Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

7 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Clients and exports

7.1 OVERVIEW

Along with inheritance, the client relation is one of the basic mechanisms
for structuring software.

In broad terms, a clas§ is a client of a typeS — which is then a
supplierof C — when it can manipulate objects of tyfgeand applySs
features to them.

The simplest and most common way is foto contain the declaration
of an entity of types.

This occurs for example whéhincludes a declaration of the form

XS

To an entity such as, C may apply the features that the designeBbias
explicitly madeavailable (hasexported) to the clients ofs. In other words,

the client relation allows a class to rely on the facilities provided by another
as part of its official interface.

Variants of the relation introduce similar dependencies through other
mechanisms, in particular generic parameters.

Although the original definitions introduce “client” in its various forms
as a relation between a class and a type, we’'ll immediately extend it, by
consideringSs base class, to a relation between classes.

This chapter defines the client relation in its diverse forms; it studies
how a class can export its features to its clients, and how these clients can
use the exported features. The discussion ends with a solution, resulting
from the export mechanism, to an important practical question: how to
document a class.

7.2 ENTITIES _. Chapterl9 covers

entities, with a full defi-

Classes become clients of one another by using typed COMpO@BHMES 1ion on pages04.
andexpressionsboth denoting run-time values (references or objects) Chapter28 covers

entity of a clas<C is one of the following: expressions

188

CLIENTS AND EXPORTS §7.3

* An attribute ofC.
A formal argument to a routine &f

* A local variable of a routine ofC, including (for a function) the
predefined entityResult denoting the result.

» An Object-Test Local (in a®bject_test
e Current.
Any such entity has a type, defined in its declaration.

Expressionsare obtained by combining entities and function calls
through operators (which themselves denote calls). Any expression has a
type, deduced from the type of its components.

It's those entities and expression types that generates the client relation, by
makingC a “simple client” ofT, as defined below, as soon as it has an entity
or expression of typé

7.3 CONVENTIONS

We need a few conventions to simplify the discussion of the client and
supplier relations.

It is useful to distinguish between several variants of the client relation:
simple client, expanded client and generic client relations. Each is studied
below. The more general notion of client is the union of these cases,
according to the following definition.

Client relation between classes and types

A classC is aclient of a typeSif someancestor ofC is asimple
client, anexpanded client or generic client ofs

Recall that the ancestors @& include C itself. The inclusion ofC's — “RELATIONS
ancestors is necessary because the dependencies caused by ir%g 65
features are just as significant as those caused by the immediate featj ;e 171 T
C. Assume that an inherited routin®f C uses a local variabbeof type S,

this means thaf depends o8, even if the text o€ does not mentioB.

Next, we need to clarify a technical point: when does the discussic - A similar problem
arose for inheritance

clients and suppliers involve classes, and when is it about types? syniacticallya Parenis
above, you declare in cla§he entityx as being of typ&, Sis a type. Thatatypenotaclassbutthe
type may be a class, but it may also be a less trivial type; for exargpdefnitions in6.3. pge

. . 168and6.5, paje 171
may be thegyenerically derivedype made it possible to talk

=
i

about parentlasses.
DU i

where D is a generic class and, itself a type, is the actual generic
parameter for this particular generic derivatiomof

§7.4 SIMPLE CLIENTS 189

As this example indicates, the client relation in its most basic form h - The complete defini-
between a class and a type, not necessarily between a class and &ion °f"bas_%|°'a§5 for
class. It generalizes immediately, however, to a relation between cleg}'fyrgggzz'eaﬁg?;egory
since every type is derived from some class callethdtse classin most chaptersi1to13.
cases, the base class of a type is obvious: for example, in a ge
derivation such ab [U], the base class B; and if a non-generic class i

used as a type, it is its own base class. Hence a simple convention:

Client relation between classes
A classC is aclient of a classB if and only if C is aclient of a
type whosdase class iB.

The same convention applies to 8impleclient, expandedlient
andgeneric client relations.

As a result of these conventions, it suffices for the following sections to
define what it means for a cla€go be a client (in one of the three variants)
of atypeS.

The next convention applies to the indirect forms of the relationS. If
is a client ofSandSis a client ofB, we will say thatC is an indirect client
of B. The full definition reads:

Indirect client

A classA is anindirect client of a typeS of baseclassB if there
is a sequence of class€g = A, C,, ..., C,=B such thanh > 2 and
everyC; is aclient of Cj,; for 1<i <n.

The indirect forms of thesimple client, expandedclient and
generic client relations are defined similarly.

Finally, we sometimes need to refer to the inverse relations:

Supplier

A type or classSis asupplier of a clas<C if Cis aclient of S with
corresponding variants: simple, expanded, generic, indirect.

7.4 SIMPLE CLIENTS

The most immediate case of the client relation is for a clfage be a
simple clientof a typeS, which is then said to be simple supplier of C.
This happens in particular whenew&contains a declaration of the form

X S

190 CLIENTS AND EXPORTS §7.4

Assuming the class skeletons:

| _g | classA feature
Tu- X: B

y:- C[D]

end

classB feature
z E

end

ThenAis a simple client oB andC, andB a simple client ofE. B andC
are, conversely, simple suppliersfgfandE of B.

In this example a class becomes a simple client of certain types through
the declarations of its entitie€.will also be a simple client cswhenever
it contains an expression of tyfe

Here is the precise definition:

Simple client
A classC is asimple client of a typeSif, in C, Sis the type of

some entity or expression or thexplicit_creation_typeof a
Creation_instructionor is one of theConstraining_typesf a
formal generic parameter @, or is involved in theType of a
Non_object_calbr of aManifest_type

The constructs listed reflect the various ways in which a class may, by listing
a typeSin its text, enable itself to use featuresSain targets of typ&

The suggested graphical representation, illustrated below, shows the
simple client relation with a double arrow. The arrow may be labeled above
by the name of the corresponding entity, and below by the names of the
actual generic parameters in brackets, as vithfgr the relation between

A andC.
y /—j Simple Clients
/D [D] c and suppliers
X
z

§7.4 SIMPLE CLIENTS 191

No constraint restricts how the classes of a system may be simple clients of
one another. In particular, cycles are permitted: a class may be its own
simple client, both directly according to this definition and indirectly.

For example you might need a cl&#SRSONnNtroducing attributes

L4
-

‘ mother father PERSON ‘

This is an example of a direct cycle of the simple client relation. Cycles may
also be indirect; for example, a cl&®USEmight introduce an attribute

‘ architect PERSON ‘

with classPERSONhaving an attributeesidenceof typeHOUSE

mothey father Cycles in the
simple client
relation

residence
PERSON ——> HOUSE ’ As usualthe ellipses

represent classe$he

architect rectangles show typita
4—— mother instances of these
1 . classeswith their fielce
L, —— -a——architect
residence 2 3
-t+—— father
4 1, 2, 3, 4. see text

This means is that every person has a mother, father and residence, and
every house has an architect. There is nothing contradictory (no vicious
circle) in these declarations; at the implementation level they create no
difficulty either since it is possible to implement the corresponding
attributes as references, as the lower half of the figure suggests by showing
typical instances of the classes: referented and4 are to instances of
PERSONTreference to an instance diOUSE

Some of these references could also be void, but only if the attribute types a2 cpapterns
declared agetachable? PERSON? HOUSE -

To avoid any confusion we must distinguish the client relation between
classeqand types), which is the topic of the chapter, from any specific link
that it induces between individualbjectsthat are instances of these
classes. In particular, a cycle between two classes does not imply a cycle
between specific objects; in the situation of the above figure, Rrdesd3

will only connect the objects shown in a “Frank Lloyd Wright setup” (the
case of an architect that lives in a house he has designed). Liakd 4
cannot be cyclic since no person is his own father or mother. This should
in fact be an invariant of the classother/= Current

192 CLIENTS AND EXPORTS §7.5

7.5 EXPANDED CLIENTS

Expanded types introduce a special variant of the client relation, called
“expanded client”.

Expanded types describe objects that behave wabpy semantics . See chaptet.1 for
rather than reference semantics: an assignment or argument passirthe details of eXPﬁnded
copy the object, not just attach a reference to it. Non-expanded t3g s 59,
which use reference semantics, are cakderence types
Atype is expanded if and only if its base class is itself expanded; it must

be declared asxpanded classather than justlass

An application of expanded classes and types is to descoimposite
objects, the name given to objects that contaibobjects Consider a class
declaration with the following attributes (routines omitted)

classB feature
a: RA
b: INTEGER
c. EC
d: ED
e RA
end

m=
i

whereRAis a reference typé&BandED are expanded type® TEGER a
basic type, is also expanded. Then instancesCofan be viewed as
composite objects. The figure below shows a typical one

a RA I Composite
object
b: INTEGER
c.EC
d: ED
eRA

The figure shows a conceptual view of the objects and subobjects; it does not
necessarily describe the actual representation, since it is always possible to
represent expanded fields by references rather than subobjects. See below.

This example illustrates the expanded variant of the client relation:

Expanded client
A classC is anexpanded clientof a typeSif Sis anexpanded

type and some attribute Gfis of typeS

§7.5 EXPANDED CLIENTS 193

Only attributes matter for this definition, since other expressions and
queries do not cause subobjects.

Fay The last example and its illustration appear to suggest that we should
E % prohibit cycles in the expanded client relation, as in

expanded clas€Afeature
c. EC

end

expandedclas€£C feature
a EA

end

or the even more absurd-looking case of a direct cycle:

expandedclas€B feature
b: EB

end

It's indeed not possible physically for every instancee@f to contain an
instance ofEA if every instance oEA contains an instance &C, or for
every instance dEB to contain another of the same type.

But in fact such examples — useful or not — create no particular
problem and we don't need to prohibit them. Remember that the figure
showing expanded fields as subobjects is just an illustration; the only
semantic property that matters is that instances of expanded types have
copy semantigsneaning that:

* An assignment or argument passing will copy the object, not just assign
a reference.

» An equality operation will compare objects contents, not references.

To support these rules, expanded types Hawg initialization semantics:
expanded objects need only be created when first accessed.

Any implementation of expanded attributes that supports these properties
is acceptable. In particular, while tisebobjectrepresentation is generally
preferable when possible (that is to say, in the absence of cycles), itis always
possible to useeferencesinstead, and create the associated objects on
demand, as part of lazy initialization. Cycles are then not a problem.

This solution is available for attributasc andb in the last example.:

194 CLIENTS AND EXPORTS §7.6

Conceptually, you may consider that if an objéd of the expanded type

EB has a field of that same type (the same would apply to the indirect case
involving instances ofEA and EC), the field still represents a that
subobject, justwritten smaller” inside the first:

Embedded
objects

Lazy semantics implies that all subobjects are evaluated only when needed,
and an execution can only perform a finite number of such evaluations; so
the process will stop and the level of object embedding remains finite.

Of course we can't really “write smaller” in the memory of a computer,
so the most obvious implementation will use embedded sub-objects for
expanded attributes at the first level only, and then references for the (rare)
case of cycles in the expanded relation. But the subobject embedding
picture remains applicable conceptually.

Earlier versions of Eiffel had an “Expanded Client rule” prohibiting cycles in
the expanded client relation. The lazy semantics of expanded types now
makes it unnecessary.

The graphical representation of the expanded client relation uses a double
line, as with the simple client relation, but with a brace near the arrowtip:

Expanded
C). [—> B) client

See corresponding con
vention for expanded
inheritance pagel8Q

7.6 GENERIC CLIENTS

Assume thaB is a generic class, and that cl&sontains a declaration of
the form

‘X:B[S]

usingSas actual generic parameter for the generic derivati@n of

As seen above, this declaration makes simple client oB. But it also
introduces a dependency betwe€rand S. This dependency is in fact
similar to what happens i€ has an entity or expression of tyjs this
variant of the client relation is callggneric client

§7.6 GENERIC CLIENTS 195

Generic client, generic supplier

A classC is ageneric clientof a typeSif for some generically
derived typeT of the formB [..., S ...] one of the following
holds:

1+Cis aclient of T.
2 «T is aparent type of aancestor ofC.

Casel captures for example the use@of an entity of typeB [J (with B
having just one generic parameter). CasmversC inheriting directly or
indirectly (remember that is one of its own ancestors) frdng.

As case2 of the definition indicates; may become a generic client of
Shy usingSas actual generic parameter not just in the type of an entity or
expression (as with above), but also in Rarentpart, as in

classC inherit

B[....,S...]
feature

TheParenipart may appear not just Ditself as here, but in any one of its
ancestors: generic client status is passed on through inheritance.

The graphical convention for the generic variant of the client relation
uses a double arrow from the generic client to its generic supplier, listing
the base class with three dots in bracket$. For a declaratior: B[S]:

BI..] Generic client

The full picture is in this case:

Generic client

m - /E:\ BI[..] Q 2Iri1éjn?imple

Do not confuse the two forms of client relation arising h&2és a simple
client of B, with Sas a generic parameter, through the declaration(lefft

part of the figure); but that declaration also makes generic client of,

assumed here for simplicity to be a non-generic class..

There is no restriction on how the classes of a system may become
generic clients of each other.

196 CLIENTS AND EXPORTS §7.7

7.7 EXPORT CONTROLS AND INFORMATION HIDING

The client relation determines how a class may call features of a certain
type, on entities of that type. Such calls are subjecexport controls,
implementing a policy of “information hiding”.

AssumecC is a simple or expanded client 8f C declares one or more
entities or expressions of tyf&let x: Sbe one of them. The benéefit, fax,
is to be able to calBs features on entities and expressions suck dhe

simplest form ofall, occurring inC, is - See chaptez3about
the various formsuses
‘ x«f(...) and properties of calls

wherer is a feature of. This form uses dot notation; forms using operators
and assignment procedures are also possible.

Not all suchcalls, however, are permitted; in particular, not all t— Chapter25covers
features of a class need be callable by all clients. The designer of a suf/ge"c‘;i?;d'“ons on call
class may want to keep some features private, or available to some ¢ '
only, because they are only of internal use and subject to change; I
any client access them directly would jeopardize further evolution,

requiring a change of the client classes every time these features change.

This is especially true of features that reflect not the services directly
offered by a class to its clients, but internal support for the implementation
of these services, resulting from specific choices of representation and
algorithms. By keeping such features private, the designer of the supplier
class protects clients against the effects of later reversals of these choices.
This policy is part ofinformation hiding , a central principle of software
development, which holds that the developer of a module must make a
clear distinction between two categories of properties: those which are
local to the module itself (its “secrets”, or “private properties”); and those
that are available to clients (“public properties”).

Eiffel supports information hiding in a number of ways, including
Design by Contract, the notion of contract view, and the principle of
Uniform Access. One of the principal tools for information hiding is the
ability for a class to define a specific export status for every one of its
features. You can achieve this through two related mechanisms:

* For immediate features (those introduced in the class itself), you may
specify export restrictions by listing clients inF@ature_clausdn the
absence of such arestriction, features are available to all possible clients.

* For inherited features (those obtained from parents), you may change
the export policy specified by each parent through tlesv_exports
subclauses of the correspondigrentparts. Inherited features not
listed tthere retain the export status they had in the parent.

The following discussion explain these two mechanisms in detail.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 197

Restricting exports

You define the export status of animmediate feature by specifying authorized

clients in theFeature_clauswhere it is declared. Areature_clausbeqgins - Feature_clauswas
with the keywordeature followed by an optionaClientspart; if present, this'l"g;’d“"ed irb.7.page
Clientspart lists the classes to which the feature is available. -

If there is noClientspart, then every feature introduced in theature
clausds available to any client that cares to use it. So if cR&8RAGRAPH

includes aeature_clausef the form Thefeature keyword is
not technically part of
theFeature_clausbut
| a | featu_re introduces it
axn indent(n: INTEGER
I -- Indent paragraph hypositions.
... Procedure body omitted.

then any other class may declare an entitgf type PARAGRAPHand
include a call such as

‘ p.indent(5)

If, however, theClientspart of aFeature_clausis present, it consists of a
list of classes in braces, and makes the features introduced by the clause
available only to those classes and their descendants.

Here is such d&eature_clauseappearing in a classINKABLE and
listing three clients:

M feature { LINKABLE LINKED_LISTTWO_WAY_TREE
aan right: like Current
I put_right(other. like Currend

--Make otherright neighbor of this object.
... Procedure body omitted

This Feature_clauséntroduces two featuresjght and put_right and
makes them available to client$NKABLE (the class itself, viewed as its
own client),LINKED_LISTandTWO_WAY_TREH his means that, fdr
of type LINKABLE, calls of the form

l.right
l.put_right(...)

are permitted if they appear in descendants of any of the classes
LINKABLE, LINKED_LISTandTWO_WAY_TREE

The next subsections explore two properties visible on this example:
« A class may need to make features available to itself.

» Making a feature available to a class also makes it available to all of its
proper descendants.

198 CLIENTS AND EXPORTS §7.7

Exporting to oneself

The aboveClientspart, appearing in claddNKABLE, listed LINKABLE
itself among the classes to whidlght andput_rightare available. This is
required if the class containgjaalified call such as

\ l.put_right(...)

with | of a type based obINKABLE If the Feature_clausstarted with just
feature {LINKED_LIST TWO_WAY_TREE such a qualified call would

be invalid outside of the two classes listed and their descendants; in
particular, it would be invalid ihINKABLE itself.

The reason is clear: a qualified calff (...) always makes the enclosing
class a client ok’s type; so the above call makésNKABLE a client of
itself, and ifLINKABLE has madeut_rightselectively available to some
clients only this will only be permitted if it has listed itself among them.

Although perhaps strange at first sight, this convention is consistent
@ with the general rules on export. (Making exceptions for clients that
I happen to be the class itself, or one of its descendants, would lead to
complicated rules.) Be sure to note, however, that all this only applies to
qualified calls. There is no restriction, in the text of a classupqualified - Chapter23
callsto features of the class itself, as with

‘ put_right(...)

appearing in a routine &iINKABLE, with thesemantics ofcallingut_right ~ “Targetofacall’..
. . . page 620

on thecurrent object. This is always permitted regardless of the exg

status ofput_right— that is, even iput_rightappears in &eature_clause

whose Clients part does not include.INKABLE Clearly, a secret or

selectively available feature such asit_right would be useless if it

couldn’t be called in this way from within the class. Unlike qualified calls

such ag.put_right(...), such an unqualified call is not considered to make

the class a client of itself.

) A general semantic property is that, except for invariant monitoring, an
- unqualified callf (...) will always have the same effect as the qualified call
"ETE.‘ Current.f (...). But as a result of this discussion the validity constraints are
slightly different: iff is not exported to the class itself, the first form may be

valid and the second one not.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 199

Exporting to descendants

Making a feature available to a class also makes it available to the proper
descendants of that class. This is because a class needs the same privileges
that its parents had; for example, it could redefine an inherited routine,
changing the original algorithm into a slightly different one, which still
needs access to the same information from suppliers.

As a consequence, declaring featureshature clausef the form

feature { ANY}
... Feature declarations.

makes them available to all classes, since every developer-defined ¢ - “ANY"._6.6. page

- 172 seealsochapt&5
atdeilscen_dant gANY Such a clause has the same effect aShentspart ;J 7°° " o n
atall, asin

feature
... Feature declarations.

Making a feature secret

The export control mechanism as just described gives us, as a special case,
the ability to make a featurfiecompletelysecret— available for call to no
client. It suffices to declare the feature iRemture clausthat starts\

feature {NONB
... Declaration foif and other secret features

where NONE is the fictictious class at thbottom of the inheritance~ “NONE", 6.7,
hierarchy. BecauddONEhas no usable instance, and no developer-wrimgﬁ5

class can be a descendant\#DNE, this makes it impossible for any cla:

to usef as feature of a qualified callf (...).

The treatment ofANY and NONE for export controls is pleasantly
symmetric: feature { ANY} introduces public features, available to all
classesteature {NONE introduces private features, available to no class.

The conventions for shorthands are, however, different:

PN feature with noClientspart is an abbreviation féeature { ANY}.
i « feature {} with an emptyClientspartis not permitted by the syntax: the

production forClientsrequires &lass_list which cannot be empty. - Page204below

feature { } could be accepted as a synonym feature {NONE (and
actually was in earlier versions of Eiffel, although seldom used), but the

T T language design has settled on a single convention, and chosen the more
explicit one for clarity. It is not in the usual Eiffel style to use empty brace or
parenthesis enclosures.

200 CLIENTS AND EXPORTS §7.7

Adapting the export status of inherited features

The precedomg discussion has explained the export status of features
introduced in a class (although the formal definitions have not yet I;Qf&?jﬁfﬁ%%ffa
given). We also need to know what happeristieritedfeatures. new declaration for it

. This may be either a
If a feature isredeclared, its new declaration will appear ikr@ature yedefinitionor an

clausg whoseClients part, or absence thereof, will determine the exgeffecting.See chapter
status as we have just seen. But what is the feature is not redeclarectCor details

The rule is simple. By default, the feature will keep its export status. An
heir can change that status, however, througlNew exportspart,
appearing as part of tlieeature_adaptaticsubclause of &arentpart.

As an example, here is the beginnimgp{esclause excluded) of a class

of EiffelBase:
classFIXED_STACHKT] inherit
STACK[T]
inherit { NONE}
ARRAYT]
rename
putasarray_put
...Other renaming pairs omitted
export
{NONE -- Implementation
all
end
feature

. . . < Allthese subclauses
The New_exportspart appears with thether possiblesubclauses of ¢, theFeature_adap-

Feature_adaptatiomfter Undefing Redefineand Rename(only the lastationas a whoieare

one present here) and bef@elect optional The syntax
_appeared on pagk69
TheNew_exportsubclause has the general form (shown here with the

export keyword that introduces the subclause)

export
{A, B, C} -- Feature category 1
f1,f2, ...
{X, Y}-- Feature category 2
9192 ...

meaning: unless a redeclaration specifies a different status, fhdRe...
available to client®\, B, C and any of their descendants; make g2, ...
available to client¥X, Y and any of their descendants; and so on.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 201

METHON]
L |

It is good, as illustrated, to include after eaChentslist a header comment, . “FEATURESPART
such as- Implementationindicating the new feature category. The notion of EXAMPLE", 5.5.page
feature category, and the recommendation to listit througbaler comment — 134; syntaxpagel37.
are derived from the practice labeling feature clauses in a similaayw

If, instead of a feature list such &5 f2, ..., aClientslist is followed by the
keywordall, then all non-redeclared inherited features are available to the
given clients and their descendants, except for any features for which other
parts of the subclause specify a different policy. For exampl¥ED
STACKabove hides all features inherited frofRRAYED_LISTrom all
clients, by exporting them tdlONEonly. This is a typical example of a
class which inherits its interface from one parent (HeT&CHK and uses
another parent (he®®RRAY for implementation purposes only.

If no part of the subclause mentioak in lieu of a feature list, any non-
redeclared inherited feature that is not explicitly given a new export status
keeps the exact export status that it had in the parent. Assuming class
declarations of the form:

|

classB feature

x: INTEGER
feature { A}

f, g, h: INTEGER
feature {NONB

i,j, k INTEGER
end

classC inherit

B
export
{D} -- Implementation
iy]
{ANY} -- Access
f
end
end

the features of have the following status:

« X, available to all clientsh, available toA and its descendants, akd
secret, do not appear in any of thew_exportsubclauses: they both
keep the status they hadBn

* i andj, regardless of their original statusk are now available t® and
its descendants.

« fisnow available to all clients. (Re-exportingttl Yis how you make generally
available a feature that was selectively available, or secret, in a parent.)

202

CLIENTS AND EXPORTS §7.7

Expanding or restricting the export status

BEETHON]
L !

Elaborate changes of export status in inheritance, as in the last example, are
uncommon. But two simpler cases causing the usé\zfa_exportlause
do occur fairly often:

« Extending you may want to re-export a feature which was used in the
parent for implementation purposes only, but turns out to be of direct
value for the clients of the new class, as withthe last example.

* Restricting in designing a new class, you may want to hide features that
were exported by a parent.

The second case does not arise in the last example; it does appear in the
previous one, for the inheritance BfXED_STACKfrom ARRAYwhich
hidesall inherited features. It is not by accident that thierit_clausan

that case started with

\ inherit {NONB

, o] . < “NON-CONFORM-
meaning, as we havgeen, non-conforming inheritance. Restricting INGINHERITANCE”,

export availability of a class is, indeed, applicable only to non-conforn€-8.pae 178

inheritance, as it could causge problems in the conformance case. - “NOTES ON THE

, . . . TYPEPOLICY”, 25.7,
Extending the export status of an inherited feature is always pos$age 665

whether in conforming or non-conforming inheritance.

The rule that defines this policy is not a validity constraint but instead a
part of the semantics. The “client set” of a featliod a classC — the set
of classes that have access for qualified calls — is definelelav as the - “Client setofa Cli-
union of all applicableClientslists: the list governing its declaration S Part. pge 203
redeclaration irC, the New_exportdf applicable, and the applicable lis
from conformingparents. So with non-conforming inheritance you can
override the original status as you please; but with a conforming parent,
even though it is not invalid to writexport { NONE, this will have no
effect since theClientslist {[NONE will be combined with the feature’s
status in the parent, which will then remain applicable.

The export status of features

The previous discussion allows us to give a precise definition aftpert

status of any feature, which will determine to what classes the feature 'gsee chapted5 on

available for qualified calls. This notion determines the validity of ¢4 validity. The pre-

cise requirementis con-

‘X.f (.. ‘ dition 2 of export
validity, page624

or the equivalent using operator expressions or assignment procedure
appearing in a clags which declares of type S the feature of final nam
fin Smust be available tB.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 203

We first need a notion of “client set”, applying @ientsparts such as
{A, B, C} which, as we have seen, may appear both at the beginning of a
Feature_clausand in aNew_exportsubclause:

Client set of aClients part
Theclient setof a Clientspart is the set oflescendants of every
class of theuniverse whose name it lists.

By convention, the client set of an abs€nientspart includes all
classes of the system.

The descendants of a class include the class itself. The “convention” of this
definition simplifies the following definitions in the case of@bentspart,
which should be treated as if there wer€kents part listing justANY
ancestor of all classes.

No validity ruleprevents listing in &lientspart a name that does not
denote a class of the universe. In this case — explicitly permitted by the
phrasing of the definition —a does not denote any class and hence has no
descendants; it does not contribute to the client set.

This important convention is in line with the reuse focus of Eiffel and
its application to component-based development. You may develop a class
Cin a certain system, where it lists some cl&#s a Clientspart, to giveS
access to some of its features; then you réliseanother system that does
not includeS. You should not have to chan@esince no bad consequence
can result from listing a class not present in the system, as loGglags
not itself useSas its supplier or ancestor.

Even in a single system, this policy means that you can rerSeveif
you find itis no longer needed — without causing compilation errors in the
classes that list it in theiClientsparts. With a stricter rule, you would have
to removeSfrom every suctClientspart. But then if you later change your
mind — as part of the normal hesitations of an incremental design process
— you would have to put it back in each of these places. This process is
tedious, and it wouldn't take many iterations until programmers start
making many features public just in case — hardly an improvement for
information hiding, the purpose of all this.

Rules on setting the export status

.lc'\.

(This section introduces no new concepts but gives a more fo= Neéxt sectior-

presentation of ideas introduced above. You may skip it on first readiDOCUMENTINGTHE
CLIENT INTERECE

The two constructs that determine the export status of a featuror A cLASS”, 7.8,
ClientsandNew_exportsTo conclude this discussion on export contriage 207
and information hiding, we need to express their precise syntax, constraints
and semantics.

204 CLIENTS AND EXPORTS §7.7

Here is the syntax of thelientspart:

\—l—‘”""“ Clients
Clients 2 "{" Class_list'}"

Class_list2 {Class_namé&," ...}*

This construct may appear in two positions. One is iHeav_exportsas . Feature_clauswas
seen next; the other is as an optional componentrafaure _clauses in specified on page37.

feature { A,B,C}
... Feature declarations.

There isno validity constraint on Clientspart. In particular, it is valid for
aClientspart both:

« To list a class that does not belong to the universe.
* To list a class twice.

These properties may at first seem at odds with the language’s emphasis on
including validity constraints that permit detection of errors and
mukid jnconsistencies at compile time. But in fact there is no adverse effect:

* As noted, permitting &lientspart in a classC to listing a non-exist
classS gives us useful flexibility. Of course you may misspell a class
name in aClientspart and, in the absence of any constraint, not get a
validity error. But this is not really cause for concern: if you mean to
exportf to Ain C and mistakenly start théeature_clauswith feature
{B} instead offeature { A}, then for any caltl.f (...) with c1 of type
Cin Ayou will get a validity error. So the absence of a constraint on the
class names listed in @lients part introduces no risk of accidentally
violating information hiding requirements.

This policy contrasts with th€lassTyperule, which addresses the only other _, “Class Type rule”
possible use of &lass_namén the language: as part of@ass_typeThere page 325

we will need, of course, to require that any class used as part of a type be part

of the surrounding universe.

« Similar reasoning explains why it is not invalid for a class to appear
twice in a Clients part, as in{A, A}. Export privileges extend to
descendants; so if we disallowtzhture { A, A} we should also prohibit
feature { A, B} if Bis a proper descendant&fsince exporting té\ also
exports toB. Such a rule is too complicated for the benefits it brings.

Since there is no restriction on the classes listed inGleess_list one of
them may be the enclosing class or one of its ancestors, allowing the class,
as noted earlier, to make a feature selectively available to the current class.

Now for New_exportslt is an optional element dfeature_adaptatio — Syntax on page69
in a Parentpart, as illustrated byrIXED STACKabove, and has the
following form:

§7.7 EXPORT CONTROLS AND INFORMATION HIDING

205

BTN TAX

Al ininy

Export adaptation
New_exports2 export New_export_list

New_export_list2 {New_export_itent;" ...}*

New_export_item® Clients[Header_commehEeature_set . TheoptionaHeader

Feature_se® Feature_lisfall
Feature_lis®® {Feature_namig"...}*

A constraint applies to ariyew_exportlause:

Export List rule VLEL
A New_exportglause appearing in clagsin a Parentpart for a
parentB, of the form

export
{class_lis{} feature_sat

{class_list} feature_set
is valid if and only if for everyfeature_set(for i in the interval
1..n) that is aFeature_lis(rather tharall):
1 «Every elements of the list is tHaal name of a feature of
inherited fromB.

2 » Nofeature name appears more than once in any such list

commenindicates afea-

ture categorysee, page
200

To obtain the export status of a feature, we need to look d&dh&ire clause
that introduces it if it is immediate, at the applicablew_exportlause, if

any, ifitis inherited, and at theeature_clauseontaining its redeclaration if

it is inherited and redeclared. In\ew_exportsthe keywordall means that

the chosen status will apply to all the features inherited from the given parent.

The following definitions and rules express these properties. They start
by extending the notion of “client set” from entir€lients parts to
individual features.

Client set of a feature

The client set of a featuref of a classC, of final namefname

includes the following classes (for all cases that match):

1If fis introduced orredeclared inC: the client set of the
Feature_clausef thedeclaration foif in C.

2 «If fis inherited: the union of the client sets (recursively) of
its precursors fronconforming parents.

3 ¢ If the Feature_sedf one or moreNew_exportclauses ofC
includesfnameor all, the union of the client sets of thei
Clientsparts.

=

[

206 CLIENTS AND EXPORTS §7.7

This definition is the principal rule for determining the export status of a
feature. It has two important properties:

« The different cases are cumulative rather than exclusive. For example a
“redeclared” feature (casg) is also “inherited” (cas€2) and the
applicableParentpart may have Blew_export{case3).

* As a result of case, the client set can never diminish under
conforming inheritance: features can win new clients, but never lose
one. This is necessary under polymorphism and dynamic binding to
avoid certain type of “catcalls” leading to run-time crashes.

This is what “available”, used informally up to now, exactly means:
L Available for call, available
A featuref is available for call, or justavailable for short, to a
classC or to a typebased orC, if and only ifC belongs to the
client set of.

In line with others in the present discussion, the definition of “available
for call” introduces a notion aboufassesand immediately generalizes it
to typesbased on those classes.

The key validity constraint on calls, export validity, will express that a
calla.f (...) can only be valid if is available to the type at
There is also a notion ofdvailable for creation”, governing whether a - “RESTRICTING

Creation_call create a.f (...) is valid. “Available” without further = CREATIONAVAILABIL-
qualification means “available for call”. ITY”, 20.7 531

There are three degrees of availability, as given by the following definit.u...

Exported, selectively available, secret

The export status of a feature of a class is one of the following:

1 - The feature may bevailableto all classes. It is said to be
exported, orgenerally available

2 «The feature may be available to specific classes (other than
NONEandANY) only. In that case it is also available to the
descendants of all these classes. Such a feature is said to be
selectively available to the given classes and theijr
descendants.

3 * Otherwise the feature is available onlyN@ONE It is then said
to besecret

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 207

This is the fundamental terminology for information hiding, which
determines when it is possible to call a feature througbalified callx.f.
As special cases:

« A feature introduced byeature {NONE (case3) is available to no
useful classes.

« A feature introduced bfeature { ANY}, or justfeature, is available toOreverfeature{ ANYA,

. - B, ...}; adding classes
all classes and so will be considered to fall under tase after ANYbrings nothing

* A feature introduced bfeature {A, B, C}, where none of A, B, C} is
ANY falls under casg.
A feature available to a class is also available to all the proper descendants
of that class.

7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS

Now that we have seen the details of the client and export mechanisms, we
can obtain an answer to a central issue of software development, especially
relevant to the component-based, reuse-oriented software culture promoted
by Eiffel: how can the author of a class provide authors of client and
descendant classes, and maintainers of the class itself, with a clear
description of the facilities offered?

Selecting features

A class will be documented through its features (as well as other properties
such as the class invariant and the list of its parents). The first question is:
which features do we show? Not necessarily all of them: for example, a
client class needs only the features available to it, while a descendant has
access to all features. Also, we might consider inherited features, or not.
These observation suggest two orthogonal distinctions:

» Between views relevant to authors of: the class itself; all clients; a
specific client (taking into account selective exports as discussed earlier
in this chapter); proper descendants.

» Betwen views that take into accouimmediatefeatures and invariant
clauses (those from the class itself) omyieritedones as well.

Retaining the useful combinations gives the following ways of selecting
features to document:

Available Available to clientX Available to descendants
to all clients (all features)
Immediate + redeclared Incremental | X-client incremental view
view
All including inherited | Client view X-client view Descendant view
features (“flat views”)

208 CLIENTS AND EXPORTS §7.8

In the first row, we select not only immediate features but also those
inherited from a parent anddeclared This is for two reasons:

» The combination of immediate and redeclared features gives us a good
idea of the “added value” of the class: what it adds to its parents’
features. The ternmcremental vievexpresses this notion.

» More prosaically, such a view is easy to produce: a simple parsing tool,
working on the basis of just one class without having to access its proper
ancestors, can process all feature declarations — not having to
differentiate between new declarations aedeclarations — and, on thit would be possible to
basis ofClientsparts, retain the public ones (incremental view) or thSPot the redefinitions

. o . ! ;i (by analyzing the
available to a specific clienk{client view). Redefineclauses) but

. . . not the effectings.
In the second row, we include all inherited features.

Contract views

Once we have selected the features to document, what information do we
retain for them? The most obvious answer would be to give the source
code. But this is usually not appropriate: for a “client programmer” (author
of a client class), the class text usually includes implementation details
along with interface properties. The principle of information hiding
requires that we include only the latter. For the view to be offered to a client
programmer, the interface properties include:

» The name of a feature.
* Its signature: types of arguments and result if any.
» Thecontracts: precondition, postcondition.

» Some properties of the class other than its features, in particular the
class invariant.

Introducing this new dimension into our classification gives the following
variant of the previous table, again retaining useful combinations only:

Available Available to clientX, Available to descendants
to all clients, contracts only (all features), source text
contracts only

Immediate + redeclared Incremental X-client incremental
contract view contract view

All including inherited | Contract view X-client contract view | Descendant view

features (“flat views”)

The leftmost column yields the most intereresting form of documentation
for Eiffel classes: theontract view, incremental or not.

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 209

Here are the precise definitions leading to this notion. The basic ideas are
in the preceding discussion, but the defintions need to take all cases and
details into account.

Secret, public

A property of a class text isecretif and only if it involves any of

the following, describing information on whicblient classes

cannot rely to establish their correctness:

1 « Any feature that is n@vailable to the given client, unless this
is overridden by the next case.

2+Any feature that is notavailable for creation to the
given client, unless this is overridden by the previous case.

3 +The body and rescue clause of any feature, except for|the
information that the feature is external©@nceand, in the last
case, its once keys if any.

4+For a query without formal amguments, whether it is
implemented as amttribute or afunction, except for the
information that it is @onstant attribte.

5e¢Any Assertion_clausethat (recursively) includes secret
information.

6 < Any parent part for a non-conforming parent (and as a
consequence the very presence of that parent).

7 « The information that a feature is frozen.
Any property of a class text that is not secrgtuiblic.

Software developers must be able to use a class as supplier on the basis of
public information only.

A feature may be available for call, or for creation, or both (cdsmsd
2). If either of these properties applies, the affected clients must know
about the feature, even if they can use it in only one of these two ways.

Whether a feature is external (ca®eor constant (casé) determines
whether it is possible to use it inldon_object_caland hence is public
information.

These notions yield the definition of the incremental contract view:

Incremental contract view, short form

The incremental contract view of a class, also called itshort
form, is a text with the same structure as the class but retaining only

public properties.

210 CLIENTS AND EXPORTS §7.8

Eiffel environments usually provide tools that automatically produce the
incremental contract view of a class from the class text. This provides the
principal form of software documentation: abstract yet precise, and
extracted from the program text rather than written and maintained
separately.

The definition specifies the information that the incremental contract
view must retain, but not its exact display format, which typically will be
close to Eiffel syntax.

Below is an extract — beginning, middle and end — from the

incremental contract view of thé&lASH TABLEclass of EiffelBase,

displayed at the click of a button by Eiffel Software’s EiffelStudio (5.6)

running on Windows.
An
incremental
contract view
(extracty

As you will note from this example, the view relies on syntactic
conventions slightly different from those of Eiffel; for example, it uses
class interface instead of the Eiffel keyworctlass This avoids any
confusion with actual Eiffel, since a short form is not a clesdbut class
documentation The above definition indeed leaves environments such
freedom as to the exact appearance of such views; it only specifies which
information to retain and which to discard.

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 211

The next definition introduces the non-incremental variant:

Contract view, flat-short form

Thecontract view of a class, also called iffat-short form, is a
text following the same conventions as fherementakontract
view form but extended to include information abdnherited as
well asimmediate features, the resultingmbinedoreconditions
and postconditions and thenfoldedform of the classinvariant
including inherited clauses.

The contract view is the full interface information about a class, including
everything that clients need to know (but no more) to use it properly. The
“combined forms” of preconditions and postconditions take into account
parents’ versions as possibly modified laguire elseandensure then
clauses, and hence describing features’ contracts as they must appear to the
clients. The “unfolded form” of the class invariant includes clauses from
parents. In all these, of course, we still eliminate any clause that includes
secret information, as with the incremental contract view.

The contract view is the principal means of documenting Eiffel
software, in particular libraries of reusable components. It provides the
right mix of abstraction, clarity and precision, and excludes
implementation-dependent properties. Being produced automatically by
software tools from the actual text, it does not require extra effort on the
part of software developers, and stands a much better chance to remain
accurate when the software changes.

The contract views, incremental and full, are a fundamental tool for
many aspects of software construction. By providing the right level of
abstraction to talk about classes, they constitute the Eiffel method’s
technique of choice for discussing class designs and documenting reusable
components. The resulting documentation is free — no need to hire a
technical writer, since environment tools take care of producing the
document — and, being extracted from the class text, is not subject to the
major risk of software documentation, theeverse Dorian Gray
phenomenarceasing to be truthful as the software evolves.

212 CLIENTS AND EXPORTS §7.8

	7 7 Clients and exports
	7.1 OVERVIEW
	7.2 ENTITIES
	7.3 CONVENTIONS
	Client relation between classes and types
	Client relation between classes
	Indirect client
	Supplier

	7.4 SIMPLE CLIENTS
	Simple client

	7.5 EXPANDED CLIENTS
	Expanded client

	7.6 GENERIC CLIENTS
	Generic client, generic supplier

	7.7 EXPORT CONTROLS AND INFORMATION HIDING
	Restricting exports
	Exporting to oneself
	Exporting to descendants
	Making a feature secret
	Adapting the export status of inherited features
	Expanding or restricting the export status
	The export status of features
	Client set of a Clients part
	Rules on setting the export status
	Client set of a feature
	Available for call, available
	Exported, selectively available, secret

	7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS
	Selecting features
	Contract views
	Secret, public
	Incremental contract view, short form
	Contract view, flat-short form

