A

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Classes

4.1 OVERVIEW

Classes are the components used to build Eiffel software.

Classes serve two complementary purposes: they are the modular units
of software decomposition; they also provide the basis for the type system
of Eiffel.

This chapter explores the role of classes and the structure of class texts.

4.2 OBJECTS

Viewed as a type, a class describes (as noted in the previous chapte- The precise nature of
properties of a set of possible data structurembgects, which may existgﬁfrftfrge"p'a'”ed n
during the execution of a system that includes the class; these objec.. wiv

called thenstancesof the class

An object may represent a real-world thing such as a radio signal in cell
phone software, a document in text processing software or an electron in
physics software. It may also represent an immaterial concept from that
world, such as a fabrication process in factory control software. Or it may
be a pure artefact of computer programming, such as an abstract syntax tree
in compilation software.

Classes corresponding to these examples might be:
» SIGNAL whose instances represent signals transmitted by some device.
« DOCUMENT whose instances represent documents.
« ELECTRONwWhose instances represent electrons.
* NODE, whose instances represent nodes of syntax trees.

Every object that may exist during the execution of a system is an inst="Crapterl1 covers
of some class of that system. This is an important property, since it rrtypes

that thetype system is simple and uniform, being entirely based on the

notion of class.

116

CLASSES 84.3

More precisely, every object is @ir ect instance of only one class,- For exact defini-

called itsgenerating class|t may, however, be aimstance(direct or not) E‘gﬂ:&:iiﬂzttiﬂ%iaggge
of many classes: all thancestors (in the sense of inheritance) of 355 “Generating

generating class. clasg, page498
“ancestor”, pagel72

Some classes, said to Beferred, have no direct instances; they provide
incomplete object descriptions.fis deferred, an instance 6fis a direct ~ See chapter§and

. . . 10about inheritance
instance of some effective (that is to say non-deferred) descendant of .4 deferred routines

4.3 FEATURES

BEETHON]
L !

Viewed as a module, a class introduces, through its class text, a ¢~ Features are studied
features Some features, calleattributes, represent fields of the class™ 961!l in chaptes.
directinstances; others, callezlitines, represent computations applicakic

to those instances.

Since there is no other modular facility than the class, building a
software system in Eiffel means identifying the types of objects the system
will manipulate, and writing a class for each of these types.

A system that includes a certain class will usually contain operatior- ¢reation chapter20;
create instances of that clagsdation instructions and expressions, focalls chapter23
non-deferred class) and to apply features to those instances (fealigje

4.4 USE OF CLASSES

In some cases, one of the two roles of classes is more important than
the other.

* At one extreme, a class may be interesting only as a MmOEven though it has no
encapsulating a number of routines. (It then resembles the “packzg;;es(gwifltﬁg\c/‘zsuma
of older programming languages.) Often, it will not then have instances — the direct
variable attributes. A system that uses such a class will not creatinstances of proper
directinstances of it; instead, other classes of the system will makedescendants

of its features by inheriting from it, or throughdh-object calls”. _, “NON-OBJECT
_ _ CALLS’", 23.9 page621.
« At the other end, you may want to introduce a class simply becaus¢

need to describe a new type of object, without necessarily thinking or its
role in the system architecture, at least at first. (It then resembles the
“records” or “structures” of older programming languages, although it
will usually include routines along with attributes.)

Both of these uses of classes arise in practice and both are legitimate.

In most cases, however, classes live up to their reputation, making a
name for themselves in both the module and type worlds.

84.5 THE CURRENT CLASS 117

4.5 THE CURRENT CLASS

Current class

The current class of a constructspecimen is the class in which
it appears.

Every Eiffel software element — feature, expression, instruction, ... —
indeed appears in a class, justifying this definition. Most language
properties refer directly or indirectly, through this notion, to the class in
which an element belongs.

This will be complemented by the notion otdrrenttype”, which ~M%
includes the formal generic parameters.

4.6 CLASS TEXT STRUCTURE

A class text contains the class name and a number of parts, all optional
except forClass_headernd all except-ormal_genericéntroduced by
a keyword:

» Notes beginning witnote.

« Class_headebeginning with one ofclass deferred class expanded
class separate class

» Formal_generigdheginning with a brackét

» Obsolete beginning withobsolete

* Inheritance beginning withinherit.

« Creatorsbeginning withcreate

» Convertersbeginning withconverter.

 Featuregmade of one or mofiéeature _clauseach beginning witfeature.
* Invariant beginning withnvariant .

» Notesagain, for more specific index properties if desired.

Here is an extract frora classdescribinghashtables, which illustrates althisclassisasimplified

[X let form of one in the Eiffel-
clauses excejidbsolete Base library A*hash
table’ is a table used to
I 4 I note o _ _ record a number of ele-
T description "Hash tables used to store items associated|% mentseach identified
| with hashable keys." by an individual key

namesh_table dictionary
accesskey direct
representationarray

size resizable

118

CLASSES 84.6

classHASH_TABLHEG, KEY - HASHABLE inherit
TABLE[G, KEY]
redefine
load
end

create
make, from_tree

convert
from_tree({BINARY_SEARCH_TREE

feature -- Initialization
make (n: INTEGER)
-- Allocate space fon items.
... Procedure body omitted.
load ... Rest of procedure omitted

feature -- Access
control INTEGER
Max_control INTEGERIs 5
feature -- Status report
ok BOOLEAN
-- Was last operation successful?
do
Result= (controk 0)
end
... Other features omitted

feature -- Removal
removelk: KEY)
-- Remove entry of kely.
require
valid_key is_valid(Kk)
do
... Procedure implementation omitted
ensure
not has(k)
end

invariant
0 <= control, control<= Max_control
note
date "$Date 199801/30 2057:49 $'
revision "$Revision 1.8 $'
reviser. "Marcel SatchellJanuary 2000
changes"Copy and equality semantics
original_author. "Eiffel Software1986'
end

84.7 PARTS OF A CLASS TEXT 119

BTN TAL

This abbreviated example is a specimen @lass_declaratigrwith the
following general syntax:

Class declarations
Class_declaratio® [Noteg
Class_header
[Formal_generids
[Obsolet¢
[Inheritancé
[Creator$
[Converterd
[Featurep
[Invariani
[Noteg
end

The next section offers an informal overview of the various parts and their

roles, usingHASH_TABLEas illustration. Subsequent sections of th:-inheritance is dis-

chapter will only cover in detaiNotes Class_headgiFormal_generigs cussed in chapte
.) L . 10, and16, Creators in

Obsoleteand the closingend; describing the rest is the task of thchapteno Featuresin

following chapters. chapters, and Invari-
ant in chapteB.

4.7 PARTS OF A CLASS TEXT

As noted, clas$1iASH_TABLENcludes all of the possible parts save for
Obsolete Let's examine them informally, in their order of appearance.

to facilitate identification, archival and retrieval of the class based on

The firstNotespart serves to associate note information with the class,

properties not found elsewhere in its text. Thetespart is studied in detail

in the next section. It is organized as a sequence of clauses, each containing

an optionalNote term, such aglescription a colon, and one or more

associated values. Examples include a short description of the scope of the

class (lescriptionentry), or alternate names for the notion covered by the

class. TheNoteterms and values are free, but this example uses som: T Bgerred classes

the recommended ones, part of the style guidelines. 10.11, pae 266and
Subsequent sectians

. . . page 327and subse-
Instead of justclass the class header could begin witleferred class g ent sectionsepa-

The Class_headeintroduces the class name, heffASH TABLE - Expanded1l.9,

expanded classor separate class making the class deferred”, rate: chapter3s,

“expanded” or $eparate”. Genericity chapterl2

120

CLASSES 84.7

TheFormal_genericpart, if present, makes the claggheric”, which
means it is parameterized by types. Het&SH_TABLEhas two formal
generic parameter§, representing the type of the elements in a hash table;
andKEY, representing the type of the keys which serve to retrieve these
elements. To obtain a type from a generic class, you must provide types,
calledactual generic parametersFor example, you may declare an entity
denoting a possible hash table as

=
i

‘ ownership_recordHASH_TABLHCAR STRING ‘

using type<CARandSTRINGas actual generic parameters @andKEY.

the type HASH_TABLE[CAR STRING represents tables of cars
retrievable through strings (perhaps the license plate numbers). A type
obtained in this way is called generic derivation of the base class, here
HASH_TABLEThe entityownership_recordleclared with this type may

at run-time become attached to a table from which it is possible to retrieve
cars from their associated strings.

The notatiorKEY—>HASHABLEN classHASH_TABLEndicates that the _
second formal generic paramet€EY, is “constrained” by the library clas- c?” U“tCOUSt?'”ed
HASHABLEThis means that any corresponding actual generic paramete|32neﬁ?cn§erﬁ\',g%onsee
be adescendant BIASHABLE his is indeed the case with cl&8SRING The 12.3and12.6 starting
first formal generic parameteg, is “unconstrained”, allowing any type to kon Pages4a

used as the corresponding actual generic parameter.

TheObsoletepart, if present, indicates that the class is an older version
which should no longer be used except for compatibility with existing
systems. For example, along witASH_TABLEa library may contain a
class beginning with

=
i

class H_TABLE[G, KEY—>HASHABLE obsolete
"UseHASH_TABLEwhich relies on improved algorithm
inherit
... Rest of class text omitted

*2)

The only effect of such a clause is that some language processing tools may
produce a warning when they process such a class. The warning should
reproduce thé&tring listed after thebsoletekeyword.

The Inheritancepart, beginning withinherit, lists theparents of the_. inheritance:
class and anyfeature adaptation applied to the inherited featurechaptert.
HASH_TABLEhas only one parenf,ABLE its Feature_adaptatiopart,
beginning withredefing, simply indicates that the new class will provide a
new version of the inherited proceduoad. There is indeed a declaration
of load in the class text.

84.7 PARTS OF A CLASS TEXT 121

The Creatorspart, beginning withcreate, lists the procedures which
clients may use tgreate direct instances of the class. Here there are = Creation: chapte0.
makeandfrom_tree A client may create a direct instanceddASH_TABLE
by executing a creation instruction (also using the keyveoedte) such as

| al | ‘createownership_recordnake(80_000) ‘

which will allocate a new table with room for eighty thousand items.

A Convertergart lists some of the creation procedures as being also
conversionprocedures, allowing assignment from instances of other ty= Conversion:
Here it specifies as creation procedtmam_tree taking aBINARY _TREEchapterls.
as argument; this permits, fdr a hash table and a binary tree, to
abbreviate the creation instruction

| a4 | ‘createh.from_tree(b)

as just

‘h::b \

TheFeaturegart introduces théeatures of the class. It is made of zero 5 Features: chaptes.
more subparts, each calleéf@ature_clausand introduced by the keywor
feature. There are two reasons for allowing more than Baeture_clause
* It is part of therecommendedstyle practice to group features int- “GROUPING

categories. This yields a good class structure, facilitating understars =215 RES~-34>
and maintenance. The EiffelBase libraries define a number of fei
clause headers, each with a standard header comment; they include the
ones used in the exampleitialization, Access Status reporiRemoval

« Each may define an export status, making the corresponding features
public, secret, or available to specific clients. In the absence of such a
specification the default status is public availability.

Here noFeature_clausdeparts from the default so that all the features
shown — the proceduremake removeand load, the functionok, the
variable attributecontrol and the constant attributéax_control— are
available to all clients. Calls from clients will use dot notation, as in

ownership_recordremove("1745 BB 75)

--Assuming a/ariable entity statusof typeINTEGER
status:= ownership_recordcontrol
ownership_recordmake(10_000Q

I

- Afeature is

. L . “exported if it is avail-
The last of these calls appliesnwake which is also a creation procedu‘able to all clientsSee

but here is just used as a normal exported procedure. (Compare thidefinition on page06
instruction with theCreationinstruction above, using the keywatdeate)

122 CLASSES 8§4.8

Of course, when deciding to expartake the designer oHASH_TABLE
should make sure that calls occurring after the inffisdationinstruction will

have the proper effect; this probably means using a new size which is greater
than or equal to the original one (in other words, keeping the original if the
argument to the call is smaller), and writing the routine so that resizing does
not lose any of the previously inserted elements.

To ensure thamakeis not available for outside calls, it would suffice to adc., *Restrictingexports
Feature_claussith an emptyClientslist, beginning witHeature{} , and move.page197 Afullexamjp
the declaration ofnakethere. This isxplainedin detail in the chapters ofPPears Ib-2.pae 13
features and exports.

The Invariant part, beginning withinvariant, introduces consistenc'’ «ci Ass INARI-
conditions on the features of the class; here the condition simply giveANTS". 9.8, pge 240
bounds for attributeontrol.

Finally you may have a nelotesclause, complementing the one at the
beginning of the class, and introducing note information of a more
specialized nature, such as copyright, revision history and author name.

After this general survey of the structure of a class text, the rest of this
chapter examine five clauses which apply to the class as a wkiotes
Class_headgFormal_generig®Obsoleteand ending comment.

4.8 ANNOTATING A CLASS

Through aNotesentry you may include documentary information in the
text of a class.

This is particularly important in the approach to software construction
promoted by Eiffel, based on libraries of reusable classes: the designer of
a class should help future users find out about the availability of classes
fulfilling particular needs.

We may imagine the author of a claBOCUMENTwriting the class
text as follows:

note

ST description "Documents of the most general férm
I domains text text_processing-rameMaker
classDOCUMENTInherit ... feature

note

author, "Tatiana Sergeevna Krasnojivotnaya
approved_by"Giovanni Giacomo della Gambagialla
original: 21, March, 1999

last 12, July, 2006

end

§4.8 ANNOTATING A CLASS 123

BTN TAL

The general form is:

Notes
Notes2 note Note_list
Note_list2 {Note_entry";" ...}*
Note_entry2 Note_name Note_values
Note_name2 Identifier":"

Note_values® {Note_item""...}*
Note_item2 Identifier| Manifest_constant

Notesparts (there may be up to two, one at the beginning and one at the
end) have no effect on the execution semantics of the class. They serve to
associate information with the class, for use in particular by tools for
configuration management, documentation, cataloging, archival, and for
retrieving classes based on their properties.

EachNote_entrystarts with aNote_namesuch asauthor, terminated
by a colon. The rest of thidote_entryis a list ofNote_itemterms, each of
which is an Identifier (such as text processingor July) or a
Manifest_constanthat is to say a value of a basic type, such as the integer

. \ . s - Manifest_constaiis
21, or a string such @Satiana Sergeevna Krasnojivotngyetc. introduced 32 16

. - page 889 and subse-
By the very nature ofNotesparts, the choice of indices and valuesquent sections

free. Using consistent conventions will greatly facilitate the successtyl o oo
retrieval of reusable classes. Here you may wish to rely onstt®f ,unoaming

guidelines defined for the Eiffel Software Libraries. CLASSES”"34.13page
911

As illustrated by both thélASH_TABLEandDOCUMENTexamples,
a class may include up to twdotesclauses, one at the very beginning,
before the keywordtlass and one at the very end, befoemd. Their
intended role is complementary:

« Use the initialNotesfor critical information that you want every reader
of the class to discover before reading anything else about the class,
such as the&lescriptionentry which succinctly explains the role of the
class.

 Use the finalNotesfor archival and management information such as
revision history, copyright and intellectual property notices, author and
reviser names, and any supplementary information that will be useful to
maintainers of the class.

124 CLASSES 84.9

TheNotesparts ofHASH_TABLEshown earlier, illustrated these guidelines.

Notes semantics

A Notespart has no effect asystem execution.

4.9 CLASS HEADER

TheClass_headéntroduces the name of the class; it also serves to indicate
whether the class is deferred or expanded. Here areGlaes_header
examples from EiffelBase and one from the Kernel Library, illustrating
these possibilities:

classLINKED_LIST
S deferred classSEQUENCE
I expanded classSNTEGER

The general form of th€lass_headéds simply:

oy Class headers
Class_heade# [Header markclassClass_name

Header_marké deferred | expanded| frozen

The Class_namepart gives the name of the class. The recommenflgipper name is the
convention (here and in any context where a class text refers to anamer written all in
name) is theipper name. upper case

The keywordclassmay optionally be preceded by one of the keywo
deferred, expanded frozen and separate corresponding to variants ¢
the basic notion of class:

« A deferred class describes an incompletely implemented abstraction,
which descendants will use as a basis for further refinement.

* Declaring a class asxpandedindicates that entities declared of the
corresponding type will denote objects rather than references to objects

* A frozen class cannot be inherited from.

* A separateclass, useful in concurrent programming, describes objects
handled by a separate thread of control.

As the syntax specification indicates, these four options are exclusive. A
class may not, for example, be both deferred and expanded; in fact, all non-
expanded classes are considered to be reference classes.

84.9 CLASS HEADER 125

This is part of a general characteristic of the syntax: unlike languages such as
Ada, Java and C++, Eiffel does not use multiple successive keyword qualifiers.
Where it allows you to writgoropertyl x or property2 x, it does not permit
propertyl property2 x. This keeps things simple and easy to remember.

The first two cases have an influence on the validity ruleCfieiss_header
and we now examine them in more detail.

Deferred classes

abstraction, with the expectation that proper descendants of the cIas}%ERFEES"T’,R'ig flEA'
provide or refine the implementation. This is useful to cover incompleyage 266
understood concepts or groups of related concepts. A typical exam)

EiffelBase is the deferred cla8EQUENCE which describes sequential

data structures without prescribing any particular implementation. Proper
descendants of this class, such A®KED_LIST describe concrete

sequential structures. Such non-deferred classes are saidffedtive

A class declareddeferred describes an incompletely implement: - ‘For details see

The deferred-effective distinction applies not just to classes but to their
individual features a feature is deferred if its class specifies it (often with
a contract: precondition and postcondition) but does not provide an
implementation. In general, a deferred class includes one or more deferred
features. For example procedunaend which adds an element at the end
of a sequence, is deferred3E QUENCEandeffected(made effective) by
LINKED_LISTand other effective descendants, each in its own way.

Deferred classes have no direct instances (you may not create an
instance of the corresponding type, as dreate x for x of type
SEQUENCHT])); only their effective descendants do, so thegate x is
valid for x of type LINKED_LIST[T].

A lessdrasticway of restricting clients’ instantiation rights is through the _ “resTRICTING
Creatorgart. CREATIONAVAILABIL-
ITY”, 20.7, pae 531

The validity rule below requires that as soon as a class has at least one
deferred feature you must declare it as clasdedsrred class If not, the
class would be considered effective; then clients could create instances, and
call on them a feature that you haven't implemented.

There is no converse requirement: you may declare a cladsfased
even if it has no deferred feature. This is a way of stating that you intend to
mumsl yse a class as an abstract concept even though you haven't included any
deferred feature yet. In particular, you are prohibiting clients from creating
direct instances througireate x instructions.

126

CLASSES 84.9

Expanded classes

Declaring a clas§€ asexpandedchanges the assignment and comparison
semantics of the entities declared of the corresponding types. yWVith
(ignoring any generic parameters), a@dot expanded, the assignment
X := y is a reference assignment, and the boolean expressieny
compares references. But @ is expanded, the assignment copies the
object denoted by, and the test compares objects.

One application of this notion is to represent the noticgubfobject

Sub-object vs
rC || — > reference to

another object

e: expandedC

The figure shows an instance of a class with two attributes, one of a

reference type and the other of an expanded type, representing a sub-object.

The discussion of types will provide madetails on the difference betwee_; “ExPANDED
expanded and reference semantics. TYPES".11.9,pa0e327.

To declare a class as expanded you must make sure that it retains
default_create— the default initialization procedure coming, afte= “OMITTING THE
possible renaming or redefinition, from the universal clasy — as one CREAION PROCE-
of its creation procedures. The reason is that initializing an object with 22520420514
objects, such as the one illustrated above, requires initializing all its sub-
objects, for which all that’s available is the standard initialization.

In the simplest case this requirement is automatically met: a class that doesn’t

have aCreatorgart (that is to say, doesn’t explicitly list creation procedures)

is considered to hawdefault_creatas its sole creation procedure. The details

appear in theliscussion of creation. - 20.4, pae 519

Validity of a class header

WALIDITT

The validity rule orClass_headestates the relationship between the actual
class text and a declarationdeferred:

Class Header rule VCCH

A Class_headeappearing in the text of a classis valid if and
only if has either nadeferredfeatureor a Header marlof the
deferred form.

8§4.10 FORMAL GENERIC PARAMETERS 127

If a class has at least one deferred feature, either introduced as deferrs Einition of
the class itself, or inherited as deferred and not “effected” (redeclar¢ deferred class” is on
non-deferred form), then its declaration must start not just wldssbut Pa9e303
with deferred class
There is no particular rule on the other possible markexpandedand
frozen, for a Class_headelExpanded classes often make the procedure
default_createavailable for creation, but this is not a requirement since the

corresponding entities may be initialized in other ways; they follow the same
rules as other “attached” entities.

The Class Header rule yields a simple definition:

Deferred class, effective class

A class isdeferred if its Class_headds of thedeferred form. It
is effective otherwise.

Any class that has at least one deferred feature is deferred; any class that
only has effective features is effectiaxceptif the class is explicitly
declared adeferred class

4.10 FORMAL GENERIC PARAMETERS

A class whos€lass_headds followed by a=ormal_genericpart, as in

classHASH_TABLHEG, KEY—>HASHABLE...

will be called ageneric class (If the Formal_genericpart is absent, the
class is, predictably, mon-generic clasg A generic class has one or more
formal generic parameters which are identifiers, her& andKEY, not
conflicting with any name of a class in the surrounding universe. The
mechanism that permits generic classes and the corresponding types is
calledgenericity.

As noted, a generic class does not directly yield a type, although it is
easy to derive a type from it: just provide a list of types, cabedual
generic parameters one for each formal generic parameter. This was
done above in the declarationafnership_recordo derive the type

HASH_TABLECAR STRING

from HASH_TABLEwith anActual_genericdist made of the type€AR
andSTRING Such a type is said to lgenerically derived.

128

CLASSES §4.11

Genericity is the main reason classes and types are not identical notions:
while any non-generic class is also a type, a generic class such as
HASH_TABLEnheeds actual generic parameters to yield types such as the
above. The notions of class and type are, of course, closely connected.
More precisely, any type has lzase classwhose features provide th- “BASE CLASS,
operations available on the type’s instances; for a generically derived%%sﬂ
such as the above, the base class is simply the type stripped of its 117 pae 324 '

generic parameters, hefdSH_TABLE
A wholechapter is devoted to genericity and will give the details. H2"Bhapter12 see syn-

is a is a preview of the syntax Bbrmal_genericparts: tax and validity in
“GENERICCLASSES”,
Formal_generic® "["Formal_generic_li&}" 12.2. pge 341

Formal_generic_lis& [Formal_generi¢;" ...]

Formal_generic [frozen] Formal_generic_name
[Constraint

constrained genericityas in C[G—= CONSTRAINING_TYHE which GENERICITY”, 12.6,

The Constraintconstruct, alsaletailed in the genericity chapter, governs _ «cONSTRAINED

specifies thaG represents not arbitrary types, as in the basic (unconstraine@age 346
case, but types that conform@@ONSTRAINING_TYRE

4.11 OBSOLETE MARK

By specifying arObsoletamark for a class, you indicate that the class does
not meet your current standards, and you advise developers against
continuing to use it as supplier or parent; but you avoid harming existing
systems that may rely on this class.

The decision to make an entire class obsolete is not a frequent one in well-

planned software development: through information hiding, uniform access,

dynamic binding and genericity, the language often enables developers to

change a class with little or no impact on clients and descendants. Even when

some aspects of a class become obsolete, the class as a whole may remain

appropriate; this is why you should usually prefer the related mechanism

letting you make individudeaturesobsolete. The next chaptetplains how _, “OBSOLETE FEA-
to do this, with further comments about software evolution and obsolescencTURES",5.21 pagel63.

The decision to make @assobsolete is appropriate when you realize tl
even by obsoleting some of its features you won't be able to bring it L

its ideal form without disturbing existing software, and decide to repla

by a new version. The civilized way to do this is to keep the old class, at
least for a while, under its original name, but mark it obsolete; this signals
to client and descendant developers that they will ultimately have to adapt
their classes to the new version.

An Obsoletanark has no other effect; in particular it has no bearing on
the software’s execution.

§4.11 OBSOLETE MARK 129

Here is the syntax of the mark, which comes afterGless _headeand
optionalFormal_generics

Obsolete marks
Obsolete? obsoleteMessage
Message? Manifest_string

There is no validity constraint. The semantic specification covers both

obsolete classes and obsolete features:

Obsolete semantics

Specifying an absoletamark for a class or feature has no run
time effect.

When encountering such a malknguageprocessindgools may
issue a report, citing the obsolesceridessageand advising
software authors to replace the class or feature by a newer version.

Class obsolescence is not a way to cover up for bugs or flawed designs. If
you realize that a class is incorrect or inadequate, you should face the

Frman| consequences and repair the problem, even if this requires updating
dependent classes. Any existing system using the flawed class cannot be
functioning properly anyway. Thebsoletdacility is meant for a different
case: classes which were useful and sound, but cover needs for which you
have now found improved solutions, based on a new design not backward-
compatible with the original.

130 CLASSES §4.11

	4 4 Classes
	4.1 OVERVIEW
	4.2 OBJECTS
	4.3 FEATURES
	4.4 USE OF CLASSES
	4.5 THE CURRENT CLASS
	Current class

	4.6 CLASS TEXT STRUCTURE
	4.7 PARTS OF A CLASS TEXT
	4.8 ANNOTATING A CLASS
	4.9 CLASS HEADER
	Deferred classes
	Expanded classes
	Validity of a class header
	Deferred class, effective class

	4.10 FORMAL GENERIC PARAMETERS
	4.11 OBSOLETE MARK

