Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

2 3 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Feature call

23.1 OVERVIEW

How does a software system perform its job — its computations?

It must first set the stage: create the needed objects and attach them to
the appropriate entities. The preceding chapters discussed how to do this.
But once it has the objects in place and knows how to access them, the
system should do something useful with them.

In Eiffel's model of computation, the fundamental way to do something
with an object is to apply to it an operation which — because the model is
class-based, and behind every run-time object lurks some class of the
system'’s text — must be a feature of the appropriate class.

This is feature call, one of the most important constructs in Eiffel's
object-oriented approach, and the topic of the following discussions.

One of the risks with calls in object-oriented languages ivthé call: a run-

time attempt to apply a feature to an object that doesn’t exist because a
reference is void (or, in other terminology, a pointer is null). Eiffel
distinguishes itself by making such a failure impossible thanks to the notion
of attached typend associated constructs studied in previous chapters. Here
we will reap the benefits of these mechanisms, which ensure statically — at
compile time — that no Eiffel call can apply to a void target. This removes
the principal source of run-time failure in object-oriented programming.

Three topics related to calls merit their own discussions in other chapters:

* The validity of calls raises the general questionygfe checking how - Chapter2s.
to make sure that the target of every call will be an object equipped with
the appropriate feature.

* A call has atarget, which must be an object. If the target is knov - Chapter24.
through a reference, we must be sure that the reference will never be
void upon execution of the call.

» Operator expressions are conceptually calls, but use traditior - Chapter2s.
mathematical syntax. We’ll see them as part of the chapter on
expressions, although there will be little new to learn about their validity
and semantic properties, which are those of calls.

614

FEATURE CALL §23.2

23.2 PARTS OF ACALL

A call is the application of a certain feature to a certain object, possibly
with arguments. As a consequence, it has three potential components:

« Thetargetof the call, an expression whose value is attached to the object.
» Thefeatureof the call, which must be a feature of the object’s type.
« An actual argument list
The target and argument list are optional; the feature is required.
Here is a typical example showing all three components:

remote_banktransfer_by wirg20000,Today

This call usesdot notation. The target of the call isemote_bankthe
feature of the call isransfer_by_ wireand the actual argument list contains
the two element20000andToday

The target is separated from the feature of the call by a periodiptor
hence “dot notation”.

If the target is the predefined entiGurrent, representing thecurrent _, “Current object,
object” of system execution, as explained below, you may use, |nsteCUfremr0utlne page
the fully qualified form

~E
i

Current.print (messagge [1]

a form which leaves the target implicit:

print (message (2]

This is still considered to be a case of dot notation even though the dot is
implicit. If the call does include an explicit target and dot, igigalified;
otherwise, as in the last example, iurgualified.

In the presence of run-time assertion monitoring, there is a slight semantic
difference betweefll] and[2]: a qualified call causes invariant checking, an
unqualified call doesn't.

A qualified call may have more than one level of qualification and is then
said to be anultidot call, as in

‘ paragraphs(2).line (3).second_wordset_fontBold) ‘

iamrin

For a feature without arguments, the actual argument list will be absent, as
in the source expression of thesignment

e

amrim

—

‘ code:= remote_bankauthorization ‘

whereauthorizationis a query (attribute or function) without arguments.

In some cases we don't need a target object (as in a qualified call) but
we still need a target type. Tfis a type, the notation

§23.3 USES OF CALLS 615

‘ {T} .constant_or_external ‘

denotes a call to a featummnstant_or_externdtom T. This only makes
sense if the feature is either a constant attribute or an external (non-Eiffel)
feature; anything else would require a target object.

Non_object_callis a shorthand for “non-objedriented call’, as in
{T}.f(arg9 where T is a type. The usual object-oriented style of
computationx.f (args), requires a target object denotedxby

Calls may appear in syntactic forms other than dot notation:

» Operator expressions have the semantics of calla:— bis, with a
featureminusalias"-", equivalent to the dot-notation call minus(b).
Similarly, with item alias "[]", the expressiorx [i] has the same

semantics as the dot-notation calitem[i].

* You may also write anon-object call of the form{T}.f whereT is a
type andf is either a constant attribute or an external featuré dhis
is like a call in dot notation that would not need a target, but only a target
type (to determine whichto use).

23.3 USES OF CALLS

A call may play either of two syntactic roles: instruction and expression.

A call is a specimen of constru€tall, covering dot notation, qualified
or unqualified, and non-object calls.

Operator_expression (in prefix or infix notation) and
Bracket_expressioare always used as expressions, butal in dot
notation may be either an instruction or an expression. The syntax
productions for both thénstruction and Expressionconstructs indeedhsiruction page224
includeCall as one of the choices. To know which one applies, it suffiExpressionpage753
to look at the feature of the call:

Call Use rule VUCN
A Call of featuref denotes:

1 «If f is aquery (attribute or a function): an expression.
2 «If fis a procedure: an instruction.

RAL DT

This rule has a validity code, so that compilers and other language processing
tools may refer to it when detecting an error such as the use of a procedure
call in an expression.

The above examples used callsttansfer_by_ wireprint and set_fontas
instructions, and a call tauthorizationas an expression. The calls to
minusalias"-" anditemalias"[]" are also expressions. The non-object call
{T}.fis an instruction if is a procedure of and an expression otherwise.

616

FEATURE CALL §23.4

23.4 UNIFORM ACCESS

|

An important property applies to dot-notation calls used as expressions: the
notation is exactly the same whether the feature©ékis a function with
no arguments or an attribute. The expression

‘ pl.age

whereplis of type PERSONSs applicable both if the featummge of class
PERSONs a feature of either kind.

If ageis an attribute, every instance BERSONMNas a field which gives
the value ofgefor the instance. lageis a function, that value is obtained,
when requested, through some computation, presumably of the difference
between the current date and a "birth date" field. For a client containing
the above call, however, this makes no difference.

This principle of uniform accessfacilitates smooth evolution o Firstdiscussed in
software projects by protecting classes from internal implemente})FORMACCESS.
changes in their suppliers. B

23.5 OPERATOR AND BRACKET FORMS

|

A call serving as an expression may use, instead of dot notation, the
Operator_expressidorm based on unary or binary operators. Both of the
two operator expressions, respectively unary (prefix) and binary (infix)

—1
4-3

are calls to functions of the Kernel Library cldd§TEGER the first, to the

function negatedalias "-"; the second, taninusalias "~". The Feature — Pagel6q clause;
Declarationrule requires a feature associated with a unary or birfgﬁd‘ft'afj%,PfLaes
operator to be an attribute or function without argument, tikgatedor a 162

function with one argument, likminus Note that here although both are

associated with the same operatahere is ho ambiguity since the same

rule guarantees that there is at most one feature for each of these signatures.

The difference between such an operator expression &l & only
syntactical. You may also write the above two expressions as:

(|12« negated
(14])-minus(3)

with exactly the same effect.

The syntax ofCall requires putting in targetparentheses(] ... [)arounda - “COMPLEX TAR-

Manifest_constansuch ad or4, to use it as target of a call. bGeEIch?"' 23.6,page617

Similarly, a bracket expression such as

your_array [some_index \

§23.6 COMPLEX TARGETS 617

based on the featutigem alias"[]" in classARRAY has the exact same
semantics as

your_array .item(some_indéex

The discussion of expressions will formalize the correspondence between
the two syntactic forms bylefining anEquivalent Dot Form for any _, “THe EQUIVA-

operator expression. LENT DOF FORM",
28.8, pge 771

23.6 COMPLEX TARGETS

In most cases the targebf a callx.f (...) is just an entity: a local variable,

an attribute, a formal argument. Sometimes you may want to use a non-
elementary expression, such @s+ b (wherea andb could be not just
numbers but, for example, of some typATRIX). Writing a + b.f (c)
would, according to precedence rules, denote a sum of two eleraemtd,

the application of to b. If that's not what you want, you may use a local
variable to specify applyinfjinstead to the sum afandb:

local
sum
do
...sum:=a+b
x = sumf (c) ...
end

This technique works but forces the introduction of extra local variables.
To avoid them you may use thparenthesized target notation (|
Expression):

x:= (Jla+h).f(0)

The symbols use parentheses and a vertical bar. They remove any
ambiguity by making clear that the featufein this example, is being
applied to the whole expression.

You may also use a parenthesized tarngetonnection with bracke*, srRackeT

notation, as irf| a + b)) [i], assuming the type @f+ b has a bracket featur¢EXPRESSIONS”,
. . . 28.7,page 769; see the
Note that just using parentheses, agan+ b). f (x), would not be syntax on pagg69

legal syntactically.
Why indeed not just use plain parentheses? The reason is syntactical. Eiffel
always treats the semicolon separator as redundant, without making any
T T difference between spaces, new lines and other break characters. If a
parenthesized expression were permitted as target of a call, the assertion
require
h
(a+h).g

618

FEATURE CALL §23.7

Owould include two clauses,. But syntactically the beginning could be

parsed ab (a + b), denoting the application of a functi¢rto an argumenra
+ b, even though the remainderg, doesn't have a proper syntactical

interpretation.

This syntactical problem is typical of the confusion engendered by the dual

use of parentheses, coming from mathematical conventionsgasuging
mechanism, as ifa + b); and as a notation fdunction applicationas inf

(c). The special symbol$... |) avoid any such ambiguity.

23.7 CALL SYNTAX

I BTNTAX

We'll now examine the syntax of the constragll, describing calls in dot

notation, qualified or not, and non-object calls.

Prefix

, infix and bracket forms are specimensofpressionwe’ll see their syntax

in the correspondinghapter, which also defines their semantics in terms of , “GENERALFORM

the semantics of calls.

Call 2 Object_call| Non_object_call
Object_call2 [Target'."] Unqualified_call
Unqualified_call2 Feature_nampActualg

Target2 Local|Read_only Call |
Parenthesized_target

Parenthesized_targét "(|" Expressiori])"
Non_object_call? "{" Type"}" "." Unqualified_call

Feature calls

OF EXPRESSIONS”,

28.2,page 753and rest
s of chapteR8.

A call is most commonly of the forma.b.... wherea, b ... are features,
possibly with argumentSargetallows aCall to apply to an explicit target

object (rather then the current object); it can itself b€all, allowing
multidot calls. Other possible targets are a local variabl&ead_only

(including formal arguments an@urrent) a “non-object call” (studied

below), or a complex expression written &3saenthesized_targ@t..|).

When present, the optionattualspart gives the list of actual arguments:

Actuals 2 "(" Actual_list")"
Actual_list & {Expressior'," ...}*

Actual arguments

§23.7 CALL SYNTAX 619

As the specification of\ctual_listindicates, am\ctualsargument list may
not be empty: if has no formal arguments, you must call if&s x.f, not
f () orx.f (). This is for simplicity and clarity.

An object-oriented call is eithequalified or not. It's qualified if it
involves at least one dot:

I BTN TAX

Unqualified, qualified call TheAddressform for
. . e o . Actual t
An Object_calisqualified if it has aTargef unqualified otherwise. th‘;‘;‘i‘,jfegvf 2f ‘;rf’ Eisf?m

feature to a foreign
(non-Eiffe) routine

In equivalent terms, a call is “unqualified” if and only if it consists of ji>¢®L:8-p8e 823

anUnqualified_callcomponent.

The callf (a) is unqualifiedx.f (a)is qualified.

Another equivalent definition, which does not explicitly refer to the
syntax, is that a call is qualified if it contains one or more dots, unqualified
if it has no dots — counting only dots at the dot level, not those that might
appear in arguments; for exampl@.b) is unqualified.

Of our earlier examples

print (messagge
paragraph(2).line (3).second_wordset_fontBold)

the first is unqualified and the second qualified. Both are instructions if we
assume thaprint andset_fontare procedures in their respective classes.
The intermediate components of the second example

paragraph(2)
paragraph(2).line (3)
paragraph(2).line (3).second_word

are all specimens of construet-------- FIX . They may themselves be
viewed as calls; any such intermediate call must be an expression (rather
than an instruction) so that it may serve as the target of further calls.

The features of all examples so far have arguments. Here are two
examples where the call has no argument;

I

paragraph(2).indent
f:=that_word current_font

They assume thaindentis a procedure with no arguments and that
current_fontis an attribute or function without arguments. As a result, the
source the following assignment, in the last example, is a call expression.

620

FEATURE CALL §23.8

For examples of calls using Rarenthesized_targein addition to
(|1]).negatedand (|4[). minus(3) (more simply written as-4 and4 — 3,
assume a classECTORwith featureshormandplus

classVECTORG —> X] feature
nornt Gis do... end;
plusalias"+" (other. like Current): like Current
do...end
... Other features..

end

Then witha andb of type VECTOR[T] for some appropriat& you may f must be a feature of

use the expressions classX, hence applica-
ble to(u + v) «norm

since the typ& of this
(lu + Vl) norm expressiona formal
(Ju + v]).norm.f.h. generic parameter of

VECTORIs con-

strained byX.

both of which apply functiomormto the result of applying functioplus

to u with argumentv. The syntax specification allows for at most one
Parenthesized_targedt the beginning of th€all. In the second example
theParenthesized_targistfollowed by theCall norm.f.h.

Thanks to this mechanism, you may use any valid expression as
qualifier by parenthesizing it. Without parentheses, @l would be
syntactically illegal, as in3.negated or legal but with a different

semantics, as with + v.normwhich appliesnormtov, not to the sum. - Thedothasthe high-
est precedence of all
operators except paren-
thesesso in the second

238 COMPONENTS OF A CALL case it applies t@, not

U+ V. Seé'SUBEX-
: : PRESSIONS’, 28.3,
Itis convenient to talk about “the target”, “the target type” and “the featipage 756

of a call.

Target of a call
Any Object_callhas aarget, defined as follows:
1 «If it is qualified: itsTargetcomponent.
2 «If it is unqualified:Current .

The target is an expression; (b, ¢ .d the target isa (b, ¢ and in
(la (b, ¢) + x]).d the target (casg) is a (b, c) + x. In a multidot case the
target includes th€all deprived of its last part, for exampkef (args).gin
x.f (args).g.h (argsl)

§23.9 NON-OBJECT CALLS 621

A Non_object_caldoes not have a target; this is what distinguishes it
from anObject_call In both cases, however, there is a targes

Target type of a call
Any Call has aarget type, defined as follows:

1 «For anObject_cali the type of itstamet. (In the case of an
Unqualified_callthis is thecurrent type.)

2 *For aNon_object_calhaving a typd as itsTypepart:T.

A call of any kind also has a feature:

Feature of a call
For anyCall the ‘feature of the call’ is defined as follows:
1 « For anUnqualified_callits Feature_name
2 «For a qualified call or Non_object_call (recursively) the

feature of itdJnqualified_callpart.

Casel tells us that the feature df(arg9) is f and the feature ofj, an
Unqualified_callto a feature without argumentsgis

The term is a slight abuse of language, sihaadg are feature names rather
than features. The actual feature, deduced from the semantic rules given

I below and involving dynamic binding. is tdgnamic feature of the call. - %wegtlum
g . ”1 D@ T
It follows from case2 that the feature of a qualified callf (args)isf. The aed ©

recursive phrasing addresses the multidot case: the featurc o,
x.f (args).g.h (argsl)is h.

23.9 NON-OBJECT CALLS

The remaining sections of this chapter discuss the validity and semantics
of calls. The most interesting cases are the object-oriented form of call,
x.f (args), involving dynamic binding, and its unqualified varidrfargs).

They will occupy most of the discussion. Let us dispose first of a specific
case, available mostly to facilitate interaction with non-object-oriented
facilities: Non_object_callln an example such as

‘ {CHARACTER_CODBSUnderscore ‘

we use dNon_object_calto access directly a constant attribute present in
a ‘“utility class”, CHARACTER_CODESWere this mechanism not
available in the language, you could still obtain the desired effect by either:

» Making the enclosing class inherit froBHARACTER_CODESo that
it can directly access its features suclyaderscore

622 FEATURE CALL §23.9

e Declaring an entity codes CHARACTER_CODESand using
codes Underscore

Using inheritance as in the first solution is a bit heavy-handed for such a
simple purpose. With the second solution, you must declare an entity that
you won't use for anything else; in addition, dHARACTER_CODEB

not an expanded class, you'll have to perform a creation instruction
createcodesto obtain the corresponding object. All this is a diversion.
With the Non_object_callou state, with no fuss, exactly what you need:
featureUnderscoregfrom classCHARACTER _CODES

The mechanism is applicable only in limited cases: we only aflojuf ...
if fis a constant, likéJnderscoreor an external (non-Eiffel) function, as in

‘ {NETWORK_CONTROLLERopen_channdport_numbertimeou} ‘

=
H

The reason is that any feature other than a constant attribute or an external
feature might need to work on the target, whichlan_object_callacks.

Even an external feature could be a problem through its assertions:
consider a call

open_channglpn: INTEGER to: REAL) Warning makes above
. . Non_object_call
-- Open a channel on port numiperwith timeoutto. invalid.
Ehbedl require
I valid_state

external
IICII

end

whereopen_channelin classNETWORK_CONTROLLERs an external
routine with two arguments. The precondition hasiamualified_callto
valid_statea function that might use the current object. Or it might not; but
this can be tricky to determine, so we should just ban such assertions.

To specify both the validity and the semantics it is convenient to treat a
Non_object_calls a special case of @ject_call

Imported form of a Non_object_call

Theimported form of aNon_object_calbf Type T and feature
f appearing in a clas€ is the Unqualified_callbuilt from the
original Actualsif any and, ageatureof thecall, a fictitious new
feature added t€ and consisting of the following elements:

1 - A namedifferent from those of other features®f
2 + A Declaration_bodwbtained from théeclaration_bodpf f

by replacing every type by ideanchorefbrm, then applying
thegeneric substitution of.

§23.10 CLASS VALIDITY 623

RAL DI

I B ALANT HoS I

This definition in ‘Unfolded” style allows us to vieyT} .f (args) appearing . “Two-TIER DEFI-
in a clasC as if it were jusf (args), anUnqualified_call but appearing mw
C itself, assuming we had movédver — “imported” it — toC. IFOLDEDFORMS

2 1, pae 99
In item 2 we use the “deanchored form” of the argument types
result, since a typkke athat makes sense inwould be meaningless i@.
As defined in the discussion of anchored types, the deanchored ve*iSganchoredformof
precisely removes all such local dependencies, making the atype’. pae 337
understandable instead in any other context.

This notion helps us express the validity rule:

Non-Object Call rule VUNO

A Non_object _calbf Type T and featurénamein a classC is
valid if and only if it satisfies the following conditions:

1 «fnameis the final name of a featuref T.
2 «f is available tcC.

3 «f is either a constant attribute or an external feature whpse
assertions, if any, use neithi@arrent nor anyunqualifedcalls.

4 « The call’'simported form is a validUnqualified_call

Condition2 requiresf to have a sufficient export status for usednthere

will be a similarrequirement foObject_call Condition3 is the restriction - Throughthe notion of

to constants and externals. Conditibtakes care of the rest by relying cexportvaliditydefinedin
the next section.

the rules folunqualified_call.

We also use the imported form to define the semantics:

Non-Object Call Semantics

The effect of &on_object_calis that of itsmported form.

23.10 CLASS VALIDITY

The rest of this chapter considers the most common — but also more
delicate — case: object calls, involving dynamic binding. First, validity.

The basic idea is straightforward: inf (args) appearing in a class,
the base class of must have a featurg that feature must be available
(exported) to C, and the elements ofrgs must conform to the
corresponding formal arguments as declared;for addition, the type of
X must bestrict to avoid the possibility of calls on a void target. In the
unqualified versioffi (args), r must be a feature of the current class and the
arguments must conform. For the overwhelming majority of cases this is
all you need to remember.

624 FEATURE CALL §23.10

The full story is more subtle; in fact the next two chapters are devoted
to filling in the details. In the present discussion we will examinedlzess-
Level validity of a call, which it is convenient to define in four parts:

« Export validity , to ensure thdtis exported to the client class.
« Argument validity , to ensure that thergsare of the right number and type.
« Target validity, to ensure thatis not void.

Target validity is defined in the next chapter; the following one will tackle
the remaining notion ddystem-Level validity

Elsewhere in this book, validity rules are of the form: “A specimen of
Em constructC is valid if and only if ...”. The rules of this section appear

instead as: “ACallis X-valid if and only if...”, where X is one of Export,
Argument, Target and Class-Level. The following chapter will defiGekh

as “valid”, without further qualification, if and only if it is System-Level-
valid and Class-Level-valid. Since the three components of Class-Level
validity address distinct aspects, it is convenient for compilers to produce
error messages that refer to each of them; so you can view the rules below,
as normal validity rules, except that they are “only if” but not “if".

Export validity

The first of the three components of Class-Level validity, export validity,
ensures that the caller is entitled to use the “feature of the call”:

Export rule VUEX

) An Object_callappearing in a class, with fnameas thefeature
of the call, is export-valid for C if and only if it satisfies the
following conditions.

1 -fnameis the final name of a feature of th&amet type of
the call.

2 «If the call isqualified, that feature @vailable toC.

This defines export validity “for” a certain cla§s Usually we consider a call
@ appearing in a given class text, so we say just “export valid” to mean export-valid
I for the current class. In the discussion of type checking, we’ll need to consider
the call, and its export validity, for an arbitrary descendant of the original class.

§23.10 CLASS VALIDITY 625

LALIDI Y

o

For an unqualified cafior f (args), only conditionl is applicable, requiring
simply (since the target type of an unqualified class is the current type) that
f be a feature, immediate or inherited, of the current class.

For a qualified callx.f with x of type T, possibly with arguments,
condition2 requires that the base classTofmake the featuravailableto - AsdefinedifAvail-
C: export it either generally or selectively © or one of its ancestors22€ forcal.aval
(Through the Non-Object Call rule this also governs the validity e
Non_object_cal{ T} .f.)

As a consequencs...) might be permitted ang.s(...) invalid, even
if xis Current. The semantics of qualified and unqualified calls is indeed
slightly different; in particular, with invariant monitoring on, a qualified
call will— even withCurrent as its target — check the class invariant, but
an unqualified call won't.

Clause2 only applies to qualified calls. Clearly, a routinef a classC
can call another routingof C on the current object unqualified, regardless
of the export status of. But in a qualified calk.s(...) the routines must
always be exported 16, even ifx is oftypeC.

Because this property sometimes surprises programmers accustomed to
the conventions of other languages, it is useful to make it prominent:

Export Status principle

The export status of a featufre

» Constrains alfjualifiedcallsx.f (...), including those in which
the type ofx is thecurrent type, or i€urrent itself.
» Does not constrainnqualified calls.

This is a validity property, but it has no code since it is not a separate rule,
just a restatement for emphasis of condigayf the Export rule.

That clause also takes care of the multi-dot caset.lmc, the target,
a.b, must itself satisfy the same condition. (This use of recursion is
justified since the target has one more level of dot notation than the original
Call, so the recursion cannot go on forever.)

In such multi-dot calls, all that counts is availability to the cl@sshere
the call appears; availability to intermediate classes is irrelevant. For
example, ifC contains the call

next_paragraphline (3).second_wordset_font(Bold) [3]

626

FEATURE CALL §23.10

o]

where successive features are of tyPBRAGRAPHLINE and WORD
export validity means th&]ARAGRAPHNust make functiofine available
to C, LINE must makesecond_wordvailable toC, andWORDmMust make
set_fontavailable taC. It does not matter whetheecond_wordk available
to PARAGRAPHor set_fonis available td_INE. To understand why, note
that any such call may be rephrased in single-dot form:

I: LINE; w: WORD

| := next_paragraphline (3)
w:=l.second_word
wi.set_font(Bold)

This shows multi-dot notation as just a notational facility — although an
important one, avoiding the need for intermediate variables suciralsy.

Argument validity

WAL LD

The second component of Class-Level validity ensures that the number and
types of actual arguments match those of formals:

Argument rule VUAR
An exp_ort-.valid call of target type ST and f_eaturefname . TheSin STandsfis for
appearing in a clags where it denotes a featugéis argument- “static”. See“Descen-
valid if and only if it satisfies the following conditions: dant Agument rule”,

. page 659
1 « The number of actual arguments is the same as the numbegr ol

formal arguments declared fsk

2 *Every actual argument of the call @mpatiblewith the
corresponding formal argument sif

For simplicity, the definition assumes export validity, ensuring tleatsts.

Condition2 is the fundamental type rule on argument passing, which
allowed thediscussion of direct reattachment to tréstsignmentand _ pageroLE OF
actual-formal association in the same way. An expressiaoispatible REATACHMENT

: L : it OPERATIONS’, 22.2,
with an entity if its type either conforms or converts to the entity’s typ 580

In a generic context, conditidhrelies on theGenericType Adaptation . pagessg
rule: in a calla.sf (y) wherea is of typeC [T] andC [G] has the routine
sf(x: G), the type to whicly must conform isT — not G, which makes nc
sense outside of the text ©f

§23.10 CLASS VALIDITY 627

A call to a feature with no arguments trivially satisfies the Argument rule
if it doesn’t include anyActuals As noted at the beginning of this chapter,
it's syntactically illegal to write a call ai() or x.f (); either the feature has
formal arguments and you must specify the correspondingials in
parentheses, or it doesn’t and you just don'’t includefaniyalslist.

A consequence of the Arguments rule is that Eiffel doesn't directly

@ allow a routine to be called with a variable numbers of arguments. But

FEMY there’'s an easy way to achieve this purpose: simply give the routine a
formal argument of a tuple type. With

Li] ‘ print_formated(values TUPLE[STRING) ‘
Tq

a corresponding call may have any number of arguments greater than one
aslong asthe firstis&TRINGrepresenting a format). Clients may call it as

‘ print_formatted(some_formatint, re, str) ‘

whatever the types aft, re, str, as long as the routine body handles
them properly.

Target validity and Void-Safe Eiffel

The last component of Class-Level validity guarantees that a.ddll..) can
never fail at run time becausdgurned out to be attached to a void reference:
Target rule VUTA
T An Object_callis target-valid if and only if either:

1 « It isunqualified.
2 o |ts target is amttached xpression.

Unqualified calls (casg) are always target-valid since they are applied to
the current object, which by construction is not void.

Another way of expressing this observation is to note that an unqualified calll

g (...) is always the result of a qualified callf (...) (or of an original root) o
call tof, startinga system), wheré directly or indirectly, callgy unqualified %W
on the same targetthat was used fof; thatx cannot have been void since

the call tof would then never have started in the first place. Put yet another

way, the unqualified call is generally equivalentGairrent .g (...) where

Current, representing the current object, is never void.

628 FEATURE CALL §23.11

For the target expressianto be “attached, in case2, means that the
program text guarantees — statically, that is to say through rules enforced
by compilers — thak will never be void at run time. This may be because

X is an entity declared as attached (so that the validity rules ensure it can
never be attached a void value) or because the context of the call precludes
voidness, as in ik /= Void then x.f (...) end for a local variablex. The
precisedefinition will cover all these cases.

Combining the rules

Class-Level validity is the combination of the previous three constraints,
and is the basic validity rule for calls:

Class-Level Call rule VUCC

T A call of target typeSTis class-validif and only if it is export-
valid, amgument-alid andtamget-\alid.

The last requirement, target validity, may raise issues for older Eiffel
systems not yet checked for this property. The Standard, for that reason,
allows compilers to offer a special tolerance, with the associated risk of
run-time failure, as a temporary measure to facilitate transition:

] Void-Unsafe
I A language processing tool may, as a temporary migration facility,

provide an option that waives tharget validity requirement in
classvalidity. Systems processed under such an optiorveaice
unsafe Void-unsafe systems are not valid Eiffel systems.

23.11 INTRODUCTION TO CALL SEMANTICS

Let us now examine the semantics of calls. This section and the next few

discuss the concepts; the formal rules are collected anthe . “PRECISE CALL

_ _ _ _ . SEMANTICS”, 23.17,
It will suffice to consider as working example a qualifieal| page 643

Li] ‘ target. fname(yy, ..., Yp) ‘
Tq

wheretargetis an expressiorfnameis a feature name of the appropriate
class, and thg are expressions. We may further assumettrgetis either
aParenthesizeexpression or a singlénqualified_callin other words that
theCall is not a multi-dot of the forra.b.cfname(...).

Concentrating on this example simplifies the discussion but doesn’t lose
any generality:

§23.11 INTRODUCTION TO CALL SEMANTICS 629

« By not considering multi-dot expressions we simply understand a multi-
dot call as a succession of single-dot calls, as indbeve call to _ 3], pages2s
set_fontThe formal semantic definition will justify this equivalence

» We alreadynoted that infix, prefix and bracket expressions always h=2\@pcrat0R AND
an Equivalent Dot Form. BRACKET FORMS”,
23.5, pae 616

« If there are no arguments, we simply consider ithiatzero.

* Lastly, what of unqualified calfmame(y; ..., y,)? We'll also be able to
handle them as a special case of qualified calls thanks to the notion of
current objectas discussed below.

We will also assume, on the basis of the preceding discussion of Void-Safe
Eiffel, that at the time of executiorarget will not be void: either it is
expanded, directly denoting an object, or it is a reference attached to an
object. This is a universal requirement on call targets; if you want a feature
to work on a void value for one of its operands— definitely a useful
possibility in some cases — you must trgats an argument, not the target.
You can only use as target if its static type is an attached. Remember that
this is not necessarily the declared typef x: if T is not attached you can
use theDbject_test

if x/=Voidthen
x.f (args
-- The static type of this occurrencexak attached T
else
... No calls with targex permitted here..

end

This discussion leads to our first semantic definition for calls:

I B ALANT HoS I

Target Object
Thetarget object of an execution of a®bject_callis:
1 « If the call isqualified: the objecattached to itsamget.
2 «|If it is unqualified: the current object.

? “Current object” has only been defined informally so far and its precise

definition isforthcoming. The definitions, however, avoid circularity. - “Curr ent object,
. . . .) o currentroutine”, page
The notion of target object is used in all the semantic specifications for 641

in the rest of this chapter.

n.

In the qualified case (cadg you will use, to obtain the target’s value,
the rules of expression semantics. They yield the target object itself for an
expanded type, and for a reference type a reference attached to that object.

630

FEATURE CALL §23.12

The validity rules, as noted, prevent a void reference. For compilers that
support an option that doesn't enforce void-safety requirements, we
provide an exception type anyway:

Failed target evaluation of a void-unsafe system

In the execution of an (invalid) system compiledvioid-unsafe
mode through a language processing tool offering such a migration
option, an attempt to execute a dafjgers, if it evaluates the target
to a void reference, axceptionof typeVOID TARGET

23.12 DYNAMIC BINDING

So we want to execute or evaluateget.fname(args) at a certain instant
of system execution, on a non-vaétget

"Executé for an instruction, evaluaté for an expression. The rest of the
discussion uses the first of these terms for simplicity, except when the context

implies an expression. TheD in the type and

Assumed to be non-voitarget_valuds attached to a target obje@D. OD f&i,isa%é}gfﬁeséigfs for

is a direct instance of some typd, of base clasB. D (the generating clas"static'.
of OD) must be effective: otherwidaT could not have any direct instance.

The expressiortarget_valuehas a certain typ&T, of base classs. "Generating class
Recall thatSTis also called — when we need more precision —dtagic -~ P39
type oftarget andDT its dynamic type at the time the call is executed. Tisog “Type of an
static type is obvious from the software text and is fixed for any occurrexpression”. page 774
of target in that text; polymorphism means that the dynamic type ro-YMORPHISM,

X \ ! 22.11, pae 598
change in successive executions of the call, as a result of reattachm:

The typing constraintgmply thatDT will always conform toST, and - ‘Reattadimenprin-
hence thab is a descendant & The validity rules just seen imply that treiPle". page 591
feature of the callfname must be the final name i8 of a feature ofS
available to the class which includes the call.dfdte that feature.

Actually, as you guessed, we couldn’t care less abbltsingsffor the
call would be committing the gravest possible crime in object technology:
static binding. What matters is not the type tdrget(what was declared
in the software text) but the type of the object attachedlatget value
(what is actually found at run time). Using that tyf¥[, to determine the
appropriate feature, yields the appropriate poligyiamic binding.

The feature to be usedf, is the version o§fthat applies td and hence
to DT. The two features will be different DT or some intermediate class
has redefinedf. The purpose of such a redefinition is precisely to ensure
that the feature performs for instancedf in a way that differs from its
default behavior for instances 8 Not using the redefined version would
mean renouncing the power of the inheritance mechanism.

§23.13 THE IMPORTANCE OF BEING DYNAMIC 631

The word "version", as used here, has a precise meaning, defined as part of

inheritance. Every feature of a class has a sindigmicbindingversion” -~ “Dynamic binding
in any descendant of that class; that version is the result of applying ar/esion”. e 460
redefinition, undefinition or effecting that may have occurred since the

original introduction of the feature. The definition takes into account the cas

of repeated inheritance, for which the Select subclause removes any

ambiguity that could be caused by conflicting redefinitions on different

inheritance paths, or by the replication of an attribute.

The following semantic definition captures dynamic binding:

I B ALANT HoS I

Dynamic feature of a call

Consider an execution of a call featurefnameandtargetobject
O. Let SThe itstamettype andDT the type ofO. The dynamic
feature of the call is thedynamicbinding version inDT of the
feature of naméamein ST

Behind the soundness of this definition stands a significant part of the
validity machinery of the language:

* Therules on reattachment imply thHaT conforms toST. - ‘I‘Rfaattamngggprin-
» The Export rule imply thatfnameis the name of a feature &T Cpe. page 5=
(meaning a feature of the base clasSDHf &Fw_@g

» As aconsequence, this feature has a versi@Tirt might have several
but the definition of “dynamic binding version” removes any ambiguity.

Combining the last two semantic definitions enables the rest of the
semantic discussion to take for granted, for any execution of a qualified
call, that we know both the target object and the feature to execute. In other
words, we've taken care of the two key parts@bject_callsemantics,
although we still have to integrate a few details and special cases.

23.13 THE IMPORTANCE OF BEING DYNAMIC

[]

Dynamic binding is not just a useful convention but a condition of
correctness. Every qualified call to an exported routine of a class must

preserve its invariant, so as never to produce an inconsistent object - As required by the
that would not satisfy the invariant of its own generating class. This mlggggzg?enngfgﬁ
thatsf must preserve the invariaBt of S, anddf the invariantDI of D (a 243
possiblystrengthened form dl). But there is of course no requireme- As implied by the
that sf preserveDI; in fact, the designer of usually did not even knomfofg?ggr‘wgfs%
about clas®D, which may have be written much later by someone €page 281
Static binding could then apply to an obje@®D, a featuresf, which does

not preserve the invariant of the generating class — the ultimate disaster in

the execution of a software system.

632 FEATURE CALL §23.13

Dynamic binding, then, is the only meaningful policy. In some cases, of
course sfanddf are the same feature because no redefinition has occurred
betweerSandD, or simply becaus8andD are the same class. Then static
and dynamic binding trivially have the same semantics. A compiler or
other language processing tool which is able to detect such situations
through careful analysis of a system’s source text use this insight to
generate slightly more efficient object code. This is perfectly acceptable as
long as the system’s run-time behavior implements the semantics of
dynamic binding.

Beyond its theoretical necessity, dynamic binding plays an essential
role in the Eiffel approach to software structuring. It means that clients of
a number of classes providing alternative implementations of a certain
facility can let the mechanisms of Eiffel execution select the appropriate
implementation automatically, based on the form of each polymorphic
entity at the time of execution.

Kinds of
CUSTOMER invoice customer

invoicett / \ invoicet*
CHARGE CASH_
CUSTOME CUSTOME;’

As a typical example, assume a cl@&$STOMERwith a procedurévoice
=5 ysed to bill customers. Heirs CHARGE CUSTOMER and
] CASH_CUSTOMEmRay redefine this procedure in two different ways to
account for different forms of invoicing. Then ¥ariable ¢ of type
CUSTOMERmMay be attached, at some run-time instant, to an instance of
CHARGE_CUSTOMERr CASH_CUSTOMERA call of the form

c.invoice

will, thanks to dynamic binding, be treated appropriately in each case.

This is a great advantage for the authors of client classes containing
such calls, since they do not need to test explicitly for every possible case
(charge customer, cash customer), and may integrate the introduction of a
new case — such as check customers — at minimal change in their classes.

§23.14 ONCE ROUTINES 633

23.14 ONCE ROUTINES

We know the target of the call is not void, and we know (through dynamic
binding) what feature was really meant. So the next thing to do is to execute
the associated routine body, right? Wrong. The routine might beca
routine, designed to be executed only once, or once in a while.

Once basics

As you will remember, &outine_bodymay start (other thadeferred and —~ “ROUTINE
external cases) not only witllo but also with the keywordnce possibly BOPY".-8.5.page218
followed by one or more “once keys” in parentheses as in
once("THREAD).

In the basic case without once keys, this means that you want the
routine’s body to be executed at most once in the entire system execution.
The first time — if at all — someone calls the routine, its body will be
executed, with the actual arguments given if any; if it's a function, it will
return its result normally. Any subsequent call, however, will not cause any
new execution of the routine body or initialization of local variables; it will
return immediately to the caller, giving as result — if the routine is a
function — the value recomputed by the first call, whether an object (if the
result type is expanded) or an object reference.

A constraint on once functions was introduced as part of feature _ page160
Declaratiorrule (conditiong): if the enclosing class is generic, the result type

may not be one of the formalenericparameters. This is necessary for the

function to provide a consistent result: since the first client that calls the

function will determine the result of all later calls, the result type must be
meaningful for all clients; but different clients may use different actual

generic parameters for the class. The formal parameter, which stands for any
possible actual generic parameter, would represent incompatible types.

Once uses

TheOncemechanism is a versatile tool allowing flexible initialization and
access to shared information in an O-O environment. In particular:

» Smart initialization : to make sure that a library works on a properly
initialized setup, write the initialization procedure a®aceand include
acalltoitatthe beginning of every externally callable routine of the library.

634 FEATURE CALL §23.14

The alternative would be to require clients to take care of the setup
themselves by calling an initialization procedure;. Because this is error-
prone, you'll want to check in the library itself that the initialization has been

done; but then you might just as well take care of it silently and avoid

bothering clients. In any case, you need a way to find out if initialization has
indeed been done, typically through a flag — which must also have been
initialized, only pushing the problem further. Once procedures provide a
general solution.

» Shared objects To let various components of a system share an object,
represent it as a once function that creates the object. Clients will just
“call” that function, although in all cases but the first such a call just
returns a reference to the object created the first time around.

In this last case, the scheme is a common one in Eiffel programming:

-- A single object useful to several clients
once
... ; create Result

| 4 | shared_objectSOME_REFERENCE_TYPE

end

This declaration may for example appear in a service class inherited by the
affected clients.

Predefined once keys

What exactly does “once” mean? By default, the semantics is to execute the
routine body once over every execution of a system. By using once keys,
however, you may exert finer control, specifying an execution every once

in a specific while. For example by declaring a routine as

r: SOME_TYPE
-- A single object useful to several clients
once ("OBJECT)

k

end

§23.14 ONCE ROUTINES 635

you specify that the body will be executed the first time it is callecuoyn
specific instanceof the class. This provides welcome flexibility. Assume
for example that some objects have associated information, much bigger
than the object itself and needed only in certain cases. This could be
(among many other examples) the list of all previous states of an object
stored in a database. It's not something that you want to load by defaultinto
memory with every object that you retrieve from the database; but it should
be easy to access when you need it. The following function does the job
smoothly and (for the programmer) effortlessly:

I

history. ARRAY[like Current)
-- A single object useful to several clients
once ("OBJECT)
create Result(...)
.. Retrieve previous values and flesultwith them...

end

Traditional programming techniques — using flags to check whether the
function has been called — would be quite cumbersome here, especially if
you have a need for several such functions.

The following once keys have a preset meaning:

"OBJECT -- Once for each instance
"THREAD -- Once per execution of a thread
"PROCESS -- Once per execution of a process

"PROCESS:is the default, equivalent to not specifying a once key.

Further once tuning

For even more flexibility, you may define your own meaning of “while” in
“once in a while”. You'll do this by choosing as once key an arbitrary
string, beyond the three possibilities listed above. You can take advantage
of this possibility in two ways.

First, you can control the meaning from outside of the Eiffel text, by
defining it in theonceclause of the Ace file. The recommended convent- “ONCE CON-
in this case is to use a once key of the fdKEYNAME using the dollar™OL" B.11. pae
sign that serves in some scripting languages to denote the value™ =7 .
variable. The Ace specification can set the key to mean, for example,
THREAD in some executions anBROCESSn others, depending for
example on the amount of multi-threading supported.

In the Eiffel text itself, you can go further by deciding when once is
enough and when you want more of it. More precisely you medriesh a
once key; this means that the next call of any once routine that lists it as one

636 FEATURE CALL §23.14

of its once keys will execute its body. To refresh keys, clabg has a
featureoncesof type ONCE_MANAGERa KernelLibrary class) which . ONCE_MAMGER
you can use for such calls as A.6.29. pae 1000

oncesrefresh("SOME_KEY)
oncesrefresh_som{"SOME_KEY, "OTHER_KEY])
oncesrefresh_all
oncesrefresh_all_excepf"SOME_KEY, "OTHER_KEY])

You can also quergnces nonfresh_keygeturning an array of strings, to
find out what keys have been exercised by at most one function.

A possible way to implement featuosicesin classANYis to make it a once
function itself.

These are clearly advanced techniques, but they can help considerably in
the building of sophisticated systems.

Once routine semantics

In defining the semantics of once routines we will rely on the following
notion whose meaning follows directly from the preceding discussion:

Ll Freshness of a once routine call

During execution, a call whose feature igreceroutiner is fresh
if and only if every feature call started so far satisfies any of the
following conditions:
1 « It did not use asdynamic feature.
2 *ltwas in a different thread, amdhas the once keyTHREAD'.

3 ¢ Its target was not the current object, andas the once key
"OBJECT.

4 « After it was started, a call was executed to one of the
refreshing features adncesfrom ANY including among the
keys to be refreshed at least one of the once kays of

Note thateverycall started so far has to satisipyof the conditions listed.
Sor is fresh for example if:

I « [t hasn't been called at all.

It has been called on different objects, and is declared
once("OBJECT).

« It's declaredonce("SOME_KEY) and there has been, since the last
applicable execution af a calloncesrefresh("SOME_KEY).

§23.14 ONCE ROUTINES

637

An applicable call — for example, with the once K&YBJECT, a call on
the same object — makesinfresh again, since the rule’s conditions have
to apply to every call started so far.

The calloncesrefresh_allis understood to refresh all once routines,

including those without an explicit once key.

Also note that the condition applies to cadimrtedso far; so if a once

Latest applicable target of a non-fresh call

The latest applicable target of a non-fresh call to aonce
function df to a target objecD is last value to which it was
attached in the call tdf most recently started on:

1 «If df has the once keyOBJECT: O.

2 « Otherwise, ifdf has the once keyOBJECT: any target in the
current thread.

3 « Otherwise: any target in any thread.

routine is directly or indirectly recursive, its self-calls will not execute the
body (in the absence of an intervening explicit refresh) and, for a function,
they will return theResultas computed so far.

From these observations we may define the semantics of a call to a once

I!-!-'i'.'i"-ll: -I

Once Routine Execution Semantics

The effect of executing @nce routinalf on atamet objeciO is:

1« If the call isfresh: that of a non-once call made of the sarn
elements, as determined by tlien-onceRoutineExecutiorrule.

2 «If the call is not fresh and the last executionf @i thelatest
applicabletamet triggered anexception: to trigger again an
identical exception. The remaining cases do not then app

3 ¢ If the call is not fresh andf is a procedure: no further effect.

4 «|f the call is not fresh andf is a function: to attach the local
variableResult for df to thereused tayet of the call.

routine. For fresh calls a once routine behaves like a non-once routine, and
the rule correspondingly refers to the Non-Once Call Routine Execution
rule appearingdater in this chapter:

- “Non-Once Rou-
tine Execution rule”,
page 644

638

FEATURE CALL §23.15

Case2 is known as bnce an once exception, always a once exceptlbn

a call to a once routine yields an exception, then all subsequent calls for the
same applicable target, which would normally yield no further effect (for a
procedure, casg) or return the same value (for a function, cdyshould
follow the same general idea and, by re-triggering the exception, repeatedly
tell the client — if the client is repeatedly asking — that the requested
effect or value is impossible to provide.

There is a little subtlety in the definition of “latest applicable target” as
used in casd. For a once function that has already been evaluated (is not
fresh), the specification does not state that subsequent calls return the result
of the first, but that they yield the value of the predefined erRiggult
Usually this is the same, since the first call returned its value thrqia5oy detected
Result But if the function isrecursive, a new call may start before the firthis case
one has terminated, so the “result of the first call” would not be a
meaningful notion. The specification states that in this case the recursive
call will return whatever value the first call has obtained so faResult
(starting with the default initialization). A recursive once function is a bit
bizarre, and of little apparent use, but no validity constraint disallows it,
and the semantics must cover all valid cases.

The Once Routine Execution rule describes the effect of executing a
Call once we know its run-time featurdf, its target objectO and its
argumentsrg_valuesFor the full context, we need the general semantics
rule for calls, which comes at the end of this chapter and, in the once case,
relies on the above rule to specify the effect of the call once its components
have been determined.

23.15 ATTRIBUTES AND EXTERNALS

We may now concentrate on the case of a qualifidgect callwhose
feature is not a once routine. From the discussion of features and rou: Chapterss ands.
the dynamic feature of the call, if not a “once”, may be one of:

S1 «An attribute

S2 «An external routine (whose implementation is outside the system’s
direct reach, being written in another language).

S3 *A non-once, non-external routine.

The syntax for Routine_bodyincludes a fifth case: a routine with - page218
deferred body. This case doesn’t apply here, however, since as noted ¢
D has a direct instance and hence must be effective.

In caseSl, dfis an attribute; the obje€@D has a field corresponding to
df. Then the call is an expression, whose value is that field. The sole effect
of the call is to return that value.

§23.16 THE MACHINERY OF EXECUTING CALLS 639

In caseS2, df is anexternal routine; execution of the call will mean
passing the values of the actual arguments to that external routine, waiting
for it to complete its execution, and obtaining its result if it is a function.
The semantics of argument passing and of routine execution — which may
depend on the conventions of the routine’s native language — are

examined in thehapter on interfaces with other languages. - Chapter3l
Note that the target object i®t passed by default to an external routine. If
- it's needed for the computation, you should pass it as actual argument to the

routine, which should include a corresponding formal.

These two cases will be integrated in the final call semantics rule. Fc-. "General Call
moment we may concentrate on the remaining one. Semantics”. pge 645

23.16 THE MACHINERY OF EXECUTING CALLS

We’'ll investigate the effect of a non-once, non-external routig® ©f
actual argumentargs, target objecO and dynamic featurdf. This will
also lead us to the semantic notions of current object and current routine.

Scheme for a routine call

The semantic rule will specify the effect of the call as the result of applying

a sequence of steps. This doesn’'t mean that the code must execute these
exact steps, only that its effect must be the same as if it did. Somewhat
informally and ignoring assertion monitoring, the steps are:

1+Using the semantics of direct reattachment, attach every for>=emanTICS OF

argument ofif to the value of the corresponding actual frangs. REATTACHMENT?”,
_ _ _ 22.7, pae 585
2 «If df has any local variables, save their current values if any cdlitas

been started but not yet terminated; then initialize each local variat
the default value of its type.

3 «If df is a function, initialize the predefined entiResultto the default
value for the function’s return type.

4 « Execute theCompound of df's Internal body, according to the
conventions described next.

5 «If dfis a function, the call is an expression. The value returned for that
expression is the value Besultafter the previous step.

6 ¢ If the values of local variables have been saved udeestore the
variables to these earlier values.

TheArgumentule ensure that in stelpthe actual arguments (if any) matc: page626
the formals in number, and that each actual is compatible with (confc
or converts to) the corresponding formal.

In step 2, the default initialization values are the same as for the
initialization of attributes in &reationinstruction.

640

FEATURE CALL §23.16

The saving oflocal variables undeR, and their restoring unded; are The local variables
necessary because routines may be directly or indirectly recursivencludeResult
body ofdf may contain a call to another routine, and that routine may »=ac YA RIABLES
Yy Y ! , Y AND RESUIT’, 8.6
out to bedf, or it may recursively caltif. As a result, steg may start thepace 221
whole process again on the same routine. The saving and restoring ensure
that each incarnation aff recovers its local variables when it is resumed

after a recursive call.

Current object and routine

- =

k

To interpret theCompoundof a routine’sinternalbody in step4, a little
mystery remains. Assume the text of routidé in classD, has the
following simple form:

fname The feature name might
do be something other
thanfnameas a result
some_proc of renaming
X.other_proc
end

wherex is an attribute oD, some_pro@ procedure ob, andother_proc
is a procedure applicable 0 Step4 — the core of the call’'s execution —
consists of executing the two instructions of @enpound

But what exactly do they mean? What deegepresent? To what object
should the computation appdpme_pro@

To answer these questions we must put ourselves in the global context
of system execution and remember how anything ever gets executed.
Quoting from a vergarly part of this book:

To execute (or “run”) asystem on anachine means to cause the - %fltflm‘%
machine to apply a creation instruction to the system’s root class. P

In all but trivial cases, the root’s creation procedure will create more
objects and execute more calls. This extremely simple semantic definition
of system execution has as its immediate consequence to yield a precise
definition of thecurrent objectand current routine At any time during
execution, the current object is the object to which the latest non-completed
routine call applies, and the current routimés the feature of that call:

Claused addressescbnstructs whose semantics does not involve aather

than “constructs other than a call”). This is because the semantics of a construct
that is not a calls may involve a call; this is the case witltapressionwhose
semantics is defined through an Equivalent Dot Form denoting a call.

§23.16 THE MACHINERY OF EXECUTING CALLS 641

Current object, current routine

At any time during the execution of a system there @ierent
object CO and acurrent routine cr defined as follows:

1 « At the start of the executio®QOis therootobject andr is the
root procedure.

2 « If cr executes gualifiedcall: the call’'stargetobject becomes
the new current object, and itlynamicfeature becomes the
new current routine. When the qualified call terminates, the
earlier current object and routine resume their roles.

3 «If cr executes amnqualifiedcall: the current object remaing
the same, and thdynamicfeature of the call becomes th
current routine for the duration of the call as in case

4 « If cr starts executing any construct whose semantics does not
involve a call: the current object and current routine remain
the same.

(O

Note the implicit recursion in casg to know the target object of a call
target.fname(args), we must evaluatéarget which may itself be a call,
whose evaluation requires using the above rule recursively.

There appears to be a cycle in the definitions since this definition of current

object and current routine refers to “dynamic featudgfined in terms of ~ ~ Page631

“target object”, itselfdefined in terms of “current object”. You will note on — Page629

closer examination, however, that this is not a real problem: the definition ot

target objectonly refers to the current object in the case of an - Clause2, paje 629
Unqualified_call for which the relevantlause in the definition of current _ Clause3, paye 641
object retains an object already known from the context.

Naming the current object

Even though the current object is at the heart of the execution machinery,
most calls in dot notation do not refer explicitly to the current object: if you
need aCall with the current object as target, you may just write it as an
Unqualified_call which does not name its target.

642 FEATURE CALL §23.16

For some other kinds of operation, however, you may need an explicit
notation to refer to the current object. An example is equality comparison.
Assume a function computing the distance between two points, which
might be written in a clad8OINT as

distancealias"|-|" (other. POINT): REAL
-- Distance of current point wther.
do

=
H

end

The routine’s implementation may need to determine whetheother
point is in fact the same point as the current object:

if “otheris not the same as the current pothen
Result="... Normal distance computation”
end
-- OtherwiseResultwill be zero

To express the condition aftéryou may use the predefined enityrrent :

if Current /= othathen ... ‘

As noted above, annqualified_calkuch asome_proor x does not need
to useCurrent explicitly as its target, although you may if you want to:

Current .some_proc
Current .x

with the only difference that, under assertion monitoring, qualified calls
such as these cause evaluation of the invariant; unqualified calls don't.

It may also be convenient to ugeurrent in connection with binary
features. Thanks to the infix alid$-|", you may use the abowdistance
function to express the distance of two poiptsand p2 aspl |-| p2 To
express in a similar form the distancgof the current point, you may write

‘ Current |—|p2 ‘

but even this use dEurrent is not strictly necessary, since there’s always
an identifier name, hemdistance for such a feature, so that you may also
use the plairunqualified_call

‘ distance(p2)

Similarly, if a class contains a unary functioegatedalias "-", you may
express the negation of the current object-aSurrent as well as just
negated

§23.17 PRECISE CALL SEMANTICS 643

Current, as indicated by its place in the syntax as one of the choices fQx oo 55 10ns
the construcRead_onlyis aread-onlyentity: you can’t assign to it, Or USAND ENTITIES”
it at the target of a creation instruction. A notation such as 19.8. pge 504

Current.q:=V [4]

is permitted only ifq is a query of the enclosing class and it has an
associateassignerprocedure, sayp. Then[1] is simply a shorthand for_ ..o cner

an unqualified call CALL", 22.12, pae
599
p (V) [5]

If g has argumentsCurrent.q (al,a2):=v is an abbreviation for
p(al, a2 v). In either case, the instruction can’t chaQygrent .

The following rule gives the precise meaning dEurrent,
distinguishing in particular between reference and expanded cases:

I B ALANT HoS I

Current Semantics

The value of the predefined enti@urrent at any time during
execution is theurrentobject if thecurrentroutine belongs to an
expanded class, and a reference to the current object otherw

Se.

23.17 PRECISE CALL SEMANTICS

We can now collect into precise rules the understanding of call semantics
developed over the preceding sections. The rule fotoa_object_call
appeared at thireginning of this chapter, so we only need to consider * “Non-Object Call

case of atDbject_call For once routines we may refer to #aglier rule. Semantics’page623;
“Once Routine Execu-

tion Semantics”, pge

Rule for non-once routines 637

Assume we have afbject_calland, at a particular stage of execution, we
know the target object, the dynamic feature — which is not a “once” — and
the argument values. Here then is the effect:

General call semantics

We have semantics for executing routines, both oncegénker rule) and .- “Once RoutineExe-
non-once (the last rule). To have the full semantics of calls we need aw“g%g;w
general rule, since: page oa¢

« Both of the previous rules assumed that we know the target object, the
dynamic feature, and argument values. But the form of a qualified call,
target.fname (args), doesn’t give us that information; the execution
must obtain the target object fratarget, the dynamic feature from that
object andfname and the argument values froangs We've actually

644

FEATURE CALL §23.17

Non-Once Routine Execution rule

The effect of executing a noorRce routinalf on atargetobjectO

is the effect of the following sequence of steps:

1.If df has any local variables, includinBesult if df is a
function, save their current values if any calldbhas been
started but not yet terminated.

2 * Execute the body aff.

3 ¢ If the values of any local variables have been saved inktep
restore the variables to their earlier values.

given ourselveshe rulesto do this; but to make the semantics preci— “Target Object”
we need to specify therder in which to apply these rules. We'll requir?eaggngf ‘;Dé/glimic
that the target be evaluated first, giving us the dynamic feature g 631
consequence, and then the arguments in the order listed.

* The rules covered non-external routines only; we must include
attributes and external routines, two cases discustathally so far. _ ., rrriguTES

« Execution of the feature body (st@pf the last rule) may use the formAND EXTERKLS",

arguments. We need to specify how to attach them to the actuals’ v 1o pae 638

« Finally, the scheme does not yet include assertion monitoring.

§23.17 PRECISE CALL SEMANTICS

645

The following rule fills these gaps:

General Call Semantics

The effect of arDbject_callof featuresfis, in the absence of any

exception, the effect of the following sequence of steps:

1 - Determine théargetobjectO through the applicable definition

2 ¢ AttachCurrent to O.

3 ¢« Determine thedynamic feature df of the call through the
applicable definition.

4 < For every actual argumeat if any, in the order listed: obtain
thevaluev of g; then if thetype ofa converts to the type of the
corresponding formal irsf, replacev by the result of the
applicable conversion. Letrg values be the resulting
sequence of all such

5 « Attach every formal argument dfto the corresponding elemery
of arg_valuedy applying the Reattachment Semantics rule.

6 «If the call isqualified and class invariant monitoring is or
evaluate the class invariant©% base type of.

7 « If precondition monitoring is on, evaluate the preconditiodfof

8 «If df is not an attribute, not anceroutine and not external
apply theNon-Once Routine Escution rule tdO anddf.

9 «If dfis a once routine, apply tH@nceRoutineExecutionrule
to O anddf.

—

N

10 If df is an external routine, execute that routine on the actual

arguments given, if any, according to the rules of the langu
in which it is written.

11 -If df is a self-initializing attribute and has not yet bee
initialized, initialize it through th®efault Initialization rule.

12 -If the call isqualified and class invariant monitoring is or
evaluate the class invariant©% base type of.

13 -If postcondition monitoring is on, evaluate the postconditi
of df.

An exception occurring during any of these steps causes

age

h

4

on

the

execution to skip the remaining parts of this process and instead

handle the exception according to Eeception Semantics rule

~ Page629

~ “Reattachment
Semantics”, pge 592

For stepsl and3, the “applicable definitions” are those of Target Object
and Dynamic Feature, as recalled above.

646 FEATURE CALL §23.17

There is considerable implicit recursion in this definition: the target and the
argument are expressions, and in many cases they will be calls, or operator
expressions whose semantics is also defined as call semantics. So it steps
3 and 4 we are potentially relying on the semantic rules of this chapter,
including the above rule itself. The rule for once routines relies, for fresh
calls, on the rule for non-once routines, so Stegain causes recursion.

A Step4 specifies a somewhat subtle but important property: the precedence,
S ™= statically, of convertibility over conformance. We know that every actual
“'ETm“ argument must beompatible withthe corresponding formal: conform or

convert to it. System validity will ensure that this requirement applies both
to the “static” version of the featurdf and to the “dynamic” versiosf.
Remember thadfis the feature named known from the text of the call: with
x.f (el) if x is of type S sfis the feature of naméin S as a result of
dynamic binding, ifx at execution time is attached to an object of a
descendant typp, thendfis the version iD.

Effect of

fa:T) /éj 4+ /a X S redefinition on
- (The “sf’ version) x.f (el) el: E a client call

Conforms

f (a: U)

-- (The “df’ version)

But while we want the typ& of elto be compatible with the formal

arguments to both thef anddf, we want it, for every one of thenm the

same variant either conformance in both cases, or convertibility in both

cases. Assume& conforms toT; then it cannot also convert to it. Nov+ “Conversion princi-
assume tha does not conform ttJ, the new formal argument type i, P1&"Pa0e 400

but by some twist of fat& actually convert tdJ. Do we want to accept thi

call as descendant-argument-valid fo? System validity tells us “no”.

Accepting this would be confusing for the authoi@fwho does not realize

that a conversion might be going on (since there’s none in the case of the

original f).

In addition, although this is not the main concern, the compiler writer would
face the similar problem of not knowing whether to generate conversion code
or not for the call.

So stepd requires that we take care of any conversion on the basis of the
argument types for thetatic featuresf, only then, in stef, do we attach the
values of actuals to formals. Note that the types in these attachments may still
be different, but no further conversion will be involved, only conformance.

§23.18 CALLS AS EXPRESSIONS 647

23.18 CALLS AS EXPRESSIONS

The two uses of &Call are, as we know, as amstructionor as an — “Call Use rule”

. ip . . - : page 615 Instruction
Expression specifically theBasic_epressionvariant. If f is a QUErY - ge224 Expression

(attribute or routine), a valid call page753

‘ x.f (args)

or any of the other applicable variants — unqualified, non-object, multi-dot
— is an expression, and can be included in a larger expression, such as
a+Xx.f(args) +h

For the instruction case we've seen all we need about calls. But to
understand an expression we must also knotyjis and itsvalue; these are
defined for every kind of expression and we must now — as the final part of
specifying calls — say what they are for a call used as expression.

First, the type. To make this concept useful in practice we must carry
type analysis across class boundaries by defining the type of widall
respect toa certain type. Assume that in a classC, is of typeD [U],
whereD [G] is a generic class with a queirgf typeG. The Call Expression
Type definition given below will tell us that the type xff is the type off
with respect tahe type ofx, that is to say with respect 0 [U]. Now f, a
qguery ofD, is also a query oD [U] thanks to the definition offéatureof
atype” in the discussion of genericity. Its type as define®iis G, which
in the context ofD [U] we must understand, through the Generic Type
Adaptation rule, as representing the associated actual generic pardmeter,

The following rule determines the type of a call:

I ITEFIMET IS

Type of aCall used as expression
Consider a call denoting an expressiontyise with respect to a
type CT of base clas€ is:

1 « For anunqualified call, its featurébeing aquery of CT: the
result type of theversion off in C, adapted through thgeneric
substitution ofCT.

2 «For aqualified calla.e of Targeta: (recursively) thaypeof e
with respect to the type of

3« ForaNon_object_callrecursively) the type of itsnportedform.

In caseZ, the recursion applies t& the type of the part after the d@,is _ «1ype of aneres-
determined through thgeneral Expression Type definition — itself sion’. page 774(see
course dependerih severalof its clauses, on the type of call expressio@mong othersits clauses

. . 6andll).
causing more recursion.

648

FEATURE CALL §23.18

Finally the semantics. If a call is used as an expression its execution

will, in addition to any other actions, return a result:

Call Result

Consider aCall ¢ whosefeature is aguery. An execution ot
according to theGeneralCall Semantics yields @&all result
defined as follows, wher@ is thetargetobject determined at step
1 of the rule andif thedynamic feature determined at s&p

1 «If df is a non-external, nonacefunction: the value attached
to the local variableResult of df at the end of steg of the
Non-Once Egcution rule.

2 «|If dfis a once function: the value attachedResultas a result

of the application of th®nce Excution rule.
3 «If dfis an attribute: the correspondifigld in O.

according to the external language'’s rule.

4 « If dfis an external function: the result returned by the functipn

For aNon_object_callwhose semantics gefined in terms of the imported .~ “Non-Object Call
form, this definition also applies, as a consequence, to the execution of tiSemantics”, pge 623

imported form.

Functions should not produce any durable change to their environment;

their sole role should be to return their result, and any computation they
prmeon| perform should be auxiliary to that goal. You may usgy postcondition

clauses to turn this methodological advice into an enforceable rule.

This book often refers, especially in tHescussion of expressions, to tt - Chapter2s.
value of a call used as an expression. Here is what this precisely means:

Value of a call expression
The value of a Call c used as an expression is, at any run-time

moment, theesult of executing.

	23 23 Feature call
	23.1 OVERVIEW
	23.2 PARTS OF A CALL
	23.3 USES OF CALLS
	23.4 UNIFORM ACCESS
	23.5 OPERATOR AND BRACKET FORMS
	23.6 COMPLEX TARGETS
	23.7 CALL SYNTAX
	Unqualified, qualified call

	23.8 COMPONENTS OF A CALL
	Target of a call
	Target type of a call
	Feature of a call

	23.9 NON-OBJECT CALLS
	Imported form of a Non_object_call

	23.10 CLASS VALIDITY
	Export validity
	Argument validity
	Target validity and Void-Safe Eiffel
	Combining the rules
	Void-Unsafe

	23.11 INTRODUCTION TO CALL SEMANTICS
	Target Object

	23.12 DYNAMIC BINDING
	Dynamic feature of a call

	23.13 THE IMPORTANCE OF BEING DYNAMIC
	23.14 ONCE ROUTINES
	Once basics
	Once uses
	Predefined once keys
	Further once tuning
	Once routine semantics
	Freshness of a once routine call
	Latest applicable target of a non-fresh call

	23.15 ATTRIBUTES AND EXTERNALS
	23.16 THE MACHINERY OF EXECUTING CALLS
	Scheme for a routine call
	Current object and routine
	Naming the current object

	23.17 PRECISE CALL SEMANTICS
	Rule for non-once routines
	General call semantics

	23.18 CALLS AS EXPRESSIONS
	Type of a Call used as expression

