
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
27
Agents, iterationand introspection
27.1 OVERVIEW

27.2 A QUICK PREVIEW

Why do we need agents? Here are a few examples. This preview skips
many details but will give you an idea of the power of the mechanism; any
apparent mystery will soon be cleared as you read further into the chapter.

Let’s start with a typical need of graphical user interface (GUI)
programming. Using EiffelVision, the multi-platform graphical library of
Eiffel Software, you may write

to addyour_routine— a routine of your application, executing appropriate
operations — to the list of actions triggered by a mouse click onyour_button.
This is all you need to set up the application’s response to such an event.

Objects represent information equipped with operations. These are clearly
defined concepts; no one would mistake an operation for an object.

For some applications — graphics, numerical computation, iteration,
writing contracts, building development environments, “reflection” (a
system’s ability to explore its own properties) — you may find the
operationsso interesting that you will want to defineobjectsto represent
them, and pass these objects around to software elements, which can use
these objects to execute the operations whenever they want. Because this
separates the place of an operation’sdefinition from the place of its
execution, the definition can be incomplete, since you can provide any
missing details at the time of any particular execution.

You can createagent objects to describe such partially or completely
specified computations. Agents combine the power of higher-level
functionals — operations acting on other operations — with the safety of
Eiffel’s static typing system.

your_button. click_actions.extend()agent your_routine

AGENTS, ITERATION AND INTROSPECTION §27.2712
The argument toextend, agentyour_routine, is anagent expression. The
keywordagent avoids confusion with an actual routine call: when calling
extend, you don’t want to callyour_routineyet! Instead you pass toextend
an “agent”, whichextendadds to theclick_actionslist for your_button,
enabling EiffelVision to callyour_routinefor every subsequent occurrence
of a click event on the button. The agent includes any context information that
your_routine may need: cursor position, button number, pressure.

Now a numerical example. Over the interval [0, 1], you want to integrate
a functiong (x: REAL): REAL. With your_integratorof a suitable type
INTEGRATOR (detailed later), just use the expression

Again this doesn’t call the routineg, but enablesintegral to call g when it
pleases, as often as it pleases, on whatever values it pleases. We must tell
integral where to substitute such values forx at the places where its
algorithm needs to evaluateg to approximate the integral. This is the role
of the question mark?, replacing the argument tog.

You may use the same scheme in

to compute the integral , whereh is a three-argument

functionh (a: T1; x: REAL; b: T2): REALandu andv are arbitrary values. As
before you will use a question mark at the “open” position, corresponding to
the integration variablex. Two “closed” positions show actual valuesu andv.

Note the flexibility of the mechanism: it allows you to use the same
routine,integral, to integrate a one-argument function such asf as well as
functions such ash involving extra values.

You can rely on a similar structure to provideiteration mechanisms on
data structures such as lists. Assume a classCC with an attribute

and a function

returning true or false depending on a property involvingi. You may write

to denote a boolean value, true if and only if every integer in the listintlist
satisfiesinteger_property. This expression might be useful, for example, in
a class invariant. It will work for any kind ofinteger_property, even if this
function involves arbitrary features of the current object.

Now assume that inCC you also have a list of employees:

and that classEMPLOYEEhas a functionis_married: BOOLEANwith no
argument, telling us about the current employee’s marital status. Then you
may also write inCC the boolean expression

your_integrator. integral ()

your_integrator. integral ()

intlist: LINKED_LIST[INTEGER]

integer_property(i: INTEGER): BOOLEAN

intlist. for_all ()

emplist: LINKED_LIST[EMPLOYEE]

agent g (?), 0.0, 1.0

agent h (u, ?, v), 0.0, 1.0

h (u, x, v) dx
0

1∫

agent integer_property(?)

§27.2 A QUICK PREVIEW 713
to find out whether all employees in the list are married. The argument to
for_all is imitated from a normal feature callsome_employee. is_married,
but instead of specifying a particular employee we just give the type
{ EMPLOYEE} , to indicate wherefor_all must evaluateis_married for
successive targets taken from the the list.

The{EMPLOYEE} notation replaces the question mark of the previous
examples. Those examples used an argument as the open operand — the
place where the routine will be evaluated — as ininteger_property(?), where
the argument type is clear from the declaration ofinteger_property. But with
is_marriedthe open operand is the target, so we need to specify the type:
many classes may have a function calledis_married.

Note again the flexibility of the iteration mechanism and its adaptation to
the object-oriented form of computation: you can use the same iteration
routine, herefor_all fromLINKED_LIST, to iterate actions applying to either:

• The target of a feature, as withis_married, a feature of class
EMPLOYEE, to be applied to itsEMPLOYEE target.

• The actual argument of a feature, as withinteger_propertywhich
evaluates a property of its argumenti — and may or may not, in
addition, involve properties of its target, an object of typeCC.

It seems mysterious that a single iterator mechanism can handle both cases
equally well. We will see how to writefor_all and other iterators
accordingly. The trick is that they simply work on their open operands;
when calling them, you choose what to leave open: either the argument as
with integer_property andintegral, or the target as withis_married.

Now assume that you want topassto someobject the mechanisms
needed to execute the cursor resetting and advance operations,start and
forth, on a particular list. Here nothing is left open: you fix the list, and the
operations have no arguments. You may write

All operands — target and arguments — of the agents passed toobjectare
“closed”, soobject can execute call operations on such objects without
providing any further information.

At the other extreme, you might leave an agent expression fully open, as in

so thatobject, when it desires to apply a call operation, will have to provide
both a linked list and an actual argument to executeextend. When as here
all the arguments are open, you may omit the argument list, writing just
agent{ LINKED_LIST[T]} .extend. Such an agent is a “routine object”:
an object representing the routineextendfrom LINKED_LIST, such as
could be used by browsing tools or otherreflection facilities.

emplist. for_all ()

object. operation(,)

object. operation()

agent{ EMPLOYEE} . is_married

This is the iterator style
of the C++ STL(Stan-
dard Template Library).

agentyour_list.start agentyour_list.forth

agent{LINKED_LIST[T]} .extend(?)

AGENTS, ITERATION AND INTROSPECTION §27.2714
To use an agent, a routine such asoperationcan apply to it the procedure
call, passing a tuple of values for the open operands. This will have the
same effect as an execution of the original feature —f, h, integer_property,
is_married, start, forth, extend… — on all the operands, closed and open.

The notation provides an extra degree of flexibility by letting you define
inline agents, which instead of referring to a feature of the class define a
routine text as part of the agent declaration. Inline agents have the same form
as aRoutine body, as in

In these examples the previous forms were simpler and shorter, but inline
agents are useful when you want to express the computation just for the
agent, without making it a routine of the enclosing class. For example you
may define the inline agent

which could be useful in a postcondition

This states that for every elementi of the intervallower |..| upper the
value of the item at positioni (in a structure such as an array or list) is the
sum of the corresponding values ina andb. To obtain the same semantics
without agent arguments, you would need to express the agent as
agent is_sum_of(?, a, b) and define a functionis_sum_ofsuch that
is_sum_of(i, x, y) is true if and only ifitem (i) = x.item (i) + y.item (i).
The semantics is the same, but if you have many properties of this kind
— for example in contracts — the inline form avoids introducing many
specialized functions such asis_sum_of.

In this example the agent represents a function, with an expression as its
body: item (i) = a.item (i) + b.item (i). It is also possible to use an inline
form for a procedure agent, as in

wheredo_allapplies its agent argument to all successive elements in a list;
this increasessum by the total of all employees’ salaries.

For an agent involving a single routine such asinteger_property,
integral, is_married, extendand the other previous examples, the original
non-inline form is shorter, more abstract, and usually preferable.

You may wonder how this can all work in a type-safe fashion. So it is
time to stop this preview and cut to the movie.

-- Means the same as:agent integer_property(?)

-- Means the same as:agent{ EMPLOYEE} . is_married

(agent (i: INTEGER): BOOLEAN
do Result:= (item(i) = a.item(i) + b.item(i)) end)

summed: (lower |..| upper).for_all
((agent (i: INTEGER): BOOLEAN

do Result:= (item(i) = a.item(i) + b.item(i)) end))

emplist.do_all()

(agent (i: INTEGER): BOOLEANdoResult:= integer_property (i))

(agent(e: EMPLOYEE): BOOLEANdoResult:= e.is_marriedend)

(agent (e: EMPLOYEE) dosum:=sum + e.salaryend)

§27.3 FROM CALLS TO AGENTS 715
27.3 FROM CALLS TO AGENTS

Feature calls and their operands

First we should remind ourselves of the basic properties offeature calls.
When programming with Eiffel we rely all the time on this fundamental
mechanism of object-oriented computation. We write things like

to mean: call featuref on the object attached toa0, with actual arguments
a1, a2, a3. In Eiffel this is all governed by type rules, checkable statically:
f must be a feature of the base class of the typea0; and the types ofa1and
the other actuals of the call must all conform to the types specified for the
corresponding formals in the declaration off.

In a frequent special casea0, the target of the call, is justCurrent,
denoting the current object. Then we may omit the dot and and the target
altogether, writing the call as just

which assumes thatf is a feature of the class in which this call appears. The
first form, with the dot, is aqualifiedcall; the second form isunqualified
(hence the names [Q] and [U] given to our two examples).

In either form the call is syntactically an expression iff is a function or
an attribute, and an instruction iff is a procedure. Iff has been declared with
no formals (as in the case of a function without arguments, or an attribute)
we omit the list of actuals,(a1, a2, a3).

The effect of executing such a call is to apply featuref to the target
object, with the actuals given if any. Iff is a function or an attribute, the
value of the call expression is the result returned by this application.

To execute properly, the call needs the value of the target and the
actuals, for which this chapter needs a collective name:

In the examples the operands area0 (or Current in the unqualified version
[U]), a1, a2anda3. Also convenient is the notion ofpositionof an operand:

[Q] a0.f (a1, a2, a3)

[U] f (a1, a2, a3)

Operands of a call
Theoperandsof a call include itstarget (explicit in aqualified
call, implicit in anunqualified call), and its arguments if any.

Operand position
Thetarget of a call hasposition 0. Thei-th actual argument, for
any applicablei, hasposition i.

← Feature calls were
studied in chapter23
and their type proper-
ties in chapter25.

← EveryObject_call
has a target, as defined
on page620.

AGENTS, ITERATION AND INTROSPECTION §27.3716
Positions, then, range from 0 to the number of arguments declared for the
feature. Position 0, the target position, is always applicable.

Delaying calls

For a call such as the above, we expect the effect just discussed to occur as a
direct result of executing the call instruction or expression: the computation
is immediate. In some cases, however, we might want to write an expression
that only describesthe calls intended computation, and toexecutethat
description later on, at a time of our own choosing, or someone else's. This
is the purpose of agent expressions, which may be described asdelayed calls.

Why would we delay a call in this way? Here are some typical cases:

A •We might want the call to be applied to all the elements of a certain
structure, such as a list. In such a case we will specify the agent
expression once, and then execute it many times without having to re-
specify it in the software text. The software element that will repeatedly
execute the same call on different objects is known as aniterator .
Functionfor_all, used earlier, was an example of iterator.

B •In an iterator-like scheme for numerical computation, we might use a
mechanism that applies a call to various values in a certain interval, for
example to approximate the integral of a function over that interval. The
first example in this chapter relied on such anintegral function.

C •We might want the call to be executed by another software element:
passing an agent object to that element is a way to give it the right to
operate on some of our own data structures, at a time of its own
choosing. This was illustrated with the calls passing toobject some
agent expressions representing operations applicable toyour_list. GUI
examples also belong to that category: to state that a certain action must
be executed whenever a certain event (such as mouse click) occurs on a
certain graphical object (such as a button), we add an agent representing
the action to a list of agents associated with the object and the event.

D •We might want to ensure that the call is executed only when and if
needed, and then only once for any particular object. This would give us
a “once per object” mechanism along the lines of “once functions”
(which are executed once per system).

E •Finally, we may be interested in the agent as a way to gain information
about the feature itself, whether or not we ever intend to execute the call.
This may be part of the more general goal of providingintr ospective
capabilities: ways to enable a software system to explore and manipulate
information about its own properties.

Introspection is also
calledreflection, but the
first term is more accu-
rate.

Once functions see
“ROUTINE BODY”,
8.5,page218.The once
per object mechanism
using agents is
described below.
Introspection is also
calledreflection, but the
first term is more accu-
rate.

Introspection is also
calledreflection, but the
first term appears more
appropriate.

§27.3 FROM CALLS TO AGENTS 717
These examples illustrate one of the differences between an agent
expression and a plain feature call: to execute a feature call we need the
value of all its operands (target and actuals); but for an agent expression we
may want to leave some of the operands open for later filling-in. This is
clearly necessary for casesA andB, in which the iteration or integration
mechanism will need to apply the feature repeatedly, using different
operands each time. In an integration

we will need to applyg to successive values of the interval[a, b].

Agents and their operands

For an agent we need to distinguish between two moments:

Since the only way to obtain an agent initially is throughagent expressions, as
specified next, it is meaningful to talk about the “agent expression defining it”.

For a normal call the two moments are the same. For an agent we will have
one construction time (zero if the expression is never evaluated), and zero
or more call times. At construction time, we may leave some operands
unspecified; they they will be called theopen operands. At call time,
however, the execution needs all operands, so the call will need to specify
values for the open operands. These values may be different for different
executions (different call times) of the same agent expression (with a single
construction time).

There is no requirement to makeall operands open at construction time:
youmayprovidesomeoperands,whichwill beclosed,and leavesomeothers
open. In the example of computing, for some valuesu andv, the integral

whereh is a three-argument function, we pass to the integration mechanism an
agent that is closed on its first and last operands,u andv, but open onx.

Construction time, call time
The construction time of an agent object is the time of
evaluation of the agent expression defining it.
Its call time is when a call to its associated operation is executed.

g (x) dx
x = a

x = b

∫

→ A precise definition
of “open” and
“closed” operands
appears on page751.

Readers familiar with
lambda calculus may
think of open as “free”
and closed as “bound”.

AGENTS, ITERATION AND INTROSPECTION §27.4718
Nothing forces you, on the other hand, to leaveany operand open. An
agent with all operands closed corresponds to the kind of application called
C above, in which we don’t want to execute the call ourselves but let
another software element carry it out when it is ready. We choose the
construction time, and package the call completely, including all the
information needed to carry it out; the other software element chooses the
call time. This style is used by iterators in the C++ STL library.

At the other extreme, an agent withall operands open has no
information about the target and actuals, but includes all the relevant
information about the feature. This is useful in applicationE: passing
around information about a feature for introspection purposes, enabling a
system to deliver information about its own components.

27.4 AGENT TYPES

A normal call is a syntactical component — instruction or expression —
meant only for one thing: immediate execution. If it is an expression
(because the feature is a function), it has a value, computed by the
execution, and so it denotes an object.

An agent expression has a different status. Since construction time is
separate from call time, the agent expression can onlydenote an object.
That object (an agent) contains all the information needed to execute the
call later, at various call times. This includes in particular:

• Information about the routine itself and its base type.

• The values of all the closed operands.

h (u, x, v) dx
x = a

x = b

∫

§27.4 AGENT TYPES 719
What is the type of an agent expression? Four Kernel Library classes are
used to describe such types:ROUTINE, PROCEDURE, FUNCTIONand
PREDICATE. Their class headers start as follows:

In theactualclasstexts, the formal generic matters have namesBASE_TYPE,
OPEN_ARGSand RESULT_TYPEto avoid conflicts with programmer-
chosen class names. This chapter uses shorter names for simplicity.

If the associated feature is a procedure the agent will be an instance of
PROCEDURE; for a function or attribute, we get an instance of
PREDICATEwhen the result is boolean, ofFUNCTIONwith any other
type. Here for ease of reference is a picture of the inheritance hierarchy:

The role of the formal generic parameters is:

• BASE: type (class + generics if any) to which the feature belongs.

• OPEN: tuple of the types of open operands, if any.

• RES: result type for a function.

One of the fundamental features of classROUTINE is

deferred class ROUTINE[BASE, OPEN–> TUPLE]

class PROCEDURE[BASE, OPEN–> TUPLE] inherit
ROUTINE[BASE, OPEN]

class FUNCTION[BASE, OPEN–> TUPLE, RES] inherit
ROUTINE[BASE, OPEN]

class PREDICATE[BASE, OPEN–> TUPLE] inherit
FUNCTION[BASE, OPEN, BOOLEAN]

call (v: OPEN)
--Call featurewithall itsoperands,usingvfor theopenoperands.

→ A.6.30 to A.6.32 in
the ELKS chapter,
starting on page1001.

Agent classes
ROUTINE

PROCEDURE FUNCTION

PREDICATE

AGENTS, ITERATION AND INTROSPECTION §27.5720
In addition,FUNCTION andPREDICATEhave the feature

and, for convenience, the functionitemcombiningcall andlast_result, with
the following specification:

The formal generic parameters forROUTINE, PROCEDURE, FUNCTION
and PREDICATEprovide what we need to make the agent mechanism
statically type-safe.OPEN, a tuple type, gives the exact list of open operand
types; since the argument tocall anditemis of typeOPEN, it is possible from
the software text to check that the actual arguments tocall will at call time be
of the proper types, conforming to the original feature’s formal argument
types at the open positions. The actuals at closed positions are set at
construction time, again with type checking. So the combination of open and
closed actuals will be type-valid for the feature.

ROUTINE, PROCEDURE, FUNCTION and PREDICATE have more
features than listed above; in particular, they provide introspection facilities,
describing properties of the associated routines and discussed below. For a
complete interface specification, see thecorrespondingsections in the
presentation of Kernel Library classes.

27.5 CALL AGENTS

How do we obtain agent objects? The most common construct is acall agent
expression. (We will see the other case,inline agents, in alater section.)

The basic form of a call agent is very simple: just add the keyword
agentat the beginning of a normal feature call. This yields an agent with
operands all closed. To specify open operands, you may:

• Use a question mark? in lieu of an argument.

• Use a type in braces,{ TYPE} , in lieu of the target.

• Omit the argument list altogether, to make all arguments open.

Let’s examine these variants and the associated semantics.

last_result: RES
-- Function result returned by last call tocall, if any

item(v: like open_operands): RES
-- Result of calling feature with all its operands,
-- usingv for the open operands.
-- (Usescall for the call.)

ensure
set_by_call: Result= last_result

→ SectionsA.6.30 to
A.6.32, starting on
page1001.

→ “USING INLINE
AGENTS”, 27.8,page
738.

§27.5 CALL AGENTS 721
All-closed agents

If you start from a valid call, either qualified or unqualified

you get an agent expression in each case by adding the keywordagent:

Such an agent expression is not a call (instruction or expression) any more,
but an expression of a new syntactic kind,Feature_agent, denoting an
agent, of aPROCEDUREtype if f is a procedure. and aFUNCTIONor
PREDICATEtype if f is a function. Both of these examples have no
arguments, so they are closed on all operands; we will start adding
arguments soon.

You can do with an agent expression all you are used to do with other
expressions. You can assign it to an entity of the appropriate type;
assumingf is a procedure ofaclassCC, you may write, in classCC itself:

Since all operands are closed — we have specified the targeta0and all the
argumentsa1, a2, a3— the second formal generic is justTUPLE, and the
call tocall takes an empty tuple[] .

More commonly than assigning a call expression to an entity as here,
you will pass it as actual argument to a routine, as in

wheredo_something, in the corresponding class, takes a formalpdeclared as

or just

presumably to callcall onp at some later stage, as we will shortly learn to
do. This was the schemecalled C in the presentation of example
applications: passing a completely closed agent to another component of
the system, to let it execute the call when it chooses to. For example you
can passagentyour_list.startor agentyour_list.extend(some_value).

[Q] a0.f (a1, a2, a3)
[U] f (a1, a2, a3)

agenta0.f (a1, a2, a3)
agent f (a1, a2, a3)

p: PROCEDURE[CC, TUPLE]
…
p:=
…
p. call ([])

object. do_something()

p: PROCEDURE[CC, TUPLE]

p: PROCEDURE[ANY, TUPLE]

This example assumes
thatCCis non-generic,
so that it is both a class
and a type.

agenta0.f (a1, a2, a3)

agenta0.f (a1, a2, a3)

← SchemeC wason
page716.

AGENTS, ITERATION AND INTROSPECTION §27.5722
Keeping operands open

The examples just seen are still of limited interest because all their operands
are closed. But you may want to keep some operands open for latter filling-
in at call time, for example by an iteration or integration mechanism.

To specify an open target, you will replace the target by its type in
braces,{ TARGET_TYPE} . This is thebrace convention. To specify an
open argument, you will use thequestion mark convention: just replace
the target by a question mark?.

Here are some examples, obtained by starting from the calla0.f (a1, a2, a3)
and opening the target or some arguments.

The respective types of these call expressions are, assuming thatf is a
procedure declared in the base class ofT0, having formals declared of types
T1, T2 andT3:

If f were a function, the types would useFUNCTION instead of
PROCEDURE, with an extra generic parameter representing the result type
(except for a boolean-valued function, which would usePREDICATE).

-- Start with an agent closed on all operands:
s:= agenta0.f (a1, a2, a3)

-- Next, individually open the target and each successive argument:
t:= agent{ T0} .f (a1, a2, a3)
u:= agenta0.f (?, a2, a3)
v:= agenta0.f (a1, ?, a3)
w:= agenta0.f (a1, p, ?)

-- An example with two open arguments, target closed:
x := agenta0.f (a1, ?, ?)

-- Arguments all open, target still closed:
y := agenta0.f (?, ?, ?)

-- Finally, open everything:
z := agent{ T0} .f (?, ?, ?)

s: PROCEDURE[T0, TUPLE]

t: PROCEDURE[T0, TUPLE[T0]]

u: PROCEDURE[T0, TUPLE[T1]]

v: PROCEDURE[T0, TUPLE[T2]]

w: PROCEDURE[T0, TUPLE[T3]]

x: PROCEDURE[T0, TUPLE[T2, T3]]

y: PROCEDURE[T0, TUPLE[T1, T2, T3]]

z: PROCEDURE[T0, TUPLE[T0, T1, T2, T3]]

§27.5 CALL AGENTS 723
Thefirst genericparameter,T0 in all of these examples, represents the
current type (class with generic parameters if any) of the underlying
feature. Here we assume for simplicity thatf comes from a non-generic
classT0.

The second generic parameter, a tuple type, represent the sequence of
types of open operands. For the first example,t, it’s just TUPLE with no
parameters, since the agent has no open operands. For the other examples
the parameters of theTUPLE type represent the types of the open
operands.They indicate what argument types are permissible in calls tocall
(or itemfor a function) on the corresponding agents.

Here indeed are examples of valid uses ofcall on the previous agent
examples. For each of them, the comment on the next line shows how we
would have obtained the same effect through a normal call (call time same
as construction time, not using agents).

It should be clear by now how mechanisms such asfor_all can manage to
work on operations that work on their target, such asis_married, as well as
others that work on an argument, such asis_positive. The type of an agent
only describes, through theOPEN parameter, the tuple of types of
operands. It doesn’t make any difference whether these open operands
come from a target or an argument.

val_0: T0; val_1: T1; val_2: T2; val_3: T3

… Assign values toval_0, val_1, val2, val_3…
s. call ([]) -- Note empty tuple: no open operands

-- a0.f (a1, a2, a3)

t. call ([val_0])
-- val_0.f (a1, a2, a3)

u. call ([val_1])
-- a0.f (val_1, a2, a3)

v. call ([val_2])
-- a0.f (a1, val_2, a3)

w. call ([val_3])
-- a0.f (a1, a2, val_3)

x.call ([val_2, val_3])
-- a0.f (a1, val_2, val_3)

y. call ([val_1, val_2, val_3])
-- a0.f (val_1, val_2, val_3)

z. call ([val_0, val_1, val_2, val_3]) -- Must provide all operands
-- val_0.f (val_1, val_2, val_3)

→ “THE BASECLASS
AND TYPE”, 27.10,
page 742.

← “CURRENTTYPE,
FEATURES OF A
TYPE”, 12.11, page
357

AGENTS, ITERATION AND INTROSPECTION §27.5724
For example, both of the following boolean expressions

will be valid if:

• Class EMPLOYEE has, as previously assumed, a feature
is_married: BOOLEAN.

• object is of type SOME_TYPE, and SOME_TYPEhas a feature
is_married(e: BOOLEAN).

The brace convention

Two of the examples used the brace convention to keep the target open:

For the target, as noted, the question mark convention is not applicable,
since the feature name does not suffice to identify the target type: many
classes may have a feature calledf.

For arguments we have no such problem since once we knowf and its
class we know the declared type of each off’s formal arguments. This
justifies the question mark convention for arguments.

Omitting the argument list

A further simplification of the notation is available whenall arguments are
open, as inagent a0.f (?, ?, ?). Then you may omit the parenthesized
argument list, as in

A call of the form a0.f would be invalid, sincef always requires three
actual arguments. But with anagentexpression the convention of omitting
arguments creates no ambiguity; it simply means that we consider an agent
built from f with all arguments open.

emplist. for_all (agent{ EMPLOYEE} . is_married)
emplist. for_all (agent object.is_married(?))

t:= agent{ T0} .f (a1, a2, a3)

z := agent{ T0} . f (?, ?, ?)
-- Also expressible (see below) as just:agent{ T0} . f

agent
-- Abbreviatesagenta0.f (?, ?, ?)

Applicable in any
class text.

a0.f

§27.6 USING AGENTS 725
This fully abbreviated form has the advantage of conveying the idea that
the denoted agent is a true “feature object”, carrying properties of the
feature in its virginal state, not tainted by any particular choice of actual
argument. The last two variants shown do not even name a target. This is
the kind of object that we need for suchintrospectiveapplications as
writing a system that enables its users to browse through its own classes.

A summary of the possibilities

As a summary of the preceding examples, here is a summary of the ways
to build a call agent:

27.6 USING AGENTS

Although we have studied only one of the two syntactical forms of agents,
call agents (the other is inline agents), and not yet taken the trouble to look
at the syntax, validity rules and precise semantics, we have enough
background to explore applications of agents, starting with the examples
sketched at the very beginning of this chapter, which we can now revisit
and extend. We’ll see how to make them work in practice: not just the client
side — registering an action to be executed for a certain GUI event,
integrating a function, iterating an operation — but the suppliers too: the
event processing, the integrator, the iterators.

Syntactical forms for a call agent
A call agent is of the form

agentagent_body
where agent_bodyis a Call, qualified (as in x.r (…)) or
unqualified (as inf (…)) with the following possible variants:
• You may replace any argument by a question mark?, making

the argument open.

• You may replace the target, by{ TYPE} whereTYPE is the
name of a type, making the target open.

• You may remove the argument list(…) altogether, making all
arguments open.

This is not a formal syntax definition, but a summary of the available forms
permitted by the syntax and validity rules that follow.

→ The rules staart with
“AGENT SYNTAX”,
27.11, page 743.

AGENTS, ITERATION AND INTROSPECTION §27.6726
GUI programming: establishing a direct connection to the Business Model

The first example illustrated the EiffelVisionstyle of GUI programming.
We wrote

to specify thatyour_routinemust be executed whenever thebutton_press
event occurs onyour_buttonduring execution. Here is how things work. In
your application,your_buttondenotes a graphical object, variously known
as a “control” (the Windows terminology), a “widget” (the X Windows
terminology) or a “context”;click denotes one of the events that may occur
on this control. The listyour_button. click_actions contains agents,
representing the actions to be executed when the event occurs on the
control. This is a plain list (from the EiffelBase library), to which we may,
as here, apply the procedureextend, adding a new item at the end.

When EiffelVision detects that the event has occurred on the button, it
will execute, for every elementitem of the list of agents, a callsuch as

For the listitem that representsyour_routine, this will produce what we
wanted: a call toyour_routine in response to the event.

This setup assumes thatyour_routineis a routine without arguments. In
reality, a routine to be executed as a result of a mouse event, such as a click,
may need the x, y mouse coordinates of the event. Let’s call it
your_routine2. What EiffelVision actually executes is

using as arguments the cursor coordinates, part of the event’s information
recorded in the event. This assumes of course thatyour_routine2can deal
with these arguments. Ifyour_routine2indeed takes two real values as
arguments, the previous form of registering the agent

is still applicable; as you will remember, it is a shortcut for

your_button. click_actions.extend(agent your_routine)

item.call ([])

item.call ([mouse_horizontal, mouse_vertical])

your_button. click_actions.extend(agent your_routine2)

your_button. click_actions.extend(agent your_routine(?, ?)

The actual EiffelVision
events areselect and
pointer_button_press..

The actual version
needs arguments to
your_routine; see next..

§27.6 USING AGENTS 727
Now assume thatyour_routineis a routine from the “Business Model” part
of your application, meaning the part of the software that takes care of
doing the real processing, independently of any GUI. Thex andy values
might be only some of the arguments thatour_routineneeds. For example
your_routine might be the procedure

which, in a cartographical application, computes statistics for a certainyear
for the city closest to positionsx andy on the map for a certaincountry.
When loading the map for that country you may registercompute_stats:

The beauty of the notion of closed and open arguments is that you can set
some values (here the country and the year) at construction time, and leave
others (here the mouse coordinates) to be filled in at call time.

To the EiffelVision mechanism, there is no difference between this case
usingcompute_stats— a routine with four arguments, two of which we
have closed at construction time — and the previous one involving
your_routine2and its two open arguments. The call executed by the
EiffelVision side, shown above as

works properly in both cases.

This scheme, relying on open and closed arguments, has crucial
practical consequences for the programming of GUI applications.
Following the MVC model introduced by Smalltalk, it is often stated that
GUI applications should include three components:

• Model(the acronym’s M), called theBusiness Modelabove: this is the
part that does the actual computation, data manipulation and processing.
A routine such ascompute_stats, describing some important operation
of the Business Model, belongs to this part of the system.

• View(the “V”): the purely graphical part of the application, taking care
of presenting information visually and interacting with users. Notions
such as buttons, other controls and events belong to that part.

• Controller (the “C”): software elements that connect the model with the
view, by specifying what operations from the model must be executed
in response to what user interface events.

compute_stats(country: COUNTRY; year: INTEGER; x, y: REAL)

your_button. click_actions.extend
(agent compute_stats(Usa, 2002, ?, ?))

item.call ([mouse_horizontal, mouse_vertical])

AGENTS, ITERATION AND INTROSPECTION §27.6728
Without agents, the Controller part, serving as glue between Model and
View, can take up a significant amount of code, based for example on
command classes. As the last example indicates, using agents can bring
the need for such glue code down to a minimum, or even remove it
altogether. The only Controller element that we used in this example to
connect the button and event to the routinecompute_statsfrom our model
was the agentagent compute_stats(Usa, 2002, ?, ?). You don’t have to
write any other code: no new class, not even any special instructions.

This is one of the great benefits of agents for GUI programming, as used
extensively in EiffelVision:you directly connect elements from the
Business Model to elements from the User Interface, without requiring
any “glue code”. The notion of open and closed operands gives us
remarkable flexibility: as long as a routine from the Business Model, such
ascompute_stats, takes arguments representing the coordinates, it doesn’t
matter what positions these arguments have in the routine, and what others
it may have. Just leave thex andy arguments open when you connect the
routine to the interface.

This ability to plug elements of the Business Model directly into the
user interface is one of the principal attractions of the agent model.

One of the uses of command classes is to supportundoing and redoing in an
interactive system. It is easy to see how to provide this through agents too: just
passtwoagents, one representing the “do” operation and the other representing
the “undo”. This technique — whose details the reader is invited to spell out —
is used in many of ISE’s interactive products supporting undo and redo.

Integrating a function

The next set of examples was about integration. We assumed functions

and wanted to integrate them over a real interval such as [0, 1], that is to
say, approximate the two integrals

We declare

g (x: REAL): REAL
h (x: REAL; a: T1; b: T2): REAL

your_integrator: INTEGRATOR

The command class
technique is described
in detail in the book
“ Object-Oriented Soft-
wareConstruction,2nd
edition.

h (x, u, v) dx
x = 0

x = 1

∫g (x) dx
x = 0

x = 1

∫

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

§27.6 USING AGENTS 729
and, with the proper definition of functionintegral in classINTEGRATOR,
to be seen shortly, we will obtain the integrals through the expressions

The question mark indicates, in each case, the open argument: the place where
integral will substitute various real values forx when evaluatingg or h.

Note that if we wanted in classD to integrate a real-valued function
from classREAL, such asabs which is declared inREAL as

we would obtain it simply through

Let us now see how to write functionintegral to make all these uses
possible. We use a primitive algorithm — this is not a treatise on numerical
methods — but what matters is that any integration technique will have the
same overall form, requiring it to evaluatef for various values in the given
interval. Here classINTEGRATORwill have a real attributestep
representing the integration step, with an invariant clause stating thatstep
is positive. Then we may writeintegral as:

The boxed expression is where the algorithm needs to evaluate the function
f passed tointegral. Remember thatitem, as defined in classFUNCTION,
calls the associated function, substituting any operands (herex) at the open
positions, and returning the function’s result.The argument ofitem is a
tuple (of typeOPEN, the second generic parameter ofFUNCTION); this is
why we need to enclosex in brackets, giving a one-argument tuple:[x].

In the first two example uses,agent g (?) andagent h (?, u, v), this
argument corresponds to the question mark operands tog andh. In the last
example the call expression passed tointegral was agent { REAL} .abs,
where the open operand is the target, represented by{ REAL} , and
successive calls toitem in integralwill substitute successive values ofx as
targets for evaluatingabs.

In the case ofh, the closed operandsu andv are evaluated at the time of
the evaluation of the expressionagent h (?, u, v), and so they remain the
same for every successive call toitemwithin a given execution ofintegral.

your_integrator. integral (agent g (?), 0.0, 1.0)
your_integrator. integral (agent h (?, u, v), 0.0, 1.0)

abs: REAL
-- Absolute value

do … end

your_integrator. integral (agent{ REAL} .abs, 0.0, 1.0)

AGENTS, ITERATION AND INTROSPECTION §27.6730
Note the typeFUNCTION [ANY, TUPLE [REAL], REAL] declared in
integral for the argumentf. It means that the corresponding actual must be
a call expression describing a function from any class (hence the first actual
generic parameter,ANY) that has one open operand of typeREAL(hence
TUPLE [REAL]) and returns a real result (henceREAL). Each of the three
example functionsg, h and abs can be made to fit this bill through a
judicious choice of open operand position.

Iteration examples

The next set of initial examples covered iteration. In a classCCwe want to
manipulate both a list of integers and a list of employees

and apply the same functionfor_all to both cases:

integral
(f: FUNCTION[ANY, TUPLE[REAL], REAL];
low, high: REAL): REAL

-- Integral off over the interval [low, high]
require

meaningful_interval: low <= high
local

x: REAL
do

from
x := low

invariant
x >= low ; x <= high+ step
-- Result approximates the integral over
-- the interval [low, low.max (x – step)]

until x > high loop
Result:= Result+ step ∗
x := x + step

end
end

intlist: LINKED_LIST[INTEGER]
emplist: LINKED_LIST[EMPLOYEE]

if intlist. for_all (agent is_positive(?)) then … end
if intlist.for_all (agent over_threshold(?)) then … end

if emplist.for_all (agent{ EMPLOYEE} .is_married) then … end

f.item([x])

§27.6 USING AGENTS 731
The functionfor_all is one of the iterators defined in classTRAVERSABLE
of EiffelBase, and available as a result in all descendant classes describing
traversable structures, such asTREEand LINKED_LIST. This boolean-
valued function determines whether a certain property holds for every
element of a sequential structure. The property is passed as argument to
for_all in the form of a call expression with one open argument.

Our examples use three such properties of a very different nature. The
first two are functions of the client classCC, assessing properties of their
integer argument. The result of the first depends only on that argument:

Alternatively the property may, as in the second example, involve other
aspects ofCC, such as an integer attributethreshold:

Hereover_thresholdcompares the value ofi to a field of the current object.
Surprising as it may seem at first, functionfor_all will work just as well in
this case; the key is that the call expressionagentover_threshold(?), open
on its argument, is closed on its target, the current object; so the agent
object it produces has the information it needs to access thethresholdfield.

In the third case, the argument tofor_all is agent
{ EMPLOYEE} .is_married; this time we are not using a function ofCCbut
a functionis_married from another classEMPLOYEE, declared there as

Unlike the previous two, this function takes no argument since it assesses
a property of its target; We can still, however, pass it tofor_all: it suffices
to make the target open.

The types of the call expressions are the following:

is_positive(i: INTEGER): BOOLEAN
-- Is i positive?

do Result:= (i > 0) end

over_threshold(i: INTEGER): BOOLEAN
-- Is i greater thanthreshold?

do Result:= (i > threshold) end

is_married: BOOLEANis do ... end

PREDICATE[CC, TUPLE[INTEGER]]
-- In first two examples (is_positive andover_threshold)

PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]]
-- In theis_marriedexample

Thisassumesagain that
CC is non-generic, so
that it is both a class
and a type. Remember
that aPREDICATEis a
FUNCTIONwith a
BOOLEAN result type.

AGENTS, ITERATION AND INTROSPECTION §27.6732
You may also applyfor_all to functions with an arbitrary number of
arguments, as long as you leave only one operand (target or argument) open,
and it is of the appropriate type. You may for example write the expressions

assuming inCC andEMPLOYEE, respectively, the functions

for arbitrary typesT1, ...,T5. Since operandse1, ...,e5are closed in the calls,
these types do not in any way affect the types of the call expressions, which
remain as above:PREDICATE [CC, TUPLE [INTEGER]] and
PREDICATE[EMPLOYEE, TUPLE[EMPLOYEE]].

Let us now see how to write the iterator mechanisms themselves, such
asfor_all. They should be available in all classes representing traversable
structures, so they must be introduced in a high-level class of EiffelBase,
TRAVERSABLE[G]. Some of the iterators are unconditional, such as

intlist .for_all (agent some_criterion(e1, ?, e2, e3))

emplist. for_all (agent{ EMPLOYEE} .some_function(e4, e5)

some_criterion(a1: T1; i: INTEGER; a2: T2; a3: T3) -- In CC

some_function(a4: T4; a5: T5) -- In EMPLOYEE

do_all (action: ROUTINE[ANY, TUPLE [G]])
-- Apply action to every item of the structure in turn.

require
… Appropriate preconditions …

do
from startuntil off loop

action.call ([item])
forth

end
end

§27.6 USING AGENTS 733
This uses the four fundamental iteration facilities, all declared in the most
general form possible asdeferredfeatures inTRAVERSABLE: start to
position the iteration cursor at the beginning of the structure;forth to
advance the cursor to the next item in the structure;off to tell us if we have
exhausted all items (not off is a precondition offorth); and item to return
the item at cursor position.

The argumentaction is declared asROUTINE [ANY, TUPLE [G]] ,
meaning that we expect a routine with an arbitrary base type, with an open
operand of typeG, the formal generic parameter ofTRAVERSABLE,
representing the type of the elements of the traversable structure. Feature
item indeed returns a result of typeG (representing the element at cursor
position), so that it is valid to pass as argument the one-argument tuple
[item] in the callaction. call ([item]) that the loop repeatedly executes.

We normally expectaction to denote a procedure, so its type could be more
accurately declared asPROCEDURE[ANY, TUPLE [G]] . UsingROUTINE

leaves open the possibility of passing a function, even though the idea of
treating a function as an action does not conform to the Command-Query
Separation principle of the Eiffel method.

Wheredo_all appliesaction to all elements of a structure, other iterators
provide conditional iteration, selecting applicable items through another
call expression argument,test. Here is the “while” iterator:

while_do
(action: ROUTINE[ANY, TUPLE[G]]
test: PREDICATE[ANY, TUPLE[G]])

-- Apply action to every item of structure up to,
-- but not including, first one not satisfyingtest.
-- If all satisfytest, apply to all items and moveoff.

require
… Appropriate preconditions …

do
from startuntil

off or else not
loop

forth
end

end

Descendants ofTRA-
VERSABLEeffect these
featuresinvariousways
to provide iteration
mechanisms on lists,
hash tables, trees and
many other structures.

action. test([item])

action. call ([item])

AGENTS, ITERATION AND INTROSPECTION §27.6734
Note how the algorithm appliescall to action, representing a routine
(normally a procedure), anditem to test, representing a boolean-valued
function. In both cases the argument is the one-element tuple[item].

The iterators ofTRAVERSABLEcover common control structures:
while_do; do_while (same aswhile_dobut with “test at the end of the
loop”, that is to say, applyaction to all items up toand includingfirst one
satisfyingtest); until_do; do_until; do_if.

Yet another iterator ofTRAVERSABLEis for_all, used in earlier
examples. It is easy to write afor_all loop algorithm similar to the
preceding ones. Here is another possible definition, in terms ofwhile_do:

using a procedurenothing (x: G) which has no effect (but needs an
argumentx for typing reasons, since the first argument ofwhile_domust be
of type ROUTINE [ANY, TUPLE [G]]). It is trivial to definenothing in
terms ofproceduredo_nothing, from classANY. We applynothingas long
astestis true of successive items; if we find ourselvesoff, we return true;
otherwise we have found an element not satisfying thetest.

Assuming a proper definition ofdo_until, the declaration ofexists,
providing the second basic quantifier of predicate calculus, is nicely
symmetric withfor_all:

for_all (test: PREDICATE[G, TUPLE[G]]): BOOLEAN
-- Do all items satisfytest?

require
… Appropriate preconditions …

do

Result:= off
end

exists(test: PREDICATE[G, TUPLE[G]]): BOOLEAN
-- Does at least one item satisfytest?

require
… Appropriate preconditions …

do

Result:= not off
end

while_do(agentnothing(?), test)

→ do_nothing is cited
in 35.6, page 920.

It is possible to avoid
defining a procedure
nothing by using an
inline agent.

do_until(agentnothing(?), test)

§27.7 TWO ADVANCED EXAMPLES 735
27.7 TWO ADVANCED EXAMPLES
Before moving on to the last details of the agent mechanism, let’s gain
further appreciation for its power and versatility by looking at two
interesting applications, error processing and “once per object” (followed
in the next section by examples of the inline form).

Error processing without the mess
The first example addresses a frequent situation in which we perform a
sequence of actions, each of which might encounter an anomaly that
prevents continuing as hoped. The problem here is that it’s difficult to avoid
a complex, deeply nested control structure, since we may have to get out at
any step. The straightforward implementation will look like this:

For example we may want to do something with a file of namepath_name.
We first test that thatpath_nameis not void. Then that the string is not
empty. Then that the directory exists. Then that the file exists. Then that it
is readable. Then that it contains what we need. And so on. A negative
answer at any step along the way must lead to reporting an error situation
and aborting the whole process.

The problem is not so much the nesting itself; after all, some algorithms are
by nature complex. But often the normal processing is not complicated at all; it's
the error processing that messes everything up, hiding the “useful” processing in
a few islands lost in an ocean of error handling. If the error processing is different
in each case (not ok1, not ok2and so on) we can't do much about it. But if it is
alwaysof the form: “Record theerror sourceand terminate thewhole thing”, then
the above structure may seem too complicated. Although we may address this
issue through exceptions, they are often overkill.

An agent-based technique is useful in some cases. It assumes that you
write the various actions —action1 ... action3 above — as procedures,
each with a body of the form

with execution_okrepresenting the condition that must be satisfied for the
processing to continue. Then you can rewrite the processing above as just:

action1
if ok1then

 action2
if ok2then

 action3
... More processing, more nesting ...

end
end

...Try to do what's needed...
controlled_check (execution_ok, "...Appropriate message...")

AGENTS, ITERATION AND INTROSPECTION §27.7736
This linear structure is much simpler than the original.

The features whose names start withcontrolled_come from the EiffelBase
classCONTROLLED_EXECUTION, of which the class containing the above
scheme should be a descendant. These procedures are not difficult to write;
for example controlled_check sets controlled_glitch and
controlled_glitch_message, andcontrolled_execute lookslike this:

Once per object

The second example, also supported by an EiffelBase class, provides a
“once per object” mechanism.

You know, of course, Eiffel’s“once routines”, executed only once per
system execution. They define a “once per class” mechanism: all instances
of a class share the result of a once function. (All these concepts are
applicable to procedures, but for this discussion we restrict ourselves to
functions.) Now assume you need functions that compute a result specific
to each instance of the class, and computed just once for that instance, the
first time it’s requested — if at all.

if controlled_glitchthen
warning(controlled_glitch_message)

-- Procedurewarning is an error reporting mechanism
end

controlled_execute
(actions: ARRAY [PROCEDURE [ANY, TUPLE]])

-- Executeactions, stopping if encountering a glitch.
local

i: INTEGER
do

from
controlled_glitch := False; i := actions.lower

until i > actions.upperor else controlled_glitchloop

i := i + 1
end

end

controlled_execute([
agentaction1,
agentaction2 (...),
agentaction3(...)
])

The routine as it appears
inthelibraryhasafewex-
tra instructions to record
theglitchstepand,onop-
tion, raise an exception.

actions.item(i).call ([])

← For an introduction
to once routines see
“ROUTINE BODY”,
8.5, page 218.

§27.7 TWO ADVANCED EXAMPLES 737
A typical application would be large pieces of information associated
with objects of a certain type, but stored in a database; for example each
instance of a classCOMPANYmay havestock_historyinformation, of type
HISTORY, which may be huge. We only want to retrieve the information on
demand; given the size of the information and the number of instances of
the class, it is not acceptable to load everything ahead of time. Even if an
instance ofCOMPANYis in memory, we want to retrieve the associated
HISTORYfrom the database only when and if we need access to the
company'sstock_history.

Agents provide us with a general solution to all problems of this kind.
In classCOMPANY you will simply declare

and obtain the value, when and if needed, as

Hereretrieved_historyis the function that computes the needed result —
the one that you want to call once for each object. That's all you have to do!
Note that this scheme allows you to have as many “once per object”
functions as you like in any given class. It relies on a general-purpose
EiffelBase classONCE_PER_OBJECT of the following form:

stock_history: ONCE_PER_OBJECT[HISTORY]

stock_history.item(agentretrieved_history)

expanded class
 ONCE_PER_OBJECT[G]
feature -- Access

item(f: FUNCTION [ANY, TUPLE, G]): G
-- Value off, computed once for each object;
-- subsequent calls return same value for same object.

do
if not computed then

internal_result:= f.item([])
computed:= True

end
Result:= internal_result

end
feature { NONE} -- Implementation

computed: BOOLEAN
-- Has item already been requested?

internal_result: G
-- Result, if already computed

end

AGENTS, ITERATION AND INTROSPECTION §27.8738
27.8 USING INLINE AGENTS

The agents seen so far are of theCall_agentkind, relying on class features,
such asf andg (integration examples),integer_propertyand is_married
(iterator examples),compute_stats (EiffelVision example) and others.

Sometimes, theonly reason for writing a certain computation is to
define an agent from it. To avoid adding a feature that will make the
enclosing class more complicated, you may write the algorithm within the
agent. The syntactical construct for thisinline case, previewed at the
beginning of this chapter, mirrors the definition of a routine — although,
like any other agent construct, it is syntactically an expression. Here are
some examples of inline agents, all to be used as expressions::

As noted in the comments, the first two of these examples haveCall_agent
equivalents, since they directly rely on existing routines of some class. But
in the last two cases, there are no such routines.

The third agent (for example) denotes an object representing a boolean-
valued operation that, for two objects of typeEMPLOYEE, returns true if and
only it the querysalaryyields a higher result for the first than for the second.

It is still possible to use aCall_agentin these cases, but this requires adding
features to the enclosing class:

(agent(i: INTEGER): BOOLEANdo Result:= is_positive(i) end)
-- Equivalent toagent is_positive(?)

(agent(e: EMPLOYEE): BOOLEANdoResult:= e.is_marriedend)
-- Equivalent toagent{EMPLOYEE} .is_married

(agent(e, f: EMPLOYEE): BOOLEAN
do Result:= (e.salary> f.salary) end)

(agent(e, f: EMPLOYEE; p: POSITION): BOOLEAN
do Result:= (e.job = p) and (f.job = p)) end)

higher_salary(e, f: EMPLOYEE): BOOLEAN
-- Doese have a higher salary thanf?

do
Result:= (e.salary> f.salary)

end

same_job(e, f: EMPLOYEE; pos: POSITION): BOOLEAN
-- Do e andf both have positionpos?

do
Result:= ((e.job = pos) and (f.job = pos))

end

agentis_positivemeans
the same asagent
is_positive(?).

§27.8 USING INLINE AGENTS 739
to enable rewriting the calls asagenthigher_salary(abbreviating, as usual,
agenthigher_salary(?, ?)) andagentsame_job. But if the only use of the
given little algorithms is to define the corresponding agents, for example to
pass them to some iterators, then you may want to avoid burdening the
enclosing class with such routines, using inline agents instead.

The inline agents shown so far denote functions (FUNCTION or
PREDICATE). Here is an example that passes an inline procedure agent to
an iterator, to raise by 50 percent the salary of every employee called “Tina”:

Therequire … do… endpart is a specimen ofRoutine; an inline agent indeed
usesexactly thesameRoutineconstruct as the declaration of aroutine in a
class; so it can have all the applicable clauses, such asPreconditionhere,
but alsoLocal_declarations, Postcondition andRescue.

We can use an inline agent to simplifiy theearlierdefinition of for_all
in terms ofwhile_do, which required a functionnothing (x: G) because
do_nothingfrom ANY, with no argument, has the wrong signature. An
inline agent avoids this:

Inline agents do not give us anything fundamentally new, since we can
always use call agents instead. They are useful if you want to avoid features
such assame_job andnothingwhose only purpose is to define agents.

The methodological adviceis clear: if the computation becomes
complex, it is usually better to add a feature to the class. The agent passed
as argument todo_all in the last example is already complex enough to
justify writing a separate function instead.

The inline form is particularly useful to express advanced contract
specifications. Here is an example. Assume that in a class describing
sequential structures (such asLIST [G] in EiffelBase) you write a
procedure that appends an element. It might include this postcondition:

emplist.do_all
((agente: EMPLOYEE)

require
employee_exists: e /= Void

do
if equal(e.first_name, once"Tina") then

e.set_salary(1.5 ∗ e.salary)
end

end))

for_all (test: PREDICATE[G, TUPLE[G]]): BOOLEAN
-- Do all items satisfytest?

do
while_do(, test)
Result:= off

end

→Definingthestringas
once is not strictly nec-
essary but improves per-
formance by avoiding
repeated evaluations;
see“Basic manifest
strings”, page 786

← “FEATURE BOD-
IES”, 5.11, page 143.

← Page734

(agent(x: G) do do_nothingend)

AGENTS, ITERATION AND INTROSPECTION §27.8740
In the last postcondition clause — the one of interest for this discussion —
1 |..| old countis the interval from 1 toold count, to whose itemsfor_all
applies the agent property on the next line. The property expresses that the
item at positioni, for arbitraryi, is equal to the original item at that position
(more precisely, to the item at positioni in old twin, a copy of the list taken
on entry to the procedure). This is typical of how agents enable us to
express non-trivial postcondition or invariant properties, stating that a
whole set of items have not changed, or have a certain association with the
corresponding set of items in another structure.

We could restate the inline agent (the argument tofor_all) in non-inline
form asagent equal_item(old twin, ?), but this assumes a function

If you want to specify your software completely — expressing not only
straightforward properties such asitem(count) = x, but also those involving
entire substructures — you may end up writing many such functions.
Although they add interesting information, one may also feel that, being
only used for assertions, they needlessly complicate the class. They may
destabilize the software since any effort at better specification may cause
the addition of a whole set of new features, used only in the assertions and
of no other interest to clients of the class. Inline agents solve this problem.

extend(x: G)
-- Add x at end; keep other items

require
…

do
…

ensure
one_more: count= old count + 1
added_at_end: item(count) = x
others_unchanged:
(1 |..| old count).for_all

((agent(i: INTEGER): BOOLEAN
do Result:= equal(item (i), (old twin). item (i)) end))

end

equal_item(l: like Current; i: INTEGER): BOOLEAN
-- Is item at positioni equal to corresponding one inl?

do
Result:= (item (i) = l.item (i))

end

§27.9 ACCESSING FEATURE PROPERTIES 741
Here is another example application. The agents described in this
chapter represent delayedcalls; you may have wondered whether we also
need an expression construct to denote delayedobject creation, perhaps
something likeagent create{ SOME_TYPE} .make(a1,?). The answer is
no, since we can achieve the intended effect (assuming we need it) by using
a creation expression as part of an inline agent in

whereB is the type ofmake’s second argument.

You may view inline agents asanonymous routines, similar to
anonymousclasses(tuple types) and anonymousobjects(tuples). This is
particularly clear in theRoutinecase(…) … do … end, which has exactly
the same form as a routine declaration:

(with, as noted, the possibility of including all relevant clauses, such as
precondition, postcondition, rescue, local variable declarations). The only
difference is that the inline agent doesn’t use a routine namer — it doesn’t
need one. When such a routine is used with the sole purpose of being
passed as argument to a routine expecting an agent, the anonymous form
avoids cluttering the class with a full-status routine.

27.9 ACCESSING FEATURE PROPERTIES

ClassROUTINEand its descendants provide a starting point for many of
the introspection needs that Eiffel applications may need.

The first introspection mechanism is a simple way, through class
ROUTINE and its descendants, to gain access to the precondition and
postcondition of a routine:

This enables you to check the precondition before you apply an agent, as in

(agent(b1: B) do create{ SOME_TYPE} .make(a1, b1) end)

r (…) is … do … end

precondition(args: OPEN): BOOLEAN
-- Do args satisfy routine’s precondition in present state?

postcondition(args: OPEN): BOOLEAN
-- Does current state satisfy routine’s postcondition
-- for operandsargs?

if your_agent.precondition(your_operands) then
your_agent.call (your_operands)

end

AGENTS, ITERATION AND INTROSPECTION §27.10742
whereyour_agentis an agent expression andyour_operandsis a valid
tuple of operands for that agent.

There is, as will be seen next, a similar facility for class invariants.

27.10 THE BASE CLASS AND TYPE
Introspection support is also one of the concerns behind the first generic
parameter ofROUTINE, PROCEDURE, FUNCTION and PREDICATE.
The specification

includes, as first generic parameter, the typeBASErepresenting the type
(class with generic parameters) to which an agent’sfeature belongs. This is
the type of the target expected by the feature.

The examples seen so far do not useBASEat all, because procedurecall
does not need it. If the agent is closed on its target, as in

then it includes, here througha0, the target information that a later call to
call may require. In the other case — open target — as in

then the target type is specified, hereT0, and provides the information
needed to determine the right version off. In this case theBASEgeneric
parameter is in fact redundant, since it is identical to the first component of
the tuple type corresponding toOPEN; the type oft, for example, is

where the two tuple components correspond to the two open operands: the
target, and the last argument.

In both the closed target and open target cases, then, we don’t need the
BASE generic parameter if all we do with agents is executecall on them.

BASEis useful for other purposes. WithoutBASEa call closed on its
target, as withy above, could not contain any information about the class
(and associated type) where the call’s associated feature is defined. To open
the gate to fullintrospectionservices — enabling a system to explore its
own properties — classROUTINE uses a feature

that yields the type to which the agent’s feature belongs. ClassTYPE[G] from
the Kernel Library provides information about a typeG and its base class.

ClassTYPEis, even more fundamentally thanROUTINEand its heirs,
the starting place for introspection. Example features include:

• name: STRING, the upper name of the type’s base class.

ROUTINE[BASE, OPEN–> TUPLE]

y := agenta0.f (a1, ?, ?)

t := agent{ T0} .f (a1, a2, ?)

 ROUTINE[T0, TUPLE[T0, T3]]

base_type: TYPE[BASE]

→ For an inline agent,
the agent’s feature is its
“associated feature”;
see page747.

§27.11 AGENT SYNTAX 743
• generics: ARRAY[TYPE[ANY]] , the actual generic parameters, if any,
used in the type’s derivation.

• routines: ARRAY[ROUTINE[ANY, TUPLE]] , the routines of a class,
each an instance ofPROCEDURE, FUNCTION or PREDICATE.

• attributes: ARRAY[FUNCTION[ANY]] , the attributes.

• invariant (obj: G): BOOLEAN, telling us whether an instanceobj
satisfies the invariant.

ClassANYhas a feature

which yields an object describing the type of the current object.

So within a class of whichf is a feature,generatorhas the same value as
(agent f). base_type; if a is of typeTandf is a feature ofT, thena.generator
has the same value as(agent{ T} .f). base_type.

A more complete interface specification ofTYPEappears in the description
of the Kernel Library classes.

Thanks to the presence ofBASEamong the generic parameters of
ROUTINEand its descendants, we can give a proper type tobase_type, and
as a result gain access to a whole library of introspection mechanisms.

27.11 AGENT SYNTAX

The rest of this chapter gives the precise syntax, validity and semantics of
agent expressions. There will be no fundamentally new concept, so the
hurried reader may skip to the next chapter.

The new construct isAgent, a variant ofExpression:

The two variants are call agents and inline agents. In both cases the
keywordagent signals the use of an agent expression.Call_agentis the
keywordagent followed by aCall_agent_body, similar to a call but with
the possibility of using a question mark? in lieu of an argument or a type
in braces{ TYPE} in lieu of the target. AnInline_agentis like an inline
routine declaration. Let’s detail both cases in turn.

generator: TYPE[like Current]

Agents
Agent =∆ Call_agent| Inline_agent

Call_agent=∆ agentCall_agent_body

Inline_agent=∆ agent[Formal_arguments]
[Type_mark]
[Attribute_or_routine]
[Agent_actuals]

→ OnANYand uni-
versal features see
chapter35.

→ On classTYPE see
A.6.2, page 966.

AGENTS, ITERATION AND INTROSPECTION §27.11744
Syntax of call agents

We have encountered numerous examples ofCall_agent, such as

A Call_agentstarts with the keywordagent. The part that follows, called a
Call_agent_body, closely resembles aCall; we can’t just use that earlier
construct, however, since we must allow for the question mark and brace
conventions, which have no equivalent in normal calls:

--- FIX ---Manifest_type in thesyntax ofMulti_branchas

An Agent_targetmay be of three kinds:Entity, Parenthesizedand
Manifest_type. The third (used in the last example) enables you to specify
an open target by listing a type in braces. For an actual argument, you can
use, besides an actual value, aPlaceholder (question mark).

The possibility of using aManifest_typeor Placeholderto specify open
operands is the principal difference between agent calls and normal calls.
There is another difference, not immediately obvious from the syntax. In a
Call_agentas well as a normalCall, the argument list,Agent_actuals, is
optional. But omitting it doesn’t have the same effect. Iff is declared as
having one or more arguments, a call of the forma.f, or its unqualified
variantf, are invalid since they violate theArgumentrule: you must always
specify actual arguments, as ina0. f (a1, a2, a3). For an agent call,
however, corresponding forms such as

agent f (a1, a2, a3)
agent f
agent{ T0} .f (a1, ?, ?)

Call agent bodies
Call_agent_body=∆ Agent_qualified| Agent_unqualified

Agent_qualified=∆ Agent_target". " Agent_unqualified

Agent_unqualified=∆ Feature_name[Agent_actuals]

Agent_target=∆ Entity | Parenthesized| Manifest_type

Agent_actuals=∆ "(" Agent_actual_list ")"

Agent_actual_list=∆ { Agent_actual "," …}*

Agent_actual=∆ Expression| Placeholder

Placeholder=∆ "?"

a0.f
f
{ T0} .f

First three examples
unqualified, last one
qualified.

← The syntax forCall
was on page618.

← Page618.← Page478.

← The Argument rule
was on page626.

§27.11 AGENT SYNTAX 745
are valid; they are simply convenience abbreviations to indicate that all
arguments are open, meaning respectively the same as

You may in such a case omit the argument list, to indicate that all arguments
(if any) are open. TheAgent Call rule, introduced later in this chapter,
explicitly allows this. It causes no ambiguity and (unless you prefer a fully
explicit style) lets you avoid cluttering your class text with question marks.

A final note on call agent syntax. You may build aCall_agentnot only
from identifier features as in these examples, but also from an operator or
bracket feature. Just designate the feature by its identifier, in conformance
with theFeatureIdentifierprinciple: with a featureyour_namealias"§" for
some binary operator§, use the identifier to build agent expressions such as

and similarly with a featureother_namealias "[]" .

Syntax of inline agents

We have seen that anInline_agentis like a routine declaration, but given
inline, without a name, as in

This is reflected by the syntax given on the previous page, which specifies:

• An optionalFormal_arguments list, as(e, f: EMPLOYEE).

• An optionalType_mark, as in: BOOLEAN. If this part is present, the
associated routine is a function; otherwise it is a procedure.

• A Routine, with all the possible trappings, including Precondition,
Local_declarations,

a0.f (?, ?, ?)
f (?, ?, ?)
{ T0} .f (?, ?, ?)

agenta.your_name (b) -- All closed
agent your_name (?) -- Open on argument
agent { T} .your_name (?) -- Open on target and argument

(agent (e, f: EMPLOYEE): BOOLEAN
-- Is the cumulated salary ofeandf higher thanthreshold?

require
first_exists: e /= Void
second_exists: e /= Void

local
salary_sum: REAL

do
salary_sum:= e.salary+ f.salary
Result:= (salary_sum> threshold)

end)

→ Page746 (see the
explanation about
clause3 of the rule).

← “Feature Identifier
principle”, page 153.

AGENTS, ITERATION AND INTROSPECTION §27.12746
As already noted, it is not recommended to have such extensive computations in
inline agents: after all, anAgentis an expression, meant for example to be passed
asargument toa routine.But this is justmethodologicaladvice; thewholeRoutine
syntax is available if you wish to use it, including the optionalPrecondition,
Local_declarations, PostconditionandRescueclauses; evenHeader_comment
andObsolete. The only restriction (stated in the validity constraint given next) is
that the routine must not be deferred.

27.12 AGENT VALIDITY

We may now add the validity rules. It is convenient to deal separately with
Call_agent andInline_agent cases.

Validity of call agents

For call agents, it is useful first to define the notion of target type:

The validity rule follows:

--- REMOVED CONDITION ON SEPARATE --- The rule’s phrasing makes
certain forms of the construct automatically valid:

• If any Agent_actualis of thePlaceholderkind, represented simply by a
question mark, clause4 does not apply, so the argument raises no type
validity problem. This is as expected, since such an argument is left
open for future filling-in.

Target type of an agent call
Thetarget type of aCall_agentis:

1 • If there is noAgent_target, thecurrent type.
2 • If there is anAgent_targetand it is anEntity or Parenthesized,

its type.
3 • If there is anAgent_targetand it is aManifest_type, the type

that it lists (in braces).

Call Agent rule VPCA

A Call_agentinvolving aFeature_namefn, appearing in a classC,
with target typeT0, is valid if and only if it satisfies the following
conditions:
1 • fn is thename of a featuref of T0.
2 • If there is anAgent_target, f is export-valid for T0 in C.
3 • If theAgent_actualspart is present, the number of elements in

its Agent_actual_list is equal to the number of formals off.
4 • Any Agent_actualof theActualkind is of a typeconformingto

the type of the corresponding formal inf.

Like the previous one,
this section is not essen-
tial on first reading.

← The “current type”
is the enclosing class,
withgenericparameters
added if necessary to
make up a type. See
“CURRENT TYPE,
FEATURES OF A
TYPE”, 12.11, page
357.

§27.12 AGENT VALIDITY 747
• If there is noAgent_actualspart, clauses3 and4 do not apply. Iff has
no formals, we are calling an argumentless feature with no actuals, as
we should. Iff has one or more formal arguments, we view the absence
of explicit actuals of an abbreviation for actuals that are all of the
Placeholderkind (question marks): assumingf takes three arguments,
agenta0.f is simply an abbreviation foragenta0.f (?, ?, ?). In this case
the implicit arguments are all open, and hence automatically valid.

Clause3differs from itscounterpartfor normalcalls, whichrequiredactual
argument list to match the formal list if any. Instead we explicitly allow
omitting actuals altogether, to signify that all arguments are open.

---- Clause---- is a consistency condition for concurrent computation, and
parallels a similar clause discussed in the chapter on normal calls.

Validity of inline agents

To define the validity of inline agents (also their semantics), it is convenient
to consider this case as equivalent to the previous one,Call_agent, by
treating any inline agent as equivalent toagentf (…) wheref is a fictitious
routine added to the class. Here is the definition of this equivalence:

Clause2 lists, as arguments tof, not only the arguments to the inline agent
but also the local variables of the enclosing routine. The local variables will
indeed serve asclosedarguments; this will be specified in the semantics given
in the next section.

The validity rule follows:

Associated feature of an inline agent
Every inline agentia of a classC has anassociated feature,
defined as a fictitious routine ofC, such that:
1 • The name off is chosen not to conflict with any other feature

name inC and its descendants.
2 • The formal arguments off are those ofia.
3 • f is secret (available for call to no class).
4 • TheRoutine of f is defined by theRoutine part ofia.
5 • f is a function if ia has aType_mark(its return type being

given by theTypein thatType_mark), aprocedure otherwise.

Inline Agent rule VPIA

An Inline_agenta of associatedfeaturef, is valid in the text of a
classC if and only if it satisfies the following conditions:

1 • f, if added toC, would be valid.

2 • f is notdeferred.

← “Ar gument rule”,
page 626.

← “Exported, selec-
tivelyavailable,secret”,
page 206.

AGENTS, ITERATION AND INTROSPECTION §27.13748
There is no other condition, since in particular TheRoutinepart must be
valid on its own; in particular, theEntity rule states that any entity
appearing in theAgent_bodymust be a formal argument of the inline agent
itself, such asother andi in

or a local variable of an enclosing agent or routine, or a feature of the
enclosing class.

Here are some properties following from the Inline Agent rule:

27.13 AGENT SEMANTICS

(Like the previous two, this section may be skipped on first reading.) The
final part of the specification addresses the semantics of agents. It is
organized in three parts:

• Call-agent equivalent of an inline agent (enabling the next two parts to
restrict themselves to theCall_agent part).

• Open and closed operands.

• Type and value of an agent.

Call-agent equivalent of an inline agent

To define the validity of an inline agenta, it was convenient to define its
associated feature. Thena itself can be viewed as if it were aCall_agent:

(other: like Current; i: INTEGER)
do Result:= (item (i) = other.item (i)) end

Inline Agent Requirements VPIR

An Inline_agenta must satisfy the following conditions:

1 • No formal argument orlocalvariable ofa has thesamename as
a feature of the enclosing class.

2 • Everyentity appearing in theRoutinepart ofa is the name of
one of: a formal argument ofa; a local variable ofa; a feature
of the enclosing class;Current .

3 • TheFeature_body of a’s Routine is not of theDeferred form.

These conditions are stated as another validity rule permitting compilers to
issue more understandable error messages. It is not in the usual “if and only
if” form (since the preceding rule, the more official one, takes care of this),
but the requirements given cover the most obvious possible errors.

← “Entity rule”,
page 505.

§27.13 AGENT SEMANTICS 749
This allows a simple specification for the semantics of inline agents:

Thanks to this rule, we can focus on call agents when defining the type and
execution effect of agents.

Note how the formal arguments and local variables of the enclosing
routine if any, and of any enclosing agents, serve as closed arguments to the
agent. In reading earlier discussions of inline agents, you may have
pondered two as yet unanswered questions:

• Is it permitted for an inline agent to refer to a local variable of the
enclosing routine, and, if so, what does that mean?

• Call agents may have both closed and open operands. We have seen how
to give an inline agent open operands: just specify them as arguments to
the agent. But is there a way to give it closed operands too?

The rule just given answers both questions at once by giving a status to
local variables of the enclosing routine: treat them as closed operands.

So a routine of the form

Call-agent equivalent of an inline agent
An inline agentia with n formal arguments (n ≥ 0) has acall-
agent equivalent defined as theCall_agent

agentf (?, ?, …, ?, a1, a2, …, am)
using n question marks, wherea1, a2, …, am (m ≥ 0) are the
formal arguments andlocal variables of the enclosing routine (if
any) and any enclosing agents, andf is theassociatedfeature of
ia. (If bothn andm are 0, theCall_agent is justagentf.)

Semantics of inline agents

The semantic properties of an inline agent are those of itscall-
agent equivalent.

r
local

n: INTEGER
do

n := 1
your_list.do_all ((i: INTEGER) do print (i + n) end)

end

AGENTS, ITERATION AND INTROSPECTION §27.13750
will print the successive values inyour_list (assumed to be of typeLIST
[INTEGER]) all incremented by 1, the value of the local variablen at
construction time. As specified by the last rule, this is the same effect as if
the call were

whereprint_incremented_valueis the “fictitious routine” introduced by the
definition of “associated feature” of an inline agent:

In examining the above definition of call-agent equivalent, note that the
validity rule on inline agents guarantees that there can be no name clash
between the formal arguments and local variables of any enclosing agents
and of the enclosing routine if any. (Nesting inline agents doesn’t seem a
desirable use of the mechanism, but no rule disallows it.)

The semantics of inline agents also requires a specific rule on the
meaning ofResult. An inline agent may be embedded in a function of the
class, or even in another function agent, causing a potential ambiguity. We
decide thatResult always refers to the result of the innermost agent:

This is a rather specific case and another approach would be to disallow
function agents within functions or other function agents, or to use a special
notation to remove the ambiguity. The rule as given seems preferable. If you
need to refer to an outerResult, you may assign its value to a local variable
and use that local variable in the innermost agent scope. This causes a little
extra work, but only in a rare and special case.

Open and closed operands

It is useful to define precisely what “open” and “closed” mean for the
operands of an agent expression:

From the definition of call-agent equivalent form we deduce that for an
inline agent:

• The open operands are the agent’s formal arguments, if any.

do_all (agentprint_incremented_value(?, n)

print_incremented_value(i: INTEGER; n: INTEGER)
do

print (i + n)
end

Use ofResult in an inline function agent

In an agent of theInline_routineform denoting a function, the
local variableResult denotes the result of the agent itself.

← “Inline Agent
rule”, page 747.

← “Open operand posi-
tion” was defined on
page751.

§27.13 AGENT SEMANTICS 751
• The closed operands are the local variables and formal arguments of the
enclosing routine and any enclosing agents.

An earlier definition also introduced the notion ofoperandposition, which
we can now extend to a definition of open and closed positions:

Type and value of an agent expression

The preceding definitions enable us to specify the semantics of an agent
expression. It suffices to give it for aCall_agent:

Open and closed operands
Theopen operandsof aCall_agent include:
1 • Any Agent_actual that is aPlaceholder.

2 • TheAgent_targetif it is present and is aManifest_type.

Theclosed operands include all non-openoperands.

Open and closed operand positions
Theopen operand positionsof aFeature_agentare theoperand
positions of its open operands, and theclosed operand positions
those of its closed operands.

Type of an agent expression
Consider aCall_agenta, whose associatedfeature f has a
generatingtype T0. Let i1, …, im (m ≥ 0) be itsopenoperand
positions, if any, and letTi1, .., Tim be the types off’s formals at
positionsi1, …, im (takingTi1 to beT0 if i1 = 0).
The type ofd is:
• PROCEDURE[T0, TUPLE [Ti1, ..,Tim]] if f is aprocedure;

• FUNCTION [T0, TUPLE [Ti1, .., Tim], R] if f is a function of
result typeR other thanBOOLEAN.

• PREDICATE[T0, TUPLE [Ti1, .., Tim]] if f is a function of
result typeBOOLEAN.

← Theoperands of a
call were defined on
page715 as including
its target, and its argu-
ments if any.

← “Operand position”
wasdefinedonpage715:
the target position is 0,
and the argument posi-
tions start at 1.

AGENTS, ITERATION AND INTROSPECTION §27.13752
Although this will be an implicit consequence of the last rule, it doesn’t
hurt to state explicitly what some of the information inD0 is good for:
enabling calls on agent objects.

Agent Expression semantics

The value of an agent expressiona at a certainconstruction time
yields a reference to an instanceD0 of the type ofa, containing
information identifying:
• Theassociated feature ofa.
• Its open operand positions.
• The values of itsclosed operands at the time of evaluation.

Effect of executingcall on an agent

Let D0 be an agent object with associated featuref and open
positionsi1, …, im (m≥ 0). The information inD0 enables a call
to the procedurecall, executed at anycall time posterior toD0’s
construction time, with targetD0 and (if required) actual
argumentsai1, ..,aim, to perform the following:
• Produce the same effect as a call tof, using theclosedoperands

at theclosedoperandpositions andai1, ..,aim, evaluated at call
time, at theopen operand positions.

• In addition, if f is a function, setting the value of thequery
last_resultfor D0 to the result returned by such a call.

← last_resultfrom class
FUNCTION, giving the
result of the last evalua-
tion, was introduced on
page720.

	27 27 Agents, iteration and introspection
	27.1 OVERVIEW
	27.2 A QUICK PREVIEW
	27.3 FROM CALLS TO AGENTS
	Feature calls and their operands
	Operands of a call
	Operand position
	Delaying calls
	Agents and their operands
	Construction time, call time

	27.4 AGENT TYPES
	27.5 CALL AGENTS
	All-closed agents
	Keeping operands open
	The brace convention
	Omitting the argument list
	A summary of the possibilities
	Syntactical forms for a call agent

	27.6 USING AGENTS
	GUI programming: establishing a direct connection to the Business Model
	Integrating a function
	Iteration examples

	27.7 TWO ADVANCED EXAMPLES
	Error processing without the mess
	Once per object

	27.8 USING INLINE AGENTS
	27.9 ACCESSING FEATURE PROPERTIES
	27.10 THE BASE CLASS AND TYPE
	27.11 AGENT SYNTAX
	Syntax of call agents
	Syntax of inline agents

	27.12 AGENT VALIDITY
	Validity of call agents
	Target type of an agent call
	Validity of inline agents
	Associated feature of an inline agent

	27.13 AGENT SEMANTICS
	Call-agent equivalent of an inline agent
	Call-agent equivalent of an inline agent
	Open and closed operands
	Open and closed operands
	Open and closed operand positions
	Type and value of an agent expression
	Type of an agent expression

