
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
18
Attributes
18.1 OVERVIEW

This chapter discusses the properties of both two kinds of attribute.

18.2 GRAPHICAL REPRESENTATION

In graphical system representations, you may mark a feature that you know
is a variable attribute by putting its name in a box.

The figure illustrates this convention for attributesfirst andfirst_elementin
a classLINKED_LISTsimilar to the one from EiffelBase. (This is a partial
representation of the class.)

Attributes areone of the two kinds of feature.

When, in the declaration of a class, you introduce an attribute of a
certain type, you specify that, for every instance of the class that may exist
at execution time, there will be an associated value of that type.

Attributes are of two kinds:variable and constant. The difference
affects what may happen at run time to the attribute’s values in instances of
the class: for a variable attribute, the class may include routines that,
applied to a particular instance, will change the value; for a constant
attribute, the value is the same for every instance, and cannot be changed
at run time.

←Theother isroutines,
studied in chapter8.

put_linkable_left:
first: G

first_element:
LINKABLE [like first]

LINKED_LIST
[G] previous: like first_element

like first_element

next: like first_element

Representing
attributes

ATTRIBUTES §18.3492
As illustrated by this example, putting the attributes of a class next to each
other, each boxed in a rectangle, yields a bigger rectangle that suggests the
form of aninstanceof the class with all its fields. So we get a picture of both
the class (elliptic) and the correspondingobjects(rectangular).

Not boxing a feature does not mean that it is not a attribute. In some
cases, you may choose toleaveunspecified whether a particular feature is
an attribute or a routine. Then the standard representation for features,
unboxed, is appropriate. In the example illustrated above,previousandnext
may be attributes just as well as functions without arguments.

18.3 VARIABLE ATTRIBUTES

Declaring a variable attribute in a class prescribes that every instance of the
class should contain a field of the corresponding type. Routines of the class
can then execute assignment instructions to set this field to specific values.

Here are some variable attribute declarations:

The first introduces a single attributen of type INTEGER. The second
(equivalent, because of theMultiple Declarationsemantics rule, to three
separate declarations) introduces three attributes, all of typeWINDOW.

If these declarations appear in theFeaturesclause of a classC, all
instances ofC will have associated values of the corresponding types; an
instance will look like this:

More generally,asyou mayremember, a feature declaration is a variable
attribute declaration if it satisfies the following conditions:

• There is noFormal_arguments part.

• There is aType_mark part.

• There is noConstant_or_routine part.

18.4 ATTRIBUTES IN FULL FORM

n: INTEGER
a, b, c: WINDOW

→ Principle of uniform
access: 23.4, page 616.

← “Unfolded form of a
possibly multiple declara-
tion”, page 158.

An instance
with its fields

n

a

b

c

620

(references

to instances of
WINDOW)

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

§18.5 CONSTANT ATTRIBUTES 493
18.5 CONSTANT ATTRIBUTES

Declaring a constant attribute in a class associates a certain value with
every instance of the class. Because the value is the same for all instances,
it does not need to be actually stored in each instance.

Since you must specify the value in the attribute’s declaration, the type
of a constant attribute must be one for which the language offers a lexical
mechanism to denote values explicitly. This means one of the following:

• BOOLEAN, with values writtenTrue andFalse.

• CHARACTER,withvalueswrittenascharacters insinglequotes,suchas'A'.

• INTEGER, with values written using decimal digits possibly preceded
by a sign, such as–889.

• REAL, with values such as–889.72.

• STRING, with values made of character strings in double quotes such as
"A SEQUENCE OF $CHARACTERS#".

Attribute bodies
Attribute =∆ attribute Compound

The Compoundis empty in most usual cases, but it is required for an
attribute of an attached type (including the case of an expanded type) that
does not providedefault_createas a creation procedure; it will then serve
to initialize the corresponding field, on first use for any particular object, if
that use occurs prior to an explicit initialization. To set that first value,
assign toResult in theCompound.

Such aCompoundis executed at most once on any particular object
during a system execution.

The construct
Constant_attribute is
introduced in29.2,
page777, as part of the
discussion of expres-
sions.

All these types except
STRING are called
basic types. See, page
330

All these examples use
“manifest” constants;
see below.

ATTRIBUTES §18.6494
For types other than these, you may obtain an effect similar to that of
constants by using aonce function. For example, assuming a class

you may, in another class, define the once function

which creates aCOMPLEX object on its first call; this call and any
subsequent one return a reference to that object.

Returning to true constant attributes: the declaration of a constant
attribute must determine the attribute’s value, using amanifest constant.

The next section details this case.

18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

A Manifest_constantis a constant given by its explicit value. It may be a
Boolean_constant, Character_constant, Integer_constant, Real_constant
or Manifest_string.

class COMPLEXcreation
make_cartesian, …

feature -- Initialization
make_cartesian(a, b: REAL)

-- Initialize to real parta, imaginary partb.
do

x := a; y := b
end

feature -- Access
x, y: REAL
… Other features and invariant…

end

i: COMPLEXis
-- Complex number of real part 0, imaginary part 1

once
createResult.makecartesian(0, 1)

end

→ See23.15,page638,
about the effect of call-
ing a once function.

Chapter32 describes
theprecise formofman-
ifest constants.

§18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES 495
Here are some constant attribute declarations usingManifest_constant
values:

More generally, a feature declaration is a constant attribute declaration if it
satisfies the following conditions:

• There is noFormal_arguments part.

• There is aType_mark part.

• There is a Constant_or_routine part, which contains a
Manifest_constant.

A straightforward validity constraint governs such declarations:

Terminal_count: INTEGERis 247
Cross: CHARACTERis 'X'
No: BOOLEANis False
Height: REAL is 1.78
Message: STRINGis "No such file"

Manifest Constant rule VQMC

A declaration of a featuref introducing amanifestconstant is
valid if and only if the Manifest_constantm used in the
declaration matches the typeT declared forf in one of the
following ways:
1 •m is aBoolean_constant andT is BOOLEAN.

2 •m is aCharacter_constantandT is one of thesizedvariants of
CHARACTER for whichm is a valid value.

3 •m is anInteger_constantandT is one of thesizedvariants of
INTEGERfor whichm is a valid value.

4 •m is a Real_constantand T is one of thesizedvariants of
REALfor whichm is a valid value.

5 •m is a Manifest_stringandT is one of thesizedvariants of
STRING for whichm is a valid value.

6 •m is aManifest_type, of the form{ Y} for some typeY,andT
is TYPE[X] for someconstant typeX to whichY conforms.

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

ATTRIBUTES §18.6496
The “valid values” are determined by each basic type’s semantics; for
example1000 is a valid value forINTEGER_16but not forINTEGER_8.

In case6, we require the type listed in aManifest_type{ Y} to be
constant, meaning that it does not involve any formal generic parameter or
anchored type, as these may represent different types in different generic
derivations or different descendants of the original class. This would not be
suitable for a constant attribute, which must have a single, well-defined
value.

	18 18 Attributes
	18.1 OVERVIEW
	18.2 GRAPHICAL REPRESENTATION
	18.3 VARIABLE ATTRIBUTES
	18.4 ATTRIBUTES IN FULL FORM
	18.5 CONSTANT ATTRIBUTES
	18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

