
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
4

Classes
4.1 OVERVIEW

This chapter explores the role of classes and the structure of class texts.

4.2 OBJECTS

Viewed as a type, a class describes (as noted in the previous chapter) the
properties of a set of possible data structures, orobjects, which may exist
during the execution of a system that includes the class; these objects are
called theinstances of the class

An object may represent a real-world thing such as a radio signal in cell
phone software, a document in text processing software or an electron in
physics software. It may also represent an immaterial concept from that
world, such as a fabrication process in factory control software. Or it may
be a pure artefact of computer programming, such as an abstract syntax tree
in compilation software.

Classes corresponding to these examples might be:

• SIGNAL, whose instances represent signals transmitted by some device.

• DOCUMENT, whose instances represent documents.

• ELECTRON, whose instances represent electrons.

• NODE, whose instances represent nodes of syntax trees.

Every object that may exist during the execution of a system is an instance
of some class of that system. This is an important property, since it means
that thetype system is simple and uniform, being entirely based on the
notion of class.

Classes are the components used to build Eiffel software.

Classes serve two complementary purposes: they are the modular units
of software decomposition; they also provide the basis for the type system
of Eiffel.

→Theprecisenatureof
objects is explained in
chapter19.

→ Chapter11 covers
types.

CLASSES §4.3116
More precisely, every object is adir ect instance of only one class,
called itsgenerating class. It may, however, be aninstance(direct or not)
of many classes: all theancestors (in the sense of inheritance) of its
generating class.

Some classes, said to bedeferred, have no direct instances; they provide
incomplete object descriptions. IfC is deferred, an instance ofC is a direct
instance of some effective (that is to say non-deferred) descendant ofC.

4.3 FEATURES

Viewed as a module, a class introduces, through its class text, a set of
features. Some features, calledattributes, represent fields of the class’s
direct instances; others, calledroutines, represent computations applicable
to those instances.

Since there is no other modular facility than the class, building a
software system in Eiffel means identifying the types of objects the system
will manipulate, and writing a class for each of these types.

A system that includes a certain class will usually contain operations to
create instances of that class (creation instructions and expressions, for a
non-deferred class) and to apply features to those instances (featurecalls).

4.4 USE OF CLASSES

In some cases, one of the two roles of classes is more important than
the other.

• At one extreme, a class may be interesting only as a module
encapsulating a number of routines. (It then resembles the “packages”
of older programming languages.) Often, it will not then have any
variable attributes. A system that uses such a class will not create any
directinstances of it; instead, other classes of the system will make use
of its features by inheriting from it, or through “non-object calls”.

• At the other end, you may want to introduce a class simply because you
need to describe a new type of object, without necessarily thinking of its
role in the system architecture, at least at first. (It then resembles the
“records” or “structures” of older programming languages, although it
will usually include routines along with attributes.)

Both of these uses of classes arise in practice and both are legitimate.

In most cases, however, classes live up to their reputation, making a
name for themselves in both the module and type worlds.

→ For exact defini-
tions: “ instance”and
“direct instance”, page
322; “Generating
class", page498;
“ancestor”, page172.

→ See chapters6 and
10 about inheritance
and deferred routines.

→ Features are studied
in detail in chapter5.

→Creation:chapter20;
calls: chapter23.

Even though it has no
direct instances, such a
class will have
instances — the direct
instances of proper
descendants.

→ “NON-OBJECT
CALLS”, 23.9,page621.

§4.5 THE CURRENT CLASS 117
4.5 THE CURRENT CLASS

This will be complemented by the notion of “current type”, which
includes the formal generic parameters.

4.6 CLASS TEXT STRUCTURE

A class text contains the class name and a number of parts, all optional
except forClass_header, and all exceptFormal_genericsintroduced by
a keyword:

• Notes, beginning withnote.

• Class_header, beginning with one of:class; deferred class; expanded
class; separate class.

• Formal_generics, beginning with a bracket[.

• Obsolete, beginning withobsolete.

• Inheritance, beginning withinherit .

• Creators, beginning withcreate.

• Converters, beginning withconverter.

• Features, made of one or moreFeature_clauseeach beginning withfeature.

• Invariant, beginning withinvariant .

• Notes again, for more specific index properties if desired.

Here is an extract froma classdescribinghashtables, which illustrates all
clauses exceptObsolete:

Current class
The current class of a constructspecimen is the class in which
it appears.

Every Eiffel software element — feature, expression, instruction, … —
indeed appears in a class, justifying this definition. Most language
properties refer directly or indirectly, through this notion, to the class in
which an element belongs.
vb

note
description: "Hash tables used to store items associated %

with hashable keys."
names: h_table, dictionary
access: key, direct
representation: array
size: resizable

→ “Curr ent type”,
page 357

Thisclass isasimplified
form of one in the Eiffel-
Base library. A “hash
table” is a table used to
record a number of ele-
ments, each identified
by an individual key.

CLASSES §4.6118
class HASH_TABLE[G, KEY –> HASHABLE] inherit
TABLE[G, KEY]

redefine
load

end

create
make, from_tree

convert
from_tree({ BINARY_SEARCH_TREE})

feature -- Initialization
make (n: INTEGER)

-- Allocate space forn items.
… Procedure body omitted…

load … Rest of procedure omitted

feature -- Access
control: INTEGER
Max_control: INTEGERis 5

feature -- Status report
ok: BOOLEAN

-- Was last operation successful?
do

Result:= (control= 0)
end

… Other features omitted…
feature -- Removal

remove(k: KEY)
-- Remove entry of keyk.

require
valid_key: is_valid(k)

do
… Procedure implementation omitted…

ensure
not has(k)

end

invariant
0 <= control; control<= Max_control

note
date: "$Date: 1998/01/30 20:57:49 $"
revision: "$Revision: 1.8 $"
reviser: "Marcel Satchell, January 2000"
changes: "Copy and equality semantics"
original_author: "Eiffel Software, 1986"

end

§4.7 PARTS OF A CLASS TEXT 119
This abbreviated example is a specimen of aClass_declaration, with the
following general syntax:

The next section offers an informal overview of the various parts and their
roles, usingHASH_TABLEas illustration. Subsequent sections of this
chapter will only cover in detailNotes, Class_header, Formal_generics,
Obsoleteand the closingend; describing the rest is the task of the
following chapters.

4.7 PARTS OF A CLASS TEXT

As noted, classHASH_TABLEincludes all of the possible parts save for
Obsolete. Let’s examine them informally, in their order of appearance.

The firstNotespart serves to associate note information with the class,
to facilitate identification, archival and retrieval of the class based on
properties not found elsewhere in its text. TheNotespart is studied in detail
in the next section. It is organized as a sequence of clauses, each containing
an optionalNote term, such asdescription, a colon, and one or more
associated values. Examples include a short description of the scope of the
class (descriptionentry), or alternate names for the notion covered by the
class. TheNote terms and values are free, but this example uses some of
the recommended ones, part of the style guidelines.

The Class_headerintroduces the class name, hereHASH_TABLE.
Instead of justclass, the class header could begin withdeferred class,
expanded class or separate class, making the class “deferred”,
“expanded” or “separate”.

Class declarations
Class_declaration=∆ [Notes]

Class_header
[Formal_generics]
[Obsolete]
[Inheritance]
[Creators]
[Converters]
[Features]
[Invariant]
[Notes]
end

→ Inheritance is dis-
cussed in chapters6,
10, and16, Creators in
chapter20, Features in
chapter5, and Invari-
ant in chapter9.

→ Deferred classes:
10.11, page 266 and
subsequent sections.

→ Expanded: 11.9,
page 327 and subse-
quent sections. Sepa-
rate: chapter33.
Genericity: chapter12.

CLASSES §4.7120
TheFormal_genericspart, if present, makes the class “generic”, which
means it is parameterized by types. HereHASH_TABLEhas two formal
generic parameters:G, representing the type of the elements in a hash table;
andKEY, representing the type of the keys which serve to retrieve these
elements. To obtain a type from a generic class, you must provide types,
calledactual generic parameters. For example, you may declare an entity
denoting a possible hash table as

using typesCARandSTRINGas actual generic parameters forG andKEY:
the type HASH_TABLE [CAR, STRING] represents tables of cars
retrievable through strings (perhaps the license plate numbers). A type
obtained in this way is called ageneric derivation of the base class, here
HASH_TABLE. The entityownership_recorddeclared with this type may
at run-time become attached to a table from which it is possible to retrieve
cars from their associated strings.

The notationKEY–>HASHABLEin classHASH_TABLEindicates that the
second formal generic parameter,KEY, is “constrained” by the library class
HASHABLE. This means that any corresponding actual generic parameter must
be a descendant ofHASHABLE; this is indeed the case with classSTRING. The
first formal generic parameter,G, is “unconstrained”, allowing any type to be
used as the corresponding actual generic parameter.

TheObsoletepart, if present, indicates that the class is an older version
which should no longer be used except for compatibility with existing
systems. For example, along withHASH_TABLE, a library may contain a
class beginning with

The only effect of such a clause is that some language processing tools may
produce a warning when they process such a class. The warning should
reproduce theString listed after theobsolete keyword.

The Inheritancepart, beginning withinherit , lists theparents of the
class and anyfeature adaptation applied to the inherited features.
HASH_TABLEhas only one parent,TABLE; its Feature_adaptationpart,
beginning withredefine, simply indicates that the new class will provide a
new version of the inherited procedureload. There is indeed a declaration
of load in the class text.

ownership_record: HASH_TABLE[CAR, STRING]

class H_TABLE[G, KEY–> HASHABLE]

inherit
… Rest of class text omitted…

→ On unconstrained
and constrained
genericderivations,see
12.3 and12.6, starting
on page343.

obsolete
"Use HASH_TABLE, which relies on improved algorithms"

→ Inheritance:
chapter6.

§4.7 PARTS OF A CLASS TEXT 121
The Creatorspart, beginning withcreate, lists the procedures which
clients may use tocreate direct instances of the class. Here there are two:
makeandfrom_tree. A client may create a direct instance ofHASH_TABLE
by executing a creation instruction (also using the keywordcreate) such as

which will allocate a new table with room for eighty thousand items.

A Converterspart lists some of the creation procedures as being also
conversionprocedures, allowing assignment from instances of other types.
Here it specifies as creation procedurefrom_tree, taking aBINARY_TREE
as argument; this permits, forh a hash table andb a binary tree, to
abbreviate the creation instruction

as just

TheFeaturespart introduces thefeatures of the class. It is made of zero or
more subparts, each called aFeature_clauseand introduced by the keyword
feature. There are two reasons for allowing more than oneFeature_clause:

• It is part of therecommendedstyle practice to group features into
categories. This yields a good class structure, facilitating understanding
and maintenance. The EiffelBase libraries define a number of feature
clause headers, each with a standard header comment; they include the
ones used in the example:Initialization, Access, Status report, Removal.

• Each may define an export status, making the corresponding features
public, secret, or available to specific clients. In the absence of such a
specification the default status is public availability.

Here noFeature_clausedeparts from the default so that all the features
shown — the proceduresmake, removeand load, the functionok, the
variable attributecontrol and the constant attributeMax_control— are
available to all clients. Calls from clients will use dot notation, as in

The last of these calls applies tomake, which is also a creation procedure
but here is just used as a normal exported procedure. (Compare this call
instruction with theCreationinstruction above, using the keywordcreate.)

create ownership_record.make(80_000)

create h.from_tree(b)

h := b

ownership_record.remove("1745 BB 75")
--Assuming aVariable entitystatus of type INTEGER:

status := ownership_record.control
ownership_record.make(10_000)

→ Creation: chapter20.

→ Conversion:
chapter15.

→ Features: chapter5.

→ “GROUPING
FEATURES”, 34.5,
page 901.

→ A feature is
“exported” if it is avail-
able to all clients. See
definition on page206.

CLASSES §4.8122
Of course, when deciding to exportmake, the designer ofHASH_TABLE
should make sure that calls occurring after the initialCreationinstruction will
have the proper effect; this probably means using a new size which is greater
than or equal to the original one (in other words, keeping the original if the
argument to the call is smaller), and writing the routine so that resizing does
not lose any of the previously inserted elements.

To ensure thatmakeis not available for outside calls, it would suffice to add a
Feature_clausewithanemptyClientslist,beginningwithfeature{ } ,andmove
the declaration ofmakethere. This isexplainedin detail in the chapters on
features and exports.

The Invariant part, beginning withinvariant , introduces consistency
conditions on the features of the class; here the condition simply gives the
bounds for attributecontrol.

Finally you may have a newNotesclause, complementing the one at the
beginning of the class, and introducing note information of a more
specialized nature, such as copyright, revision history and author name.

After this general survey of the structure of a class text, the rest of this
chapter examine five clauses which apply to the class as a whole:Notes,
Class_header, Formal_generics, Obsolete and ending comment.

4.8 ANNOTATING A CLASS

Through aNotesentry you may include documentary information in the
text of a class.

This is particularly important in the approach to software construction
promoted by Eiffel, based on libraries of reusable classes: the designer of
a class should help future users find out about the availability of classes
fulfilling particular needs.

We may imagine the author of a classDOCUMENTwriting the class
text as follows:

note

class DOCUMENTinherit … feature
…

note

end

→ “Restrictingexports”
,page197.A full exampl
appears in5.5, page 134

→ “CLASS INVARI-
ANTS”, 9.8, page 240.

description: "Documents of the most general form"
domains: text, text_processing, FrameMaker

author: "Tatiana Sergeevna Krasnojivotnaya"
approved_by: "Giovanni Giacomo della Gambagialla"
original: 21, March, 1999
last: 12, July, 2006

§4.8 ANNOTATING A CLASS 123
The general form is:

EachNote_entrystarts with aNote_name, such asauthor:, terminated
by a colon. The rest of theNote_entryis a list ofNote_itemterms, each of
which is an Identifier (such as text_processingor July) or a
Manifest_constant, that is to say a value of a basic type, such as the integer
21, or a string such as"Tatiana Sergeevna Krasnojivotnaya" etc.

By the very nature ofNotesparts, the choice of indices and values is
free. Using consistent conventions will greatly facilitate the successful
retrieval of reusable classes. Here you may wish to rely on theset of
guidelines defined for the Eiffel Software Libraries.

As illustrated by both theHASH_TABLEandDOCUMENTexamples,
a class may include up to twoNotesclauses, one at the very beginning,
before the keywordclass, and one at the very end, beforeend. Their
intended role is complementary:

• Use the initialNotesfor critical information that you want every reader
of the class to discover before reading anything else about the class,
such as thedescriptionentry which succinctly explains the role of the
class.

• Use the finalNotesfor archival and management information such as
revision history, copyright and intellectual property notices, author and
reviser names, and any supplementary information that will be useful to
maintainers of the class.

Notes
Notes =∆ noteNote_list

Note_list =∆ { Note_entry ";" …}*

Note_entry=∆ Note_name Note_values

Note_name=∆ Identifier ":"

Note_values=∆ { Note_item ","…} +

Note_item=∆ Identifier | Manifest_constant

Notesparts (there may be up to two, one at the beginning and one at the
end) have no effect on the execution semantics of the class. They serve to
associate information with the class, for use in particular by tools for
configuration management, documentation, cataloging, archival, and for
retrieving classes based on their properties.

→ “GUIDELINESFOR
ANNOTATING
CLASSES”,34.13,page
911.

→Manifest_constantis
introduced in32.16,
page 889, and subse-
quent sections.

CLASSES §4.9124
TheNotes parts ofHASH_TABLE, shown earlier, illustrated these guidelines.

4.9 CLASS HEADER

TheClass_headerintroduces the name of the class; it also serves to indicate
whether the class is deferred or expanded. Here are twoClass_header
examples from EiffelBase and one from the Kernel Library, illustrating
these possibilities:

The general form of theClass_header is simply:

The keywordclassmay optionally be preceded by one of the keywords
deferred, expanded, frozen andseparate, corresponding to variants of
the basic notion of class:

• A deferred class describes an incompletely implemented abstraction,
which descendants will use as a basis for further refinement.

• Declaring a class asexpanded indicates that entities declared of the
corresponding type will denote objects rather than references to objects

• A frozen class cannot be inherited from.

• A separateclass, useful in concurrent programming, describes objects
handled by a separate thread of control.

As the syntax specification indicates, these four options are exclusive. A
class may not, for example, be both deferred and expanded; in fact, all non-
expanded classes are considered to be reference classes.

Notes semantics

A Notespart has no effect onsystem execution.

class LINKED_LIST
deferred class SEQUENCE
expanded class INTEGER

Class headers
Class_header=∆ [Header_mark] classClass_name

Header_mark=∆ deferred | expanded| frozen

The Class_namepart gives the name of the class. The recommended
convention (here and in any context where a class text refers to a class
name) is theupper name.

The upper name is the
name written all in
upper case..

§4.9 CLASS HEADER 125
This is part of a general characteristic of the syntax: unlike languages such as
Ada, Java and C++, Eiffel does not use multiple successive keyword qualifiers.
Where it allows you to writeproperty1 x or property2 x, it does not permit
property1 property2 x. This keeps things simple and easy to remember.

The first two cases have an influence on the validity rule forClass_header
and we now examine them in more detail.

Deferred classes

A class declareddeferred describes an incompletely implemented
abstraction, with the expectation that proper descendants of the class will
provide or refine the implementation. This is useful to cover incompletely
understood concepts or groups of related concepts. A typical example in
EiffelBase is the deferred classSEQUENCE, which describes sequential
data structures without prescribing any particular implementation. Proper
descendants of this class, such asLINKED_LIST, describe concrete
sequential structures. Such non-deferred classes are said to beeffective.

The deferred-effective distinction applies not just to classes but to their
individual features: a feature is deferred if its class specifies it (often with
a contract: precondition and postcondition) but does not provide an
implementation. In general, a deferred class includes one or more deferred
features. For example procedureextend, which adds an element at the end
of a sequence, is deferred inSEQUENCEandeffected(made effective) by
LINKED_LIST and other effective descendants, each in its own way.

Deferred classes have no direct instances (you may not create an
instance of the corresponding type, as increate x for x of type
SEQUENCE[T]); only their effective descendants do, so thatcreate x is
valid for x of typeLINKED_LIST[T].

A lessdrasticway of restricting clients’ instantiation rights is through the
Creators part.

The validity rule below requires that as soon as a class has at least one
deferred feature you must declare it as class asdeferred class. If not, the
class would be considered effective; then clients could create instances, and
call on them a feature that you haven’t implemented.

There is no converse requirement: you may declare a class asdeferred
even if it has no deferred feature. This is a way of stating that you intend to
use a class as an abstract concept even though you haven’t included any
deferred feature yet. In particular, you are prohibiting clients from creating
direct instances throughcreatex instructions.

→ For details see
“DEFERRED FEA-
TURES”, 10.11,
page 266.

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”, 20.7, page 531.

CLASSES §4.9126
Expanded classes

Declaring a classC asexpandedchanges the assignment and comparison
semantics of the entities declared of the corresponding types. Withy: C
(ignoring any generic parameters), andC not expanded, the assignment
x := y is a reference assignment, and the boolean expressionx = y
compares references. But ifC is expanded, the assignment copies the
object denoted byy, and the test compares objects.

One application of this notion is to represent the notion ofsub-object:

The figure shows an instance of a class with two attributes, one of a
reference type and the other of an expanded type, representing a sub-object.
The discussion of types will provide moredetails on the difference between
expanded and reference semantics.

To declare a class as expanded you must make sure that it retains
default_create— the default initialization procedure coming, after
possible renaming or redefinition, from the universal classANY— as one
of its creation procedures. The reason is that initializing an object with sub-
objects, such as the one illustrated above, requires initializing all its sub-
objects, for which all that’s available is the standard initialization.

In the simplest case this requirement is automatically met: a class that doesn’t
have aCreatorspart (that is to say, doesn’t explicitly list creation procedures)
is considered to havedefault_createas its sole creation procedure. The details
appear in thediscussion of creation.

Validity of a class header

The validity rule onClass_headerstates the relationship between the actual
class text and a declaration asdeferred:

Class Header rule VCCH

A Class_headerappearing in the text of a classC is valid if and
only if has either nodeferredfeatureor a Header_markof the
deferred form.

r: C

e: expanded C

Sub-object vs.
reference to
another object

→ “EXPANDED
TYPES”,11.9,page327.

→ “OMITTING THE
CREATION PROCE-
DURE”, 20.4,page519.

→ 20.4, page 519.

§4.10 FORMAL GENERIC PARAMETERS 127
The Class Header rule yields a simple definition:

4.10 FORMAL GENERIC PARAMETERS

A class whoseClass_header is followed by aFormal_generics part, as in

will be called ageneric class. (If the Formal_genericspart is absent, the
class is, predictably, anon-generic class.) A generic class has one or more
formal generic parameters, which are identifiers, hereG andKEY, not
conflicting with any name of a class in the surrounding universe. The
mechanism that permits generic classes and the corresponding types is
calledgenericity.

As noted, a generic class does not directly yield a type, although it is
easy to derive a type from it: just provide a list of types, calledactual
generic parameters, one for each formal generic parameter. This was
done above in the declaration ofownership_record to derive the type

from HASH_TABLE, with anActual_genericslist made of the typesCAR
andSTRING. Such a type is said to begenerically derived.

If a class has at least one deferred feature, either introduced as deferred in
the class itself, or inherited as deferred and not “effected” (redeclared in
non-deferred form), then its declaration must start not just withclassbut
with deferred class.

There is no particular rule on the other possible markers,expandedand
frozen, for a Class_header. Expanded classes often make the procedure
default_createavailable for creation, but this is not a requirement since the
corresponding entities may be initialized in other ways; they follow the same
rules as other “attached” entities.

Deferred class, effective class
A class isdeferred if its Class_headeris of thedeferred form. It
is effective otherwise.

Any class that has at least one deferred feature is deferred; any class that
only has effective features is effectiveexcept if the class is explicitly
declared asdeferred class.

classHASH_TABLE[G, KEY–> HASHABLE]…

HASH_TABLE[CAR, STRING]

The definition of
“deferred class” is on
page303.

CLASSES §4.11128
Genericity is the main reason classes and types are not identical notions:
while any non-generic class is also a type, a generic class such as
HASH_TABLEneeds actual generic parameters to yield types such as the
above. The notions of class and type are, of course, closely connected.
More precisely, any type has abase class whose features provide the
operations available on the type’s instances; for a generically derived type
such as the above, the base class is simply the type stripped of its actual
generic parameters, hereHASH_TABLE.

A wholechapter is devoted to genericity and will give the details. Here
is a is a preview of the syntax ofFormal_generics parts:

The Constraintconstruct, alsodetailed in the genericity chapter, governs
constrained genericity, as in C [G –> CONSTRAINING_TYPE], which
specifies thatG represents not arbitrary types, as in the basic (unconstrained)
case, but types that conform toCONSTRAINING_TYPE.

4.11 OBSOLETE MARK

By specifying anObsoletemark for a class, you indicate that the class does
not meet your current standards, and you advise developers against
continuing to use it as supplier or parent; but you avoid harming existing
systems that may rely on this class.

The decision to make an entire class obsolete is not a frequent one in well-
planned software development: through information hiding, uniform access,
dynamic binding and genericity, the language often enables developers to
change a class with little or no impact on clients and descendants. Even when
some aspects of a class become obsolete, the class as a whole may remain
appropriate; this is why you should usually prefer the related mechanism
letting you make individualfeaturesobsolete. The next chapterexplains how
to do this, with further comments about software evolution and obsolescence.

The decision to make aclassobsolete is appropriate when you realize that
even by obsoleting some of its features you won’t be able to bring it up to
its ideal form without disturbing existing software, and decide to replace it
by a new version. The civilized way to do this is to keep the old class, at
least for a while, under its original name, but mark it obsolete; this signals
to client and descendant developers that they will ultimately have to adapt
their classes to the new version.

An Obsoletemark has no other effect; in particular it has no bearing on
the software’s execution.

Formal_generics=∆ "["Formal_generic_list"]"

Formal_generic_list=∆ [Formal_generic";" …]

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

→ “BASE CLASS,
BASE TYPE AND
TYPE SEMANTICS”,
11.7, page 324.

→ Chapter12; see syn-
tax and validity in
“GENERICCLASSES”,
12.2, page 341.

→ “CONSTRAINED
GENERICITY”, 12.6,
page 346.

→ “OBSOLETE FEA-
TURES”,5.21,page163,.

§4.11 OBSOLETE MARK 129
Here is the syntax of the mark, which comes after theClass_headerand
optionalFormal_generics:

There is no validity constraint. The semantic specification covers both
obsolete classes and obsolete features:

Class obsolescence is not a way to cover up for bugs or flawed designs. If
you realize that a class is incorrect or inadequate, you should face the
consequences and repair the problem, even if this requires updating
dependent classes. Any existing system using the flawed class cannot be
functioning properly anyway. TheObsoletefacility is meant for a different
case: classes which were useful and sound, but cover needs for which you
have now found improved solutions, based on a new design not backward-
compatible with the original.

Obsolete marks
Obsolete=∆ obsoleteMessage

Message=∆ Manifest_string

Obsolete semantics
Specifying an anObsoletemark for a class or feature has no run-
time effect.
When encountering such a mark,languageprocessingtools may
issue a report, citing the obsolescenceMessageand advising
software authors to replace the class or feature by a newer version.

CLASSES §4.11130

	4 4 Classes
	4.1 OVERVIEW
	4.2 OBJECTS
	4.3 FEATURES
	4.4 USE OF CLASSES
	4.5 THE CURRENT CLASS
	Current class

	4.6 CLASS TEXT STRUCTURE
	4.7 PARTS OF A CLASS TEXT
	4.8 ANNOTATING A CLASS
	4.9 CLASS HEADER
	Deferred classes
	Expanded classes
	Validity of a class header
	Deferred class, effective class

	4.10 FORMAL GENERIC PARAMETERS
	4.11 OBSOLETE MARK

