
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
23
Feature call
23.1 OVERVIEW

How does a software system perform its job — its computations?

It must first set the stage: create the needed objects and attach them to
the appropriate entities. The preceding chapters discussed how to do this.
But once it has the objects in place and knows how to access them, the
system should do something useful with them.

One of the risks with calls in object-oriented languages is thevoid call: a run-
time attempt to apply a feature to an object that doesn’t exist because a
reference is void (or, in other terminology, a pointer is null). Eiffel
distinguishes itself by making such a failure impossible thanks to the notion
of attached typeand associated constructs studied in previous chapters. Here
we will reap the benefits of these mechanisms, which ensure statically — at
compile time — that no Eiffel call can apply to a void target. This removes
the principal source of run-time failure in object-oriented programming.

Three topics related to calls merit their own discussions in other chapters:

• The validity of calls raises the general question oftype checking: how
to make sure that the target of every call will be an object equipped with
the appropriate feature.

• A call has atarget, which must be an object. If the target is known
through a reference, we must be sure that the reference will never be
void upon execution of the call.

• Operator expressions are conceptually calls, but use traditional
mathematical syntax. We’ll see them as part of the chapter on
expressions, although there will be little new to learn about their validity
and semantic properties, which are those of calls.

In Eiffel’s model of computation, the fundamental way to do something
with an object is to apply to it an operation which — because the model is
class-based, and behind every run-time object lurks some class of the
system’s text — must be a feature of the appropriate class.

This is feature call, one of the most important constructs in Eiffel’s
object-oriented approach, and the topic of the following discussions.

→ Chapter25.

→ Chapter24.

→ Chapter28.

FEATURE CALL §23.2614
23.2 PARTS OF A CALL

A call is the application of a certain feature to a certain object, possibly
with arguments. As a consequence, it has three potential components:

• Thetargetof the call, an expression whose value is attached to the object.

• Thefeature of the call, which must be a feature of the object’s type.

• An actual argument list.

The target and argument list are optional; the feature is required.

Here is a typical example showing all three components:

This call usesdot notation. The target of the call isremote_bank; the
feature of the call istransfer_by_wire; and the actual argument list contains
the two elements20000 andToday.

The target is separated from the feature of the call by a period, ordot,
hence “dot notation”.

If the target is the predefined entityCurrent , representing the “current
object” of system execution, as explained below, you may use, instead of
the fully qualified form

a form which leaves the target implicit:

This is still considered to be a case of dot notation even though the dot is
implicit. If the call does include an explicit target and dot, it isqualified;
otherwise, as in the last example, it isunqualified.

In the presence of run-time assertion monitoring, there is a slight semantic
difference between[1] and[2]: a qualified call causes invariant checking, an
unqualified call doesn’t.

A qualified call may have more than one level of qualification and is then
said to be amultidot call, as in

For a feature without arguments, the actual argument list will be absent, as
in the source expression of theAssignment

whereauthorization is a query (attribute or function) without arguments.

In some cases we don’t need a target object (as in a qualified call) but
we still need a target type. IfT is a type, the notation

remote_bank.transfer_by_wire(20000, Today)

Current.print (message) [1]

print (message) [2]

paragraphs(2).line (3).second_word.set_font(Bold)

code:= remote_bank.authorization

→ “Curr ent object,
currentroutine”, page
641.

§23.3 USES OF CALLS 615
denotes a call to a featureconstant_or_externalfrom T. This only makes
sense if the feature is either a constant attribute or an external (non-Eiffel)
feature; anything else would require a target object.

Non_object_call is a shorthand for “non-object-oriented call”, as in
{ T} .f (args) where T is a type. The usual object-oriented style of
computation,x.f (args), requires a target object denoted byx.

Calls may appear in syntactic forms other than dot notation:

• Operator expressions, have the semantics of calls:a – b is, with a
featureminusalias "–", equivalent to the dot-notation calla.minus(b).
Similarly, with item alias "[]" , the expressionx [i] has the same
semantics as the dot-notation callx.item[i].

• You may also write anon-object call of the form{ T} .f whereT is a
type andf is either a constant attribute or an external feature ofT. This
is like a call in dot notation that would not need a target, but only a target
type (to determine whichf to use).

23.3 USES OF CALLS

A call may play either of two syntactic roles: instruction and expression.

A call is a specimen of constructCall, covering dot notation, qualified
or unqualified, and non-object calls.

Operator_expression (in prefix or infix notation) and
Bracket_expressionare always used as expressions, but aCall in dot
notation may be either an instruction or an expression. The syntax
productions for both theInstruction and Expressionconstructs indeed
includeCall as one of the choices. To know which one applies, it suffices
to look at the feature of the call:

This rule has a validity code, so that compilers and other language processing
tools may refer to it when detecting an error such as the use of a procedure
call in an expression.

The above examples used calls totransfer_by_wire, print andset_fontas
instructions, and a call toauthorization as an expression. The calls to
minusalias "–" anditemalias "[]" are also expressions. The non-object call
{T} .f is an instruction iff is a procedure ofT and an expression otherwise.

{ T} .constant_or_external

Call Use rule VUCN
A Call of featuref denotes:
1 • If f is aquery (attribute or a function): an expression.

2 • If f is a procedure: an instruction.

Instruction: page224;
Expression: page753.

FEATURE CALL §23.4616
23.4 UNIFORM ACCESS

An important property applies to dot-notation calls used as expressions: the
notation is exactly the same whether the feature of aCall is a function with
no arguments or an attribute. The expression

wherep1 is of typePERSONis applicable both if the featureageof class
PERSON is a feature of either kind.

If ageis an attribute, every instance ofPERSONhas a field which gives
the value ofagefor the instance. Ifageis a function, that value is obtained,
when requested, through some computation, presumably of the difference
between the current date and a "‘birth date" field. For a client containing
the above call, however, this makes no difference.

This principle of uniform accessfacilitates smooth evolution of
software projects by protecting classes from internal implementation
changes in their suppliers.

23.5 OPERATOR AND BRACKET FORMS

A call serving as an expression may use, instead of dot notation, the
Operator_expressionform based on unary or binary operators. Both of the
two operator expressions, respectively unary (prefix) and binary (infix)

are calls to functions of the Kernel Library classINTEGER: the first, to the
function negatedalias "–"; the second, tominusalias "–". The Feature
Declarationrule requires a feature associated with a unary or binary
operator to be an attribute or function without argument, likenegated, or a
function with one argument, likeminus. Note that here although both are
associated with the same operator– there is no ambiguity since the same
rule guarantees that there is at most one feature for each of these signatures.

The difference between such an operator expression and aCall is only
syntactical. You may also write the above two expressions as:

with exactly the same effect.

The syntax ofCall requires putting in “targetparentheses”(| … |) around a
Manifest_constant, such as1 or 4, to use it as target of a call.

Similarly, a bracket expression such as

pl.age

– 1
4 – 3

(|1|).negated
(|4|).minus(3)

your_array

← First discussed in
“UNIFORMACCESS”,
23.4, page 616.

← Page160, clause7;
see clause1.of “Alias
Validity rule”, page
162.

→ “COMPLEX TAR-
GETS”, 23.6,page617
below.

[some_index]

§23.6 COMPLEX TARGETS 617
based on the featureitem alias"[]" in classARRAY, has the exact same
semantics as

The discussion of expressions will formalize the correspondence between
the two syntactic forms bydefining anEquivalent Dot Form for any
operator expression.

23.6 COMPLEX TARGETS

In most cases the targetx of a callx.f (…) is just an entity: a local variable,
an attribute, a formal argument. Sometimes you may want to use a non-
elementary expression, such asa + b (wherea and b could be not just
numbers but, for example, of some typeMATRIX). Writing a + b.f (c)
would, according to precedence rules, denote a sum of two elements,a and
the application off to b. If that’s not what you want, you may use a local
variable to specify applyingf instead to the sum ofa andb:

This technique works but forces the introduction of extra local variables.
To avoid them you may use theparenthesized target notation (|
Expression|):

The symbols use parentheses and a vertical bar. They remove any
ambiguity by making clear that the feature,f in this example, is being
applied to the whole expression.

You may also use a parenthesized targetin connection with bracket
notation, as in(| a + b|) [i], assuming the type ofa + b has a bracket feature.

Note that just using parentheses, as in(a + b). f (x), would not be
legal syntactically.

Why indeed not just use plain parentheses? The reason is syntactical. Eiffel
always treats the semicolon separator as redundant, without making any
difference between spaces, new lines and other break characters. If a
parenthesized expression were permitted as target of a call, the assertion

require

h

(a + b).g

your_array

local
sum

do
… sum := a + b
x := sum.f (c) …

end

x := f (c)

.item(some_index)

→ “THE EQUIVA-
LENT DOT FORM”,
28.8, page 771.

(| a + b|).

→ “BRACKET
EXPRESSIONS”,
28.7,page769; see the
syntax on page769.

FEATURE CALL §23.7618
0would include two clauses,. But syntactically the beginning could be
parsed ash (a + b), denoting the application of a functionh to an argumenta
+ b, even though the remainder,.g, doesn’t have a proper syntactical
interpretation.

This syntactical problem is typical of the confusion engendered by the dual
use of parentheses, coming from mathematical conventions: as agrouping
mechanism, as in(a + b); and as a notation forfunction application, as inf
(c). The special symbols(| … |) avoid any such ambiguity.

23.7 CALL SYNTAX

We’ll now examine the syntax of the constructCall, describing calls in dot
notation, qualified or not, and non-object calls.

Prefix

, infix and bracket forms are specimens ofExpression; we’ll see their syntax
in the correspondingchapter, which also defines their semantics in terms of
the semantics of calls.

When present, the optionalActuals part gives the list of actual arguments:

Feature calls
Call =∆ Object_call| Non_object_call

Object_call=∆ [Target"."] Unqualified_call

Unqualified_call=∆ Feature_name[Actuals]

Target =∆ Local| Read_only| Call |
Parenthesized_target

Parenthesized_target=∆ "(|" Expression"|)"

Non_object_call=∆ "{" Type"}" "." Unqualified_call

A call is most commonly of the forma.b.… wherea, b … are features,
possibly with arguments.Targetallows aCall to apply to an explicit target
object (rather then the current object); it can itself be aCall, allowing
multidot calls. Other possible targets are a local variable, aRead_only
(including formal arguments andCurrent) a “non-object call” (studied
below), or a complex expression written as aParenthesized_target(|…|).

Actual arguments
Actuals =∆ "(" Actual_list ")"

Actual_list =∆ { Expression "," …} +

→ “GENERALFORM
OF EXPRESSIONS”,
28.2,page753and rest
s of chapter28.

§23.7 CALL SYNTAX 619
As the specification ofActual_listindicates, anActualsargument list may
not be empty: iff has no formal arguments, you must call it asf or x.f, not
f () or x.f (). This is for simplicity and clarity.

An object-oriented call is eitherqualified or not. It’s qualified if it
involves at least one dot:

Of our earlier examples

the first is unqualified and the second qualified. Both are instructions if we
assume thatprint andset_fontare procedures in their respective classes.
The intermediate components of the second example

are all specimens of construct----------- FIX . They may themselves be
viewed as calls; any such intermediate call must be an expression (rather
than an instruction) so that it may serve as the target of further calls.

The features of all examples so far have arguments. Here are two
examples where the call has no argument:

They assume thatindent is a procedure with no arguments and that
current_fontis an attribute or function without arguments. As a result, the
source the following assignment, in the last example, is a call expression.

Unqualified, qualified call
An Object_callisqualified if it has aTarget,unqualified otherwise.

In equivalent terms, a call is “unqualified” if and only if it consists of just
anUnqualified_call component.

The callf (a) is unqualified,x.f (a) is qualified.

Another equivalent definition, which does not explicitly refer to the
syntax, is that a call is qualified if it contains one or more dots, unqualified
if it has no dots — counting only dots at the dot level, not those that might
appear in arguments; for examplef (a.b) is unqualified.

print (message)
paragraph(2).line (3).second_word.set_font(Bold)

paragraph(2)
paragraph(2).line (3)
paragraph(2).line (3).second_word

paragraph(2).indent;
f := that_word.current_font

TheAddress form for
Actual serves to pass
the address of an Eiffel
feature to a foreign
(non-Eiffel) routine.
See31.8, page 823.

FEATURE CALL §23.8620
For examples of calls using aParenthesized_target, in addition to
(|1|).negatedand(|4|).minus(3) (more simply written as–4 and4 – 3),
assume a classVECTOR with featuresnorm andplus:

Then witha andb of typeVECTOR[T] for some appropriateT you may
use the expressions

both of which apply functionnorm to the result of applying functionplus
to u with argumentv. The syntax specification allows for at most one
Parenthesized_target, at the beginning of theCall. In the second example
theParenthesized_target is followed by theCall norm.f.h.

Thanks to this mechanism, you may use any valid expression as
qualifier by parenthesizing it. Without parentheses, theCall would be
syntactically illegal, as in3.negated, or legal but with a different
semantics, as withu + v.norm whichappliesnorm to v, not to the sum.

23.8 COMPONENTS OF A CALL

It is convenient to talk about “the target”, “the target type” and “the feature”
of a call.

class VECTOR[G –> X] feature
norm: G is do … end;
plusalias "+" (other: like Current): like Current

do … end
… Other features…

end

(|u + v|).norm
(|u + v|).norm.f.h.

Target of a call
Any Object_call has atarget, defined as follows:
1 • If it is qualified: itsTargetcomponent.

2 • If it is unqualified:Current .

The target is an expression; ina (b, c).d the target isa (b, c) and in
(| a (b, c) + x |).d the target (case1) is a (b, c) + x. In a multidot case the
target includes theCall deprived of its last part, for examplex.f (args).g in
x.f (args).g.h (args1).

f must be a feature of
classX, hence applica-
ble to(u + v).norm
since the typeG of this
expression, a formal
generic parameter of
VECTOR, is con-
strained byX.

→ The dot has the high-
est precedence of all
operators except paren-
theses, so in the second
case it applies tov, not
u + v. See“SUBEX-
PRESSIONS”, 28.3,
page 756

§23.9 NON-OBJECT CALLS 621
A Non_object_calldoes not have a target; this is what distinguishes it
from anObject_call. In both cases, however, there is a targettype:

A call of any kind also has a feature:

23.9 NON-OBJECT CALLS

The remaining sections of this chapter discuss the validity and semantics
of calls. The most interesting cases are the object-oriented form of call,
x.f (args), involving dynamic binding, and its unqualified variantf (args).
They will occupy most of the discussion. Let us dispose first of a specific
case, available mostly to facilitate interaction with non-object-oriented
facilities:Non_object_call. In an example such as

we use aNon_object_callto access directly a constant attribute present in
a “utility class”, CHARACTER_CODES. Were this mechanism not
available in the language, you could still obtain the desired effect by either:

• Making the enclosing class inherit fromCHARACTER_CODES, so that
it can directly access its features such asUnderscore.

Target type of a call
Any Call has atarget type, defined as follows:
1 • For anObject_call: the type of itstarget. (In the case of an

Unqualified_call this is thecurrent type.)

2 • For aNon_object_call having a typeT as itsTypepart:T.

Feature of a call
For anyCall the “feature of the call” is defined as follows:
1 • For anUnqualified_call: its Feature_name.

2 • For a qualified call or Non_object_call: (recursively) the
feature of itsUnqualified_callpart.

Case1 tells us that the feature off (args) is f and the feature ofg, an
Unqualified_call to a feature without arguments, isg.

The term is a slight abuse of language, sincef andg are feature names rather
than features. The actual feature, deduced from the semantic rules given
below and involving dynamic binding. is thedynamic feature of the call.

It follows from case2 that the feature of a qualified callx.f (args) is f. The
recursive phrasing addresses the multidot case: the feature of
x.f (args).g.h (args1) is h.

{ CHARACTER_CODES} .Underscore

→ “Dynamicfeatureof
a call”, page 631

FEATURE CALL §23.9622
• Declaring an entity codes: CHARACTER_CODESand using
codes.Underscore.

Using inheritance as in the first solution is a bit heavy-handed for such a
simple purpose. With the second solution, you must declare an entity that
you won’t use for anything else; in addition, ifCHARACTER_CODESis
not an expanded class, you’ll have to perform a creation instruction
createcodesto obtain the corresponding object. All this is a diversion.
With theNon_object_callyou state, with no fuss, exactly what you need:
featureUnderscore from classCHARACTER_CODES.

The mechanism is applicable only in limited cases: we only allow{ T} .f …
if f is a constant, likeUnderscore, or an external (non-Eiffel) function, as in

The reason is that any feature other than a constant attribute or an external
feature might need to work on the target, which aNon_object_calllacks.
Even an external feature could be a problem through its assertions:
consider a call

whereopen_channel, in classNETWORK_CONTROLLER, is an external
routine with two arguments. The precondition has anUnqualified_callto
valid_state, a function that might use the current object. Or it might not; but
this can be tricky to determine, so we should just ban such assertions.

To specify both the validity and the semantics it is convenient to treat a
Non_object_call as a special case of anObject_call:

{NETWORK_CONTROLLER}.open_channel(port_number, timeout)

open_channel(pn: INTEGER; to: REAL)
-- Open a channel on port numberpn with timeoutto.

require
valid_state

external
"C"

end

Imported form of a Non_object_call

The imported form of a Non_object_callof TypeT and feature
f appearing in a classC is the Unqualified_callbuilt from the
originalActualsif any and, asfeatureof thecall, a fictitious new
feature added toC and consisting of the following elements:
1 • A namedifferent from those of other features ofC .

2 • A Declaration_bodyobtained from theDeclaration_bodyof f
by replacing every type by itsdeanchoredform, then applying
thegeneric substitution ofT.

Warning: makes above
Non_object_call
invalid.

§23.10 CLASS VALIDITY 623
This notion helps us express the validity rule:

We also use the imported form to define the semantics:

23.10 CLASS VALIDITY

The rest of this chapter considers the most common — but also more
delicate — case: object calls, involving dynamic binding. First, validity.

The basic idea is straightforward: inx.f (args) appearing in a classC,
the base class ofx must have a featuref, that feature must be available
(exported) to C, and the elements ofargs must conform to the
corresponding formal arguments as declared forf; in addition, the type of
x must bestrict to avoid the possibility of calls on a void target. In the
unqualified versionf (args), r must be a feature of the current class and the
arguments must conform. For the overwhelming majority of cases this is
all you need to remember.

This definition in “unfolded” style allows us to view{ T} .f (args) appearing
in a classC as if it were justf (args), anUnqualified_call, but appearing in
C itself, assuming we had movedf over — “imported” it — toC.

In item 2 we use the “deanchored form” of the argument types and
result, since a typelike a that makes sense inT would be meaningless inC.
As defined in the discussion of anchored types, the deanchored version
precisely removes all such local dependencies, making the type
understandable instead in any other context.

Non-Object Call rule VUNO

A Non_object_callof Type T and featurefnamein a classC is
valid if and only if it satisfies the following conditions:
1 • fnameis the final name of a featuref of T.

2 • f is available toC.

3 • f is either a constant attribute or an external feature whose
assertions, if any, use neitherCurrent nor anyunqualifiedcalls.

4 • The call’simported form is a validUnqualified_call.

Condition2 requiresf to have a sufficient export status for use inC; there
will be a similarrequirement forObject_call. Condition3 is the restriction
to constants and externals. Condition4 takes care of the rest by relying on
the rules forUnqualified_call.

Non-Object Call Semantics

The effect of aNon_object_callis that of itsimported form.

← “TWO-TIER DEFI-
NITION AND
UNFOLDEDFORMS”,
2.11, page 99.

← “Deanchoredformof
a type”, page 337.

→Throughthenotionof
exportvaliditydefinedin
the next section.

FEATURE CALL §23.10624
The full story is more subtle; in fact the next two chapters are devoted
to filling in the details. In the present discussion we will examine theClass-
Level validity of a call, which it is convenient to define in four parts:

• Export validity , to ensure thatf is exported to the client class.

• Argument validity , to ensure that theargsare of the right number and type.

• Target validity, to ensure thatx is not void.

Target validity is defined in the next chapter; the following one will tackle
the remaining notion ofSystem-Level validity.

Elsewhere in this book, validity rules are of the form: “A specimen of
constructC is valid if and only if …”. The rules of this section appear
instead as: “ACall is -valid if and only if…”, where is one of Export,
Argument, Target and Class-Level. The following chapter will define aCall
as “valid”, without further qualification, if and only if it is System-Level-
valid and Class-Level-valid. Since the three components of Class-Level
validity address distinct aspects, it is convenient for compilers to produce
error messages that refer to each of them; so you can view the rules below,
as normal validity rules, except that they are “only if” but not “if”.

Export validity

The first of the three components of Class-Level validity, export validity,
ensures that the caller is entitled to use the “feature of the call”:

This defines export validity “for” a certain classC. Usually we consider a call
appearing in a given class text, so we say just “export valid” to mean export-valid
for the current class. In the discussion of type checking, we’ll need to consider
the call, and its export validity, for an arbitrary descendant of the original class.

Export rule VUEX

An Object_callappearing in a classC, with fnameas thefeature
of the call, is export-valid for C if and only if it satisfies the
following conditions.
1 • fname is the final name of a feature of thetarget type of

the call.

2 • If the call isqualified, that feature isavailable toC.

X X

§23.10 CLASS VALIDITY 625
Clause2 only applies to qualified calls. Clearly, a routiner of a classC
can call another routinesof C on the current object unqualified, regardless
of the export status ofs. But in a qualified callx.s (…) the routines must
always be exported toC, even ifx is of typeC.

Because this property sometimes surprises programmers accustomed to
the conventions of other languages, it is useful to make it prominent:

That clause also takes care of the multi-dot case: ina.b.c, the target,
a.b, must itself satisfy the same condition. (This use of recursion is
justified since the target has one more level of dot notation than the original
Call, so the recursion cannot go on forever.)

In such multi-dot calls, all that counts is availability to the classC where
the call appears; availability to intermediate classes is irrelevant. For
example, ifC contains the call

For an unqualified callf or f (args), only condition1 is applicable, requiring
simply (since the target type of an unqualified class is the current type) that
f be a feature, immediate or inherited, of the current class.

For a qualified callx.f with x of type T, possibly with arguments,
condition2 requires that the base class ofT make the featureavailableto
C: export it either generally or selectively toC or one of its ancestors.
(Through the Non-Object Call rule this also governs the validity of a
Non_object_call{ T} .f.)

As a consequence,s (…) might be permitted andx.s (…) invalid, even
if x is Current . The semantics of qualified and unqualified calls is indeed
slightly different; in particular, with invariant monitoring on, a qualified
call will — even withCurrent as its target — check the class invariant, but
an unqualified call won’t.

Export Status principle

The export status of a featuref :

• Constrains allqualifiedcallsx.f (…), including those in which

the type ofx is thecurrent type, or isCurrent itself.

• Does not constrainunqualified calls.

This is a validity property, but it has no code since it is not a separate rule,
just a restatement for emphasis of condition2 of the Export rule.

next_paragraph.line (3).second_word.set_font(Bold) [3]

← As defined in“Avail-
able for call, avail-
able”, page 206.

FEATURE CALL §23.10626
where successive features are of typesPARAGRAPH, LINE andWORD,
export validity means thatPARAGRAPHmust make functionline available
to C, LINE must makesecond_wordavailable toC, andWORDmust make
set_fontavailable toC. It does not matter whethersecond_wordis available
to PARAGRAPH, or set_fontis available toLINE. To understand why, note
that any such call may be rephrased in single-dot form:

This shows multi-dot notation as just a notational facility — although an
important one, avoiding the need for intermediate variables such asl andw.

Argument validity

The second component of Class-Level validity ensures that the number and
types of actual arguments match those of formals:

For simplicity, the definition assumes export validity, ensuring thatf exists.

In a generic context, condition2 relies on theGenericTypeAdaptation
rule: in a calla.sf (y) wherea is of typeC [T] andC [G] has the routine
sf (x: G), the type to whichy must conform isT — notG, which makes no
sense outside of the text ofC.

l: LINE; w: WORD
...
l := next_paragraph.line (3)
w := l.second_word
w.set_font(Bold)

Argument rule VUAR

An export-valid call of target typeST and featurefname
appearing in a classC where it denotes a featuresf is argument-
valid if and only if it satisfies the following conditions:
1 • The number of actual arguments is the same as the number of

formal arguments declared forsf.

2 • Every actual argument of the call iscompatiblewith the
corresponding formal argument ofsf.

Condition2 is the fundamental type rule on argument passing, which
allowed thediscussion of direct reattachment to treatAssignmentand
actual-formal association in the same way. An expression iscompatible
with an entity if its type either conforms or converts to the entity’s type.

→TheSinSTandsfisfor
“static”. See“Descen-
dant Argument rule”,
page 659.

← Page“ROLE OF
REATTACHMENT
OPERATIONS”, 22.2,
page 580.

← Page359.

§23.10 CLASS VALIDITY 627
A call to a feature with no arguments trivially satisfies the Argument rule
if it doesn’t include anyActuals. As noted at the beginning of this chapter,
it’s syntactically illegal to write a call asf () or x.f (); either the feature has
formal arguments and you must specify the correspondingActuals in
parentheses, or it doesn’t and you just don’t include anyActuals list.

A consequence of the Arguments rule is that Eiffel doesn’t directly
allow a routine to be called with a variable numbers of arguments. But
there’s an easy way to achieve this purpose: simply give the routine a
formal argument of a tuple type. With

a corresponding call may have any number of arguments greater than one
as long as the first is aSTRING(representing a format). Clients may call it as

whatever the types ofint, re, str, as long as the routine body handles
them properly.

Target validity and Void-Safe Eiffel

The last component of Class-Level validity guarantees that a callx.f (…) can
never fail at run time becausex turned out to be attached to a void reference:

Another way of expressing this observation is to note that an unqualified call
g (…) is always the result of a qualified callx.f (…) (or of an original root
call to f, startingasystem), wheref, directly or indirectly, callsg unqualified
on the same targetx that was used forf; thatx cannot have been void since
the call tof would then never have started in the first place. Put yet another
way, the unqualified call is generally equivalent toCurrent .g (…) where
Current , representing the current object, is never void.

print_formated(values: TUPLE[STRING])

print_formatted(some_format, int, re, str)

Target rule VUTA

An Object_callis target-valid if and only if either:
1 • It is unqualified.

2 • Its target is anattached expression.

Unqualified calls (case1) are always target-valid since they are applied to
the current object, which by construction is not void.

←“Systemexecution”,
page 114.

FEATURE CALL §23.11628
Combining the rules

Class-Level validity is the combination of the previous three constraints,
and is the basic validity rule for calls:

The last requirement, target validity, may raise issues for older Eiffel
systems not yet checked for this property. The Standard, for that reason,
allows compilers to offer a special tolerance, with the associated risk of
run-time failure, as a temporary measure to facilitate transition:

23.11 INTRODUCTION TO CALL SEMANTICS

Let us now examine the semantics of calls. This section and the next few
discuss the concepts; the formal rules are collected at theend.

It will suffice to consider as working example a qualifiedCall

wheretarget is an expression,fnameis a feature name of the appropriate
class, and theyi are expressions. We may further assume thattargetis either
aParenthesizedexpression or a singleUnqualified_call, in other words that
theCall is not a multi-dot of the forma.b.c … .fname(…).

Concentrating on this example simplifies the discussion but doesn’t lose
any generality:

For the target expressionx to be “attached”, in case2, means that the
program text guarantees — statically, that is to say through rules enforced
by compilers — thatx will never be void at run time. This may be because
x is an entity declared as attached (so that the validity rules ensure it can
never be attached a void value) or because the context of the call precludes
voidness, as in ifx /= Void then x.f (…) end for a local variablex. The
precisedefinition will cover all these cases.

Class-Level Call rule VUCC

A call of target typeST is class-valid if and only if it is export-
valid, argument-valid andtarget-valid.

Void-Unsafe
A language processing tool may, as a temporary migration facility,
provide an option that waives thetarget validity requirement in
classvalidity. Systems processed under such an option arevoid-
unsafe. Void-unsafe systems are not valid Eiffel systems.

target.fname(y1, …, yn)

→ “PRECISE CALL
SEMANTICS”, 23.17,
page 643.

§23.11 INTRODUCTION TO CALL SEMANTICS 629
• By not considering multi-dot expressions we simply understand a multi-
dot call as a succession of single-dot calls, as in theabove call to
set_font. The formal semantic definition will justify this equivalence.

• We alreadynoted that infix, prefix and bracket expressions always have
an Equivalent Dot Form.

• If there are no arguments, we simply consider thatn is zero.

• Lastly, what of unqualified callsfname(y1 …, yn)? We’ll also be able to
handle them as a special case of qualified calls thanks to the notion of
current objectas discussed below.

We will also assume, on the basis of the preceding discussion of Void-Safe
Eiffel, that at the time of executiontarget will not be void: either it is
expanded, directly denoting an object, or it is a reference attached to an
object. This is a universal requirement on call targets; if you want a feature
to work on a void value for one of its operandsx — definitely a useful
possibility in some cases — you must treatx as an argument, not the target.
You can only usex as target if its static type is an attached. Remember that
this is not necessarily the declared typeT of x: if T is not attached you can
use theObject_test

This discussion leads to our first semantic definition for calls:

“Current object” has only been defined informally so far and its precise
definition isforthcoming. The definitions, however, avoid circularity.

The notion of target object is used in all the semantic specifications for calls
in the rest of this chapter.

In the qualified case (case1) you will use, to obtain the target’s value,
the rules of expression semantics. They yield the target object itself for an
expanded type, and for a reference type a reference attached to that object.

if x /= Void then
x.f (args)

-- The static type of this occurrence ofx is attachedT
else

… No calls with targetx permitted here…
end

Target Object
Thetarget object of an execution of anObject_call is:
1 • If the call isqualified: the objectattached to itstarget.

2 • If it is unqualified: the current object.

← [3] , page625.

← “OPERATOR AND
BRACKET FORMS”,
23.5, page 616.

→ “Curr ent object,
currentroutine”, page
641.

FEATURE CALL §23.12630
The validity rules, as noted, prevent a void reference. For compilers that
support an option that doesn’t enforce void-safety requirements, we
provide an exception type anyway:

23.12 DYNAMIC BINDING

So we want to execute or evaluatetarget.fname(args) at a certain instant
of system execution, on a non-voidtarget.

"Execute" for an instruction, "evaluate" for an expression. The rest of the
discussion uses the first of these terms for simplicity, except when the context
implies an expression.

Assumed to be non-void,target_valueis attached to a target objectOD. OD
is a direct instance of some typeDT, of base classD. D (the generating class
of OD) must be effective: otherwiseDT could not have any direct instance.

The expressiontarget_valuehas a certain typeST, of base classS.
Recall thatSTis also called — when we need more precision — thestatic
type oftarget, andDT its dynamic type at the time the call is executed. The
static type is obvious from the software text and is fixed for any occurrence
of target in that text; polymorphism means that the dynamic type may
change in successive executions of the call, as a result of reattachments.

The typing constraintsimply thatDT will always conform toST, and
hence thatD is a descendant ofS. The validity rules just seen imply that the
feature of the call,fname, must be the final name inS of a feature ofS,
available to the class which includes the call. Letsf be that feature.

Actually, as you guessed, we couldn’t care less aboutsf. Usingsf for the
call would be committing the gravest possible crime in object technology:
static binding. What matters is not the type oftarget (what was declared
in the software text) but the type of the object attached totarget_value
(what is actually found at run time). Using that type,DT, to determine the
appropriate feature, yields the appropriate policy:dynamic binding.

The feature to be used,df, is the version ofsf that applies toD and hence
to DT. The two features will be different ifDT or some intermediate class
has redefinedsf. The purpose of such a redefinition is precisely to ensure
that the feature performs for instances ofDT in a way that differs from its
default behavior for instances ofST. Not using the redefined version would
mean renouncing the power of the inheritance mechanism.

Failed target evaluation of a void-unsafe system

In the execution of an (invalid) system compiled invoid-unsafe
mode through a language processing tool offering such a migration
option, an attempt to execute a calltriggers, if it evaluates the target
to a void reference, anexceptionof typeVOID_TARGET.

TheD in the type and
class names stands for
"dynamic", theS for
"static".

"Generating class":
19.2, page 498.;
“Dynamic type”, page
598; “Type of an
expression”,page774;
“POLYMORPHISM”,
22.11, page 598

← “Reattachmentprin-
ciple”, page 591.

§23.13 THE IMPORTANCE OF BEING DYNAMIC 631
The word "version", as used here, has a precise meaning, defined as part of
inheritance. Every feature of a class has a single “dynamicbindingversion”
in any descendant of that class; that version is the result of applying any
redefinition, undefinition or effecting that may have occurred since the
original introduction of the feature. The definition takes into account the case
of repeated inheritance, for which the Select subclause removes any
ambiguity that could be caused by conflicting redefinitions on different
inheritance paths, or by the replication of an attribute.

The following semantic definition captures dynamic binding:

23.13 THE IMPORTANCE OF BEING DYNAMIC

Dynamic binding is not just a useful convention but a condition of
correctness. Every qualified call to an exported routine of a class must
preserve its invariant, so as never to produce an inconsistent object — one
that would not satisfy the invariant of its own generating class. This means
thatsf must preserve the invariantSI of S, anddf the invariantDI of D (a
possiblystrengthened form ofSI). But there is of course no requirement
that sf preserveDI; in fact, the designer ofS usually did not even know
about classD, which may have be written much later by someone else.
Static binding could then apply to an object,OD, a feature,sf, which does
not preserve the invariant of the generating class — the ultimate disaster in
the execution of a software system.

Dynamic feature of a call
Consider an execution of a callof featurefnameandtargetobject
O. Let STbe itstarget type andDT the type ofO. Thedynamic
feature of the call is thedynamicbinding version inDT of the
feature of namefname in ST.

Behind the soundness of this definition stands a significant part of the
validity machinery of the language:

• Therules on reattachment imply thatDT conforms toST.
• The Export rule imply that fname is the name of a feature ofST

(meaning a feature of the base class ofST).
• As a consequence, this feature has a version inDT; it might have several,

but the definition of “dynamic binding version” removes any ambiguity.
Combining the last two semantic definitions enables the rest of the
semantic discussion to take for granted, for any execution of a qualified
call, that we know both the target object and the feature to execute. In other
words, we’ve taken care of the two key parts ofObject_callsemantics,
although we still have to integrate a few details and special cases.

← “Dynamic binding
version”, page 460.

← “Reattachmentprin-
ciple”, page 591.

← “Export rule”, page
624.

← As required by the
definition of“Class
consistency”, page
243.
← As implied by the
definition of“Unfolded
form of an assertion”,
page 281.

FEATURE CALL §23.13632
Dynamic binding, then, is the only meaningful policy. In some cases, of
course,sfanddf are the same feature because no redefinition has occurred
betweenSandD, or simply becauseSandD are the same class. Then static
and dynamic binding trivially have the same semantics. A compiler or
other language processing tool which is able to detect such situations
through careful analysis of a system’s source text use this insight to
generate slightly more efficient object code. This is perfectly acceptable as
long as the system’s run-time behavior implements the semantics of
dynamic binding.

Beyond its theoretical necessity, dynamic binding plays an essential
role in the Eiffel approach to software structuring. It means that clients of
a number of classes providing alternative implementations of a certain
facility can let the mechanisms of Eiffel execution select the appropriate
implementation automatically, based on the form of each polymorphic
entity at the time of execution.

As a typical example, assume a classCUSTOMERwith a procedureinvoice
used to bill customers. Heirs CHARGE_CUSTOMER and
CASH_CUSTOMERmay redefine this procedure in two different ways to
account for different forms of invoicing. Then aVariable c of type
CUSTOMERmay be attached, at some run-time instant, to an instance of
CHARGE_CUSTOMER or CASH_CUSTOMER. A call of the form

will, thanks to dynamic binding, be treated appropriately in each case.

This is a great advantage for the authors of client classes containing
such calls, since they do not need to test explicitly for every possible case
(charge customer, cash customer), and may integrate the introduction of a
new case — such as check customers — at minimal change in their classes.

c.invoice

invoice

invoice++

CUSTOMER

CHARGE_
CUSTOMER

CASH_
CUSTOMER

invoice++

Kinds of
customer

§23.14 ONCE ROUTINES 633
23.14 ONCE ROUTINES

We know the target of the call is not void, and we know (through dynamic
binding) what feature was really meant. So the next thing to do is to execute
the associated routine body, right? Wrong. The routine might be aonce
routine, designed to be executed only once, or once in a while.

Once basics

As you will remember, aRoutine_bodymay start (other thandeferred and
external cases) not only withdo but also with the keywordonce, possibly
followed by one or more “once keys” in parentheses as in
once("THREAD").

In the basic case without once keys, this means that you want the
routine’s body to be executed at most once in the entire system execution.
The first time — if at all — someone calls the routine, its body will be
executed, with the actual arguments given if any; if it’s a function, it will
return its result normally. Any subsequent call, however, will not cause any
new execution of the routine body or initialization of local variables; it will
return immediately to the caller, giving as result — if the routine is a
function — the value recomputed by the first call, whether an object (if the
result type is expanded) or an object reference.

A constraint on once functions was introduced as part of theFeature
Declarationrule (condition5): if the enclosing class is generic, the result type
may not be one of the formalgenericparameters. This is necessary for the
function to provide a consistent result: since the first client that calls the
function will determine the result of all later calls, the result type must be
meaningful for all clients; but different clients may use different actual
generic parameters for the class. The formal parameter, which stands for any
possible actual generic parameter, would represent incompatible types.

Once uses

TheOncemechanism is a versatile tool allowing flexible initialization and
access to shared information in an O-O environment. In particular:

• Smart initialization : to make sure that a library works on a properly
initialized setup, write the initialization procedure as aOnceand include
acall to it at thebeginningofeveryexternally callable routineof the library.

← “ROUTINE
BODY”, 8.5,page218.

← Page160.

FEATURE CALL §23.14634
The alternative would be to require clients to take care of the setup
themselves by calling an initialization procedure;. Because this is error-
prone, you’ll want to check in the library itself that the initialization has been
done; but then you might just as well take care of it silently and avoid
bothering clients. In any case, you need a way to find out if initialization has
indeed been done, typically through a flag — which must also have been
initialized, only pushing the problem further. Once procedures provide a
general solution.

• Shared objects: To let various components of a system share an object,
represent it as a once function that creates the object. Clients will just
“call” that function, although in all cases but the first such a call just
returns a reference to the object created the first time around.

In this last case, the scheme is a common one in Eiffel programming:

This declaration may for example appear in a service class inherited by the
affected clients.

Predefined once keys

What exactly does “once” mean? By default, the semantics is to execute the
routine body once over every execution of a system. By using once keys,
however, you may exert finer control, specifying an execution every once
in a specific while. For example by declaring a routine as

shared_object: SOME_REFERENCE_TYPE
-- A single object useful to several clients

once
… ; create Result

end

r: SOME_TYPE
-- A single object useful to several clients

once ("OBJECT")
…

end

§23.14 ONCE ROUTINES 635
you specify that the body will be executed the first time it is called onany
specific instanceof the class. This provides welcome flexibility. Assume
for example that some objects have associated information, much bigger
than the object itself and needed only in certain cases. This could be
(among many other examples) the list of all previous states of an object
stored in a database. It’s not something that you want to load by default into
memory with every object that you retrieve from the database; but it should
be easy to access when you need it. The following function does the job
smoothly and (for the programmer) effortlessly:

Traditional programming techniques — using flags to check whether the
function has been called — would be quite cumbersome here, especially if
you have a need for several such functions.

The following once keys have a preset meaning:

"PROCESS" is the default, equivalent to not specifying a once key.

Further once tuning

For even more flexibility, you may define your own meaning of “while” in
“once in a while”. You’ll do this by choosing as once key an arbitrary
string, beyond the three possibilities listed above. You can take advantage
of this possibility in two ways.

First, you can control the meaning from outside of the Eiffel text, by
defining it in theonceclause of the Ace file. The recommended convention
in this case is to use a once key of the form$KEYNAME, using the dollar
sign that serves in some scripting languages to denote the value of a
variable. The Ace specification can set the key to mean, for example,
THREAD in some executions andPROCESSin others, depending for
example on the amount of multi-threading supported.

In the Eiffel text itself, you can go further by deciding when once is
enough and when you want more of it. More precisely you mayrefresh a
once key; this means that the next call of any once routine that lists it as one

history: ARRAY[like Current)
-- A single object useful to several clients

once ("OBJECT")
create Result (…)

… Retrieve previous values and fillResultwith them…
end

"OBJECT" -- Once for each instance
"THREAD" -- Once per execution of a thread
"PROCESS" -- Once per execution of a process

→ “ONCE CON-
TROL”, B.11, page
1023.

FEATURE CALL §23.14636
of its once keys will execute its body. To refresh keys, classANYhas a
featureoncesof type ONCE_MANAGER(a KernelLibrary class) which
you can use for such calls as

You can also queryonces.nonfresh_keys, returning an array of strings, to
find out what keys have been exercised by at most one function.

A possible way to implement featureoncesin classANYis to make it a once
function itself.

These are clearly advanced techniques, but they can help considerably in
the building of sophisticated systems.

Once routine semantics

In defining the semantics of once routines we will rely on the following
notion whose meaning follows directly from the preceding discussion:

Note thateverycall started so far has to satisfyanyof the conditions listed.
Sor is fresh for example if:

• It hasn’t been called at all.

• It has been called on different objects, and is declared
once("OBJECT").

• It’s declaredonce("SOME_KEY") and there has been, since the last
applicable execution ofr, a callonces.refresh("SOME_KEY").

onces.refresh("SOME_KEY")
onces.refresh_some(["SOME_KEY", "OTHER_KEY"])
onces.refresh_all
onces.refresh_all_except(["SOME_KEY", "OTHER_KEY"])

Freshness of a once routine call
During execution, a call whose feature is aonceroutiner is fresh
if and only if every feature call started so far satisfies any of the
following conditions:
1 • It did not user asdynamic feature.

2 • It was in a different thread, andr has the once key"THREAD".

3 • Its target was not the current object, andr has the once key
"OBJECT".

4 • After it was started, a call was executed to one of the
refreshing features ofoncesfrom ANY, including among the
keys to be refreshed at least one of the once keys ofr.

→ONCE_MANAGER,
A.6.29, page 1000.

§23.14 ONCE ROUTINES 637
An applicable call — for example, with the once key"OBJECT", a call on
the same object — makesr unfresh again, since the rule’s conditions have
to apply to every call started so far.

The callonces.refresh_all is understood to refresh all once routines,
including those without an explicit once key.

Also note that the condition applies to callsstartedso far; so if a once
routine is directly or indirectly recursive, its self-calls will not execute the
body (in the absence of an intervening explicit refresh) and, for a function,
they will return theResult as computed so far.

From these observations we may define the semantics of a call to a once
routine. For fresh calls a once routine behaves like a non-once routine, and
the rule correspondingly refers to the Non-Once Call Routine Execution
rule appearinglater in this chapter:

Latest applicable target of a non-fresh call
The latest applicable target of a non-fresh call to aonce
function df to a target objectO is last value to which it was
attached in the call todf most recently started on:
1 • If df has the once key"OBJECT": O.

2 • Otherwise, ifdf has the once key"OBJECT": any target in the
current thread.

3 • Otherwise: any target in any thread.

Once Routine Execution Semantics
The effect of executing aonce routinedf on atarget objectO is:
1 • If the call is fresh: that of a non-once call made of the same

elements,asdeterminedby theNon-onceRoutineExecutionrule.

2 • If the call is not fresh and the last execution off on thelatest
applicabletarget triggered anexception: to trigger again an
identical exception. The remaining cases do not then apply.

3 • If the call is not fresh anddf is a procedure: no further effect.

4 • If the call is not fresh anddf is a function: to attach the local
variableResult for df to thereused target of the call.

→ “Non-Once Rou-
tine Execution rule”,
page 644.

FEATURE CALL §23.15638
The Once Routine Execution rule describes the effect of executing a
Call once we know its run-time featuredf, its target objectO and its
argumentsarg_values. For the full context, we need the general semantics
rule for calls, which comes at the end of this chapter and, in the once case,
relies on the above rule to specify the effect of the call once its components
have been determined.

23.15 ATTRIBUTES AND EXTERNALS

We may now concentrate on the case of a qualifiedObject_callwhose
feature is not a once routine. From the discussion of features and routines,
the dynamic feature of the call, if not a “once”, may be one of:

S1 •An attribute

S2 •An external routine (whose implementation is outside the system’s
direct reach, being written in another language).

S3 •A non-once, non-external routine.

The syntax for Routine_bodyincludes a fifth case: a routine with a
deferredbody. This case doesn’t apply here, however, since as noted above
D has a direct instance and hence must be effective.

In caseS1, df is an attribute; the objectOD has a field corresponding to
df. Then the call is an expression, whose value is that field. The sole effect
of the call is to return that value.

Case2 is known as “once an once exception, always a once exception”. If
a call to a once routine yields an exception, then all subsequent calls for the
same applicable target, which would normally yield no further effect (for a
procedure, case3) or return the same value (for a function, case4) should
follow the same general idea and, by re-triggering the exception, repeatedly
tell the client — if the client is repeatedly asking — that the requested
effect or value is impossible to provide.

There is a little subtlety in the definition of “latest applicable target” as
used in case4. For a once function that has already been evaluated (is not
fresh), the specification does not state that subsequent calls return the result
of the first, but that they yield the value of the predefined entityResult.
Usually this is the same, since the first call returned its value through
Result. But if the function isrecursive, a new call may start before the first
one has terminated, so the “result of the first call” would not be a
meaningful notion. The specification states that in this case the recursive
call will return whatever value the first call has obtained so far forResult
(starting with the default initialization). A recursive once function is a bit
bizarre, and of little apparent use, but no validity constraint disallows it,
and the semantics must cover all valid cases.

Had you detected
this case?

← Chapters5 and8.

← Page218.

§23.16 THE MACHINERY OF EXECUTING CALLS 639
In caseS2, df is anexternal routine; execution of the call will mean
passing the values of the actual arguments to that external routine, waiting
for it to complete its execution, and obtaining its result if it is a function.
The semantics of argument passing and of routine execution — which may
depend on the conventions of the routine’s native language — are
examined in thechapter on interfaces with other languages.

Note that the target object isnot passed by default to an external routine. If
it’s needed for the computation, you should pass it as actual argument to the
routine, which should include a corresponding formal.

These two cases will be integrated in the final call semantics rule. For the
moment we may concentrate on the remaining one.

23.16 THE MACHINERY OF EXECUTING CALLS

We’ll investigate the effect of a non-once, non-external routine (S3) of
actual argumentsargs, target objectO and dynamic featuredf. This will
also lead us to the semantic notions of current object and current routine.

Scheme for a routine call

The semantic rule will specify the effect of the call as the result of applying
a sequence of steps. This doesn’t mean that the code must execute these
exact steps, only that its effect must be the same as if it did. Somewhat
informally and ignoring assertion monitoring, the steps are:

1 • Using the semantics of direct reattachment, attach every formal
argument ofdf to the value of the corresponding actual fromargs.

2 • If df has any local variables, save their current values if any call todf has
been started but not yet terminated; then initialize each local variable to
the default value of its type.

3 • If df is a function, initialize the predefined entityResultto the default
value for the function’s return type.

4 • Execute theCompound of df’s Internal body, according to the
conventions described next.

5 • If df is a function, the call is an expression. The value returned for that
expression is the value ofResult after the previous step.

6 • If the values of local variables have been saved under2, restore the
variables to these earlier values.

TheArgumentrule ensure that in step1 the actual arguments (if any) match
the formals in number, and that each actual is compatible with (conforms
or converts to) the corresponding formal.

In step 2, the default initialization values are the same as for the
initialization of attributes in aCreation instruction.

→ Chapter31.

→ “General Call
Semantics”, page 645.

← “SEMANTICS OF
REATTACHMENT”,
22.7, page 585.

← Page626.

FEATURE CALL §23.16640
The saving oflocal variables under2, and their restoring under6, are
necessary because routines may be directly or indirectly recursive: the
body ofdf may contain a call to another routine, and that routine may turn
out to bedf, or it may recursively calldf. As a result, step4 may start the
whole process again on the same routine. The saving and restoring ensure
that each incarnation ofdf recovers its local variables when it is resumed
after a recursive call.

Current object and routine

To interpret theCompoundof a routine’sInternalbody in step4, a little
mystery remains. Assume the text of routinedf, in class D, has the
following simple form:

wherex is an attribute ofD, some_proca procedure ofD, andother_proc
is a procedure applicable tox. Step4 — the core of the call’s execution —
consists of executing the two instructions of theCompound.

But what exactly do they mean? What doesx represent? To what object
should the computation applysome_proc?

To answer these questions we must put ourselves in the global context
of system execution and remember how anything ever gets executed.
Quoting from a veryearly part of this book:

In all but trivial cases, the root’s creation procedure will create more
objects and execute more calls. This extremely simple semantic definition
of system execution has as its immediate consequence to yield a precise
definition of thecurrent objectand current routine. At any time during
execution, the current object is the object to which the latest non-completed
routine call applies, and the current routinecr is the feature of that call:

Clause4addresses “constructs whose semantics does not involve a call” (rather
than “constructs other than a call”). This is because the semantics of a construct
that is not a calls may involve a call; this is the case with anExpression, whose
semantics is defined through an Equivalent Dot Form denoting a call.

fname
do

some_proc
x.other_proc

end

To execute (or ‘‘run’’) asystem on amachine means to cause the
machine to apply a creation instruction to the system’s root class.

The local variables
includeResult:
“LOCAL VARIABLES
AND RESULT”, 8.6,
page 221.

The feature name might
be something other
thanfname as a result
of renaming.

←“Systemexecution”,
page 114.

§23.16 THE MACHINERY OF EXECUTING CALLS 641
Note the implicit recursion in case2: to know the target object of a call
target.fname(args), we must evaluatetarget, which may itself be a call,
whose evaluation requires using the above rule recursively.

There appears to be a cycle in the definitions since this definition of current
object and current routine refers to “dynamic feature”,defined in terms of
“target object”, itselfdefined in terms of “current object”. You will note on
closer examination, however, that this is not a real problem: the definition of
target object only refers to the current object in the case of an
Unqualified_call, for which the relevantclause in the definition of current
object retains an object already known from the context.

Naming the current object

Even though the current object is at the heart of the execution machinery,
most calls in dot notation do not refer explicitly to the current object: if you
need aCall with the current object as target, you may just write it as an
Unqualified_call, which does not name its target.

Current object, current routine

At any time during the execution of a system there is acurrent
object CO and acurrent routine cr defined as follows:
1 • At the start of the execution:COis therootobject andcr is the

root procedure.

2 • If cr executes aqualifiedcall: the call’stargetobject becomes
the new current object, and itsdynamicfeature becomes the
new current routine. When the qualified call terminates, the
earlier current object and routine resume their roles.

3 • If cr executes anunqualifiedcall: the current object remains
the same, and thedynamicfeature of the call becomes the
current routine for the duration of the call as in case2.

4 • If cr starts executing any construct whose semantics does not
involve a call: the current object and current routine remain
the same.

← Page631.

← Page629.

← Clause2, page 629.

← Clause3, page 641.

FEATURE CALL §23.16642
For some other kinds of operation, however, you may need an explicit
notation to refer to the current object. An example is equality comparison.
Assume a function computing the distance between two points, which
might be written in a classPOINT as

The routine’s implementation may need to determine whether theother
point is in fact the same point as the current object:

To express the condition afterif you may use the predefined entityCurrent :

As noted above, anUnqualified_callsuch assome_procor x does not need
to useCurrent explicitly as its target, although you may if you want to:

with the only difference that, under assertion monitoring, qualified calls
such as these cause evaluation of the invariant; unqualified calls don’t.

It may also be convenient to useCurrent in connection with binary
features. Thanks to the infix alias"|–|", you may use the abovedistance
function to express the distance of two pointsp1 andp2 asp1 |–| p2. To
express in a similar form the distance top2of the current point, you may write

but even this use ofCurrent is not strictly necessary, since there’s always
an identifier name, heredistance, for such a feature, so that you may also
use the plainUnqualified_call

Similarly, if a class contains a unary functionnegatedalias "–", you may
express the negation of the current object as– Current as well as just
negated.

distancealias "|–|" (other: POINT): REAL
-- Distance of current point toother.

do
…

end

if then
Result:= “… Normal distance computation…”

end
-- OtherwiseResult will be zero

if then …

Current .some_proc
Current .x

Current |–| p2

distance(p2)

“other is not the same as the current point”

Current /= other

§23.17 PRECISE CALL SEMANTICS 643
Current , as indicated by its place in the syntax as one of the choices for
the constructRead_only, is aread-onlyentity: you can’t assign to it, or use
it at the target of a creation instruction. A notation such as

is permitted only ifq is a query of the enclosing class and it has an
associatedassignerprocedure, sayp. Then[1] is simply a shorthand for
an unqualified call

If q has arguments,Current .q (a1,a2) := v is an abbreviation for
p (a1,a2,v). In either case, the instruction can’t changeCurrent .

The following rule gives the precise meaning ofCurrent ,
distinguishing in particular between reference and expanded cases:

23.17 PRECISE CALL SEMANTICS

We can now collect into precise rules the understanding of call semantics
developed over the preceding sections. The rule for aNon_object_call
appeared at thebeginning of this chapter, so we only need to consider the
case of anObject_call. For once routines we may refer to theearlier rule.

Rule for non-once routines

Assume we have anObject_calland, at a particular stage of execution, we
know the target object, the dynamic feature — which is not a “once” — and
the argument values. Here then is the effect:

General call semantics

We have semantics for executing routines, both once (theearlier rule) and
non-once (the last rule). To have the full semantics of calls we need a more
general rule, since:

• Both of the previous rules assumed that we know the target object, the
dynamic feature, and argument values. But the form of a qualified call,
target.fname(args), doesn’t give us that information; the execution
must obtain the target object fromtarget, the dynamic feature from that
object andfname, and the argument values fromargs. We’ve actually

Current .q := v [4]

p (v) [5]

Current Semantics

The value of the predefined entityCurrent at any time during
execution is thecurrentobject if thecurrentroutine belongs to an
expanded class, and a reference to the current object otherwise.

← “EXPRESSIONS
AND ENTITIES”,
19.8, page 504.

← “ASSIGNER
CALL”, 22.12, page
599.

← “Non-Object Call
Semantics”,page623.;
“Once Routine Execu-
tion Semantics”, page
637

← “Once RoutineExe-
cution Semantics”,
page 637.

FEATURE CALL §23.17644
given ourselvesthe rulesto do this; but to make the semantics precise
we need to specify theorder in which to apply these rules. We’ll require
that the target be evaluated first, giving us the dynamic feature as a
consequence, and then the arguments in the order listed.

• The rules covered non-external routines only; we must include the
attributes and external routines, two cases discussedinformally so far.

• Execution of the feature body (step2 of the last rule) may use the formal
arguments. We need to specify how to attach them to the actuals’ values.

• Finally, the scheme does not yet include assertion monitoring.

Non-Once Routine Execution rule

The effect of executing a non-once routinedf on atargetobjectO
is the effect of the following sequence of steps:
1 • If df has any local variables, includingResult if df is a

function, save their current values if any call todf has been
started but not yet terminated.

2 • Execute the body ofdf.

3 • If the values of any local variables have been saved in step1,
restore the variables to their earlier values.

← “Target Object”,
page 629; “Dynamic
feature of a call”,
page 631.

← “ATTRIBUTES
AND EXTERNALS”,
23.15, page 638

§23.17 PRECISE CALL SEMANTICS 645
The following rule fills these gaps:

For steps1 and3, the “applicable definitions” are those of Target Object
and Dynamic Feature, as recalled above.

General Call Semantics
The effect of anObject_callof featuresf is, in the absence of any
exception, the effect of the following sequence of steps:
1 • Determine thetargetobjectO through the applicable definition.
2 • AttachCurrent to O.
3 • Determine thedynamic featuredf of the call through the

applicable definition.
4 • For every actual argumenta, if any, in the order listed: obtain

thevaluev of a; then if thetype ofa converts to the type of the
corresponding formal insf, replacev by the result of the
applicable conversion. Letarg_values be the resulting
sequence of all suchv.

5 • Attach every formal argument ofdf to the corresponding element
of arg_valuesby applying the Reattachment Semantics rule.

6 • If the call is qualified and class invariant monitoring is on,
evaluate the class invariant ofO’s base type onO.

7 • If precondition monitoring is on, evaluate the precondition ofdf.
8 • If df is not an attribute, not aonceroutine and not external,

apply theNon-Once Routine Execution rule toO anddf.
9 • If df is a once routine, apply theOnceRoutineExecutionrule

to O anddf.
10 •If df is an external routine, execute that routine on the actual

arguments given, if any, according to the rules of the language
in which it is written.

11 •If df is a self-initializing attribute and has not yet been
initialized, initialize it through theDefault Initialization rule.

12 •If the call isqualified and class invariant monitoring is on,
evaluate the class invariant ofO’s base type onO.

13 •If postcondition monitoring is on, evaluate the postcondition
of df.

An exception occurring during any of these steps causes the
execution to skip the remaining parts of this process and instead
handle the exception according to theException Semantics rule.

← Page629.

← “Reattachment
Semantics”, page 592.

FEATURE CALL §23.17646
There is considerable implicit recursion in this definition: the target and the
argument are expressions, and in many cases they will be calls, or operator
expressions whose semantics is also defined as call semantics. So in steps1,
3 and 4 we are potentially relying on the semantic rules of this chapter,
including the above rule itself. The rule for once routines relies, for fresh
calls, on the rule for non-once routines, so step9 again causes recursion.

Step4 specifies a somewhat subtle but important property: the precedence,
statically, of convertibility over conformance. We know that every actual
argument must becompatible withthe corresponding formal: conform or
convert to it. System validity will ensure that this requirement applies both
to the “static” version of the featuredf and to the “dynamic” versionsf.
Remember thatsf is the feature named known from the text of the call: with
x.f (e1), if x is of typeS, sf is the feature of namef in S; as a result of
dynamic binding, ifx at execution time is attached to an object of a
descendant typeD, thendf is the version inD.

But while we want the typeE of e1 to be compatible with the formal
arguments to both thesf anddf, we want it, for every one of them,in the
same variant: either conformance in both cases, or convertibility in both
cases. AssumeE conforms toT; then it cannot also convert to it. Now
assume thatE does not conform toU, the new formal argument type inD,
but by some twist of fateE actually convert toU. Do we want to accept the
call as descendant-argument-valid forD? System validity tells us “no”.
Accepting this would be confusing for the author ofC, who does not realize
that a conversion might be going on (since there’s none in the case of the
original f).

In addition, although this is not the main concern, the compiler writer would
face the similar problem of not knowing whether to generate conversion code
or not for the call.

So step4 requires that we take care of any conversion on the basis of the
argument types for thestatic featuresf; only then, in step5, do we attach the
values of actuals to formals. Note that the types in these attachments may still
be different, but no further conversion will be involved, only conformance.

S
Effect of
redefinition on
a client call

D

Conforms

f (a: T)

f (a: U)

C x: S
x.f (e1)-- (The “sf” version)

-- (The “df” version)

e1: E

← “Conversion princi-
ple”, page 400.

§23.18 CALLS AS EXPRESSIONS 647
23.18 CALLS AS EXPRESSIONS

The two uses of aCall are, as we know, as anInstructionor as an
Expression, specifically theBasic_expressionvariant. If f is a query
(attribute or routine), a valid call

or any of the other applicable variants — unqualified, non-object, multi-dot
— is an expression, and can be included in a larger expression, such as
a + x.f (args) + b.

For the instruction case we’ve seen all we need about calls. But to
understand an expression we must also know itstypeand itsvalue; these are
defined for every kind of expression and we must now — as the final part of
specifying calls — say what they are for a call used as expression.

First, the type. To make this concept useful in practice we must carry
type analysis across class boundaries by defining the type of a callwith
respect toa certain type. Assume thatx, in a classC, is of typeD [U],
whereD [G] is a generic class with a queryf of typeG. The Call Expression
Type definition given below will tell us that the type ofx.f is the type off
with respect tothe type ofx, that is to say with respect toD [U]. Now f, a
query ofD, is also a query ofD [U] thanks to the definition of “featureof
a type” in the discussion of genericity. Its type as defined inD is G, which
in the context ofD [U] we must understand, through the Generic Type
Adaptation rule, as representing the associated actual generic parameter,U.

The following rule determines the type of a call:

In case2, the recursion applies toa; the type of the part after the dot,e, is
determined through thegeneral Expression Type definition — itself of
course dependent,in severalof its clauses, on the type of call expressions,
causing more recursion.

x.f (args)

Type of aCall used as expression
Consider a call denoting an expression. Itstype with respect to a
typeCT of base classC is:
1 • For anunqualified call, its featuref being aquery ofCT: the

result type of theversion off in C, adapted through thegeneric
substitution ofCT.

2 • For aqualified calla.eof Targeta: (recursively) thetypeof e
with respect to the type ofa.

3 • ForaNon_object_call: (recursively) the typeof itsimportedform.

← “Call Use rule”,
page 615. Instruction:
page224; Expression:
page753.

→ “Type of an expres-
sion”, page 774 (see
among others its clauses
6and11).

FEATURE CALL §23.18648
Finally the semantics. If a call is used as an expression its execution
will, in addition to any other actions, return a result:

For aNon_object_call, whose semantics isdefined in terms of the imported
form, this definition also applies, as a consequence, to the execution of the
imported form.

Functions should not produce any durable change to their environment;
their sole role should be to return their result, and any computation they
perform should be auxiliary to that goal. You may useonly postcondition
clauses to turn this methodological advice into an enforceable rule.

This book often refers, especially in thediscussion of expressions, to the
value of a call used as an expression. Here is what this precisely means:

Call Result

Consider aCall c whosefeature is aquery. An execution ofc
according to theGeneralCall Semantics yields acall result
defined as follows, whereO is thetargetobject determined at step
1 of the rule anddf thedynamic feature determined at step3:
1 • If df is a non-external, non-oncefunction: the value attached

to the local variableResult of df at the end of step2 of the
Non-Once Execution rule.

2 • If df is a once function: the value attached toResultas a result
of the application of theOnce Execution rule.

3 • If df is an attribute: the correspondingfield in O.

4 • If df is an external function: the result returned by the function
according to the external language’s rule.

Value of a call expression

The value of a Call c used as an expression is, at any run-time
moment, theresult of executingc.

← “Non-Object Call
Semantics”, page 623

→ Chapter28.

	23 23 Feature call
	23.1 OVERVIEW
	23.2 PARTS OF A CALL
	23.3 USES OF CALLS
	23.4 UNIFORM ACCESS
	23.5 OPERATOR AND BRACKET FORMS
	23.6 COMPLEX TARGETS
	23.7 CALL SYNTAX
	Unqualified, qualified call

	23.8 COMPONENTS OF A CALL
	Target of a call
	Target type of a call
	Feature of a call

	23.9 NON-OBJECT CALLS
	Imported form of a Non_object_call

	23.10 CLASS VALIDITY
	Export validity
	Argument validity
	Target validity and Void-Safe Eiffel
	Combining the rules
	Void-Unsafe

	23.11 INTRODUCTION TO CALL SEMANTICS
	Target Object

	23.12 DYNAMIC BINDING
	Dynamic feature of a call

	23.13 THE IMPORTANCE OF BEING DYNAMIC
	23.14 ONCE ROUTINES
	Once basics
	Once uses
	Predefined once keys
	Further once tuning
	Once routine semantics
	Freshness of a once routine call
	Latest applicable target of a non-fresh call

	23.15 ATTRIBUTES AND EXTERNALS
	23.16 THE MACHINERY OF EXECUTING CALLS
	Scheme for a routine call
	Current object and routine
	Naming the current object

	23.17 PRECISE CALL SEMANTICS
	Rule for non-once routines
	General call semantics

	23.18 CALLS AS EXPRESSIONS
	Type of a Call used as expression

