Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

1 8 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Attributes

18.1 OVERVIEW

Attributes areone of the two kinds of feature. « Theotherisroutings
studied in chaptes.

When, in the declaration of a class, you introduce an attribute
certain type, you specify that, for every instance of the class that may exist
at execution time, there will be an associated value of that type.

Attributes are of two kindsvariable and constant The difference
affects what may happen at run time to the attribute’s values in instances of
the class: for a variable attribute, the class may include routines that,
applied to a particular instance, will change the value; for a constant
attribute, the value is the same for every instance, and cannot be changed
at run time.

This chapter discusses the properties of both two kinds of attribute.

18.2 GRAPHICAL REPRESENTATION

In graphical system representations, you may mark a feature that you know
is a variable attribute by putting its name in a box.

Representing

first: G ;

e j put_linkable_left attributes
. LINKED_LIST —» like first_element
first_element [G] previous like first_element

NS (3] next like first_element

The figure illustrates this convention for attribufest andfirst_elemenin
a clasd INKED_LISTsimilar to the one from EiffelBase. (This is a partial
representation of the class.)



492 ATTRIBUTES §18.3

As illustrated by this example, putting the attributes of a class nextto each
other, each boxed in a rectangle, yields a bigger rectangle that suggests the
form of aninstanceof the class with all its fields. So we get a picture of both
the class (elliptic) and the correspondaigects(rectangular). . Principle of uniform

Fa¥ Not boxing a feature does not mean that it is not a attribute. In saccess23.4. pae 616
/™= cases, you may chooselgaveunspecified whether a particular feature .o
an attribute or a routine. Then the standard representation for features,
unboxed, is appropriate. In the example illustrated aboreyjousandnext
may be attributes just as well as functions without arguments.

18.3 VARIABLE ATTRIBUTES

Declaring a variable attribute in a class prescribes that every instance of the
class should contain a field of the corresponding type. Routines of the class
kamsid  can then execute assignment instructions to set this field to specific values.

Here are some variable attribute declarations:
| 4 | n: INTEGER
aan a, b, cc WINDOW
The first introduces a single attributeof type INTEGER The second- “Unfolded form of a

(equivalent, because of thdultiple Declarationsemantics rule, to threRossbly muliple deciar
. . . tion”, page 158
separate declarations) introduces three attributes, all o¥yR®OW

If these declarations appear in theaturesclause of a clas€, all
instances ofC will have associated values of the corresponding types; an
instance will look like this:

An instance
n 620 o .
with its fields
a B —
(references
b —r—® o instances of
. | » WINDOW

attribute declaration if it satisfies the following conditions: NIZE FEAURES",

| More generallyasyou mayremember, a feature declaration is a varia'~ "HOWTORECOG-
| 5.12, pae 145

 There is nd-ormal_argumentpart.
* There is alype_markpart.
» There is naConstant_or_routinpart.

18.4 ATTRIBUTES IN FULL FORM



§18.5 CONSTANT ATTRIBUTES 493

BTN TAL

Attribute bodies
Attribute 2 attribute Compound

The Compoundis empty in most usual cases, but it is required for an
attribute of an attached type (including the case of an expanded type) that
does not providelefault_createas a creation procedure; it will then serve

to initialize the corresponding field, on first use for any particular object, if
that use occurs prior to an explicit initialization. To set that first value,
assign tdResultin theCompound

Such aCompoundis executed at most once on any particular object
during a system execution.

18.5 CONSTANT ATTRIBUTES

[P ]

Declaring a constant attribute in a class associates a certain value with
every instance of the class. Because the value is the same for all instThe construct

it does not need to be actually stored in each instance. Constant_attribute is
introduced in29.2

Since you must specify the value in the attribute’s declaration, the page777 as part of the

of a constant attribute must be one for which the language offers a lgJiscussion of expres-

mechanism to denote values explicitly. This means one of the follow...,.
. i i All these types except
BOOLEAN wnh values ert_terTrue andFalse . STRINGare called
» CHARACTERwith values written as characters in single quotes, sugh abasic typesSee page

) . . . . . 330
» INTEGER with values written using decimal digits possibly precec

by a sign, such as389 All these examples use
. “manifest constant
* REAL, with values such as38972. see below s

» STRING with values made of character strings in double quotes such as
"A SEQUENCE OF $CHARACTERS#



494 ATTRIBUTES §18.6

For types other than these, you may obtain an effect similar to thi- See3.15page638

constants by using@nce function. For example, assuming a class ~ 2bout the effect of call-
ing a once functian

classCOMPLEXcreation

make_cartesian..
feature -- Initialization
make_cartesiafa, b: REAL
-- Initialize to real parg, imaginary parb.

do
X:=ay:=hb
end
feature -- Access
X, y: REAL

... Other features and invariant
end

you may, in another class, define the once function

i: COMPLEXis
-- Complex number of real part 0, imaginary part 1
once
create Result makecartesiai(o, 1)
end

which creates &£OMPLEX object on its first call; this call and any
subsequent one return a reference to that object.

Returning to true constant attributes: the declaration of a constant
attribute must determine the attribute’s value, usintpaifest constant.

The next section details this case.

18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES

A Manifest_constaris a constant given by its explicit value. It may beChapter32 describes

Boolean_constanCharacter _constaninteger_constanReal constanthepreciseformofman-
_ — — — ifest constants

or Manifest_string



§18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES 495

Here are some constant attribute declarations usiagifest_constant
values:

' Terminal_countINTEGERis 247
o Cross CHARACTERs 'X'
I No: BOOLEANs False
Height REAL is 178
MessageSTRINGs "No such file

o . " NIZE FEATURES"
satisfies the following conditions: 5.12. pae 145

More generally, a feature declaration is a constant attribute declaratio s -HOWTORECOG-
* There is nd-ormal_argumentpart.
» There is alype_markpart.

«There is a Constant_or_routine part, which contains a
Manifest_constant

A straightforward validity constraint governs such declarations:

[ | Manifest Constant rule VQMC

[EALTII, A declaration of a featuré introducing amanifestconstant is
valid if and only if the Manifest_constanim used in the
declaration matches the type declared forf in one of the
following ways:

1 emis aBoolean_constarandT is BOOLEAN

2 *mis aCharacter_constaandT is one of thesizedvariants of
CHARACTERor whichm s a valid value.

3 emis aninteger_constarandT is one of thesizedvariants of
INTEGERfor whichm s a valid value.

4+mis aReal constanandT is one of thesizedvariants of
REALfor whichmis a valid value.

5emis aManifest_stringand T is one of thesizedvariants of
STRINGfor whichm is a valid value.

6 *mis aManifest_typeof the form{Y} for some typeY,andT
is TYPE[X] for someconstant typeX to whichY conforms.




496 ATTRIBUTES §18.6

The “valid values” are determined by each basic type’s semantics; for
examplel000is a valid value foINTEGER_16ut not forINTEGER_8

In caseB, we require the type listed in Blanifest_type{Y} to be
constant meaning that it does not involve any formal generic parameter or
anchored type, as these may represent different types in different generic
derivations or different descendants of the original class. This would not be
suitable for a constant attribute, which must have a single, well-defined
value.



	18 18 Attributes
	18.1 OVERVIEW
	18.2 GRAPHICAL REPRESENTATION
	18.3 VARIABLE ATTRIBUTES
	18.4 ATTRIBUTES IN FULL FORM
	18.5 CONSTANT ATTRIBUTES
	18.6 CONSTANT ATTRIBUTES WITH MANIFEST VALUES


