Inherit_clause=∆ inherit  [Non_conformance] Parent_list 171

Inheritance =∆ Inherit_clause+ 171

Initialization =∆ from Compound 495

Inline_agent =∆ agent[Formal_arguments] [Type_mark] [Attribute_or_routine]
[Agent_actuals] 751

Instruction =∆ Creation_instruction| Call | Assignment| Assigner_call| Conditional|
Multi_branch | Loop | Debug | Precursor| Check | Retry 228

Integer =∆ [Integer_base] Digit_sequence 900

Integer_base=∆ "0" Integer_base_letter 900

Integer_base_letter=∆ "b" |  "c" |  "x" |  "B" |  "C" |  "X" 900

Integer_constant=∆ [Sign] Integer 788

Internal =∆ Routine_mark Compound 222

Invariant =∆ invariant Assertion 232

Key_list =∆ { Manifest_string "," …} + 222

Local =∆ Identifier | Result 513

Local_declarations=∆ local [Entity_declaration_list] 225

Loop =∆ Initialization
[Invariant]
Exit_condition
Loop_body
[Variant]
end 495

Loop_body =∆ loop Compound 495

Manifest_constant=∆ [Manifest_type] Manifest_value 788

Manifest_string =∆ Basic_manifest_string| Verbatim_string 795

Manifest_tuple =∆ "[" Expression_list "]" 373

Manifest_type =∆ "{" Type "}" 788

Manifest_value=∆ Boolean_constant |
Character_constant |
Integer_constant |
Real_constant |
Manifest_string |
Manifest_type 788

Message=∆ Manifest_string 129

Multi_branch =∆ inspectExpression[When_part_list] [Else_part] end 485

Multiple_constraint =∆ "{" Constraint_list"}" 357

New_export_item=∆ Clients[Header_comment] Feature_set 209

New_export_list =∆ { New_export_item ";" …} + 209
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New_exports=∆ export New_export_list 209

New_feature=∆ [frozen] Extended_feature_name 141

New_feature_list=∆ { New_feature "," …} + 141

Non_conformance=∆ "{" NONE "}" 171

Non_object_call =∆ "{" Type"}" "." Unqualified_call 626

Note_entry =∆ Note_name Note_values 123

Note_item =∆ Identifier | Manifest_constant 123

Note_list =∆ { Note_entry";" …}* 123

Note_name=∆ Identifier ":" 123

Note_values=∆ { Note_item ","…} + 123

Notes =∆ noteNote_list 123

Object_call =∆ [Target"."] Unqualified_call 626

Object_test=∆ "{" Identifier ":" Type "}" Expression 658

Obsolete =∆ obsoleteMessage 129

Old =∆ old Expression 239

Once =∆ once[ "("Key_list ")" ] 222

Once_string=∆ onceManifest_string 761

Only =∆ only [Feature_list] 242

Open_bracket=∆ "[" | "{" 795

Operator =∆ Unary | Binary 154

Operator_expression=∆ Unary_expression | Binary_expression 766

Parent =∆ Class_type[Feature_adaptation] 171

Parent_list =∆ { Parent ";" …} + 171

Parent_qualification=∆ "{" Class_name "}" 303

Parenthesized=∆ "(" Expression ")" 761

Parenthesized_target=∆ "(|" Expression"|)" 626

Placeholder=∆ [Manifest_type] "?" 752

Postcondition=∆ ensure [then] Assertion[Only] 232

Precondition =∆ require [else] Assertion 232

Precursor=∆ Precursor [Parent_qualification] [Actuals] 303

Query_mark =∆  Type_mark[Assigner_mark] 141

Read_only =∆ Formal | Constant_attribute| Current 513

Real_constant=∆ [Sign] Real 788

Redefine =∆ redefineFeature_list 307

Registered_language=∆ C_external | C++_external| DLL_external 837
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Rename=∆ renameRename_list 183

Rename_list=∆ { Rename_pair "," …} + 183

Rename_pair=∆ Feature_nameasExtended_feature_name 183

Renaming =∆ Renameend 357

Rescue=∆ rescueCompound 701

Retry =∆ retry 701

Routine_mark=∆ do | Once 222

Select =∆ selectFeature_list 463

Sign =∆ "+" | "–" 788

Single_constraint=∆ Type[Renaming] 357

Special_expression=∆ Manifest_constant| Manifest_tuple| Agent| Object_test| Once_string
| Address 761

String_content=∆ { Simple_string Line_wrapping_part…} + 795

Tag =∆ Identifier 232

Tag_mark =∆ Tag ":" 232

Target =∆ Local | Read_only| Call | Parenthesized_target 626

Then_part =∆ Boolean_expressionthen Compound 481

Then_part_list=∆ { Then_partelseif…} + 481

Tuple_parameter_list=∆ "[" Tuple_parameters "]" 372

Tuple_parameters=∆ Type_list| Entity_declaration_list 372

Tuple_type =∆ TUPLE[Tuple_parameter_list] 372

Type =∆ Class_or_tuple_type | Formal_generic_name | Anchored 328

Type_interval =∆ Manifest_type ".." Manifest_type 485

Type_list =∆ { Type "," …} + 350

Type_mark =∆ ":" Type 141

Unary =∆ not | "+" | "–" | Free_unary 154

Unary_expression=∆ Unary Expression 766

Undefine =∆ undefineFeature_list 308

Unlabeled_assertion_clause=∆ Boolean_expression | Comment 232

Unqualified_call =∆ Feature_name[Actuals] 626

Unregistered_language=∆ Manifest_string 829

Variable =∆ Variable_attribute | Local 512

Variable_attribute=∆ Feature_name 512

Variant =∆ variant  [Tag_mark] Expression 251

Verbatim_string =∆ Verbatim_string_opener Line_sequence Verbatim_string_closer795



§K SYNTAX IN ALPHABETICAL ORDER EIFFEL-REFERENCE-1151
Verbatim_string_closer=∆ Close_bracket[Simple_string] ' "  ' 795

Verbatim_string_opener=∆ ' " ' [Simple_string] Open_bracket 795

When_part =∆ whenChoicesthen Compound 485

When_part_list=∆ When_part+ 485
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,
Reserved words, special symbols
operator precedence
L.1  OVERVIEW

This chapter lists the reserved words — including keywords for the external
interface sublanguages —, the reserved special (non-alphabetic) symbols,
and the precedence of operators appearing in expressions.

L.2  RESERVED WORDS

Following are the sixty-two reserved words of Eiffel, in alphabetical order.

Recall the distinction betweenreserved wordsand their special case,
keywords. Reserved words include all the names (listed below) that cannot be
used as identifiers for classes, features or entities. Some reserved words carry
a meaning of their own, such asCurrent which denotes an expression and
TUPLEwhich denotes a type. These are typeset in italics, with a first letter in
upper case (all letters upper-case in the case of a type or class name). Reserved
words that donot by themselves denote anything but just serve as syntactic
markers, such asdo or if , are called keywords and appear in boldface.

Every reserved word (keyword or not) has an entry in the index, with a
reference to the page of the corresponding syntax productions, if any.

agent alias all and as assign attribute

check class convert create Current debug deferred

do else elseif end ensure expanded export

external False feature from frozen if implies

inherit inspect invariant like local loop not

note obsolete old once only or Precursor

redefine rename require rescue Result retry select

separate then True TUPLE undefine until variant

Void when xor
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L.3  SPECIAL SYMBOLS

The following table shows all the special symbols of the language, together
with the page of the syntax productions where they appear.

Symbol Name Role Pages
-- Double dash Introduces comments.
; Semicolon Separates instructions,declarations,assertionclauses…; alwaysoptional.
, Comma Separates elements in lists of of entities or expressions.
: Colon Separates theType_mark in a declaration, aTag_mark in an

Assertion_clause, and aNote_name term in aNotes clause.
:? :! Colon-question,

colon-exclamation
Separate theType_mark in a declaration.

' Single quote Encloses manifest constants.
" Double quote Encloses manifest strings.
% Percent Introduces special character codes.
/ Slash In a special character code, introduces a character through its code.
+ – Plus and minus Signs of integer and real constants. (Also permitted as prefix and

infix operators, appearing in a separate table.)
$ Dollar Addressoperator for passing the address of an Eiffel feature or

expression to a routine (usually external).
% Percent Introduces a special character code.
/ Slash In a special character, introduces a character by its numerical code.

. Dot Separates target from feature in a feature call or creation call.
Separates integer from fractional part in a real number.

–> Arrow Introduces the constraint of a constrained formal generic parameter.
:= Receives Assignment operator.
= /= Equal, not-equal signs Equality and non-equality operators.
~ /~ Tilde, slash-tilde Object equality and non-equality operators.
( ) Parentheses Group subexpressions in operator expressions; enclose formal and

actual arguments of routines.
(| |) Target parentheses Enclose a constant or non-atomic expression used as target of a

call in dot or bracked notation.
[ ] Brackets Enclose formal and actual generic parameters to classes; enclose

items of a manifest tuple; specify that a feature has aBracketalias.
{ } Braces Enclose types in various contexts:Clientspart,Feature_clauseor

New_export_list, Creation_type.

← This table appeared
first on page890.
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L.4  OPERATORS AND THEIR PRECEDENCE

L.5 KEYWORDS AND SYMBOLS OF SPECIAL INTERFACE SUBLANGUAGES

Here are the keywords used inthe special interface sublanguages. These are
not Eiffel keywords, but special words that may appear in strings denoting
external languages and their special mechanisms.

The following symbols may appear in such strings:

Operator precedence levels

13 . (Dot notation, inqualified and non-object calls)

12 old (In postconditions)
not + –Used as unary
All free unary operators

11 All free binary operators.

10 ^ (Used as binary: power)

9 ∗ / // \\ (As binary: multiplicative arithmetic operators)

8 + – Used as binary

7 .. (To define an interval)

6 = /= ~ /~ < > <= >=(As binary: relational
operators)

5 and and then
(Conjunctive boolean operators)

4 or or else xor
(Disjunctive boolean operators)

3 implies(Implicative boolean operator)

2 [ ] (Manifest tuple delimiter)

1 ; (Optional semicolon between
anAssertion_clause and the next)

C C++ data_member delete
Fortran95 include inline Java
macro new static struct

Symbol Name Role

: Colon Introduces the result type in a function signature.

( ) Parentheses Enclose argument types in a function signature.

" Double quote Encloses a file name (may have to be written%"
as part of a manifest string).

$ Dollar Introduces an Eiffel entity in an inline C text.
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< > Angle brackets Enclose the name of a system include file.

[ ] Square brackets Enclose macro and DLL specifications.
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Identifier

Identifier

Manifest_constant ;

:

,
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PART VII:  THE LANGUAGE STANDARD
This last part of the book contains the draft ECMA Eiffel standard.

It contains no new material but only extracts from partII . The elements retained are:
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List of changes

25 August 2006: Fixed call-agent-equivalent definition, 8.27.12

25 August 2006: Integrated still incomplete changes of clause 10 with notion of
transposition.
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Brief history

Eiffel was originally designed, as a method of software construction and a notation to support that method, in
1985. The first implementation, from Eiffel Software (then Interactive Software Engineering Inc.), was
commercially released in 1986. The principal designer of the first versions of the language was Bertrand Meyer.
Other people closely involved with the original definition included Jean-Marc Nerson. The language was originally
described in Eiffel Software technical documents that were expanded to yield Meyer’s book Eiffel: The Language
in 1990-1991. The two editions of Object-Oriented Software Construction (1988 and 1997) also served to
describe the concepts. (For bibliographical references on the documents cited see 3.6.) As usage of Eiffel grew,
other Eiffel implementations appeared, including Eiffel/S and Visual Eiffel from Object Tools, Germany,
EiffelStudio and Eiffel Envision from Eiffel Software, and SmartEiffel from LORIA, France.

Eiffel today is used throughout the world for industrial applications in banking and finance, defense and
aerospace, health care, networking and telecommunications, computer-aided design, game programming, and
many other application areas. Eiffel is particularly suited for mission-critical developments in which programmer
productivity and product quality are essential. In addition Eiffel is a popular medium for teaching programming
and software engineering in universities.

In 2002 Ecma International formed Technical Group 4 (Eiffel) of Technical Committee 39 (Programming and
Scripting Languages). The Eiffel Analysis, Design and Programming Language Standard provides a precise
definition of the language and ensures interoperability between implementations. The first of these benefits is of
particular interest to implementors of Eiffel compilers and environments, who can rely on it as the reference on
which to base their work; the second, to Eiffel users, for whom the Standard delivers a guarantee of compatibility
between the products of different providers and of trust in the future of Eiffel.

TG4 devised this Standard from June 2002 to April 2005, starting from material from the original and revised
versions of the book Standard Eiffel (latest revision of Eiffel: The Language). During that period the Technical
Group conducted fifteen face-to-face meetings and numerous phone meetings, in addition to extensive technical
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 1 Scope

 1.1 Overview
This document provides the full reference for the Eiffel language.

Eiffel is a method of software construction and a language applicable to the analysis,
design, implementation and maintenance of software systems. This Standard covers only
the language, with an emphasis on the implementation aspects. As a consequence, the
word “Eiffel” in the rest of this document is an abbreviation for “the Eiffel language”.

 1.2 “The Standard”
The language definition proper — “the Standard” — is contained in Partition 8 of this
document, with the exception of text appearing between markers Informative text and End;
such text only plays an explanatory role for human readers.

 1.3 Aspects covered
The Standard specifies:

• The form of legal basic constituents of Eiffel texts, or lexical properties of the language.

• The structure of legal Eiffel texts made of lexically legal constituents, or syntax properties.

• Supplementary restrictions imposed on syntactically legal Eiffel texts, or validity properties.

• The computational effect of executing valid Eiffel texts, or semantic properties.

• Some requirements on a conforming implementation of Eiffel, such as the ability to produce
certain forms of automatic documentation.

 1.4 Aspects not covered
The Standard does not specify:

• The requirements that a computing environment must meet to support the translation,
execution and other handling of Eiffel texts.

• The semantic properties of an Eiffel text if it or its data exceed the capacity of a particular
computing environment.

• The mechanisms for translating Eiffel texts into a form that can be executed in a computing
environment.

• The mechanisms for starting the execution of the result of such a translation.

• Other mechanisms for handling Eiffel texts and interacting with users of the language.

The specification of Partition 8 consists of precise specification elements, originating with
the book Standard Eiffel where these elements are accompanied by extensive
explanations and examples. The elements retained are:

• Definitions of technical terms and Eiffel concepts.

• Syntax specifications.

• Validity constraints (with their codes, such as VVBG).

• Semantic specifications.

 2 Conformance

 2.1 Definit ion
An implementation of the Eiffel language is conformant if and only if in its default operating
mode, when provided with a candidate software text, it:
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• Can, if the text and all its elements satisfy the lexical, syntax and validity rules of the Standard,
execute the software according to the semantic rules of the Standard, or generate code for a
computing environment such that, according to the specification of that environment, the
generated code represents the semantics of the text according to these rules.

• Will, if any element of the text violates any lexical, syntactical or validity rule of the Standard,
report an error and perform no semantic processing (such as generating executable code, or
directly attempting to execute the software).

 2.2 Compatibil i ty and non-default options
Implementations may provide options that depart in minor ways from the rules of this
Standard, for example to provide compatibility with earlier versions of the implementation
or of the language itself. Such options are permitted if and only if:

• Per 2.1, they are not the default.

• The implementation includes documentation that states that all such options are
nonconformant.

 2.3 Departure from the Standard
Material reasons, such as bugs or lack of time, may lead to the release of an
implementation that supports most of the Standard but misses a few rules and hence is not
yet conformant according to the definition of 2.1. In such a case the implementation shall
include documentation that:

• States that the implementation is not conformant.

• Lists all the known causes of non-conformance.

• Provides an estimate of the date or version number for reaching full conformance.

 3 Normative references

 3.1 Earlier Eiffel language specif ications
Bertrand Meyer: Eiffel: The Language, Prentice Hall, second printing, 1992 (first printing:
1991).

Bertrand Meyer: Standard Eiffel (revision of preceding entry), ongoing, 1997-present, at
http://www.inf.ethz.ch/~meyer/ongoing/etl.

Bertrand Meyer: Object-Oriented Software Construction, Prentice Hall: first edition, 1988;
second edition, 1997.

 3.2 Eiffel Kernel Library
The terms “ELKS” and “Kernel Library”, as used in this Standard, refer to the latest version
of the Eiffel Library Kernel Standard. A preliminary version is available from the NICE
consortium:

NICE consortium: The Eiffel Library Kernel Standard, 2001 Vintage.

The Standard assumes that ELKS includes at least the following classes:

• Classes representing fundamental language-related concepts: ANY, DISPOSABLE, NONE,
TYPE, TYPED_POINTER.

• Classes representing basic types and strings: BOOLEAN, CHARACTER, CHARACTER_8,
CHARACTER_32, INTEGER, INTEGER_8, INTEGER_16, INTEGER_32, INTEGER_64,
NATURAL, NATURAL_8, NATURAL_16, NATURAL_32, NATURAL_64, POINTER, REAL,
REAL_32, REAL_64, STRING, STRING_8, STRING_32.

• Classes representing fundamental data structures: ARRAY, TUPLE.

• Agent-related classes: FUNCTION, PREDICATE, PROCEDURE, ROUTINE.
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• Exception-related classes: ASSERTION_VIOLATION, ATTACHED_TARGET_VIOLATION,
EXCEPTION, INSPECT_RANGE_VIOLATION, INVARIANT_ENTRY_VIOLATION,
INVARIANT_EXIT_VIOLATION, MEMORY_ALLOCATION_FAILURE, OLD_VIOLATION,
POSTCONDITION_VIOLATION, PRECONDITION_VIOLATION, ROUTINE_FAILURE.

The clauses referring to these classes list the features they need.

 3.3 Floating point number representation
IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously
designated IEC 559:1989). Also known as ANSI/IEEE Standard 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic.

 3.4 Character set: Unicode
The Unicode Consortium: The Unicode Standard, Version 4.1, at http://www.unicode.org/
versions/Unicode4.1.0/.

 3.5 Character set: ASCII
ISO 14962:1997: Space data and information transfer systems.

 3.6 Phonetic alphabet
International Phonetic Association: International Phonetic Alphabet (revised 1993, updated
1996).

 4 Definitions

All the Eiffel-specific terms used in the Standard are defined in paragraphs labeled “Definition ”.

 5 Notational conventions

 5.1 Standard elements
Every clause of the Standard belongs to one of the following categories:

• Syntax : rule affecting the structure of Eiffel texts, including lexical properties as well as syntax
proper. The conventions for describing syntax appear below.

• Validity : restrictions on syntactically legal texts.

• Semantics : properties of the execution of valid texts.

• Definition : introduction of a term defining a certain concept, which may relate to syntax,
validity or semantic properties; the rest of the Standard may use the term as an abbreviation
for the concept.

• Principle : a general language design rule, or a property of the software text resulting from
other properties covered by definition and syntax, validity and semantic rules.

The clauses of the Standard are labeled with the corresponding category. A clause with no
label shall be considered as “Definition”.

 5.2 Normative elements
The rules of syntax, validity and semantics constitute the necessary and sufficient
conditions for an implementation to be conformant.

The entries labeled principle , addressing validity in most cases and semantics in a few
others, express properties that follow from the official rules. For example the Feature
Identifier principle (8.5.18) states

“Given a class C and an identifier f, C contains at most one feature of identifier f.”

This property (expressing that there must be no overloading of feature identifiers within a
class) follows from a variety of validity rules.
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Such principles are conceptually redundant and do not add any constraint on an
implementation; They provide an interesting angle on the language definition, both for:

• Programmers, by capturing a general property in a concise way.

• Implementers, who when reporting a rule violation in a candidate Eiffel text may choose to
refer to the principle rather than the (possibly less immediately clear) rules that underlie it.

 5.3 Rules on definit ions
In a definition, the first occurrence of each term being defined appears in bold .

Some definitions are recursive, meaning that the definition of a certain property of certain
language elements distinguishes between two or more cases, and in some (but not all) of
these cases uses the same property applied to smaller language elements. (The definition
then makes sense as all cases eventually reduce to basic, non-recursive cases.) For
clarity, the recursive branches are always marked by the word “recursively”” in
parentheses.

In the text of the Standard, uses of a defined term may appear before the definition. The
underlining convention described next helps avoid any confusion in such cases.

 5.4 Use of defined terms
In any formal element of the language specification (definition, syntax, validity, semantics),
appearance of a word as underlined means that this is a technical term introduced in one
of the definitions of the Standard. For example, condition 1 in the Name Clash rule
(8.16.16) reads:

“It is invalid for C to introduce two different features with the same name.”

The underlining indicates that words like “introduce” are not used in their plain English sense
but as Eiffel-related concepts defined precisely elsewhere in the Standard. Indeed, 8.5.1
defines the notion that a class “introduces” a feature. Similarly, the notion of features having
the “same name” is precisely defined (8.5.19) as meaning that their identifiers, excluding any
Operator aliases, are identical except possibly for letter case.

This use of underlining is subject to the following restrictions:

• Underlining applies only to the first occurrence of such a defined term in a particular definition
or rule.

• If a single clause defines a group of terms, occurrences of one of these terms in the definition
of another are not underlined.

• As a consequence, uses of a term in its own definition are not underlined (they do bear, as
noted, the mark “recursively”).

• In addition, a number of basic concepts, used throughout, are generally not underlined; they
include:

 5.5 Unfolded forms
The definition of Eiffel in the Standard frequently relies on unfolded forms defining certain
advanced constructs in terms of simpler ones. For example an “anchored type” of the form
like a has a “deanchored form”, which is just the type of a. Validity and semantic rules can
then rely on the unfolded form rather than the original.

This technique, applied to about twenty constructs of the language, makes the description
significantly simpler by identifying a basic set of constructs for which it provides direct validity
and semantic specifications, and defining the rest of the language in terms of this core.

Assertion Attribute Call Character Class
Cluster Entity Expression Feature Identifier
Instruction Semantics Type Valid
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 5.6 Language description
The Standard follows precise rules and conventions for language description, described in
8.2.

 5.7 Validity: “ i f  and only if ” rules
A distinctive property of the language description is that the validity constraints, for
example type rules, do not just, as in many language descriptions, list properties that a
software text must satisfy to be valid. They give the rules in an “if and only if” style. For
example (8.8.3, Formal Argument rule):

“Let fa be the Formal_arguments part of a routine r in a class C. Let formals be the
concatenation of every Identifier_list of every Entity_declaration_group in fa. Then fa is valid
if and only if no Identifier e appearing in formals is the final name of a feature of C.”

This does not just impose requirements on programmers, but tells them that if they satisfy
these requirements they are entitled to having the construct (here a “Formal_arguments
part”) accepted by an Eiffel language processing tool, for example a compiler. The rules,
then, are not only necessary but sufficient. This contributes (except of course for the
presence of any error or omission in the Standard) to the completeness of the language
definition, and reinforces the programmers’ trust in the language.

 6 Acronyms and abbreviations

 6.1 Name of the language
The word “Eiffel” is not an acronym. It is written with a capital initial E, followed by letters in
lower case.

 6.2 Pronunciation
Verbally, with reference to the International Phonetic Alphabet, the name is pronounced:

• In English:  with the stress on the first syllable.

• In French:  with the stress on the second syllable.

• In other languages: the closest approximation to the English or French variant as desired.

 7 General description

The following is an informal introduction to the Eiffel language. It is informative only.

 7.1 Design principles
The aim of Eiffel is to help specify, design, implement and modify quality software. This
goal of quality in software is a combination of many factors; the language design
concentrated on the three factors which, in the current state of the industry, are in direst
need of improvements: reusability, extendibility and reliability. Also important were other
factors such as efficiency, openness and portability.

Reusability is the ability to produce components that may be used in many different applications.
Central to the Eiffel approach is the presence of widely used libraries complementing the
language, and the language’s support for the production of new libraries.

Extendibility is the ability to produce easily modifiable software. “Soft” as software is supposed
to be, it is notoriously hard to modify software systems, especially large ones.

Among quality factors, reusability and extendibility play a special role: satisfying them means
having less software to write — and hence more time to devote to other important goals such as
efficiency, ease of use or integrity.
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The third fundamental factor is reliability, the ability to produce software that is correct and robust
— that is to say, bug-free. Eiffel techniques such as static typing, assertions, disciplined exception
handling and automatic garbage collection are essential here.

Four other factors are also part of Eiffel’s principal goals:

• The language enables implementors to produce high efficiency compilers, so that systems
developed with Eiffel may run under speed and space conditions similar to those of programs
written in lower-level languages traditionally focused on efficient implementation.

• Ensuring openness , so that Eiffel software may cooperate with programs written in other
languages.

• Guaranteeing portability by a platform-independent language definition, so that the same
semantics may be supported on many different platforms.

• High-precision language definition , allowing independent implementers to provide
compilers and other tools, and providing Eiffel users the guarantee that their software will work
on all the Standard-compliant implementations. The language definition does not favor or refer
to any particular implementation.

 7.2 Object-oriented design
To achieve reusability, extendibility and reliability, the principles of object-oriented design
provide the best known technical answer.

An in-depth discussion of these principles falls beyond the scope of this introduction but here is a
short definition:

Object-oriented design is the construction of software systems as structured
collections of abstract data type implementations, or “classes”.

The following points are worth noting in this definition:

• The emphasis is on structuring a system around the types of objects it manipulates (not the
functions it performs on them) and on reusing whole data structures together with the
associated operations (not isolated routines).

• Objects are described as instances of abstract data types — that is to say, data structures
known from an official interface rather than through their representation.

• The basic modular unit, called the class, describes one implementation of an abstract data
type (or, in the case of “deferred” classes, as studied below, a set of possible implementations
of the same abstract data type).

• The word collection reflects how classes should be designed: as units interesting and useful
on their own, independently of the systems to which they belong, and ready to be reused by
many different systems. Software construction is viewed as the assembly of existing classes,
not as a top-down process starting from scratch.

• Finally, the word structured reflects the existence of two important relations between classes:
the client and inheritance relations.

Eiffel makes these techniques available to software developers in a simple and practical
way.

As a language, Eiffel includes more than presented in this introduction, but not much more; it is a
small language, not much bigger (by such a measure as the number of keywords) than Pascal.
The description as given in the Standard text — excluding “informative text” and retaining only the
rules — takes up about 80 pages. Eiffel was indeed meant to be a member of the class of
languages which programmers can master entirely — as opposed to languages of which most
programmers know only a subset. Yet it is appropriate for the development of industrial software
systems, as has by now been shown by many full-scale projects, some in the thousands of classes
and millions of lines, in companies around the world, for mission-critical systems in many different
areas from finance to health care and aerospace.
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 7.3 Classes
A class, it was said above, is an implementation of an abstract data type. This means that
it describes a set of run-time objects, characterized by the features (operations) applicable
to them, and by the formal properties of these features.

Such objects are called the direct instances of the class. Classes and objects should not be
confused: “class” is a compile-time notion, whereas objects only exist at run time. This is similar
to the difference that exists in pre-object-oriented programming between a program and one
execution of that program, or between a type and a run-time value of that type.

(“Object-Oriented” is a misnomer; “Class-Oriented Analysis, Design and Programming”
would be a more accurate description of the method. )

To see what a class looks like, let us look at a simple example, ACCOUNT, which describes
bank accounts. But before exploring the class itself it is useful to study how it may be used
by other classes, called its clients .

A class X may become a client of ACCOUNT by declaring one or more entities of type ACCOUNT.
Such a declaration is of the form:

An entity such as acc that programs can directly modify is called a variable . An entity
declared of a reference type, such as acc, may at any time during execution become
“attached to” an object (see figure 1); the type rules imply that this object must be a direct
instance of ACCOUNT — or, as seen later, of a “descendant” of that class.

An entity is said to be void if it is not attached to any object. As seen below, the type
system achieves strict control over void entities, for run-time safety. To obtain objects at
run-time, a routine r appearing in the client class X may use a creation instruction of the
form

which creates a new direct instance of ACCOUNT, sets up all its fields for initialization to
default values, and attaches acc to that instance. A variant of this notation, studied below,
makes it possible to override the default initializations.

Once the client has attached acc to an object, it may call on this object the features defined in class
ACCOUNT. Here is an extract with some feature calls using acc as their target:

acc: ACCOUNT

create acc

acc.open ("Jill")
acc.deposit (5000)
if  acc.may_withdraw (3000) then

acc.withdraw (3000); print (acc.balance)
end

acc
balance

owner

A direct instance
of PERSON

A direct instance
of ACCOUNT

Figure 1: References and objects
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These feature calls use dot notation, of the form target.feature_name, possibly followed by a

list of arguments in parentheses. Features are of two kinds:

• Routines (such as open, deposit, may_withdraw, withdraw) represent computations
applicable to instances of the class.

• Attributes  represent data items associated with these instances.

Routines are further divided into procedures (commands, which do not return a value) and
functions (queries, returning a value). Here may_withdraw is a function returning a
boolean; the other three-routines called are procedures.

The above extract of class X does not show whether, in class ACCOUNT, balance is an attribute
or a function without argument. This ambiguity is intentional. A client of ACCOUNT, such as X,
does not need to know how a balance is obtained: the balance could be stored as an attribute of
every account object, or computed by a function from other attributes. Choosing between these
techniques is the business of class ACCOUNT, not anybody else’s. Because such implementation
choices are often changed over the lifetime of a project, it is essential to protect clients against
their effects.

This Principle of Uniform Access permeates the use of attributes and functions throughout the
language design: whenever one of these feature variants can be used, and the other would make
sense too, both are permitted. Descendant classes can for example redefine a function into an
attribute, and attributes can have assertions just like functions. The term query covers both
attributes and functions.

The above example illustrates the Eiffel syntax style: focusing on readability, not overwhelming the
reader with symbols, and using simple keywords, each based on a single English word (in its
simplest form: feature in the singular, require and not “requires”). The syntax is free-format —
spaces, new lines, tabs have the same effect — and yet does not require a separator between
successive instructions. You may use semicolons as separators if you wish, but they are optional
in all possible contexts, and most Eiffel programmers omit them (as an obstacle to readability)
except in the rare case of several instructions written on one line.

So much for how client classes will typically use ACCOUNT. Next is a first sketch of how class
ACCOUNT itself might look. Line segments beginning with -- are comments. The class includes
two feature clauses, introducing its features. The first begins with just the keyword feature ,
without further qualification; this means that the features declared in this clause are available (or
“exported”) to all clients of the class. The second clause is introduced by feature {NONE} to
indicate that the feature that follows, called add, is available to no client. What appears between
the braces is a list of client classes to which the listed features are available; NONE is a special
class of the Kernel Library, which has no instances, so that add is in effect a secret feature,
available only locally to the other routines of class ACCOUNT. In a client class such as X, the call
acc.add (–3000) would be invalid and hence rejected by any Standard-compliant language
processing tool.

class  ACCOUNT feature

balance: INTEGER
-- Amount on the account

owner: PERSON
-- Account holder

minimum_balance: INTEGEGER = 1000
-- Lowest permitted balance

open (who: PERSON)
-- Assign the account to owner who.

do
owner := who

end
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Let us examine the features in sequence. The do ... end distinguishes routines from
attributes. So here the class has implemented balance as an attribute, although, as noted,
a function would also have been acceptable. Feature owner is also an attribute.

The language definition guarantees automatic initialization, so that the balance of an account
object will be zero the first time it is accessed. Each type has a default initialization value, such as
false for BOOLEAN, zero for integer and real types, null character for character types and, for a
reference type, either a void value or a reference to a new object of that type. The class designer
may also provide clients with different initialization options, as will be shown in a revised version
of this example.

The other public features, open, deposit, withdraw and may_withdraw are straightforward routines.
The special variable Result, used in may_withdraw, denotes the function result; it is initialized on
function entry to the default value of the function’s result type.

The secret procedure add serves for the implementation of the public procedures deposit and
withdraw; the designer of ACCOUNT judged it too general to be exported by itself. The clause
= 1000 introduces minimum_balance as a constant attribute, which need not occupy any space in
instances of the class; in contrast, every instance has a field for every non-constant attribute such
as balance.

In Eiffel’s object-oriented programming style, every operation is relative to a certain object. In a
client invoking the operation, this object is specified by writing the corresponding entity on the left
of the dot, as acc in acc.open ("Jill"). Within the class, however, the “current” instance to which
operations apply usually remains implicit, so that unqualified feature names, such as owner in
procedure open or add in deposit, mean “the owner attribute or add routine relative to the current
instance”.

If you need to denote the current object explicitly, you may use the special entity Current. For
example the unqualified occurrences of add appearing in the above class are essentially
equivalent to Current.add.

In some cases, infix or prefix notation will be more convenient than dot notation. For example, if a
class VECTOR offers an addition routine, most people will feel more comfortable with calls of the
form v + w than with the dot-notation call v.plus (w). To make this possible it suffices to give the
routine a name of the form plus alias "+"; internally, however, the operation is still a normal routine
call. You can also use unary operators for prefix notation. It is also possible to define a bracket

deposit (sum: INTEGER)
-- Add an amount of sum to the account.

do
add (sum)

end

withdraw (sum: INTEGER)
-- Remove an amount of sum from the account.

do
add (–sum)

end

may_withdraw (sum: INTEGER): BOOLEAN
-- Is there enough money to withdraw sum?

do
Result := (balance >= sum + minimum_balance)

end

feature {NONE}
add (sum: INTEGER)

-- Add sum to the balance.
do

balance := balance + sum
end

end
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alias, as in the feature item alias "[ ]" of the Kernel Library class ARRAY, which returns an array
element of given index i: in dot notation, you will write this as your_array.item (i), but the bracket
alias allows your_array [i] as an exact synonym. At most one feature per class may have a bracket
alias. These techniques make it possible to use well-established conventions of mathematical
notation and traditional programming languages in full application of object-oriented principles.

The above simple example has shown the basic structuring mechanism of the language: the
class. A class describes a data structure, accessible to clients through an official interface
comprising some of the class features. Features are implemented as attributes or routines; the
implementation of exported features may rely on other, secret ones.

 7.4 Types
Eiffel is strongly typed for readability and reliability. Every entity is declared of a certain
type, which may be either a reference type or an expanded type.

Any type T is based on a class, which defines the operations that will be applicable to instances
of T. The difference between the two categories of type affects the semantics of using an instance
of T as source of an attachment: assignment or argument passing. An attachment from an object
of a reference type will attach a new reference to that object; with an expanded type, the
attachment will copy the contents of the object. Similarly, comparison operations such as a = b will
compare references in one case and objects contents in the other. (To get object comparison in
all cases, use a ~ b.) We talk of objects with reference semantics and objects with copy semantics.

Syntactically, the difference is simple: a class declared without any particular marker, like
ACCOUNT, yields a reference type. To obtain an expanded type, just start with expanded class
instead of just class .

It may be useful to think of expanded and reference types in terms of figure 2, where we assume
that ACCOUNT has an extra attribute exp of type EXP, using a class declared as expanded class
EXP. Figure 2 shows the entity acc denoting at run time a reference to an instance of ACCOUNT
and, in contrast, exp in that instance denoting a subobject , not a reference to another object:

This is only an illustration, however, and implementations are not required to implement
expanded values as subobjects. What matters is the distinction between copy and
reference semantics.

An important group of expanded types, based on library classes, includes the basic types
INTEGER, REAL, CHARACTER and BOOLEAN. Clearly, the value of an entity declared of type
INTEGER should be an integer, not a reference to an object containing an integer value.
Operations on these types are defined by prefix and infix operators such as "+" and "<".

As a result of these conventions, the type system is uniform and consistent: all types, reference
or expanded — including the basic types —, are defined from classes.

In the case of basic types, for obvious reasons of efficiency, compilers can and usually do
implement the usual arithmetic and boolean operations directly through the corresponding

acc: ACCOUNT
balance

owner

An object
of ACCOUNT)

Figure 2: Object and subobject

exp: EXP
A subobject
(direct instance
of EXP)

Reference

(direct instance
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machine operations, not through routine calls. So the performance is the same as if basic types
were “magic”, outside of the object-oriented type system. But this is only a compiler optimization,
which does not hamper the conceptual homogeneity of the type edifice.

 7.5 Assertions

If classes are to deserve their definition as abstract data type implementations, they must
be known not just by the available operations, but also by the formal properties of these
operations, which did not appear in the above example.

Eiffel encourages software developers to express formal properties of classes by writing
assertions , which may in particular appear in the following roles:

• Routine preconditions express the requirements that clients must satisfy whenever they call
a routine. For example the designer of ACCOUNT may wish to permit a withdrawal operation
only if it keeps the account’s balance at or above the minimum. Preconditions are introduced
by the keyword require .

• Routine postconditions , introduced by the keyword ensure , express conditions that the
routine (the supplier) guarantees on return, if the precondition was satisfied on entry.

• A class invariant must be satisfied by every instance of the class whenever the instance is
externally accessible: after creation, and after any call to an exported routine of the class. The
invariant appears in a clause introduced by the keyword invariant , and represents a general
consistency constraint imposed on all routines of the class.

The above class ACCOUNT typifies why classes often need such assertions. Implicitly, as
suggested by the feature names, the balance of an account should always remain at least
equal to its minimum_balance. But nothing in the class text expresses this fundamental
property, or the constraints it implies on the arguments to such features as deposit and
withdraw. By adding assertions we make these properties an integral part of the class. We
also use this opportunity to make the class more flexible by making minimum_balance no
longer a constant (1000 above) but a variable attribute to be set by each client when it
creates an instance of the class. The revised version is:

class  ACCOUNT create
make

feature
... Some features as before: balance, owner, open ...

minimum_balance: INTEGER
-- Minimum permitted value for balance

deposit (sum: INTEGER)
-- Deposit sum into the account.

require
positive: sum > 0

do
add (sum)

ensure
deposited: balance = old  balance + sum

end
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The notation old expression may only be used in a routine postcondition. It denotes the
value the expression had on routine entry.

In its last version above, the class now includes a creation procedure, make. With the first
version of ACCOUNT, clients used creation instructions such as create acc1 to create
accounts; but then the default initialization, setting balance to zero, violated the invariant.
By having one or more creation procedures, listed in the create clause at the beginning of
the class text, a class offers a way to override the default initializations. The effect of

is to allocate the object (as with default creation) and to call procedure make on it, with the
arguments given. This call is correct since it satisfies the precondition; it will ensure that
the created object satisfies the invariant.

Note that the same keyword, create , serves both to introduce creation instructions and the
creation clause listing creation procedures at the beginning of the class.

A procedure listed in the creation clause, such as make, otherwise enjoys the same properties as
other routines, especially for calls. Here the procedure make is secret since it appears in a clause
starting with feature {NONE}; so it would be invalid for a client to include a call such as

To make such a call valid, it would suffice to move the declaration of make to the first
feature clause of class ACCOUNT, which carries no export restriction. Such a call does not
create any new object, but simply resets the balance of a previously created account.

Syntactically, assertions are boolean expressions, with a few extensions such as the old
notation. Writing a succession of assertion clauses, as in the precondition to withdraw, is

withdraw (sum: INTEGER)
-- Withdraw sum from the account.

require
positive: sum > 0
sufficient_funds: sum <= balance – minimum_balance

do
add (–sum)

ensure
withdrawn: balance = old  balance – sum

end

may_withdraw ...  -- As before

feature {NONE}
add ... -- As before
make (initial, min: INTEGER)

-- Initialize account with balance initial and minimum balance min.
require

not_under_minimum: initial >= min
do

minimum_balance := min
balance := initial

ensure
balance_initialized: balance = initial
minimum_initialized: minimum_balance = min

end

invariant
sufficient_balance: balance >= minimum_balance

end

create  acc1.make (5500, 1000)

acc.make (5500, 1000)
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equivalent to “and-ing” them, but permits individual identification of the components. (As
with instructions you could use a semicolon between assertion clauses, although it is
optional and generally omitted.)

Assertions play a central part in the Eiffel method for building reliable object-oriented software.
They serve to make explicit the assumptions on which programmers rely when they write software
elements that they believe are correct. Writing assertions, in particular preconditions and
postconditions, amounts to spelling out the terms of the contract which governs the relationship
between a routine and its callers. The precondition binds the callers; the postcondition binds the
routine.

The underlying theory of Design by Contract, the centerpiece of the Eiffel method, views software
construction as based on contracts between clients (callers) and suppliers (routines), relying on
mutual obligations and benefits made explicit by the assertions.

Assertions are also an indispensable tool for the documentation of reusable software
components: one cannot expect large-scale reuse without a precise documentation of what
every component expects (precondition), what it guarantees in return (postcondition) and
what general conditions it maintains (invariant).

Documentation tools in Eiffel implementations use assertions to produce information for client
programmers, describing classes in terms of observable behavior, not implementation. In
particular the contract view of a class, which serves as its basic documentation, is obtained from
the full text by removing all non-exported features and all implementation information such as do
clauses of routines, but keeping interface information and in particular assertions. Here is the
interface of the above class (with some features omitted):

This is not an Eiffel text, only documentation of Eiffel classes, hence the use of slightly
different syntax to avoid any confusion (class interface rather than class ). In accordance
with observations made above, the output for balance would be the same if this feature
were a function rather than an attribute.

Such an interface can be produced by automatic tools from the text of the software. It serves as
the primary form of class documentation. A variant of the contract view includes inherited features
along with those introduced in the class itself.

class interface ACCOUNT create
make

feature
balance: INTEGER

-- Amount on the account

minimum_balance: INTEGER
-- Lowest permitted balance

deposit (sum: INTEGER)
-- Deposit sum into the account.

require
positive: sum > 0

ensure
deposited: balance = old  balance + sum

withdraw (sum: INTEGER)
-- Withdraw sum from the account.

require
positive: sum > 0
sufficient_funds: sum <= balance – minimum_balance

ensure
withdrawn: balance = old  balance – sum

invariant
sufficient_balance: balance >= minimum_balance

end
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It is also possible to evaluate assertions at run time, to uncover potential errors (“bugs”). The
implementation provides several levels of assertion monitoring: preconditions only, postconditions
etc. With monitoring on, an assertion that evaluates to true has no further effect on the execution.
An assertion that evaluates to false will trigger an exception, as described next; in the absence of
a specific exception handler the exception will cause an error message and termination.

This ability to check assertions provides a powerful testing and debugging mechanism, in
particular because the classes of widely used libraries are equipped with extensive assertions.

Run-time checking, however, is only one application of assertions, whose role as design and
documentation aids, as part of the theory of Design by Contract, exerts a pervasive influence on
the Eiffel style of software development.

 7.6 Exceptions

Whenever there is a contract, the risk exists that someone will break it. This is where
exceptions come in.

Exceptions — contract violations — may arise from several causes. One is assertion violations, if
assertions are monitored. Another is the occurrence of a signal triggered by the hardware or
operating system to indicate an abnormal condition such as arithmetic overflow or lack of memory
to create a new object.

Unless a routine has made specific provision to handle exceptions, it will fail if an exception arises
during its execution. Failure of a routine is a third cause of exception: a routine that fails triggers
an exception in its caller.

A routine may, however, handle an exception through a rescue clause. This optional clause
attempts to “patch things up” by bringing the current object to a stable state (one satisfying the
class invariant). Then it can terminate in either of two ways:

• The rescue clause may execute a retry instruction, which causes the routine to restart its
execution from the beginning, attempting again to fulfil its contract, usually through another
strategy. This assumes that the instructions of the rescue clause, before the retry , have
attempted to correct the cause of the exception.

• If the rescue clause does not end with retry , then the routine fails: it returns to its caller,
immediately signaling an exception. (The caller’s rescue clause will be executed according to
the same rules.)

The principle is that a routine must either succeed or fail : either it fulfils its contract, or it
does not; in the latter case it must notify its caller by triggering an exception.

Usually, only a few routines of a system will include explicit rescue clauses. An exception
occurring during the execution of a routine with no rescue clause will trigger a predefined rescue
procedure, which does nothing, and so will cause the routine to fail immediately, propagating the
exception to the routine’s caller.

An example using the exception mechanism is a routine attempt_transmission which tries to
transmit a message over a phone line. The actual transmission is performed by an external,
low-level routine transmit; once started, however, transmit may abruptly fail, triggering an
exception, if the line is disconnected. Routine attempt_transmission tries the transmission at most
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50 times; before returning to its caller, it sets a boolean attribute successful to true or false
depending on the outcome. Here is the text of the routine:

Initialization rules ensure that failures, a local variable, is initially zero.

This example illustrates the simplicity of the mechanism: the rescue clause never attempts to
achieve the routine’s original intent; this is the sole responsibility of the body (the do clause). The
only role of the rescue clause is to clean up the objects involved, and then either to fail or to retry.

The Kernel Library provides a class EXCEPTION and a number of descendants describing
specific kinds of exception. Triggering of an exception produces an instance of one of these types,
making it possible, in the rescue clause, to perform more specific exception processing.

This disciplined exception mechanism is essential for software developers, who need protection
against unexpected events, but cannot be expected to sacrifice safety and simplicity to pay for this
protection.

 7.7 Genericity

Building software components (classes) as implementations of abstract data types yields
systems with a solid architecture but does not in itself suffice to ensure reusability and
extendibility. Two key techniques address the problem: genericity (unconstrained or
constrained) and inheritance. Let us look first at the unconstrained form.

To make a class generic is to give it formal generic parameters representing arbitrary types, as
in these examples from typical libraries:

These classes describe data structures — arrays, lists without commitment to a specific
representation, lists in linked representation — containing objects of a certain type. The
formal generic parameter G represents this type.

Such a class describes a type template. To derive a directly usable type, you must provide a type
corresponding to G, called an actual generic parameter ; this might be a basic type (such as
INTEGER) or a reference type. Here are some possible generic derivations:

As the last example indicates, an actual generic parameter may itself be generically
derived.

attempt_transmission (message: STRING)
-- Try to transmit message, at most 50 times.
-- Set successful accordingly.

local
failures: INTEGER

do
if  failures < 50 then

transmit (message); successful := true
else

successful := false
end

rescue
failures := failures + 1; retry

end

ARRAY [G]
LIST [G]
LINKED_LIST [G]

il: LIST [INTEGER]
aa: ARRAY [ACCOUNT]
aal: LIST [ARRAY [ACCOUNT]]
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Without genericity, it would be impossible to obtain static type checking in a realistic
object-oriented language.

A variant of this mechanism, constrained genericity, introduced below after inheritance, enables a
class to place specific requirements on possible actual generic parameters.

 7.8 Inheritance

Inheritance, the other fundamental generalization mechanism, makes it possible to define
a new class by combination and specialization of existing classes rather than from scratch.

The following simple example describes lists implemented by arrays, combining LIST and ARRAY
through inheritance:

The inherit ... clauses list all the “parents” of the new class, which is said to be their “heir”.
(The “ancestors” of a class include the class itself, its parents, grandparents etc.; the
reverse term is “descendant”.) Declaring ARRAYED_LIST as shown ensures that all the
features and properties of lists and arrays are applicable to arrayed lists as well. Since the
class has more than one parent, this is a case of multiple inheritance.

In this case one of the parents is introduced by a different clause, reading inherit {NONE}; this
specifies non-conforming inheritance , where it will not be possible to assign values of the new
types to variables of the parent type. The other branch, with just inherit , is conforming, so we can
assign an ARRAYED_LIST [T] to a LIST[T]. This reflects the distinction between the “subtyping”
and “pure reuse” forms of inheritance.

Standard graphical conventions (figure 3) serve to illustrate such inheritance structures:

A non-conforming heir class such as ARRAYED_LIST needs the ability to define its own
export policy. By default, inherited features keep their export status (publicly available,
secret, available to selected classes only); but this may be changed in the heir. Here, for
example, ARRAYED_LIST will export only the exported features of LIST, making those of

class  ARRAYED_LIST [G] inherit
LIST [G]

inherit  {NONE}
ARRAY [G]

export ... See below ...end
feature

... Specific features of lists implemented by arrays ...
end

ARRAYED_
LIST

ARRAY

Figure 3: Inheritance

Non-conforming
inheritance

Conforming
inheritance

LIST
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ARRAY unavailable directly to ARRAYED_LIST’s clients. The syntax to achieve this is
straightforward:

Another example of multiple inheritance comes from a windowing system based on a class
WINDOW, as in the EiffelVision graphics library. Windows have graphical features: a
height, a width, a position, routines to scale windows, move them, and other graphical
operations. The system permits windows to be nested, so that a window also has
hierarchical features: access to subwindows and the parent window, adding a subwindow,
deleting a subwindow, attaching to another parent and so on. Rather than writing a
complex class that would contain specific implementations for all of these features, it is
preferable to inherit all hierarchical features from TREE, and all graphical features from a
class RECTANGLE. In this case both branches are conforming, so a single inherit clause
listing two parents suffices:

Inheritance yields remarkable economies of effort — whether for analysis, design,
implementation or evolution — and has a profound effect on the entire development
process.

The very power of inheritance demands adequate means to keep it under control. Multiple
inheritance, in particular, raises the question of name conflicts between features inherited from
different parents. You may simply remove such a name conflict through renaming , as in

Here, if both A and B have features named x and y, class C would be invalid without the
renaming.

Renaming also serves to provide more appropriate feature names in descendants. For example,
class WINDOW may inherit a routine insert_subtree from TREE. For clients of WINDOW, however,
such a routine name is no longer appropriate. An application using this class for window
manipulation needs coherent window terminology, and should not be concerned with the
inheritance structure that led to the implementation of the class. So you may wish to rename
insert_subtree as add_subwindow in the inheritance clause of WINDOW.

As a further facility to protect against misusing the multiple inheritance mechanism, the invariants
of all parent classes automatically apply to a newly defined class.

 7.9 Polymorphism and dynamic binding
Inheritance is not just a module combination and enrichment mechanism. It also enables
the definition of flexible entities that may become attached to objects of various forms at
run time, a property known as polymorphism.

Complementary mechanisms make this possibility particularly powerful: feature redefinition and
dynamic binding . The first enables a class to redefine some or all of the features which it inherits

class  ARRAYED_LIST [G] inherit
LIST [G]

inherit {NONE}
ARRAY [G]

export {NONE} all end
... The rest as above ...

class  WINDOW inherit
RECTANGLE
TREE [WINDOW]

...

class  C inherit
A rename  x as x1, y as y1 end
B rename  x as x2, y as y2 end

feature ...
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from its parents. For an attribute or function, the redefinition may affect the type, replacing the
original by a descendant; for a routine it may also affect the implementation, replacing the
original’s routine body by a new one.

Assume for example a class POLYGON, describing polygons, whose features include an array of
points representing the vertices and a function perimeter which computes a polygon’s perimeter
by summing the successive distances between adjacent vertices. An heir of POLYGON may begin:

Here it is appropriate to redefine perimeter for rectangles as there is a simpler and more
efficient algorithm. Note the explicit redefine subclause (which would come before the
rename  if present).

Other descendants of POLYGON may also have their own redefinitions of perimeter. The version
to use in any call is determined by the run-time form of the target. Consider the following class
fragment:

The polymorphic assignment p := r is valid because the type of the source, RECTANGLE,
conforms, through inheritance, to the type of the target, POLYGON. If some_condition is
false, p will be attached to an object of type POLYGON for the computation of p.perimeter,
which will thus use the polygon algorithm. In the opposite case, however, p will be attached
to a rectangle; then the computation will use the version redefined for RECTANGLE. This is
known as dynamic binding.

Dynamic binding provides high flexibility. The advantage for clients is the ability to request an
operation (such as perimeter computation) without explicitly selecting one of its variants; the
choice only occurs at run-time. This is essential in large systems, where many variants may be
available; each component must be protected against changes in other components.

This technique is particularly attractive when compared to its closest equivalent in
non-object-oriented approaches where you would need records with variant components, and
case instructions to discriminate between variants. This means that every client must know about
every possible case, and that any extension may invalidate a large body of existing software.

Redefinition, polymorphism and dynamic binding support a development mode in which every
module is open and incremental. When you want to reuse an existing class but need to adapt it to
a new context, you can always define a new descendant of that class (with new features, redefined
ones, or both) without any change to the original. This facility is of great importance in software

class  RECTANGLE inherit
POLYGON redefine  perimeter end

feature  -- Specific features of rectangles, such as:
side1: REAL; side2: REAL
perimeter: REAL

-- Rectangle-specific version

do
Result := 2 ∗ (side1 + side2)

end

... Other RECTANGLE features ...
end

p: POLYGON; r: RECTANGLE
... create   p; create   r; ...
if  some_condition then

p := r
end
print (p.perimeter)
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development, an activity which — whether by design or by circumstance — is invariably
incremental.

The power of polymorphism and dynamic binding demands adequate controls. First, feature
redefinition is explicit. Second, because the language is typed, a compiler can check statically
whether a feature application a.f is valid, as discussed in more detail below. In other words, the
language reconciles dynamic binding with static typing. Dynamic binding guarantees that
whenever more than one version of a routine is applicable the right version (the one most directly
adapted to the target object) will be selected. Static typing means that the compiler makes sure
there is at least one such version.

This policy also yields an important performance benefit: the design of the inheritance mechanism
makes it possible for an implementation to find the appropriate routine, for a dynamically bound
call, in constant time.

Assertions provide a further mechanism for controlling the power of redefinition. In the absence
of specific precautions, redefinition may be dangerous: how can a client be sure that evaluation of
p.perimeter will not in some cases return, say, the area? Preconditions and postconditions
provide the answer by limiting the amount of freedom granted to eventual redefiners. The rule is
that any redefined version must satisfy a weaker or equal precondition and ensure a stronger or
equal postcondition than in the original. In other words, it must stay within the semantic boundaries
set by the original assertions.

The rules on redefinition and assertions are part of the Design by Contract theory, where
redefinition and dynamic binding introduce subcontracting. POLYGON, for example, subcontracts
the implementation of perimeter to RECTANGLE when applied to any entity that is attached at
run-time to a rectangle object. An honest subcontractor is bound to honor the contract accepted
by the prime contractor. This means that it may not impose stronger requirements on the clients,
but may accept more general requests, so that the precondition may be weaker; and that it must
achieve at least as much as promised by the prime contractor, but may achieve more, so that the
postcondition may be stronger.

 7.10 Combining genericity and inheritance
Genericity and inheritance, the two fundamental mechanisms for generalizing classes, may
be combined in two fruitful ways.

The first technique yields polymorphic data structures . Assume that in the generic class
LIST [G] the insertion procedure put has a formal argument of type G, representing the element
to be inserted. Then with a declaration such as

the type rules imply that in a call pl.put (...) the argument may be not just of type POLYGON,
but also of type RECTANGLE (an heir of POLYGON) or any other type conforming to
POLYGON through inheritance.

The conformance requirement used here is the inheritance-based type compatibility rule: V can
only conform to T if it is a descendant of T.

Structures such as pl may contain objects of different types, hence the name “polymorphic data
structure”. Such polymorphism is, again, made safe by the type rules: by choosing an actual
generic parameter (POLYGON in the example) based higher or lower in the inheritance graph, you
extend or restrict the permissible types of objects in pl. A fully general list would be declared as

where ANY, a Kernel Library class, is automatically an ancestor of any class that you may
write.

The other mechanism for combining genericity and inheritance is constrained genericity . By
indicating a class name after a formal generic parameter, as in

pl: LIST [POLYGON]

LIST [ANY]
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you express that only descendants of that class (here ADDABLE) may be used as the
corresponding actual generic parameters. This makes it possible to use the corresponding
operations. Here, for example, class VECTOR may define a routine plus alias "+" for adding
vectors, based on the corresponding routine from ADDABLE for adding vector elements.
Then by making VECTOR itself inherit from ADDABLE, you ensure that it satisfies its own
generic constraint and enable the definition of types such as VECTOR [VECTOR [T]].

Unconstrained genericity, as in LIST [G], may be viewed as an abbreviation for genericity
constrained by ANY, as in

With these basic forms of genericity, it is not possible to create an instance of a formal
generic type, for example an object of type G in VECTOR [G]. Indeed without further
information we don’t know whether any creation procedures are available. To request
specific ones for an actual generic parameter, list them in the class declaration, just after
the constraint:

Then for x of type G you can use the instruction create x.make (a), with the appropriate
argument type for a as specified for make in ADDABLE, and rely on the guarantee that
when this gets applied to a VECTOR [T] for a permissible T this type will have its own
appropriate version of make.

 7.11 Deferred classes
The inheritance mechanism includes one more major component: deferred routines and
classes.

Declaring a routine r as deferred in a class C expresses that there is no default implementation of
r in C; such implementations will appear in eventual descendants of C. A class having one or more
deferred routines is itself said to be deferred. A non-deferred routine or class is called effective .

For example, a system used by a Department of Motor Vehicles to register vehicles could include
a class of the form

VECTOR [G –> ADDABLE]

LIST [G –> ANY]

VECTOR [G –> ADDABLE create make end]

deferred class  VEHICLE feature
dues_paid (year: INTEGER): BOOLEAN

do... end
valid_plate (year: INTEGER): BOOLEAN

do... end
register (year: INTEGER)

-- Register vehicle for year.

require
 dues_paid: dues_paid (year)

deferred
ensure

valid_plate: valid_plate (year)
end

... Other features, deferred or effective...

end
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This example assumes that no single registration algorithm applies to all kinds of vehicle;
passenger cars, motorcycles, trucks etc. are all registered differently. But the same
precondition and postcondition apply in all cases. The solution is to treat register as a
deferred routine, making VEHICLE a deferred class. Descendants of class VEHICLE, such
as CAR or TRUCK, effect this routine, that is to say, give effective versions (figure 4). An
effecting is similar to a redefinition; only here there is no effective definition in the original
class, just a specification in the form of a deferred routine. There is no need here for a
redefine clause; the effective versions simply take over any inherited deferred version. The
term redeclaration  covers both redefinition and effecting.

Deferred classes describe a group of implementations of an abstract data type rather than
just a single implementation. You may not instantiate a deferred class: create v is invalid if
v is a variable declared of type VEHICLE. But you may assign to v a reference to an
instance of a non-deferred descendant of VEHICLE. For example, assuming CAR and
TRUCK provide effective definitions for all deferred routines of VEHICLE, the following will
be valid:

This example fully exploits polymorphism: depending on the outcome of some_test, v will
be treated as a car or a truck, and the appropriate registration algorithm will be applied.
Also, “Some test” may depend on some event whose outcome is impossible to predict until
run-time, for example a user clicking with the mouse to select one among several vehicle
icons displayed on the screen.

Deferred classes are particularly useful at the design stage. The first version of a module may be
a deferred class, which will later be refined into one or more effective (non-deferred) classes.
Particularly important for this application is the possibility of associating a precondition and a
postcondition with a routine even though it is a deferred routine (as with register above), and an
invariant with a class even though it is a deferred class. This enables the designer to attach precise
semantics to a module at the design stage, long before making any implementation choices.

These possibilities make Eiffel an attractive alternative to specialized notations, graphical or
textual, for design and also for analysis . The combination of deferred classes to capture partially
understood concepts, assertions to express what is known about their semantics, and the
language’s other structuring facilities (information hiding, inheritance, genericity) to obtain clear,
convincing architectures, yields a higher-level design method. A further benefit, of course, is that

v: VEHICLE; c: CAR; t: TRUCK
...
create  c ...; create   t ...;...
if  some_test then  v := c else  v := t end
v.register (1996)

VEHICLE

CAR TRUCK

register+ register+

register*

* deferred
+ effective

Inherits

*

Figure 4: Abstracting variants into a deferred parent
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the notation is also a programming language, making the development cycle smoother by
reducing the gap between design and implementation.

At the analysis stage, deferred classes describe not software objects, but objects from the external
reality’s model — documents, airplanes, investments. The Eiffel mechanisms are just as attractive
for such modeling.

An important property of deferred classes supporting all these lifecycle tasks, as part of a
seamless software development cycle, is that they do not have to be fully deferred, like pure
“interfaces”. A class may have a mix of effective features capturing what is known at a certain
stage of the development, and deferred ones describing what remains to be refined. This supports
a continuous refinement-based process, proceeding smoothly from the abstract to the concrete.

 7.12 Tuples and agents
A simple extension to the notion of class is the tuple. The type TUPLE [A, B, C] has, as its
instances, sequences (“tuples”) whose first three elements are of types A, B and C
respectively. A tuple expression appears as simply [a1, b1, c1] with elements of the given
type. It is also possible in the tuple type declaration to label the components, as in TUPLE
[x: A; y: B; z: C], making it simpler to access the elements, as in your_tuple.y, with the
proper type, here B, rather than your_tuple.item (2) of type ANY by default. Tuples provide a
simpler alternative to classes when you don’t need specific features, just a sequence of
values of given types.

Tuples also help in the definition of agents . An agent is a way to define an object that represents
a certain routine, ready to be called, possibly with some of its arguments set at the time of the
agent definition (closed operands ) and others to be provided at the time of each actual call (open
operands ). For example with a routine r (x: A; y: B) in a class C, as well as a1 of type A and c1 of
type C, the agent

agent  c1.r (a1, ?)
represents the routine r ready to be called on the target c1, with the argument a1 and
another argument (corresponding to y, of type B) to be provided at the time of the call. The
question mark ? represents an open operand. The routine using this agent, for example
having received it as an actual argument to a routine, for the formal argument operation,
can then call the associated routine through

operation.call [b1]
for some b1 of type B, the only open operand. This will have the same effect as an original
call c1.r (a1, b1), but the routine executing it does not know that operation represents r
rather than any other routine with the same expected open operands. The argument to call
is not directly b1 but a tuple with b1 as its sole item; this is because call — a routine of the
corresponding general-purpose agent class in the Kernel Library — must be able to accept
argument sequences of any length, while ensuring type safety.

Agents add a further level of expressiveness to the mechanisms discussed earlier. They are
particularly useful for numerical applications — for example to pass agent f, where f is a
mathematical function, to an integration routine — and Graphical User Interface (GUI) applications,
where they provide an attractive alternative to techniques such as “function pointers” and the
Observer Pattern. For example an application may pass the above agent c1.r (a1, ?) to a GUI
routine, telling it to “subscribe” the associated operation to certain event types such as mouse click.
When such an event occurs, the GUI will automatically trigger the operation through a call.

 7.13 Type- and void-safety
As noted, Eiffel puts a great emphasis on reliability through static typing. Polymorphism
and dynamic binding in particular are controlled by type rules. The basic requirement is
simple: an assignment of the form a := b is permitted only if a and b are of reference types
A and B, based on classes A and B such that B is a descendant of A. The same applies to
argument passing.
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This corresponds to the intuitive idea that a value of a more specialized type may be assigned to
an entity of a less specialized type — but not the reverse. (As an analogy, consider that if you
request vegetables, getting green vegetables is fine, but if you ask for green vegetables, receiving
a dish labeled just “vegetables” is not acceptable, as it could include, say, carrots.)

This inheritance-based type system rules out numerous errors, some potentially catastrophic if
their detection was left to run time.

Another, just as dangerous type of error has generally eluded static detection: void calls. In a
framework offering references or pointers, the risk exists that in the execution of a call x.f (...) the
value of x will be void rather than attached to an object, leading to a crash. The design of Eiffel
treats this case through the type system. Specifically:

• Types are by default attached , meaning that they do not permit void values. To support void,
a type must be declared as detachable : ? T rather than just T.

• You may use a qualified call x.f (...) only if the type of x is attached.

• As part of the conformance rules, you may assign a T source to a ? T target but (for risk of
losing the characteristic property of attached types) not the other way around.

• All entities, as noted, are initialized to default values. For detachable types the default value is
void, but for an attached type it must always be attached to an object. This means that either
the type must provide a default creation procedure (a procedure default_create from class
ANY is available for that purpose, which any class can use as creation procedure, after
possibly redefining it to suit its needs), or every variable must be explicitly initialized before
use.

These simple rules, compiler-enforceable, remove a whole category of tricky and
dangerous failures.

 7.14 Putting a system together

This discussion has focused so far on individual classes. This is consistent with the Eiffel
method, which emphasizes reusability and, as a consequence, the construction of
autonomous modules.

To execute software, you will need to group classes into executable compounds. Such a
compound is called a system — the Eiffel concept closest to the traditional notion of program —
and is defined by the following elements:

• A set of classes, called a universe .

• The designation of the system’s root type , based on one of these classes (the root class ).

• The designation of one of the creation procedures of the root class as the root procedure .

To execute such a system is to create one direct instance of the root type (the root object
for the current execution), and to apply to it the root procedure — which will usually create
other objects, call other routines and so on.

The method suggests grouping related classes — typically 5 to 40 classes — into collections
called clusters . A common convention, for the practical implementation on the file system, is to
store each class in a file, and associate each cluster with a directory. Then the universe is simply
the set of classes stored across a set of directories.

The classes of a system will include its root class and all the classes that it needs directly or
indirectly, where a class is said to need another if it is one of its heirs or clients.

To specify a system you will need to state, in addition to the list of directories, the root type and
the root procedure (which must be one of the creation procedures of the root class). This is
achieved through either a graphical interface or a control file.
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 8 Language specification

 8.1 General organization

Informative text

The remainder of the text provides the precise specification of Eiffel.

The overall order of the description is top-down, global structure to specific details:

• Conventions for the language description and basic conventions of the language itself.

• Architecture of Eiffel software, including the fundamental structuring mechanisms: cluster,
class, feature, inheritance, client.

• Key elements of a class: routines and assertions.

• Type and type adaptation mechanisms, including redeclaration, genericity, tuples,
conformance, convertibility and repeated inheritance.

• Control structures.

• Dynamic model: objects, attributes, entities, creation, copying.

• The calling mechanism and its consequences: expressions, type checking, barring void calls.

• Advanced mechanisms: exceptions, agents.

• Elementary mechanisms: constants, basic types, lexical elements.

End

 8.2 Syntax, validity and semantics

8.2.1 Definition: Syntax, BNF-E
Syntax  is the set of rules describing the structure of software texts.

The notation used to define Eiffel’s syntax is called BNF-E.

Informative text
“BNF” is Backus-Naur Form, a traditional technique for describing the syntax of a certain category
of formalisms (“context-free languages”), originally introduced for the description of Algol 60.
BNF-E adds a few conventions — one production per construct, a simple notation for repetitions
with separators — to make descriptions clearer. The range of formalisms that can be described
by BNF-E is the same as for traditional BNF.

End

8.2.2 Definition: Component, construct, specimen
Any class text, or syntactically meaningful part of it, such as an instruction, an expression or an
identifier, is called a component .

The structure of any kind of components is described by a construct . A component of a kind
described by a certain construct is called a specimen  of that construct.

Informative text
For example, any particular class text, built according to the rules given in this language
description, is a component. The construct Class describes the structure of class texts; any class
text is a specimen of that construct. At the other end of the complexity spectrum, an identifier such
as your_variable is a specimen of the construct Identifier.
Although we could use the term “instance” in lieu of “specimen”, it could cause confusion with the
instances of an Eiffel class — the run-time objects built according to the class specification.

End
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8.2.3 Construct Specimen convention
The phrase ‘‘an X’’, where X is the name of a construct, serves as a shorthand for ‘‘a specimen of
X’’.

Informative text
For example, ‘‘a Class’’ means ‘‘a specimen of construct Class’’: a text built according to the
syntactical specification of the construct Class.

End

8.2.4 Construct Name convention
Every construct has a name starting with an upper-case letter and continuing with lower-case
letters, possibly with underscores (to separate parts of the name if it uses several English words).

Informative text
Typesetting conventions complement the Construct Name convention: construct names, such as
Class, always appear in Roman and in Green — distinguishing them from the blue of Eiffel text,
as in Result := x.

End

8.2.5 Definition: Terminal, non-terminal, token
Specimens of a terminal construct have no further syntactical structure. Examples include:

• Reserved words such as if and Result .

• Manifest constants such as the integer 234; symbols such as ; (semicolon) and + (plus sign).

• Identifiers (used to denote classes, features, entities) such as LINKED_LIST and put .

The specimens of terminal constructs are called tokens .

In contrast, the specimens of a non-terminal  construct are defined in terms of other constructs.

Informative text
Tokens (also called lexical components ) form the basic vocabulary of Eiffel texts. By starting
with tokens and applying the rules of syntax you may build more complex components —
specimens of non-terminals.

End

8.2.6 Definition: Production
A production is a formal description of the structure of all specimens of a non-terminal construct.
It has the form

Construct =∆ right-side

where right-side describes how to obtain specimens of the Construct.

Informative text
The symbol =∆  may be read aloud as “is defined as”.
BNF-E uses exactly one production for each non-terminal. The reason for this convention is
explained below.

End

8.2.7 Kinds of production
A production is of one of the following three kinds, distinguished by the form of the right-side:

• Aggregate , describing a construct whose specimens are made of a fixed sequence of parts,
some of which may be optional.

• Choice , describing a construct having a set of given variants.
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• Repetition , describing a construct whose specimens are made of a variable number of parts,
all specimens of a given construct.

8.2.8 Definition: Aggregate production
An aggregate right side is of the form C1 C2 ... Cn (n > 0), where every one of the Ci is a construct
and any contiguous subsequence may appear in square brackets as [Ci ... Cj] for 1 ≤ i ≤ j ≤ n.

Every specimen of the corresponding construct consists of a specimen of C1, followed by a
specimen of C2, ..., followed by a specimen of Cn, with the provision that for any subsequence in
brackets the corresponding specimens may be absent.

8.2.9 Definition: Choice production
A choice right side is of the form C1 | C2 | ... | Cn (n > 1), where every one of the Ci is a construct.

Every specimen of the corresponding construct consists of exactly one specimen of one of the Ci.

8.2.10 Definition: Repetition production, separator
A repetition  right side is of one of the two forms

{C § ...}*

{C § ...}+

where C and § (the separator ) are constructs.

Every specimen of the corresponding construct consists of zero or more (one or more in the
second form) specimens of C, each separated from the next, if any, by a specimen of §.

The following abbreviations may be used if the separator is empty:

C*

C+

Informative text
The language definition makes only moderate use of recursion thanks to the availability of
Repetition productions: when the purpose is simply to describe a construct whose specimens may
contain successive specimens of another construct, a Repetition generally gives a clearer picture;
see for example the definition of Compound as a repetition of Instruction. Recursion remains
necessary to describe constructs with unbounded nesting possibilities, such as Conditional and
Loop.

End

8.2.11 Basic syntax description rule
Every non-terminal construct is defined by exactly one production.

Informative text
Unlike in most BNF variants, every BNF-E production always uses exactly one of Aggregate,
Choice and Repetition, never mixing them in the right sides. This convention yields a considerably
clearer grammar, even if it has a few more productions (which in the end is good since they give
a more accurate image of the language’s complexity).

End

8.2.12 Definition: Non-production syntax rule
A non-production syntax rule , marked “(non-production)”, is a syntax property expressed
outside of the BNF-E formalism.

Informative text
Unlike validity rules, non-production syntax rules belong to the syntax, that is to say the
description of the structure of Eiffel texts, but they capture properties that are not expressible, or
not conveniently expressible, through a context-free grammar.
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For example the BNF-E Aggregate productions allow successive right-side components to be
separated by an arbitrary break — any sequence of spaces, tabs and “new line” characters. In a
few cases, for example in an Alias declaration such as alias "+", it is convenient to use BNF-E —
with a right-side listing the keyword alias , a double quote, an Operator and again a double quote
— but we need to prohibit breaks between either double quote and the operator. We still use
BNF-E to specify such constructs, but add a non-production syntax rule stating the supplementary
constraints.

End

8.2.13 Textual conventions

The syntax (BNF-E) productions and other rules of the Standard apply the following conventions:

1 Symbols of BNF-E itself, such as the vertical bars | signaling a choice production,
appear in black (non-bold, non-italic).

2 Any construct name appears in dark green (non-bold, non-italic), with a first letter in
upper case, as Class.

3 Any component (Eiffel text element) appears in blue.

4 The double quote, one of Eiffel’s special symbols, appears in productions as '" ': a double
quote character (blue like other Eiffel text) enclosed in two single quote characters (black
since they belong to BNF-E, not Eiffel).

5 All other special symbols appear in double quotes, for example a comma as ",", an
assignment symbol as ":=", a single quote as "'" (double quotes black, single quote blue).

6 Keywords and other reserved words, such as class and Result , appear in bold (blue like
other Eiffel text). They do not require quotes since the conventions avoid ambiguity with
construct names: Class is the name of a construct, class a keyword.

7 Examples of Eiffel comment text appear in non-bold, non-italic (and in blue), as -- A
comment.

8 Other elements of Eiffel text, such as entities and feature names (including in comments)
appear in non-bold italic (blue).

The color-related parts of these conventions do not affect the language definition, which remains
unambiguous under black-and-white printing (thanks to the letter-case and font parts of the
conventions). Color printing is recommended for readability.

Informative text
Because of the difference between cases 1 and 3, { denotes the opening brace as it might appear
in an Eiffel class text, whereas { is a symbol of the syntax description, used in repetition
productions.

In case 2 the use of an upper-case first letter is a consequence of the “Construct Name
convention”.

Special symbols are normally enclosed in double quotes (case 5), except for the double quote
itself which, to avoid any confusion, appears enclosed in single quotes (case 4). In either variant,
the enclosing quotes — double or single respectively — are not part of the symbol.

In some contexts, such as the table of all such symbols, special symbols (cases 4 and 5) appear
in bold for emphasis.

In application of cases 7 and 8, occurrences of Eiffel entities or feature names in comments
appear in italics, to avoid confusion with other comment text, as in a comment

-- Update the value of value.

where the last word denotes a query of name value in the enclosing class.

End
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8.2.14 Definition: Validity constraint

A validity constraint on a construct is a requirement that every syntactically well-formed
specimen of the construct must satisfy to be acceptable as part of a software text.

8.2.15 Definition: Valid

A construct specimen, built according to the syntax structure defined by the construct’s
production, is said to be valid , and will be accepted by the language processing tools of any Eiffel
environment, if and only if it satisfies the validity constraints, if any, applying to the construct.

8.2.16 Validity: General Validity rule Validity code: VBGV

Every validity constraint relative to a construct is considered to include an implicit supplementary
condition stating that every component of the construct satisfies every validity constraint
applicable to the component.

8.2.17 Definition: Semantics

The semantics of a construct specimen that is syntactically legal and valid is the construct’s effect
on the execution of a system that includes the specimen.

8.2.18 Definition: Execution terminology

• Run time  is the period during which a system is executed.

• The machine is the combination of hardware (one or more computers) and operating system
through which you can execute systems.

• The machine type, that is to say a certain combination of computer type and operating system,
is called a platform .

• Language processing tools serve to build, manipulate, explore and execute the text of an
Eiffel system on a machine.

Informative text

The most obvious example of a language processing tool is an Eiffel compiler or interpreter, which
you can use to execute a system. But many other tools can manipulate Eiffel texts: Eiffel-aware
editors, browsers to explore systems and their properties, documentation tools, debuggers,
configuration management systems. Hence the generality of the term “language processing tool”.

End

8.2.19 Semantics: Case Insensitivity principle

In writing the letters of an Identifier serving as name for a class, feature or entity, or a reserved
word, using the upper-case or lower-case versions has no effect on the semantics.

Informative text

So you can write a class or feature name as DOCUMENT, document and even dOcUmEnT with
exactly the same meaning.

End

8.2.20 Definition: Upper name, lower name

The upper name of an Identifier or Operator i is i written with all letters in upper case; its lower
name , i with all letters in lower case.

Informative text

In the example the lower name is document and the upper name DOCUMENT.

The definition is mostly useful for identifiers, but the names of some operators, such as and and
other boolean operators, also contain letters.
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The reason for not letting letter case stand in the way of semantic interpretation is that it is simply
too risky to let the meaning of a software text hang on fine nuances of writing, such as changing
a letter into its upper-case variant; this can only cause confusion and errors. Different things
should, in reliable and maintainable software, have clearly different names.
Letter case is of course significant in “manifest strings”, denoting texts to be taken verbatim, such
as error messages or file names.
This letter case policy goes with strong rules on style :
• Classes and types should always use the upper name, as with a class DOCUMENT.

• Non-constant features and entities should always use the lower name, as with an attribute
document.

• Constants and “once” functions should use the lower name with the first letter changed to
upper, as with a constant attribute Document.

End

8.2.21 Syntax (non-production): Semicolon Optionality rule
In writing specimens of any construct defined by a Repetition production specifying the semicolon
";" as separator, it is permitted, without any effect on the syntax structure, validity and semantics
of the software, to omit any of the semicolons, or to add a semicolon after the last element.

Informative text
This rule applies to instructions, declarations, successive groups of formal arguments, and many
other Repetition constructs. It does not rely on the layout of the software: Eiffel’s syntax is
free-format, so that a return to the next line has the same effect as one or more spaces or any
other “break”. Rather than relying on line returns, the Semicolon Optionality rule is ensured by the
syntax design of the language, which guarantees that omitting a semicolon never creates an
ambiguity.
The rule also guarantees that an extra semicolon at the end, as in a; b; instead of just a; b is
harmless.
The style guidelines suggest omitting semicolons (which would only obscure reading) for
successive elements appearing on separate lines, as is usually the case for instructions and
declarations, and including them to separate elements on a given line.
Because the semicolon is still formally in the grammar, programmers used to languages where
the semicolon is an instruction terminator, who may then out of habit add a semicolon after every
instruction, will not suffer any adverse effect, and will get the expected meaning.

End

 8.3 The architecture of Eiffel software

Informative text
The constituents of Eiffel software are called classes . To keep your classes and your
development organized, it is convenient to group classes into clusters . By combining classes
from one or more clusters, you may build executable systems .
These three concepts provide the basis for structuring Eiffel software:
• A class is a modular unit.

• A cluster is a logical grouping of classes.

• A system results from the assembly of one or more classes to produce an executable unit.

Of these, only “class”, describing the basic building blocks, corresponds directly to a construct of
the language. To build clusters and systems out of classes, you will use not a language
mechanism, but tools of the supporting environment.
Clusters provide an intermediate level between classes and systems, indispensable as soon as
your systems grow beyond the trivial:
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• At one extreme, a cluster may be a simple group of a few classes.

• At the other end, a system as a whole is simply a cluster that you have made executable (by
selecting a root class and a root procedure).

• In-between, a cluster may be a library consisting of several subclusters, or an existing system
that you wish to integrate as a subcluster into a larger system.

Clusters also serve to store and group classes using the facilities of the underlying operating
system, such as files, folders and directories.

After the basic definitions, the language description will concentrate on classes, indeed the most
important concept in the Eiffel method, which views software construction as an industrial
production activity: combining components, not writing one-of-a-kind applications.

End

8.3.1 Definition: Cluster, subcluster, contains directly, contains
A cluster is a collection of classes, (recursively) other clusters called its subclusters , or both. The
cluster is said to contain directly  these classes and subclusters.

A cluster contains a class C if it contains directly either C or a cluster that (recursively) contains C.

Informative text
In the presence of subclusters, several clusters may contain a class, but exactly one contains it
directly.

End

8.3.2 Definition: Terminal cluster, internal cluster
A cluster is terminal  if it contains directly at least one class.

A cluster is internal  if it contains at least one subcluster.

Informative text
From these definitions, it is possible for a cluster to be both terminal and internal.

End

8.3.3 Definition: Universe
A universe  is a set of classes.

Informative text
The universe provides a reference from which to draw classes of interest for a particular system.
Any Eiffel environment will provide a way to specify a universe.

End

8.3.4  Syntax: Class names
Class_name =∆ Identifier

8.3.5 Validity: Class Name rule Validity code: VSCN

It is valid for a universe to include a class if and only if no other class of the universe has the same
upper name.

Informative text
Eiffel expressly does not include a notion of “namespace” as present in some other languages.
Experience with these mechanisms shows that they suffer from two limitations:
• They only push forward the problem of class name clashes, turning it into a problem of

namespace clashes.
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• Even more seriously, they tie a class to a particular context, making it impossible to reorganize
(“refactor”) the software later without breaking existing code, and hence defeating some of the
principal benefits of object technology and modern software engineering.

Name clashes, in the current Eiffel view, should be handled by tools of the development
environment, enabling application writers to combine classes from many different sources, some
possibly with clashing names, and resolving these clashes automatically (with the possibility of
registering user preferences and remembering them from one release of an acquired external set
of classes to the next) while maintaining clarity, reusability and extendibility.

End

8.3.6 Semantics: Class name semantics

A Class_name C appearing in the text of a class D denotes the class called C in the enclosing
universe.

8.3.7 Definition: System, root type name, root procedure name

A system  is defined by the combination of:

1 A universe.

2 A type name, called the root type name .

3 A feature name, called the root procedure name .

8.3.8 Definition: Type dependency

A type T depends  on a type R if any of the following holds:

1 R is a parent of the base class C of T.

2 T is a client of R.

3 (Recursively) there is a type S such that T depends on S and S depends on R.

Informative text
This states that C depends on A if it is connected to A directly or indirectly through some
combination of the basic relations between types and classes — inheritance and client — studied
later. Case 1 relies on the property that every type derives from a class, called its “base class”; for
example a generically derived type such as LIST [INTEGER] has base class LIST. Case 3 gives
us indirect forms of dependency, derived from the other cases.

End

8.3.9 Validity: Root Type rule Validity code: VSRT

It is valid to designate a type TN as root type of a system of universe U if and only if it satisfies the
following conditions:

1 TN is the name of a stand-alone type T.

2 T only involves classes in U.

3 T’s base class is not deferred.

4 The base class of any type on which T depends is in U.

Informative text
These conditions make it possible to create the root object:
• A type is “stand-alone” if it only involves class names; this excludes “anchored” types (like

some_entity) and formal generic parameters, which only mean something in the context of a
particular class text. Clearly, if we want to use a type as root for a system, it must have an
absolute meaning, independent of any specific context. “Stand-alone type” is defined at the
end of the discussion of types.
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• A deferred class is not fully implemented, and so cannot have any direct instances. It wouldn’t
work as base class here, since the very purpose of a root type is to be instantiated, as the first
event of system execution.

• To be able to assemble the system, we must ensure that any class to which the root refers
directly or indirectly is also part of the universe.

In condition 2, a type T “involves” a class C if it is defined in terms of C, meaning that C is the base
class of T or of any of its generic parameters: U [V, X [Y, Z]] involves U, V, X, Y and Z. If T is a
non-generic class used as a type, T “involves” only itself.

End

8.3.10 Validity: Root Procedure rule Validity code: VSRP

It is valid to specify a name pn as root procedure name for a system S if and only if it satisfies the
following conditions:

1 pn is the name of a creation procedure p of S’s root type.

2 p has no formal argument.

3 p is precondition-free.

Informative text

A routine is precondition-free (condition 3) if it has no precondition, or a precondition that
evaluates to true. A routine can impose preconditions on its callers if these callers are other
routines; but it makes no sense to impose a precondition on the external agent (person, hardware
device, other program...) that triggers an entire system execution, since there is no way to
ascertain that such an agent, beyond the system’s control, will observe the precondition. Hence
the last condition of the rule.

Regarding condition 1, note that a non-deferred class that doesn’t explicitly list any creation
procedures is understood to have a single one, procedure default_create, which does nothing by
default but may be redefined in any class to carry out specific initializations.

End

8.3.11 Definition: Root type, root procedure, root class

In a system S of root type name TN and root procedure name pn, the root type is the type of name
TN, the root class is the base class of that root type, and the root procedure is the procedure of
name pn in that class.

8.3.12 Semantics: System execution

To execute a system on a machine means to cause the machine to apply a creation instruction to
the system’s root type.

Informative text

If a routine is a creation procedure of a type used as root of a system, its execution will usually
create other objects and call other features on these objects. In other words, the execution of any
system is a chain of explosions — creations and calls — each one firing off the next, and the root
procedure is the spark that detonates the first step.

End

 8.4 Classes

Informative text

Classes are the components used to build Eiffel software.
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Classes serve two complementary purposes: they are the modular units of software
decomposition; they also provide the basis for the type system of Eiffel.

End

8.4.1 Definition: Current class

The current class  of a construct specimen is the class in which it appears.

Informative text
Every Eiffel software element — feature, expression, instruction, … — indeed appears in a class,
justifying this definition. Most language properties refer directly or indirectly, through this notion,
to the class in which an element belongs.

End

8.4.2  Syntax: Class declarations

Class_declaration =∆ [Notes]
Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end

8.4.3  Syntax: Notes

Notes =∆ note Note_list

Note_list =∆ {Note_entry ";" …}*

Note_entry =∆ Note_name Note_values

Note_name =∆ Identifier ":"

Note_values =∆ {Note_item ","…}+

Note_item =∆ Identifier | Manifest_constant

Informative text
Notes parts (there may be up to two, one at the beginning and one at the end) have no effect on
the execution semantics of the class. They serve to associate information with the class, for use
in particular by tools for configuration management, documentation, cataloging, archival, and for
retrieving classes based on their properties.

End

8.4.4 Semantics: Notes semantics

A Notes part has no effect on system execution.

8.4.5  Syntax: Class headers

Class_header =∆ [Header_mark] class Class_name

Header_mark =∆ deferred  | expanded | frozen

Informative text
The Class_name part gives the name of the class. The recommended convention (here and in
any context where a class text refers to a class name) is the upper name.
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The keyword class may optionally be preceded by one of the keywords deferred , expanded and
frozen , corresponding to variants of the basic notion of class:
• A deferred class describes an incompletely implemented abstraction, which descendants will

use as a basis for further refinement.

• Declaring a class as expanded indicates that entities declared of the corresponding type will
denote objects rather than references to objects.

• Making a class frozen  prohibits it from serving as “conforming parent” to other classes.

End

8.4.6 Validity: Class Header rule Validity code: VCCH

A Class_header appearing in the text of a class C is valid if and only if has either no deferred
feature or a Header_mark of the deferred  form.

Informative text
If a class has at least one deferred feature, either introduced as deferred in the class itself, or
inherited as deferred and not “effected” (redeclared in non-deferred form), then its declaration
must start not just with class  but with deferred class .
There is no particular rule on the other possible markers, expanded and frozen , for a
Class_header. Expanded classes often make the procedure default_create available for creation,
but this is not a requirement since the corresponding entities may be initialized in other ways; they
follow the same rules as other “attached” entities.

End

8.4.7 Definition: Expanded, frozen, deferred, effective class
A class is:

• Expanded  if its Class_header is of the expanded  form.

• Frozen  if its Class_header is of the frozen  or expanded  form.

• Deferred  if its Class_header is of the deferred  form.

• Effective  if it is not deferred.

Informative text
Making C frozen prohibits it from serving as “conforming parent” to other classes. The second
case indicates the two ways of ensuring this:
• Inheritance from expanded classes, as explained in the discussion of inheritance, is

non-conforming. As a consequence, any expanded class is also frozen.

• You can explicitly mark a non-expanded class as frozen .

The third case defines what makes a class deferred:
• If it has at least one deferred feature, the class itself is deferred. The Class Header rule below

requires it to be marked deferred  for clarity.

• If it only has effective features, the class is effective unless you decide otherwise: you can still
explicitly mark it deferred . This ensures that it will have no direct instances, since one may not
apply creation instructions or expressions to a variable whose type is based on a deferred
class.

End

8.4.8  Syntax: Obsolete marks
Obsolete =∆ obsolete Message

Message =∆ Manifest_string

8.4.9 Semantics: Obsolete semantics
Specifying an Obsolete mark for a class or feature has no run-time effect.
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When encountering such a mark, language processing tools may issue a report, citing the
obsolescence Message and advising software authors to replace the class or feature by a newer
version.

 8.5 Features

Informative text
A class is characterized by its features. Every feature describes an operation for accessing or
modifying instances of the class.
A feature is either an attribute, describing information stored with each instance, or a routine,
describing an algorithm. Clients of a class C may apply C’s features to instances of C through call
instructions or expressions.
Every feature has an identifier, which identifies it uniquely in its class. In addition, a feature may
have an alias to permit calls using operator or bracket syntax.
The following discussion introduces the various categories of feature, explains how to write
feature declarations, and describes the form of feature names.

End

8.5.1 Definition: Inherited, immediate; origin; redeclaration; introduce
Any feature f of a class C is of one of the following two kinds:

1 If C obtains f from one of its parents, f is an inherited feature of C. In this case any
declaration of f in C (adapting the original properties of f for C) is a redeclaration .

2 If a declaration appearing in C applies to a feature that is not inherited, the feature is said
to be immediate in C. Then C is the origin (short for “class of origin”) of f, and is said to
introduce f.

Informative text
A feature redeclaration is a declaration that locally changes an inherited feature. The details of
redeclaration appear in the study of inheritance; what is important here is that a declaration in the
Features part only introduces a new feature (called “immediate” in C, or “introduced” by C) if it is
not a redeclaration of some feature obtained from a parent.
Every feature of a class is immediate either in the class or in one of its proper ancestors (parents,
grandparents and so on).

End

8.5.2  Syntax: Feature parts
Features =∆ Feature_clause+

Feature_clause =∆ feature [Clients] [Header_comment] Feature_declaration_list

Feature_declaration_list =∆ {Feature_declaration ";" …}*

Header_comment =∆ Comment

Informative text
As part of a general syntactical convention, semicolons are optional between a
Feature_declaration and the next. The recommended style rule suggests omitting them except in
the infrequent case of two successive declarations on a single line.

End

8.5.3 Feature categories: overview
Every feature of a class is either an attribute or a routine.

An attribute is either constant or variable.

A routine is either a procedure or a function.
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Informative text
A set of definitions in the discussion that follows introduces each of these notions precisely,
making it possible to recognize, from a valid feature declaration, which kind of feature it
introduces.

End

8.5.4  Syntax: Feature declarations
Feature_declaration =∆ New_feature_list Declaration_body

Declaration_body =∆ [Formal_arguments] [Query_mark] [Feature_value]

Query_mark =∆  Type_mark [Assigner_mark]

Type_mark =∆ ":" Type

Feature_value =∆ [Explicit_value]
[Obsolete]
[Header_comment]
[Attribute_or_routine]

Explicit_value =∆ "=" Manifest_constant

Informative text
Not all combinations of Formal_arguments, Query_mark and Feature_value are possible; the
Feature Body rule and Feature Declaration rule will give the exact constraints. For example it
appears from the above syntax that both a Declaration_body and a Feature_value can be empty,
since their right-side components are all optional, but the validity constraints rule this out.

End

8.5.5  Syntax: New feature lists
New_feature_list =∆ {New_feature "," …}+

New_feature =∆ [frozen ] Extended_feature_name

Informative text

Having a list of features, rather than just one, makes it possible for example to declare together
several attributes of the same type or, in the case of routines, to introduce several “synonym”
routines, with the same body.

End

8.5.6  Syntax: Feature bodies
Attribute_or_routine =∆ [Precondition]

[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end

Feature_body =∆ Deferred | Effective_routine | Attribute

8.5.7 Validity: Feature Body rule Validity code: VFFB

A Feature_value is valid if and only if it satisfies one of the following conditions:

1 It has an Explicit_value and no Attribute_or_routine.

2 It has an Attribute_or_routine with a Feature_body of the Attribute kind.

3 It has no Explicit_value and has an Attribute_or_routine with a Feature_body of the
Effective_routine kind, itself of the Internal kind (beginning with do or once ).
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4 It has no Explicit_value and has an Attribute_or_routine with neither a
Local_declarations nor a Rescue part, and a Feature_body that is either Deferred or an
Effective_routine of the External kind.

Informative text

The Explicit_value only makes sense for an attribute — either declared explicitly with Attribute or
simply given a type and a value — so cases 3 and 4 exclude this possibility.

The Local_declarations and Rescue parts only make sense (case 4) for a feature with an
associated algorithm present in the class text itself; this means a routine that is neither deferred
nor external, or an attribute with explicit initialization.

In both cases 1 and 2 the feature will be an attribute. Case 1 is a constant attribute declaration
such as n: INTEGER = 100, with no further details. Case 2 is the long form, explicitly using the
keyword attribute and making it possible, as with routines, to have a Precondition, a Postcondition,
and even an implementation (including a Rescue clause if desired) which will be used, for
“self-initializing” types, on first use of an uninitialized field.

The Feature Body rule is the basic validity condition on feature declarations. But for a full view of
the constraints we must take into account a set of definitions appearing next, which say what it
takes for a feature declaration — already satisfying the Feature Body rule — to belong to one of
the relevant categories: variable attribute, constant attribute, function, procedure. Another
fundamental constraint, the Feature Declaration rule (VFFD), will then require that the feature
described by any declaration match one of these categories. So the definitions below are a little
more than definitions: they collectively yield a validity requirement complementing the Feature
Body rule.

End

8.5.8 Definition: Variable attribute

A Feature_declaration is a variable attribute declaration if and only if it satisfies the following
conditions:

1 There is no Formal_arguments part.

2 There is a Query_mark part.

3 There is no Explicit_value part.

4 If there is a Feature_value part, it has an Attribute_or_routine with a Feature_body of the
Attribute kind.

8.5.9 Definition: Constant attribute

A Feature_declaration is a constant attribute declaration if and only if it satisfies the following
conditions:

1 It has no Formal_arguments part.

2 It has a Query_mark part.

3 There is a Feature_value part including an Explicit_value.

8.5.10 Definition: Routine, function, procedure

A Feature_declaration is a routine declaration if and only if it satisfies the following condition:

• There is a Feature_value including an Attribute_or_routine, whose Feature_body is of the
Deferred or Effective_routine kind.

If a Query_mark is present, the routine is a function ; otherwise it is a procedure .

Informative text

For a routine the Formal_arguments (like the Query_mark) may or may not be present.
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By convention this definition treats a deferred feature as a routine, even though its effectings in
proper descendants may be, in the case of a query, attributes as well as functions.

End

8.5.11 Definition: Command, query
A command  is a procedure. A query  is an attribute or function.

Informative text
These notions underlie two important principles of the Eiffel method:
• The Command-Query separation principle, which suggests that queries should not change

objects.

• The Uniform Access principle, which enjoins, whenever possible, to make no distinction
between attributes and argumentless functions.

End

8.5.12 Definition: Signature, argument signature of a feature
The signature of a feature f is a pair argument_types, result_type where argument_types and
result_type are the following sequences of types:

• For argument_types: if f is a routine, the possibly empty sequence of its formal argument
types, in the order of the arguments; if f is an attribute, an empty sequence.

• For result_type: if f is a query, a one-element sequence, whose element is the type of f; if f is
a procedure, an empty sequence.

The argument_types part is the feature’s argument signature .

Informative text
The argument signature is an empty sequence for attributes and for routines without arguments.

End

8.5.13 Feature principle
Every feature has an associated identifier.

Any valid call (qualified or unqualified) to the feature can be expressed through this identifier.

Informative text
The syntactic variants, available through alias clauses, offer other ways to express calls,
reconciling object-oriented structure with earlier notations:
• You may qualify the name with alias "§" where § is some operator. For example if a feature is

named plus, clients must call it as a.plus (b); by naming it plus alias "+" you still allow this form
of calls — per the Feature principle — but you also permit a + b in accordance with traditional
syntax for arithmetic expressions. The details of alias operators, as well as the associated
conversion mechanism, appear next.

• You may also use a “bracket alias”, written simply alias "[ ]" (with an opening bracket
immediately followed by a closing bracket). This allows access through bracket syntax
x [index]. For example if a class describing some table structure has a feature
item alias "[ ]" (index: H): G where H is some index type, items can be accessed through
your_table.item (i) but also through the more concise your_table [i]. Again this is just a
syntactic facility: the second form is a synonym for the first, which remains available.

End

8.5.14  Syntax: Feature names
Extended_feature_name =∆ Feature_name [Alias]

Feature_name =∆ Identifier
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Alias =∆ alias '" ' Alias_name '" ' [convert ]

Alias_name =∆ Operator | Bracket

Bracket =∆ "[]"

Informative text

The optional convert mark, for an operator feature, supports mixed-type expressions causing a
conversion of the target, as in the expression your_integer + your_real, which should use the “+”
operation from REAL, not INTEGER, for compatibility with ordinary arithmetic practice. See the
presentation of conversions.

End

8.5.15 Syntax (non-production): Alias Syntax rule

The Alias_name of an Alias must immediately follow and precede the enclosing double quote
symbols, with no intervening characters (in particular no breaks).

When appearing in such an Alias_name, the two-word operators and then and or else must be
written with exactly one space (but no other characters) between the two words.

Informative text

In general, breaks or comment lines may appear between components prescribed by a BNF-E
production, making this rule necessary to complement the grammar: you must write alias "+", not
alias " + ".

End

8.5.16 Definition: Operator feature, bracket feature, identifier-only

A feature is an operator feature if its Extended_feature_name fn includes an Operator alias, a
bracket feature if fn includes a Bracket alias. It is identifier-only if neither of these cases applies.

Informative text

The most common case is identifier-only. The other two kinds provide convenient modes of
expression (“syntactic sugar”) for some cases where a shorter form, compatible with traditional
mathematical conventions, is desirable for calling the feature.

When referring to feature names, some syntax rules use the Extended_feature_name, and some
use the Feature_name, which is just the identifier, dropping the Alias if any. The criterion is simple:
when a class text needs to refer to one of its own features, the Feature_name is sufficient since
(from the Feature Identifier principle below) it uniquely identifies the feature. So the
Extended_feature_name is used in only two cases: when you first introduce a feature, in a
Feature_declaration as discussed above, and when you change its name for a descendant, in a
Rename clause (for both inheritance and constrained genericity).

This also means that in descendants of its original class a feature will retain its Alias, if any, unless
a descendant explicitly renames it to a name that may drop the Alias, or provide a new one. In
particular, redeclaring a feature does not affect its Alias.

End

8.5.17 Definition: Identifier of a feature name

The Identifier that starts a Extended_feature_name is called the identifier of that
Extended_feature_name and, by extension, of the associated feature.

8.5.18  Validity: Feature Identifier principle

Given a class C and an identifier f, C contains at most one feature of identifier f.
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Informative text
This principle reflects a critical property of object-oriented programming in general and Eiffel in
particular: no “overloading” of feature names within a class. It is marked as “validity” but has no
code of its own since it is just a consequence of other validity rules.

End

8.5.19 Definition: Same feature name, same operator, same alias
Two feature names are considered to be “the same feature name ” if and only if their identifiers
have identical lower names.

Two operators are “the same operator ” if they have identical lower names.

An Alias in an Extended_feature_name is “the same alias ” as another if and only if they satisfy
the following conditions:

• They are either the same Operator or both Bracket.

• If either has a convert  mark, so does the other.

Informative text
So my_name, MY_NAME and mY_nAMe are considered to be the same feature name. The
recommended style uses a name with an initial capital and the rest in lower case (as in My_name)
for constant attributes, and the lower name, all in lower case (as in my_name) for all other
features. If letters appear in operator feature names, letter case is also irrelevant when it comes
to deciding which feature names are the same and which different.
This notion is useful in particular to enforce the rule that, in any class, there can be only one
feature of a given name (no “overloading”), and to determine what constitutes a “name clash”
under multiple inheritance. In such cases the language rules simply ignore letter case.

End

8.5.20  Syntax: Operators
Operator =∆ Unary | Binary

Unary =∆ not  | "+" | "–" | Free_unary

Binary =∆ "+" | "–" | "*" | "/" | "//" | "\\" | "^" | ".." |
"<" | ">" | "<=" | ">=" |
and | or | xor  | and then  | or else  | implies  |
Free_binary

Informative text
Free operators enable developers to define their own operators with considerable latitude. This is
particularly useful in scientific applications where it is common to define special notations, which
Eiffel will render as prefix or infix operators. You may for example define operators such as ∗∗, |–|
(maybe as an infix alias for a distance function), or various forms of arrow such as <–>, –|–>, =>.

End

8.5.21  Syntax: Assigner marks
Assigner_mark =∆ assign  Feature_name

Informative text
In an assignment x := v the target x must be a variable. If item is an attribute of the type T of a,
programmers used to other languages may be tempted to write an assignment such as a.item :=
v to assign directly to the corresponding object field, but this is not permitted as it goes against all
the rules of data abstraction and object technology. The normal mechanism is for the author of the
base class of T to provide a “setter” command (procedure), say put, enabling the clients to use
a.put (v).
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The class author may, for convenience, permit a.item := v as a shorthand for this call a.put (v),
by specifying put as an assigner command associated with item. An instruction such as a.item
:= v is not an assignment, but simply a different notation for a procedure call; it is known as an
assigner call . This scheme, a notational simplification only, is also convenient for features that
have a Bracket alias, allowing for example, with a an array, an assigner call a [i] := v as shorthand
for a call a.put (v, i).
The mechanism is applicable not just to attributes but (in line with the Uniform Access principle)
to all queries, including functions with arguments.

The following rule defines under what conditions you may, as author of a class, permit such
assigner calls from your clients by associating an assigner command with a query.

End

8.5.22 Validity: Assigner Command rule Validity code: VFAC

An Assigner_mark appearing in the declaration of a query q with n arguments (n ≥ 0) and listing
a Feature_name fn, called the assigner command for q, is valid if and only if it satisfies the
following conditions:

1 fn is the identifier of a command c of the class.

2 c has n + 1 arguments.

3 The type of c’s first argument and the result type of q have the same deanchored form.

4 For every i in 1..n, the type of the i+1-st argument of c and the type of the i-th argument
of q have the same deanchored form.

Informative text
The feature q can only be a query since, from the syntax of Declaration_body, an Assigner_mark
can only appear as part of a Query_mark, whose presence makes the feature a query.

In cases 3 and 4, we require the types (more precisely their deanchored forms, obtained by
replacing any anchored type such as like x by the type of the anchor x) to be identical, not just
compatible (converting or conforming). To understand why, recall that the assignment a.item :=
y is only a shorthand for a call a.put (x) with, as a typical implementation:

item: T assign put do … end
put (b: U) do … item := b … end

Now assume that U is not identical to T but only compatible with it, and consider the procedure call
a.put (a.item)

or the equivalent assignment form
a.item := a.item

which are in principle useless — they reassign to a field its own value — but should certainly be
permitted. They become invalid, however, because the source a.item (actual argument of the call
or right side of the assignment) is of type T, the target (the formal argument) of type U, and it’s
generally impossible for two different types to be each compatible with the other.
This explains clause 3: the first argument of the assigner procedure must have exactly the same
type as the result of the query (once both have been deanchored). Similar reasoning applied to
other arguments, if any, leads to clause 4.

End

8.5.23 Definition: Synonym
A synonym of a feature of a class C is a feature with a different Extended_feature_name such
that both names appear in the same New_feature_list of a Feature_declaration of C.

8.5.24 Definition: Unfolded form of a possibly multiple declaration
The unfolded form  of a Feature_declaration listing one or more feature names, as in:

f1, f2, … , fn declaration_body (n ≥ 1)
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where each fi is a New_feature, is the corresponding sequence of declarations naming only one
feature each, and with identical declaration bodies, as in:

f1 declaration_body

f2 declaration_body

...

fn declaration_body

Informative text
Thanks to the unfolded form, we may always assume, when studying the validity and semantics
of feature declarations, that each declaration applies to only one feature name. This convention
is used throughout the language description; to define both the validity and the semantics, it
simply refers to the unfolded form, which may give several declarations even if they are all
grouped in the class text.

A multiple declaration introduces the feature names as synonyms. But the synonymy only applies
to the enclosing class; there is no permanent binding between the corresponding features. Their
only relationship is to have the same Declaration_body at the point of introduction.

This means in particular that a proper descendant of the class may rename or redeclare one
without affecting the other.
Each fi, being a New_feature, may include a frozen mark. In the unfolded form this mark only
applies to the i-th declaration.

End

8.5.25 Validity: Feature Declaration rule Validity code: VFFD

A Feature_declaration appearing in a class C is valid if and only if it satisfies all of the following
conditions for every declaration of a feature f in its unfolded form:

1 The Declaration_body describes a feature which, according to the rules given earlier, is
one of: variable attribute, constant attribute, procedure, function.

2 f does not have the same feature name as any other feature introduced in C (in
particular, any other feature of the unfolded form).

3 If f has the same feature name as the final name of any inherited feature, the
Declaration_body satisfies the Redeclaration rule.

4 If the Declaration_body describes a deferred feature, then the Extended_feature_name
of f is not preceded by frozen .

5 If the Declaration_body describes a once function, the result type is stand-alone.

6 Any anchored type for an argument is detachable.

7 The Alias clause, if present, is alias-valid for f.

Informative text
As stated at the beginning of the rule, the conditions apply to the unfolded form of the declaration;
this means that the rule treats a multiple declaration f1, f2, ... , fn declaration_body as a succession
of n separate declarations with different feature names but the same declaration_body.

Conditions 1 and 2 are straightforward: the Declaration_body must make sense, and the name or
names of the feature being introduced must not conflict with those of any other feature introduced
in the class.
In applying conditions 2 and 3, remember that two feature names are “the same” not just if they
are written identically, but also if they only differ by letter case. Only the identifiers (Feature_name)
of the features play a role in this notion, not any Alias they may have.

The Feature Name rule will state a consequence of conditions 2 and 3 that may be more
appropriate for error messages in some cases of violation.
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Condition 4 prohibits a frozen feature from being declared as deferred. The two properties are
conceptually incompatible since frozen features, by definition, may not be redeclared, whereas
the purpose of deferred features is precisely to force redeclaration in proper descendants.
Condition 5 applies to once functions. A once routine only executes its body on its first call. Further
calls have no effect; for a function, they yield the result computed by the first call. This puts a
special requirement on the result type T of such a function: if the class is generic, T should not
depend on any formal generic parameter, since successive calls could then apply to instances
obtained from different generic derivations; and T must not be anchored, as in the context of
dynamic binding it could yield incompatible types depending on the type of the target of each
particular call. The notion of stand-alone type captures these constraints on T.

Condition 6 addresses delicate cases of polymorphism and dynamic binding, where anchored
arguments and their implicit form of “covariance” may cause run-time errors known as “catcalls”.
It follows from the general rule for signature conformance and is discussed with it.

The last condition, 7, is the consistency requirement on features with an operator or bracket alias.
It relies on the following definition (which has a validity code enabling compilers to give more
precise error messages).

End

8.5.26 Validity: Alias Validity rule Validity code: VFAV

An Alias clause is alias-valid for a feature f of a class C if and only if it satisfies the following
conditions:

1 If it lists an Operator op: f is a query; no other query of C has an Operator alias using
the same operator and the same number of arguments; and either: op is a Unary and f
has no argument, or op is a Binary and f has one argument.

2 If it lists a Bracket alias: f is a query with at least one argument, and no other feature of
C has a Bracket alias.

3 If it includes a convert  mark: it lists an Operator and f has one argument.

Informative text
The first two conditions express the uniqueness and signature requirements on operator and
bracket aliases:
• An operator feature plus alias "§" can be either unary (called as § a) or binary (called as a §

b), and so must take either zero or one argument. Two features may indeed share the same
alias— like identity alias "+" and plus alias "+", respectively unary and binary addition in class
INTEGER and others from the Kernel Library — as long as they have different identifiers (here
identity and plus) and different signatures, one unary and the other binary.

• A bracket feature, of which there may be at most one in a class, will be called under the form
x [a1, …, an] with n ≥ 1, and so must be a query with at least one argument (and hence a
function). Condition 2 tells us that there may be at most one bracket feature per class.

Condition 3 indicates that a convert mark, specifying “target conversion” as in your_integer +
your_real, makes sense only for features with one argument, with an Operator which (from
condition 1) must be a Binary.

End

 8.6 The inheritance relation

Informative text
Inheritance is one of the most powerful facilities available to software developers. It addresses two
key issues of software development, corresponding to the two roles of classes:
• As a module extension mechanism, inheritance makes it possible to define new classes from

existing ones by adding or adapting features.
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• As a type refinement mechanism, inheritance supports the definition of new types as
specializations of existing ones, and plays a key role in defining the type system.

End

8.6.1  Syntax: Inheritance parts
Inheritance =∆ Inherit_clause+

Inherit_clause =∆ inherit  [Non_conformance] Parent_list

Non_conformance =∆ "{" NONE "}"

Parent_list =∆ {Parent ";" …}+

Parent =∆ Class_type [Feature_adaptation]

Feature_adaptation =∆ [Undefine]
[Redefine]
[Rename]
[New_exports]
[Select]
end

Informative text
As with all other uses of semicolons, the semicolon separating successive Parent parts is optional.
The style guidelines suggest omitting it between clauses that appear (as they should) on
successive lines.

End

8.6.2 Syntax (non-production): Feature adaptation
A Feature_adaptation part must include at least one of the optional components.

Informative text
This rule removes a potential syntax ambiguity by implying that the end in class B inherit A end
closes the class; otherwise it could be understood as closing just the Parent part.

End

8.6.3 Definition: Parent part for a type, for a class
If a Parent part p of an Inheritance part lists a Class_type T, p is said to be a Parent part for T, and
also for the base class of T.

Informative text
So in inherit TREE [T] there is a Parent part for the type TREE [T] and for its base class TREE.
For convenience this definition, like those for “parent” and “heir” below, applies to both types and
classes.

End

Informative text
An important property of the inheritance structure is that every class inherits, directly or indirectly,
from a class called ANY, of which a version is provided in the Kernel Library as required by the
next rule. The semantics of the language depends on the presence of such a class, whether the
library version or one that a programmer has provided as a replacement.

End

8.6.4 Validity: Class ANY rule Validity code: VHCA

Every system must include a non-generic class called ANY.
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Informative text

The key property of ANY is that it is not only an ancestor of all classes and hence types, but that
all types conform to it, according to the following principle, which is not a separate validity rule
(although for reference it has a code of its own) but a consequence of the definitions and rules
below.

End

8.6.5 Validity: Universal Conformance principle Validity code: VHUC

Every type conforms to ANY.

Informative text

To achieve the Universal Conformance principle, the semantics of the language guarantees that
a class that doesn’t list any explicit Parent is considered to have ANY as its parent. This is
captured by the following notion: Unfolded Inheritance Part. The above definition of “parent”, and
through it the definition of “ancestor”, refer to the Unfolded Inheritance Part of a class rather than
its actual Inheritance part.

End

8.6.6 Definition: Unfolded Inheritance Part of a class

Any class C has an Unfolded Inheritance Part  defined as follows:

1 If C has an Inheritance part: that part.

2 Otherwise: an Inheritance part of the form inherit ANY.

8.6.7 Definition: Multiple, single inheritance

A class has multiple inheritance if it has an Unfolded Inheritance Part with two or more Parent
parts. It has single inheritance otherwise.

Informative text

What counts for this definition is the number not of parent classes but of Parent parts. If two
clauses refer to the same parent class, this is still a case of multiple inheritance, known as
repeated inheritance and studied later on its own. If there is no Parent part, the class (as will be
seen below) has a de facto parent anyway, the Kernel Library class ANY.

The definition refers to the “Unfolded” inheritance part which is usually just the Inheritance part
but may take into account implicit inheritance from ANY, as detailed in the corresponding
definition below.

Multiple inheritance is a frequent occurrence in Eiffel development; most of the effective classes
in the widely used EiffelBase library of data structures and algorithms, for example, have two or
more parents. The widespread view that multiple inheritance is “bad” or “dangerous” is not
justified; most of the time, it results from experience with imperfect multiple inheritance
mechanisms, or improper uses of inheritance. Well-applied multiple and repeated inheritance is a
powerful way to combine abstractions, and a key technique of object-oriented software
development.

End

8.6.8 Definition: Inherit, heir, parent

A class C inherits from a type or class B if and only if C’s Unfolded Inheritance Part contains a
Parent part for B.

B is then a parent of C (“parent type” or “parent class” if there is any ambiguity), and C an heir
(or “heir class”) of B. Any type of base class C is also an heir of B (“heir type” in case of ambiguity).
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8.6.9 Definition: Conforming, non-conforming parent
A parent B in an Inheritance part is non-conforming if and only if every Parent part for B in the
clause appears in an Inherit_clause with a Non_conformance marker. It is conforming otherwise.

8.6.10 Definition: Ancestor types of a type, of a class
The ancestor types  of a type CT of base class C include:

1 CT itself.

2 (Recursively) The result of applying CT’s generic substitution to the ancestor types of
every parent type for C.

The ancestor types of a class are the ancestor types of its current type.

Informative text
The basic definition covers ancestor types of a type; the second part of the definition extends this
notion to classes.
Case 1 indicates that a type is its own ancestor.
Case 2, the recursive case, applies the notion of generic substitution introduced in the discussion
of genericity. The idea that if we consider the type C [INTEGER], with the class declaration
class C [G] inherit D [G] …, the type to include in the ancestors of C [INTEGER] as a result of this
Inheritance part is not D [G], which makes no sense outside of the text of C, but D [INTEGER],
the result of applying to D [G] the substitution G → INTEGER; this is the substitution that yields
the type C [INTEGER] from the class C [G] and is known as the generic substitution of that type.

End

8.6.11 Definition: Ancestor, descendant
Class A is an ancestor of class B if and only if A is the base class of an ancestor type of B.

Class B is a descendant  of class A if and only if A is an ancestor of B.

Informative text
Any class, then, is both one of its own descendants and one of its own ancestors. Proper
descendants and ancestors exclude these cases.

End

8.6.12 Definition: Proper ancestor, proper descendant
The proper ancestors of a class C are its ancestors other than C itself. The proper descendants
of a class B are its descendants other than B itself.

8.6.13 Validity: Parent rule Validity code: VHPR

The Unfolded Inheritance Part of a class D is valid if and only if it satisfies the following conditions:

1 In every Parent part for a class B, B is not a descendant of D.

2 No conforming parent is a frozen class.

3 If two or more Parent parts are for classes which have a common ancestor A, D meets
the conditions of the Repeated Inheritance Consistency constraint for A.

4 At least one of the Parent parts is conforming.

5 No two ancestor types of D are different generic derivations of the same class.

6 Every Parent is generic-creation-ready.

Informative text
Condition 1 ensures that there are no cycles in the inheritance relation.

The purpose of declaring a class as frozen (case 2) is to prohibit subtyping. We still permit the
non-conforming form of inheritance, which permits reuse but not subtyping.
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Condition 3 corresponds to the case of repeated inheritance; the Repeated Inheritance
Consistency constraint will guarantee that there is no ambiguity on features that D inherits
repeatedly from A.

Condition 4 ensures a central property of the type system: the Universal Conformance principle,
stating that all types conform to ANY. Without this condition, it would be possible for all Parent
parts of a class to be non-conforming and hence to cause violation of the principle. Note that in
the Unfolded Inheritance Part there is always at least one Parent part, since the absence of an
Inheritance part is a shorthand for inherit ANY, ensuring that condition 4 holds.

Condition 5 avoids various cases of ambiguity which could arise if we allowed a class C to inherit
from both A [T] and A [U] for different T and U. For example, if C redefines a feature f from A, the
notation Precursor {A} in the redefinition could refer to either of the parents’ generic derivations.

Condition 6 also concerns the case of a generically derived Parent A [T]; requiring it to be
“generic-creation-ready” guarantees that creation operations on D or its descendants will function
properly if they need to create objects of type T

End

8.6.14  Syntax: Rename clauses

Rename =∆ rename Rename_list

Rename_list =∆ {Rename_pair "," …}+

Rename_pair =∆ Feature_name as Extended_feature_name

Informative text

The first component of a Rename_pair is just a Feature_name, the identifier for the feature; the
second part is a full Extended_feature_name, which may include an alias  clause. Indeed:
• To identify the feature you are renaming, its Feature_name suffices.

• At the same time you are renaming the feature, you may give it a new operator or bracket alias,
or remove the alias if it had one.

Forms of feature adaptation other than renaming, in particular effecting and redefinition, do not
affect the Alias, if any, associated with a Feature_name.

End

8.6.15 Validity: Rename Clause rule Validity code: VHRC

A Rename_pair of the form old_name as new_name, appearing in the Rename subclause of the
Parent part for B in a class C, is valid if and only if it satisfies the following conditions:

1 old_name is the final name of a feature f of B.

2 old_name does not appear as the first element of any other Rename_pair in the same
Rename subclause.

3 new_name satisfies the Feature Name rule for C.

4 The Alias of new_name, if present, is alias-valid for the version of f in C.

Informative text

In condition 4, the “alias-valid” condition captures the signature properties allowing a query to
have an operator or bracket aliases. It was enforced when we wanted to give a feature an alias in
the first place and, naturally, we encounter it again when we give it an alias through renaming.

End

8.6.16 Semantics: Renaming principle

Renaming does not affect the semantics of an inherited feature.
- 47 -



Informative text

The “positive” semantics of renaming (as opposed to the negative observation captured by this
principle) follows from the definition of final name and extended final name of a feature below.

End

8.6.17 Definition: Final name, extended final name, final name set

Every feature f of a class C has an extended final name in C, an Extended_feature_name, and
a final name , a Feature_name, defined as follows:

1 The final name is the identifier of the extended final name.

2 If f is immediate in C, its extended final name is the Extended_feature_name under
which C declares it.

3 If f is inherited, f is obtained from a feature of a parent B of C. Let
extended_parent_name be (recursively) the extended final name of that feature in B,
and parent_name its final name of f in B. Then the extended final name of f in C is:

• If the Parent part for B in C contains a Rename_pair of the form rename parent_name as
new_name: new_name.

• Otherwise: extended_parent_name.

The final names of all the features of a class constitute the final name set of a class.

Informative text

Since an inherited feature may be obtained from two or more parent features, case 3 only makes
sense if they are all inherited under the same name. This will follow from the final definition of
“inherited feature” in the discussion of repeated inheritance.

The extended final name is an Extended_feature_name, possibly including an Alias part; the final
name is its identifier only, a Feature_name, without the alias. The recursive definition defines the
two together.

End

8.6.18 Definition: Inherited name

The inherited name of a feature obtained from a feature f of a parent B is the final name of f in B.

Informative text

In the rest of the language description, references to the “name” of a feature, if not further
qualified, always denote the final name.

End

8.6.19 Definition: Declaration for a feature

A Feature_declaration in a class C, listing a Feature_name fn, is a declaration for a feature f if
and only if fn is the final name of f in C.

Informative text

Although it may seem almost tautological, we need this definition so that we can talk about a
declaration “for” a feature f whether f is immediate — in which case fn is just the name given in its
declaration — or inherited, with possible renaming. This will be useful in particular when we look
at a redeclaration, which overrides a version inherited from a parent.

End
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 8.7 Clients and exports

Informative text
Along with inheritance, the client relation is one of the basic mechanisms for structuring software.

In broad terms, a class C is a client of a type S — which is then a supplier of C — when it can
manipulate objects of type S and apply S’s features to them.

The simplest and most common way is for C to contain the declaration of an entity of type S.

Variants of the relation introduce similar dependencies through other mechanisms, in particular
generic parameters.

Although the original definitions introduce “client” in its various forms as a relation between a class
and a type, we’ll immediately extend it, by considering S’s base class, to a relation between
classes.

It is useful to distinguish between several variants of the client relation: simple client, expanded
client and generic client relations. Each is studied below. The more general notion of client is the
union of these cases, according to the following definition.

End

8.7.1 Definition: Client relation between classes and types

A class C is a client of a type S if some ancestor of C is a simple client, an expanded client or a
generic client of S.

Informative text
Recall that the ancestors of C include C itself. The definition involves all of C’s ancestors to include
dependencies caused by inherited features along with those due to the immediate features of C.
Assume that an inherited routine r of C uses a local variable x of type S; this means that C may
depend on S even if the text of C does not mention S. (If C redefines r, the definition may then
needlessly make C a client of S, but this has no harmful consequences.)

8.7.2 Definition: Client relation between classes

A class C is a client of a class B if and only if C is a client of a type whose base class is B.

The same convention applies to the simple client, expanded client and generic client relations.

8.7.3 Definition: Supplier

A type or class S is a supplier of a class C if C is a client of S, with corresponding variants: simple,
expanded, generic, indirect.

8.7.4 Definition: Simple client

A class C is a simple client of a type S if, in C, S is the type of some entity or expression or the
Explicit_creation_type of a Creation_instruction, or is one of the Constraining_types of a formal
generic parameter of C, or is involved in the Type of a Non_object_call or of a Manifest_type.

Informative text
The constructs listed reflect the various ways in which a class may, by listing a type S in its text,
enable itself to use features of S on targets of type S.
No constraint restricts how the classes of a system may be simple clients of one another. In
particular, cycles are permitted: a class may be its own simple client, both directly according to
this definition and indirectly.

End

8.7.5 Definition: Expanded client

A class C is an expanded client of a type S if S is an expanded type and some attribute of C is
of type S.
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8.7.6 Definition: Generic client, generic supplier
A class C is a generic client of a type S if for some generically derived type T of the form B […,
S, …] one of the following holds:

1 C is a client of T.

2 T is a parent type of an ancestor of C.

Informative text
Case 1 captures for example the use in C of an entity of type B [S] (with B having just one generic
parameter). Case 2 covers C inheriting directly or indirectly (remember that C is one of its own
ancestors) from B [S].

End

8.7.7 Definition: Indirect client
A class A is an indirect client of a type S of base class B if there is a sequence of classes C1 =
A, C2, …, Cn = B such that n > 2 and every Ci is a client of Ci+1 for 1 ≤ i < n.

The indirect forms of the simple client, expanded client and generic client relations are defined
similarly.

8.7.8 Definition: Client set of a Clients part
The client set of a Clients part is the set of descendants of every class of the universe whose
name it lists.

By convention, the client set of an absent Clients part includes all classes of the system.

Informative text
The descendants of a class include the class itself. The “convention” of this definition simplifies
the following definitions in the case of no Clients part, which should be treated as if there were a
Clients part listing just ANY, ancestor of all classes.
No validity rule prevents listing in a Clients part a name n that does not denote a class of the
universe. In this case — explicitly permitted by the phrasing of the definition — n does not denote
any class and hence has no descendants; it does not contribute to the client set.
This important convention is in line with the reuse focus of Eiffel and its application to
component-based development. You may develop a class C in a certain system, where it lists
some class S in a Clients part, to give S access to some of its features; then you reuse C in
another system that does not include S. You should not have to change C since no bad
consequence can result from listing a class not present in the system, as long as C does not itself
use S as its supplier or ancestor.
Even in a single system, this policy means that you can remove S — if you find it is no longer
needed — without causing compilation errors in the classes that list it in their Clients parts. With
a stricter rule, you would have to remove S from every such Clients part. But then if you later
change your mind — as part of the normal hesitations of an incremental design process — you
would have to put it back in each of these places. This process is tedious, and it wouldn’t take
many iterations until programmers start making many features public just in case — hardly an
improvement for information hiding, the purpose of all this.

End

8.7.9  Syntax: Clients
Clients =∆ "{" Class_list "}"

Class_list =∆ {Class_name "," …}+

Informative text
There is no validity constraint  on Clients part. In particular, it is valid for a Clients part both:
• To list a class that does not belong to the universe.
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• To list a class twice.

End

End

8.7.10  Syntax: Export adaptation

New_exports =∆ export  New_export_list

New_export_list =∆ {New_export_item ";" …}+

New_export_item =∆ Clients [Header_comment] Feature_set

Feature_set =∆ Feature_list | all

Feature_list =∆ {Feature_name "," …}+

8.7.11 Validity: Export List rule Validity code: VLEL

A New_exports clause appearing in class C in a Parent part for a parent B, of the form

export
{class_list1} feature_set1
…
{class_listn} feature_setn

is valid if and only if for every feature_seti (for i in the interval 1..n) that is a Feature_list (rather
than all):

1 Every element of the list is the final name of a feature of C inherited from B.

2 No feature name appears more than once in any such list.

Informative text
To obtain the export status of a feature, we need to look at the Feature_clause that introduces it
if it is immediate, at the applicable New_exports clause, if any, if it is inherited, and at the
Feature_clause containing its redeclaration if it is inherited and redeclared. In a New_exports, the
keyword all means that the chosen status will apply to all the features inherited from the given
parent.

The following definitions and rules express these properties. They start by extending the notion of
“client set” from entire Clients parts to individual features.

End

8.7.12 Definition: Client set of a feature

The client set of a feature f of a class C, of final name fname, includes the following classes (for
all cases that match):

1 If f is introduced or redeclared in C: the client set of the Feature_clause of the declaration
for f in C.

2 If f is inherited: the union of the client sets (recursively) of all its precursors from
conforming parents.

3 If the Feature_set of one or more New_exports clauses of C includes fname or all, the
union of the client sets of their Clients parts.

Informative text
This definition is the principal rule for determining the export status of a feature. It has two
important properties:
• The different cases are cumulative rather than exclusive. For example a “redeclared” feature

(case 1) is also “inherited” (case 2) and the applicable Parent part may have a New_exports
(case 3).
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• As a result of case 2, the client set can never diminish under conforming inheritance :
features can win new clients, but never lose one. This is necessary under polymorphism and
dynamic binding to avoid certain type of “catcalls” leading to run-time crashes.

End

8.7.13 Definition: Available for call, available
A feature f is available for call , or just available for short, to a class C or to a type based on C, if
and only if C belongs to the client set of f.

Informative text

In line with others in the present discussion, the definition of “available for call” introduces a notion
about classes and immediately generalizes it to types based on those classes.

The key validity constraint on calls, export validity, will express that a call a.f (…) can only be valid
if f is available to the type of a.
There is also a notion of “available for creation”, governing whether a Creation_call create a.f (…)
is valid. “Available” without further qualification means “available for call”.
There are three degrees of availability, as given by the following definition.

End

8.7.14 Definition: Exported, selectively available, secret
The export status of a feature of a class is one of the following:

1 The feature may be available to all classes. It is said to be exported , or generally
available .

2 The feature may be available to specific classes (other than NONE and ANY) only. In
that case it is also available to the descendants of all these classes. Such a feature is
said to be selectively available  to the given classes and their descendants.

3 Otherwise the feature is available only to NONE. It is then said to be secret .

Informative text
This is the fundamental terminology for information hiding, which determines when it is possible
to call a feature through a qualified call x.f. As special cases:
• A feature introduced by feature {NONE} (case 3) is available to no useful classes.

• A feature introduced by feature {ANY}, or just feature , is available to all classes and so will be
considered to fall under case 1.

• A feature introduced by feature {A, B, C}, where none of {A, B, C} is ANY, falls under case 2.

A feature available to a class is also available to all the proper descendants of that class. As a
consequence, selective export does not restrict reuse as much as it may seem at first: while the
features will only be available to certain classes, these may be classes written much later, as long
as they are descendants of one of the listed Clients.

End

8.7.15 Definition: Secret, public
A property of a class text is secret if and only if it involves any of the following, describing
information on which client classes cannot rely to establish their correctness:

1 Any feature that is not available to the given client, unless this is overridden by the next
case.

2 Any feature that is not available for creation to the given client, unless this is overridden
by the previous case.

3 The body and rescue clause of any feature, except for the information that the feature is
external or Once and, in the last case, its once keys if any.
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4 For a query without formal arguments, whether it is implemented as an attribute or a
function, except for the information that it is a constant attribute.

5 Any Assertion_clause that (recursively) includes secret information.

6 Any parent part for a non-conforming parent (and as a consequence the very presence
of that parent).

7 The information that a feature is frozen.

Any property of a class text that is not secret is public .

Informative text
Software developers must be able to use a class as supplier on the basis of public information
only.

A feature may be available for call, or for creation, or both (cases 1 and 2). If either of these
properties applies, the affected clients must know about the feature, even if they can use it in only
one of these two ways.

Whether a feature is external (case 3) or constant (case 4) determines whether it is possible to
use it in a Non_object_call and hence is public information.

End

8.7.16 Definition: Incremental contract view, short form

The incremental contract view of a class, also called its short form , is a text with the same
structure as the class but retaining only public properties.

Informative text
Eiffel environments usually provide tools that automatically produce the incremental contract view
of a class from the class text. This provides the principal form of software documentation: abstract
yet precise, and extracted from the program text rather than written and maintained separately.

The definition specifies the information that the incremental contract view must retain, but not its
exact display format, which typically will be close to Eiffel syntax.

End

8.7.17 Definition: Contract view, flat-short form

The contract view of a class, also called its flat-short form , is a text following the same
conventions as the incremental contract view form but extended to include information about
inherited as well as immediate features, the resulting combined preconditions and postconditions
and the unfolded form of the class invariant including inherited clauses.

Informative text
The contract view is the full interface information about a class, including everything that clients
need to know (but no more) to use it properly. The “combined forms” of preconditions and
postconditions take into account parents’ versions as possibly modified by require else and ensure
then clauses, and hence describing features’ contracts as they must appear to the clients. The
“unfolded form” of the class invariant includes clauses from parents. In all these, of course, we still
eliminate any clause that includes secret information, as with the incremental contract view.

The contract view is the principal means of documenting Eiffel software, in particular libraries of
reusable components. It provides the right mix of abstraction, clarity and precision, and excludes
implementation-dependent properties. Being produced automatically by software tools from the
actual text, it does not require extra effort on the part of software developers, and stands a much
better chance to remain accurate when the software changes.

End
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 8.8 Routines

Informative text
Routines describe computations.

Syntactically, routines are one of the two kinds of feature of a class; the other kind is attributes,
which describe data fields associated with instances of the class. Since every Eiffel operation
applies to a specific object, a routine of a class describes a computation applicable to instances
of that class. When applied to an instance, a routine may query or update some or all fields of the
instance, corresponding to attributes of the class.

A routine is either a procedure, which does not return a result, or a function, which does. A routine
may further be declared as deferred , meaning that the class introducing it only gives its
specification, leaving it for descendants to provide implementations. A routine that is not deferred
is said to be effective .

An effective routine has a body , which describes the computation to be performed by the routine.
A body is a Compound, or sequence of instructions; each instruction is a step of the computation.

The present discussion explores the structure of routine declarations, ending with the list of
possible various forms of instructions.

End

8.8.1 Definition: Formal argument, actual argument
Entities declared in a routine to represent information passed by callers are the routine’s formal
arguments .

The corresponding expressions in a particular call to the routine are the call’s actual arguments .

Informative text
Rules on Call require the number of actual arguments to be the same as the number of formal
arguments, and the type of each actual argument to be compatible with (conform or convert to)
the type of the formal argument at the same position in the list.

A note on terminology: Eiffel always uses the term argument to refer to the arguments of a
routine. The word “parameter” is never used in this context, because it could create confusion with
the types that can parameterize classes, called generic parameters .

End

8.8.2  Syntax: Formal argument and entity declarations
Formal_arguments =∆ "(" Entity_declaration_list ")"

Entity_declaration_list =∆ {Entity_declaration_group ";" …}+

Entity_declaration_group =∆ Identifier_list Type_mark

Identifier_list =∆ {Identifier "," …}+

Informative text
As with other semicolons, those separating an Entity_declaration_group from the next are
optional. The style guidelines suggest including them for successive declarations on a line, as with
short formal argument lists, but omitting them between successive lines, as with local variable
declarations (also covered by Entity_declaration_group).

End

8.8.3 Validity: Formal Argument rule Validity code: VRFA

Let fa be the Formal_arguments part of a routine r in a class C. Let formals be the concatenation
of every Identifier_list of every Entity_declaration_group in fa. Then fa is valid if and only if no
Identifier e appearing in formals is the final name of a feature of C.
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Informative text

Another rule, given later, applies the same conditions to names of local variables. Permitting a
formal argument or local variable to bear the same name as a feature could only cause confusion
(even if we had a scoping rule removing any ambiguity by specifying that the local name overrides
the feature name) and serves no useful purpose.

End

8.8.4 Validity: Entity Declaration rule Validity code: VRED

Let el be an Entity_declaration_list. Let identifiers be the concatenation of every Identifier_list of
every Entity_declaration_group in el. Then el is valid if and only if no Identifier appears more than
once in the list identifiers.

8.8.5  Syntax: Routine bodies

Deferred =∆ deferred

Effective_routine =∆ Internal | External

Internal =∆ Routine_mark Compound

Routine_mark =∆ do | Once

Once =∆ once [ "("Key_list ")" ]

Key_list =∆ {Manifest_string "," …}+

8.8.6 Definition: Once routine, once procedure, once function

A once routine  is an Internal routine r with a Routine_mark of the Once form.

If r is a procedure it is also a once procedure ; if r is a function, it is also a once function .

8.8.7  Syntax: Local variable declarations

Local_declarations =∆ local  [Entity_declaration_list]

8.8.8 Validity: Local Variable rule Validity code: VRLV

Let ld be the Local_declarations part of a routine r in a class C. Let locals be the concatenation of
every Identifier_list of every Entity_declaration_group in ld. Then ld is valid if and only if every
Identifier e in locals satisfies the following conditions:

1 No feature of C has e as its final name.

2 No formal argument of r has e as its Identifier.

Informative text

Most of the rules governing the validity and semantics of declared local variables also apply to a
special predefined entity: Result , which may only appear in a function or attribute, and denotes
the value to be returned by the function. The following definition of “local variable” reflects this
similarity.

End

8.8.9 Definition: Local variable

The local variables of a routine include all entities declared in its Local_declarations part, if any,
and, if it is a query, the predefined entity Result .
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Informative text
Result can appear not only in the Compound, Postcondition or Rescue of a function or variable
attribute but also in the optional Postcondition of a constant attribute, where it denotes the value
of the attribute and allows stating abstract properties of that value, for example after a redefinition.
In this case execution cannot change that value, but for simplicity we continue to call Result a local
“variable” anyway.

End

8.8.10  Syntax: Instructions
Compound =∆ {Instruction ";" …}*

Instruction =∆ Creation_instruction | Call | Assignment | Assigner_call | Conditional | Multi_branch
| Loop | Debug | Precursor | Check | Retry

Informative text
A Compound is a possibly empty list of instructions, to be executed in the order given. In the
various parts of control structures, such as the branches of a Conditional or the body of a Loop,
the syntax never specifies Instruction but always Compound, so that you can include zero, one or
more instructions.
A Creation_instruction creates a new object, initializes its fields to default values, calls on it one
of the creation procedures of the class (if any), and attaches the object to an entity.
Call executes a routine. For the Call to yield an instruction, the routine must be a procedure.
Assignment changes the value attached to a variable.
An Assigner_call is a procedure call written with an assignment-like syntax, as in x.a := b, but with
the semantics of a call, as just a notational abbreviation for x.set_a (b) where the declaration of
a specifies an assigner command set_a.
Conditional, Multi_branch, Loop and Compound describe control structures, made out of
instructions; to execute a control structure is to execute some or all of its constituent instructions,
according to a schedule specified by the control structure.
Debug, which may also be considered a control structure, is used for instructions that should only
be part of the system when you enable the debug compilation option.
Precursor enables you, in redefining a routine, to rely on its original implementation.
Check is used to express that certain assertions must hold at certain moments during run time.
Retry is used in conjunction with the exception handling mechanism.

End

 8.9 Correctness and contracts

Informative text
Eiffel software texts — classes and their routines — may be equipped with elements of formal
specification, called assertions , expressing correctness conditions.
Assertions play several roles: they help in the production of correct and robust software, yield
high-level documentation, provide debugging support, allow effective software testing, and serve
as a basis for exception handling. With advances in formal methods technology, they open the
way to proofs of software correctness.
Assertions are at the basis of the Design by Contract  method of Eiffel software construction.

End

8.9.1  Syntax: Assertions
Precondition =∆ require  [else] Assertion

Postcondition =∆ ensure  [then ] Assertion [Only]
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Invariant =∆ invariant Assertion

Assertion =∆ {Assertion_clause ";" …}*

Assertion_clause =∆ [Tag_mark] Unlabeled_assertion_clause

Unlabeled_assertion_clause =∆ Boolean_expression | Comment

Tag_mark =∆ Tag ":"

Tag =∆ Identifier

8.9.2 Syntax (non-production): Assertion Syntax rule
An Assertion without a Tag_mark may not begin with any of the following:

1 An opening parenthesis "(".

2 An opening bracket "[".

3 A non-keyword Unary operator that is also Binary.

Informative text
This rule participates in the achievement of the general Semicolon Optionality rule. Without it, after
an Assertion_clause starting for example with the Identifier a, and continuing (case 2) with [x] it is
not immediately obvious whether this is the continuation of the same clause, using a [x] as the
application of a bracket feature to a, or a new clause that starts by mentioning the Manifest_tuple
[x]. From the context, the validity rules will exclude one of these possibilities, but a language
processing tool should be able to parse an Eiffel text without recourse to non-syntactic
information. A similar issue arises with an opening parenthesis (case 1) and also (case 3) if what
follows a is –b, which could express a subtraction from a in the same clause, or start a new clause
about the negated value of b. The Assertion Syntax rule avoids this.

The rule does significantly restrict expressiveness, since violations are rare and will be flagged
clearly in reference to the rule, and it is recommended practice anyway to use a Tag_mark, which
removes any ambiguity.

End

8.9.3 Definition: Precondition, postcondition, invariant
The precondition and postcondition of a feature, or the invariant of a class, is the Assertion of,
respectively, the corresponding Precondition, Postcondition or Invariant clause if present and
non-empty, and otherwise the assertion True.

Informative text
So in these three contexts we consider any absent or empty assertion clause as the assertion
True, satisfied by every state of the computation. Then we can talk, under any circumstance, of
“the precondition of a feature” and “the invariant of a class” even if the clauses do not appear
explicitly.

End

8.9.4 Definition: Contract, subcontract
Let pre and post be the precondition and postcondition of a feature f. The contract of f is the pair
of assertions [pre, post].

A contract [ pre’, post’] is said to be a subcontract of [pre, post] if and only if pre implies pre’ and
post’ implies post.

8.9.5 Validity: Precondition Export rule Validity code: VAPE

A Precondition of a feature r of a class S is valid if and only if every feature f appearing in every
Assertion_clause of its unfolded form u satisfies the following two conditions for every class C to
which r is available:

1 If f appears as feature of a call in u or any of its subexpressions, f is available to C.
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2 If u or any of its subexpressions uses f as creation procedure of a Creation_expression,
f is available for creation to C.

Informative text
If (condition 1) r were available to a class B but its precondition involved a feature f not available
to B, r would be imposing to B a condition that B would not be able to check for itself; this would
amount to a secret clause in the contract, preventing the designer of B from guaranteeing the
correctness of calls.
The rule applies to the unfolded form of a precondition, which will be defined as the fully
reconstructed assertion, including conditions defined by ancestor versions of a feature in addition
to those explicitly mentioned in a redeclared version.
The unfolded form (by relying on the “Equivalent Dot Form” of the expressions involved) treats all
operators as denoting features; for example an occurrence of a > b in an assertion yields
a.greater (b) in the unfolded form, where greater is the name of a feature of alias ">". The
Precondition Export rule then requires, if the occurrence is in a Precondition, that this feature be
available to any classes to which the enclosing feature is available.
Condition 2 places the same obligation on any feature f used in a creation expression create a.f
(…) appearing in the precondition (a rare but possible case). The requirement in this case is
“available for creation”.

End

8.9.6 Definition: Availability of an assertion clause
An Assertion_clause a of a routine Precondition or Postcondition is available to a class B if and
only if all the features involved in the Equivalent Dot Form of a are available to B.

Informative text
This notion is necessary to define interface forms of a class adapted to individual clients, such as
the incremental contract view (“short form”).

End

8.9.7  Syntax: “Old” postcondition expressions
Old =∆ old Expression

8.9.8 Validity: Old Expression rule Validity code: VAOX

An Old expression oe of the form old  e is valid if and only if it satisfies the following conditions:

1 It appears in a Postcondition part post of a feature.

2 It does not involve Result .

3 Replacing oe by e in post yields a valid Postcondition.

Informative text
Result is otherwise permitted in postconditions, but condition 2 rules it out since its value is
meaningless on entry to the routine. Condition 3 simply states that old e is valid in a postcondition
if e itself is. The expression e may not, for example, involve any local variables (although it might
include Result were it not for condition 2), but may refer to features of the class and formal
arguments of the routine.

End

8.9.9 Semantics: Old Expression Semantics, associated variable, associated exception marker
The effect of including an Old expression oe in a Postcondition of an effective feature f is
equivalent to replacing the semantics of its Feature_body by the effect of a call to a fictitious
routine possessing a local variable av, called the associated variable of oe, and semantics
defined by the following succession of steps:
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1 Evaluate oe.

2 If this evaluation triggers an exception, record this event in an associated exception
marker  for oe.

3 Otherwise, assign the value of oe to av.

4 Proceed with the original semantics.

Informative text
The recourse to a fictitious variable and fictitious operations is in the style of “unfolded forms” used
throughout the language description. The reason for these techniques is the somewhat peculiar
nature of the Old expression, used at postcondition evaluation time, but pre-computed (if assertion
monitoring is on for postconditions) on entry to the feature.
The matter of exceptions is particularly delicate and justifies the use of “associated exception
markers”. If an Old expression’s evaluation triggers an exception, the time of that exception —
feature entry — is not the right moment to start handling the exception, because the postcondition
might not need the value. For example, a postcondition clause could read

((x /= 0) and (old x /= 0)) implies  ((((1 / x) + (1 / (old x)))) = y)
If x is 0 on entry, old x /= 0 will be false on exit and hence the postcondition will hold. But there is
no way to know this when evaluating the various Old expressions, such as 1 / old x on entry. We
must evaluate this expression anyway, to be prepared for all possible cases. If x is zero, this may
cause an arithmetic overflow and trigger an exception. This exception should not be processed
immediately; instead it should be remembered — hence the associated exception marker — and
triggered only if the evaluation of the postcondition, on routine exit, attempts to evaluate the
associated variable; hence the following rule.
The “associated variable” is defined only for effective features, since a deferred feature has no
Feature_body. If an Old expression appears in the postcondition of a deferred feature, the rule will
apply to effectings in descendants through the “unfolded form” of the postconditions, which
includes inherited clauses.
Like any variable, the associated variable av of an Old expression raises a potential initialization
problem; but we need not require its type to be self-initializing since the above rule implies that ov
appears in a Certified Attachment Pattern that assigns it a value (the value of oe) prior to use.

End

8.9.10 Semantics: Associated Variable Semantics
As part of the evaluation of a postcondition clause, the evaluation of the associated variable of an
Old expression:

1 Triggers an exception of type OLD_EXCEPTION if an associated exception marker has
been recorded.

2 Otherwise, yields the value to which the variable has been set.

8.9.11  Syntax: “Only” postcondition clauses
Only =∆ only  [Feature_list]

Informative text
The syntax of assertions indicates that an Only clause may only appear in a Postcondition of a
feature, as its last clause.
Those other postcondition clauses let you specify how a feature may change specific properties
of the target object, as expressed by queries. You may also want — this is called the frame
problem — to restrict the scope of features by specifying which properties it may not change. You
can always do this through postcondition clauses q = old q, one for each applicable query q. This
is inconvenient, not only because there may be many such q to list but also, worse, because it
forces you to list them all even though evolution of the software may bring in some new queries,
which will not be listed. Inheritance makes matters even more delicate since such “frame”
requirements of parents should be passed on to heirs.
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An Only clause addresses the issue by enabling you to list which queries a feature may affect,
with the implication that:
• Any query not listed is left unchanged by the feature.

• The constraints apply not only to the given version of the feature but also, as enforced by the
following rules, to any redeclarations in descendants (specifically, to their effect on the queries
of the original class).

The syntax allows omitting the Feature_list; this is how you can specify that the routine must leave
all queries unchanged (it is then known as a “pure” routine).

End

8.9.12 Validity: Only Clause rule Validity code: VAON

An Only clause appearing in a Postcondition of a feature of a class C is valid if and only if every
Feature_name qn appearing its Feature_list if any satisfies the following conditions:

1 There is no other occurrence of qn in that Feature_list.

2 qn is the final name of a query q of C, with no arguments.

3 If C redeclares f from a parent B, q is not a feature of B.

Informative text
Another condition, following from the syntax, is that an Only clause appears at the last element of
a Postcondition; in particular, you may not include more than one Only clause in a postcondition.

End

8.9.13 Definition: Unfolded feature list of an Only clause
The unfolded feature list of an Only clause appearing in a Postcondition of a feature f in a class
C is the Feature_list containing:

1 All the feature names appearing in its Feature_list if any.

2 If f is the redeclaration of one or more features, the final names in C of all the features
whose names appear (recursively) in their unfolded Only clauses.

Informative text
For an immediate feature (a feature introduced in C, not a redeclaration), the purpose of an Only
clause of the form

only q, r, s
is to state that f may only change the values of queries q, r, s.

In the case of a redeclaration, previous versions may have had their own Only clauses. Then:
• If there was already an Only clause in an ancestor A, the features listed, here q, r and s, must

be new features, not present in A. Otherwise specifying only q, r, s would either contradict the
Only clause of A if it did not include these features (thus ruling out any modification to them in
any descendant), or be redundant with it if it listed any one of them.

• The meaning of the Only clause is that f may only change q, r and s in addition to inherited
queries that earlier Only clauses allowed it to change.

Note that this definition is mutually recursive with the next one.

End

8.9.14 Definition: Unfolded Only clause
The unfolded Only clause of a feature f of a class C is a sequence of Assertion_clause
components of the following form, one for every argument-less query q of C that does not appear
in the unfolded feature list of the Only clause of its Postcondition if any:

q = (old q)
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Informative text
This will make it possible to express the semantics of an Only clause through a sequence of
assertion clauses stating that the feature may change the value of no queries except those
explicitly listed.
Note the use of the equal sign: for a query q returning a reference, the Only clause states (by not
including q) that after the feature’s execution the reference will be attached to the same object as
before. That object might, internally, have changed. You can still rule out such changes by listing
in the Only clause other queries reflecting properties of the object’s contents.

End

8.9.15 Definition: Hoare triple notation (total correctness)
In definitions of correctness notions for Eiffel constructs, the notation {P} A {Q} (a mathematical
convention, not a part of Eiffel) expresses that any execution of the Instruction or Compound A
started in a state of the computation satisfying the assertion P will terminate in a state satisfying
the assertion Q.

8.9.16 Semantics: Class consistency
A class C is consistent  if and only if it satisfies the following conditions:

1 For every creation procedure p of C:

{prep} dop {INVC and then postp}

2 For every feature f of C exported generally or selectively:

{INVC and then pref} dof {INVC and then postf}

where INVC is the invariant of C and, for any feature f, pref is the unfolded form of the precondition
of f, postf the unfolded form of its postcondition, and dof its body.

Informative text
Class consistency is one of the most important aspects of the correctness of a class: adequation
of routine implementations to the specification. The other aspects of correctness, studied below,
involve Check instructions, Loop instructions and Rescue clauses.

End

8.9.17  Syntax: Check instructions
Check =∆ check Assertion [Notes] end

Informative text
The Notes part is intended for expressing a formal or informal justification of the assumption
behind the property being asserted.

End

8.9.18 Definition: Check-correct
An effective routine r is check-correct if, for every Check instruction c in r, any execution of c (as
part of an execution of r) satisfies its Assertion.

8.9.19  Syntax: Variants
Variant =∆ variant  [Tag_mark] Expression

8.9.20 Validity: Variant Expression rule Validity code: VAVE

A Variant is valid if and only if its variant expression is of type INTEGER or one of its sized variants.

8.9.21 Definition: Loop invariant and variant
The Assertion introduced by the Invariant clause of a loop is called its loop invariant . The
Expression introduced by the Variant clause is called its loop variant .
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8.9.22 Definition: Loop-correct
A routine is loop-correct if every loop it contains, with loop invariant INV, loop variant VAR,
Initialization INIT, Exit condition EXIT and body (Compound part of the Loop_body) BODY,
satisfies the following conditions:

1 {true } INIT {INV}

2 {true } INIT {VAR ≥ 0}

3 {INV and then not  EXIT} BODY {INV}

4 {INV and then not  EXIT and then (VAR = v)} BODY {0 ≤ VAR < v}

Informative text
Conditions 1 and 2 express that the initialization yields a state in which the invariant is satisfied
and the variant is non-negative. Conditions 3 and 4 express that the body, when executed in a
state where the invariant is satisfied but not the exit condition, will preserve the invariant and
decrease the variant, while keeping it non-negative. (v is an auxiliary variable used to refer to the
value of VAR before BODY’s execution.)

End

8.9.23 Definition: Correctness (class)
A class is correct if and only if it is consistent and every routine of the class is check-correct,
loop-correct and exception-correct.

8.9.24 Definition: Local unfolded form of an assertion
The local unfolded form of an assertion a — a Boolean_expression — is the Equivalent Dot
Form of the expression that would be obtained by applying the following transformations to a in
order:

1 Replace any Only clause by the corresponding unfolded Only clause.

2 Replace any Old expression by its associated variable.

3 Replace any clause of the Comment form by True.

Informative text
The unfolded form enables you to understand an assertion, possibly with many clauses, as a
single boolean expression. The use of and then to separate the clauses indicates that you may,
in a later clause, use an expression that is defined only if an earlier clause holds (has value true).
This unfolded form is “local” because it does not take into account any inherited assertion clauses.
This is the business of the full (non-local) notion of unfolded form of an assertion, introduced in
the discussion of redeclaration.
The Equivalent Dot Form of an expression removes all operators and replaces them by explicit
call, turning for example a + b into a.plus (b). This puts the result in a simpler form used by later
rules.
If an Only clause is present, we replace it by its own unfolded form, a sequence of
Assertion_clause components of the form q = old q, so that we can treat it like other clauses for
the assertion’s local unfolded form. Note that this unfolding only takes into account queries
explicitly listed in the Only clause, but not in any Only clause from an ancestor version; inheritance
aspects are handled by the normal unfolding of postconditions, applicable after this one according
(as noted above) to the general notion of unfolded form of an assertion
The syntax permits a Comment as Unlabeled_assertion_clause. Such clauses are useful for
clarity and documentation but, as reflected by condition 3, cannot have any effect on run-time
monitoring.

End

8.9.25 Semantics: Evaluation of an assertion
To evaluate  an assertion consists of computing the value of its unfolded form.
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Informative text
This defines the value of an assertion in terms of the value of a boolean expression, as given by
the discussion of expressions.

End

8.9.26 Semantics: Assertion monitoring
The execution of an Eiffel system may evaluate, or monitor , specific kinds of assertion, and loop
variants, at specific stages:

1 Precondition of a routine r: on starting a call to r, after argument evaluation and prior to
executing any of the instructions in r’s body.

2 Postcondition of a routine r: on successful (not interrupted by an exception) completion
of a call to r, after executing any applicable instructions of r.

3 Invariant of a class C: on both start and termination of a qualified call to a routine of C.

4 Invariant of a loop: after execution of the Initialization, and after every execution (if any)
of the Loop_body.

5 Assertion in a Check instruction: on any execution of that instruction.

6 Variant of a loop: as with the loop invariant.

8.9.27 Semantics: Assertion violation
An assertion violation is the occurrence at run time, as a result of assertion monitoring, of any
of the following:

• An assertion (in the strict sense of the term) evaluating to false.

• A loop variant found to be negative.

• A loop variant found, after the execution of a Loop_body, to be no less than in its previous
evaluation.

Informative text
To simplify the discussion these cases are all called “assertion violations” even though a variant
is not technically an assertion.

End

8.9.28 Semantics: Assertion semantics
In the absence of assertion violations, assertions have no effect on system execution other than
through their evaluation as a result of assertion monitoring.

An assertion violation causes an exception of type ASSERTION_VIOLATION or one of its
descendants.

8.9.29 Semantics: Assertion monitoring levels
An Eiffel implementation must provide facilities to enable or disable assertion monitoring
according to some combinations of the following criteria:

• Statically (at compile time) or dynamically (at run time).

• Through control information specified within the Eiffel text or through outside elements such
as a user interface or configuration files.

• For specific kinds as listed in the definition of assertion monitoring: routine preconditions,
routine postconditions, class invariants, loop invariants, Check instructions, loop variants.

• For specific classes, specific clusters, or the entire system.

The following combinations must be supported:

1 Statically disable all monitoring for the entire system.

2 Statically enable precondition monitoring for an entire system.
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3 Statically enable precondition monitoring for specified classes.

4 Statically enable all assertion monitoring for an entire system.

 8.10 Feature adaptation

Informative text

A key attraction of the inheritance mechanism is that it lets you tune inherited features to the
context of the new class. This is known as feature adaptation. The present discussion covers the
principal mechanisms, leaving to a later one some important complements related to repeated
inheritance.

End

8.10.1 Definition: Redeclare, redeclaration

A class redeclares  an inherited feature if it redefines or effects it.

A declaration for a feature f is a redeclaration  of f if it is either a redefinition or an effecting of f.

Informative text
This definition relies on two others, appearing below, for the two cases: redefinition and effecting.

Be sure to distinguish redeclaration from redefinition, the first of these cases. Redeclaration is the
more general notion, redefinition one of its two cases; the other is effecting, which provides an
implementation for a feature that was deferred in the parent. In both cases, a redeclaration does
not introduce a new feature, but simply overrides the parent’s version of an inherited feature.

End

8.10.2 Definition: Unfolded form of an assertion

The unfolded form of an assertion a of local unfolded form ua in a class C is the following
Boolean_expression:

1 If a is the invariant of C and C has n parents for some n ≥ 1: up1 and … and upn and then
ua, where up1, … upn are (recursively) the unfolded forms of the invariants of these
parents, after application of any feature renaming specified by C’s corresponding Parent
clauses.

2 If a is the precondition of a redeclared feature f: the combined precondition for a.

3 If a is the postcondition of a redeclared feature f: the combined postcondition for a.

4 In all other cases: ua.

Informative text
The unfolded form of an assertion is the form that will define its semantics. It takes into account
not only the assertion as written in the class, but also any applicable property inherited from the
parent. The “local unfolded form” is the expression deduced from the assertion in the class itself;
for an invariant we “and then” it with the “and” of the parents, and for preconditions and
postconditions we use “combined forms”, defined next, to integrate the effect of require else and
ensure then clauses, to ensure that things will still work as expected in the context of
polymorphism and dynamic binding.

The earlier definitions enable us to talk about the “precondition of” and “postcondition “of” a feature
and the “invariant of” even in the absence of explicit clauses, by using True in such cases. This
explains in particular why case 1 can mention “the invariants of” the parents of C.

End

8.10.3 Definition: Assertion extensions

For a feature f of a class C:
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• If C redeclares f with a non-empty Precondition (starting with require else ), the precondition
extension of f in C is the corresponding Assertion.

• If C redeclares f with a non-empty Postcondition (starting with ensure then ), the
postcondition extension of f in C is the corresponding Assertion.

In all other cases, the precondition extension of f in C is False and the postcondition extension of
f in C is True.

Informative text

These are the forms that routines can use to override inherited specifications while remaining
compatible with the original contracts for polymorphism and dynamic binding. require else makes
it possible to weaken a precondition, ensure then to strengthen a postcondition, under the exact
interpretation explained next.

End

8.10.4 Definition: Covariance-aware form of an assertion extension

The covariance-aware form  of an inherited assertion a is:

1 If the enclosing routine has one or more arguments x1, … xn redefined covariantly to
types U1, … Un: the assertion

({x1: U1} y1 and … and {xn: Un} yn ) and then a’
where y1, … yn are fresh names and a’ is the result of substituting yi for each
corresponding xi in a.

2 Otherwise: a.

Informative text

A covariant redefinition may make some of the new clauses inapplicable to actual arguments of
the old type (leading to “catcalls”). The covariance-aware form avoids this by ignoring the clauses
that are not applicable. The rule on covariant redefinition avoid any bad consequences.

End

8.10.5 Definition: Combined precondition, postcondition

Consider a feature f redeclared in a class C. Let f1, … fn (n ≥ 1) be its versions in parents, pre1,
… pren the covariance-aware forms of (recursively) the combined preconditions of these versions,
and post1, … postn the covariance-aware forms of (recursively) their combined postconditions.

Let pre be the precondition extension of f if defined and not empty, otherwise False.

Let post be the postcondition extension of f if defined and not empty, otherwise True.

The combined precondition of f is the Assertion

(pre1 or… or pren) or else pre

The combined postcondition of f is the Assertion

(old pre1 implies post1)

and … and

(old pren implies postn)

and then post
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Informative text
The informal rule is “perform an or of the preconditions and an and of the postconditions”. This
indeed the definition for “combined precondition”. For “combined postconditions” the informal rule
is sufficient in most cases, but occasionally it may be too strong because it requires the old
postconditions even in cases that do not satisfy the old preconditions, and hence only need the
new postcondition. The combined postcondition as defined reflects this property.

End

8.10.6 Definition: Inherited as effective, inherited as deferred
An inherited feature is inherited as effective if it has at least one precursor that is an effective
feature, and the corresponding Parent part does not undefine it.

Otherwise the feature is inherited as deferred .

8.10.7 Definition: Effect, effecting
A class effects an inherited feature f if and only if it inherits f as deferred and contains a
declaration for f that defines an effective feature.

Informative text
Effecting a feature (making it effective, hence the terminology) consists of providing an
implementation for a feature that was inherited as deferred. No particular clause (such as
redefine ) will appear in the Inheritance part: the new implementation will without ado subsume the
deferred form inherited from the parent.

End

8.10.8 Definition: Redefine, redefinition
A class redefines an inherited feature f if and only if it contains a declaration for f that is not an
effecting of f.

Such a declaration is then known as a redefinition  of f

Informative text
Redefining a feature consists of providing a new implementation, specification or both. The
applicable Parent clause or clauses must specify redefine f (with f’s original name if the new class
renames f.)
Redefinition must keep the inherited status, deferred or effective, of f:
• It cannot turn a deferred feature into an effective one, as this would fall be an effecting.

• It may not turn an effective feature into a deferred one, as there is another mechanism
specifically for this purpose, undefinition. The Redeclaration rule enforces this property.

As defined earlier, the two cases, effecting and redefinition, are together called redeclaration.

End

8.10.9 Definition: Name clash
A class has a name clash if it inherits two or more features from different parents under the same
final name.

Informative text
Since final names include the identifier part only, aliases if any play no role in this definition.

Name clashes would usually render the class invalid. Only three cases may — as detailed by the
validity rules — make a name clash permissible:
• At most one of the clashing features is effective.

• The class redefines all the clashing features into a common version.
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• The clashing features are really the same feature, inherited without redeclaration from a
common ancestor.

End

8.10.10  Syntax: Precursor

Precursor =∆ Precursor  [Parent_qualification] [Actuals]

Parent_qualification =∆ "{" Class_name "}"

8.10.11 Definition: Relative unfolded form of a Precursor

In a class C, consider a Precursor specimen p appearing in the redefinition of a routine r inherited
from a parent class B. Its unfolded form relative to B is an Unqualified_call of the form r’ if p has
no Actuals, or r’ (args) if p has actual arguments args, where r’ is a fictitious feature name added,
with a frozen  mark, as synonym for r in B.

8.10.12 Validity: Precursor rule Validity code: VDPR

A Precursor is valid if and only if it satisfies the following conditions:

1 It appears in the Feature_body of a Feature_declaration of a feature f.

2 If the Parent_qualification part is present, its Class_name is the name of a parent class
P of C.

3 Among the features of C’s parents, limited to features of P if condition 2 applies, exactly
one is an effective feature redefined by C into f. (The class to which this feature belongs
is called the applicable parent  of the Precursor.)

4 The unfolded form relative to the applicable parent is, as an Unqualified_call,
argument-valid.

In addition:

5 It is valid as an Instruction if and only if f is a command, and as an Expression if and only
if f is a query.

Informative text

This constraint also serves, in condition 3, as a definition of the “applicable parent”: the parent
from which we reuse the implementation. Condition 4 relies on this notion.

Condition 1 states that the Precursor construct is only valid in a routine redefinition. In general the
language definition treats functions and attributes equally (Uniform Access principle), but here an
attribute would not be permissible, even with an Attribute body.

Because of our interpretation of a multiple declaration as a set of separate declarations, this
means that if Precursor appears in the body of a multiple declaration it applies separately to every
feature being redeclared. This is an unlikely case, and this rule makes it unlikely to be valid.

Condition 2 states that if you include a class name, as in Precursor {B}, then B must be the name
of one of the parents of the current class. The following condition makes this qualified form
compulsory in case of potential ambiguity, but even in the absence of ambiguity you may use it to
state the parent explicitly if you think this improves readability.

Condition 3 specifies when this explicit parent qualification is required. This is whenever an
ambiguity could arise because the redefinition applies to more than one effective parent version.
The phrasing takes care of all the cases in which this could happen, for example as a result of a
join.

Condition 4 simply expresses that we understand the Precursor specimen as a call to a frozen
version of the original routine; we must make sure that such a call would be valid, more precisely
“argument-valid”, the requirement applicable to such an Unqualified_call.
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A Precursor will be used as either an Instruction or an Expression, in the same way as a call to
(respectively) a procedure or a function; indeed Precursor appears as one of the syntax variants
for both of these constructs. So in addition to being valid on its own, it must be valid in the
appropriate role. Condition 5 takes care of this.

End

8.10.13 Definition: Unfolded form of a Precursor

The unfolded form (absolute) of a valid Precursor is its unfolded form relative to its applicable
parent.

8.10.14 Semantics: Precursor semantics

The effect of a Precursor is the effect of its unfolded form.

8.10.15  Syntax: Redefinition

Redefine =∆ redefine Feature_list

8.10.16 Validity: Redefine Subclause rule Validity code: VDRS

A Redefine subclause appearing in a Parent part for a class B in a class C is valid if and only if
every Feature_name fname that it lists (in its Feature_list) satisfies the following conditions:

1 fname is the final name of a feature f of B.

2 f was not frozen in B, and was not a constant attribute.

3 fname appears only once in the Feature_list.

4 The Features part of C contains one Feature_declaration that is a redeclaration but not
an effecting of f.

5 If that redeclaration specifies a deferred feature, C inherits f as deferred.

8.10.17 Semantics: Redefinition semantics

The effect in a class C of redefining a feature f in a Parent part for A is that the version of f in C is,
rather than its version in A, the feature described by the applicable declaration in C.

Informative text
This new version will serve for any use of the feature in the class, its clients, its proper
descendants (barring further redeclarations), and even ancestors and their clients under dynamic
binding.

End

8.10.18  Syntax: Undefine clauses

Undefine =∆ undefine Feature_list

8.10.19 Validity: Undefine Subclause rule Validity code: VDUS

An Undefine subclause appearing in a Parent part for a class B in a class C is valid if and only if
every Feature_name fname that it lists (in its Feature_list) satisfies the following conditions:

1 fname is the final name of a feature f of B.

2 f was not frozen in B, and was not an attribute.

3 f was effective in B.

4 fname appears only once in the Feature_list.

5 Any redeclaration of f in C specifies a deferred feature.

8.10.20 Semantics: Undefinition semantics

The effect in a class C of undefining a feature f in a Parent part for A is to cause C to inherit from
A, rather than the version of f in A, a deferred form of that version.
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8.10.21 Definition: Effective, deferred feature

A feature f of a class C is an effective feature of C if and only if it satisfies either of the following
conditions:

1 C contains a declaration for f whose Feature_body is not of the Deferred form.

2 f is an inherited feature, coming from a parent B of C where it is (recursively) effective,
and C does not undefine it.

f is deferred if and only if it is not effective.

Informative text
As a result of this definition, a feature is deferred in C not only if it is introduced or redefined in C
as deferred, but also if its precursor was deferred and C does not redeclare it effectively. In the
latter case, the feature is “inherited as deferred”.

The definition captures the semantics of deferred features and of their effecting. In case 1 it’s clear
that the feature is effective, since C itself declares it as either an attribute of a non-deferred
routine. In case 2 the feature is inherited; it was already effective in the parent, and C doesn’t
change that status.

End

8.10.22 Definition: Effecting

A redeclaration into an effective feature of a feature inherited as deferred is said to effect that
feature.

8.10.23 Deferred class property

A class that has at least one deferred feature must have a Class_header starting with the keyword
deferred . The class is then said to be deferred .

8.10.24 Effective class property

A class whose features, if any, are all effective, is effective unless its Class_header starts with the
keyword deferred .

Informative text
It is not an error to declare a class deferred if it has no deferred features; the effect is simply that
clients are not able to create direct instances. It is indeed sometimes useful to introduce a class
that cannot be directly instantiated; for example the designer may intend the class to be used only
through inheritance. The technique to achieve this is simply to state the abstract nature of the
class by declaring it deferred  even if all its features are effective.

End

8.10.25 Definition: Origin, seed

Every feature f of a class C has one or more features known as its seeds and one or more classes
known as its origins , as follows:

1 If f is immediate in C: f itself as seed; C as a origin.

2 If f is inherited: (recursively) all the seeds and origins of its precursors.

Informative text
The origin, a class, is “where the feature comes from”, and the seed is the version of the feature
from that origin. In the vast majority of cases this is all there is to know. With repeated inheritance
and “join”, a feature may result from the merging of two or more features, and hence may have
more than one seed and more than one origin. That’s what case 2 is about.

End
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8.10.26 Validity: Redeclaration rule Validity code: VDRD

Let C be a class and g a feature of C. It is valid for g to be a redeclaration of a feature f inherited
from a parent B of C if and only if the following conditions are satisfied.

1 No effective feature of C other than f and g has the same final name.

2 The signature of g conforms to the signature of f.

3 The Precondition of g, if any, begins with require else (not just require ), and its
Postcondition, if any, begins with ensure then  (not just ensure ).

4 If the redeclaration is a redefinition (rather than an effecting) the Redefine subclause of
the Parent part for B lists in its Feature_list the final name of f in B.

5 If f is inherited as effective, then g is also effective.

6 If f is an attribute, g is an attribute, f and g are both variable, and their types are either
both expanded or both non-expanded.

7 f and g have either both no alias or the same alias.

8 If both features are queries with associated assigner commands fp and gp, then gp is
the version of fp in C.

Informative text
Condition 1 prohibits name clashes between effective features. For g to be a redeclaration of f,
both features must have the same final name; but no other feature of the class may share that
name. This is the fundamental rule of no overloading .

No invalidity results, however, if f is deferred. Then if g is also deferred, the redeclaration is simply
a redefinition of a deferred feature by another (to change the signature or specification). If g is
effective, the redeclaration is an effecting of f. If g plays this role for more than one inherited f, it
both joins and effects these features: this is the case in which C kills several deferred birds with
one effective stone.

Condition 2 is the fundamental type compatibility rule: signature conformance. In the case of a
join, g may be the redeclaration of more than one f; then g’s signature must conform to all of the
precursors’ signatures.

Signature conformance permits covariant redefinition of both query results and routine
arguments, but for arguments you must make the new type detachable — ?U rather than just U
— to prevent “catcalls”.

Condition 3 requires adapting the assertions of a redeclared feature, as governed by rules given
earlier.

Condition 4 requires listing f in the appropriate Redefine subclause, but only for a redefinition, not
for an effecting. (We have a redefinition only if g and the inherited form of f are both deferred or
both effective.) If two or more features inherited as deferred are joined and then redefined
together, every one of them must appear in the Redefine subclause for the corresponding
parent.

Condition 5 bars the use of redeclaration for turning an effective feature into a deferred one. This
is because a specific mechanism is available for that purpose: undefinition. It is possible to apply
both undefinition and redefinition to the same feature to make it deferred and at the same time
change its signature.

Condition 6 prohibits redeclaring a constant attribute, or redeclaring a variable attribute into a
function or constant attribute. It also precludes redeclaring a (variable) attribute of an expanded
type into one of reference type or conversely. You may, however, redeclare a function into an
attribute — variable or constant.

Condition 7 requires the features, if they have aliases, to have the same ones. If you want to
introduce an alias for an inherited feature, change an inherited alias, or remove it, redeclaration is
not the appropriate technique: you must rename the feature. Of course you can still redeclare it
as well.
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Condition 8 applies to assigner commands. It is valid for a redeclaration to include an assigner
command if the precursor did not include one, or conversely; but if both versions of the query have
assigner commands, they must, for obvious reasons of consistency, be the same procedure in C.

End

8.10.27 Definition: Precursor (joined features)
A precursor of an inherited feature is a version of the feature in the parent from which it is
inherited.

8.10.28 Definition: Transposition to a class or type
The transposition to a class C of a specimen s appearing in a ancestor A of C is the specimen
obtained from s by replacing every expression by its Equivalent Dot Form, then:

1 Replacing the arguments of any Call by (recursively) their transposition to C.

2 If s is part of the declaration of a feature g replicated in C along a certain repeated
inheritance path, replacing any Feature_name used as name of the feature of an
unqualified call or as anchor of an anchored type by the name resulting from any
renaming of the feature along that path.

3 Replacing any Feature_name used as name of the feature of an unqualified call or as
anchor of an anchored type, if case 2 does not apply, by the result of any renaming along
applicable inheritance paths.

4 In every qualified call of target t, replacing t by (recursively) its transposition t’ to C and
the feature of the call by (recursively) its transposition to the type of t’ in C.

5 In every Non_object_call of target type T, replacing T by (recursively) its transposition T’
to C and the feature of the call by (recursively) its transposition to T’.

6 For every entity e, other than an attribute, such that s includes a declaration for e,
replacing every occurrence of e by a fresh identifier not used in C.

7 If an ancestor B of C has a parent type P of base class A, replacing every occurrence of
any generic parameter G of A by (recursively) the transposition to C of the application to
G of P’s generic substitution.

The transposition to a type T of a specimen s appearing in a ancestor of the base class C of T is
the result of applying the generic substitution of T to the class transposition of s to C.

8.10.29 Definition: Transposition
The direct transposition to a class B of a specimen s appearing in a parent class A of B is the
specimen obtained from s by replacing every expression by its Equivalent Dot Form, then:

1 Replacing the arguments of any Call by (recursively) their direct transposition to B.

2 If s is part of the declaration of a feature g replicated in B along a certain repeated
inheritance path, replacing the name of the feature of any unqualified call by the name
of the feature as resulting from any renaming along that path.

3 In every unqualified call of feature f whose feature name fn appears in a Rename_pair
of the form fn as gn in a Parent part for A, such that case 2 does not apply, replacing fn
by the identifier of gn.

4 In every qualified call of target t, replacing t by (recursively) its class transposition t’ to B
and the feature of the call by (recursively) its transposition to the type of t’ in B.

5 In every Non_object_call of target type T, replacing T by (recursively) its class
transposition T’ to B and the feature of the call by (recursively) its transposition to T’.

6 For every entity e, other than an attribute, such that s includes a declaration for e,
replacing every occurrence of e by a fresh identifier not used in B.

7 Replacing every occurrence of a formal generic parameter of A by the generic
substitution of B’s parent type of base class A.

The class transposition  to a class C of a specimen s appearing in an ancestor A of C is:
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1 If A and C are the same class: s.

2 If A is a parent of an ancestor B of C: (recursively) the transposition to C of the direct
transposition of s to B.

The transposition to a type T of a specimen s appearing in a ancestor of the base class C of T
is the result of applying the generic substitution of T to the class transposition of s to C.

Informative text
The first part (cases 3 and 7) defines transposition to an heir (direct descendant). Cases 8 and 9
generalize this to any descendant. Recall that a descendant C of A is either A itself (case 8) or,
recursively, a descendant of an heir B of A (case 9).
Case takes care of feature renaming. Because

End

8.10.30 Definition: Unfolded redeclaration
Consider a feature f of a class A. The unfolded redeclaration of f in an heir C of A is a
Feature_declaration defined as follows:

1 If C redeclares f, the declaration of f in C.

2 Otherwise, a Feature_declaration for a feature with the same extended name, the same
signature as f and the same Assigner_mark if any, both transposed to C, and an
Attribute_or_routine consisting solely of:

• If f is deferred, a Feature_body of the Deferred kind.

• If f is an effective routine, a do clause whose Compound reads just Precursor (if f is a
procedure) or Result := Precursor (if f is a function), followed by the parenthesized list of
formal arguments if any.

• If f is an attribute, an attribute  clause whose Compound reads just Result := Precursor .

8.10.31 Validity: Join rule Validity code: VDJR

It is valid for a class C to inherit two different features under the same final name under and only
under the following conditions:

1 If both are inherited as effective, C redefines both into a common version.

2 If both are inherited as deferred, the unfolded redeclaration in C of each of them is a valid
redeclaration of the other.

3 Otherwise, the unfolded redeclaration in C of the one inherited as effective is a valid
redeclaration of the one inherited as deferred.

Informative text
THE FOLLOWING INFORMATIVE TEXT NEEDS UPDATING. The Join rule indicates that joined
features must have exactly the same signature — argument and result types.
What matters is the signature after possible redefinition or effecting. So in practice you may join
precursor features with different signatures: it suffices to redeclare them using a feature which (as
required by point 2 of the Redeclaration rule) must have a signature conforming to all of the
precursors’ signatures.
If the redeclaration describes an effective feature, this is the case of both joining and effecting a
set of inherited features. If the redeclaration describes a feature that is still deferred, it is a
redefinition, used to adapt the signature and possibly the specification. In this case, point 4 of the
Redeclaration rule requires every one of the precursors to appear in the Redefine subclause for
the corresponding parent.
Condition 1 mentions “redeclaration or effecting”. These two cases are not exclusive: an effecting
— turning a feature f, inherited as deferred from a parent of C, into an effective one — can result
from a new declaration of f in C, but also from a “join” of f with an effective feature inherited under
the same name from another parent.
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In any case, nothing requires the precursors’ signatures to conform to each other, as long as the
signature of the version in C conforms to all of them. This means you may write a class inheriting
two deferred features of the form

f (p: P): T …
f (t: Q): U …

and redeclare them with
f (x: ? R): V …

provided R conforms to both P and Q and V to both T and U. No conformance is required between
the types appearing in the precursors’ signatures (P and Q, T and U).

The assumption that the features are “different” is important: they could in fact be the same
feature, appearing in two parents of C that have inherited it from a common ancestor, without any
intervening redeclaration. This would be a valid case of repeated inheritance; here the rule that
determines validity is the Repeated Inheritance Consistency constraint. The semantic
specification (sharing under the Repeated Inheritance rule) indicates that C will have just one
version of the feature.

Conditions 1 and 2 of the Join rule are consistency requirements on aliases and on assigner
commands. The condition on aliases is consistent with condition 7 of the Redeclaration rule, which
requires a redeclaration to keep the alias if any; it was noted in the comment to that rule that
redeclaration is not the appropriate way to add, change or remove an alias (you should use
renaming for that purpose); neither is join. The condition on assigner commands ensures that any
Assigner_call has the expected effect, even under dynamic binding on a target declared of a
parent type.

End

8.10.32 Semantics: Join Semantics rule
Joining in a class C two or more inherited features with the same final name under the terms of
the Join rule yields a single feature of C defined as follows:

1 If at least one of these features is effective: its unfolded redeclaration in C.

2 Otherwise: the unfolded redeclaration in C of any of them.

Informative text
****** TO BE REDONE *****The rule covers three cases:
• An explicit redeclaration, which serves as a redeclaration of all the joined precursors, and

gives them a new signature (which must conform to all their signatures per the Join rule), body
(since it serves as “unfolded redeclaration” in point ****) and assertions (point ****).

• No redeclaration, with precursors all deferred, all having the same signature; they are then
merged into a single deferred feature.

• No redeclaration, with one effective feature and the others deferred, all with the same
signature; the effective feature then serves as effecting of the others.

In the absence of a redeclaration, point****** states that the new feature has no specific
precondition and postcondition. It will still, however, have a combined precondition and a
combined postcondition obtained from the precursors’ assertions. In the case of a
redeclaration, the combined precondition and postcondition also include the assertions, if any, of
the redeclared version.

Point ****** leaves the concatenation order unspecified.

In point ******, there can be at most one effective precursor because of the Join rule.

In point ****** (corresponding to a rare case) language processing tools should produce an
obsolescence message for the class performing the join, but the resulting feature is not itself
obsolete.

End
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 8.11 Types

Informative text
Types describe the form and properties of objects that can be created during the execution of a
system. The type system lies at the heart of the object-oriented approach; the use of types to
declare all entities leads to more clear software texts and permits compilers to detect many
potential errors and inconsistencies before they can cause damage.

End

8.11.1  Syntax: Types
Type =∆ Class_or_tuple_type | Formal_generic_name | Anchored

Class_or_tuple_type =∆ Class_type | Tuple_type

Class_type =∆ [Attachment_mark] Class_name [Actual_generics]

Attachment_mark =∆ "?" |  "!"

Anchored =∆ [Attachment_mark] like Anchor

Anchor =∆ Feature_name | Current

Informative text
The most common and versatile kind is Class_type, covering types described by a class name,
followed by actual generic parameters if the class is generic. The class name gives the type’s base
class. If the base class is expanded, the Class_type itself is an expanded type; if the base class
is non-expanded, the Class_type is a reference type.
An Attachment_mark ? indicates that the type is detachable : its values may be void — not
attached to an object. The ! mark indicates the reverse: the type is attached , meaning that its
values will always denote an object; language rules, in particular constraints on attachment,
guarantee this. No Attachment_mark means the same as !, to ensure that a type, by default, will
be attached.

End

8.11.2 Semantics: Direct instances and values of a type
The direct instances of a type T are the run-time objects resulting from: representing a manifest
constant, manifest tuple, Manifest_type, agent or Address expression of type T; applying a
creation operation to a target of type T; (recursively) cloning an existing direct instance of T.

The values  of a type T are the possible run-time values of an entity or expression of type T.

8.11.3 Semantics: Instance of a type
The instances  of a type TX are the direct instances of any type conforming to TX.

Informative text
Since every type conforms to itself, this is equivalent to stating that the instances of TX are the
direct instances of TX and, recursively, the instances of any other type conforming to TX.

End

8.11.4 Semantics: Instance principle
Any value of a type T is:

• If T is reference, either a reference to an instance of T or (unless T is attached) a void
reference.

• If T is expanded, an instance of T.

8.11.5 Definition: Instance, direct instance of a class
An instance of a class C is an instance of any type T based on C.

A direct instance of C is a direct instance of any type T based on C.
- 74 -



Informative text
For non-generic classes the difference between C and T is irrelevant, but for a generic class you
must remember that by itself the class does not fully determine the shape of its direct instances:
you need a type, which requires providing a set of actual generic parameters.

End

8.11.6 Base principle
Any type T proceeds, directly or indirectly, from a Class_or_tuple_type called its base type , and
an underlying class called its base class .

The base class of a type is also the base class of its base type.

Informative text
A Class_type is its own base type; an anchored type like anchor with anchor having base type U
also has U as its base type. For a formal generic parameter G in class C [G –> T] … the base type
is (in simple cases) the constraining type T, or ANY if the constraint is implicit.
The base class is the class providing the features applicable to instances of the type. If T is a
Class_type the connection to a class is direct: T is either the name of a non-generic class, such
as PARAGRAPH, or the name of a generic class followed by Actual_generics, such as LIST
[WINDOW]. In both cases the base class of T is the class whose name is used to obtain T, with
any Actual_generics removed: PARAGRAPH and LIST in the examples. For a Tuple_type, the
base class is a fictitious class TUPLE, providing the features applicable to all tuples.
For types not immediately obtained from a class we obtain the base class by going through base
type: for example T is an Anchored type of the form like anchor, and anchor is of type LIST
[WINDOW], then the base class of that type, LIST, is also the base class of T.

End

8.11.7 Base rule
The base type  of any type is a Class_or_tuple_type, with no Attachment_mark.

The base class of any type other than a Class_or_tuple_type is (recursively) the base class of its
base type.

The direct instances  of a type are those of its base type.

Informative text
Why are these notions important? Many of a type’s key properties (such as the features applicable
to the corresponding entities) are defined by its base class. Furthermore, class texts almost never
directly refer to classes: they refer to types based on these classes.

End

8.11.8 Validity: Class Type rule Validity code: VTCT

A Class_type is valid if and only if it satisfies the following two conditions:

1 Its Class_name is the name of a class in the surrounding universe.

2 If it has a “?” Attachment_mark, that class is not expanded.

Informative text
The class given by condition 1 will be the type’s base class. Regarding condition 2, an expanded
type is always attached, so an Attachment_mark would not make sense in that case.

End

8.11.9 Semantics: Type Semantics rule
To define the semantics of a type T it suffices to specify:
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1 Whether T is expanded or reference.

2 Whether T, if reference, is attached or detachable.

3 What is T’s base type.

4 If T is a Class_or_tuple_type, what are its base class and its type parameters if any.

8.11.10 Definition: Base class and base type of an expression

Any expression e has a base type and a base class , defined as the base type and base class of
the type of e.

8.11.11 Semantics: Non-generic class type semantics

A non-generic class C used as a type (of the Class_type category) has the same expansion status
as C (i.e. it is expanded if C is an expanded class, reference otherwise). It is its own base type
(after removal of any Attachment_mark) and base class.

8.11.12 Definition: Expanded type, reference type

A type T is expanded if and only if it is not a Formal_generic_name and the base class of its
deanchored form is an expanded class.

T is a reference type  if it is neither a Formal_generic_name nor expanded.

Informative text

This definition characterizes every type as either reference or expanded, except for the case of a
Formal_generic_name, which stands for any type to be used as actual generic parameter in a
generic derivation: some derivations might use a reference type, others an expanded type.

Tuple types are, as a consequence of the definition, reference types.

End

8.11.13 Definition: Basic type

The basic types are BOOLEAN, CHARACTER and its sized variants, INTEGER and its sized
variants, REAL and its sized variants and POINTER.

Informative text

Like most other types, the basic types are defined by classes, found in the Kernel Library. In other
words they are not predefined, “magic” types, but fit in the normal class-based type system of
Eiffel.

Compilers typically know about them, so that they can generate code that performs arithmetic and
relational operations as fast as in lower-level languages where basic types are built-in. This is only
for efficient implementation: semantically, the basic types are just like other class types.

End

8.11.14 Definition: Anchor, anchored type, anchored entity

The anchor of an anchored type like anchor is the entity anchor. A declaration of an entity with
such a type is an anchored declaration , and the entity itself is an anchored entity .

Informative text

The anchor must be either an entity, or Current . If an entity, anchor must be the final name of a
feature of the enclosing class.

End
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Informative text

The syntax permits x to be declared of type like anchor if anchor is itself anchored, of type like
other_anchor. Although most developments do not need such anchor chains, they turn out to be
occasionally useful for advanced applications. But then of course we must make sure that an
anchor chain is meaningful, by excluding cycles such as a declared as like b, b as like c, and c as
like a. The following definition helps.

End

8.11.15 Definition: Anchor set; cyclic anchor

The anchor set of a type T is the set of entities containing, for every anchored type like anchor
involved in T:

• anchor.

• (Recursively) the anchor set of the type of anchor.

An entity a of type T is a cyclic anchor if the anchor set of T includes a itself.

Informative text
The anchor set of LIST [like a, HASH_TABLE [like b, STRING]] is, according to this definition, the
set {a, b}.

Because of genericity, the cycles that make an anchor “cyclic” might occur not directly through the
anchors but through the types they involve, as with a of type LIST [like b] where b is of type like
a. Here we say that a type “involves” all the types appearing in its definition, as captured by the
following definition.

End

8.11.16 Definition: Types and classes involved in a type

The types involved  in a type T are the following:

• T itself.

• If T is of the form a T’ where a is an Attachment_mark: (recursively) the types involved in T’.

• If T is a generically derived Class_type or a Tuple_type: all the types (recursively) involved in
any of its actual parameters.

The classes involved in T are the base classes of the types involved in T.

Informative text
A [B, C, LIST [ARRAY [D]]] involves itself as well as B, C, D, ARRAY [D] and LIST [ARRAY [D].
The notion of cyclic anchor captures this notion in full generality; the basic rule, stated next, will
be that if a is a cyclic anchor you may not use it as anchor: the type like a will be invalid.

End

8.11.17 Definition: Deanchored form of a type

The deanchored form of a type T in a class C is the type (Class_or_tuple_type or
Formal_generic) defined as follows:

1 If T is like Current : the current type of C.

2 If T is like anchor where the type AT of anchor is not anchored: (recursively) the
deanchored form of AT.

3 If T is like anchor where the type AT of anchor is anchored but anchor is not a cyclic
anchor: (recursively) the deanchored form of AT in C.

4 If T is a AT, where a is an Attachment_mark: a DT, where DT is (recursively) the
deanchored form of AT deprived of its Attachment_mark if any.
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5 If none of the previous cases applies: T after replacement of any actual parameter by
(recursively) its deanchored form.

Informative text
Although useful mostly for anchored types, the notion of “deanchored form” is, thanks to the
phrasing of the definition, applicable to any type. Informally, the deanchored form yields, for an
anchored type, what the type “really means”, in terms of its anchor’s type. It reflects the role of
anchoring as what programmers might call a macro mechanism, a notational convenience to
define types in terms of others.
Case 4 enables us to treat ? like anchor as a detachable type whether the type of anchor is
attached or detachable.

End

8.11.18 Validity: Anchored Type rule Validity code: VTAT

It is valid to use an anchored type AT of the form like anchor in a class C if and only if it satisfies
the following conditions:

1 anchor is either Current or the final name of a query of C.

2 anchor is not a cyclic anchor.

3 The deanchored form UT of AT is valid in C.

The base class and base type of AT are those of UT.

Informative text
An anchored type has no properties of its own; it stands as an abbreviation for its unfolded form.
You will not, for example, find special conformance rules for anchored type, but should simply
apply the usual conformance rules to its deanchored form.
Anchored declaration is essentially a syntactical device: you may always replace it by explicit
redefinition. But it is extremely useful in practice, avoiding much code duplication when you must
deal with a set of entities (attributes, function results, routine arguments) which should all follow
suit whenever a proper descendant redefines the type of one of them, to take advantage of the
descendant’s more specific context.

End

8.11.19 Definition: Attached, detachable

A type is detachable if its deanchored form is a Class_type declared with the ? Attachment_mark.

A type is attached  if it is not detachable.

Informative text
By taking the “deanchored form”, we can apply the concepts of “attached” and “detachable” to an
anchored type like a, by just looking at the type of a and finding out whether it is attached or not.

As a consequence of this definition, an expanded type is attached.

As the following semantic definition indicates, the idea of declaring a type as attached is to
guarantee that its values will never be void.

End

8.11.20 Semantics: Attached type semantics

Every run-time value of an attached type is non-void (attached to an object).

Informative text
In contrast, values of a detachable type may be void.
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These definitions rely on the run-time notion of a value being attached (to an object) or void. So
there is a distinction between the static property that an entity is attached (meaning that language
rules guarantee that its run-time values will never be void) or detachable, and the dynamic
property that, at some point during execution, its value will be attached or not. If there’s any risk
of confusion we may say “statically attached” for the entity, and “dynamically attached” for the
run-time property of its value.
The validity and semantic rules, in particular on attachment operations, ensure that attached types
indeed deserve this qualification, by initializing all the corresponding entities to attached values,
and protecting them in the rest of their lives from attachment to void.
From the above semantics, the ! mark appears useless since an absent Attachment_mark has the
same effect. The mark exists to ensure a smooth transition: since earlier versions of Eiffel did not
guarantee void-safety, types were detachable by default. To facilitate adaptation to current Eiffel
and avoid breaking existing code, compilers may offer a compatibility option (departing from the
Standard, of course) that treats the absence of an Attachment_mark as equivalent to ?. You can
then use ! to mark the types that you have moved to the attached world and adapt your software
at your own pace, class by class if you wish, to the new, void-safe convention.

End

8.11.21 Definition: Stand-alone type
A Type is stand-alone if and only if it involves neither any Anchored type nor any
Formal_generic_name.

Informative text
In general, the semantics of a type may be relative to the text of class in which the type appears:
if the type involves generic parameters or anchors, we can only understand it with respect to some
class context. A stand-alone type always makes sense — and always makes the same sense —
regardless of the context.
We restrict ourselves to stand-alone types when we want a solidly defined type that we can use
anywhere. This is the case in the validity rules enabling creation of a root object for a system, and
the definition of a once function.

End

 8.12 Genericity

Informative text
The types discussed so far were directly defined by classes. The genericity mechanism, still
based on classes, gives us a new level of flexibility through type parameterization . You may for
example define a class as LIST [G], yielding not just one type but many: LIST [INTEGER],
LIST [AIRPLANE] and so on, parameterized by G.
Parameterized classes such as LIST are known as generic classes ; the resulting types, such as
LIST [INTEGER], are generically derived . “Genericity” is the mechanism making generic classes
and generic derivations possible.
Two forms of genericity are available: with unconstrained genericity, G represents an arbitrary
type; with constrained genericity, you can demand certain properties of the types represented by
G, enabling you to do more with G in the class text.

End

8.12.1  Syntax: Actual generic parameters
Actual_generics =∆ "[" Type_list "]"

Type_list =∆ {Type "," …}+

8.12.2  Syntax: Formal generic parameters
Formal_generics =∆ "[" Formal_generic_list "]"
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Formal_generic_list =∆ {Formal_generic ","…}+

Formal_generic =∆ [frozen ] Formal_generic_name [Constraint]

Formal_generic_name =∆ [?] Identifier

8.12.3 Validity: Formal Generic rule Validity code: VCFG

A Formal_generics part of a Class_declaration is valid if and only if every Formal_generic_name
G in its Formal_generic_list satisfies the following conditions:

1 G is different from the name of any class in the universe.

2 G is different from any other Formal_generic_name appearing in the same
Formal_generics part.

Informative text
Adding the frozen qualification to a formal generic, as in D [frozen G] rather than just C [G], means
that conformance on the corresponding generically derived classes requires identical actual
parameters: whereas C [U] conforms to C [T] if U conforms to T, D [U] does not conform to D [T]
if U is not T.

Adding the ? mark to a Formal_generic_name, as in ? G, means that the class may declare
self-initializing variables (variables that will be initialized automatically on first use) of type G; this
requires that any actual generic parameter that is an attached type must also be self-initializing,
that is to say, make default_create from ANY available for creation.

End

8.12.4 Definition: Generic class; constrained, unconstrained
Any class declared with a Formal_generics part (constrained or not) is a generic class .

If a formal generic parameter of a generic class is declared with a Constraint, the parameter is
constrained ; if not, it is unconstrained .

A generic class is itself constrained if it has at least one constrained parameter, unconstrained
otherwise.

Informative text
A generic class does not describe a type but a template for a set of possible types. To obtain an
actual type, you must provide an Actual_generics list, whose elements are themselves types. This
has a name too, per the following definition.

End

8.12.5 Definition: Generic derivation, non-generic type
The process of producing a type from a generic class by providing actual generic parameters is
generic derivation .

A type resulting from a generic derivation is a generically derived type , or just generic type .

A type that is not generically derived is a non-generic type .

Informative text
It is preferable to stay away from the term “generic instantiation” (sometimes used in place of
“generic derivation”) as it creates a risk of confusion with the normal meaning of “instantiation” in
object-oriented development: the run-time process of obtaining an object from a class.

End

8.12.6 Definition: Self-initializing formal parameter
A Formal_generic_parameter is self-initializing if and only if its declaration includes the optional
? mark.
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Informative text

This is related to the notion of self-initializing type: a type which makes default_create from ANY
available for creation. The rule will be that an actual generic parameter corresponding to a
self-initializing formal parameter must itself, if attached, be a self-initializing type.

End

8.12.7 Definition: Constraint, constraining types of a Formal_generic

The constraint of a formal generic parameter is its Constraint part if present, and otherwise ANY.

Its constraining types are all the types listed in its Constraining_types if present, and otherwise
just ANY.

8.12.8  Syntax: Generic constraints

Constraint =∆ "–>" Constraining_types [Constraint_creators]

Constraining_types =∆ Single_constraint | Multiple_constraint

Single_constraint =∆ Type [Renaming]

Renaming =∆ Rename end

Multiple_constraint =∆ "{" Constraint_list "}"

Constraint_list =∆ {Single_constraint "," …}+

Constraint_creators =∆ create Feature_list end

8.12.9 Validity: Generic Constraint rule Validity code: VTGC

A Constraint part appearing in the Formal_generics part of a class C is valid if and only if it
satisfies the following conditions for every Single_constraint listing a type T in its
Constraining_types:

1 T involves no anchored type.

2 If a Renaming clause rename rename_list end is present, a class definition of the form
class NEW inherit BT rename rename_list end (preceded by deferred if the base class
of T is deferred), where BT is the base class of T, would be valid.

Informative text

There is no requirement here on the Constraint_creators part, although in most cases it will list
names (after Renaming) of creation procedures of the constraining types. The precise
requirement is captured by other rules.

Condition 2 implies that the features listed in the Constraint_creators are, after possible
Renaming, names of features of one or more of the constraining types, and that no clash remains
that would violated the rules on inheritance. In particular, you can use the Renaming either to
merge features if they come from the same seeds, or (the other way around) separate them.

If T is based on a deferred class the fictitious class NEW should be declared as deferred too,
otherwise it would be invalid if T has deferred features. On the other hand, NEW cannot be valid
if T is based on a frozen class; in this case it is indeed desirable to disallow the use of T as a
constraint, since the purpose of declaring a class frozen  is to prevent inheritance from it

End

8.12.10 Definition: Constraining creation features

If G is a formal generic parameter of a class, the constraining creators of G are the features of
G’s Constraining_types, if any, corresponding after possible Renaming to the feature names listed
in the Constraining_creators if present.
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Informative text
Constraining creators should be creation procedures, but not necessarily (as seen below) in the
constraining types themselves; only their instantiatable descendants are subject to this rule.

End

8.12.11 Validity: Generic Derivation rule Validity code: VTGD

Let C be a generic class. A Class_type CT having C as base class is valid if and only if it satisfies
the following conditions for every actual generic parameter T and every Single_constraint U
appearing in the constraint for the corresponding formal generic parameter G:

1 The number of Type components in CT’s Actual_generics list is the same as the number
of Formal_generic parameters in the Formal_generic_list of C’s declaration.

2 T conforms to the type obtained by applying to U the generic substitution of CT.

3 If C is expanded, CT is generic-creation-ready.

4 If G is a self-initializing formal parameter and T is attached, then T is a self-initializing
type.

Informative text
In the case of unconstrained generic parameters, only condition 1 applies, since the constraint in
that case is ANY, which trivially satisfies the other two conditions.

Condition 3 follows from the semantic rule permitting “lazy” creation of entities of expanded types
on first use, through default_create. Generic-creation-readiness (defined next) is a condition on
the actual generic parameters that makes such initialization safe if it may involve creation of
objects whose type is the corresponding formal parameters.

Condition 4 guarantees that if C relies, for some of its variables of type G, on automatic
initialization on first use, T provides it, if attached (remember that this includes the case of
expanded types), by making default_create from ANY available for creation. If T is detachable this
is not needed, since Void will be a suitable initialization value.

End

8.12.12 Definition: Generic-creation-ready type

A type of base class C is generic-creation-ready if and only if every actual generic parameter T
of its deanchored form satisfies the following conditions:

1 If the specification of the corresponding formal generic parameter includes a
Constraint_creators, the versions in T of the constraining creators for the corresponding
formal parameter are creation procedures, available for creation to C, and T is
(recursively) generic-creation-ready.

2 If T is expanded, it is (recursively) generic-creation-ready.

Informative text
Although phrased so that it is applicable to any type, the condition is only interesting for generically
derived types of the form C […, T, …]. Non-generically-derived types satisfy it trivially since there
is no applicable T.

The role of this condition is to make sure that if class C […, G , …] may cause a creation operation
on a target of type G — as permitted only if the class appears as C […, G –> CONST create cp1,
… end, …] — then the corresponding actual parameters, such as T, will support the given features
— the “constraining creators” — as creation procedures.

It might then appear that generic-creation-readiness is a validity requirement on any actual
generic parameter. But this would be more restrictive than we need. For example T might be a
deferred type; then it cannot have any creation procedures, but that’s still OK because we cannot
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create instances of T, only of its effective descendants. Only if it is possible to create an actual
object of the type do we require generic-creation-readiness. Overall, we need
generic-creation-readiness only in specific cases, including:
• For the creation type of a creation operation: conditions 4 of the Creation Instruction rule and

3 of the Creation Expression rule.

• For a Parent in an Inheritance part: condition 6 of the Parent rule.

• For an expanded type: condition 3 of the just seen Generic Derivation rule.

End

8.12.13 Semantics: Generically derived class type semantics
A generically derived Class_type of the form C […], where C is a generic class, is expanded if C
is an expanded class, reference otherwise. It is its own base type, and its base class is C.

Informative text
So LINKED_LIST [POLYGON] is its own base type, and its base class is LINKED_LIST.

End

8.12.14 Definition: Base type of a single-constrained formal generic
The base type of a constrained Formal_generic_name G having as its constraining types a
Single_constraint listing a type T is:

1 If T is a Class_or_tuple_type: T.

2 Otherwise (T is a Formal_generic_name): the base type of T if it can be determined by
(recursively) case 1, otherwise ANY.

Informative text
The definition is never cyclic since the only recursive part is the use of case 1 from case 2.

Case 1 is the common one: for C [G –> T] we use as base type of G, in C, the base type of T. We
need case 2 to make sure that this definition is not cyclic, because we permit cases such as C [G,
H–> D [G]], and as a consequence cases such as C [G –> H, H–> G] or even C [G –> G] even
though they are not useful; both of these examples yield ANY as base types for the parameters.

As a result of the definition of “constraining types”, the base type of an unconstrained formal
generic, such as G in C [G], is also ANY.

End

8.12.15 Definition: Base type of an unconstrained formal generic
The base type of an unconstrained Formal_generic_name type is ANY.

8.12.16 Definition: Reference or expanded status of a formal generic
A Formal_generic_name represents a reference type or expanded type depending on the
corresponding status of the associated actual generic parameter in a particular generic derivation.

8.12.17 Definition: Current type
Within a class text, the current type is the type obtained from the current class by providing as
actual generic parameters, if required, the class’s own formal generic parameters.

Informative text
Clearly, the base class of the current type is always the current class.

End

8.12.18 Definition: Features of a type
The features of a type are the features of its base class.
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Informative text
These are the features applicable to the type’s instances (which are also instances of its base
class).

End

8.12.19 Definition: Generic substitution
Every type T defines a mapping σ from names to types known as its generic substitution :

1 If T is generically derived, σ associates to every Formal_generic_name the
corresponding actual parameter.

2 Otherwise, σ is the identity substitution.

8.12.20 Generic Type Adaptation rule
The signature of an entity or feature f of a type T of base class C is the result of applying T’s
generic substitution to the signature of f in C.

Informative text
The signature include both the type of an entity or query, and the argument types for a routine; the
rule is applicable to both parts.

End

8.12.21 Definition: Generically constrained feature name
Consider a generic class C, a constrained Formal_generic_name G of C, a type T appearing as
one of the Constraining_types for G, and a feature f of name fname in the base class of T. The
generically constrained names of f for G in C are:

1 If one or more Single_constraint clauses for T include a Rename part with a clause
fname as ename, where the Feature_name part of ename (an Extended_feature_name)
is gname: all such gname.

2 Otherwise: just fname.

8.12.22 Validity: Multiple Constraints rule Validity code: VTMC

A feature of name fname is applicable in a class C to a target x whose type is a
Formal_generic_name G constrained by two or more types CONST1, CONST2,…, if and only if it
satisfies the following conditions:

1 At least one of the CONSTi has a feature available to C whose generically constrained
name for G in C is fname.

2 If this is the case for two or more of the CONSTi, all the corresponding features are the
same.

8.12.23 Definition: Base type of a multi-constraint formal generic type
The base type of a multiply constrained Formal_generic_name type is a type generically derived,
with the same actual parameters as the current class, from a fictitious class with none of the
optional parts except for Formal_generics and an Inheritance clause that lists all the constraining
types as parents, with the given Renaming clause if any, and resolves any conflicts between
potentially ambiguous features by further renaming them to new names not available to
developers.

 8.13 Tuples

Informative text
Based on a bare-bones form of class — with no class names — tuple types provide a concise and
elegant solution to a number of issues:
• Writing functions with multiple results, ensuring complete symmetry with multiple arguments.
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• Describing sequences of values of heterogeneous types, or “tuples”, such as [some_integer,
some_string, some_object], convenient for example as arguments to printing routines.

• Achieving the effect of routines with a variable number of arguments.

• Achieving the effect of generic classes with a variable number of generic parameters.

• Using simple classes, defined by a few attributes and the corresponding assigner commands
— similar to the “structures” or “records” of non-O-O languages, but in line with O-O principles
— without writing explicit class declarations.

• Making possible the agent mechanism through which you can handle routines as objects and
define higher-order routines.

End

8.13.1  Syntax: Tuple types
Tuple_type =∆ TUPLE [Tuple_parameter_list]

Tuple_parameter_list =∆ "[" Tuple_parameters "]"

Tuple_parameters =∆ Type_list | Entity_declaration_list

8.13.2  Syntax: Manifest tuples
Manifest_tuple =∆ "[" Expression_list "]"

Expression_list =∆ {Expression "," …}*

8.13.3 Definition: Type sequence of a tuple type
The type sequence of a tuple type is the sequence of types obtained by listing its parameters, if
any, in the order in which they appear, every labeled parameter being listed as many times as it
has labels.

Informative text
The type sequence for TUPLE is empty; the type sequence for TUPLE [INTEGER; REAL;
POLYGON] is INTEGER, REAL, POLYGON; the type sequence for TUPLE [i, j: INTEGER; r:
REAL; p: POLYGON] is INTEGER, INTEGER, REAL, POLYGON, where INTEGER appears twice
because of the two labels i, j.

End

8.13.4 Definition: Value sequences associated with a tuple type
The value sequences associated with a tuple type T are sequences of values, each of the type
appearing at the corresponding position in T’s type sequence.

Informative text
Parameter labels play no role in the semantics of tuples and their conformance properties. They
never intervene in tuple expressions (such as [25, –8.75, pol]). Their only use is to allow
name-based access to tuple fields, as your_tuple.label, guaranteeing statically the type of the
result.

End

 8.14 Conformance

Informative text
Conformance is the most important characteristic of the Eiffel type system: it determines when a
type may be used in lieu of another.
The most obvious use of conformance is to make assignment and argument passing type-safe:
for x of type T and y of type V, the instruction x := y, and the call some_routine (y) with x as formal
argument, will only be valid if V is compatible with T, meaning that it either conforms or converts
to T. Conformance also governs the validity of many other constructs, as discussed below.
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Conformance, as the rest of the type system, relies on inheritance. The basic condition for V to
conform to T is straightforward:
• The base class of V must be a descendant of the base class of T.

• If V is a generically derived type, its actual generic parameters must conform to the
corresponding ones in T: B [Y] conforms to A [X] only if B conforms to A and Y to X.

• If T is expanded, inheritance is not involved: V can only be T itself.

A full understanding of conformance requires the formal rules explained below, which take into
account the details of the type system: constrained and unconstrained genericity, special rules for
predefined arithmetic types, tuple types, anchored types.
The following discussion introduces the various conformance rules of the language as
“definitions”. Although not validity constraints themselves, these rules play a central role in many
of the constraints, so that language processing tools such as compilers may need to refer to them
in their error messages. For that reason each rule has a validity code of the form VNCx.

End

8.14.1 Definition: Compatibility between types
A type is compatible  with another if it either conforms or converts to it.

8.14.2 Definition: Compatibility between expressions
An expression b is compatible with an expression a if and only if b either conforms or converts
to a.

8.14.3 Definition: Expression conformance
An expression exp of type SOURCE conforms to an expression ent of type TARGET if and only
if they satisfy the following conditions:

1 SOURCE conforms to TARGET.

2 If TARGET is attached, so is SOURCE.

3 If SOURCE is expanded, its version of the function cloned from ANY is available to the
current class.

Informative text
So conformance of expressions is more than conformance of their types. Both conditions 2 and 3
are essential. Condition 2 guarantees that execution will never attach a void value to an entity
declared of an attached type — a declaration intended precisely to rule out that possibility, so that
the entity can be used as target of calls. Condition 3 allows us, in the semantics of attachment, to
use a cloning operation when attaching an object with “copy semantics”, without causing
inconsistencies.

A later definition will state what it means for an expression b to convert to another a. As a special
case these properties also apply to entities.

Conformance and convertibility are exclusive of each other, so we study the two mechanisms
separately. The rest of the present discussion is devoted to conformance.

End

8.14.4 Validity: Signature conformance Validity code: VNCS

A signature t = [B1, … Bn], [S] conforms to a signature s = [A1, … An], [R] if and only if it satisfies
the following conditions:

1 Each of the two components of t has the same number of elements as the corresponding
component of s.

2 Each type in each of the two components of t conforms to the corresponding type in the
corresponding component of s.

3 Any Bi not identical to the corresponding Ai is detachable.
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Informative text
For a signature to conform: the argument types must conform (for a routine); the two signatures
must both have a result type or both not have it (meaning they are both queries, or both
procedures); and if there are result types, they must conform.
Condition 3 adds a particular rule for “covariant redefinition” of arguments as defined next.

End

8.14.5 Definition: Covariant argument
In a redeclaration of a routine, a formal argument is covariant if its type differs from the type of
the corresponding argument in at least one of the parents’ versions.

Informative text
From the preceding signature conformance rule, the type of a covariant argument will have to be
declared as detachable: you cannot redefine f (x: T) into f (x: U) even if U conforms to T; you may,
however, redefine it to f (x: ?U). This forces the body of the redefined version, when applying to x
any feature of f, to ensure that the value is indeed attached to an instance of U by applying an
Object_test, for example in the form

if {x: U} y then y.feature_of_U else … end
This protects the program from catcalls — wrongful uses, of a redefined feature, through
polymorphism and dynamic binding, to an actual argument of the original, pre-covariant type.
The rule only applies to arguments, not results, which do not pose a risk of catcall.
This rule is the reason why the Feature Declaration rule requires that if any routine argument is of
an anchored type, that type must be detachable, since anchored declaration is a shorthand for
explicit covariance.

End

8.14.6 Validity: General conformance Validity code: VNCC

Let T and V be two types. V conforms to T if and only if one of the following conditions holds:

1 V and T are identical.

2 V conforms directly to T.

3 V is NONE and T is a detachable reference type.

4 V is B [Y1,… Yn] where B is a generic class, T is B [X1,… Xn], and for every Xi the
corresponding Yi is identical to Xi or, if the corresponding formal parameter does not
specify frozen , conforms (recursively) to Xi.

5 For some type U (recursively), V conforms to U and U conforms to T.

6 T or V or both are anchored types appearing in the same class C, and the deanchored
form of V in C (recursively) conforms to the deanchored form of T.

Informative text
Cases 1 and 2 are immediate: a type conforms to itself, and direct conformance is a case of
conformance.
Case 3 introduces the class NONE describing void values for references. You may assign such a
value to a variable of a reference type not declared as attached (as the role of such declarations
is precisely to exclude void values); an expanded target is also excluded since it requires an
object.
Case 4 covers the replacement of one or more generic parameters by conforming ones, keeping
the same base class: B [Y] conforms to B [X] if Y conforms to X. (This does not yet address
conformance to B [Y1, … Yn] of a type CT based on a class C different from B.) Also note that the
frozen specification is precisely intended to preclude conformance other than from the given type
to itself.
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Case 5 is indirect conformance through an intermediate type U.
Finally, case 6 allows us to treat any anchored type, for conformance as for its other properties,
as an abbreviation — a “macro” in programmer terminology — for the type of its anchor.
Thanks to this definition of conformance in terms of direct conformance, the remainder of the
discussion of conformance only needs to define direct conformance rules for the various
categories of type.

End

8.14.7 Definition: Conformance path
A conformance path from a type U to a type T is a sequence of types T0, T1, … Tn (n ≥ 1) such
that T0 is U, Tn is T, and every Ti (for 0 ≤ i < n) conforms to Ti+1. This notion also applies to classes
by considering the associated base classes.

8.14.8 Validity: Direct conformance: reference types Validity code: VNCN

A Class_type CT of base class C conforms directly to a reference type BT if and only if it satisfies
the following conditions:

1 Applying CT’s generic substitution to one of the conforming parents of C yields BT.

2 If BT is attached, so is CT.

Informative text
The restriction to a reference type in this rule applies only to the target of the conformance, BT.
The source, CT, may be expanded.
The basic condition, 1, is inheritance. To handle genericity it applies the “generic substitution”
associated with every type: for example with a class C [G, H] inheriting from D [G], the type C [T,
U] has a generic substitution associating T to G and U to H. So it conforms to the result of applying
that substitution to the Parent D [G]: the type D [T].
Condition 2 guarantees that we’ll never attach a value of a detachable type — possibly void — to
a target declared of an attached type; the purpose of such a declaration is to avoid this very case.
The other way around, an attached type may conform to a detachable one.
This rule is the foundation of the conformance mechanism, relying on the inheritance structure as
the condition governing attachments and redeclarations. The other rules cover refinements
(involving in particular genericity), iterations of the basic rule (as with “general conformance”) and
adaptations to special cases (such as expanded types).

End

8.14.9 Validity: Direct conformance: formal generic Validity code: VNCF

Let G be a formal generic parameter of a class C, which in the text of C may be used as a
Formal_generic_name type. Then:

1 No type conforms directly  to G.

2 G conforms directly  to every type listed in its constraint, and to no other type.

8.14.10 Validity: Direct conformance: expanded types Validity code: VNCE

No type conforms directly  to an expanded type.

Informative text
From the definition of general conformance, an expanded type ET still conforms, of course, to
itself. ET may also conform to reference types as allowed by the corresponding rule (VNCN); the
corresponding assignments will use copy semantics. But no other type (except, per General
Conformance, for e of type ET, the type like  e, an abbreviation for ET) conforms to ET.
This rule might seem to preclude mixed-type operations of the kind widely accepted for basic
types, such as f (3) where the routine f has a formal argument of type REAL, or
your_integer_64 := your_integer_16 with a target of type INTEGER_64 and a source of type
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INTEGER_16. Such attachments, however, involve conversion from one type to another. What
makes them valid is not conformance but convertibility , which does support a broad range of
safe mixed-type assignments.

End

8.14.11 Validity: Direct conformance: tuple types Validity code: VNCT

A Tuple_type U, of type sequence us, conforms directly to a type T if and only if T satisfies the
following conditions:

1 T is a tuple type, of type sequence ts.

2 The length of us is greater than or equal to the length of ts.

3 For every element X of ts, the corresponding element of us conforms to X.

No type conforms directly to a tuple type except as implied by these conditions.

Informative text
Labels, if present, play no part in the conformance.

End

 8.15 Convertibi l i ty

Informative text
Complementing the conformance mechanism of the previous discussion, convertibility lets you
perform assignment and argument passing in cases where conformance does not hold but you
still want the operation to succeed after adapting the source value to the target type.

End

8.15.1 Definition: Conversion procedure, conversion type
A procedure whose name appears in a Converters clause is a conversion procedure .

A type listed in a Converters clause is a conversion type .

8.15.2 Definition: Conversion query, conversion feature
A query whose name appears in a Converters clause is a conversion query .

A feature that is either a conversion procedure or a conversion query is a conversion feature .

8.15.3  Validity: Conversion principle
No type may both conform and convert to another.

8.15.4  Validity: Conversion Asymmetry principle
No type T may convert to another through both a conversion procedure and a conversion query.

8.15.5  Validity: Conversion Non-Transitivity principle
That V converts to U and U to T does not imply that V converts to T.

8.15.6  Syntax: Converter clauses
Converters =∆ convert Converter_list

Converter_list =∆ {Converter ","…}+

Converter =∆ Conversion_procedure | Conversion_query

Conversion_procedure =∆ Feature_name "(" "{" Type_list "}" ")"

Conversion_query =∆ Feature_name ":" "{" Type_list "}"

8.15.7 Validity: Conversion Procedure rule Validity code: VYCP

A Conversion_procedure listing a Feature_name fn and appearing in a class C with current type
CT is valid if and only if it satisfies the following conditions, applicable to every type SOURCE listed
in its Type_list:
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1 fn is the name of a creation procedure cp of C.

2 If C is not generic, SOURCE does not conform to CT.

3 If C is generic, SOURCE does not conform to the type obtained from CT by replacing
every formal generic parameter by its constraint.

4 SOURCE’s base class is different from the base class of any other conversion type listed
for a Conversion_procedure in the Converters clause of C.

5 The specification of the base class of SOURCE does not list a conversion query
specifying a type of base class C.

6 cp has exactly one formal argument, of a type ARG.

7 SOURCE conforms to ARG.

8 SOURCE involves no anchored type.

Informative text
Conditions 2 and 3 (the second one covering generic classes) express the crucial requirement,
ensuring the Conversion principle: no type that conforms to the current type may convert to it.
In many practical uses of conversion the target class CX is expanded; this is the case with
REAL_64, and with REAL_32, to which INTEGER also converts. Such cases satisfy condition 2
almost automatically since essentially no other type conforms to an expanded type. But the
validity of a conversion specification does not require the enclosing class to be expanded; all that
condition 2 states is that the conversion types must not conform to it (more precisely, to the current
type).

End

8.15.8 Validity: Conversion Query rule Validity code: VYCQ

A Conversion_query listing a Feature_name fn and appearing in a class C with current type CT is
valid if and only if it satisfies the following conditions, applicable to every type TARGET listed in its
Type_list:

1 fn is the name of a query f of C.

2 If C is not generic, CT does not conform to TARGET.

3 If C is generic, the type obtained from CT by replacing every formal generic parameter
by its constraint does not conform to TARGET.

4 TARGET’s base class is different from the base class of any other conversion type listed
for a Conversion_query in the Converters clause of C.

5 The specification of the base class of TARGET does not list a conversion procedure
specifying a type of base class C.

6 f has no formal argument.

7 The result type of f conforms to TARGET.

8 TARGET involves no anchored type.

Informative text
Condition 5 is redundant with condition 5 of the Conversion Procedure rule but is included anyway
for symmetry. In case of violation, a compiler may refer to either rule.

End

8.15.9 Definition: Converting to a class
A type T of base class CT converts to a class C if either:

• The deanchored form of T appears as conversion type for a procedure in the Converters
clause of C.

• A type based on C appears as conversion type for a query in the Converters clause of CT.
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8.15.10 Definition: Converting to and from a type

A type U of base class D converts to  a Class_type T of base class C if and only if either:

1 The deanchored form of U is the result of applying the generic substitution of the
deanchored form of T to a conversion type for a procedure cp appearing in the
Converters clause of C.

2 The deanchored form of T is the result of applying the generic substitution of the
deanchored form of U to a conversion type for a query cq appearing in the
Converters clause of D.

A Class_type T converts from a type U if and only if U converts to T.

8.15.11 Definition: Converting “through”
A type U that converts to a type T:

1 Converts to T through a procedure cp if case 1 of the definition of “converting to a type”
applies.

2 Converts to T through a query cq if case 2 of the definition applies.

These terms also apply to “converting from ” specifications.

Informative text
From the definitions and validity rules, it’s clear that if U converts to T then it’s either — but not
both — “through a procedure” or “through a query”, and that exactly one routine, cp or f, meets
the criteria in each case.

End

8.15.12 Semantics: Conversion semantics

Given an expression e of type U and a variable x of type T, where U converts to T, the effect of a
conversion attachment of source e and target x is the same as the effect of either:

1 If U converts to T through a procedure cp: the creation instruction create x.cp (e).

2 If U converts to T through a query cq: the assignment x := e.cq.

Informative text
This is an “unfolded form” specification expressing the semantics of an operation (conversion
attachment) in terms of another: either a creation or a query call. Both of these operations involve
an attachment (argument passing or assignment) and so may trigger one other conversion.

End

8.15.13 Definition: Explicit conversion
The Kernel Library class TYPE [G] provides a function

adapted alias "[]" (x: G): G

which can be used for any type T and any expression exp of a type U compatible with T to produce
a T version of exp, written

{T} [exp]

If U converts to T, this expression denotes the result of converting exp to T, and is called an
explicit conversion .

Informative text
Explicit conversion involves no new language mechanism, simply a feature of a Kernel Library
class and the notion of bracket alias.

For example, assuming a tuple type that converts to DATE, you may use
{DATE} [[20, "April", 2005]]
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The Basic_expression [20, "April", 2005] is a Manifest_tuple. Giving it — through the outermost
brackets — as argument to the adapted function of {DATE} turns it into an expression of type
DATE. This is permitted for example if class DATE specifies a conversion procedure from
TUPLE [INTEGER, STRING, INTEGER].

End

8.15.14 Validity: Expression convertibility Validity code: VYEC

An expression exp of type U converts to an entity ent of type T if and only if U converts to T
through a conversion feature conv satisfying either of the following two conditions:

1 conv is precondition-free.

2 exp statically satisfies the precondition.

8.15.15 Definition: Statically satisfied precondition

A feature precondition is statically satisfied  if it satisfies any of the following conditions:

1 It applies to a boolean, character, integer or real expression involving only constants,
states that the expression equals a specific constant value or (in the last three cases)
belongs to a specified interval, and holds for that value or interval.

2 It applies to the type of an expression, states that it must be one of a specified set of
types, and holds for that type.

Informative text

The “constants” of the expression can be manifest constants, or they can be constant actual
arguments to a routine — possibly the unfolded form of an assignment, as in
of_type_NATURAL_8 := 1, whose semantics is that of create of_type_natural.from_INTEGER (1).
Without the notion of “statically satisfied precondition” such instructions would be invalid because
from_INTEGER in class NATURAL_8 has a precondition (not every integer is representable as a
NATURAL_8), and arbitrary preconditions are not permitted for conversion features. This would
condemn us to the tedium of writing {NATURAL_8} 1 and the like for every such case, and would
be regrettable since 1 is as a matter of fact acceptable as a NATURAL_8. So the definition of
expression convertibility permits a “statically satisfied” precondition, making such cases valid.

It would be possible to generalize the definition by making permissible any precondition that can
be assessed statically. But this would leave too much initiative to individual compilers: a “smarter”
compiler might accept a precondition that another rejects, leading to incompatibilities. It was
judged preferable to limit the rule to the two cases known to be important in practice; if others
appear in the future, the rule will be extended.

End

8.15.16 Validity: Precondition-free routine Validity code: VYPF

A feature r of a class C is precondition-free if it is either:

1 Immediate in C, with either no Precondition clause or one consisting of a single
Assertion_clause (introduced by require ) whose Boolean_expression is the constant
True.

2 Inherited, and such that every precursor of r is (recursively) precondition-free, or r is
redeclared in C with a Precondition consisting of a single Assertion_clause (introduced
by require else ) whose Boolean_expression is the constant True.

Informative text

A feature is “immediate” if it is declared in the class itself. In the other case, “inherited” feature, it’s
OK if the feature had a precondition in the parent, but then the class must redeclare it with a clause
require else True. A simple require without the else is not permitted in this case.
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A “precursor” of an inherited routine is its version in a parent; there may be more than one as a
result of feature merging and repeated inheritance.

End

Informative text
No specific validity rule limits our ability to include a convert mark in an Alias as long as it applies
to a feature with one argument and an Operator alias. Of course in an example such as
your_integer + your_real we expect the argument type AT, here REAL, to include a feature with
the given operator, here +, and the target type CT, here INTEGER, to convert to AT. But we don’t
require this of all types to which CT converts, because:
• This would have to be checked for every new type (since CT may convert to AT not only

through its own “from” specification but also through a “to” specification in AT).

• In any case, it would be too restrictive: INTEGER may well convert to a certain type AT for
which we don’t use target conversion.

Instead, the validity constraints will simply rule out individual calls that would require target
conversion if the proper conditions are not met. For example if REAL did not have a function
specifying alias "+" and accepting an integer argument, or if INTEGER did not convert to REAL,
the expression would be invalid.
Remarkably, there is no need for any special validity rule to enforce these properties. All we’ll need
is the definition of target-converted form of a binary expression in the discussion of
expressions. The target-converted form of x + y (or a similar expression for any other binary
operator) is x + y itself unless both of the following properties hold:
• The declaration of “+” for the type of x specifies convert .

• The type of y does not conform or convert to the type of the argument of the associated
function, here plus, so that the usual interpretation of the expression as shorthand for x.plus
(y) cannot possibly be valid. This is critical since we don’t want any ambiguity: either the usual
interpretation or the targeted conversion should be valid, but not both.

Under these conditions the targeted-converted form is ({TY} [x]) + y, using as first operand the
result of converting x to the type TY of y. Then:
• The target-converted form is only valid if TY has a feature with the “+” alias, and y is acceptable

as an argument of this call. The beauty of this is that we don’t need any new validity rule: if
any of this condition is not met, the normal validity rules on expressions (involving, through the
notion of Equivalent Dot Form, the rules on calls) will make it illegal.

• We don’t need any specific semantic rule either: the normal semantic rules, applied to the
target-converted form, yield exactly what we need.

End

 8.16 Repeated inheritance

Informative text
Inheritance may be multiple : a class may have any number of parents. A more restrictive solution
would limit the benefits of inheritance, so central to object-oriented software engineering.
Because of multiple inheritance, it is possible for a class to be a descendant of another in more
than one way. This case is known as repeated inheritance; it raises interesting issues and yields
useful techniques, which the following discussion reviews in detail.

End

8.16.1 Definition: Repeated inheritance, ancestor, descendant
Repeated inheritance occurs whenever (as a result of multiple inheritance) two or more of the
ancestors of a class D have a common parent A.

D is then called a repeated descendant  of A, and A a repeated ancestor  of D.
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8.16.2 Semantics: Repeated Inheritance rule

Let D be a class and B1, … Bn (n ≥ 2) be parents of D based on classes having a common ancestor
A. Let f1, … fn be features of these respective parents, all having as one of their seeds the same
feature f of A. Then:

1 Any subset of these features inherited by D under the same final name in D yields a
single feature of D.

2 Any two of these features inherited under a different name yield two features of D.

Informative text
This is the basic rule allowing us to make sense and take advantage of inheritance, based on the
programmer-controlled naming policy: inheriting two features under the same name yields a
single feature, inheriting them under two different names yield two features.

End

8.16.3 Definition: Sharing, replication

A repeatedly inherited feature is shared if case 1 of the Repeated Inheritance rule applies, and
replicated  if case 2 applies.

8.16.4 Validity: Call Sharing rule Validity code: VMCS

It is valid for a feature f repeatedly inherited by a class D from an ancestor A, such that f is shared
under repeated inheritance and not redeclared, to involve a feature g of A other than as the feature
of a qualified call if and only if g is, along the corresponding inheritance paths, also shared.

Informative text
If g were duplicated, there would be no way to know which version f should call, or evaluate for
the assignment. The “selected” version, discussed below, is not necessarily the appropriate one.

End

8.16.5 Semantics: Replication Semantics rule

Let f and g be two features both repeatedly inherited by a class A and both replicated under the
Repeated Inheritance rule, with two respective sets of different names: f1 and f2, g1 and g2.

If the version of f in D is the original version from A and either contains an unqualified call to g or
(if f is an attribute) is the target of an assignment whose source involves g, the f1 version will use
g1 for that call or assignment, and the f2 version will use g2.

Informative text
This rule (which, unlike other semantic rules, clarifies a special case rather than giving the general
semantics of a construct) tells us how to interpret calls and assignments if two separate
replications have proceeded along distinct inheritance paths.

End

8.16.6  Syntax: Select clauses

Select =∆ select Feature_list

Informative text
The Select subclause serves to resolve any ambiguities that could arise, in dynamic binding on
polymorphic targets declared statically of a repeated ancestor’s type, when a feature from that
type has two different versions in the repeated descendant.

End
- 94 -



8.16.7 Validity: Select Subclause rule Validity code: VMSS

A Select subclause appearing in the parent part for a class B in a class D is valid if and only if, for
every Feature_name fname in its Feature_list, fname is the final name in D of a feature that has
two or more potential versions in D, and fname appears only once in the Feature_list.

Informative text
This rule restricts the use of Select to cases in which it is meaningful: two or more “potential
versions”, a term which also has its own precise definition. We will encounter next, in the
Repeated Inheritance Consistency constraint, the converse requirement that if there is such a
conflict a Select must be provided.

End

8.16.8 Definition: Version

A feature g from a class D is a version of a feature f from an ancestor of D if f and g have a seed
in common.

8.16.9 Definition: Multiple versions

A class D has n versions (n ≥ 2) of a feature f of an ancestor A if and only if n of its features, all
with different final names in D, are all versions of f.

8.16.10 Validity: Repeated Inheritance Consistency constraint Validity code: VMRC

It is valid for a class D to have two or more versions of a feature f of a proper ancestor A if and only
if it satisfies one of the following conditions:

1 There is at most one conformance path from D to A.

2 There are two or more conformance paths, and the Parent clause for exactly one of them
in D has a Select clause listing the name of the version of f from the corresponding
parent.

8.16.11 Definition: Dynamic binding version

For any feature f of a type T and any type U conforming to T, the dynamic binding version of f in
U is the feature g of U defined as follows:

1 If f has only one version in U, then g is that feature.

2 If f has two or more versions in U, then the Repeated Inheritance Consistency constraint
ensures that either exactly one conformance path exists from U to T, in which case g is
the version of f in U obtained along that path, or that a Select subclause name a version
of f, in which case g is that version.

8.16.12 Definition: Inherited features

Let D be a class. Let precursors be the list obtained by concatenating the lists of features of every
parent of D; this list may contain duplicates in the case of repeated inheritance. The list inherited
of inherited features  of D is obtained from precursors as follows:

1 In the list precursors, for any set of two or more elements representing features that are
repeatedly inherited in D under the same name, so that the Repeated Inheritance rule
yields sharing, keep only one of these elements. The Repeated Inheritance Consistency
constraint (sharing case) indicates that these elements must all represent the same
feature, so that it does not matter which one is kept.

2 For every feature f in the resulting list, if D undefines f, replace f by a deferred feature
with the same signature, specification and header comment.

3 In the resulting list, for any set of deferred features with the same final name in D, keep
only one of these features, with assertions and header comment joined as per the Join
Semantics rule. (Keep the signature, which the Join rule requires to be the same for all
the features involved after possible redeclaration.)
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4 In the resulting list, remove any deferred feature such that the list contains an effective
feature with the same final name. (This is the case in which a feature f, inherited as
effective, effects one or more deferred features: of the whole group, only f remains.)

5 All the features of the resulting list have different names; they are the inherited features
of D in their parent forms. From this list, produce a new one by replacing any feature that
D redeclares (through redefinition or effecting) with the result of the redeclaration, and
retaining any other feature as it is.

6 The result is the list inherited of inherited features of D.

8.16.13 Semantics: Join-Sharing Reconciliation rule
If a class inherits two or more features satisfying both the conditions of sharing under the
Repeated Inheritance rule and those of the Join rule, the applicable semantics is the Repeated
Inheritance rule.

8.16.14 Definition: Precursor
A precursor of an inherited feature of final name fname is any parent feature — appearing in the
list precursors obtained through case 1 of the definition of “Inherited features” — that the feature
mergings resulting from the subsequent cases reduce into a feature of name fname.

8.16.15 Validity: Feature Name rule Validity code: VMFN

It is valid for a feature f of a class C to have a certain final name if and only if it satisfies the following
conditions:

1 No other feature of C has that same feature name.

2 If f is shared under repeated inheritance, its precursors all have either no Alias or the
same alias.

Informative text
Condition 1 follows from other rules: the Feature Declaration rule, the Redeclaration rule and the
rules on repeated inheritance. It is convenient to state it as a separate condition, as it can help
produce clear error messages in some cases of violation.
Two feature names are “the same” if the lower-case version of their identifiers is the same.
The important notion in this condition is “other feature ”, resulting from the above definition of
“inherited features”. When do we consider g to be a feature “other” than f? This is the case
whenever g has been declared or redeclared distinctly from f, unless the definition of inherited
features causes the features to be merged into just one feature of C. Such merging may only
happen as a result of sharing features under repeated inheritance, or of joining deferred features.
Also, remember that if C redeclares an inherited feature (possibly resulting from the joining of two
or more), this does not introduce any new (“other”) feature. This was explicitly stated by the
definition of “introducing” a feature.
Condition 2 complements these requirements by ensuring that sharing doesn’t inadvertently give
a feature more than one alias.
The Feature Name rule crowns the discussion of inheritance and feature adaptation by
unequivocally implementing the No Overloading Principle: no two features of a class may have
the same name. The only permissible case is when the name clash is apparent only, but in reality
the features involved are all the same feature under different guises, resulting from a join or from
sharing under repeated inheritance.

End

8.16.16 Validity: Name Clash rule Validity code: VMNC

The following properties govern the names of the features of a class C:

1 It is invalid for C to introduce two different features with the same name.

2 If C introduces a feature with the same name as a feature it inherits as effective, it must
rename the inherited feature.
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3 If C inherits two features as effective from different parents and they have the same
name, the class must also (except under sharing for repeated inheritance) remove the
name clash through renaming.

Informative text
This is not a new constraint but a set of properties that follow from the Feature Name rule and
other rules. Instead of Eiffel’s customary “This is valid if and only if …” style, more directly useful
to the programmer since it doesn’t just tell us how to mess things up but also how to produce
guaranteeably valid software, the Name Clash rule is of the more discouraging form “You may not
validly write …”. It does, however, highlight frequently applicable consequences of the naming
policy, and compilers may take advantage of it to report naming errors.

End

 8.17 Control structures

Informative text
The previous discussions have described the “bones” of Eiffel software: the module and type
structure of systems. Here we begin studying the “meat”: the elements that govern the execution
of applications.
Control structures are the constructs used to schedule the run-time execution of instructions.
There are four of them: sequencing (compound), conditional, multi-branch choice and loop. A
complementary construct is the Debug instruction.
As made clear by the definition of “non-exception semantics” in the semantic rule for Compound,
which indirectly governs all control structures (since al instructions are directly or indirectly part of
a Compound), the default semantics assumes that none of the instructions executed as part of a
control structure triggers an exception. If an exception does occur, the normal flow of control is
interrupted, as described by the rules of exception handling in the discussion of this topic.

End

8.17.1 Semantics: Compound (non-exception) semantics
The effect of executing a Compound is:

• If it has zero instructions: to leave the state of the computation unchanged.

• If it has one or more instructions: to execute the first instruction of the Compound, then
(recursively) to execute the Compound obtained by removing the first instruction.

This specification, the non-exception semantics of Compound, assumes that no exception is
triggered. If the execution of any of the instructions triggers an exception, the Exception Semantics
rule takes effect for the rest of the Compound’s instructions.

Informative text
Less formally, this means executing the constituent instructions in the order in which they appear
in the Compound, each being started only when the previous one has been completed.
Note that a Compound can be empty, in which case its execution has no effect. This is useful for
examples when refactoring the branches of a Conditional: you might temporarily remove all the
instructions of the Else_part, but not the Else_part itself yet as you think it may be needed later.

End

8.17.2  Syntax: Conditionals
Conditional =∆ if Then_part_list [Else_part] end

Then_part_list =∆ {Then_part elseif …}+

Then_part =∆ Boolean_expression then Compound

Else_part =∆ else Compound
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8.17.3 Definition: Secondary part
The secondary part of a Conditional possessing at least one elseif is the Conditional obtained by
removing the initial “if Then_part_list” and replacing the first elseif  of the remainder by if.

8.17.4 Definition: Prevailing immediately
The execution of a Conditional starting with if condition1 is said to prevail immediately if
condition1 has value true.

8.17.5 Semantics: Conditional semantics
The effect of a Conditional is:

• If it prevails immediately: the effect of the first Compound in its Then_part_list.

• Otherwise, if it has at least one elseif : the effect (recursively) of its secondary part.

• Otherwise, if it has an Else part: the effect of the Compound in that Else part.

• Otherwise: no effect.

Informative text
Like the instruction studied next, the Conditional is a “multi-branch” choice instruction, thanks to
the presence of an arbitrary number of elseif clauses. These branches do not have equal rights,
however; their conditions are evaluated in the order of their appearance in the text, until one is
found to evaluate to true. If two or more conditions are true, the one selected will be the first in the
syntactical order of the clauses.

End

8.17.6 Definition: Inspect expression
The inspect expression of a Multi_branch is the expression appearing after the keyword inspect .

8.17.7  Syntax: Multi-branch instructions
Multi_branch =∆ inspect Expression [When_part_list] [Else_part] end

When_part_list =∆ When_part+

When_part =∆ when Choices then Compound

Choices =∆ {Choice "," …}+

Choice =∆ Constant | Manifest_type | Constant_interval | Type_interval

Constant_interval =∆ Constant ".." Constant

Type_interval =∆ Manifest_type ".." Manifest_type

8.17.8 Definition: Interval
An interval  is a Constant_interval or Type_interval.

8.17.9 Definition: Unfolded form of a multi-branch
To obtain the unfolded form of a Multi_branch instruction, apply the following transformations in
the order given:

1 Replace every constant inspect value by its manifest value.

2 If the type T of the inspect expression is any sized variant of CHARACTER, STRING or
INTEGER, replace every inspect value v by {T} v.

3 Replace every interval by its unfolded form.

Informative text
Step 2 enables us, with an inspect expression of a type such as INTEGER_8, to use constants in
ordinary notation, such as 1, rather than the heavier {INTEGER_8} 1. Unfolded form constructs
this proper form for us. The rules on constants make this convention safe: a value that doesn’t
match the type, such as 1000 here, will cause a validity error.

End
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8.17.10 Definition: Unfolded form of an interval
The unfolded form  of an interval a..b is the following (possibly empty) list:

1 If a and b are constants, both of either a character type, a string type or an integer type,
and of manifest values va and vb: the list made up of all values i, if any, such that va ≤ i
≤ vb, using character, integer or lexicographical order respectively.

2 If a and b are both of type TYPE [T] for some T, and have manifest values va and vb: the
list containing every Manifest_type of the system conforming to vb and to which
va conforms.

3 If neither of the previous two cases apply: an empty list.

Informative text
The “manifest value” of a constant is the value that has been declared for it, ignoring any
Manifest_type: for example both 1 and {INTEGER_8} 1 have the manifest value 1.
The symbol .. is not a special symbol of the language but an alias for a feature of the Kernel
Library class PART_COMPARABLE, which for any partially or totally ordered set and yielding the
set of values between a lower and an upper bound. Here, the bounds must be constant.
A note for implementers: type intervals such as {U}..{T}, denoting all types conforming to T and
to which U conforms, may seem to raise difficult implementation issues: the set of types, which
the unfolded form seems to require that we compute, is potentially large; the validity (Multi-Branch
rule) requires that all types in the unfolded form be distinct, which seems to call for tricky
computations of intersections between multiple sets; and all this may seem hard to reconcile with
incremental compilation, since a type interval may include types from both our own software and
externally acquired libraries, raising the question of what happens on delivery of a new version of
such a library, possibly without source code. Closer examination removes these worries:
• There is no need actually to compute entire type intervals as defined by the unfolded form.

Listing {U}..{T} simply means, when examining a candidate type Z, finding out whether Z
conforms to T and U to Z.

• To ascertain that such a type interval does not intersect with another {Y}..{X}, the basic check
is that Y does not conform to T and U does not conform to X.

• If we add a new set of classes and hence types to a previously validated system, a new case
of intersection can only occur if either: a new type inherits from one of ours, a case that won’t
happen for a completely external set of reusable classes and, if it happens, should require
re-validating since existing Multi_branch instructions may be affected; or one of ours inherits
from a new type, which will happen only when we modify our software after receiving the
delivery, and again should require normal rechecking.

End

8.17.11 Validity: Interval rule Validity code: VOIN

An Interval is valid if and only if its unfolded form is not empty.

8.17.12 Definition: Inspect values of a multi-branch
The inspect values of a Multi_branch instruction are all the values listed in the Choices parts of
the instruction’s unfolded form.

Informative text
The set of inspect values may be infinite in the case of a string interval, but this poses no problem
for either programmers or compilers, meaning simply that matches will be determined through
lexicographical comparisons.

End

8.17.13 Validity: Multi-branch rule Validity code: VOMB

A Multi_branch instruction is valid if and only if its unfolded form satisfies the following conditions.
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1 Inspect values are all valid.

2 Inspect values are all constants.

3 The manifest values of any two inspect values are different.

4 If the inspect expression is of type TYPE [T] for some type T, all inspect values are types.

5 If case 4 does not apply, the inspect expression is one of the sized variants of INTEGER,
CHARACTER or STRING.

8.17.14 Semantics: Matching branch

During execution, a matching branch of a Multi_branch is a When_part wp of its unfolded form,
satisfying either of the following for the value val of its inspect expression:

1 val ~ i, where i is one of the non-Manifest_type inspect values listed in wp.

2 val denotes a Manifest_type listed among the choices of wp.

Informative text
The Multi-branch rule is designed to ensure that in any execution there will be at most one
matching branch.

In case 1, we look for object equality, as expressed by ~. Strings, in particular, will be compared
according to the function is_equal of STRING. A void value, even if type-wise permitted by the
inspect expression, will never have a matching branch.

In case 2, we look for an exact type match, not just conformance. For conformance, we have type
intervals: to match types conforming to some T, use {NONE}..{T}; for types to which T conforms,
use {T}..{ANY}.

End

8.17.15 Semantics: Multi-Branch semantics

Executing a Multi_branch with a matching branch consists of executing the Compound following
the then  in that branch. In the absence of matching branch:

1 If the Else_part is present, the effect of the Multi_branch is that of the Compound
appearing in its Else_part.

2 Otherwise the execution triggers an exception of type BAD_INSPECT_VALUE.

8.17.16  Syntax: Loops

Loop =∆ Initialization
[Invariant]
Exit_condition
Loop_body
[Variant]
end

Initialization =∆ from Compound

Exit_condition =∆ until Boolean_expression

Loop_body =∆ loop Compound

8.17.17 Semantics: Loop semantics

The effect of a Loop is the effect of executing the Compound of its Initialization, then its
Loop_body.

The effect of executing a Loop_body is:

• If the Boolean_expression of the Exit_condition evaluates to true: no effect (leave the state of
the computation unchanged).

• Otherwise: the effect of executing the Compound clause, followed (recursively) by the effect
of executing the Loop_body again in the resulting state.
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8.17.18  Syntax: Debug instructions
Debug =∆ debug  [ "("Key_list ")" ] Compound end

8.17.19 Semantics: Debug semantics
A language processing tool must provide an option that makes its possible to enable or disable
Debug instructions, both globally and for individual keys of a Key_list. Such an option may be
settable for an entire system, or for individual classes, or both.

Letter case is not significant for a debug key.

The effect of a Debug instruction depends on the mode that has been set for the current class:

• If the Debug option is on generally, or if the instruction includes a Key_list and the option is on
for at least one of the keys in the list, the effect of the Debug instruction is that of its Compound.

• Otherwise the effect is that of a null instruction.

 8.18 Attributes

Informative text
Attributes are one of the two kinds of feature.
When, in the declaration of a class, you introduce an attribute of a certain type, you specify that,
for every instance of the class that may exist at execution time, there will be an associated value
of that type.
Attributes are of two kinds: variable and constant . The difference affects what may happen at run
time to the attribute’s values in instances of the class: for a variable attribute, the class may include
routines that, applied to a particular instance, will change the value; for a constant attribute, the
value is the same for every instance, and cannot be changed at run time.

End

8.18.1  Syntax: Attribute bodies
Attribute =∆ attribute Compound

Informative text
The Compound is empty in most usual cases, but it is required for an attribute of an attached type
(including the case of an expanded type) that does not provide default_create as a creation
procedure; it will then serve to initialize the corresponding field, on first use for any particular
object, if that use occurs prior to an explicit initialization. To set that first value, assign to Result in
the Compound.
Such a Compound is executed at most once on any particular object during a system execution.

End

8.18.2 Validity: Manifest Constant rule Validity code: VQMC

A declaration of a feature f introducing a manifest constant is valid if and only if the
Manifest_constant m used in the declaration matches the type T declared for f in one of the
following ways:

1 m is a Boolean_constant and T is BOOLEAN.

2 m is a Character_constant and T is one of the sized variants of CHARACTER for which
m is a valid value.

3 m is an Integer_constant and T is one of the sized variants of INTEGER for which m is
a valid value.

4 m is a Real_constant and T is one of the sized variants of REAL for which m is a valid
value.

5 m is a Manifest_string and T is one of the sized variants of STRING for which m is a valid
value.
- 101 -



6 m is a Manifest_type, of the form {Y} for some type Y, and T is TYPE [X] for some
stand-alone type X to which Y conforms.

Informative text
The “valid values” are determined by each basic type’s semantics; for example 1000 is a valid
value for INTEGER_16 but not for INTEGER_8.

In case 6, we require the type listed in a Manifest_type {Y} to be constant, meaning that it does
not involve any formal generic parameter or anchored type, as these may represent different types
in different generic derivations or different descendants of the original class. This would not be
suitable for a constant attribute, which must have a single, well-defined value.

End

 8.19 Objects, values and entit ies

Informative text
The execution of an Eiffel system consists of creating, accessing and modifying objects .

The following presentation discusses the structure of objects and how they relate to the syntactical
constructs that denote objects in software texts: expressions . At run time, an expression may
take on various values; every value is either an object or a reference to an object.

Among expressions, entities play a particular role. An entity is an identifier (name in the software
text), meant at execution time to denote possible values. Some entities are read-only : the
execution can’t change their initial value. Others, called variables , can take on successive values
during execution as a result of such operations as creation and assignment.

The description of objects and their properties introduces the dynamic model of Eiffel software
execution: the run-time structures of the data manipulated by an Eiffel system.

End

8.19.1 Semantics: Type, generating type of an object; generator
Every run-time object is a direct instance of exactly one stand-alone type of the system, called the
generating type  of the object, or just “the type of the object” if there is no ambiguity.

The base class of the generating type is called the object’s generating class , or generator for
short.

8.19.2 Definition: Reference, void, attached, attached to
A reference  is a value that is either:

• Void , in which case it provides no more information.

• Attached , in which case it gives access to an object. The reference is said to be attached to
that object, and the object attached to the reference.

8.19.3 Semantics: Object principle
Every non-void value is either an object or a reference attached to an object.

8.19.4 Definition: Object semantics
Every run-time object has either copy semantics  or reference semantics .

An object has copy semantics if and only if its generating type is an expanded type.

Informative text
This property determines the role of the object when used as source of an assignment: with copy
semantics, it will be copied onto the target; with reference semantics, a reference will be
reattached to it.

End
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8.19.5 Definition: Non-basic class, non-basic type, field

Any class other than the basic types is said to be a non-basic class . Any type whose base class
is non-basic is a non-basic type , and its instances are non-basic objects .

A direct instance of a non-basic type is a sequence of zero or more values, called fields . There is
one field for every attribute of the type’s base class.

8.19.6 Definition: Subobject, composite object

Any expanded field of an object is a subobject  of that object.

An object that has a non-basic subobject is said to be composite .

8.19.7 Definition: Entity, variable, read-only

An entity is an Identifier, or one of two reserved words (Current and Result ), used in one of the
following roles:

1 Final name of an attribute of a class.

2 Local variable of a routine or Inline_agent, including Result  for a query.

3 Formal argument of a routine or inline agent.

4 Object Test local.

5 Current , the predefined entity used to represent a reference to the current object (the
target of the latest not yet completed routine call).

Names of non-constant attributes and local variables are variable entities, also called just vari-
ables . Constant attributes, formal arguments, Object Test locals and Current are read-only
entities.

Informative text
Two kinds of operation, creation and reattachment, may modify the value of a variable (a
non-constant attribute, part of category 1, or local variable, category 2. In the other four cases —
constant attributes, formal arguments (3), Object Test locals (4) and Current (5) — you may not
directly modify the entities, hence the name read-only entity.
The term “constant entity” wouldn’t do, not so much because you can modify the corresponding
objects but because read-only entities (other than constant attributes) do change at run time: a
qualified call reattaches Current , and any routine call reattaches the formal arguments.
Result appearing in the Postcondition of a constant attribute cannot be changed at execution time,
but for simplicity is considered part of local variables in all cases anyway.

End

8.19.8  Syntax: Entities and variables

Entity =∆ Variable | Read_only

Variable =∆ Variable_attribute | Local

Variable_attribute =∆ Feature_name

Local =∆ Identifier | Result

Read_only =∆ Formal | Constant_attribute | Current

Formal =∆ Identifier

Constant_attribute =∆ Feature_name

8.19.9 Validity: Entity rule Validity code: VEEN

An occurrence of an entity e in the text of a class C (other than as the feature of a qualified call)
is valid if and only if it satisfies one of the following conditions:

1 e is Current .

2 e is the final name of an attribute of C.
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3 e is the local variable Result , and the occurrence is in a Feature_body, Postcondition or
Rescue part of an Attribute_or_routine text for a query or an Inline_agent whose
signature includes a result type.

4 e is Result  appearing in the Postcondition of a constant attribute’s declaration.

5 e is listed in the Identifier_list of an Entity_declaration_group in a Local_declarations
part of a feature or Inline_agent fa, and the occurrence is in a Local_declarations,
Feature_body or Rescue part for fa.

6 e is listed in the Identifier_list of an Entity_declaration_group in a Formal_arguments
part for a routine r, and the occurrence is in a declaration for r.

7 e is listed in the Identifier_list of an Entity_declaration_group in the Agent_arguments
part of an Agent a, and the occurrence is in the Agent_body of a.

8 e is the Object-Test Local of an Object_test, and the occurrence is in its scope.

Informative text
“Other than as feature of a qualified call” excludes from the rule any attribute, possibly of another
class, used as feature of a qualified call: in a.b the rule applies to a but not to b. The constraint
on b is the General Call rule, requiring b to be the name of a feature in D’s base class.

End

8.19.10 Validity: Variable rule Validity code: VEVA

A Variable entity v is valid in a class C if an only if it satisfies one of the following conditions:

1 v is the final name of a variable attribute of C.

2 v is the final name of a local variable of the immediately enclosing routine or agent.

8.19.11 Definition: Self-initializing type
A type is self-initializing  if it is one of:

1 A detachable type.

2 A self-initializing formal parameter.

3 An attached type (including expanded types and, as a special case of these, basic
types) whose creation procedures include a version of default_create from ANY
available for creation to C.

Informative text
A self-initializing type enables us to define a default initialization value:
• Use Void for a detachable type (case 1, the easiest but also the least interesting)

• Execute a creation instruction with the applicable version of default_create for the most
interesting case: 3, attached types, including expanded types. This case also covers basic
types, which all have a default value given by the following rule.

A “self-initializing formal parameter” (case 2) is a generic parameter, so we don’t exactly know
which one of these three semantics will apply; but we do require, through the Generic Derivation
rule, that any attached type used as actual generic parameter be self-initializing, meaning in this
case that it will provide default_create.

In the definition, the “creation procedures” of a type are the creation procedures of its base class
or, for a formal generic parameter, its “constraining creators”, the features listed as available for
creation in its constraining type.

The more directly useful notion is that of a self-initializing variable, appearing below.

The term “self-initializing” is justified by the following semantic rule, specifying the actual
initialization values for every self-initializing type.

End
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8.19.12 Semantics: Default Initialization rule
Every self-initializing type T has a default initialization value  as follows:

1 For a detachable type: a void reference.

2 For a self-initializing attached type: an object obtained by creating an instance of T
through default_create.

3 For a self-initializing formal parameter: for every generic derivation, (recursively) the
default initialization value of the corresponding actual generic parameter.

4 For BOOLEAN: the boolean value false.

5 For a sized variant of CHARACTER: null character.

6 For a sized variant of INTEGER: integer zero.

7 For a sized variant of REAL: floating-point zero.

8 For POINTER: a null pointer.

9 For TYPED_POINTER: an object representing a null pointer.

Informative text
This rule is the reason why everyone loves self-initializing types: whenever execution catches an
entity that hasn’t been explicitly set, it can (and, thanks to the Entity Semantics rule, will) set it to
a well-defined default value. This idea gains extra flexibility, in the next definition, through the
notion of attributes with an explicit initialization.

End

8.19.13 Definition: Self-initializing variable
A variable is self-initializing  if one of the following holds:

1 Its type is a self-initializing type.

2 It is an attribute declared with an Attribute part such that the entity Result is properly set
at the end of its Compound.

Informative text
If a variable is self-initializing, we don’t need to worry about finding it with an undefined value at
execution time: if it has not yet been the target of an attachment operation, automatic initialization
can take over and set it to a well-defined default value. That value is, in case 1, the default value
for its type, and in case 2 the result of the attribute’s own initialization. That initialization must
ensure that Result is “properly set” as defined next (partly recursively from the above definition) .

End

8.19.14 Definition: Evaluation position, precedes
An evaluation position  is one of:

• In a Compound, one of its Instruction components.

• In an Assertion, one of its Assertion_clause components.

• In either case, a special end position .

A position p precedes a position q if they are both in the same Compound or Assertion, and either:

• p and q are both Instruction or Assertion_clause components, and p appears before q in the
corresponding list.

• q is the end position and p is not.

Informative text
This notion is needed to ensure that entities are properly set before use.

In a compound i1; i2; i3 we have four positions; i1 precedes i2, i3 and the end position, and so on.
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The relation as defined only applies to first-level components of the compound: if i2 itself contains
a compound, for example if it is of the form if c then i4; i5 end, then i4 is not an evaluation position
of the outermost compound, and so has no “precedes” relation with any of i1, i2 and i3.

End

8.19.15 Definition: Setter instruction
A setter instruction  is an assignment or creation instruction.

If x is a variable, a setter instruction is a setter for x if its assignment target or creation target is x.

8.19.16 Definition: Properly set variable
At an evaluation position ep in a class C, a variable x is properly set if one of the following
conditions holds:

1 x is self-initializing.

2 ep is an evaluation position of the Compound of a feature or Inline_agent of the Internal
form, one of whose instructions precedes ep and is a setter for x.

3 x is a variable attribute, and is (recursively) properly set at the end position of every
creation procedure of C.

4 ep is an evaluation position in a Compound that is part of an instruction ep’, itself
belonging to a Compound, and x is (recursively) properly set at position ep’.

5 ep is in a Postcondition of a routine or Inline_agent of the Internal form, and x is
(recursively) properly set at the end position of its Compound.

6 ep is an Assertion_clause containing Result  in the Postcondition of a constant attribute

Informative text
The key cases are 2, particularly useful for local variables but also applicable to attributes, and 3,
applicable to attributes when we cannot deduce proper initialization from the enclosing routine but
find that every creation procedure will take care of it. Case 4 accounts for nested compounds. For
assertions other than postconditions, which cannot use variables other than attributes, 3 is the
only applicable condition. The somewhat special case 6 is a consequence of our classification of
Result  among local variables even in the Postcondition of a constant attribute.
As an artefact of the definition’s phrasing, every variable attribute is “properly set” in any effective
routine of a deferred class, since such a class has no creation procedures. This causes no
problem since a failure to set the attribute properly will be caught, in the validity rule below, for
versions of the routine in effective descendants.

End

8.19.17 Validity: Variable Initialization rule Validity code: VEVI

It is valid for an Expression, other than the target of an Assigner_call, to be also a Variable if it is
properly set at the evaluation position defined by the closest enclosing Instruction or
Assertion_clause.

Informative text
This is the fundamental requirement guaranteeing that the value will be defined if needed.
Because of the definition of “properly set”, this requirement is pessimistic: some examples might
be rejected even though a “smart” compiler might be able to prove, by more advanced control and
data flow analysis, that the value will always be defined. But then the same software might be
rejected by another compiler, less “smart” or simply using different criteria. On purpose, the
definition limits itself to basic schemes that all compilers can implement.
If one of your software elements is rejected because of this rule, it’s a sign that your algorithms
fail to initialize a certain variable before use, or at least that the proper initialization is not clear
enough. To correct the problem, you may:
• Add a version of default_create to the class, as creation procedure.
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• Give the attribute a specific initialization through an explicit Attribute part that sets Result to
the appropriate value.

End

8.19.18 Definition: Variable setting and its value
A setting for a variable x is any one of the following run-time events, defining in each case the
value  of the setting:

1 Execution of a setter for x. (Value: the object attached to x by the setter, or a void
reference if none.)

2 If x is a variable attribute with an Attribute part: evaluation of that part, implying execution
of its Compound. (Value: the object attached to Result at the end position of that
Compound, or a void reference if none.)

3 If the type T of x is self-initializing: assignment to x of T’s default initialization value.
(Value: that initialization value.)

Informative text
As a consequence of case 2, an attribute a that is self-initializing through an Attribute part ap is
not set until execution of ap has reached its end position. In particular, it is not invalid (although
definitely unusual and perhaps strange) for the instructions ap to use the value a: as with a
recursive call in a routine, this will start the computation again at the beginning of ap. For attributes
as for routines, this raises the risk of infinite recursion (perhaps higher for attributes since they
have no arguments) and it is the programmer’s responsibility to avoid this by ensuring that before
a recursive call the context will have sufficiently changed to ensure eventual termination. No
language rule can ensure this (in either the routine or attribute cases) since this would amount to
solving the “halting problem”, a provably impossible task.
Another consequence of the same observation is that if the execution of ap triggers an exception,
and hence does not reach its end position, any later attempt to access a will also restart the
execution of ap from the beginning. This might trigger the same exception, or succeed if the
conditions of the execution have changed.

End

8.19.19 Definition: Execution context
At any time during execution, the current execution context for a variable is the period elapsed
since:

1 For an attribute: the creation of the current object.

2 For a local variable: the start of execution of the current routine.

8.19.20 Semantics: Variable Semantics
The value produced by the run-time evaluation of a variable x is:

1 If the execution context has previously executed at least one setting for x: the value of
the latest such setting.

2 Otherwise, if the type T of x is self-initializing: assignment to x of T’s default initialization
value, causing a setting of x.

3 Otherwise, if x is a variable attribute with an Attribute part: evaluation of that part,
implying execution of its Compound and hence a setting for x.

4 Otherwise, if x is Result in the Postcondition of a constant attribute: the value of the
attribute.

Informative text
This rule is phrased so that the order of the first three cases is significant: if there’s already been
an assignment, no self-initialization is possible; and if T has a default value, the Attribute part won’t
be used.
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The Variable Initialization rule ensures that one of these cases will apply, so that x will always have
a well-defined result for evaluation. This property was our main goal, and its achievement
concludes the discussion of variable semantics.

End

8.19.21 Semantics: Entity Semantics rule

Evaluating an entity yields a value  as follows:

1 For Current : a value attached to the current object.

2 For a formal argument of a routine or Inline_agent: the value of the corresponding actual
at the time of the current call.

3 For a constant attribute: the value of the associated Manifest_constant as determined
by the Manifest Constant Semantics rule.

4 For an Object-Test Local: as determined by the Object-Test Local Semantics rule.

5 For a variable: as determined by the Variable Semantics rule.

Informative text

This rule concludes the semantics of entities by gathering all cases. It serves as one of the cases
of the semantics of expressions, since an entity can be used as one of the forms of Expression.

The Object-Test Local Semantics rule appears in the discussion of the Object_test construct.

End

 8.20 Creating objects

Informative text

The dynamic model, whose major properties were reviewed in the preceding presentations, is
highly flexible; your systems may create objects and attach them to entities at will, according to
the demands of their execution. The following discussion explores the two principal mechanisms
for producing new objects: the Creation_instruction and its less frequently encountered sister, the
Creation_expression.

A closely related mechanism — cloning — exists for duplicating objects. This will be studied
separately, with the mechanism for copying the contents of an object onto another.

The creation constructs offer considerable flexibility, allowing you to rely on language-defined
initialization mechanisms for all the instances of a class, but also to override these defaults with
your own conventions, to define any number of alternative initialization procedures, and to let each
creation instruction provide specific values for the initialization. You can even instantiate an entity
declared of a generic type — a non-trivial problem since, for x declared of type G in a class C [G],
we don’t know what actual type G denotes in any particular case, and how one creates and
initializes instances of that type.

In using all these facilities, you should never forget the methodological rule governing creation, as
expressed by the following principle.

End

8.20.1 Semantics: Creation principle

Any execution of a creation operation must produce an object that satisfies the invariant of its
generating class.
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Informative text
Such is the theoretical role of creation: to make sure that any object we create starts its life in a
state satisfying the corresponding invariant. The various properties of creation, reviewed next, are
designed to ensure this principle.

End

8.20.2 Definition: Creation operation

A creation operation  is a creation instruction or expression.

8.20.3 Validity: Creation Precondition rule Validity code: VGCP

A Precondition of a routine r is creation-valid if and only if its unfolded form uf satisfies the
following conditions:

1 The predefined entity Current  does not appear in uf.

2 No Unqualified_call appears in uf.

3 Every feature whose final name appears in the uf is available to every class to which r
is available for creation.

Informative text
This definition is not itself a validity constraint, but is used by condition 5 of the Creation Clause
rule below; giving it a code as for a validity constraint enables compilers to provide a precise error
message in case of a violation.

Requiring preconditions to be creation-valid will ensure that a creation procedure doesn’t try to
access, in the object being created, fields whose properties are not guaranteed before
initialization.

The definition relies on the “unfolded form” of an assertion, which reduces it to a boolean
expression with clauses separated by and then . Because the unfolded form uses the Equivalent
Dot Form, condition 3 also governs the use of operators: with plus alias "+", the expression a + b
will be acceptable only if the feature plus is available for creation as stated.

End

8.20.4  Syntax: Creators parts

Creators =∆ Creation_clause+

Creation_clause =∆ create [Clients] [Header_comment] Creation_procedure_list

Creation_procedure_list =∆ {Creation_procedure ","…}+

Creation_procedure =∆ Feature_name

8.20.5 Definition: Unfolded Creators part of a class

The unfolded creators part  of a class C is a Creators defined as:

1 If C has a Creators part c: c.

2 If C is deferred: an empty Creators part.

3 Otherwise, a Creators part built as follows, dc_name being the final name in C of its
version of default_create from ANY:

create
dc_name

Informative text
For generality the definition is applicable to any class, even though for a deferred class (case 2)
it would be invalid to include a Creators part. This causes no problem since the rules never refer
to a deferred class actually extended with its unfolded creators part.
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Case 3 reflects the convention that an absent Creators part stands for create dc_name — normally
create default_create, but dc_name may be another name if the class or one of its proper
ancestors has renamed default_create.

End

8.20.6 Validity: Creation Clause rule Validity code: VGCC

A Creation_clause in the unfolded creators part of a class C is valid if and only if it satisfies the
following conditions, the last four for every Feature_name cp_name in the clause’s Feature_list:

1 C is effective.

2 cp_name appears only once in the Feature_list.

3 cp_name is the final name of some procedure cp of C.

4 cp is not a once routine.

5 The precondition of cp, if any, is creation-valid.

Informative text
As a result of conditions 1 and 4, a creation procedure may only be of the do form (the most
common case) or External.

The prohibition of once creation procedures in condition 4 is a consequence of the Creation
principle: with a once procedure, the first object created would satisfy the invariant (assuming the
creation procedure is correct), but subsequent creation instructions would not execute the call,
and hence would limit themselves to the default initializations, which might not ensure the
invariant.
As a corollary of condition 4, a class that has no explicit Creators part may not redefine
default_create into a once routine, or inherit default_create as a once routine from one of its
deferred parents. (Effective parents would themselves violate the condition and hence be invalid.)

End

8.20.7 Definition: Creation procedures of a class
The creation procedures of a class are all the features appearing in any Creation_clause of its
unfolded creators part.

Informative text
If there is an explicit Creators part, the creation procedures are the procedures listed there.
Otherwise there is only one creation procedure: the class’s version of default_create.

The following property is a consequence of the definitions of “unfolded creators part” and “creation
procedures of a class”.

End

8.20.8 Creation procedure property
An effective class has at least one creation procedure.

Informative text
Those explicitly listed if any, otherwise default_create.

End

8.20.9 Definition: Creation procedures of a type
The creation procedures  of a type T are:

1 If T is a Formal_generic_name, the constraining creators for T.

2 Otherwise, the creation procedures of T’s base class.
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Informative text

The definition of case 2 is not good enough for case 1, because in the scheme class D [G –>
CONST create cp1, cp2, … end] it would give us, as creation procedures of G, the creation
procedures of CONST, and what we want is something else: the set of procedures cp1, cp2, …
specifically listed after CONST — the “constraining creators for G”. These are indeed procedures
of CONST, but they are not necessarily creation procedures of CONST, especially since CONST
can be deferred. What matters is that they must be creation procedures in any instantiatable
descendant of CONST used as actual generic parameter for G.

End

8.20.10 Definition: Available for creation; general creation procedure

A creation procedure of a class C, listed in a Creation_clause cc of C’s unfolded creators part, is
available for creation to the descendants of the classes given in the Clients restriction of cc, if
present, and otherwise to all classes.

If there is no Clients restriction, the procedure is said to be a general creation procedure .

8.20.11  Syntax: Creation instructions

Creation_instruction =∆ create [Explicit_creation_type] Creation_call

Explicit_creation_type =∆ "{" Type "}"

Creation_call =∆ Variable [Explicit_creation_call]

Explicit_creation_call =∆ "." Unqualified_call

8.20.12 Definition: Creation target, creation type

The creation target (or just “target” if there is no ambiguity) of a Creation_instruction is the
Variable of its Creation_call.

The creation type  of a creation instruction, denoting the type of the object to be created, is:

• The Explicit_creation_type appearing (between braces) in the instruction, if present.

• Otherwise, the type of the instruction’s target.

8.20.13 Semantics: Creation Type theorem

The creation type of a creation instruction is always effective.

8.20.14 Definition: Unfolded form of a creation instruction

Consider a Creation_instruction ci of creation type CT. The unfolded form of ci is a creation
instruction defined as:

1 If ci has an Explicit_creation_call, then ci itself.

2 Otherwise, a Creation_instruction obtained from ci by making the Creation_call explicit,
using as feature name the final name in CT of CT’s version of ANY’s default_create.

8.20.15 Validity: Creation Instruction rule Validity code: VGCI

A Creation_instruction of creation type CT, appearing in a class C, is valid if and only if it satisfies
the following conditions:

1 CT conforms to the target’s type.

2 The feature of the Creation_call of the instruction’s unfolded form is available for creation
to C.

3 That Creation_call is argument-valid.

4 CT is generic-creation-ready.
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Informative text

In spite of its compactness, the Creation Instruction rule suffices in fact to capture all properties of
creation instructions thanks to the auxiliary definitions of “creation type”, “unfolded form” of both a
Creation_instruction and a Creators part, “available for creation” and others. The rule captures in
particular the following cases:

• The procedure-less form create x is valid only if CT’s version of default_create is available for
creation to C; this is because in this case the unfolded form of the instruction is create
x.dc_name, where dc_name is CT’s name for default_create. On CT’s side the condition
implies that there is either no Creators part (so that CT’s own unfolded form lists dc_name as
creation procedure), or that it has one making it available for creation to C (through a
Creation_clause with either no Clients specification or one that lists an ancestor of C).

• If CT is a Formal_generic_name, its creation procedures are those listed in the create
subclause after the constraint. So create x is valid if and only if the local version of
default_create is one of them, and create x.cp (…) only if cp is one of them.

• If CT is generically derived, and its base class needs to perform creation operations on targets
of some of the formal generic types, the last condition (generic-creation readiness) ensures
that the corresponding actual parameters are equipped with appropriate creation procedures.

The very brevity of this rule may make it less suitable for one of the applications of validity
constraints: enabling compilers to produce precise diagnostics in case of errors. For this reason
a complementary rule, conceptually redundant since it follows from the Creation Instruction rule,
but providing a more explicit view, appears next. It is stated in “only if” style rather than the usual
“if and only if” of other validity rules, since it limits itself to a set of necessary validity conditions.

End

8.20.16 Validity: Creation Instruction properties Validity code: VGCP

A Creation_instruction ci of creation type CT, appearing in a class C, is valid only if it satisfies the
following conditions, assuming CT is not a Formal_generic_name and calling BCT the base class
of CT and dc the version of ANY’s default_create in BCT:

1 BCT is an effective class.

2 If ci includes a Type part, the type it lists (which is CT) conforms to the type of the
instruction’s target.

3 If ci has no Creation_call, then BCT either has no Creators part or has one that lists dc
as one of the procedures available to C for creation.

4 If BCT has a Creators part which doesn’t list dc, then ci has a Creation_call.

5 If ci has a Creation_call whose feature f is not dc, then BCT has a Creators part which
lists f as one of the procedures available to C for creation.

6 If ci has a Creation_call, that call is argument-valid.

If CT is a Formal_generic_name, the instruction is valid only if it satisfies the following
conditions:

7 CT denotes a constrained generic parameter.

8 The Constraint for CT specifies one or more procedures as constraining creators.

9 If ci has no Creation_call, one of the constraining creators is the Constraint’s version of
default_create from ANY.

10 If ci has a Creation_call, one of the constraining creators is the feature of the
Creation_call.
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Informative text

Compiler writers may refer, in error messages, to either these “Creation Instruction Properties” or
the earlier “Creation Instruction rule” of which they are consequences. For the language definition,
the official rule is the Creation Instruction rule , which provides a necessary and sufficient set
of validity conditions.

End

8.20.17 Semantics: Creation Instruction Semantics

The effect of a creation instruction of target x and creation type TC is the effect of the following
sequence of steps, in order:

1 If there is not enough memory available for a new direct instance of TC, trigger an
exception of type NO_MORE_MEMORY in the routine that attempted to execute the
instruction. The remaining steps do not apply in this case.

2 Create a new direct instance of TC, with reference semantics if CT is a reference type
and copy semantics if CT is an expanded type.

3 Call, on the resulting object, the feature of the Unqualified_call of the instruction’s
unfolded form.

4 Attach x to the object.

Informative text

The rules requires the effect described by this sequence of steps; it does not require that the
implementation literally carry out the steps. In particular, if the target is expanded and has already
been set to an object value, the implementation (in the absence of cycles in the client relation
between expanded classes) may not have to allocate new memory ; instead, it may be able
simply to reuse the memory previously allocated to that object. (Because only expanded types
conform to an expanded type, no references may exist to the previous object, and hence it is not
necessary to preserve its value.) In that case, there will always at step 1 be “enough memory
available for a new direct instance” — the memory being reused — and so the exception cannot
happen.

One might expect, between steps 2 and 3, a step of default initialization of the fields of the new
object, since this is the intuitive semantics of the language: integers initialized to zero, detachable
references to void etc. There is no need, however, for such a step since the Variable Semantics
rule implies that an attribute or other variable, unless previously set by an explicit attachment, is
automatically set on first access. The rule implies for example that an integer field will be set to
zero. More generally, the semantics of the language guarantees that in every run-time
circumstance any object field and local variable, even if never explicitly assigned to yet, always
has a well-defined value when the computation needs it.

About step 3, remember that the notion of “unfolded form” allows us to consider that every creation
instruction has an Unqualified_call; in the procedure-less form create x, this is a call to
default_create.

Also note the order of steps: attachment to the target x is the last operation. Until then, x retains
its earlier value, void if x is a previously unattached reference.

In step 2, “not enough memory available” is a precise notion (the definition appears below); it
means that even after possible garbage collection the memory available for the system’s
execution is not sufficient for the requested object creation.

End

8.20.18  Syntax: Creation expressions

Creation_expression =∆  create Explicit_creation_type [Explicit_creation_call]
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8.20.19 Definition: Properties of a creation expression
The creation type and unfolded form of a creation expression are defined as for a creation
instruction.

8.20.20 Validity: Creation Expression rule Validity code: VGCE

A Creation_expression of creation type CT, appearing in a class C, is valid if and only if it satisfies
the following conditions:

1 The feature of the Creation_call of the expression’s unfolded form is available for
creation to C.

2 That Creation_call is argument-valid.

3 CT is generic-creation-ready.

8.20.21 Validity: Creation Expression Properties Validity code: VGCX

A Creation_expression ce of creation type CT, appearing in a class C, is valid only if it satisfies the
following conditions, assuming CT is not a Formal_generic_name and calling BCT the base class
of CT and dc the version of ANY’s default_create in BCT:

1 BCT is an effective class.

2 If ce has no Explicit_creation_call, then BCT either has no Creators part or has one that
lists dc as one of the procedures available to C for creation.

3 If BCT has a Creators part which doesn’t list dc, then ce has an Explicit_creation_call.

4 If ce has an Explicit_creation_call whose feature f is not dc, then BCT has a Creators
part which lists f as one of the procedures available to C for creation.

5 If ce has an Explicit_creation_call, that call is argument-valid.

If CT is a Formal_generic_name, the expression is valid only if it satisfies the following
conditions:

6 CT denotes a constrained generic parameter.

7 The Constraint for CT specifies one or more procedures as constraining creators.

8 If ce has no Creation_call, one of the constraining creators is the Constraint’s version of
default_create from ANY.

9 If ce has a Creation_call, one of the constraining creators is the feature of the
Creation_call.

Informative text
As with the corresponding “Creation Instruction Properties”, this is not an independent rule but a
set of properties following from previous constraints, expressed with more detailed requirements
that may be useful for error reporting by compilers.

End

8.20.22 Semantics: Creation Expression Semantics
The value of a creation expression of creation type TC is — except if step 1 below triggers an
exception, in which case the expression has no value — a value attached to a new object as can
be obtained through the following sequence of steps:

1 If there is not enough memory available for a new direct instance of TC, trigger an
exception of type NO_MORE_MEMORY in the routine that attempted to execute the
expression. In this case the expression has no value and the remaining steps do not
apply.

2 Create a new direct instance of TC, with reference semantics if CT is a reference type
and copy semantics if CT is an expanded type.

3 Call, on the resulting object, the feature of the Unqualified_call of the expression’s
unfolded form.
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Informative text
The notes appearing after the Creation Instruction Semantics rule also apply here.

End

8.20.23 Definition: Garbage Collection, not enough memory available
Authors of Eiffel implementation are required to provide garbage collection , defined as a
mechanism that can reuse for allocating new objects the memory occupied by unreachable
objects, guaranteeing the following two properties:

1 Consistency: the garbage collector never reclaims an object unless it is unreachable.

2 Completeness: no allocation request for an object of a certain size s will fail if there exists
an unreachable object of size >= s.

Not enough memory available for a certain size s means that even after possible application of
the garbage collection mechanism the memory available to the program is not sufficient for
allocating an object of size s.

 8.21 Comparing and duplicating objects

Informative text
The just studied Creation instruction is the basic language mechanism for obtaining new objects
at run time; it produces fresh direct instances of a given class, initialized from scratch.
Sometimes you will need instead to copy the contents of an existing object onto those of another.
This is the copying  operation.
A variant of copying is cloning , which produces a fresh object by duplicating an existing one.
For both copying and cloning, the default variants are “shallow”, affecting only one object, but
deep  versions are available to duplicate an object structure recursively.
A closely related problem is that of comparing two objects for shallow or deep equality.
The copying, cloning and comparison operations rely on only one language construct (the object
equality operator ~) and are entirely defined through language constructs but through routines that
developer-defined classes inherit from the universal class ANY. This makes it possible, through
feature redefinitions, to adapt the semantics of copying, cloning and comparing objects to the
specific properties of any class.

End

8.21.1 Object comparison features from ANY
The features whose contract views appear below are provided by class ANY.

default_is_equal (other : like  Current)

-- Is other attached to object field-by-field equal

-- to current object?

ensure

same_type: Result implies same_type (other)

symmetric: Result = other.default_is_equal (Current )

consistent: Result implies is_equal (other)

is_equal (other : ? like  Current)

-- Is other attached to object considered equal

-- to current object?

ensure

same_type: Result implies same_type (other)

symmetric: Result = other.is_equal (Current )
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consistent: default_is_equal (other) implies Result

The original version of is_equal in ANY has the same effect as default_is_equal.

Informative text
These are the two basic object comparison operations. The difference is that default_is_equal is
frozen, always returning the value of field-by-field identity comparison (for non-void other); any
class may, on the other hand, redefine is_equal, in accordance with the pre- and postcondition, to
reflect a more specific notion of equality.
Both functions take an argument of an attached type, so there is no need to consider void values.

End

8.21.2  Syntax: Equality expressions
Equality =∆ Expression Comparison Expression

Comparison =∆ "=" | "/=" | "~" | "/~"

8.21.3 Semantics: Equality Expression Semantics
The Boolean_expression e ~ f has value true if and only if the values of e and f are both attached
and such that e.is_equal (f) holds.

The Boolean_expression e = f has value true if and only if the values of e and f are one of:

1 Both void.

2 Both attached to the same object with reference semantics.

3 Both attached to objects with copy semantics, and such that e ~ f holds.

Informative text
The form with ~ always denotes object equality. The form with = denotes reference equality if
applicable, otherwise object equality. Both rely, for object equality, on function is_equal — the
version that can be redefined locally in any class to account for a programmer-defined notion of
object equality adapted to the specific semantics of the class.

End

8.21.4 Semantics: Inequality Expression Semantics
The expression e /= f has value true if and only if e = f has value false.

The expression e /~ f has value true if and only if e ~ f has value false.

8.21.5 Copying and cloning features from ANY
The features whose contract views appear below are provided by class ANY as secret features.

copy (other : ? like  Current)

-- Update current object using fields of object

-- attached to other, to yield equal objects.

require

exists: other /= Void

same_type: other.same_type (Current)

ensure

equal: is_equal (other)

frozen default_copy (other : ? like  Current)

-- Update current object using fields of object

-- attached to other, to yield identical objects.

require

exists: other /= Void
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same_type: other.same_type (Current)

ensure

equal: default_is_equal (other)

frozen cloned: like  Current

-- New object equal to current object

-- (relies on copy)

ensure

equal: is_equal (Result)

frozen  default_cloned: like  Current

-- New object equal to current object

-- (relies on default_copy)

ensure

equal: default_is_equal (Result)

The original versions of copy and cloned in ANY have the same effect as default_copy and
default_cloned respectively.

Informative text
Procedure copy is called in the form x.copy (y) and overrides the fields of the object attached to
x. Function cloned is called as x.cloned and returns a new object, a “clone” of the object attached
to x. These features can be adapted to a specific notion of copying adapted to any class, as long
as they produce a result equal to the source, in the sense of the — also redefinable — function
is_equal. You only have to redefine copy, since cloned itself is frozen, with the guarantee that it
will follow any redefined version of copy; the semantics of cloned is to create a new object and
apply copy to it.

In contrast, default_copy and default_cloned, which produce field-by-field identical copies of an
object, are frozen and hence always yield the original semantics as defined in ANY.

All these features are secret in their original class ANY. The reason is that exporting copying
and cloning may violate the intended semantics of a class, and concretely its invariant. For
example the correctness of a class may rely on an invariant property such as

some_circumstance implies (some_attribute = Current)
stating that under some_circumstance (a boolean property) the field corresponding to
some_attribute is cyclic (refers to the current object itself). Copying or cloning an object will usually
not preserve such a property. The class should then definitely not export default_copy and
default_cloned, and should not export copy and cloned unless it redefines copy in accordance with
this invariant; such redefinition may not be possible or desirable. Because these features are
secret by default, software authors must decide, class by class, whether to re-export them.

End

8.21.6 Deep equality, copying and cloning
The feature is_deep_equal of class ANY makes it possible to compare object structures
recursively; the features , deep_copy and deep_cloned duplicate an object structure recursively.

Informative text
The default versions of the earlier features — default_is_equal, default_copy, default_cloned and
the original versions of their non-default variants — are “shallow”: they compare or copy only one
source object. The “deep” versions recursively compare or copy entire object structures.

Detailed descriptions of the “deep” features appear in the specification of ELKS.

End
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 8.22 Attaching values to entit ies

Informative text
At any instant of a system’s execution, every entity of the system has a certain attachment status:
it is either attached to a certain object, or void (attached to no object). Initially, all entities of
reference types are void; one of the effects of a Creation instruction is to attach its target to an
object.

The attachment status of an entity may change one or more times during system execution
through a attachment  operations, in particular:
• The association of an actual argument of a routine to the corresponding formal argument at

the time of a call.

• The Assignment instruction, which may attach an entity to a new object, or remove the
attachment.

The validity and semantic properties of these two mechanisms are essentially the same; we study
them jointly here.

End

8.22.1 Definition: Reattachment, source, target

A reattachment  operation is one of:

1 An Assignment x := y; then y is the attachment’s source and x its target.

2 The run-time association, during the execution of a routine call, of an actual argument
(the source) to the corresponding formal argument (the target).

Informative text
We group assignment and argument passing into the same category, reattachment, because their
validity and semantics are essentially the same:
• Validity in both cases is governed by the type system: the source must conform to the target’s

type, or at least convert to it. The Conversion principle guarantees that these two cases are
exclusive.

• The semantics in both cases is to attach the target to the value of the source or a copy of that
value.

End

8.22.2  Syntax: Assignments

Assignment =∆ Variable ":=" Expression

8.22.3 Validity: Assignment rule Validity code: VBAR

An Assignment is valid if and only if its source expression is compatible with its target entity.

Informative text
To be “compatible” means to conform or convert.
This also applies to actual-formal association: the actual argument in a call must conform or
convert to the formal argument. The applicable rule is argument validity , part of the general
discussion of call validity.

End

8.22.4 Semantics: Reattachment principle

After a reattachement to a target entity t of type TT, the object attached to t, if any, is of a type
conforming to TT.
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8.22.5 Semantics: Attaching an entity, attached entity
Attaching an entity e to an object O is the operation ensuring that the value of e becomes
attached to O.

Informative text
Although it may seem tautological at first, this definition simply relates the two terms “attach”,
denoting an operation that can change an entity, and “attached to an object”, denoting the state
of such an entity — as determined by such operations. These are key concepts of the language
since:
• A reattachment operation (see next) may “attach” its target to a certain object as defined by

the semantic rule; a creation operation creates an object and similarly “attaches” its creation
target to that object.

• Evaluation of an entity, per the Entity Semantics rule, uses (partly directly, partly by depending
on the Variable Semantics rule and through it on the definition of “value of a variable setting”)
the object attached to that entity. This is only possible by ensuring, through other rules, that
prior to any such attempt on a specific entity there will have been operations to “attach” the
entity or make it void.

End

8.22.6 Semantics: Reattachment Semantics
The effect of a reattachment of source expression source and target entity target is the effect of
the first of the following steps whose condition applies:

1 If source converts to target: perform a conversion attachment from source to target.

2 If the value of source is a void reference: make target’s value void as well.

3 If the value of source is attached to an object with copy semantics: create a clone of that
object, if possible, and attach target to it.

4 If the value of source is attached to an object with reference semantics: attach target to
that object.

Informative text
As with other semantic rules describing the “effect” of a sequence of steps, only that effect counts,
not the exact means employed to achieve it. In particular, the creation of a clone in step 3 is — as
also noted in the discussion of creation — often avoidable in practice if the target is expanded and
already initialized, so that the instruction can reuse the memory of the previous object.

Case 1 indicates that a conversion, if applicable, overrides all other possibilities. In those other
cases, if follows from the Assignment rule that source must conform  to target.
Case 2 is, from the validity rules, possible only if both target and source are declared of detachable
types.

In case 3, a “clone” of an object is obtained by application of the function cloned from ANY;
expression conformance ensures that cloned is available (exported) to the type of target;
otherwise, cloning could produce an inconsistent object.
The cloning might be impossible for lack of memory, in which case the semantics of the cloning
operation specifies triggering an exception, of type NO_MORE_MEMORY. As usual with
exceptions, the rest of case 3 does not then apply.
In case 4 we simply reattach a reference. Because of the validity rules (no reference type
conforms to an expanded type), the target must indeed be of an reference type.

This rule defines the effect of a construct through a sequence of cases, looking for the first one
that matches. As usual with semantic rules, this only specifies the result, but does not imply that
the implementation must try all of them in order.

End
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8.22.7 Semantics: Assignment Semantics
The effect of a reassignment x := y is determined by the Reattachment Semantics rule, with source
y and target x.

Informative text
The other cases where Reattachment Semantics applies is actual-formal association, per step 5
of the General Call rule.
On the other hand, the semantics of Object_test, a construct which also allows a Read_only entity
to denote the same value as an expression, is simple enough that it does not need to refer to
reattachment.

End

8.22.8 Definition: Dynamic type
The dynamic type of an expression x, at some instant of execution, is the type of the object to
which x is attached, or NONE if x is void.

8.22.9 Definition: Polymorphic expression; dynamic type and class sets
An expression that has two or more possible dynamic types is said to be polymorphic .

The set of possible dynamic types for an expression x is called the dynamic type set of x. The
set of base classes of these types is called the dynamic class set  of x.

8.22.10  Syntax: Assigner calls
Assigner_call =∆ Expression ":=" Expression

Informative text
The left-hand side is surprisingly general: any expression. The validity rule will constrain it to be
of a form that can be interpreted as a qualified call to a query, such as x.a, or x.f (i, j); but the
syntactic form can be different, using for example bracket syntax as in a [i, j] := x.
You could even use operator syntax, as in

a + b := c
assuming that, in the type of a, the function plus alias "+" has been defined with an assigner
command, maybe a procedure subtract. Then the left side a + b is just an abbreviation for the
query call

a.plus (b)
and the Assigner_call is just an abbreviation for the procedure call

a.subtract (c, b)

End

8.22.11 Validity: Assigner Call rule Validity code: VBAC

An Assigner_call of the form target := source, where target and source are expressions, is valid if
and only if it satisfies the following conditions:

1 source is compatible with target.

2 The Equivalent Dot Form of target is a qualified Object_call whose feature has an
assigner command.

8.22.12 Semantics: Assigner Call semantics
The effect of an Assigner_call target := source, where the Equivalent Dot Form of target is x.f or
x.f (args) and f has an assigner command p, is, respectively, x.p (source) or x.p (source, args).

Informative text
This confirms that the construct is just an abbreviation for a procedure call.

End
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 8.23 Feature call

Informative text
In Eiffel’s model of computation, the fundamental way to do something with an object is to apply
to it an operation which — because the model is class-based, and behind every run-time object
lurks some class of the system’s text — must be a feature of the appropriate class.
This is feature call, one of the most important constructs in Eiffel’s object-oriented approach, and
the topic of the following discussions.

End

8.23.1 Validity: Call Use rule Validity code: VUCN

A Call of feature f denotes:

1 If f is a query (attribute or a function): an expression.

2 If f is a procedure: an instruction.

8.23.2  Syntax: Feature calls
Call =∆ Object_call | Non_object_call

Object_call =∆ [Target "."] Unqualified_call

Unqualified_call =∆ Feature_name [Actuals]

Target =∆ Local | Read_only | Call | Parenthesized_target

Parenthesized_target =∆ "(|" Expression "|)"

Non_object_call =∆ "{" Type "}" "." Unqualified_call

Informative text
A call is most commonly of the form a.b.… where a, b … are features, possibly with arguments.
Target allows a Call to apply to an explicit target object (rather then the current object); it can itself
be a Call, allowing multidot calls. Other possible targets are a local variable, a Read_only
(including formal arguments and Current ) a “non-object call” (studied below), or a complex
expression written as a Parenthesized_target (|…|).

End

8.23.3  Syntax: Actual arguments
Actuals =∆ "(" Actual_list ")"

Actual_list =∆ {Expression "," …}+

8.23.4 Definition: Unqualified, qualified call
An Object_call is qualified if it has a Target, unqualified  otherwise.

Informative text
In equivalent terms, a call is “unqualified” if and only if it consists of just an Unqualified_call
component.
The call f (a) is unqualified, x.f (a) is qualified.
Another equivalent definition, which does not explicitly refer to the syntax, is that a call is qualified
if it contains one or more dots, unqualified if it has no dots — counting only dots at the dot level,
not those that might appear in arguments; for example f (a.b) is unqualified.

End

8.23.5 Definition: Target of a call
Any Object_call has a target , defined as follows:

1 If it is qualified: its Target component.

2 If it is unqualified: Current .
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Informative text
The target is an expression; in a (b, c).d the target is a (b, c) and in (| a (b, c) + x |).d the target
(case 1) is a (b, c) + x. In a multidot case the target includes the Call deprived of its last part, for
example x.f (args).g in x.f (args).g.h (args1).

End

8.23.6 Definition: Target type of a call
Any Call has a target type , defined as follows:

1 For an Object_call: the type of its target. (In the case of an Unqualified_call this is the
current type.)

2 For a Non_object_call having a type T as its Type part: T.

8.23.7 Definition: Feature of a call
For any Call the “feature of the call ” is defined as follows:

1 For an Unqualified_call: its Feature_name.

2 For a qualified call or Non_object_call: (recursively) the feature of its Unqualified_call
part.

Informative text
Case 1 tells us that the feature of f (args) is f and the feature of g, an Unqualified_call to a feature
without arguments, is g.
The term is a slight abuse of language, since f and g are feature names rather than features. The
actual feature, deduced from the semantic rules given below and involving dynamic binding. is the
dynamic feature of the call.
It follows from case 2 that the feature of a qualified call x.f (args) is f. The recursive phrasing
addresses the multidot case: the feature of x.f (args).g.h (args1) is h.

End

8.23.8 Definition: Imported form of a Non_object_call

The imported form of a Non_object_call of Type T and feature f appearing in a class C is the
Unqualified_call built from the original Actuals if any and, as feature of the call, a fictitious new
feature added to C and consisting of the following elements:

1 A name different from those of other features of C .

2 A Declaration_body obtained from the Declaration_body of f by replacing every type by
its deanchored form, then applying the generic substitution of T.

Informative text
This definition in “unfolded” style allows us to view {T}.f (args) appearing in a class C as if it were
just f (args), an Unqualified_call, but appearing in C itself, assuming we had moved f over —
“imported” it — to C.

In item 2 we use the “deanchored form” of the argument types and result, since a type like a that
makes sense in T would be meaningless in C. As defined in the discussion of anchored types, the
deanchored version precisely removes all such local dependencies, making the type
understandable instead in any other context.

End

8.23.9 Validity: Non-Object Call rule Validity code: VUNO

A Non_object_call of Type T and feature fname in a class C is valid if and only if it satisfies the
following conditions:

1 fname is the final name of a feature f of T.
- 122 -



2 f is available to C.

3 f is either a constant attribute or an external feature whose assertions, if any, use neither
Current  nor any unqualified calls.

4 The call’s imported form is a valid Unqualified_call.

Informative text
Condition 2 requires f to have a sufficient export status for use in C; there will be a similar
requirement for Object_call. Condition 3 is the restriction to constants and externals. Condition 4
takes care of the rest by relying on the rules for Unqualified_call.

End

8.23.10 Semantics: Non-Object Call Semantics
The effect of a Non_object_call is that of its imported form.

8.23.11 Validity: Export rule Validity code: VUEX

An Object_call appearing in a class C, with fname as the feature of the call, is export-valid for C
if and only if it satisfies the following conditions.

1 fname is the final name of a feature of the target type of the call.

2 If the call is qualified, that feature is available to C.

Informative text
For an unqualified call f or f (args), only condition 1 is applicable, requiring simply (since the target
type of an unqualified class is the current type) that f be a feature, immediate or inherited, of the
current class.

For a qualified call x.f with x of type T, possibly with arguments, condition 2 requires that the base
class of T make the feature available to C: export it either generally or selectively to C or one of
its ancestors. (Through the Non-Object Call rule this also governs the validity of a Non_object_call
{T}.f.)
As a consequence, s (…) might be permitted and x.s (…) invalid, even if x is Current . The
semantics of qualified and unqualified calls is indeed slightly different; in particular, with invariant
monitoring on, a qualified call will — even with Current as its target — check the class invariant,
but an unqualified call won’t.

End

8.23.12  Validity: Export Status principle
The export status of a feature f:

• Constrains all qualified calls x.f (…), including those in which the type of x is the current type,
or is Current  itself.

• Does not constrain unqualified calls.

Informative text
This is a validity property, but it has no code since it is not a separate rule, just a restatement for
emphasis of condition 2 of the Export rule.

End

8.23.13 Validity: Argument rule Validity code: VUAR

An export-valid call of target type ST and feature fname appearing in a class C where it denotes
a feature sf is argument-valid  if and only if it satisfies the following conditions:

1 The number of actual arguments is the same as the number of formal arguments
declared for sf.
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2 Every actual argument of the call is compatible with the corresponding formal argument
of sf.

Informative text

Condition 2 is the fundamental type rule on argument passing, which allowed the discussion of
direct reattachment to treat Assignment and actual-formal association in the same way. An
expression is compatible with an entity if its type either conforms or converts to the entity’s type.

End

8.23.14 Validity: Target rule Validity code: VUTA

An Object_call is target-valid  if and only if either:

1 It is unqualified.

2 Its target is an attached expression.

Informative text

Unqualified calls (case 1) are always target-valid since they are applied to the current object,
which by construction is not void.

For the target expression x to be “attached”, in case 2, means that the program text guarantees
— statically, that is to say through rules enforced by compilers — that x will never be void at run
time. This may be because x is an entity declared as attached (so that the validity rules ensure it
can never be attached a void value) or because the context of the call precludes voidness, as in
if x /= Void then x.f (…) end for a local variable x. The precise definition will cover all these cases.

End

8.23.15 Validity: Class-Level Call rule Validity code: VUCC

A call of target type ST is class-valid if and only if it is export-valid, argument-valid and
target-valid.

8.23.16 Definition: Void-Unsafe

A language processing tool may, as a temporary migration facility, provide an option that waives
the target validity requirement in class validity. Systems processed under such an option are
void-unsafe .

Informative text

Void-unsafe systems are not valid Eiffel systems. Since void safety was not enforced by previous
versions of Eiffel, compilers may need, all the same, to provide an option that temporarily lifts this
requirement. Including the notion of “void-unsafe” in the language definition enforces a consistent
way for various compilers to provide this transition facility.

End

8.23.17 Definition: Target Object

The target object  of an execution of an Object_call is:

1 If the call is qualified: the object attached to its target.

2 If it is unqualified: the current object.

8.23.18 Semantics: Failed target evaluation of a void-unsafe system

In the execution of an (invalid) system compiled in void-unsafe mode through a language
processing tool offering such a migration option, an attempt to execute a call triggers, if it evaluates
the target to a void reference, an exception of type VOID_TARGET.
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8.23.19 Definition: Dynamic feature of a call
Consider an execution of a call of feature fname and target object O. Let ST be its target type and
DT the type of O. The dynamic feature of the call is the dynamic binding version in DT of the
feature of name fname in ST.

Informative text
Behind the soundness of this definition stands a significant part of the validity machinery of the
language:
• The rules on reattachment imply that DT conforms to ST.

• The Export rule imply that fname is the name of a feature of ST (meaning a feature of the base
class of ST).

• As a consequence, this feature has a version in DT; it might have several, but the definition of
“dynamic binding version” removes any ambiguity.

Combining the last two semantic definitions enables the rest of the semantic discussion to take
for granted, for any execution of a qualified call, that we know both the target object and the
feature to execute. In other words, we’ve taken care of the two key parts of Object_call semantics,
although we still have to integrate a few details and special cases.

End

8.23.20 Definition: Freshness of a once routine call
During execution, a call whose feature is a once routine r is fresh if and only if every feature call
started so far satisfies any of the following conditions:

1 It did not use r as dynamic feature.

2 It was in a different thread, and r has the once key "THREAD" or no once key.

3 Its target was not the current object, and r has the once key "OBJECT".

4 After it was started, a call was executed to one of the refreshing features of onces from
ANY, including among the keys to be refreshed at least one of the once keys of r.

Informative text
Case 2 indicates that “once per thread” is the default in the absence of an explicit once key

End

8.23.21 Definition: Latest applicable target and result of a non-fresh call
The latest applicable target of a non-fresh call to a once routine df to a target object O is the
last value to which it was attached in the call to df most recently started on:

1 If df has the once key "OBJECT ": O.

2 Otherwise, if df has the once key "THREAD" or no once key: any target in the current
thread.

3 Otherwise: any target in any thread.

If df is a function, the latest applicable result of the call is the last value returned by a fresh call
using as target object its latest applicable target.

8.23.22 Semantics: Once Routine Execution Semantics
The effect of executing a once routine df on a target object O is:

1 If the call is fresh: that of a non-once call made of the same elements, as determined by
Non-once Routine Execution Semantics.

2 If the call is not fresh and the last execution of f on the latest applicable target triggered
an exception: to trigger again an identical exception. The remaining cases do not then
apply.

3 If the call is not fresh and df is a procedure: no further effect.
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4 If the call is not fresh and df is a function: to attach the local variable Result to the latest
applicable result of the call.

Informative text
Case 2 is known as “once an once exception, always a once exception”. If a call to a once routine
yields an exception, then all subsequent calls for the same applicable target, which would
normally yield no further effect (for a procedure, case 3) or return the same value (for a function,
case 4) should follow the same general idea and, by re-triggering the exception, repeatedly tell
the client — if the client is repeatedly asking — that the requested effect or value is impossible to
provide.

There is a little subtlety in the definition of “latest applicable target” as used in case 4. For a once
function that has already been evaluated (is not fresh), the specification does not state that
subsequent calls return the result of the first, but that they yield the value of the predefined entity
Result . Usually this is the same, since the first call returned its value through Result . But if the
function is recursive , a new call may start before the first one has terminated, so the “result of the
first call” would not be a meaningful notion. The specification states that in this case the recursive
call will return whatever value the first call has obtained so far for Result (starting with the default
initialization). A recursive once function is a bit bizarre, and of little apparent use, but no validity
constraint disallows it, and the semantics must cover all valid cases.

End

8.23.23 Semantics: Current object, current routine
At any time during the execution of a system there is a current object CO and a current routine
cr defined as follows:

1 At the start of the execution: CO is the root object and cr is the root procedure.

2 If cr executes a qualified call: the call’s target object becomes the new current object,
and its dynamic feature becomes the new current routine. When the qualified call
terminates, the earlier current object and routine resume their roles.

3 If cr executes an unqualified call: the current object remains the same, and the dynamic
feature of the call becomes the current routine for the duration of the call as in case 2.

4 If cr starts executing any construct whose semantics does not involve a call: the current
object and current routine remain the same.

8.23.24 Semantics: Current Semantics
The value of the predefined entity Current at any time during execution is the current object if the
current routine belongs to an expanded class, and a reference to the current object otherwise.

8.23.25 Semantics: Non-Once Routine Execution Semantics
The effect of executing a non-once routine df on a target object O is the effect of the following
sequence of steps:

1 If df has any local variables, including Result if df is a function, save their current values
if any call to df has been started but not yet terminated.

2 Execute the body of df.

3 If the values of any local variables have been saved in step 1, restore the variables to
their earlier values.

8.23.26 Semantics: General Call Semantics
The effect of an Object_call of feature sf is, in the absence of any exception, the effect of the
following sequence of steps:

1 Determine the target object O through the applicable definition.

2 Attach Current  to O.

3 Determine the dynamic feature df of the call through the applicable definition.
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4 For every actual argument a, if any, in the order listed: obtain the value v of a; then if the
type of a converts to the type of the corresponding formal in sf, replace v by the result of
the applicable conversion. Let arg_values be the resulting sequence of all such v.

5 Attach every formal argument of df to the corresponding element of arg_values by
applying the Reattachment Semantics rule.

6 If the call is qualified and class invariant monitoring is on, evaluate the class invariant of
O’s base type on O.

7 If precondition monitoring is on, evaluate the precondition of df .

8 If df is not an attribute, not a once routine and not external, apply Non-Once Routine
Execution Semantics to O and df .

9 If df  is a once routine, apply the Once Routine Execution Semantics to O and df.

10 If df is an external routine, execute that routine on the actual arguments given, if any,
according to the rules of the language in which it is written.

11 If df is a self-initializing attribute and has not yet been initialized, initialize it through the
Default Initialization rule.

12 If the call is qualified and class invariant monitoring is on, evaluate the class invariant of
O’s base type on O.

13 If postcondition monitoring is on, evaluate the postcondition of df.

An exception occurring during any of these steps causes the execution to skip the remaining parts
of this process and instead handle the exception according to the Exception Semantics rule.

8.23.27 Definition: Type of a Call used as expression
Consider a call denoting an expression. Its type  with respect to a type CT of base class C is:

1 For an unqualified call, its feature f being a query of CT: the result type of the version of
f in C, adapted through the generic substitution of CT.

2 For a qualified call a.e of Target a: (recursively) the type of e with respect to the type of a.

3 For a Non_object_call: (recursively) the type of its imported form.

8.23.28 Semantics: Call Result
Consider a Call c whose feature is a query. An execution of c according to the General Call
Semantics yields a call result defined as follows, where O is the target object determined at step
1 of the rule and df  the dynamic feature determined at step 3:

1 If df is a non-external, non-once function: the value attached to the local variable Result
of df at the end of step 2 of Non-Once Routine Execution Semantics.

2 If df is a once function: the value attached to Result as a result of the application of Once
Routine Execution Semantics.

3 If df is an attribute: the corresponding field in O.

4 If df is an external function: the result returned by the function according to the external
language’s rule.

8.23.29 Semantics: Value of a call expression
The value of a Call c used as an expression is, at any run-time moment, the result of executing c.

 8.24 Eradicating void calls

Informative text
In the object-oriented style of programming the basic unit of computation is a qualified feature call

x.f (args)
which applies the feature f, with the given arguments args, to the object attached to x. But x can
be a reference, and that reference can be void. Then there is no object attached to x. An attempt
to execute the call would fail, triggering an exception.
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If permitted to occur, void calls are a source of instability and crashes in object-oriented programs.
For other potential run-time accidents such as type mismatches, the compilation process spots
the errors and refuses to generate executable code until they’ve all been corrected. Can we do
the same for void calls?

Eiffel indeed provides a coordinated set of techniques that guarantee the absence of void calls at
execution time. The actual rules are specific conditions of more general validity constraints — in
particular on attachment and qualified calls — appearing elsewhere; in the following discussion
we look at them together from the viewpoint of ensuring their common goal: precluding void calls.
The basic idea is simple. Its the combination of three rules:
• A qualified call x.f (args) is target-valid — a required part of being plain valid — if the type of

x is attached , “Attached” is here a static property, deduced from the declaration of x (or, if it
is a complex expression, of its constituents).

• A reference type with a name in the usual form, T, is attached. To obtain a detachable type —
meaning that Void is a valid value — use ?T.

• The validity rules ensure that attached types — those without a ? — deserve their name: an
entity declared as x: T can never take on a void value at execution time. In particular, you may
not assign to x a detachable value, or if x is a formal argument to a routine you may not call it
with a detachable actual. (With a detachable target, the other way around, you are free to use
an attached or detachable source.)

End

8.24.1  Syntax: Object test

Object_test =∆ "{" Identifier ":" Type "}" Expression

Informative text
An Object_test of the form {x: T} exp, where exp is an expression, T is a type and x is a name
different from those of all entities of the enclosing context, is a boolean-valued expression; its
value is true if and only exp is attached to an instance of T (hence, non-void). In addition,
evaluating the expression has the effect of letting x denote that value of exp over the execution of
a neighboring part of the text known as the scope of the Object_test. For example, in if {x: T} exp
then c1 else c2 end the scope of the Object_test is the compound in the then part, c1. Within c1,
you may use x as a Read_only entity, knowing that it has the value exp had on evaluation of the
Object_test, that this value is of type T, and that it cannot be changed during the execution of c1.

The following rules define these notions precisely.

End

8.24.2 Definition: Object-Test Local

The Object-Test Local of an Object_test is its Identifier component.

8.24.3 Validity: Object Test rule Validity code: VUOT

An Object_test ot of the form {x: T} exp is valid if and only if it satisfies the following conditions:

1 x does not have the same lower name as any feature of the enclosing class, or any
formal argument or local variable of any enclosing feature or Inline_agent, or, if ot
appears in the scope of any other Object_test, its Object-Test Local.

2 T is an attached type.

Informative text
Condition 2 reflects the intent of an Object_test: to test whether an expression is attached to an
instance of a given type. It would make no sense then to use a detachable type.

End
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8.24.4 Definition: Conjunctive, disjunctive, implicative;
Term, semistrict term
Consider an Operator_expression e of boolean type, which after resolution of any ambiguities
through precedence rules can be expressed as a1 § a2 §… § an for n ≥ 1, where § represents
boolean operators and every ai, called a term , is itself a valid Boolean_expression. Then e is:

• Conjunctive  if every § is either and or and then .

• Disjunctive if every § is either or or or else .

• Implicative  if n = 2 and § is implies .

A term ai is semistrict  if in the corresponding form it is followed by a semistrict operator.

8.24.5 Definition: Scope of an Object-Test Local
The scope of the Object-Test Local of an Object_test ot includes any applicable program element
from the following:

1 If ot is a semistrict term of a conjunctive expression: any subsequent terms.

2 If ot is a term of an implicative expression: the next term.

3 If not ot is a semistrict term of a disjunctive expression e: any subsequent terms.

4 If ot is a term of a conjunctive expression serving as the Boolean_expression in the
Then_part in a Conditional: the corresponding Compound.

5 If not ot is a term of a disjunctive expression serving as the Boolean_expression in the
Then_part in a Conditional: any subsequent Then_part and Else_clause.

6 If not ot is a term of a disjunctive expression serving as the Exit_condition in a Loop: the
Loop_body.

7 If ot is a term of a conjunctive expression used as Unlabeled_assertion_clause in a
Precondition: the subsequent components of the Attribute_or_routine.

8 If ot is a term of a conjunctive expression used as Unlabeled_assertion_clause in a
Check: the subsequent components of its enclosing Compound.

Informative text
The definition ensures that, for an Object_test {x: T} exp, we can rest assured that, throughout its
scope, x will never at run time have a void value, and hence can be used as the target of a call.

End

8.24.6 Semantics: Object Test semantics
The value of an Object_test {x: T} exp is true if the value of exp is attached to an instance of T,
false otherwise.

Informative text
In particular, if x is void (which is possible only if T is a detachable type), the result will be false.

End

8.24.7 Semantics: Object-Test Local semantics
For an Object_test {x: T} exp, the value of x, defined only over its scope, is the value of exp at the
time of the Object_test’s evaluation.

8.24.8 Definition: Read-only void test
A read-only void test is a Boolean_expression of one of the forms e = Void and e /= Void, where
e is a read-only entity.

8.24.9 Definition: Scope of a read-only void test
The scope of a read-only void test appearing in a class text, for e of type T, is the scope that the
Object-Test Local ot would have if the void test were replaced by:

1 For e = Void: not ({ot: T} e).
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2 For e /= Void: {ot: T} e.

Informative text

This is useful if T is a detachable type, providing a simple way to generalize the notion of scope
to common schemes such as if e /= Void then …, where we know that e cannot be void in the
Then_part. Note that it is essential to limit ourselves to read-only entities; for a variable, or an
expression involving a variable, anything could happen to the value during the execution of the
scope even if e is initially not void.

Of course one could always write an Object_test instead, but the void test is a common and
convenient form, if only because it doesn’t require repeating the type T of e, so it will be important
to handle it as part of the Certified Attachment Patterns discussed next.

End

8.24.10 Definition: Certified Attachment Pattern

A Certified Attachment Pattern (or CAP) for an expression exp whose type is detachable is an
occurrence of exp in one of the following contexts:

1 exp is an Object-Test Local and the occurrence is in its scope.

2 exp is a read-only entity and the occurrence is in the scope of a void test involving exp.

Informative text

A CAP is a scheme that has been proved, or certified by sufficiently many competent people (or
computerized proof tools), to ensure that exp will never have a void run-time value in the covered
scope.
• The CAPs listed here are the most frequently useful and seem beyond doubt. Here too

compilers could be “smart” and find other cases making exp.f safe. The language
specification explicitly refrains, however, from accepting such supposed compiler
improvements: other than the risk of mistake in the absence of a public discussion, this would
result in some Eiffel texts being accepted by certain compilers and rejected by others. Instead,
a compiler that accepts a call to a detachable target that is not part of one of the official CAPs
listed above is non-conformant .

• The list of CAPs may grow in the future, as more analysis is applied to actual systems, leading
to the identification, and certification by human or automatic means, of safe patterns for using
targets of detachable types.

End

8.24.11 Definition: Attached expression

An expression exp of type T is attached  if it satisfies any of the following conditions:

1 T is attached.

2 T is expanded.

3 exp appears in a Certified Attachment Pattern for exp.

Informative text

This is the principal result of this discussion: the condition under which an expression is
target-valid, that is to say, can be used as target of a call because its value is guaranteed never
to be void at any time of evaluation. It is in an Expanded type’s nature to abhor a void; attached
types are devised to avoid void too; and Certified Attachment Patterns catch a detachable variable
when it is provably not detached.

End
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 8.25 Typing-related properties

Informative text
This Part does not define any new rules, only a few definitions that facilitate discussion of type
issues.

End

8.25.1 Definition: Catcall
A catcall is a run-time attempt to execute a Call, such that the feature of the call is not applicable
to the target of the call.

Informative text
The role of the type system is to ensure that a valid system can never, during its execution,
produce a catcall.
“Cat” is an abbreviation for “Changed Availability or Type”, two language mechanisms that, if not
properly controlled by the type system, could cause catcalls.

End

8.25.2 Validity: Descendant Argument rule Validity code: VUDA

Consider a call of target type ST and feature fname appearing in a class C. Let sf be the feature
of final name fname in ST. Let DT be a type conforming to ST, and df the version of sf in DT. The
call is descendant-argument-valid  for DT if and only if it satisfies the following conditions:

1 The call is argument-valid.

2 Every actual argument conforms, after conversion to the corresponding formal argument
of sf if applicable, to the corresponding formal argument of df.

8.25.3 Validity: Single-level Call rule Validity code: VUSC

A call of target x is system-valid if for any element D of the dynamic class set of x it is export-valid
for D and descendant-argument-valid for D.

Informative text
The common goal of the type mechanisms and rules of the language is to ensure that every call
is both class-valid and system-valid.

End

 8.26 Exception handling

Informative text
During the execution of an Eiffel system, various abnormal events may occur. A hardware or
operating system component may be unable to do its job; an arithmetic operation may result in
overflow; an improperly written software element may produce an unacceptable outcome.
Such events will usually trigger a signal, or exception , which interrupts the normal flow of
execution. If the system’s text does not include any provision for the exception, execution will
terminate. The system may, however, be programmed so as to handle exceptions, which means
that it will respond by executing specified actions and, if possible, resuming execution after
correcting the cause of the exception.

End

8.26.1 Definition: Failure, exception, trigger
Under certain circumstances, the execution or evaluation of a construct specimen may be unable
to proceed as defined by the construct’s semantics. It is then said to result in a failure .
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If, during the execution of a feature, the execution of one of its components fails, this prevents
continuing its execution normally; such an event is said to trigger an exception .

Informative text

Examples of exception causes include:
• Assertion violation (in an assertion monitoring mode).

• Failure of a called routine.

• Impossible operation, such as a Creation instruction attempted when not enough memory is
available, or an arithmetic operation which would cause an overflow or underflow in the
platform’s number system.

• Interruption signal sent by the machine for example after a user has hit the "break" key or the
window of the current process has been resized.

• An exception explicitly raised by the software itself.

Common exception types that do not arise in Eiffel, other than through mistakes in the definition
of the language as specified by the Standard, are “void calls” (attempts to execute a feature on a
void target) and “catcalls” (attempt to execute a feature on an unsuitable object).

End

8.26.2  Syntax: Rescue clauses

Rescue =∆ rescue Compound

Retry =∆ retry

8.26.3 Validity: Rescue clause rule Validity code: VXRC

It is valid for an Attribute_or_routine to include a Rescue clause if and only if its Feature_body is
an Attribute or an Effective_routine of the Internal form.

Informative text

An Internal body is one which begins with either do or once . The other possibilities are Deferred,
for which it would be improper to define an exception handler since the body does not specify an
algorithm, and an External body, where the algorithm is specified outside of the Eiffel system,
which then lacks the information it would need to handle exceptions.

End

8.26.4 Validity: Retry rule Validity code: VXRT

A Retry instruction is valid if and only if it appears in a Rescue clause.

Informative text

Because this constraint requires the Retry physically to appear within the Rescue clause, it is not
possible for a Rescue to call a procedure containing a Retry. In particular, a redefined version of
default_rescue (see next) may not contain a Retry.

End

8.26.5 Definition: Exception-correct

A routine is exception-correct if any branch of the Rescue clause not terminating with a Retry
ensures the invariant.

8.26.6 Semantics: Default Rescue Original Semantics

Class ANY introduces a non-frozen procedure default_rescue with no argument and a null effect.
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Informative text
As the following semantic rules indicate, an exception not handled by an explicit Rescue clause
will cause a call to default_rescue. Any class can redefine this procedure to implement a default
exception handling policy for routines of the class that do not have their own Rescue clauses.

End

8.26.7 Definition: Rescue block
Any Internal or Attribute feature f of a class C has a rescue block , a Compound defined as follows,
where rc is C’s version of ANY’s default_rescue:

1 If f has a Rescue clause: the Compound contained in that clause.

2 If r is not rc and has no Rescue clause: a Compound made of a single instruction: an
Unqualfied_call to rc.

3 If r is rc and has no Rescue clause: an empty Compound.

Informative text
The semantic rules rely on this definition to define the effect of an exception as if every routine
had a Rescue clause: either one written explicitly, or an implicit one calling default_rescue. To this
effect they refer not to rescue clauses but to rescue blocks.

Condition 3 avoids endless recursion in the case of default_rescue itself.

End

8.26.8 Semantics: Exception Semantics
An exception triggered during an execution of a feature f causes, if it is neither ignored nor
continued, the effect of the following sequence of events.

1 Attach the value of last_exception from ANY to a direct instance of a descendant of the
Kernel Library class EXCEPTION corresponding to the type of the exception.

2 Unlike in the non-exception semantics of Compound, do not execute the remaining
instructions of f.

3 If the recipient of the exception is f, execute the rescue block of f.

4 If case 3 applies and the rescue block executes a Retry, this terminates the processing
of the exception. Execution continues with a new execution of the Compound in the
Feature_body of f.

5 If neither case 3 nor case 4 applies (in particular in case 3 if the rescue block executes
to the end without executing a Retry), this terminates the processing of the current
exception and the current execution of f, causing a failure of that execution. If the
execution of f was caused by a call to f from another feature, trigger an exception of type
ROUTINE_FAILURE in the calling routine, to be handled (recursively) according to the
present rule. If there is no such calling feature, f is the root procedure; terminate its
execution as having failed.

Informative text
As usual in rules specifying the “effect” of an event in terms of a sequence of steps, all that counts
is that effect; it is not required that the execution carry out these exact steps, or carry them in this
exact order.

In step 1, the Retry will only re-execute the Feature_body of r, with all entities set to their current
value; it does not repeat argument passing and local variable initialization. This may be used to
ensure that the execution takes a different path on a new attempt.

In most cases, the “recipient” of the exception (case 3) is the current routine, f. For exception
occurring in special places, such as when evaluating an assertion, the next rule, Exception Cases,
tells us whether f or its caller is the “recipient”.
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In the case of a Feature_body of the Once form, the above semantics only applies to the first call
to every applicable target, where a Retry may execute the body two or more times. If that first call
fails, triggering a routine failure exception, the applicable rule for subsequent calls is not the above
Exception Semantics (since the routine will not execute again) but the Once Routine Execution
Semantics, which specifies that any such calls must trigger the exception again.

End

8.26.9 Definition: Type of an exception
The type of a triggered exception is the generating type of the object to which the value of
last_exception is attached per step 1 of the Expression Semantics rule.

8.26.10 Semantics: Exception Cases
The triggering of an exception in a feature f called by a feature caller results in the setting of the
following properties, accessible through features of the exception class instance to which the
value of last_exception is attached, as per the following table, where:

• The Recipient is either f or caller.

• “Type ” indicates the type of the exception (a descendant of EXCEPTION).

• If f is the root procedure, executed during the original system creation call, the value of caller
as given below does not apply.

Recipient Type

Exception during evaluation caller [Type of exception as triggered]
of invariant on entry

Invariant violation on entry caller INVARIANT_ENTRY_VIOLATION

Exception during evaluation caller [Type of exception as triggered]
of precondition

Exception during evaluation See Old Expression Semantics
of Old expression on entry

Precondition violation caller PRECONDITION_VIOLATION

Exception in body f [Type of exception as triggered]

Exception during evaluation f [Type of exception as triggered]
of invariant on exit

Invariant violation on exit f INVARIANT_EXIT_VIOLATION

Exception during evaluation f [Type of exception as triggered]
of postcondition on exit

Postcondition violation f POSTCONDITION_VIOLATION

Informative text
This rule specifies the precise effect of an exception occurring anywhere during execution
(including some rather extreme cases, such as the occurrence of an exception in the evaluation
of an assertion). Whether the “recipient” is f or caller determines whether the execution of the
current routine can be “retried”: per case 3 of the Exception Semantics rule, a Retry is applicable
only if the recipient is itself. Otherwise a ROUTINE_FAILURE will be triggered in the caller.
In the case of an Old expression, a special rule, given earlier, requires the exception to be
remembered, during evaluation of the expression on entry to the routine, for re-triggering during
evaluation of the postcondition on exit, but only if the expression turns out to be needed then.

End

8.26.11 Semantics: Exception Properties
The value of the query original of class EXCEPTION, applicable to last_exception, is an
EXCEPTION reference determined as follows after the triggering of an exception of type TEX:
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1 If TEX does not conform to ROUTINE_FAILURE: a reference to the current
EXCEPTION object.

2 If TEX conforms to ROUTINE_FAILURE: the previous value of original.

Informative text
The reason for this query is that when a routine fails, because execution of a routine f has
triggered an exception and has not been able to handle it through a Retry, the consequence, per
case 5 of the Exception Semantics rule, is to trigger a new exception of type ROUTINE_FAILURE,
to which last_exception now becomes attached. Without a provision for original, the “real” source
of the exception would be lost, as ROUTINE_FAILURE exceptions get passed up the call chain.
Querying original makes it possible, for any other routine up that chain, to find out the Ur-exception
that truly started the full process.

End

8.26.12 Definition: Ignoring, continuing an exception
It is possible, through routines of the Kernel Library class EXCEPTION, to ensure that exceptions
of certain types be:

• Ignored : lead to no change of non-exception semantics.

• Continued : lead to execution of a programmer-specified routine, then to continuation of the
execution according to non-exception semantics.

Informative text
The details of what types of exceptions can be ignored and continued, and how to achieve these
effects, belong to the specification of class EXCEPTION and its descendants.

End

 8.27 Agents, i teration and introspection

Informative text
Objects represent information equipped with operations. These are clearly defined concepts; no
one would mistake an operation for an object.
For some applications — graphics, numerical computation, iteration, writing contracts, building
development environments, “reflection” (a system’s ability to explore its own properties) — you
may find the operations so interesting that you will want to define objects to represent them, and
pass these objects around to software elements, which can use these objects to execute the
operations whenever they want. Because this separates the place of an operation’s definition from
the place of its execution, the definition can be incomplete, since you can provide any missing
details at the time of any particular execution.
You can create agent objects to describe such partially or completely specified computations.
Agents combine the power of higher-level functionals — operations acting on other operations —
with the safety of Eiffel’s static typing system.

End

8.27.1 Definition: Operands of a call
The operands of a call include its target (explicit in a qualified call, implicit in an unqualified call),
and its arguments if any.

8.27.2 Definition: Operand position
The target of a call has position  0. The i-th actual argument, for any applicable i, has position i.

8.27.3 Definition: Construction time, call time
The construction time of an agent object is the time of evaluation of the agent expression
defining it.
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Its call time  is when a call to its associated operation is executed.

8.27.4 Syntactical forms for a call agent
A call agent is of the form

agent agent_body

where agent_body is a Call, qualified (as in x.r (…)) or unqualified (as in f (…)) with the following
possible variants:

• You may replace any argument by a question mark ?, making the argument open.

• You may replace the target, by {TYPE} where TYPE is the name of a type, making the target
open.

• You may remove the argument list (…) altogether, making all arguments open.

Informative text
This is not a formal syntax definition, but a summary of the available forms permitted by the syntax
and validity rules that follow.

End

8.27.5  Syntax: Agents
Agent =∆  Call_agent | Inline_agent

Call_agent =∆ agent Call_agent_body

Inline_agent =∆ agent [Formal_arguments] [Type_mark] [Attribute_or_routine] [Agent_actuals]

8.27.6  Syntax: Call agent bodies
Call_agent_body =∆  Agent_qualified | Agent_unqualified

Agent_qualified =∆ Agent_target ". " Agent_unqualified

Agent_unqualified =∆ Feature_name [Agent_actuals]

Agent_target =∆ Entity | Parenthesized | Manifest_type

Agent_actuals =∆ "(" Agent_actual_list ")"

Agent_actual_list =∆ {Agent_actual "," …}+

Agent_actual =∆ Expression | Placeholder

Placeholder =∆ [Manifest_type] "?"

8.27.7 Definition: Target type of an call agent
The target type  of a Call_agent is:

1 If there is no Agent_target, the current type.

2 If there is an Agent_target and it is an Entity or Parenthesized, its type.

3 If there is an Agent_target and it is a Manifest_type, the type that it lists (in braces).

8.27.8 Validity: Call Agent rule Validity code: VPCA

A Call_agent involving a Feature_name fn, appearing in a class C, with target type T0, is valid if
and only if it satisfies the following conditions:

1 fn is the name of a feature f of T0.

2 If there is an Agent_target, f is export-valid for T0 in C.

3 If the Agent_actuals part is present, the number of elements in its Agent_actual_list is
equal to the number of formals of f.

4 Any Agent_actual of the Expression kind is of a type compatible with the type of the
corresponding formal in f.

8.27.9 Definition: Associated feature of an inline agent
Every inline agent ia of a class C has an associated feature , defined as a fictitious routine f of C,
such that:
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1 The name of f is chosen not to conflict with any other feature name in C and its
descendants.

2 The formal arguments of f are those of ia.

3 f is secret (available for call to no class).

4 The Attribute_or_routine part of f is defined by the Attribute_or_routine part of ia.

5 f is a function if ia has a Type_mark (its return type being given by the Type in that
Type_mark), a procedure otherwise.

8.27.10 Validity: Inline Agent rule Validity code: VPIA

An Inline_agent a of associated feature f, is valid in the text of a class C if and only if it satisfies
the following conditions:

1 f, if added to C, would be valid.

2 f is not deferred.

8.27.11 Validity: Inline Agent Requirements Validity code: VPIR

An Inline_agent a must satisfy the following conditions:

1 No formal argument or local variable of a has the same name as a feature of the
enclosing class.

2 Every entity appearing in the Routine part of a is the name of one of: a formal argument
of a; a local variable of a; a feature of the enclosing class; Current .

3 The Feature_body of a’s Routine is not of the Deferred form.

Informative text
These conditions are stated as another validity rule permitting compilers to issue more
understandable error messages. It is not in the usual “if and only if” form (since the preceding rule,
the more official one, takes care of this), but the requirements given cover the most obvious
possible errors.

End

8.27.12 Definition: Call-agent equivalent of an inline agent

The call-agent equivalent of an inline agent ia is the Call_agent

agent f

where f is the associated feature of ia.

8.27.13 Semantics: Semantics of inline agents

The semantic properties of an inline agent are those of its call-agent equivalent.

8.27.14 Semantics: Use of Result  in an inline function agent

In an agent of the Inline_agent form denoting a function, the local variable Result denotes the
result of the agent itself.

8.27.15 Definition: Open and closed operands

The open operands of a Call_agent include:

1 Any Agent_actual that is a Placeholder.

2 The Agent_target if it is present and is a Manifest_type.

The closed operands  include all non-open operands.

8.27.16 Definition: Open and closed operand positions

The open operand positions of an Agent are the operand positions of its open operands, and
the closed operand positions  those of its closed operands.
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8.27.17 Definition: Type of an agent expression
Consider a Call_agent a, with a target of type T0. Let i1, …, im (m ≥ 0) be its open operand
positions, if any, and let Ti1, .., Tim be the types of f’s formal arguments at positions i1, …, im
(taking Ti1 to be T0 if i1 = 0).

The type of a is:

• PROCEDURE [T0, TUPLE [Ti1, .., Tim]] if f is a procedure.

• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if f is a function of result type R other than BOOLEAN.

• PREDICATE [T0, TUPLE [Ti1, .., Tim]] if f is a function of result type BOOLEAN.

8.27.18 Semantics: Agent Expression semantics
The value of an agent expression a at a certain construction time yields a reference to an instance
D0 of the type of a, containing information identifying:

• The associated feature of a.

• Its open operand positions.

• The values of its closed operands at the time of evaluation.

8.27.19 Semantics: Effect of executing call on an agent
Let D0 be an agent object with associated feature f and open positions i1, …, im (m ≥ 0). The
information in D0 enables a call to the procedure call, executed at any call time posterior to D0’s
construction time, with target D0 and (if required) actual arguments ai1, .., aim, to perform the
following:

• Produce the same effect as a call to f, using the closed operands at the closed operand
positions and ai1, .., aim, evaluated at call time, at the open operand positions.

• In addition, if f is a function, setting the value of the query last_result for D0 to the result
returned by such a call.

 8.28 Expressions

Informative text
Through the various forms of Expression, software texts can include denotations of run-time
values — objects and references.
Previous discussions have already introduced some of the available variants of the construct:
Formal, Local, Call, Old, Manifest_tuple, Agent. The present one gives the full list of permissible
expressions and the precise form of all but one of the remaining categories: operator expressions,
equality and locals. The last category, constants, has its own separate presentation, just after this
one.

End

8.28.1  Syntax: Expressions
Expression=∆ Basic_expression | Special_expression

Basic_expression=∆ Read_only | Local | Call | Precursor | Equality | Parenthesized | Old |
Operator_expression | Bracket_expression | Creation_expression

Special_expression=∆ Manifest_constant | Manifest_tuple | Agent | Object_test | Once_string |
Address

Parenthesized =∆ "(" Expression ")"

Address =∆ "$" Variable

Once_string =∆ once Manifest_string

Boolean_expression =∆ Basic_expression | Boolean_constant | Object_test

8.28.2 Definition: Subexpression, operand
The subexpressions of an expression e are e itself and (recursively) all the following expressions:

1 For a Parenthesized (a) or a Parenthesized_target (|a |): the subexpressions of a.
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2 For an Equality or Binary_expression a § b, where § is an operator: the subexpressions
of a and of b.

3 For a Unary_expression ◊ a, where ◊ is an operator: the subexpressions of a.

4 For a Call: the subexpressions of the Actuals part, if any, of its Unqualified_part.

5 For a Precursor: the subexpressions of its unfolded form.

6 For an Agent: the subexpression of its Agent_actuals if any.

7 For a qualified call: the subexpressions of its target.

8 For a Bracket_expression f [a1, … an]: the subexpressions of f and those of all of a1, …
an.

9 For an Old expression old a: a.

10 For a Manifest_tuple [a1, … an]: the subexpressions of all of a1, … an.

In cases 2 and 3, the operands  of e are a and (in case 2) b.

8.28.3 Semantics: Parenthesized Expression Semantics

If e is an expression, the value of the Parenthesized (e) is the value of e.

8.28.4  Syntax: Operator expressions

Operator_expression =∆ Unary_expression | Binary_expression

Unary_expression =∆ Unary Expression

Binary_expression =∆ Expression Binary Expression

8.28.5 Operator precedence levels

13 . (Dot notation, in qualified and non-object calls)

12 old (In postconditions)
not + – Used as unary
All free unary operators

11 All free binary operators.

10 ^ (Used as binary: power)

9 ∗ / // \\ (As binary: multiplicative arithmetic operators)

8 + – Used as binary

7 .. (To define an interval)

6 = /= ~ /~ < > <= >=(As binary: relational operators)

5 and and then
(Conjunctive boolean operators)

4 or or else xor
(Disjunctive boolean operators)

3 implies (Implicative boolean operator)

2 [ ] (Manifest tuple delimiter)

1 ; (Optional semicolon between
an Assertion_clause and the next)

Informative text

This precedence table includes the operators that may appear in an Operator_expression, the
equality and inequality symbols used in Equality expressions, as well as other symbols and
keywords which also occur in expressions and hence require disambiguating: the semicolon in its
role as separator for Assertion_clause; the old operator which may appear in an Old expression
as part of a Postcondition; the dot . of dot notation, which binds tighter than any other operator.
- 139 -



The operators listed include both standard operators and predefined operators (=, /=, ~, /~). For a
free operator, you cannot set the precedence: all free unaries appear at one level, and all free
binaries at another level.

End

8.28.6 Definition: Parenthesized Form of an expression

The parenthesized form of an expression is the result of rewriting every subexpression of one of
the forms below, where § and ‡ are different binary operators, ◊ and ♣ different unary operators,
and a, b, c arbitrary operands, as follows:

1 For a § b § c where § is not the power operator ^: (a § b) § c (left associativity).

2 For a ^ b ^ c : a ^ (b ^ c) (right associativity).

3 For a § b ‡ c: (a § b) ‡ c if the precedence of ‡ is lower than the precedence of § or the
same, and a § (b ‡ c) otherwise.

4 For ◊ ♣ a: ◊ (♣ a)

5 For ◊ a § b: (◊ a) § b

6 For a § ◊ b: a § (◊ b)

7 For a subexpression e to which none of the previous patterns applies: e unchanged.

8.28.7 Definition: Target-converted form of a binary expression

The target-converted form of a Binary_expression x § y, where the one-argument feature of alias
§ in the base class of x has the Feature_name f, is:

1 If the declaration of f includes a convert mark and the type TY of y is not compatible with
the type of the formal argument of f: ({TY} [x]) § y.

2 Otherwise: the original expression, x § y.

Informative text
({TY} [x]) denotes x converted to type TY. This definition allows us, if the feature from x’s type TX
cannot accept a TY argument but has explicitly been specified, through the convert mark, to allow
for target conversion, and TY does include the appropriate feature accepting a TX argument, to
use that feature instead.

The archetypal example is your_integer + your_real which, with the appropriate convert mark in
the "+" feature in INTEGER, we can interpret as ({REAL} [your_integer]) + your_real, where "+"
represents the plus feature from REAL.

End

8.28.8 Validity: Operator Expression rule Validity code: VWOE

A Unary_expression § x or Binary_expression x § y, for some operator §, is valid if and only if it
satisfies the following conditions:

1 A feature of the base class of x is declared as alias "§".

2 The expression’s Equivalent Dot Form is a valid Call.

8.28.9 Semantics:  Expression Semantics (strict case)

The value of an Expression, other than a Binary_expression whose Binary is semistrict, is the
value of its Equivalent Dot Form.

Informative text
This semantic rule and the preceding validity constraint make it possible to forego any specific
semantics for operator expressions (except in one special case) and define the value of any
expression through other semantic rules of the language, in particular the rules for calls and
entities.
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This applies in particular to arithmetic and relational operators (for which the feature declarations
are in basic classes such as INTEGER and REAL) and to boolean operators (class BOOLEAN):
in principle, although not necessary as implemented by compilers, a + b is just a feature call like
any other.
The excluded case — covered by a separate rule — is that of a binary expression using one of
the three semistrict operators: and then , or else , implies . This is because the value of an
expression such as a and then b is not entirely defined by its Equivalent Dot Form
a.conjuncted_semistrict (b), which needs to evaluate b, whereas the and then form explicitly
ignores b when a has value False, as the value of the whole expression is False even if b does
not have a defined value, a case which should not be treated as an error.

End

8.28.10 Definition: Semistrict operators

A semistrict operator is any one of the three operators and then, or else and implies , applied to
operands of type BOOLEAN.

8.28.11 Semantics: Operator Expression Semantics (semistrict cases)

For a and b of type BOOLEAN:

• The value of a and then b is: if a has value false, then false; otherwise the value of b.

• The value of a or else b is: if a has value true, then true; otherwise the value of b.

• The value of a implies b is: if a has value false, then true; otherwise the value of b.

Informative text
The semantics of other kinds of expression, and Eiffel constructs in general, is compositional :
the value of an expression with subexpressions a and b, for example a + b (where a and b may
themselves be complex expressions), is defined in terms of the values of a and b, obtained from
the same set of semantic rules, and of the connecting operators, here +. Among expressions,
those involving semistrict operators are the only exception to this general style. The above rule is
not strictly compositional since it tells us that in certain cases of evaluating an expression involving
b we should not consider the value of b. It’s not just that we may ignore the value of b in some
cases — which would also be true of a and b (strict) when a is false — but that we must ignore it
lest it prevents us from evaluating the expression as a whole.

It’s this lack of full compositionality that makes the above rule more operational than the semantic
specification of other kinds of expression. Their usual form is “the value of an expression of the
form X is Y”, where Y only refers to values of subexpressions of X. Such rules normally don’t
mention order of execution. They respect compositionality and leave compilers free to choose any
operand evaluation order, in particular for performance. Here, however, order matters: the final
requirement of the rule requires that the computation first evaluate a. We need this operational
style to reflect the special nature of nonstrict operators, letting us sometimes get a value for an
expression whose second operand does not have any.

End

8.28.12  Syntax: Bracket expressions

Bracket_expression =∆ Bracket_target "[" Actuals "]"

Bracket_target =∆ Target | Once_string | Manifest_constant | Manifest_tuple

Informative text
Target covers every kind of expression that can be used as target of a call, including simple
variants like Local variables and formal arguments, as well as Call, representing the application
of a query to a target that may itself be the result of applying calls.

End
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8.28.13 Validity: Bracket Expression rule Validity code: VWBR

A Bracket_expression x [i] is valid if and only if it satisfies the following conditions:

1 A feature of the base class of x is declared as alias "[ ]".

2 The expression’s Equivalent Dot Form is a valid Call.

8.28.14 Definition: Equivalent Dot Form of an expression
Any Expression e has an Equivalent Dot Form , not involving (in any of its subexpressions) any
Bracket_expression or Operator_expression, and defined as follows, where C denotes the base
class of x, pe denotes the Parenthesized Form of e, and x’, y’, c’ denote the Equivalent Dot Forms
(obtained recursively) of x, y, c:

1 If pe is a Unary_expression § x: x’.f, where f is the Feature_name of the no-argument
feature of alias § in C.

2 If pe is a Binary_expression of target-converted form x § y: x’.f (y’) where f is the
Feature_name of the one-argument feature of alias § in C.

3 If pe is a Bracket_expression x [y]: x’.f (y’) where f is the Feature_name of the feature
declared as alias  "[ ]" in C.

4 If pe has no subexpression other than itself: pe.

5 In all other cases: (recursively) the result of replacing every subexpression of e by its
Equivalent Dot Form.

8.28.15 Validity: Boolean Expression rule Validity code: VWBE

A Basic_expression is valid as a Boolean_expression if and only if it is of type BOOLEAN.

8.28.16 Validity: Identifier rule Validity code: VWID

An Identifier appearing in an expression in a class C, other than as the feature of a qualified Call,
must be the name of a feature of C, or a local variable of the enclosing feature or inline agent if
any, or a formal argument of the enclosing reature or inline agent if any, or the Object-Test Local
of an Object_test.

Informative text
The restriction “other than as the feature of a qualified Call” excludes an identifier appearing
immediately after a dot to denote a feature being called on a target object: in a + b.c (d), the rule
applies to a, b (target of a Call) and d (actual argument), but not to c (feature of a qualified Call).
For c the relevant constraint is the Call rule, which among other conditions requires c to be a
feature of the base class of b’s type.
The Identifier rule is not a full "if and only if" rule; in fact it is conceptually superfluous since it
follows from earlier, more complete constraints. Language processing tools may find it convenient
as a simple criterion for detecting the most common case of invalid Identifier in expression.

End

8.28.17 Definition: Type of an expression
The type of an Expression e is:

1 For the predefined Read_only Current : the current type.

2 For a routine’s Formal argument : the type declared for e.

3 For an Object-Test local: its declared type.

4 For Result , appearing in the text of a query f: the result type of f.

5 For a local variable other than Result : the type declared for e.

6 For a Call: the type of e as determined by the Expression Call Type definition with
respect to the current type.

7 For a Precursor: (recursively) the type of its unfolded form.

8 For an Equality: BOOLEAN.
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9 For a Parenthesized (f): (recursively) the type of f.

10 For old  f: (recursively) the type of f.

11 For an Operator_expression or Bracket_expression: (recursively) the type of the
Equivalent Dot Form of e.

12 For a Manifest_constant: as given by the definition of the type of a manifest constant.

13 For a Manifest_tuple [a1, … an] (n ≥ 0): TUPLE [T1, … Tn] where each Ti is (recursively)
the type of ai.

14 For an Agent: as given by the definition of the type of an agent expression.

15 For an Object_test: BOOLEAN.

16 For a Once_string: STRING.

17 For an Address $v: TYPED_POINTER [T] where T is (recursively) the type of v.

18 For a Creation_expression: the Explicit_creation_type.

Informative text
Case 6, which refers to a definition given in the discussion of calls, also determines case 11,
operator and bracket expressions.

End

 8.29 Constants

Informative text
Expressions, just studied, include the special case of constants, whose values cannot directly be
changed by execution-time actions. This discussion goes through the various kinds. Particular
attention will be devoted to the various forms, single- and multi-line, of string constant.
Along with constants proper, we will study two notations for “manifest” objects given by the list of
their items: manifest tuples and manifest arrays, both using the syntax [item1, … itemn].

End

8.29.1  Syntax: Constants
Constant =∆ Manifest_constant | Constant_attribute

Constant_attribute =∆ Feature_name

8.29.2 Validity: Constant Attribute rule Validity code: VWCA

A Constant_attribute appearing in a class C is valid if and only if its Feature_name is the final
name of a constant attribute of C.

8.29.3  Syntax: Manifest constants
Manifest_constant =∆ [Manifest_type] Manifest_value

Manifest_type =∆ "{" Type "}"

Manifest_value =∆ Boolean_constant |
Character_constant |
Integer_constant |
Real_constant |
Manifest_string |
Manifest_type

Sign =∆ "+" | "–"

Integer_constant =∆ [Sign] Integer

Character_constant =∆ " '" Character " '"

Boolean_constant =∆ True | False

Real_constant =∆ [Sign] Real
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8.29.4 Syntax (non-production): Sign Syntax rule

If present, the Sign of an Integer_constant or Real_constant must immediately precede the
associated Integer or Real, with no intervening tokens or components (such as breaks or
comments).

8.29.5 Syntax (non-production): Character Syntax rule

The quotes of a Character_constant must immediately precede and follow the Character, with no
intervening tokens or components (such as breaks or comments).

Informative text

In general, breaks or comment lines may appear between components prescribed by a BNF-E
production, making the last two rules necessary to complement the grammar: for signed
constants, you must write –5, not – 5 etc. This helps avoid confusion with operators in arithmetic
expressions, which may of course be followed by spaces, as in a – b. Similarly, you must write
a character constant as 'A’, not ' A ’.
To avoid any confusion about the syntax of Character_constant, it is important to note that a
character code such as %N (New Line) constitutes a single Character token.

End

8.29.6 Definition: Type of a manifest constant

The type of a Manifest_constant of Manifest_value mv is:

1 For {T} mv, with the optional Manifest_type present: T. The remaining cases assume this
optional component is absent, and only involve mv.

2 If mv is a Boolean_constant: BOOLEAN.

3 If mv is a Character_constant: CHARACTER.

4 If mv is an Integer_constant: INTEGER.

5 If mv is a Real_constant: REAL.

6 If mv is a Manifest_string: STRING.

7 If mv is a Manifest_type {T}: TYPE [T].

Informative text

As a consequence of cases 3 to 6, the type of a character, string or numeric constant is never one
of the sized variants but always the fundamental underlying type (CHARACTER, INTEGER,
REAL, STRING). Language mechanisms are designed so that you can use such constants
without hassle — for example, without explicit conversions — even in connection with specific
variants. For example:
• You can assign an integer constant such as 10 to a target of a type such as INTEGER_8 as

long as it fits (as enforced by validity rules).

• You can use such a constant for discrimination in a Multi_branch even if the expression being
discriminated is of a specific sized variant; here too the compatibility is enforced statically by
the validity rules.

Case 7 involves the Kernel Library class TYPE.

End

8.29.7 Validity: Manifest-Type Qualifier rule Validity code: VWMQ

It is valid for a Manifest_constant to be of the form {T} v (with the optional Manifest_type qualifier
present) if and only if the type U of v (as determined by cases 2 to 7 of the definition of the type
of a manifest constant) is one of CHARACTER, STRING, INTEGER and REAL, and T is one of
the sized variants of U.
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Informative text

The rule states no restriction on the value, even though an example such as {INTEGER_8} 256 is
clearly invalid, since 256 is not representable as an INTEGER_8. The Manifest Constant rule
addresses this.

End

8.29.8 Semantics: Manifest Constant Semantics

The value  of a Manifest_constant c listing a Manifest_value v is:

1 If c is of the form {T} v (with the optional Manifest_type qualifier present): the value of
type T denoted by v.

2 Otherwise (c is just v): the value denoted by v.

8.29.9 Definition: Manifest value of a constant

The manifest value  of a constant is:

1 If it is a Manifest_constant: its value.

2 If it is a constant attribute: (recursively) the manifest value of the Manifest_constant
listed in its declaration.

Informative text

As the following syntax indicates, there are two ways to write a manifest string:

• A Basic_manifest_string, the most common case, is a sequence of characters in double
quotes, as in "This text". Some of the characters may be special character codes, such as %N
representing a new line. This variant is useful for such frequent applications as object names,
texts of simple messages to be displayed, labels of buttons and other user interface elements,
generally using fairly short and simple sequences of characters. You may write the string over
several lines by ending an interrupted line with a percent character % and starting the next
one, after possible blanks and tabs, by the same character.

• A Verbatim_string is a sequence of lines to be taken exactly as they are (hence the name),
bracketed by "{ at the end of the line that precedes the sequence and }" at the beginning of
the line that follows the sequence (or "[ and "] to left-align the lines). No special character
codes apply. This is useful for embedding multi-line texts; applications include description
entries of Notes clauses, inline C code, SQL or XML queries to be passed to some external
program.

End

8.29.10  Syntax: Manifest strings

Manifest_string =∆ Basic_manifest_string | Verbatim_string

Basic_manifest_string =∆ ' " ' String_content ' " '

String_content =∆ {Simple_string Line_wrapping_part …}+

Verbatim_string =∆ Verbatim_string_opener Line_sequence Verbatim_string_closer

Verbatim_string_opener =∆ ' " ' [Simple_string] Open_bracket

Verbatim_string_closer =∆ Close_bracket [Simple_string] ' " '

Open_bracket =∆ "[" | "{"

Close_bracket =∆ "]" | "}"
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Informative text

In the “basic” case, most examples of String_content involve just one Simple_string (a sequence
of printable characters, with no new lines, as defined in the description of lexical components). For
generality, however, String_content is defined as a repetition, with successive Simple_string
components separated by Line_wrapping_part to allow writing a string on several lines. Details
below.

In the “verbatim” case, Line_sequence is a lexical construct denoting a sequence of lines with
arbitrary text. The reason for the Verbatim_string_opener and the Verbatim_string_closer is to
provide an escape sequence for an extreme case (a Line_sequence that begins with ]" ), but most
of the time the opener is just "[ or "{ and the closer ]" or "} . The difference between brackets and
braces is that with "{ … }" the Line_sequence is kept exactly as is, whereas with "[ … ]" the lines
are left-aligned (stripped of any common initial blanks and tabs). Details below.

End

8.29.11 Syntax (non-production): Line sequence

A specimen of Line_sequence is a sequence of one or more Simple_string components, each
separated from the next by a single New_line.

8.29.12 Syntax (non-production): Manifest String rule

In addition to the properties specified by the grammar, every Manifest_string must satisfy the
following properties:

1 The Simple_string components of its String_content or Line_sequence may not include
a double quote character except as part of the character code %" (denoting a double
quote).

2 A Verbatim_string_opener or Verbatim_string_closer may not contain any break
character.

Informative text

Like other “non-production” syntax rules, the last two rules capture simple syntax requirements
not expressible through BNF-E productions.

Because a Line_sequence is made of simple strings separated by a single New_line in each case,
a line in a Verbatim_string that looks like a comment is not a comment but a substring of the
Verbatim_string.

End

8.29.13 Definition: Line_wrapping_part

A Line_wrapping_part is a sequence of characters consisting of the following, in order: % (percent
character); zero or more blanks or tabs; New_line; zero or more blanks or tabs; % again.

Informative text

This construct requires such a definition since it can’t be specified through a context-free syntax
formalism such as BNF-E.

The use of Line_wrapping_part as separator between a Simple_string and the next in a
Basic_manifest_string allows you to split a string across lines, with a % at the end of an
interrupting line and another one at the beginning of the resuming line. The definition allows
blanks and tabs before the final % of a Line_wrapping_part although they will not contribute to the
contents of the string. This makes it possible to apply to the Basic_manifest_string the same
indentation as to the neighboring elements. The definition also permits blanks and tabs after the
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initial % of a Line_wrapping_part, partly for symmetry and partly because it doesn’t seem justified
to raise an error just because the compiler has detected such invisible but probably harmless
characters.

End

8.29.14 Semantics: Manifest string semantics
The value of a Basic_manifest_string is the sequence of characters that it includes, in the order
given, excluding any line wrapping parts, and with any character code replaced by the
corresponding character.

8.29.15 Validity: Verbatim String rule Validity code: VWVS

A Verbatim_string is valid if and only if it satisfies the following conditions, where α is the (possibly
empty) Simple_string appearing in its Verbatim_string_opener:

1 The Close_bracket is ] if the Open_bracket is [, and } if the Open_bracket is {.

2 Every character in α is printable, and not a double quote ".

3 If α is not empty, the string’s Verbatim_string_closer includes a Simple_string identical
to α.

8.29.16 Semantics: Verbatim string semantics
The value of a Line_sequence is the string obtained by concatenating the characters of its
successive lines, with a “new line” character inserted between any adjacent ones.

The value of a Verbatim_string using braces { } as Open_bracket and Close_bracket is the value
of its Line_sequence.

The value of a Verbatim_string using braces [ ] as Open_bracket and Close_bracket is the value
of the left-aligned form of its Line_sequence.

Informative text
This semantic definition is platform-independent : even if an environment has its own way of
separating lines (such as two characters, carriage return %R and new line %N, on Windows) or
represents each line as a separate element in a sequence (as in older operating systems still used
on mainframes), the semantics yields a single string — a single character sequence — where
each successive group of characters, each representing a line of the original, is separated from
the next one by a single %N.

End

8.29.17 Definition: Prefix, longest break prefix, left-aligned form
A prefix of a string s is a string p of some length n (n ≥ 0) such that the first n characters of s are
the corresponding characters of p.

The longest break prefix of a sequence of strings ls is the longest string bp containing no
characters other than spaces and tabs, such that bp is a prefix of every string in ls. (The longest
break prefix is always defined, although it may be an empty string.)

The left-aligned form of a sequence of strings ls is the sequence of strings obtained from the
corresponding strings in ls by removing the first n characters, where n is the length of the longest
break prefix of ls (n ≥ 0).

 8.30 Basic types

Informative text
The term “basic type” covers a number of expanded class types describing elementary values:
booleans, characters, integers, reals, machine-level addresses. The corresponding classes —
BOOLEAN; CHARACTER, INTEGER, REAL and variants specifying explicit sizes; POINTER —
are part of ELKS, the Eiffel Library Kernel Standard.
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The following presentation explains the general concepts behind the design and use of these
classes.

End

8.30.1 Definition: Basic types and their sized variants

A basic type is any of the types defined by the following ELKS classes:

• BOOLEAN.

• CHARACTER, CHARACTER_8, CHARACTER_32, together called the “sized variants of
CHARACTER”.

• INTEGER, INTEGER_8, INTEGER_16, INTEGER_32, INTEGER_64, NATURAL,
NATURAL_8, NATURAL_16, NATURAL_32, NATURAL_64, together called the “sized
variants  of INTEGER”.

• REAL, REAL_32, REAL_64, together called the “sized variants  of REAL”.

• POINTER.

8.30.2 Definition: Sized variants of STRING

The sized variants of STRING are STRING, STRING_8 and STRING_32.

8.30.3 Semantics: Boolean value semantics

Class BOOLEAN covers the two truth values.

The reserved words True and False denote the corresponding constants.

8.30.4 Semantics: Character types

The reference class CHARACTER_GENERAL describes properties of characters independently
of the character code.

The expanded class CHARACTER_32 describes Unicode characters; the expanded class
CHARACTER_8 describes 8-bit (ASCII-like) characters.

The expanded class CHARACTER describes characters with a length and encoding settable
through a compilation option. The recommended default is Unicode.

8.30.5 Semantics: Integer types

The reference class INTEGER_GENERAL describes integers, signed or not, of arbitrary length.
The expanded classes INTEGER_xx, for xx = 8, 16, 32 or 64, describe signed integers stored on
xx bits. The expanded classes NATURAL_xx, for xx = 8, 16, 32 or 64, describe unsigned integers
stored on xx bits.

The expanded classes INTEGER and NATURAL describe integers, respectively signed and
unsigned, with a length settable through a compilation option. The recommended default is 64 bits
in both cases.

8.30.6 Semantics: Floating-point types

The reference class REAL_GENERAL describes floating-point numbers with arbitrary precision.
The expanded classes REAL_xx, for xx = 32 or 64, describe IEEE floating-point numbers with xx
bits of precision.

The expanded class REAL describes floating-point numbers with a precision settable through a
compilation option. The recommended default is 64 bits.

8.30.7 Semantics: Address semantics

The expanded class POINTER describes addresses of data beyond the control of Eiffel systems.
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 8.31 Interfacing with C, C++ and other environments

Informative text

Object technology as realized in Eiffel is about combining components . Not all of these
components are necessarily written in the same language; in particular, as organizations move to
Eiffel, they will want to reuse their existing investment in components from other languages, and
make their Eiffel systems interoperate with non-Eiffel software.

Eiffel is a “pure” O-O language, not a hybrid between object principles and earlier approaches
such as C, and at the same time an open framework for combining software written in various
languages. These two properties might appear contradictory, as if consistent use of object
technology meant closing oneself off from the rest of the programming world. But it’s exactly the
reverse: a hybrid approach, trying to be O-O as well as something completely different, cannot
succeed at both since the concepts are too distant. Eiffel instead strives, by providing a coherent
object framework — with such principles as Uniform Access, Command-Query Separation, Single
Choice, Open-Closed and Design by Contract — to be a component combinator capable of
assembling software bricks of many different kinds.

The following presentation describes how Eiffel systems can integrate components from other
languages and environments.

End

8.31.1  Syntax: External routines

External =∆ external  External_language [External_name]

External_language =∆ Unregistered_language | Registered_language

Unregistered_language =∆ Manifest_string

External_name =∆ alias Manifest_string

Informative text

The External clause is the mechanism that enables Eiffel to interface with other environments and
serve as a “component combinator” for software reuse and particularly for taking advantage of
legacy code.

By default the mechanism assumes that the external routine has the same name as the Eiffel
routine. If this is not the case, use an External_name of the form alias "ext_name". The name
appears as a Manifest_string, in quotes, not an identifier, because external languages may have
different naming conventions; for example an underscore may begin a feature name in C but not
in Eiffel, and some languages are case-sensitive for identifiers whereas Eiffel is not.

Instead of calling a pre-existing foreign routine, it is possible to include inline C or C++ code; the
alias clause will host that code, which can access Eiffel objects through the arguments of the
external routine.

The language name (External_language) can be an Unregistered_language: a string in quotes
such as "Cobol ". Since the content of the string is arbitrary, there is no guarantee that a particular
Eiffel environment will support the corresponding language interface. This is the reason for the
other variant, Registered_language: every Eiffel compiler must support the language names "C",
"C++" and dll . Details of the specific mechanisms for every such Registered_language appear
below.

Some of the validity rules below include a provision, unheard of in other parts of the language
specification, allowing Eiffel language processing tools to rely on non-Eiffel tools to enforce some
conditions. A typical example is a rule that requires an external name to denote a suitable foreign
function; often, this can only be ascertained by a compiler for the foreign language. Such rules
should be part of the specification, but we can’t impose their enforcement on an Eiffel compiler
without asking it also to become a compiler of C, C++ etc.; hence this special tolerance.
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The general semantics of executing external calls appeared as part of the general semantics of
calls. The semantic rules of the present discussion address specific cases, in particular inline C
and C++.

End

8.31.2 Semantics: Address semantics
The value of an Address expression is an address enabling foreign software to access the
associated Variable.

Informative text
The manipulations that the foreign software can perform on such addresses depend on the foreign
programming language. It is the implementation’s responsibility to ensure that such manipulations
do not violate Eiffel semantic properties.

End

8.31.3  Syntax: Registered languages
Registered_language=∆ C_external | C++_external | DLL_external

8.31.4  Syntax: External signatures
External_signature =∆ signature [External_argument_types] [: External_type]

External_argument_types =∆ "(" External_type_list ")"

External_type_list =∆ {External_type "," …}*

External_type =∆ Simple_string

8.31.5 Validity: External Signature rule Validity code: VZES

An External_signature in the declaration of an external routine r is valid if and only if it satisfies the
following conditions:

1 Its External_type_list contains the same number of elements as r has formal arguments.

2 The final optional component (: External_type) if present if and only if r is a function.

A language processing tool may delegate enforcement of these requirements to non-Eiffel tools
on the chosen platform.

Informative text
The rule does not prescribe any particular relationship between the argument and result types
declared for the Eiffel routine and the names appearing in the External_type_list and the final
External_type if any, since the precise correspondence depends on foreign language properties
beyond the scope of Eiffel rules.
The specification of a non-external routine never includes C-style empty parenthesization: for a
declaration or call of a routine without arguments you write r, not r (). The syntax of
External_argument_types, however, permits () for compatibility with other languages’
conventions.
The last part of the rule allows Eiffel tools to rely on non-Eiffel tools if it is not possible, from within
Eiffel, to check the properties of external routines. This provision also applies to several of the
following rules.

End

8.31.6 Semantics: External signature semantics
An External_signature specifies that the associated external routine:

• Expects arguments of number and types as given by the External_argument_types if present,
and no arguments otherwise.

• Returns a result of the External_type appearing after the colon, if present, and otherwise no
result.
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8.31.7  Syntax: External file use

External_file_use =∆ use External_file_list

External_file_list =∆ {External_file "," …}+

External_file =∆ External_user_file | External_system_file

External_user_file =∆ ' " '  Simple_string ' " '

External_system_file =∆ "<"Simple_string ">"

Informative text

As the syntax indicates, you may specify as many external files as you like, preceded by use and
separated by commas. You may specify two kinds of files:
• “System” files, used only in a C context, appear between angle brackets < > and refer to

specific locations in the C library installation.

• The name of a “user” file appears between double quotes, as in "/path/user/her_include.h",
and will be passed on literally to the operating system. Do not forget, when using double
quotes, that this is all part of an Eiffel Manifest_string: you must either code them as %" or,
more conveniently, write the string as a Verbatim_string, the first line preceded by "[ and the
last line followed by ]" .

End

8.31.8 Validity: External File rule Validity code: VZEF

An External_file is valid if and only if its Simple_string satisfies the following conditions:

1 When interpreted as a file name according to the conventions of the underlying platform,
it denotes a file.

2 The file is accessible for reading.

3 The file’s content satisfies the rules of the applicable foreign language.

A language processing tool may delegate enforcement of these conditions to non-Eiffel tools on
the chosen platform.

Informative text

Condition 3 means for example that if you pass an include file to a C function the content must be
C code suitable for inclusion by a C “include” directive. Such a requirement may be beyond the
competence of an Eiffel compiler, hence the final qualification enabling Eiffel tools to rely, for
example, on compilation errors produced by a C compiler.

The “conventions of the underlying platforms” cited in condition 1 govern the rules on file names
(in particular the interpretation of path delimiters such as / and \ on Unix and Windows) and, for an
External_system_file name of the form <some_file.h>, the places in the file system where
some_file.h is to be found.

End

8.31.9 Semantics: External file semantics

An External_file_use in an external routine declaration specifies that foreign language tools, to
process the routine (for example to compile its original code), require access to the listed files.

8.31.10  Syntax: C externals

C_external =∆ ’' " ' C
’[inline ]
[External_signature] [External_file_use]
' " '
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Informative text

The C_external mechanism makes it possible, from Eiffel, to use the mechanisms of C. The
syntax covers two basic schemes:
• You may rely on an existing C function. You will not, in this case, use inline . If the C function’s

name is different from the lower name of the Eiffel routine, specify it in the alias
(External_name) clause; otherwise you may just omit that clause.

• You may also write C code within the Eiffel routine, putting that code in the alias clause and
specifying inline .

In the second case the C code can directly manipulate the routine’s formal arguments and,
through them, Eiffel objects. The primary application (rather than writing complex processing in C
code in an Eiffel class, which would make little sense) is to provide access to existing C libraries
without having to write and maintain any new C files even if some “glue code” is necessary, for
example to perform type adaptations. Such code, which should remain short and simple, will be
directly included and maintained in the Eiffel classes providing the interface to the legacy code.

The alias part is a Manifest_string of one of the two available forms:
• It may begin and end with a double quote "; then any double quote character appearing in it

must be preceded by a percent sign, as %"; line separations are marked by the special code
for “new line”, %N.

• If the text extends over more than one line, it is more convenient to use a Verbatim_string: a
sequence of lines to be taken exactly as they are, preceded by "[ at the end of a line and
followed by ]"  at the beginning of a line.

In this Manifest_string, you may refer to any formal argument a of the external routine through the
notation $a (a dollar sign immediately followed by the name of the argument). For a you may use
either upper or lower case, lower being the recommended style as usual.

End

8.31.11 Validity: C external rule Validity code: VZCC

A C_external for the declaration of an external routine r is valid if and only if it satisfies the following
conditions:

1 At least one of the optional inline and External_signature components is present.

2 If the inline part is present, the external routine includes an External_name component,
of the form alias C_text.

3 If case 2 applies, then for any occurrence in C_text of an Identifier a immediately
preceded by a dollar sign $ the lower name of a is the lower name of a formal argument
of r.

8.31.12 Semantics: C Inline semantics

In an external routine er of the inline form, an External_name of the form alias C_text denotes the
algorithm defined, according to the semantics of the C language, by a C function that has:

• As its signature, the signature specified by er.

• As its body, C_text after replacement of every occurrence of $a, where the lower name of a is
the lower name of one of the formal arguments of er, by a.

8.31.13  Syntax: C++ externals

C++_external =∆ ' " ' C++
inline
[External_signature]
[External_file_use]
' " '
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Informative text
As in the C case, you may directly write C++ code which can access the external routine’s
argument and hence Eiffel objects. Such code can, among other operations, create and delete
C++ objects using C++ constructors and destructors.

Unlike in the C case, this inline facility is the only possibility: you cannot rely on an existing
function. The reason is that C++ functions — if not “static” — require a target object, like Eiffel
routines. By directly writing appropriate inline C++ code, you will take care of providing the target
object whenever required.

End

8.31.14 Validity: C++ external rule Validity code: VZC+

A C++_external part for the declaration of an external routine r is valid if and only if it satisfies the
following conditions:

1 The external routine includes an External_name component, of the form alias C++_text.

2 For any occurrence in C++_text of an Identifier a immediately preceded by a dollar sign
$, the lower name of a is the lower name of a formal argument of r.

8.31.15 Semantics: C++ Inline semantics

In an external routine er of the C++_external form, an External_name of the form alias C++_text
denotes the algorithm defined, according to the semantics of the C++ language, by a C++ function
that has:

• As its signature, the signature specified by er.

• As its body, C++_text after replacement of every occurrence of $a, where the lower name of
a is the lower name of one of the formal arguments of er, by a.

8.31.16  Syntax: DLL externals

DLL_external =∆ ' " ' dll
[windows ]
DLL_identifier
[DLL_index]
[External_signature]
[External_file_use]
' " '

DLL_identifier =∆ Simple_string

DLL_index =∆ Integer

Informative text
Through a DLL_external you may define an Eiffel routine whose execution calls an external
mechanism from a Dynamic Link Library, not loaded until first use.

The mechanism assumes a dynamic loading facility, such as exist on modern platforms; it is
specified to work with any such platform.

End

8.31.17 Validity: External DLL rule Validity code: VZDL

A DLL_external of DLL_identifier i is valid if and only if it satisfies the following conditions:

1 When interpreted as a file name according to the conventions of the underlying platform,
i denotes a file.

2 The file is accessible for reading.

3 The file’s content denotes a dynamically loadable module.
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8.31.18 Semantics: External DLL semantics
The routine to be executed (after loading if necessary) in a call to a DLL_external is the
dynamically loadable routine from the file specified by the DLL_identifier and, within that file, by its
name and the DLL_index if present.

 8.32 Lexical components

Informative text
The previous discussions have covered the syntax, validity and semantics of software systems.
At the most basic level, the texts of these systems are made of lexical components, playing for
Eiffel classes the role that words and punctuation play for the sentences of human language. All
construct descriptions relied on lexical components — identifiers, reserved words, special
symbols … — but their structure has not been formally defined yet. It is time now to cover this
aspect of the language, affecting its most elementary components.

End

8.32.1 Syntax (non-production): Character, character set
An Eiffel text is a sequence of characters . Characters are either:

• All 32-bit, corresponding to Unicode and to the Eiffel type CHARACTER_32.

• All 8-bit, corresponding to 8-bit extended ASCII and to the Eiffel type CHARACTER_8.

Compilers and other language processing tools must offer an option to select one character set
from these two. The same or another option determines whether the type CHARACTER is
equivalent to CHARACTER_32 or CHARACTER_8.

Informative text
In manifest strings and character constants, characters can be coded either directly, as a
single-key entry, or through a multiple-key character code such as %N (denoting new-line) or %/
59/. The details appear below.

End

8.32.2 Definition: Letter, alpha_betic, numeric, alpha_numeric, printable
A letter  is any character belonging to one of the following categories:

1 Any of the following fifty-two, each a lower-case or upper-case element of the Roman
alphabet:

abcdefghijklmnopqrst u v w x y z
ABCDEFGHIJKLMNOPQRSTUVWXYZ

2 If the underlying character set is 8-bit extended ASCII, the characters of codes 192 to
255 in that set.

3 If the underlying character set is Unicode, all characters defined as letters in that set.

An alpha_betic character  is a letter or an underscore _.

A numeric character is one of the ten characters 0 1 2 3 4 5 6 7 8 9.

An alpha_numeric character  is alpha_betic or numeric.

A printable character is any of the characters listed as printable in the definition of the character
set (Unicode or extended ASCII).

Informative text
In common English usage, “alphabetic” and “alphanumeric” characters do not include the
underscore. The spellings “alpha_betic” and “alpha_numeric” are a reminder that we accept
underscores in both identifiers, as in your_variable, and numeric constants, as in 8_961_226.
“Printable” characters exclude such special characters as new line and backspace.
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Case 2 of the definition of “letter” refers to the 8-bit extended ASCII character set. Only the 7-bit
ASCII character set is universally defined; the 8-bit extension has variants corresponding to
alphabets used in various countries. Codes 192 to 255 generally cover letters equipped with
diacritical marks (accents, umlauts, cedilla). As a result, if you use an 8-bit letter not in the 7-bit
character set, for example to define an identifier with a diacritical mark, it may — without any effect
on its Eiffel semantics — display differently depending on the “locale” settings of your computer.

End

8.32.3 Definition: Break character, break

A break character is one of the following characters:

• Blank (also known as space).

• Tab.

• New Line (also known as Line Feed).

• Return (also known as Carriage Return).

A break is a sequence of one or more break characters that is not part of a Character_constant,
of a Manifest_string or of a Simple_string component of a Comment.

8.32.4 Semantics: Break semantics

Breaks serve a purely syntactical role, to separate tokens. The effect of a break is independent of
its makeup (its precise use of spaces, tabs and newlines). In particular, the separation of a class
text into lines has no effect on its semantics.

Informative text

Because the above definition of “break” excludes break characters appearing in
Character_constant, Manifest_string and Comment components, the semantics of these
constructs may take such break characters into account.

End

8.32.5 Definition: Expected, free comment

A comment is expected if it appears in a construct as part of the style guidelines for that construct.
Otherwise it is free .

8.32.6 Syntax (non-production): “Blanks or tabs”, new line

A specimen of Blanks_or_tabs is any non-empty sequence of characters, each of which is a blank
or a tab.

A specimen of New_line is a New Line.

8.32.7  Syntax: Comments

Comment =∆ "– –" {Simple_string Comment_break …}*

Comment_break =∆ New_line [Blanks_or_tabs] "– –"

Informative text

This syntax implies that two or more successive comment lines, with nothing other than new lines
to separate them, form a single comment.

End

8.32.8 Syntax (non-production): Free Comment rule

It is permitted to include a free comment between any two successive components of a specimen
of a construct defined by a BNF-E production, except if excluded by specific syntax rules.
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Informative text
An example of construct whose specimens may not include comments is Line_sequence, defined
not by a BNF-E production but by another “non-production” syntax rule: no comments may appear
between the successive lines of such a sequence — or, as a consequence, of a Verbatim_string.
Similarly, the Alias Syntax rule excludes any characters — and hence comments — between an
Alias_name and its enclosing quotes.

End

8.32.9 Header comment rule
A feature Header_comment is an abbreviation for a Note clause of the form

note

what: Explanation

where Explanation is a Verbatim_string with [ and ] as Open_bracket and Close_bracket and a
Line_sequence made up of the successive lines (Simple_string) of the comment, each deprived
of its first characters up to and including the first two consecutive dash characters, and of the
space immediately following them if any.

Informative text
Per the syntax, a comment is a succession of Simple_string components, each prefixed by "--"
itself optionally preceded, in the second and subsequent lines if any, by a Blank_or_tabs. To make
up the Verbatim_string we remove the Blank_or_tabs and dashes; we also remove one
immediately following space, to account for the common practice of separating the dashes from
the actual comment text, as in

-- A comment.

End

8.32.10 Definition: Symbol, word
A symbol is either a special symbol of the language, such as the semicolon ‘‘;’’ and the ‘‘.’’ of dot
notation, or a standard operator such as ‘‘+’’ and ‘‘∗’’.

A word is any token that is not a symbol. Examples of words include identifiers, keywords, free
operators and non-symbol operators such as or else .

8.32.11 Syntax (non-production): Break rule
It is permitted to write two adjacent tokens without an intervening break if and only if they satisfy
one of the following conditions:

1 One is a word and the other is a symbol.

2 They are both symbols, and their concatenation is not a symbol.

Informative text
Without this rule, adjacent words not separated by a break — as in ifxthen — or adjacent symbols
would be ambiguous.

End

8.32.12 Semantics: Letter Case rule
Letter case is significant for the following constructs: Character_constant and Manifest_string
except for special character codes, Comment.

For all other constructs, letter case is not significant: changing a letter to its lower-case or
upper-case counterpart does not affect the semantics of a specimen of the construct.

8.32.13 Definition: Reserved word, keyword
The following names are reserved words of the language.
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agent alias all and as assign attribute

check class convert create Current debug deferred

do else elseif end ensure expanded export

external False feature from frozen if implies

inherit inspect invariant like local loop not

note obsolete old once only or Precursor

redefine rename require rescue Result retry select

separate then True TUPLE undefine until variant

Void when xor

The reserved words that serve as purely syntactical markers, not carrying a direct semantic value,
are called keywords ; they appear in the above list in all lower-case letters.

Informative text
The non-keyword reserved words, such as True, have a semantics of their own (True denotes one
of the two boolean values).
The Letter Case rule applies to reserved words, so the decision to write keywords in all lower case
is simply a style guideline. Non-keyword reserved words are most closely related to constants
and, like constants, have — in the recommended style — a single upper-case letter, the first;
TUPLE is most closely related to types and is all upper-case.

End

8.32.14 Syntax (non-production): Double Reserved Word rule
The reserved words and then and or else are each made of two components separated by one or
more blanks (but no other break characters). Every other reserved word is a sequence of letters
with no intervening break character.

8.32.15 Definition: Special symbol
A special symbol is any of the following character sequences:

–– :  ; , ? ! ' " $ . –> :=
= /= ~ /~ ( ) (| |) [ ] { }

8.32.16 Syntax (non-production): Identifier
An Identifier is a sequence of one or more alpha_numeric characters of which the first is a letter.

8.32.17 Validity: Identifier rule Validity code: VIID

An Identifier is valid if and only if it is not one of the language’s reserved words.

8.32.18 Definition: Predefined operator
A predefined operator is one of:

= /= ~ /~

Informative text
These operators — all “special symbols” — appear in Equality expressions. Their semantics,
reference or object equality or inequality, is defined by the language (although you can adapt the
effect of ~ and /~ since they follow redefinitions of is_equal). As a consequence you may not use
them as Alias for your own features.

End

8.32.19 Definition: Standard operator
A standard unary operator is one of:

+ –

A standard binary operator is any one of the following one- or two-character symbols:
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+ – * / ^ < >

<= >= // \\ ..

Informative text
All the standard operators appear as Operator aliases for numeric and relational features of the
Kernel Library, for example less_than alias "<" in INTEGER and many other classes. You may
also use them as Alias in your own classes.

End

8.32.20 Definition: Operator symbol
An operator symbol is any non-alpha_numeric printable character that satisfies any of the
following properties:

1 It does not appear in any of the special symbols.

2 It appears in any of the standard (unary or binary) operators but is neither a dot . nor an
equal sign =.

3 It is a tilde ~, percent %, question mark ?, or exclamation mark !.

Informative text
Condition 1 avoids ambiguities with special symbols such as quotes. Conditions 2 and 3 override
it when needed: we do for example accept as operator symbols +, a standard operator, and \ which
appears in a standard operator — but not a dot or an equal sign, which have a set meaning.

End

8.32.21 Definition: Free operator
A free operator is sequence of one or more characters satisfying the following properties:

1 It is not a special symbol, standard operator or predefined operator.

2 Every character in the sequence is an operator symbol.

3 Every subsequence that is not a standard operator or predefined operator is distinct
from all special symbols.

A Free_unary is a free operator that is distinct from all standard unary operators.

A Free_binary is a free operator that is distinct from all standard binary operators.

Informative text
Condition 3 gives us maximum flexibility without ambiguity; for example:
• You may not use ––– as an operator because, its subsequence –– clashes with the special

symbol introducing comments.

• You may similarly not use –– because the full sequence (which of course is a subsequence
too) could still be interpreted as making the rest of the line a comment.

• You may, however, use a single –, or define a free operator such as –* which does not cause
any such confusion.

• You may not use ?, !, = or ~, but you may use operators containing these characters, for
example !=.

• You may use a percent character % by itself or in connection with other operator symbols. No
confusion is possible with character codes such as %B and %/123/. (If you use a percent
character in an Alias specification, its occurrences in the Alias_name string must be written as
%% according to the normal rules for special characters in strings. For example you may
define a feature remainder alias "%%" to indicate that it has % as an Operator alias. But any
use of the operator outside of such a string is written just %, for example in the expression a
% b which in this case would be a shorthand for a.remainder (b).)
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Alpha_numeric characters are not permitted. For example, you may not use +b as an operator:
otherwise a+b could be understood as consisting of one identifier and one operator.

End

8.32.22 Syntax (non-production): Manifest character
A manifest character  — specimen of construct Character — is one of the following:

1 Any key associated with a printable character, except for the percent key %.

2 The sequence %k, where k is a one-key code taken from the list of special characters.

3 The sequence %/code/, where code is an unsigned integer in any of the available forms
— decimal, binary, octal, hexadecimal — corresponding to a valid character code in the
chosen character set.

Informative text
Form 1 accepts any character on your keyboard, provided it matches the character set you have
selected (Unicode or extended ASCII), with the exception of the percent, used as special marker
for the other two cases.
Form 2 lets you use predefined percent codes, such as %B for backspace, for the most commonly
needed special characters. The set of supported codes follows.
Form 3 allows you to denote any Unicode or Extended ASCII character by its integer code; for
example %/59/ represents a semicolon (the character of code 59). Since listings for character
codes — for example in Unicode documentation — often give them in base 16, you may use the
0xNNN convention for hexadecimal integers: the semicolon example can also be expressed as
%/0x3B/, where 3B is the hexadecimal code for 59.
Since the three cases define all the possibilities, a percent sign is illegal in a context expecting a
Character unless immediately followed by one of the keys of the following table or by /code/ where
code is a legal character code. For example %? is illegal (no such special character); so is %0x/
FFFFFF/ (not in the Unicode range).

End

8.32.23 Special characters and their codes

Character Code Mnemonic name
@ %A At-sign
BS %B Backspace
^ %C Circumflex
$ %D Dollar
FF %F Form feed
\ %H BackslasH
~ %L TiLde
NL (LF) %N Newline
` %Q BackQuote
CR %R Carriage Return
# %S Sharp
HT %T HorizontalTab
NUL %U NUll
| %V Vertical bar
% %% Percent
' %' Single quote
" %" Double quote
[ %( Opening bracket
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] %) Closing bracket
{ %< Opening brace
} %> Closing brace

Informative text
A few of these codes, such as the last four, are present on many keyboards, but sometimes
preempted to represent letters with diacritical marks; using %( rather than [ guarantees that you
always get a bracket.

End

8.32.24 Syntax (non-production): Percent variants
The percent forms of Character are available for the manifest characters of a Character_constant
and of the Simple_string components of a Manifest_string, but not for any other token.

Informative text
The characters “of” such a constant do not include the single ' or double " quotes, which you must
enter as themselves.

End

8.32.25 Semantics: Manifest character semantics
The value of a Character is:

1 If it is a printable character c other than %: c.

2 If it is of the form %k for a one-key code k: the corresponding character as given by the
table of special characters.

3 If it is of the form %/code/: the character of code code in the chosen character set.

8.32.26 Syntax (non-production): String, simple string
A string  — specimen of construct String — is a sequence of zero or more manifest characters.

A simple string — specimen of Simple_string — is a String consisting of at most one line (that is
to say, containing no embedded new-line manifest character).

8.32.27 Semantics: String semantics
The value of a String or Simple_string is the sequence of the values of its characters.

8.32.28  Syntax: Integers
Integer =∆ [Integer_base] Digit_sequence

Integer_base =∆ "0" Integer_base_letter

Integer_base_letter =∆ "b" |  "c" |  "x" |  "B" |  "C" |  "X"

Digit_sequence =∆ Digit+

Digit =∆ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
"a" | "b" | "c" | "d" | "e" | "f" |
"A" | "B" | "C" | "D" | "E" | "F" | "_"

Informative text
To introduce an integer base, use the digit 0 (zero) followed by a letter denoting the base: b for
binary, c for octal, x for hexadecimal. Per the Letter Case rule the upper-case versions of these
letters are permitted, although lower-case is the recommended style.

Similarly, you may write the hexadecimal digits of the last two lines in lower or upper case. Here
upper case is the recommended style, as in 0xA5.

End
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8.32.29 Validity: Integer rule Validity code: VIIN

An Integer is valid if and only if it satisfies the following conditions:

1 It contains no breaks.

2 Neither the first nor the last Digit of the Digit_sequence is an underscore “_”.

3 If there is no Integer_base (decimal integer), every Digit is either one of the decimal
digits 0 to 9 (zero to nine) or an underscore.

4 If there is an Integer_base of the form 0b or 0B (binary integer), every Digit is either 0, 1
or an underscore.

5 If there is an Integer_base of the form 0c or 0C (octal integer), every Digit is either one
of the octal digits 0 to 7 or an underscore.

Informative text
The rule has no requirement for the hexadecimal case, which accepts all the digits permitted by
the syntax.
Integer is a purely lexical construct and does not include provision for a sign; the construct
Integer_constant denotes possibly signed integers.

End

8.32.30 Semantics: Integer semantics
The value of an Integer is the integer constant denoted in ordinary mathematical notation by the
Digit_sequence, without its underscores if any, in the corresponding base: binary if the Integer
starts with 0b or 0B, octal if it starts with 0c or 0C, hexadecimal if it starts with 0x or 0X, decimal
otherwise.

Informative text
This definition always yields a well-defined mathematical value, regardless of the number of digits.
It is only at the level of Integer_constant that the value may be flagged as invalid, for example
{NATURAL_8} 256, or 999 … 999 with too many digits to be representable as either an
INTEGER_32 or an INTEGER_64.
The semantics ignores any underscores, which only serve to separate groups of digits for clarity.
With decimal digits, the recommended style, if you include underscores, is to use groups of three
from the right.

End

8.32.31 Syntax (non-production): Real number
A real  — specimen of Real — is made of the following elements, in the order given:

• An optional decimal Integer, giving the integral part.

• A required ‘‘.’’ (dot).

• An optional decimal Integer, giving the fractional part.

• An optional exponent, which is the letter e or E followed by an optional Sign (+ or –) and a
decimal Integer.

No intervening character (blank or otherwise) is permitted between these elements. The integral
and fractional parts may not both be absent.

Informative text
As with integers, you may use underscores to group the digits for readability. The recommended
style uses groups of three in both the integral and decimal parts, as in 45_093_373.567_21. If you
include an exponent, E, rather than e, is the recommended form.

End
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8.32.32 Semantics: Real semantics
The value of a Real is the real number that would be expressed in ordinary mathematical notation
as i.f 10e, where i is the integral part, f the fractional part and e the exponent (or, in each case,
zero if the corresponding part is absent).
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design 21
Design by Contract 12– 14, 19

subcontracting 19
developer_exception_name

EXCEPTIONS 1007
die

EXCEPTIONS 1007
Digit_sequence 900
direct instance 7, 23
disjuncted

BOOLEAN 982
disjuncted_exclusive

BOOLEAN 982
disjuncted_semistrict

BOOLEAN 982
dispose

FILE 1003
MEMORY 1006

divided
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

divisible
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 991

DLL (Dynamically Linked Library)
856–??, 858–??

calling a DLL routine determined
at run time 858–??

sharing and freeing ??– 857,
864– 865

DLL_external 857
DLL_identifier 857
DLL_index 857
dll32 (C interface) 856
do 8
do_nothing

ANY 975

Dubois, Paul 1056, 1058, 1059
Durchholz, Joachim 1060
dynamic binding 17– 19

definition 18

E
ECMA 1056
effecting a feature 21
effective 20
Effective_routine 222
efficiency of Eiffel 6
Eiffel

organization of Eiffel software
23

Eiffel language 3–??, 1061– 24
Eldridge, Geoff 1057
Elinck, Philippe 1056
else 15
Else_part 481
end 119
end 7
end_of_file

FILE 1002
ensure 11
enter

ARRAY 996
Entity 512
entity 7

local, see local variable
Entity Declaration rule 221
Entity rule 513
Entity_declaration_group220
Entity_declaration_list 220
Equal (language primitive in Eiffel

1 and 2, now discarded) 1083
1084

Equality 567
error

STD_FILES 1001
ETL, abbreviation for the title of the

present book (Eifffel: The Lan-
guage)

exception 14– 15
exception

EXCEPTIONS 1007
EXCEPTIONS 1007
exists

FILE 1002
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Exit_condition 495
expanded 119, 124
expanded type 10

conformance 396
Explicit_creation_type 551
exponentiable

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 991

export 16
Export List rule 210
Export rule 632
Expression 761
expression

convertibility 424
expression convertibility 424
Expression rule 781
Expression_list 373, 810
extended ASCII 880
extendibility 5
External 829
external ??– 878
External DLL rule 857
External File rule 841
External Signature rule 839
external software 823– 878
External_argument_types839
External_file_list 840
External_file_name 841
External_file_use 840
External_language829
External_name 829, 837
External_signature839
External_system_file841
External_type 839
External_type_list 839
External_user_file 841

F
failure of a routine 14
false 15
feature 7

of a call 629
feature 8
Feature Body rule 144
Feature Declaration rule 162

Feature Identifier principle 153
Feature Name rule 474, 475
Feature_adaptation171
Feature_body 143, 222
Feature_clause137
Feature_declaration141
Feature_declaration_list137
Feature_list 209
Feature_name151
Feature_set209
Feature_value141
Features 137
Fiat, Jocelyn 1056
FILE 1002
fill

STRING 999
floor

REAL, REAL_GENERAL 992
force

ARRAY 996
Ford, Paul 1057
Forget (language primitive in

Eiffel 1 and 2, now discarded)
1063, 1083

Formal 513
Formal Argument rule 220
formal generic

conformance 393
formal generic parameter 15
Formal Generic rule 351
Formal_arguments220
Formal_generic 128, 351
Formal_generic_list 128, 351
Formal_generic_name351
Formal_generics128, 351
Franceschi, Fabrice 1056
fresh

ONCE_MANAGER 1010
Freund, Pascal 1055
from_c

STRING 998
from_integer

INTEGER 987
INTEGER_16 989
INTEGER_64 990
INTEGER_8 988
INTEGER_GENERAL 984

from_string
STRING 998

full_collect
MEMORY 1006

function 8

G
Gacsaly, Michael 1059, 1060
garbage collection 564
Gautier, Martine 1057
General Call rule 681
general conformance 388
general_store

STORABLE 1005
generating_type

ANY 975
generic

instantiation, do not use this term
for “generic derivation” 352

Generic Constraint rule 357
Generic Derivation rule 359
genericity 15, 19– 20

combined with inheritance 19–
20

constrained 19
unconstrained 15

Gindre, Cyrille 1058
Gish, Jim 1058
Goldsmith, Jacques 1056
Gore, Jacob 1057
Granik, Serge 1058
Gupta, Uday 1059

H
hash_code

ANONYMOUS 997
BOOLEAN 982
CHARACTER 983
FUNCTION 1013
HASHABLE 979
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

POINTER 995
PREDICATE 1014
REAL, REAL_GENERAL 991
ROUTINE 1011, 1012
STRING 998
TYPE 976

HASHABLE 979
head

STRING 999
Header_comment137
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Header_mark 124
heir 16
Henson, Andy 1058
Hollenberg, David 1056
Horvilleur, Gerardo 1058
Howard, Mark 1056, 1059
Hucklesby, Philip 1056

I
Identifier rule 782, 891
Identifier_list 220
identity

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

if 7
implication

BOOLEAN 982
include (C interface) 840
include file for external C routines

840
Incorrect_inspect_value

EXCEPTIONS 1007
independent_store

STORABLE 1005
index_of

STRING 998
infix operator 9
inherit 16
Inherit_clause 171
Inheritance 171, 303
inheritance 16–??

combined with genericity 19–
20

Initialization 495
initialization 9
Inline Agent requirements 756
Inline Agent rule 755
Inline_routine 751
input

STD_FILES 1001
insert

STRING 999
insert_character

STRING 999
instance 6, 7, 8, 9, 10, 11,

21

current 9
see also direct instance

instantiation
generic, do not use this term for

“generic derivation” 352
Instruction 228
INTEGER 987, 988, 989, 990
Integer 900
Integer rule 901
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL984

Integer_base900
Integer_base_letter900
Integer_bits

PLATFORM 1009
Integer_constant788
Internal 222
INTERVAL 981
Interval

rule 487
Interval rule 487
Invariant 232
invariant 11
invariant 11
io

ANY 975
is_closed

FILE 1002
is_comparable

COMPARABLE 978
INTERVAL 981
PART_COMPARABLE 977

is_developer_exception
EXCEPTIONS 1007

is_empty
FILE 1002
INTERVAL 981
STRING 999

is_equal
ANY 975
COMPARABLE 978
FUNCTION 1013
PART_COMPARABLE 977
PREDICATE 1014
ROUTINE 1011, 1012
STRING 998
TYPE 976

is_greater
CHARACTER 983
COMPARABLE 978

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 999

is_greater_equal
CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

REAL, REAL_GENERAL 991
STRING 999

is_less
CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 998

is_less_equal
CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 999

is_open_read
FILE 1002

is_open_write
FILE 1002

is_plain_text
FILE 1002

is_readable
FILE 1002

is_signal
EXCEPTIONS 1007

is_subinterval
INTERVAL 981

is_superinterval
INTERVAL 981

is_writable
FILE 1003

item
ANONYMOUS 997
ARRAY 996
FUNCTION 1013
PREDICATE 1014
STRING 998
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,
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J
Jézéquel, Jean-Marc 1057
John, Randy 1056, 1059
Johnson, Paul 1057
Join rule 319
Jones, Rick 1058

K
Kallio, Sami 1056
Key_list 222
Kogtenkov, Alexander 1056,

1059
Kraemer, Vincent 1058

L
Lace 24
Lahire, Philippe 1056
Lalanne, Frédéric 1056
Lancaster, Tal 1058
last_character

FILE 1003
STD_FILES 1001

last_integer
FILE 1003
STD_FILES 1001

last_real
FILE 1003
STD_FILES 1001

last_result
FUNCTION 1013
PREDICATE 1014

last_string
FILE 1003
STD_FILES 1001

left_adjust
STRING 999

Local 513
local 15
local entity, see local variable
local variable

rule 226
Local Variable rule 226
Local_declarations225
Löhr, Peter 1058
Loop 495
Loop_body 495
Loop_invariant

EXCEPTIONS 1007
Loop_variant

EXCEPTIONS 1007
lower

ARRAY 996
INTERVAL 981

Ludwig, Stefan 1058

M
Macrakis, Stavros 1058
make

ARRAY 996
FILE 1002
INTEGER_GENERAL 984
INTERVAL 981
STRING 998

Mallet, Olivier 1056
Manfredi, Raphaël 1055
Mangseth, Eirik 1060
Manifest Constant rule 503
Manifest_array 810
Manifest_constant788, 789
Manifest_string 795
Manifest_tuple 373
Manifest_type 788
Manifest_value 141, 788
Masini, Gérald 1057
max

CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 999

Maximum_character_code
PLATFORM 1009

Maximum_integer
PLATFORM 1009

McKim, James 1057, 1059
McKim, Jim 1057, 1059
MEMORY 1006
Message 129
Métras, Pierre 1060
Meyer, Annie 1058
Meyer, Caroline 1058
Meyer, Isabelle 1058
Meyer, Laurent 1058
Meyer, Raphaël 1058
Meyer, Sarah 1058
min

CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 999

Mingins, Christine 453, 1056,
1057, 1059

Minimum_character_code
PLATFORM 1009

Minimum_integer
PLATFORM 1009

minus
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

Mitchell, Richard 1057
Monninger, Frieder 1057, 1058

1059
Multi_branch 485
Multi-Branch

rule 488
Multi-Branch rule 488
Multiple Constraints rule 369
Multiple_constraint 357

N
name

FILE 1002
TYPE 976

needed class 23
needs (relation between classes) 2
negated

BOOLEAN 982
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

Nelson, Jim 1057
Nerson, Jean-Marc 1055
New_export_item 209
New_export_list 209
New_exports 209
New_feature 141
New_feature_list 141
No_more_memory
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EXCEPTIONS 1007
Non_conformance171
Non_object_call 626
NONE 8
non-generic

conformance 390
Non-Object Call rule 631
not enough memory available 564
Note_entry 123
Note_item 123
Note_list 123
Note_name 123
Note_values 123
Notes 123
NUMERIC 980

O
O’Connor, Sam 1056, 1059,

1060
Object Test rule 659
Object_call 626
Object_test 658
object-oriented design 6, 21
Obsolete 129
occurrences

STRING 998
Old 239, 242
old 11, 12
Old Expression rule 239
Once 222
ONCE_MANAGER 1010
Once_string 761
onces

ANY 975
one

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

NUMERIC 980
REAL, REAL_GENERAL 991

Only Clause rule 243
open_append

FILE 1002
Open_bracket 795
open_count

FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

open_operand_type

FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

open_read
FILE 1002, 1003

open_read_append
FILE 1003

open_read_write
FILE 1002, 1003

open_write
FILE 1002, 1003

openness 6
operands

FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

operational 777
Operator 154
Operator Expression rule 772
operator, prefix or infix 9
Operator_expression766
Osmond, Roger 1056, 1059
out

ANY 975
BOOLEAN 982
CHARACTER 983
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 986

POINTER 995
REAL, REAL_GENERAL 992
STRING 1000

output
STD_FILES 1001

overloading (incompatible with ob-
ject-oriented principles) 153

P
parameter, see formal generic pa-

rameter, actual generic parameter
(for routines the terminology is
“argument”)

Parent 171
parent 16
Parent rule 178
Parent_list 171
Parenthesized761
Parenthesized_target626
Parker, Simon 1057
PART_COMPARABLE977
PART_is_greater_equal

PART_COMPARABLE 977
Piens, Irina 1058
Placeholder 752
PLATFORM 1009
plus

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
POINTER 995
REAL, REAL_GENERAL 992

POINTER 995
Pointer_bits

PLATFORM 1009
polymorphic data structure 19
polymorphism 17– 19
portability 6
Postcondition

EXCEPTIONS 1007
Postcondition 232
postcondition 11
postcondition

FUNCTION 1013
PREDICATE 1014
PROCEDURE 1012
ROUTINE 1011

Potter, John 1057, 1059
power

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

Precondition
EXCEPTIONS 1007

Precondition 232
precondition 11
precondition

FUNCTION 1013
PREDICATE 1014
PROCEDURE 1012
ROUTINE 1011

Precondition Export rule 237
precondition-free routine 426
Precursor rule 304
PREDICATE 1014
prefix operator 9
principle

reattachment 599
PROCEDURE 1012
procedure 8
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y

nt

,

h

Proch, Karl 1057
product

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

NUMERIC 980
REAL, REAL_GENERAL 992

program, see system
put

ANONYMOUS 997
ARRAY 996
STRING 1000

put_boolean
FILE 1004
STD_FILES 1001

put_character
FILE 1004
STD_FILES 1001

put_integer
FILE 1004
STD_FILES 1001

put_new_line
STD_FILES 1001

put_real
FILE 1004
STD_FILES 1001

put_string
FILE 1004
STD_FILES 1001

put_substring
STRING 1000

Q
Query_mark 141
quotient

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

R
raise

EXCEPTIONS 1007
read_character

FILE 1003
STD_FILES 1001

read_integer
FILE 1003
STD_FILES 1001

read_line
FILE 1003
STD_FILES 1001

Read_only 513
read_real

FILE 1004
STD_FILES 1001

read_stream
FILE 1004
STD_FILES 1001

read_word
FILE 1004

REAL 991, 993
Real_bits

PLATFORM 1009
Real_constant788
reattachment

principle 599
redeclaration 21

unfolded 318
Redeclaration rule 313
Redefine 307
redefine 18
Redefine Subclause rule 307
redefinition 17
reference 124
reference type 10
reflection, see introspection
reflective facilities, see introspection
refresh

ONCE_MANAGER 1010
refresh_all

ONCE_MANAGER 1010
refresh_all_except

ONCE_MANAGER 1010
refresh_some

ONCE_MANAGER 1010
Registered_language837
reliability 6
remainder

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

remake
STRING 998

remove
STRING 1000

Rename 183
rename 17
Rename Clause rule 185
Rename_list 183
Rename_pair 183
Renaming 357
renaming 17

Repeated Inheritance Consistenc
constraint 466

Repeated Inheritance rule 438
require 11
Rescue 701
rescue 14
rescue clause rule 701
resize

ARRAY 996
STRING 1000

Result 9
retrieved

STORABLE 1005
Retry 701
retry

rule 701
retry 14
Retry rule 701
reusability 5
reverse assignment, see assignme

attempt
Ribet, Philippe 1056
right_adjust

STRING 1000
Rist, Robert 1057
Robertson, Keith 1058
Rochat, Kim 1058
Rochat, Roxanne 1058
root class 23
root creation procedure 23
root object 23
Root Procedure rule 113
Root Type rule 112
rounded

REAL, REAL_GENERAL 992
Rousseau, Roger 1057, 1058

1059
ROUTINE 1011, 1013
routine 8

precondition-free 426
Routine_failure

EXCEPTIONS 1007
Routine_mark 222
rule, see under “validity con-

straints”, and also under eac
rule’s name
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S
Sada, Frédérique 1058
Sar, Savrak 1055
Sarkela, John 1058, 1059
Sarkis, Jean-Pierre 1056
Satchell, Marcel 1056, 1060
Schmidt, Heinz 1057
Schoeller, Bernd 1056
Schramm, Andreas 1058
Schweitzer, Michael 1057, 1059
Select rule 463
semantics

compositional, non-composition-
al 777

operational, non-operational 777
set_error_default

STD_FILES 1001
set_operands

FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

set_output_default
STD_FILES 1001

shared library 858–??
Shelley, Norman 1058
short form 14
Sign 788
sign

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

REAL, REAL_GENERAL 991
signature

conformance 386
signature conformance 386
Simic, Zoran 1055, 1056
Simon, Raphaël 1055, 1060
Single_constraint 357
Single-level Call rule 668
SmartEiffel 1056
Sommarskog, Erland 1058
Special_expression761
standard_default

STD_FILES 1001
Stapf, Emmanuel 1055, 1056,

1058, 1059, 1060
STD_FILES 1001
Stephan, Philippe 1055
STORABLE 1005

STRING 998
String_content 795
strong typing 6, 19
subcontracting 19
substring

STRING 1000
substring_index

STRING 998
Switzer, Robert 1057, 1058
system 23– 24

T
Tag 232
Tag_mark 232
tail

STRING 1000
Tanzer, Christian 1058
Target 626
target

FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

target of a call 628
Target rule 635
target type of a call 629
Tarvydas, Paul 1058
Texier, Emmanuel 1055, 1060
then 7
Then_part 481
Then_part_list 481
Thomas, Pete 1057
three_way_comparison

CHARACTER 983
COMPARABLE 978
INTEGER, INTEGER_8,

INTEGER_16, INTEGER_32,
INTEGER_GENERAL 985

PART_COMPARABLE 977
REAL, REAL_GENERAL 991
STRING 999

to_boolean
STRING 1000

to_integer
STRING 1000

to_lower
STRING 1000

to_next_line
FILE 1003
STD_FILES 1001

to_real

STRING 1000
to_upper

STRING 1000
true 15
truncated_to_integer

REAL, REAL_GENERAL 992
tuple type

conformance 397
Tuple_parameter_list372
Tuple_parameters372
Tuple_type 372
Tynor, Steve 1058, 1059
TYPE 976
Type 328
type 10– 11

basic 10
expanded, see expanded type
reference, see reference type

Type_interval 485
Type_list 350
Type_mark 141

U
Unary 154
Unary_expression766
unconstrained, see genericity
Undefine 308, 463
Undefine Subclause rule 308
unfolded form 100–??, 1074

of a creation expression 561,
562

of a creation instruction 530,
552, 553, 555, 556, 557,
563

of a Creatorspart 548, 550,
551, 552

of a multi-branch 485, 486,
488, 489

of an anchored type 344, 345
of an assertion 237, 547
of an assigner call 610
of an interval 487
unfolded feature list of anOnly

clause 244
unfolded redeclaration 318
Unicode 880
Universal Conformance principle

173
universe 23
Unlabeled_assertion_clause232
Unqualified_call 626
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Unregistered_language829
up_to

CHARACTER 983
COMPARABLE 978
INTEGER_GENERAL 984
PART_COMPARABLE 977
REAL_GENERAL 991
STRING 998
TYPE 976

upper
ARRAY 996
INTERVAL 981

V
valid_index

ANONYMOUS 997
ARRAY 996
STRING 999

valid_operands
FUNCTION 1013
PREDICATE 1014
ROUTINE 1011, 1012

Validity constraints
VAON (Only Clause) 243
VAOX (Old Expression) 239
VAPE (Precondition Export)

237
VAVE (Variant Expression) 251
VBAC (Assigner Call rule) 610
VBAR(Assignment rule) 590
VBGV (General Validity) 98
VCCH (Class Header) 126
VCFG (Formal Generic) 351
VCRN (ending comments), no

longer present 1072
VDJR (Join Rule) 319
VDPR (Precursor) 304
VDRD (Redeclaration rule) 313
VDRS(Redefine Subclause)

307
VDUS (Undefine Subclause)

308
VEEN (Entity) 513
VEVA (Variable) 514
VEVI (Variable Initialization)

519
VFAC (Assigner Command)

156
VFAV (Alias Validity) 163
VFFB (Feature Body) 144
VFFD (Feature Declaration)

162
VGCC (Creation Clause) 548
VGCE (Creation Expression)

562
VGCI (Creation Instruction)

553, 688
VGCP (Creation instruction

Properties) 555
VGCP (Creation Precondition)

547
VGCS(Creation System-Validi-

ty) 687
VGCX (Creation Expression

Properties) 562
VHCA (Class Any rule) 173
VHPR (Parent rule) 178
VHRC (Rename Clause) 185
VHUC (Universal Conformance

rule, theorem rather than sep-
arate validity rule) 173

VIID (Identifier) 891
VIIN (Integer) 901
VLCP (Clients part), no longer

present 1073
VLEL (Export List) 210
VMCS(Call Sharing rule) 458
VMFN (Feature Name) 474,

475
VMRC (Repeated Inheritance

Consistency constraint) 466
VMSS(Select Subclause rule)

463
VMSS (Select Subclause), no

longer present 1074
VNCx (conformance rules):

VNCC(general conformance)
388

VNCF (formal generic) 393
VNCN (non-generic) 390
VNCS (signature) 386, 396
VNCT (tuple types) 397

VOIN (Interval) 487
VOMB (Multi-Branch) 488
VPCA (Call Agent) 754
VPIA (Inline Agent) 755
VPIR (Inline Agent require-

ments) 756
VQMC (Manifest Constant)

503
VRED(Entity Declaration) 221
VRFA (Formal Argument) 220
VRLV (Local Variable) 226
VSCN(Class Name) 111
VSRP(Root Procedure) 113
VSRT(Root Type) 112
VTAT (Anchored Type) 345
VTCT (Class Type) 333
VTGC (Generic Constraint)

357
VTGD (Constrained Genericity)

359
VTMC (Multiple Constraints)

369
VUAR (Argument) 634
VUCC (Class-Level Call) 636
VUCU (Call Use) 623
VUDA (Descendant Argument)

667
VUEX (Export) 632
VUGC (General Call) 681
VUNO (Non-Object Call) 631
VUOT (Object Test) 659
VUSC(Single-level Call) 668
VUTA (Target) 635
VWBR(Bracket Expression)

780
VWCA(Constant Attribute)

787
VWER(Expression) 781
VWID (Identifier) 782
VWMQ (Manifest-Type Qualifi-

er) 791
VWOE(Operator Expression)

772
VWVS(Verbatim String) 800
VXRC(rescue clause) 701
VXRT(retry) 701
VYCP(Conversion Procedure)

411
VYCQ(Conversion Function)

413
VZAR(Address) 834
VZCC (C external) 846
VZCI (C Inline) 848
VZDL (External DLL) 857
VZEF (External File) 841
VZES(External Signature) 839

Variable 512
Variable Initialization rule 519
Variable rule 514
Variable_attribute 512
Variant Expression rule 251
Verbatim String rule 800
Verbatim_string 795
Verbatim_string_opener795
Void

no longer reserved word (as it was
in Eiffel 1 and 2) 1083

Void_attached_to_expanded
EXCEPTIONS 1007

Void_call_target
EXCEPTIONS 1007

W
Waldén, Kim 1056, 1059
Watkins, Dan 1060
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Weedon, Ray 1057
Weiner, Bob 1058
Wells, Kevin 1060
When_part 485
When_part_list 485
Wiener, Richard 1057
wipe_out

STRING 1000

Y
Yost, David 1058
Yuksel, Deniz 1056

Z
Zendra. Olivier 1056
zero

INTEGER, INTEGER_8,
INTEGER_16, INTEGER_32,
INTEGER_GENERAL 984

NUMERIC 980
REAL, REAL_GENERAL 991
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