217

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Agents, iteration and introspection

27.1 OVERVIEW

Objects represent information equipped with operations. These are clearly
defined concepts; no one would mistake an operation for an object.

For some applications — graphics, numerical computation, iteration,
writing contracts, building development environments, “reflection” (a
system'’s ability to explore its own properties) — you may find the
operationsso interesting that you will want to defiredbjectsto represent
them, and pass these objects around to software elements, which can use
these objects to execute the operations whenever they want. Because this
separates the place of an operatiod&finition from the place of its
execution the definition can be incomplete, since you can provide any
missing details at the time of any particular execution.

You can creategent objects to describe such partially or completely
specified computations. Agents combine the power of higher-level
functionals — operations acting on other operations — with the safety of
Eiffel’s static typing system.

27.2 AQUICK PREVIEW

Why do we need agents? Here are a few examples. This preview skips
many details but will give you an idea of the power of the mechanism; any
apparent mystery will soon be cleared as you read further into the chapter.

Let's start with a typical need of graphical user interface (GUI)
programming. Using EiffelVision, the multi-platform graphical library of
Eiffel Software, you may write

’ your_button click__actions extend(agentyour_routing ‘

to addyour_routine— a routine of your application, executing appropriate
operations —to the list of actions triggered by a mouse clickaam_button
This is all you need to set up the application’s response to such an event.

712 AGENTS, ITERATION AND INTROSPECTION §27.2

The argument textendagentyour_routing is anagent expressionThe
keyword agent avoids confusion with an actual routine call: when calling
extend you don’'t want to callyour_routineyet! Instead you pass &xtend
an “agent”, whichextendadds to theclick_actionslist for your_button
enabling EiffelVision to callyour_routinefor every subsequent occurrence
of a click event on the button. The agent includes any context information that
your_routinemay need: cursor position, button number, pressure.

Now a numerical example. Over the interval [0, 1], you want to integrate
a functiong (x: READ: REAL With your_integratorof a suitable type
INTEGRATORdetailed later), just use the expression

| your_integrator integral (agentg (?), 0.0, 1.0) |
Again this doesn't call the routing but enablesntegral to call g when it
pleases, as often as it pleases, on whatever values it pleases. We must tell
integral where to substitute such values ferat the places where its

algorithm needs to evaluateto approximate the integral. This is the role
of the question marR, replacing the argument ¢p

You may use the same scheme in
\ your_integrator integral (agenth (u, ?, v), 0.0, 1.0) \

=

§

—

=

k

—

1
to compute the integrf 0 h (u, x, v) dx , where is a three-argument

functionh (a: T, x REAL b: T2): REALandu andv are arbitrary values. As
before you will use a question mark at the “open” position, corresponding to
the integration variabbe Two “closed” positions show actual valueandv.

Note the flexibility of the mechanism: it allows you to use the same
routine,integral, to integrate a one-argument function suchi as well as
functions such as involving extra values.

You can rely on a similar structure to provideration mechanisms on
data structures such as lists. Assume a €l&with an attribute

‘intlist: LINKED_LIST[INTEGER ‘

and a function

|integer_property(i: INTEGER: BOOLEAN |
returning true or false depending on a property invohiingou may write

\ intlist. for_all (agentinteger_property?)) \
to denote a boolean value, true if and only if every integer in thérnlisst
satisfiesnteger_propertyThis expression might be useful, for example, in

a class invariant. It will work for any kind ahteger_propertyeven if this
function involves arbitrary features of the current object.

Now assume that i6C you also have a list of employees:
| emplist LINKED_LIST[EMPLOYEE |

and that clasE MPLOYEEhas a functionis_married BOOLEANwith no
argument, telling us about the current employee’s marital status. Then you
may also write irCC the boolean expression

=

§

—

=

k

—

§27.2 A QUICK PREVIEW 713

‘ emplist for_all (agent{ EMPLOYEE . is_married)

to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature calbme_employedés_married

but instead of specifying a particular employee we just give the type
{EMPLOYEER, to indicate wherefor_all must evaluatés_married for
successive targets taken from the the list.

The {EMPLOYER notation replaces the question mark of the previous
examples. Those examples used an argument as the open operand — the
place where the routine will be evaluated — amirger_property(?), where
the argument type is clear from the declaratiomtéger_propertyBut with
is_marriedthe open operand is the target, so we need to specify the type:
many classes may have a function callednarried

Note again the flexibility of the iteration mechanism and its adaptation to
the object-oriented form of computation: you can use the same iteration
routine, herdor_all from LINKED_LISTto iterate actions applying to either:

» The target of a feature, as withis_married a feature of class
EMPLOYEE to be applied to it MPLOYEEtarget.

» The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumeint— and may or may not, in
addition, involve properties of its target, an object of @2

It seems mysterious that a single iterator mechanism can handle both cases
equally well. We will see how to writefor_all and other iterators
accordingly. The trick is that they simply work on their open operands;
when calling them, you choose what to leave open: either the argument as
with integer_propertyandintegral, or the target as witls_married

Now assume that you want fgassto someobject the mechanismthisis the iterator style
needed to execute the cursor resetting and advance operatiarignd of the C++ STI(Stan-
forth, on a particular list. Here nothing is left open: you fix the list, and 92rd Template Libraiy
operations have no arguments. You may write

|

| object. operation(agentyour_list.start, agentyour_list.forth) |

All operands — target and arguments — of the agents passsidotare
“closed”, soobjectcan execute call operations on such objects without
providing any further information.

Atthe other extreme, you might leave an agent expression fully open, asin

I

‘ object operation(agent{ LINKED_LIST[T]} . extend?)) ‘

so thatobject when it desires to apply a call operation, will have to provide
both a linked list and an actual argument to exeextend When as here

all the arguments are open, you may omit the argument list, writing just
agent{ LINKED_LIST[T]} . extend Such an agent is adutine object”:

an object representing the routiegtendfrom LINKED_ LIST such as
could be used by browsing tools or otreftectionfacilities.

714 AGENTS, ITERATION AND INTROSPECTION §27.2

To use an agent, aroutine suctoggerationcan apply to it the procedure
call, passing a tuple of values for the open operands. This will have the
same effect as an execution of the original featurg h-integer_property
is_married start, forth, extend... — on all the operands, closed and open.

The notation provides an extra degree of flexibility by letting you define
inline agents which instead of referring to a feature of the class define a
routine text as part of the agent declaration. Inline agents have the same form
as aRoutinebody, as in

(agent(i: INTEGER: BOOLEANdo Result=integer_property (i))
-- Means the same asgentinteger_property?)

(agent(e: EMPLOYER: BOOLEANdo Result=e.is_marriedend)
-- Means the same aagent{ EMPLOYEE .is_married

=

k

—

In these examples the previous forms were simpler and shorter, but inline
agents are useful when you want to express the computation just for the
agent, without making it a routine of the enclosing class. For example you
may define the inline agent
a (agent(i: INTEGER: BOOLEAN
rn- | do Result= (item (i) = a.item(i) + b.item(i)) end)

] which could be useful in a postcondition

summed(lower |. .| upped.for_all
((agent(i: INTEGER: BOOLEAN
do Result= (item (i) = a.item(i) + b.item(i)) end))

This states that for every elemenbf the intervallower |. .| upperthe
value of the item at position(in a structure such as an array or list) is the
sum of the corresponding valuesdmndb. To obtain the same semantics
without agent arguments, you would need to express the agent as
agentis_sum_of(?, a, b) and define a functioris_sum_ofsuch that
is_sum_ofi, x, y) is true if and only ifitem (i) = x.item (i) + y.item(i).

The semantics is the same, but if you have many properties of this kind
— for example in contracts — the inline form avoids introducing many
specialized functions such &s sum_af

In this example the agent represents a function, with an expression as its
body:item (i) = a.item (i) + b.item (i). It is also possible to use an inline
form for a procedure agent, as in

emplistdo_all((agent(e EMPLOYERdo sum=sum + a salaryend) ﬂ

wheredo_allapplies its agent argument to all successive elements in a list;
this increasesumby the total of all employees’ salaries.

For an agent involving a single routine such iageger_property
integral, is_married extendand the other previous examples, the original
grron) - non-inline form is shorter, more abstract, and usually preferable.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

=

k

—

-

§27.3 FROM CALLS TO AGENTS 715

27.3 FROM CALLS TO AGENTS

Feature calls and their operands

When programming with Eiffel we rely all the time on this fundamerstudied in chapte23
and their type proper-
ties in chapte®5.

First we should remind ourselves of the basic propertidgatiure calls. . Feature calls were

mechanism of object-oriented computation. We write things like
| & | \[Q] a0.f (a1, a2 ad

to mean: call featuréon the object attached &0, with actual arguments

al, a2, a3. In Eiffel this is all governed by type rules, checkable statically:

f must be a feature of the base class of the g@end the types chl and

the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaratiorf.of

In a frequent special cas#), the target of the call, is justCurrent,
denoting the current object. Then we may omit the dot and and the target
altogether, writing the call as just

\ [U] f(al, a2 ad \

which assumes thats a feature of the class in which this call appears. The
first form, with the dot, is ajualifiedcall; the second form isnqualified
(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expressiohig a function or
an attribute, and an instructiorfiis a procedure. fhas been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actual¢al, a2 a3).

The effect of executing such a call is to apply feattite the target
object, with the actuals given if any. fis a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

Operands of a call

The operandsof a call include itsarget (explicit in aqualified
call, implicit in anunqualified call), and its arguments if any.

In the examples the operands af&or Currentin the unqualified version
[U]), a1, a2anda3. Also convenient is the notion gbsitionof an operand:

Operand position

- P ~ EveryObject_call
Theta[ge_t of a call hasp_o_smc_)n 0. Thei-th actual argument, for has a targetas defined
any applicable, haspositioni. on pages20

716 AGENTS, ITERATION AND INTROSPECTION §27.3

Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

Delaying calls

For a call such as the above, we expect the effect just discussed to occur as a
direct result of executing the call instruction or expression: the computation

sl js jmmediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and égecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of agent expressions, which may be describlettg®ed calls

Why would we delay a call in this way? Here are some typical cases:

A We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the agent
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known astemator.
Functionfor_all, used earlier, was an example of iterator.

B «In an iterator-like scheme for numerical computation, we might use a
mechanism that applies a call to various values in a certain interval, for
example to approximate the integral of a function over that interval. The
first example in this chapter relied on suchrdagral function.

C We might want the call to be executed by another software element:
passing an agent object to that element is a way to give it the right to
operate on some of our own data structures, at a time of its own
choosing. This was illustrated with the calls passingbject some
agent expressions representing operations applicalyleuo list GUI
examples also belong to that category: to state that a certain action must
be executed whenever a certain event (such as mouse click) occurs on a
certain graphical object (such as a button), we add an agent representing
the action to a list of agents associated with the object and the event.
D *We might want to ensure that the call is executed only when ance functions ee .
needed, and then only once for any particular object. This would gi‘ 5 page218 The once
a “once per object” mechanism along the lines of “once functicper object mechanism
(which are executed once per system). using agents is

described belo
Introspection is also

E <Finally, we may be interested in the agent as a way to gain inform calledrefiection, but the:
about the feature itself, whether or not we ever intend to execute thrst term appears more
This may be part of the more general goal of providinty ospective PP
capabilities: ways to enable a software system to explore and manij
information about its own properties.

§27.3 FROM CALLS TO AGENTS 717

These examples illustrate one of the differences between an agent
expression and a plain feature call: to execute a feature call we need the
value of all its operands (target and actuals); but for an agent expression we
may want to leave some of the operands open for later filling-in. This is
clearly necessary for cas@sandB, in which the iteration or integration
mechanism will need to apply the feature repeatedly, using different
operands each time. In an integration

we will need to applyg to successive values of the interfalb].

Agents and their operands

For an agent we need to distinguish between two moments:

I HEFIEET M2 MS

Construction time, call time

The construction time of an agent object is the time of
evaluation of the agent expression defining it.

Its call time is when a call to its associated operation is executed.

Since the only way to obtain an agent initially is throwagient expressionas
specified next, it is meaningful to talk about the “agent expression defining it”.

For a normal call the two moments are the same. For an agent we will 5 "A precise definition
one construction time (zero if the expression is never evaluated), ancgfl“op%ﬂ” and d
or more call times. At construction time, we may leave some oper; ‘. ooo, oPerancs

" . "~ ‘appears on pagé51.
unspecified; they they will be called thepen operands. At call time
however, the execution needs all operands, so the call will need to SFE?naé’c?fcﬁé‘L'ﬂf‘sr ;’nvgf;
values for the open operands. These values may be different for diffy,iyy of open as “free”
executions (different call times) of the same agent expression (with a sand closed as “bound”

construction time).

There is no requirement to ma&# operands open at construction time:
you may provide some operands, which will be closed, and leave some others
open. In the example of computing, for some valuasdy, the integral

wherehis a three-argument function, we pass to the integration mechanism an
agent that is closed on its first and last operandsdyv, but open or.

718 AGENTS, ITERATION AND INTROSPECTION §27.4

Xx=b
I h (u, X, V) dx
X=a

Nothing forces you, on the other hand, to leavs operand open. An
agent with all operands closed corresponds to the kind of application called
C above, in which we don’t want to execute the call ourselves but let
another software element carry it out when it is ready. We choose the
construction time, and package the call completely, including all the
information needed to carry it out; the other software element chooses the
call time. This style is used by iterators in the C++ STL library.

At the other extreme, an agent withll operands open has no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicati®npassing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

27.4 AGENT TYPES

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so it denotes an object.

e An agent expression has a different status. Since construction time is
I separate from call time, the agent expression can dehote an object

That object (an agent) contains all the information needed to execute the
call later, at various call times. This includes in particular:

« Information about the routine itself and its base type.
» The values of all the closed operands.

§27.4 AGENT TYPES 719

What is the type of an agent expression? Four Kernel Library classes are
used to describe such typdROUTINE PROCEDUREFUNCTIONand
PREDICATE Their class headers start as follows:

deferred classROUTINE[BASE OPEN—>TUPLH

classPROCEDURHEBASE OPEN—> TUPLH inherit
ROUTINE[BASE OPEN

classFUNCTION[BASE OPEN—>TUPLE RES inherit
ROUTINE[BASE OPEN

classPREDICATHBASE OPEN-> TUPLH inherit
FUNCTION[BASE OPEN BOOLEAN

- A.6.30t0 A.6.32in
the ELKS chapter
starting on page.001

In theactualclasstexts, the formal generic matters have narBESE_TYPE
OPEN_ARGSand RESULT_TYPHo avoid conflicts with programmer-
chosen class names. This chapter uses shorter names for simplicity.

If the associated feature is a procedure the agent will be an instance of
PROCEDURE for a function or attribute, we get an instance of
PREDICATEwhen the result is boolean, 6UNCTION with any other
type. Here for ease of reference is a picture of the inheritance hierarchy:

/R OUTI\NE Agent classes

PROCEDUR FUNCTION

PREDICATE

The role of the formal generic parameters is:
» BASE type (class + generics if any) to which the feature belongs.
» OPEN tuple of the types of open operands, if any.
* RES result type for a function.

One of the fundamental features of cIR&SUTINEIs

call (v: OPEN
-- Callfeature with all its operands, usintpr the open operands.

720 AGENTS, ITERATION AND INTROSPECTION §27.5

In addition,FUNCTIONandPREDICATEhave the feature

last_result RES
-- Function result returned by last calldall, if any

and, for convenience, the functidemcombiningcall andlast_resulf with
the following specification:

item(v: like open_operandsRES
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)
ensure
set_by callResult= last_result

The formal generic parameters iIROUTINE PROCEDUREFUNCTION

and PREDICATEprovide what we need to make the agent mechanism
statically type-safeOPEN a tuple type, gives the exact list of open operand
types; since the argumentdall anditemis of typeOPEN it is possible from

the software text to check that the actual argumentaltavill at call time be

of the proper types, conforming to the original feature’s formal argument
types at the open positions. The actuals at closed positions are set at
construction time, again with type checking. So the combination of open and
closed actuals will be type-valid for the feature.

features than listed above; in particular, they provide introspection facilitiesA.6.32 starting on
describing properties of the associated routines and discussed below. FoPagel001
complete interface specification, see tberrespondingsections in the

presentation of Kernel Library classes.

ROUTINE PROCEDURE FUNCTION and PREDICATE have more _, SectionsA.6.30to

27.5 CALLAGENTS

How do we obtain agent objects? The most common constructia@gent _, “USING INLINE
expression. (We will see the other caskne agentsin alater section.) ?ggNTS’\ 27.8,pege

The basic form of a call agent is very simple: just add the keywuiu
agentat the beginning of a normal feature call. This yields an agent with
operands all closed. To specify open operands, you may:

» Use a question markin lieu of an argument.
» Use a type in brace§TYPE, in lieu of the target.
» Omit the argument list altogether, to make all arguments open.

Let's examine these variants and the associated semantics.

§27.5 CALL AGENTS 721

All-closed agents

If you start from a valid call, either qualified or unqualified

Li] [Q] a0.f (a1, a2 ad

[U] f(al, a2 a3

you get an agent expression in each case by adding the keygeard

agenta0.f (al, a2 aJ
agentf(al, a2 ad

Such an agent expression is not a call (instruction or expression) any more,
but an expression of a new syntactic kiriekature_agentdenoting an
agent, of aPROCEDURRype if f is a procedure. and BUNCTION or
PREDICATEtype if f is a function. Both of these examples have no
arguments, so they are closed on all operands; we will start adding
arguments soon.

You can do with an agent expression all you are used to do with 1fiis éxample assumes
expressions. You can assign it to an entity of the appropriate tthattr??_'ts_ngniﬁenﬁﬂc
assumind is a procedure odiclassCC, you may write, in clas€Citself; >0 "2 1Spohaciass

and a type
p: PROCEDURHCC, TUPLH

|

p:= agenta0l.f (al, a2 a3

p. call ([])

Since all operands are closed — we have specified the tabgetd all the
argument®l, a2, a3— the second formal generic is jJuBUPLE, and the
call tocall takes an empty tuplg.

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

‘ object. do_somethingagenta0.f (al, a2 a3) ‘

] wheredo_somethingn the corresponding class, takes a forpaéclared as
\p: PROCEDURHECC, TUPLH \

or just
‘ p: PROCEDURHANY TUPLH ‘

presumably to caltall onp at some later stage, as we will shortly learn Z~scheneCwason
do. This was the schemealled C in the presentation of examplrage716
applications: passing a completely closed agent to another component ot

the system, to let it execute the call when it chooses to. For example you

can pasagentyour_list.startor agentyour_list.extendsome_value

722 AGENTS, ITERATION AND INTROSPECTION §27.5

Keeping operands open

The examples just seen are still of limited interest because all their operands
are closed. But you may want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism.

To specify an open target, you will replace the target by its type in
braces,{ TARGET_TYPE This is thebrace convention To specify an
open argument, you will use tlgpiestion mark convention just replace
the target by a question mark

Here are some examples, obtained by starting from the@di(al, a2, ad)
and opening the target or some arguments.

| d | -- Start with an agent closed on all operands:
S s.= agenta0.f (al, a2 a3
] -- Next, individually open the target and each successive argument:

t:=agent{TC}.f (al, a2 a3
u:=agenta0.f (?, a2 aJ
v.=agenta0.f (al, ?, ad
w:=agentaO.f (al, p, ?)
-- An example with two open arguments, target closed:
x = agentaO.f (al, ?, ?)
-- Arguments all open, target still closed:
y :=agentaOl.f (?,?, ?)
-- Finally, open everything:
z:=agent{TC} .f(?,?,?)

The respective types of these call expressions are, assuming ithat
procedure declared in the base clas§@having formals declared of types
T1, T2andT3;

PROCEDURHTO, TUPLH
PROCEDURHTO, TUPLE[TO]
PROCEDURHTO, TUPLE[T]]
PROCEDURHTO, TUPLE[TZ]
: PROCEDURHTO, TUPLE[T3]
PROCEDURHTO, TUPLE[T2, T3]
PROCEDURHTO, TUPLE[TL, T2, T3]
PROCEDURHTO, TUPLE[TO, T1, T2, T3]

[e v i w—

NS Xss &0

If f were a function, the types would ugeUNCTION instead of
PROCEDUREwith an extra generic parameter representing the result type
(except for a boolean-valued function, which would RREDICATHE.

§27.5 CALL AGENTS 723

Thefirst genericparameterT0in all of these examples, represents t-"THE BASECLASS
currenttype (class with generic parameters if any) of the underl\,AND7TZZF’E”| 27.10,
feature. Here we assume for simplicity tHatomes from a non-generi”®¢-"*

classTO. — “CURRENTTYPE
FEATURES OF A

. TYPE", 12.11, pge
The second generic parameter, a tuple type, represent the sequezs;

types of open operands. For the first exampld;s just TUPLE with no
parameters, since the agent has no open operands. For the other examples
the parameters of th@UPLE type represent the types of the open
operands.They indicate what argument types are permissible in cedli to
(oritemfor a function) on the corresponding agents.

Here indeed are examples of valid use<all on the previous agent
examples. For each of them, the comment on the next line shows how we
would have obtained the same effect through a normal call (call time same
as construction time, not using agents).

val_ 0 TO;val 2 TLval 2 T2 val 3 T3
... Assign values twal_0 val_1, val2, val_3...

s. call ([]) -- Note empty tuple: no open operands
--a0.f(al, a2 a3
t. call ([val_Q)

--val_0.f(al, a2 a3
u. call (Jval_1)
--a0.f (val_1, a2 a3
v. call (Jval_2)
--a0.f(al, val_2 a3
w. call (Jval_3)
--a0.f(al, a2 val_3
x. call ([val_2 val_3)
--a0.f(al, val_2 val_3

y. call ([val_1, val_2 val 3J)
--a0.f(val_1,val_2val 3

z. call (Jval_Q val_1, val_2 val_3) -- Must provide all operand
--val_0.f(val_1, val_2 val_3

[72)

It should be clear by now how mechanisms sucloasall can manage to
work on operations that work on their target, sucksasnarried as well as
others that work on an argument, suchsagositive The type of an agent

only describes, through th®PEN parameter, the tuple of types of
operands. It doesn’t make any difference whether these open operands
come from a target or an argument.

724 AGENTS, ITERATION AND INTROSPECTION §27.5

For example, both of the following boolean expressions

emplist for_all (agent{ EMPLOYEE .is_married
emplist for_all (agentobjectis_married(?))

will be valid if:

e Class EMPLOYEE has, as previously assumed, a feature
is_married BOOLEAN

 object is of type SOME_TYPE and SOME_TYPEhas a feature
is_married(e: BOOLEAN.

The brace convention

Two of the examples used the brace convention to keep the target open:

t:= agent{T0} .f (a1, a2 ad ggggiaeﬂe in any

z:=agent{TC}. f(?,?,7?)
-- Also expressible (see below) as juient{TO} . f

For the target, as noted, the question mark convention is not applicable,
since the feature name does not suffice to identify the target type: many
classes may have a feature cafled

For arguments we have no such problem since once we koW its
class we know the declared type of eachf'sfformal arguments. This
justifies the question mark convention for arguments.

Omitting the argument list

A further simplification of the notation is available whalharguments are
open, as inagenta0.f (?, ?, ?). Then you may omit the parenthesized
argument list, as in

agenta0.f
-- AbbreviatesagentaO.f (?, ?, ?)

A call of the formaO.f would be invalid, sincd always requires three
actual arguments. But with argentexpression the convention of omitting
arguments creates no ambiguity; it simply means that we consider an agent
built from f with all arguments open.

§27.6 USING AGENTS 725

This fully abbreviated form has the advantage of conveying the idea that
@ the denoted agent is a true “feature object”, carrying properties of the
I feature in its virginal state, not tainted by any particular choice of actual
argument. The last two variants shown do not even name a target. This is
the kind of object that we need for sudhtrospectiveapplications as
writing a system that enables its users to browse through its own classes.

A summary of the possibilities

As a summary of the preceding examples, here is a summary of the ways
to build a call agent:

Syntactical forms for a call agent
A call agent is of the form
agentagent_body
where agent_bodyis a Call, qualified (as inx.r (...)) or
ungualified (as it (...)) with the following possible variants:
¢ You may replace any argument by a question nfannaking
the argument open.

e You may replace the target, GyTYPE where TYPEIis the
name of a type, making the target open.

¢ You may remove the argument lit.) altogether, making all
arguments open.

This is not a formal syntax definition, but a summary of the available forms
permitted by the syntax and validity rules that follow.

27.6 USING AGENTS

Although we have studied only one of the two syntactical forms of age_; The rules staart with

call agents (the other is inline agents), and not yet taken the trouble tcA SENT SYNAX,

27.11, pae 743
at the syntax, validity rules and precise semantics, we have enou
background to explore applications of agents, starting with the examples
sketched at the very beginning of this chapter, which we can now revisit

and extend. We'll see how to make them work in practice: not just the client

side — registering an action to be executed for a certain GUI event,
integrating a function, iterating an operation — but the suppliers too: the

event processing, the integrator, the iterators.

726

AGENTS, ITERATION AND INTROSPECTION §27.6

GUI programming: establishing a direct connection to the Business Model

The first example illustrated the EiffelVisigtyle of GUI programming.The actual EiffelVision
We wrote events areelectand
pointer_button_press

k

‘ your_button click_actions extend(agentyour_routing ‘

to specify thatyour_routinemust be executed whenever thetton_press
event occurs ogour_buttorduring execution. Here is how things work. In
your applicationyour_buttondenotes a graphical object, variously known

as a “control” (the Windows terminology), a “widget” (the X Windows
terminology) or a “context”click denotes one of the events that may occur
on this control. The listyour_button click_actions contains agents,
representing the actions to be executed when the event occurs on the
control. This is a plain list (from the EiffelBase library), to which we may,

as here, apply the procedwegend adding a new item at the end.

When EiffelVision detects that the event has occurred on the butttrfie Actual version

will execute, for every elemeitem of the list of agents, a calich as ~ needs arguments to
your_routing see next

\ item.call ([])

For the listitem that representgour_routine this will produce what we
wanted: a call tgour_routinein response to the event.

This setup assumes thaiur_routineis a routine without arguments. In
reality, a routine to be executed as a result of a mouse event, such as a click,
may need thex, y mouse coordinates of the event. Let's call it
your_routine2 What EiffelVision actually executes is

‘ item. call ({mouse_horizontamouse_verticg)

using as arguments the cursor coordinates, part of the event’s information
recorded in the event. This assumes of courseythat_routine2can deal

with these arguments. ifour_routine2indeed takes two real values as
arguments, the previous form of registering the agent

==
i

‘ your_button click_actions extendagentyour_routine ‘

is still applicable; as you will remember, it is a shortcut for

‘ your_button click_actions extend(agentyour_routing?, ?) ‘

§27.6 USING AGENTS

727

Now assume thatour_routineis a routine from the “Business Model” part

of your application, meaning the part of the software that takes care of
doing the real processing, independently of any GUI. Xlamdy values
might be only some of the arguments tbat_routineneeds. For example
your_routinemight be the procedure

14]
=

‘compute_statecountry. COUNTRYyear. INTEGER x, y: REAL) ‘

which, in a cartographical application, computes statistics for a certain
for the city closest to positionsandy on the map for a certainountry
When loading the map for that country you may registenpute_stats

your_button click_actionsextend
(agentcompute_statdJsa 2002 ?, ?))

The beauty of the notion of closed and open arguments is that you can set
some values (here the country and the year) at construction time, and leave
others (here the mouse coordinates) to be filled in at call time.

To the EiffelVision mechanism, there is no difference between this case
usingcompute_stats— a routine with four arguments, two of which we
have closed at construction time — and the previous one involving
your_routine2and its two open arguments. The call executed by the
EiffelVision side, shown above as

‘ item.call ((mouse_horizontamouse_verticd)

works properly in both cases.

This scheme, relying on open and closed arguments, has crucial
practical consequences for the programming of GUI applications.
Following the MVC model introduced by Smalltalk, it is often stated that
GUI applications should include three components:

» Model(the acronym’s M), called thBusiness Modekbove: this is the
part that does the actual computation, data manipulation and processing.
A routine such agsompute_statgdescribing some important operation
of the Business Model, belongs to this part of the system.

* View(the “V"): the purely graphical part of the application, taking care
of presenting information visually and interacting with users. Notions
such as buttons, other controls and events belong to that part.

« Controller (the “C”): software elements that connect the model with the
view, by specifying what operations from the model must be executed
in response to what user interface events.

728 AGENTS, ITERATION AND INTROSPECTION §27.6

Without agents, the Controller part, serving as glue between ModelAg command class
View, can take up a significant amount of code, based for examplitre;’cdher;ieﬂIuit;;‘1 itsh gebsgcf)ifed
command classesAs the last example indicates, using agents can b. 5. oriented Soft-
the need for such glue code down to a minimum, or even remowareConstruction2nd
altogether. The only Controller element that we used in this exampedition

connect the button and event to the routioenpute_statdom our model

was the agenagent compute_statgUsa 2002 ?, ?). You don't have to

write any other code: no new class, not even any special instructions.

This is one of the great benefits of agents for GUI programming, as used
extensively in EiffelVision:you directly connect elements from the
Frinr| Business Model to elements from the User Interfagewithout requiring
any “glue code”. The notion of open and closed operands gives us
remarkable flexibility: as long as a routine from the Business Model, such
ascompute_statdakes arguments representing the coordinates, it doesn’t
matter what positions these arguments have in the routine, and what others
it may have. Just leave theandy arguments open when you connect the
routine to the interface.

This ability to plug elements of the Business Model directly into the
user interface is one of the principal attractions of the agent model.

One of the uses of command classes is to suppatbting and redoingin an
interactive system. It is easy to see how to provide this through agents too: just
passwoagents, one representing the “do” operation and the other representing
the “undo”. This technique — whose details the reader is invited to spell out —
is used in many of ISE’s interactive products supporting undo and redo.

Integrating a function

The next set of examples was about integration. We assumed functions

g (x READ: REAL
‘T"‘ h(x: REAL a: T1; b: T2): REAL

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

J'X o g (x) dx .Ix h (x, u, v) dx

We declare

your_integrator INTEGRATOR

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

§27.6 USING AGENTS

729

and, with the proper definition of functiantegralin classSINTEGRATOR
to be seen shortly, we will obtain the integrals through the expressions

L4
-

your_integrator integral (agentg (?), 0.0, 1.0)
your_integrator integral (agenth (?, u, v), 0.0, 1.0)

The question mark indicates, in each case, the open argument: the place where

integral will substitute various real values fowhen evaluating or h.

Note that if we wanted in clas® to integrate a real-valued function
from classREAL such asibswhich is declared iREALas

abs REAL
-- Absolute value
do...end

we would obtain it simply through

|

‘your_integrator integral (agent{ REAL} .abs 0.0, 1.0) ‘

Let us now see how to write functioimtegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaludtéor various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause statingttyat

is positive. Then we may wrifategral as:

The boxed expression is where the algorithm needs to evaluate the function
f passed tantegral. Remember thatem as defined in clasSUNCTION

calls the associated function, substituting any operands hate¢he open
positions, and returning the function’s result.The argumenitesh is a

tuple (of typeOPEN the second generic parameteF(fNCTION); this is

why we need to enclosen brackets, giving a one-argument tugpig:

In the first two example usesgent g (?) andagent h (?, u, v), this
argument corresponds to the question mark operanglanah. In the last
example the call expression passedrtegral was agent { REAL .abs
where the open operand is the target, represented RiyAL, and
successive calls itemin integral will substitute successive valuesoés
targets for evaluatingbs

In the case oh, the closed operandsandv are evaluated at the time of
the evaluation of the expressiagent h (?, u, v), and so they remain the
same for every successive callitemwithin a given execution ahtegral.

730 AGENTS, ITERATION AND INTROSPECTION §27.6

m integral
e (f: FUNCTION[ANY TUPLE[REAL, REAL;
| low, high REAL): REAL
-- Integral off over the intervallpw, high]
require
meaningful_intervallow <= high
local
x: REAL
do
from
X :=low
invariant
x>=low; x <= high+ step
-- Resultapproximates the integral over
-- the interval [ow, low. max(x — step]
until x> highloop
Result= Result+ step 0| f.item([X])
X=X+ step
end
end

Note the typeFUNCTION[ANY TUPLE [REAL], REAL] declared in
integral for the argument. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameteANY) that has one open operand of tyREAL (hence
TUPLE[REAL) and returns a real result (henR&AL). Each of the three
example functiong), h and abs can be made to fit this bill through a
judicious choice of open operand position.

Iteration examples

The next set of initial examples covered iteration. In a claéGsve want to
manipulate both a list of integers and a list of employees

I & I intlist: LINKED_LIST[INTEGER
= emplist LINKED_LIST[EMPLOYEE

and apply the same functiéor_all to both cases:

if intlist. for_all (agentis_positive(?)) then ... end
if intlist. for_all (agent over_threshold?)) then ... end

E

if emplist for_all (agent{ EMPLOYEER .is_married then ... end

§27.6 USING AGENTS 731

The functionfor_all is one of the iterators defined in claBRAVERSABLE

of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such BREEand LINKED_LIST This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

Our examples use three such properties of a very different nature. The
first two are functions of the client clag¥C, assessing properties of their
integer argument. The result of the first depends only on that argument:

is_positive(i: INTEGER: BOOLEAN
-- Isi positive?
do Result= (i > 0) end

Alternatively the property may, as in the second example, involve other
aspects o€C, such as an integer attributeeshold

over_thresholdi: INTEGER: BOOLEAN
-- Isi greater thathreshol®
do Result= (i > threshold end

Hereover_thresholadompares the value ofo a field of the current object.
Surprising as it may seem at first, functifum_all will work just as well in

this case; the key is that the call expressagent over_threshold?), open

on its argument, is closed on its target, the current object; so the agent
object it produces has the information it needs to acceghitbgholdfield.

In the third case, the argument tofor all is agent
{EMPLOYEE .is_married this time we are not using a function©fC but
a functionis_marriedfrom another clasEMPLOYEE declared there as

‘ is_married BOOLEANis do ... end

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass itoio all: it suffices
to make the target open.

The types of the call expressions are the following: ygs.assumesagf’“mhat
IS non-genericso
PREDICATECC, TUPLE[INTEGER] & R emember
-- In first two examplesi§ positiveandover_thresholll thataPREDICATEs a
FUNCTIONwith a
PREDICATHEMPLOYEE TUPLE[EMPLOYEH] BOOLEANTresult type
-- In theis_marriedexample

732 AGENTS, ITERATION AND INTROSPECTION §27.6

You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions
I al I intlist . for_all (agentsome__criterior(el, ?, €2 e3)
‘T emplist. for_all (agent{ EMPLOYER .some_functioife4, €5

assuming irCC andEMPLOYEE respectively, the functions

some_criterio(al TL i: INTEGERaz T2 a3 T3 --InCC
some_functiolfad: T4, a5 TH) -- In EMPLOYEE

for arbitrary typed1, ..., T5. Since operandsl, ...,e5are closed in the calls,
these types do not in any way affect the types of the call expressions, which
remain as above:PREDICATE [CC, TUPLE [INTEGER] and
PREDICATHEMPLOYEE TUPLE[EMPLOYEH].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLIG]. Some of the iterators are unconditional, such as

I.ipl do_all (action ROUTINE[ANY TUPLE[G]])
an -- Apply actionto every item of the structure in turn.
I require
... Appropriate preconditions ...
do
from startuntil offloop
action.call ([iterr)
forth
end

end

§27.6 USING AGENTS 733

This uses the four fundamental iteration facilities, all declared in the rDescendants GfRA-
| f ible ageferredfeatures iINTRAVERSABLEStart to o onp-erectihese
general form possible adeferredfeatures in start o fearesinvariousways
position the iteration cursor at the beginning of the structfweth to to provide iteration
. . . mechanisms on lists
advance the cursor to the next item in the structofiep tell us if we havepash taplestrees and
exhausted all itemsnpt off is a precondition oforth); anditemto return many other structures

the item at cursor position.

The argumentaction is declared afROUTINE [ANY TUPLE [G]],
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter GIRAVERSABLE
representing the type of the elements of the traversable structure. Feature
itemindeed returns a result of tyge (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expecactionto denote a procedure, so its type could be more
accurately declared ®ROCEDURHANY TUPLE[G]]. UsingROUTINE

| leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.
Wheredo_all appliesactionto all elements of a structure, other iterators
provide conditional iteration, selecting applicable items through another
call expression argumerneést Here is the “while” iterator:
o while_do

(action ROUTINE[ANY TUPLE[G]]
test PREDICATHANY TUPLE[G]])
-- Apply actionto every item of structure up to,
-- but not including, first one not satisfyitest
-- If all satisfytest apply to all items and moaf.
require
... Appropriate preconditions ...
do
from startuntil
off or else notaction. test([iter])
loop

action. call ([item))

forth
end

end

734

AGENTS, ITERATION AND INTROSPECTION §27.6

Note how the algorithm appliesall to action representing a routine
(normally a procedure), anilem to test representing a boolean-valued
function. In both cases the argument is the one-element[tigut.

The iterators of TRAVERSABLEcover common control structures:
while_dq do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applgctionto all items up tcand includingfirst one
satisfyingtes); until_dg do_untit do_if.

Yet another iterator offRAVERSABLEs for_all, used in earlier
examples. It is easy to write #or_all loop algorithm similar to the
preceding ones. Here is another possible definition, in termbitef do

for_all (test PREDICATHG, TUPLE[G]]): BOOLEAN

-- Do all items satisfyes®

require
... Appropriate preconditions ...

do
while_do(agentnothing(?), tes)
Result= off

end

using a procedurenothing (x: G) which has no effect (but needs &= do_nothings cited
argumenk for typing reasons, since the first argumenivbile _domust be in 35.6. pae 920

of type ROUTINE[ANY TUPLE [G]]). It is trivial to definenothingin s possible to avoid
terms ofproceduredo_nothing from classANY We applynothingas long defining a procedure
astestis true of successive items; if we find ourselét we return true;i':fl’it:é“gggn‘;s'”g an
otherwise we have found an element not satisfyindetbie

Assuming a proper definition aflo_until the declaration ofxists
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

exists(test PREDICATHG, TUPLE[G]]): BOOLEAN

-- Does at least one item satisg?

require
... Appropriate preconditions ...

do
do_until(agentnothing(?), tes)
Result= not off

end

§27.7 TWO ADVANCED EXAMPLES 735

27.7 TWO ADVANCED EXAMPLES

Before moving on to the last details of the agent mechanism, let's gain
further appreciation for its power and versatility by looking at two
interesting applications, error processing and “once per object” (followed
in the next section by examples of the inline form).

Error processing without the mess

The first example addresses a frequent situation in which we perform a
sequence of actions, each of which might encounter an anomaly that
prevents continuing as hoped. The problem here is that it’s difficult to avoid
a complex, deeply nested control structure, since we may have to get out at
any step. The straightforward implementation will look like this:

actionl
if oklthen
action2
if ok2then
action3
... More processing, more nesting ...
end
end

For example we may want to do something with a file of nga_name

We first test that thapath_names not void. Then that the string is not
empty. Then that the directory exists. Then that the file exists. Then that it
is readable. Then that it contains what we need. And so on. A negative
answer at any step along the way must lead to reporting an error situation
and aborting the whole process.

The problem is not so much the nesting itself; after all, some algorithms are
by nature complex. But often the normal processing is not complicated at all; it's
the error processing that messes everything up, hiding the “useful” processing in
afewislands lost in an ocean of error handling. If the error processing is different
in each casenft ok1, not ok2and so on) we can't do much about it. But if it is
always of the form: “Record the error source and terminate the whole thing”, then
the above structure may seem too complicated. Although we may address this
issue through exceptions, they are often overkill.

An agent-based technique is useful in some cases. It assumes that you
write the various actions —actionl... action3above — as procedures,
each with a body of the form

...Try to do what's needed...
controlled_checKexecution_ok"...Appropriate message...")

with execution_okepresenting the condition that must be satisfied for the
processing to continue. Then you can rewrite the processing above as just:

736

AGENTS, ITERATION AND INTROSPECTION §27.7

controlled_execut§
agentactionl,
agentaction2(...),
agentaction3(...)

)

if controlled_glitchthen
warning(controlled_glitch_messaye
-- Proceduravarningis an error reporting mechanis
end

This linear structure is much simpler than the original.

The features whose names start witintrolled_come from the EiffelBaseThe routine as it appears
classCONTROLLED EXECUTIONfwhich the class containing the abo"t'r‘;ifsl'tﬁ:i%ﬂﬁgz‘g’o‘fg'
scheme should be a descendant. These procedures are not difficult tothe glitch step anan op-
for ~ example controlled_check sets controlled_glitch and tion, raise an exception

controlled_glitch_messagandcontrolled_execut®okslik e this

controlled_execute
(actions ARRAYPROCEDURHANY TUPLH])

-- Executeactions stopping if encountering a glitch.
local
i: INTEGER
do
from
controlled_glitch:= False i := actions lower
until i > actions upperor elsecontrolled_glitchloop
actionsitem(i).call ([])
=i+l
end
end

Once per object

The second example, also supported by an EiffelBase class, provides a
“once per object” mechanism.

You know, of course, Eiffel'sonceroutines”, executed only once p¢t~ For an inttroduction

: . “ » H . H [0 once routines see

system execution. They define a “once per clgss mechanism: all instig o 7iNE BoDY”.
of a class share the result of a once function. (All these concepts.s, pae 218
applicable to procedures, but for this discussion we restrict ourselv
functions.) Now assume you need functions that compute a result sp
to each instance of the class, and computed just once for that instanc., u..
first time it's requested — if at all.

§27.7 TWO ADVANCED EXAMPLES 737

A typical application would be large pieces of information associated
with objects of a certain type, but stored in a database; for example each
instance of a claslSOMPANYmay havestock _historynformation, of type
HISTORYwhich may be huge. We only want to retrieve the information on
demand; given the size of the information and the number of instances of
the class, it is not acceptable to load everything ahead of time. Even if an
instance of COMPANYis in memory, we want to retrieve the associated
HISTORYfrom the database only when and if we need access to the
company'sstock_history

Agents provide us with a general solution to all problems of this kind.
In classCOMPANYyou will simply declare

\ stock_historyONCE_PER_OBJEC[HISTORY \

and obtain the value, when and if needed, as

‘ stock_historyitem (agentretrieved_history ‘

Hereretrieved_histonyis the function that computes the needed result —
the one that you want to call once for each object. That's all you have to do!
Note that this scheme allows you to have as many “once per object”
functions as you like in any given class. It relies on a general-purpose
EiffelBase clas©NCE_PER_OBJEC®f the following form:

expanded class
ONCE_PER_OBJE(T]
feature -- Access
item (f: FUNCTION[ANY, TUPLE, G]): G
-- Value off, computed once for each object;
-- subsequent calls return same value for same object.
do
if not computed then
internal_result=f.item([])
computed= True
end
Result= internal_result
end
feature {NONE -- Implementation
computedBOOLEAN
-- Has item already been requested?
internal_result G
-- Result, if already computed
end

738 AGENTS, ITERATION AND INTROSPECTION §27.8

27.8 USING INLINE AGENTS

The agents seen so far are of a&ll_agenkind, relying on class featuresagentis_positiveneans
such asf andg (integration examplesjnteger_propertyandis_married }2‘*;2{35;;96”‘
(iterator examplesyompute_statéEiffelVision example) and others. ~ -

Sometimes, thenly reason for writing a certain computation is to
define an agent from it. To avoid adding a feature that will make the
enclosing class more complicated, you may write the algorithm within the
agent. The syntactical construct for thidine case, previewed at the
beginning of this chapter, mirrors the definition of a routine — although,
like any other agent construct, it is syntactically an expression. Here are
some examples of inline agents, all to be used as expressions::

I 4 I (agent(i: INTEGER: BOOLEANdo Result=is_positive(i) end)
=y -- Equivalent tcagentis_positive(?)

] (agent(e EMPLOYER: BOOLEANdo Result=e.is_marriedend)
-- Equivalent teagent{ EMPLOYERE .is_married

(agent(e, f: EMPLOYEE: BOOLEAN
do Result= (e.salary> f.salary) end)

(agent(e, f: EMPLOYEE p: POSITION: BOOLEAN
do Result= (e.job = p) and (f.job = p)) end)

As noted in the comments, the first two of these examples Galleagent
equivalents, since they directly rely on existing routines of some class. But
in the last two cases, there are no such routines.

The third agent (for example) denotes an object representing a boolean-
valued operation that, for two objects of tyR®PLOYEE returns true if and
only it the querysalaryyields a higher result for the first than for the second.

Itis still possible to use &all_agenin these cases, but this requires adding
features to the enclosing class:

I d I higher_salary(e, : EMPLOYER: BOOLEAN
e -- Doese have a higher salary théh

] do
Result= (e.salary> f.salany)
end

same_jole, f: EMPLOYEE pos POSITION: BOOLEAN
-- Do e andf both have positiopos?
do
Result= ((e.job = pog and (f.job = pog)
end

§27.8

USING INLINE AGENTS

739

to enable rewriting the calls agjenthigher_salary(abbreviating, as usual,
agenthigher_salary(?, ?)) andagentsame_jobBut if the only use of the
given little algorithms is to define the corresponding agents, for example to
pass them to some iterators, then you may want to avoid burdening the

enclosing class with such routines, using inline agents instead.
The inline agents shown so far denote functioR&JNCTION or

PREDICATBH. Here is an example that passes an inline procedure agent to
an iterator, to raise by 50 percent the salary of every employee called “Tina”:

emplistdo_all

((agente: EMPLOYER
require
employee_existe/= Void

- Definingthe string as
onceis not strictly nec-
essary butimproves per-

do formance by avoiding
if equal(e.first_nameonce"Tina") then repeated evaluations

see'Basic manifest
. e.set_salary(1.5 Oe.salary) O pm——y
en

end))

Therequire ... do... endpartis a specimen étoutine an inline agentindee(~ “FEATURE BOD-

-] . - ” .
usesexactly the sameRoutineconstruct as the declaration ofautine in a 'E5->:11.pae 143
class; so it can have all the applicable clauses, su¢hresonditiorhere,

but alsoLocal _declarationd?ostconditiorandRescue

We can use an inline agent to simplifiy tearlierdefinition offor_all - Pager34
in terms ofwhile_dq which required a functiomothing (x: G) because
do_nothingfrom ANY with no argument, has the wrong signature. .
inline agent avoids this:

©

[]

®-

pEETHON]

it

®

[P]

for_all (test PREDICATHG, TUPLE[G]]): BOOLEAN
-- Do all items satisfyes®
do
while_do((agent(x: G) do do_nothingend), tes)
Result= off
end

Inline agents do not give us anything fundamentally new, since we can
always use call agents instead. They are useful if you want to avoid features
such asame_jotandnothingwhose only purpose is to define agents.

The methodological advicas clear: if the computation becomes
complex, it is usually better to add a feature to the class. The agent passed
as argument talo_all in the last example is already complex enough to
justify writing a separate function instead.

The inline form is particularly useful to express advanced contract
specifications. Here is an example. Assume that in a class describing

sequential structures (such &4$ST [G] in EiffelBase) you write a
procedure that appends an element. It might include this postcondition:

AGENTS, ITERATION AND INTROSPECTION §27.8

extendx: G)
-- Add x at end; keep other items
require

do

ensure

one_morecount=old count + 1

added_at_endtem(cound = x

others_unchanged

(1]« «] old coun).for_all
((agent(i: INTEGER: BOOLEAN
do Result= equal(item (i), (old twin). item(i)) end))

end

In the last postcondition clause — the one of interest for this discussion —
1|. .| old countis the interval from 1 t@ld count to whose itemgor_all
applies the agent property on the next line. The property expresses that the
item at positioni, for arbitraryi, is equal to the original item at that position
(more precisely, to the item at positioin old twin, a copy of the list taken

on entry to the procedure). This is typical of how agents enable us to
express non-trivial postcondition or invariant properties, stating that a
whole set of items have not changed, or have a certain association with the
corresponding set of items in another structure.

We could restate the inline agent (the argumeiivtoall) in non-inline
form asagent equal_item(old twin, ?), but this assumes a function

=
H

equal_item(l: like Current i: INTEGER: BOOLEAN
-- Is item at positiom equal to corresponding onelih
do
Result= (item() =1.item(i))
end

If you want to specify your software completely — expressing not only
straightforward properties suchigam(coun) = x, but also those involving
entire substructures — you may end up writing many such functions.
Although they add interesting information, one may also feel that, being
only used for assertions, they needlessly complicate the class. They may
destabilize the software since any effort at better specification may cause
the addition of a whole set of new features, used only in the assertions and
of no other interest to clients of the class. Inline agents solve this problem.

§27.9 ACCESSING FEATURE PROPERTIES 741

Here is another example application. The agents described in this
chapter represent delayedlls; you may have wondered whether we also
I need an expression construct to denote delasgdct creation perhaps
something likeagent create{ SOME_TYPE.make(al,?). The answer is
no, since we can achieve the intended effect (assuming we need it) by using
a creation expression as part of an inline agent in

‘ (agent(bl: B) do create{ SOME_TYPE.make(al, b1) end) ‘

-

whereB is the type ofmakes second argument.

You may view inline agents aanonymous routines similar to
anonymouglassegqtuple types) and anonymowabjects(tuples). This is
particularly clear in thé&koutinecasg(...) ... do ... end, which has exactly
the same form as a routine declaration:

‘r(...)is...do...end ‘

(with, as noted, the possibility of including all relevant clauses, such as
precondition, postcondition, rescue, local variable declarations). The only
difference is that the inline agent doesn’t use a routine namat doesn’t

need one. When such a routine is used with the sole purpose of being
passed as argument to a routine expecting an agent, the anonymous form
avoids cluttering the class with a full-status routine.

27.9 ACCESSING FEATURE PROPERTIES

ClassROUTINEand its descendants provide a starting point for many of
the introspection needs that Eiffel applications may need.

The first introspection mechanism is a simple way, through class
ROUTINE and its descendants, to gain access to the precondition and
postcondition of a routine:

precondition(args OPEN: BOOLEAN
-- Do args satisfy routine’s precondition in present state?

postconditionargs OPEN: BOOLEAN
-- Does current state satisfy routine’s postcondition
-- for operandsrgs?

This enables you to check the precondition before you apply an agent, asin

| o | if your_agentprecondition(your_operandgsthen
an your_agentcall (your_operands
I end

742

AGENTS, ITERATION AND INTROSPECTION §27.10

whereyour_agentis an agent expression anour_operandss a valid
tuple of operands for that agent.

There is, as will be seen next, a similar facility for class invariants.

27.10 THE BASE CLASS AND TYPE

T

Introspection support is also one of the concerns behind the first generic
parameter 0ROUTINE PROCEDURE FUNCTION and PREDICATE
The specification

[ROUTINE[BASE OPEN—>TUPLH

includes, as first generic parameter, the t#eSErepresenting the typr. ror an inline agent

(class with generic parameters) to which an agdatiture belongs. This ithe agents feature isits

the type of the target expected by the feature. Sae?ggg‘éid?feat“re'
The examples seen so far do not B#¢SEat all, because proceducall o

does not need it. If the agent is closed on its target, as in

|y :=agenta0.f (al, ?, ?) |

then it includes, here throud®, the target information that a later call to
call may require. In the other case — open target — as in

t:=agent{T0}.f(al, a2 ?) |

then the target type is specified, hér@, and provides the information
needed to determine the right versionfofn this case th&ASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding@PEN the type ot, for example, is

ROUTINE[TO, TUPLE[TO, T3]
where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’t need the
BASEgeneric parameter if all we do with agents is execalleon them.

BASEis useful for other purposes. WithoBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’'s associated feature is defined. To open
the gate to fullintrospectionservices — enabling a system to explore its
own properties — clad8OUTINEuses a feature

| base_typeTYPE[BASH |

that yields the type to which the agent’s feature belongs. CMBE[G] from
the Kernel Library provides information about a tgpand its base class.

ClassTYPEis, even more fundamentally th&OUTINEand its heirs,
the starting place for introspection. Example features include:

* name STRING the upper name of the type’s base class.

§27.11 AGENT SYNTAX 743

« generics ARRAY[TYPE[ANY]], the actual generic parameters, if any,
used in the type’s derivation.

* routines ARRAY[ROUTINE[ANY TUPLEHE], the routines of a class,
each an instance #ROCEDUREFUNCTIONor PREDICATE

« attributes ARRAY{FUNCTION[ANY]], the attributes.

e invariant (obj: G): BOOLEAN telling us whether an instanoebj
satisfies the invariant.

ClassANY has a feature — OnANYand uni-
. versal features see
\generator TYPE[like Current chapter3s.

which yields an object describing the type of the current object.

So within a class of whicli is a featuregeneratorhas the same value as
(agent f). base_typgf ais of typeT andf is a feature off, thena. generator
has the same value @gent{T}.f). base_type

A more complete interface specificationlof PEappears in the descriptio= on classTYPEsee
of the Kernel Library classes. A.6.2, pge 966

Thanks to the presence &ASEamong the generic parameters
ROUTINEand its descendants, we can give a proper typpase typeand
as a result gain access to a whole library of introspection mechanisms.

27.11 AGENT SYNTAX

The rest of this chapter gives the precise syntax, validity and semantics of
Fi 'ip agent expressions. There will be no fundamentally new concept, so the

mr‘i hurried reader may skip to the next chapter.
The new construct i8gent, a variant oExpression

Agents
Agent £ Call_agent Inline_agent

Call_agent2 agentCall_agent_body

Inline_agent2 agent[Formal_argumenis
[Type_mark
[Attribute_or_routing
[Agent_actuals

The two variants are call agents and inline agents. In both cases the
keyword agent signals the use of an agent expressiorll_agentis the
keywordagentfollowed by aCall_agent_bodysimilar to a call but with

the possibility of using a question maPkn lieu of an argument or a type

in braces{ TYPE in lieu of the target. Annline_agentis like an inline
routine declaration. Let’s detail both cases in turn.

744

AGENTS, ITERATION AND INTROSPECTION §27.11

Syntax of call agents

We have encountered numerous examplésadif agentsuch as First three examples
unqualified last one
liﬁ] agentf (al, a2 ad) qualified
T agent f

agent{TQ}.f(al, ?,?)

A Call_agenstarts with the keywordgent The part that follows, called « The syntax fo€all
Call_agent_bodyclosely resembles @all; we can't just use that earlie¥as °n Pagéla
construct, however, since we must allow for the question mark and .. _.__
conventions, which have no equivalent in normal calls:

I BTNTAX

Call agent bodies
Call_agent_body® Agent_qualified Agent_unqualified
Agent_qualified® Agent_target. " Agent_unqualified
Agent_unqualified® Feature_nampAgent_actuals
Agent_target? Entity | ParenthesizefManifest_type
Agent_actuals® "(" Agent_actual_list)"
Agent_actual_list® {Agent_actual'," ...}*
Agent_actual® Expressior] Placeholder
Placeholder2 "?"

--- FIX ---Manifest_typen thesyntax ofMulti_branchas -~ Bageird

An Agent_targetmay be of three kindsEntity, Parenthesizedand
Manifest_type The third (used in the last example) enables you to specity
an open target by listing a type in braces. For an actual argument, you can
use, besides an actual valu®laceholde(question mark).

The possibility of using &anifest_typeor Placeholdeto specify open . The Argument rule
operands is the principal difference between agent calls and normal was on pagé26
There is another difference, not immediately obvious from the syntax. In a
Call_agentas well as a normaCall, the argument listAgent_actualsis
optional. But omitting it doesn’t have the same effectf i$ declared as
having one or more arguments, a call of the faanf, or its unqualified
variantf, are invalid since they violate tiegumentrule: you must always
specify actual arguments, as ab. f (al, a2, a3). For an agent call,
however, corresponding forms such as

ao.f
f
{TC}.f

§27.11 AGENT SYNTAX 745

are valid; they are simply convenience abbreviations to indicate that all
arguments are open, meaning respectively the same as

a0.f (2,2, ?)
f(2,2,?)
{TO}H.F(2,2,?)

You may in such a case omit the argument list, to indicate that all argun-. Page746(see the

(if any) are open. The\gent Call rule, introduced later in this chapteexplanation about
clause3 of the rulg.

explicitly allows this. It causes no ambiguity and (unless you prefer al

explicit style) lets you avoid cluttering your class text with question marks

A final note on call agent syntax. You may buildCall_agennot only
from identifier features as in these examples, but also from an operator or
bracket feature. Just designate the feature by its identifier, in conformance
with theFeaturddentifierprinciple: with a featurgour_namaelias"8" for — “Featue Identifer
some binary operatd; use the identifier to build agent expressions sucprinciple”. page 153

| al | agenta.your_namgb) -- All closed
= agentyour_namg?) -- Open on argument
I agent{T}.your_nam¢g?) -- Open on target and argument

and similarly with a featurether_namaelias"[]".

Syntax of inline agents

We have seen that dnline_agents like a routine declaration, but given
inline, without a name, as in

m (agent(e, f: EMPLOYEE: BOOLEAN
s -- Is the cumulated salary efandf higher tharthreshol®
require
first_existse/= Void
second_existe /= Void
local
salary_sumREAL
do
salary_sum= e.salary+ f.salary
Result= (salary_sum threshold

end)
This is reflected by the syntax given on the previous page, which specifies:
* An optionalFormal_argumentsst, as(e, f: EMPLOYER.

» An optional Type_mark as in: BOOLEAN If this part is present, the
associated routine is a function; otherwise it is a procedure.

« A Routing with all the possible trappings, including Precondition,
Local_declarations,

746 AGENTS, ITERATION AND INTROSPECTION §27.12

As already noted, it is not recommended to have such extensive computations in
inline agents: after all, ahgentis an expression, meant for example to be passed
s as argumentto aroutine. Butthis is just methodological advViegithioleRoutine
s syntax is available if you wish to use it, including the optioRatcondition
Local_declarationsPostconditiorand Rescueclauses; evelleader_comment
andObsolete The only restriction (stated in the validity constraint given next) is
that the routine must not be deferred.

27.12 AGENT VALIDITY

4 We may now add the validity rules. It is convenient to deal separately Lik&the previous one
#2Y% Call_agen@andinline_agentcases. this section is not essen-
- - tial on first reading

Validity of call agents

For call agents, it is useful first to define the notion of target type:

« The “current type”

e Target type of an agent call is the enclosing class
. with generic parameters
Thetarget type of aCall_agenis: added if necessary 10
. i make up a typsSee
1 «If there I noAgent_targettherrrent ty_pe. _ “CURRENTW%PE‘
2 «If there is am\gent_targeand it is anEntity or Parenthesized FEATURES OF A
its type. TYPE’, 12.11, pge
3 «If there is anAgent_targetand it is aManifest_typethe type 357
that it lists (in braces).
The validity rule follows:
i Call Agent rule VPCA
o A Call_ageninvolving aFeature_namfm, appearing in a class,
n with target typerlQ, is valid if and only if it satisfies the following
conditions:
1 «fnis thename of a featureof TO.
2 If there is amAgent_targetf is export-valid for TOin C.
3 «If the Agent_actualpart is present, the number of elements in
its Agent_actual_lists equal to the number of formalsfof
4 « Any Agent_actuabf the Actualkind is of a typeconformingto
the type of the corresponding formalfin

--- REMOVED CONDITION ON SEPARATE --- The rule’s phrasing makes
certain forms of the construct automatically valid:

« If any Agent_actuals of thePlaceholdekind, represented simply by a
guestion mark, clausédoes not apply, so the argument raises no type
validity problem. This is as expected, since such an argument is left
open for future filling-in.

§27.12 AGENT VALIDITY 747

« If there is noAgent_actualpart, clause8 and4 do not apply. Iff has
no formals, we are calling an argumentless feature with no actuals, as
we should. Iff has one or more formal arguments, we view the absence
of explicit actuals of an abbreviation for actuals that are all of the
Placeholdekind (question marks): assumirigakes three arguments,
agentaO.fis simply an abbreviation fagentaO.f (?, ?, ?). In this case
the implicit arguments are all open, and hence automatically valid.

Clause3 differs from itscounterparfor normalcalls, whichrequiredactual ~ “Ar gument rule”,
argument list to match the formal list if any. Instead we explicitly all?2¢626
omitting actuals altogether, to signify that all arguments are open.

---- Clause---- is a consistency condition for concurrent computation, anc
parallels a similar clause discussed in the chapter on normal calls.

Validity of inline agents

To define the validity of inline agents (also their semantics), it is convenient
to consider this case as equivalent to the previous Qad, agent by
treating any inline agent as equivalentigentf (...) wheref is a fictitious
routine added to the class. Here is the definition of this equivalence:

DEFINITHIN

RALIDIEY

Associated feature of an inline agent

Every inline agenta of a classC has anassociated feature

defined as a fictitious routine Gf such that:

1 « The name of is chosen not to conflict with any other feature
name inC and its descendants.

2 » The formal arguments 6fare those oia.
~ “Exported, selec-

3 «f is secret gvailable for call to no class). tivelyavailablesecet’,
4 « TheRoutineof f is defined by th&outinepart ofia. page 206

5 «f is afunction if ia has aType_mark(its return type being
given by theTypein thatType_marl, aprocedure otherwise|

Clause2 lists, as arguments tip not only the arguments to the inline agent
but also the local variables of the enclosing routine. The local variables wil,
indeed serve adosedarguments; this will be specified in the semantics given
in the next section.

The validity rule follows:

Inline Agent rule VPIA

An Inline_agenta of associatedeaturef, is valid in the text of a
classC if and only if it satisfies the following conditions:

1 f, if added taC, would be valid.
2 f is notdeferred.

748 AGENTS, ITERATION AND INTROSPECTION §27.13

There is no other condition, since in particular TReutinepart must be . “Entity rule”
valid on its own; in particular, theEntity rule states that any entitpage 505
appearing in thé\gent_bodymust be a formal argument of the inline age

itself, such astherandi in

(other. like Current i: INTEGER
do Result= (item (i) = otheritem(i)) end

or a local variable of an enclosing agent or routine, or a feature of the
enclosing class.

Here are some properties following from the Inline Agent rule:

Inline Agent Requirements VPIR
RLIGTTT An Inline_agenta must satisfy the following conditions:

1 « No formal argument dpcal variable ofa has thesamename as
a feature of the enclosing class.

2 « Everyentity appearing in th&outinepart ofa is the name of
one of: a formal argument @ a local variable of; a feature
of the enclosing clas§urrent.

3 * TheFeature bodpf a's Routineis not of theDeferredform.

These conditions are stated as another validity rule permitting compilers to
issue more understandable error messages. Itis not in the usual “if and only
if” form (since the preceding rule, the more official one, takes care of this),
but the requirements given cover the most obvious possible errors.

27.13 AGENT SEMANTICS

4 (Like the previous two, this section may be skipped on first reading.) The
#=Y% final part of the specification addresses the semantics of agents. It is
organized in three parts:

« Call-agent equivalent of an inline agent (enabling the next two parts to
restrict themselves to ttigall_agenpart).

* Open and closed operands.

» Type and value of an agent.

Call-agent equivalent of an inline agent

To define the validity of an inline ageat it was convenient to define its
associated feature. Tharitself can be viewed as if it wereCall_agent

§27.13 AGENT SEMANTICS 749

Call-agent equivalent of an inline agent

An inline agentia with n formal argumentsr(= 0) has acall-
agent equivalentdefined as th€all_agent

agentf (?,?,...,?, a4, ay, ..., &y)
using n question marks, wherey, a,, ..., a,, (m = 0) are the
formal arguments anlbcal variables of the enclosing routine (if

any) and any enclosing agents, drd theassociatedeature of
ia. (If bothn andm are 0O, theCall_agenis justagentf.)

This allows a simple specification for the semantics of inline agents:

Semantics of inline agents

The semantic properties of an inline agent are those afailis
agent equialent.

Thanks to this rule, we can focus on call agents when defining the type and
execution effect of agents.

Note how the formal arguments and local variables of the enclosing
routine if any, and of any enclosing agents, serve as closed arguments to the
agent. In reading earlier discussions of inline agents, you may have
pondered two as yet unanswered questions:

* Is it permitted for an inline agent to refer to a local variable of the
enclosing routine, and, if so, what does that mean?

« Call agents may have both closed and open operands. We have seen how
to give an inline agent open operands: just specify them as arguments to
the agent. But is there a way to give it closed operands too?

The rule just given answers both questions at once by giving a status to
local variables of the enclosing routine: treat them as closed operands.

So a routine of the form

r
local
n: INTEGER
do
n:=1
your_list.do_all ((i: INTEGER do print (i + n) end)
end

750

AGENTS, ITERATION AND INTROSPECTION §27.13

PR
|

will print the successive values our_list(assumed to be of typelST
[INTEGER) all incremented by 1, the value of the local variablet
construction time. As specified by the last rule, this is the same effect as if
the call were

‘ do_all (agentprint_incremented_valu@, n)

whereprint_incremented_valus the “fictitious routine” introduced by the
definition of “associated feature” of an inline agent:

print_incremented_valu@: INTEGER n: INTEGER
do

print (i + n)
end

In examining the above definition of call-agent equivalent, note that.*'"miine Agent
validity rule on inline agents guarantees that there can be no name ule”. page 747
between the formal arguments and local variables of any enclosing a

and of the enclosing routine if any. (Nesting inline agents doesn’t sec... «
desirable use of the mechanism, but no rule disallows it.)

The semantics of inline agents also requires a specific rule on the
meaning ofResult An inline agent may be embedded in a function of the
class, or even in another function agent, causing a potential ambiguity. We
decide thaResultalways refers to the result of the innermost agent:

- T . ~ “Open operand posi-
Use ofResultin an inline function agent fion” was defined on

In an agent of theénline_routineform denoting a function, the pagersl

local variableResult denotes the result of the agent itself.

This is a rather specific case and another approach would be to disallow
function agents within functions or other function agents, or to use a special
notation to remove the ambiguity. The rule as given seems preferable. If you
need to refer to an out&esult you may assign its value to a local variable
and use that local variable in the innermost agent scope. This causes a little
extra work, but only in a rare and special case.

Open and closed operands

It is useful to define precisely what “open” and “closed” mean for the
operands of an agent expression:

From the definition of call-agent equivalent form we deduce that for an
inline agent:

» The open operands are the agent’s formal arguments, if any.

§27.13 AGENT SEMANTICS

751

Open and closed operands
Theopen operandsof aCall_ageninclude:
1« Any Agent_actuathat is aPlaceholder
2 * TheAgent_targeif it is present and is Ranifest_type
Theclosed operandsnclude all non-opepperands.

enclosing routine and any enclosing agents.

I ITEFIMET IS

Open and closed operand positions

Theopen operand positionsf a Feature_agerare theoperand
positions of its open operands, and thesed operand positions
those of its closed operands.

Type and value of an agent expression

Type of an agent expression

Consider aCall_agenta, whose associatedfeature f has a

generatingype TO. Letil, ..., im (m = 0) be itsopenoperand

positions, if any, and leTj,, .., T, be the types of's formals at

positionsil, ..., im (takingTj; to beTOif i1 = 0).

The type ofd is:

» PROCEDURHTO, TUPLE[T, .., Tinl] if f is aprocedure;

* FUNCTIONI[TO, TUPLE [T, .., Tinl, Rl if fis afunction of
result typeR other tharBOOLEAN

* PREDICATE[TO, TUPLE [Tj4, .., Tyl if fis a function of

result typeBOOLEAN

~ Theoperandsf a
call were defined on
page715as including
its target and its argu-
ments if any

* The closed operands are the local variables and formal arguments of the

An earlier definition also introduced the notionagermndposition which . “Operand position”
we can now extend to a definition of open and closed positions:

was defined onpagdels
the target position is,0
and the argument posi-
tions start at 1

The preceding definitions enable us to specify the semantics of an agent
expression. It suffices to give it foiGall_agent

752

AGENTS, ITERATION AND INTROSPECTION §27.13

Agent Expression semantics

The value of an agent expressiaat a certairconstruction time
yields a reference to an instanb@ of the type ofa, containing

information identifying:

» Theassociated feature af

» |ts open operand positions.

e The values of itglosed operands at the time of evaluation.

Effect of executingcall on an agent

Let DO be an agent object with associated featisnd open
positionsil, ...,im (m= 0). The information irD0 enables a call
to the procedureall, executed at angall time posterior toD0's
construction time, with targeD0 and (if required) actual
argumentsyq, .., &y, to perform the following:

» Produce the same effect as a call,tosing theclosedoperands
at theclosedoperandpositions andy, .., a,, evaluated at ca
time, at theopen operand positions.

* In addition, if f is a function, setting the value of thguery
last_resultfor DO to the result returned by such a call.

Although this will be an implicit consequence of the last rule, it doesn’t
hurt to state explicitly what some of the information® is good for:
enabling calls on agent objects.

« last_resulfrom class
FUNCTION giving the
result of the last evalua-
tion, was introduced on
page72Q

	27 27 Agents, iteration and introspection
	27.1 OVERVIEW
	27.2 A QUICK PREVIEW
	27.3 FROM CALLS TO AGENTS
	Feature calls and their operands
	Operands of a call
	Operand position
	Delaying calls
	Agents and their operands
	Construction time, call time

	27.4 AGENT TYPES
	27.5 CALL AGENTS
	All-closed agents
	Keeping operands open
	The brace convention
	Omitting the argument list
	A summary of the possibilities
	Syntactical forms for a call agent

	27.6 USING AGENTS
	GUI programming: establishing a direct connection to the Business Model
	Integrating a function
	Iteration examples

	27.7 TWO ADVANCED EXAMPLES
	Error processing without the mess
	Once per object

	27.8 USING INLINE AGENTS
	27.9 ACCESSING FEATURE PROPERTIES
	27.10 THE BASE CLASS AND TYPE
	27.11 AGENT SYNTAX
	Syntax of call agents
	Syntax of inline agents

	27.12 AGENT VALIDITY
	Validity of call agents
	Target type of an agent call
	Validity of inline agents
	Associated feature of an inline agent

	27.13 AGENT SEMANTICS
	Call-agent equivalent of an inline agent
	Call-agent equivalent of an inline agent
	Open and closed operands
	Open and closed operands
	Open and closed operand positions
	Type and value of an agent expression
	Type of an agent expression

