
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
7

Clients and exports
7.1 OVERVIEW

This occurs for example whenC includes a declaration of the form

To an entity such asx, C may apply the features that the designer ofShas
explicitly madeavailable(hasexported) to the clients ofS. In other words,
the client relation allows a class to rely on the facilities provided by another
as part of its official interface.

This chapter defines the client relation in its diverse forms; it studies
how a class can export its features to its clients, and how these clients can
use the exported features. The discussion ends with a solution, resulting
from the export mechanism, to an important practical question: how to
document a class.

7.2 ENTITIES
Classes become clients of one another by using typed components,entities
andexpressions, both denoting run-time values (references or objects). An
entity of a classC is one of the following:

Along with inheritance, the client relation is one of the basic mechanisms
for structuring software.

In broad terms, a classC is a client of a typeS — which is then a
supplierof C — when it can manipulate objects of typeS and applyS’s
features to them.

The simplest and most common way is forC to contain the declaration
of an entity of typeS.

x: S

Variants of the relation introduce similar dependencies through other
mechanisms, in particular generic parameters.

Although the original definitions introduce “client” in its various forms
as a relation between a class and a type, we’ll immediately extend it, by
consideringS’s base class, to a relation between classes.

→ Chapter19 covers
entities, with a full defi-
nition on page504.
Chapter28 covers
expressions.

CLIENTS AND EXPORTS §7.3188
• An attribute ofC.
• A formal argument to a routine ofC.
• A local variable of a routine ofC, including (for a function) the

predefined entityResult denoting the result.
• An Object-Test Local (in anObject_test).

• Current .

Any such entity has a type, defined in its declaration.

Expressionsare obtained by combining entities and function calls
through operators (which themselves denote calls). Any expression has a
type, deduced from the type of its components.

It’s those entities and expression types that generates the client relation, by
makingC a “simple client” ofT, as defined below, as soon as it has an entity
or expression of typeT.

7.3 CONVENTIONS

We need a few conventions to simplify the discussion of the client and
supplier relations.

Next, we need to clarify a technical point: when does the discussion of
clients and suppliers involve classes, and when is it about types? If, as
above, you declare in classC the entityxas being of typeS, Sis a type. That
type may be a class, but it may also be a less trivial type; for example,S
may be thegenerically derivedtype

where D is a generic class andU, itself a type, is the actual generic
parameter for this particular generic derivation ofD.

It is useful to distinguish between several variants of the client relation:
simple client, expanded client and generic client relations. Each is studied
below. The more general notion of client is the union of these cases,
according to the following definition.

Client relation between classes and types
A classC is aclient of a typeS if someancestor ofC is asimple
client, anexpanded client or ageneric client ofS.

Recall that the ancestors ofC include C itself. The inclusion ofC’s
ancestors is necessary because the dependencies caused by inherited
features are just as significant as those caused by the immediate features of
C. Assume that an inherited routiner of C uses a local variablex of typeS;
this means thatC depends onS, even if the text ofC does not mentionS.

D [U]

← “RELATIONS
INDUCED BY
INHERITANCE”, 6.5,
page 171.

← A similar problem
arose for inheritance:
syntactically, aParent is
atype,notaclass,butthe
definitions in6.3, page
168 and6.5, page 171,
made it possible to talk
about parentclasses.

§7.4 SIMPLE CLIENTS 189
As this example indicates, the client relation in its most basic form holds
between a class and a type, not necessarily between a class and another
class. It generalizes immediately, however, to a relation between classes,
since every type is derived from some class called itsbase class. In most
cases, the base class of a type is obvious: for example, in a generic
derivation such asD [U], the base class isD; and if a non-generic class is
used as a type, it is its own base class. Hence a simple convention:

As a result of these conventions, it suffices for the following sections to
define what it means for a classC to be a client (in one of the three variants)
of a typeS.

The next convention applies to the indirect forms of the relations. IfC
is a client ofSandS is a client ofB, we will say thatC is an indirect client
of B. The full definition reads:

Finally, we sometimes need to refer to the inverse relations:

7.4 SIMPLE CLIENTS

The most immediate case of the client relation is for a classC to be a
simple client of a typeS, which is then said to be asimple supplier of C.
This happens in particular whenever C contains a declaration of the form

Client relation between classes
A classC is aclient of a classB if and only if C is aclient of a
type whosebase class isB.
The same convention applies to thesimpleclient,expandedclient
andgeneric client relations.

Indirect client
A classA is anindirect client of a typeSof baseclassB if there
is a sequence of classesC1 = A, C2, …, Cn = B such thatn > 2 and
everyCi is aclient ofCi+1 for 1 ≤ i < n.
The indirect forms of thesimple client, expandedclient and
generic client relations are defined similarly.

Supplier
A type or classSis asupplier of a classC if C is aclient ofS, with
corresponding variants: simple, expanded, generic, indirect.

x: S

→ The complete defini-
tion of"base class", for
every possible category
of type, appears in
chapters11 to 13.

CLIENTS AND EXPORTS §7.4190
Assuming the class skeletons:

ThenA is a simple client ofB andC, andB a simple client ofE. B andC
are, conversely, simple suppliers of A, andE of B.

In this example a class becomes a simple client of certain types through
the declarations of its entities.C will also be a simple client ofSwhenever
it contains an expression of type S.

Here is the precise definition:

The suggested graphical representation, illustrated below, shows the
simple client relation with a double arrow. The arrow may be labeled above
by the name of the corresponding entity, and below by the names of the
actual generic parameters in brackets, as with [D] for the relation between
A andC.

class A feature
x: B
y: C [D]
…

end

class B feature
z: E
…

end

Simple client
A classC is asimple client of a typeS if, in C, S is the type of
some entity or expression or theExplicit_creation_typeof a
Creation_instruction, or is one of theConstraining_typesof a
formal generic parameter ofC, or is involved in theType of a
Non_object_callor of aManifest_type.

The constructs listed reflect the various ways in which a class may, by listing
a typeSin its text, enable itself to use features ofS on targets of typeS.

A C

BE

y

x

z

[D]

Simple Clients
and suppliers

§7.4 SIMPLE CLIENTS 191
For example you might need a classPERSON introducing attributes

This is an example of a direct cycle of the simple client relation. Cycles may
also be indirect; for example, a classHOUSE might introduce an attribute

with classPERSON having an attributeresidence of typeHOUSE.

This means is that every person has a mother, father and residence, and
every house has an architect. There is nothing contradictory (no vicious
circle) in these declarations; at the implementation level they create no
difficulty either since it is possible to implement the corresponding
attributes as references, as the lower half of the figure suggests by showing
typical instances of the classes: references1, 3 and4 are to instances of
PERSON, reference2 to an instance ofHOUSE.

Some of these references could also be void, but only if the attribute types are
declared asdetachable:? PERSON, ? HOUSE.

To avoid any confusion we must distinguish the client relation between
classes(and types), which is the topic of the chapter, from any specific link
that it induces between individualobjects that are instances of these
classes. In particular, a cycle between two classes does not imply a cycle
between specific objects; in the situation of the above figure, links2 and3
will only connect the objects shown in a “Frank Lloyd Wright setup” (the
case of an architect that lives in a house he has designed). Links1 and4
cannot be cyclic since no person is his own father or mother. This should
in fact be an invariant of the class:mother/= Current.

No constraint restricts how the classes of a system may be simple clients of
one another. In particular, cycles are permitted: a class may be its own
simple client, both directly according to this definition and indirectly.

mother, father: PERSON

architect: PERSON

PERSON HOUSE

residence

father

architect

mother, father

residence

architect

32

4 1, 2, 3, 4: see text

mother
1

Cycles in the
simple client
relation

As usual, the ellipses
represent classes. The
rectangles show typical
instances of these
classes, with their fields

→ Chapter24

CLIENTS AND EXPORTS §7.5192
7.5 EXPANDED CLIENTS

Expanded types introduce a special variant of the client relation, called
“expanded client”.

Expanded types describe objects that behave withcopy semantics
rather than reference semantics: an assignment or argument passing will
copy the object, not just attach a reference to it. Non-expanded types,
which use reference semantics, are calledreference types.

A type is expanded if and only if its base class is itself expanded; it must
be declared asexpanded class rather than justclass.

An application of expanded classes and types is to describecomposite
objects, the name given to objects that containsubobjects. Consider a class
declaration with the following attributes (routines omitted)

whereRAis a reference type,EBandED are expanded types;INTEGER, a
basic type, is also expanded. Then instances ofC can be viewed as
composite objects. The figure below shows a typical one

The figure shows a conceptual view of the objects and subobjects; it does not
necessarily describe the actual representation, since it is always possible to
represent expanded fields by references rather than subobjects. See below.

This example illustrates the expanded variant of the client relation:

class B feature
a: RA
b: INTEGER
c: EC
d: ED
e: RA

end

Expanded client
A classC is anexpanded clientof a typeS if S is anexpanded
type and some attribute ofC is of typeS.

→ See chapter11 for
the details of expanded
types, starting with
11.9, page 327.

Composite
object

a: RA

b: INTEGER

c: EC

d: ED

e:RA

§7.5 EXPANDED CLIENTS 193
Only attributes matter for this definition, since other expressions and
queries do not cause subobjects.

The last example and its illustration appear to suggest that we should
prohibit cycles in the expanded client relation, as in

or the even more absurd-looking case of a direct cycle:

It’s indeed not possible physically for every instance ofEC to contain an
instance ofEA if every instance ofEA contains an instance ofEC, or for
every instance ofEB to contain another of the same type.

But in fact such examples — useful or not — create no particular
problem and we don’t need to prohibit them. Remember that the figure
showing expanded fields as subobjects is just an illustration; the only
semantic property that matters is that instances of expanded types have
copy semantics, meaning that:

• An assignment or argument passing will copy the object, not just assign
a reference.

• An equality operation will compare objects contents, not references.

To support these rules, expanded types havelazy initialization semantics:
expanded objects need only be created when first accessed.

Any implementation of expanded attributes that supports these properties
is acceptable. In particular, while thesubobjectrepresentation is generally
preferable when possible (that is to say, in the absence of cycles), it is always
possible to usereferencesinstead, and create the associated objects on
demand, as part of lazy initialization. Cycles are then not a problem.

This solution is available for attributesa, c andb in the last example.:

expanded classEA feature
c:
…

end

expandedclassEC feature
a:
…

end

expandedclassEB feature
b:
…

end

EC

EA

EB

CLIENTS AND EXPORTS §7.6194
Conceptually, you may consider that if an objectOB of the expanded type
EBhas a field of that same type (the same would apply to the indirect case
involving instances ofEA and EC), the field still represents a that
subobject, just “written smaller” inside the first:

Lazy semantics implies that all subobjects are evaluated only when needed,
and an execution can only perform a finite number of such evaluations; so
the process will stop and the level of object embedding remains finite.

Of course we can’t really “write smaller” in the memory of a computer,
so the most obvious implementation will use embedded sub-objects for
expanded attributes at the first level only, and then references for the (rare)
case of cycles in the expanded relation. But the subobject embedding
picture remains applicable conceptually.

Earlier versions of Eiffel had an “Expanded Client rule” prohibiting cycles in
the expanded client relation. The lazy semantics of expanded types now
makes it unnecessary.

The graphical representation of the expanded client relation uses a double
line, as with the simple client relation, but with a brace near the arrowtip:

7.6 GENERIC CLIENTS

Assume thatB is a generic class, and that classC contains a declaration of
the form

usingS as actual generic parameter for the generic derivation of B.

As seen above, this declaration makesC a simple client ofB. But it also
introduces a dependency betweenC and S. This dependency is in fact
similar to what happens ifC has an entity or expression of typeS; this
variant of the client relation is calledgeneric client.

x: B [S]

Embedded
objects

(EB)

(EB)
(EB)

C B

Expanded
client
See corresponding con-
vention for expanded
inheritance, page180.

§7.6 GENERIC CLIENTS 195
As case2 of the definition indicates,C may become a generic client of
Sby usingSas actual generic parameter not just in the type of an entity or
expression (as withx above), but also in aParent part, as in

TheParentpart may appear not just inC itself as here, but in any one of its
ancestors: generic client status is passed on through inheritance.

The graphical convention for the generic variant of the client relation
uses a double arrow from the generic client to its generic supplier, listing
the base class with three dots in brackets[…]. For a declarationx: B [S]:

The full picture is in this case:

Do not confuse the two forms of client relation arising here:C is a simple
client ofB, with Sas a generic parameter, through the declaration ofx (left
part of the figure); but that declaration also makesC a generic client ofS,
assumed here for simplicity to be a non-generic class..

There is no restriction on how the classes of a system may become
generic clients of each other.

Generic client, generic supplier
A classC is ageneric clientof a typeS if for some generically
derived typeT of the form B […, S, …] one of the following
holds:
1 •C is aclient ofT.

2 •T is aparent type of anancestor ofC.

Case1 captures for example the use inC of an entity of typeB [S] (with B
having just one generic parameter). Case2 coversC inheriting directly or
indirectly (remember thatC is one of its own ancestors) fromB [S].

classC inherit

feature
…

B […, S,…]

B […]
C S

Generic client

B
[S]

B […]
C S

Generic client
and simple
client

CLIENTS AND EXPORTS §7.7196
7.7 EXPORT CONTROLS AND INFORMATION HIDING

The client relation determines how a class may call features of a certain
type, on entities of that type. Such calls are subject toexport controls,
implementing a policy of “information hiding”.

AssumeC is a simple or expanded client ofS. C declares one or more
entities or expressions of typeS; let x: Sbe one of them. The benefit, forC,
is to be able to callS’s features on entities and expressions such asx. The
simplest form ofcall, occurring inC, is

wherer is a feature ofS. This form uses dot notation; forms using operators
and assignment procedures are also possible.

Not all such calls, however, are permitted; in particular, not all the
features of a class need be callable by all clients. The designer of a supplier
class may want to keep some features private, or available to some clients
only, because they are only of internal use and subject to change; letting
any client access them directly would jeopardize further evolution, by
requiring a change of the client classes every time these features change.

This is especially true of features that reflect not the services directly
offered by a class to its clients, but internal support for the implementation
of these services, resulting from specific choices of representation and
algorithms. By keeping such features private, the designer of the supplier
class protects clients against the effects of later reversals of these choices.
This policy is part ofinformation hiding , a central principle of software
development, which holds that the developer of a module must make a
clear distinction between two categories of properties: those which are
local to the module itself (its “secrets”, or “private properties”); and those
that are available to clients (“public properties”).

Eiffel supports information hiding in a number of ways, including
Design by Contract, the notion of contract view, and the principle of
Uniform Access. One of the principal tools for information hiding is the
ability for a class to define a specific export status for every one of its
features. You can achieve this through two related mechanisms:

• For immediate features (those introduced in the class itself), you may
specify export restrictions by listing clients in aFeature_clause. In the
absence of such a restriction, features are available to all possible clients.

• For inherited features (those obtained from parents), you may change
the export policy specified by each parent through theNew_exports
subclauses of the correspondingParentparts. Inherited features not
listed tthere retain the export status they had in the parent.

The following discussion explain these two mechanisms in detail.

x.f (…)

→Seechapter23about
the various forms, uses
and properties of calls.

→ Chapter25 covers
the conditions on call
validity.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 197
Restricting exports

You define the export status of an immediate feature by specifying authorized
clients in theFeature_clausewhere it is declared. AFeature_clausebegins
with the keywordfeature followed by an optionalClientspart; if present, this
Clients part lists the classes to which the feature is available.

If there is noClientspart, then every feature introduced in theFeature_
clauseis available to any client that cares to use it. So if classPARAGRAPH
includes aFeature_clauseof the form

then any other class may declare an entityp of type PARAGRAPHand
include a call such as

If, however, theClientspart of aFeature_clauseis present, it consists of a
list of classes in braces, and makes the features introduced by the clause
available only to those classes and their descendants.

Here is such aFeature_clause, appearing in a classLINKABLE and
listing three clients:

This Feature_clauseintroduces two features,right and put_right, and
makes them available to clientsLINKABLE (the class itself, viewed as its
own client),LINKED_LISTandTWO_WAY_TREE. This means that, forl
of typeLINKABLE, calls of the form

are permitted if they appear in descendants of any of the classes
LINKABLE, LINKED_LIST andTWO_WAY_TREE.

The next subsections explore two properties visible on this example:

• A class may need to make features available to itself.

• Making a feature available to a class also makes it available to all of its
proper descendants.

feature
indent(n: INTEGER)

-- Indent paragraph byn positions.
… Procedure body omitted…

p.indent(5)

feature { LINKABLE, LINKED_LIST, TWO_WAY_TREE}
right: like Current
put_right(other: like Current)

--Makeotherright neighbor of this object.
… Procedure body omitted…

l.right
l.put_right(…)

← Feature_clause was
introduced in5.7,page
137.

Thefeature keyword is
not technically part of
theFeature_clause, but
introduces it.

CLIENTS AND EXPORTS §7.7198
Exporting to oneself

The aboveClientspart, appearing in classLINKABLE, listedLINKABLE
itself among the classes to whichright andput_rightare available. This is
required if the class contains aqualified call such as

with l of a type based onLINKABLE. If theFeature_clausestarted with just
feature { LINKED_LIST, TWO_WAY_TREE} , such a qualified call would
be invalid outside of the two classes listed and their descendants; in
particular, it would be invalid inLINKABLE itself.

The reason is clear: a qualified callx.f (…) always makes the enclosing
class a client ofx’s type; so the above call makesLINKABLE a client of
itself, and ifLINKABLEhas madeput_rightselectively available to some
clients only this will only be permitted if it has listed itself among them.

Although perhaps strange at first sight, this convention is consistent
with the general rules on export. (Making exceptions for clients that
happen to be the class itself, or one of its descendants, would lead to
complicated rules.) Be sure to note, however, that all this only applies to
qualified calls. There is no restriction, in the text of a class, onunqualified
calls to features of the class itself, as with

appearing in a routine ofLINKABLE, with thesemantics ofcallingput_right
on thecurrent object. This is always permitted regardless of the export
status ofput_right— that is, even ifput_rightappears in aFeature_clause
whose Clients part does not includeLINKABLE. Clearly, a secret or
selectively available feature such asput_right would be useless if it
couldn’t be called in this way from within the class. Unlike qualified calls
such asl.put_right(…), such an unqualified call is not considered to make
the class a client of itself.

A general semantic property is that, except for invariant monitoring, an
unqualified callf (…) will always have the same effect as the qualified call
Current.f (…). But as a result of this discussion the validity constraints are
slightly different: if f is not exported to the class itself, the first form may be
valid and the second one not.

l.put_right(…)

put_right(…)

→ Chapter23.

→ “Target of a call”,
page 620.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 199
Exporting to descendants

Making a feature available to a class also makes it available to the proper
descendants of that class. This is because a class needs the same privileges
that its parents had; for example, it could redefine an inherited routine,
changing the original algorithm into a slightly different one, which still
needs access to the same information from suppliers.

As a consequence, declaring features in aFeature_clause of the form

makes them available to all classes, since every developer-defined class is
a descendant ofANY. Such a clause has the same effect as noClientspart
at all, as in

Making a feature secret

The export control mechanism as just described gives us, as a special case,
the ability to make a featuref completelysecret— available for call to no
client. It suffices to declare the feature in aFeature_clause that starts\

where NONE is the fictictious class at thebottom of the inheritance
hierarchy. BecauseNONEhas no usable instance, and no developer-written
class can be a descendant ofNONE, this makes it impossible for any class
to usef as feature of a qualified callx.f (…).

The treatment ofANY and NONE for export controls is pleasantly
symmetric: feature { ANY} introduces public features, available to all
classes;feature { NONE} introduces private features, available to no class.

The conventions for shorthands are, however, different:

• feature with noClients part is an abbreviation forfeature { ANY} .

• feature {} with an emptyClientspart is not permitted by the syntax: the
production forClients requires aClass_list, which cannot be empty.
feature { } could be accepted as a synonym forfeature { NONE} (and
actually was in earlier versions of Eiffel, although seldom used), but the
language design has settled on a single convention, and chosen the more
explicit one for clarity. It is not in the usual Eiffel style to use empty brace or
parenthesis enclosures.

feature
… Feature declarations…

feature
… Feature declarations…

feature
… Declaration forf and other secret features…

{ ANY}

← “ANY”, 6.6, page
172;seealsochapter35
for more details.

{ NONE}

← “NONE”, 6.7,
page 175.

→ Page204below.

CLIENTS AND EXPORTS §7.7200
Adapting the export status of inherited features

The precedomg discussion has explained the export status of features
introduced in a class (although the formal definitions have not yet been
given). We also need to know what happens toinherited features.

If a feature isredeclared, its new declaration will appear in aFeature_
clause, whoseClientspart, or absence thereof, will determine the export
status as we have just seen. But what is the feature is not redeclared?

The rule is simple. By default, the feature will keep its export status. An
heir can change that status, however, through aNew_exportspart,
appearing as part of theFeature_adaptation subclause of aParent part.

As an example, here is the beginning (Notesclause excluded) of a class
of EiffelBase:

The New_exportspart appears with theother possiblesubclauses of a
Feature_adaptation: after Undefine, Redefineand Rename(only the last
one present here) and beforeSelect.

TheNew_exportssubclause has the general form (shown here with the
export keyword that introduces the subclause)

meaning: unless a redeclaration specifies a different status, makef1, f2, …
available to clientsA, B, C and any of their descendants; makeg1, g2, …
available to clientsX, Y and any of their descendants; and so on.

class FIXED_STACK[T] inherit
STACK[T]

inherit { NONE}
ARRAY[T]

rename
putas array_put,
…Other renaming pairs omitted…

end
feature

…

export
{ A, B, C} -- Feature category 1

f1, f2, …
{ X, Y}-- Feature category 2

 g1, g2, …
…

→ A class"redeclares"
a feature if it provides a
new declaration for it.
This may be either a
redefinition or an
effecting. See chapter
10 for details.

export
{ NONE} -- Implementation

all

←All thesesubclauses,
and theFeature_adap-
tation as a whole, are
optional. The syntax
appeared on page169.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 201
It is good, as illustrated, to include after eachClientslist a header comment,
such as-- Implementation, indicating the new feature category. The notion of
feature category, and the recommendation to list it through aHeader_comment,
are derived from the practice oflabeling feature clauses in a similar way.

If, instead of a feature list such asf1, f2, …, aClientslist is followed by the
keywordall, then all non-redeclared inherited features are available to the
given clients and their descendants, except for any features for which other
parts of the subclause specify a different policy. For example,FIXED_
STACKabove hides all features inherited fromARRAYED_LISTfrom all
clients, by exporting them toNONEonly. This is a typical example of a
class which inherits its interface from one parent (hereSTACK) and uses
another parent (hereARRAY) for implementation purposes only.

If no part of the subclause mentionsall in lieu of a feature list, any non-
redeclared inherited feature that is not explicitly given a new export status
keeps the exact export status that it had in the parent. Assuming class
declarations of the form:

the features ofC have the following status:

• x, available to all clients,h, available toA and its descendants, andk,
secret, do not appear in any of theNew_exportssubclauses: they both
keep the status they had inB.

• i andj, regardless of their original status inB, are now available toD and
its descendants.

• f isnowavailable toallclients. (Re-exporting toANYishowyoumakegenerally
available a feature that was selectively available, or secret, in a parent.)

class B feature
x: INTEGER

feature { A}
f, g, h: INTEGER

feature { NONE}
i, j, k: INTEGER

end

class C inherit
B

end

← “FEATURESPART:
EXAMPLE”, 5.5,page
134; syntax, page137.

export
{ D} -- Implementation

i, j
{ ANY} -- Access

f
end

CLIENTS AND EXPORTS §7.7202
Expanding or restricting the export status

Elaborate changes of export status in inheritance, as in the last example, are
uncommon. But two simpler cases causing the use of aNew_exportsclause
do occur fairly often:

• Extending: you may want to re-export a feature which was used in the
parent for implementation purposes only, but turns out to be of direct
value for the clients of the new class, as withf in the last example.

• Restricting: in designing a new class, you may want to hide features that
were exported by a parent.

The second case does not arise in the last example; it does appear in the
previous one, for the inheritance ofFIXED_STACKfrom ARRAY, which
hidesall inherited features. It is not by accident that theInherit_clausein
that case started with

meaning, as we haveseen, non-conforming inheritance. Restricting the
export availability of a class is, indeed, applicable only to non-conforming
inheritance, as it could causetype problems in the conformance case.

Extending the export status of an inherited feature is always possible,
whether in conforming or non-conforming inheritance.

The rule that defines this policy is not a validity constraint but instead a
part of the semantics. The “client set” of a featuref of a classC — the set
of classes that have access tof for qualified calls — is definedbelow as the
union of all applicableClients lists: the list governing its declaration or
redeclaration inC, theNew_exportsif applicable, and the applicable lists
from conformingparents. So with non-conforming inheritance you can
override the original status as you please; but with a conforming parent,
even though it is not invalid to writeexport { NONE} , this will have no
effect since theClientslist { NONE} will be combined with the feature’s
status in the parent, which will then remain applicable.

The export status of features

The previous discussion allows us to give a precise definition of theexport
statusof any feature, which will determine to what classes the feature is
available for qualified calls. This notion determines the validity of

or the equivalent using operator expressions or assignment procedure calls,
appearing in a classC which declaresx of typeS: the feature of final name
f in S must be available toB.

inherit { NONE}

x.f (…)

← “NON-CONFORM-
INGINHERITANCE”,
6.8, page 178.

→ “NOTES ON THE
TYPEPOLICY”, 25.7,
page 665.

→ “Client setof a Cli-
ents part”, page 203.

→ See chapter25 on
call validity. The pre-
cise requirement is con-
dition 2 of export
validity, page624.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 203
We first need a notion of “client set”, applying toClientsparts such as
{ A, B, C} which, as we have seen, may appear both at the beginning of a
Feature_clause and in aNew_exports subclause:

Rules on setting the export status

(This section introduces no new concepts but gives a more formal
presentation of ideas introduced above. You may skip it on first reading.)

The two constructs that determine the export status of a feature are
ClientsandNew_exports. To conclude this discussion on export controls
and information hiding, we need to express their precise syntax, constraints
and semantics.

Client set of aClients part
Theclient setof a Clientspart is the set ofdescendants of every
class of theuniverse whose name it lists.
By convention, the client set of an absentClientspart includes all
classes of the system.

The descendants of a class include the class itself. The “convention” of this
definition simplifies the following definitions in the case of noClientspart,
which should be treated as if there were aClients part listing justANY,
ancestor of all classes.

No validity ruleprevents listing in aClientspart a namen that does not
denote a class of the universe. In this case — explicitly permitted by the
phrasing of the definition —n does not denote any class and hence has no
descendants; it does not contribute to the client set.

This important convention is in line with the reuse focus of Eiffel and
its application to component-based development. You may develop a class
C in a certain system, where it lists some classS in aClientspart, to giveS
access to some of its features; then you reuseC in another system that does
not includeS. You should not have to changeC since no bad consequence
can result from listing a class not present in the system, as long asC does
not itself useSas its supplier or ancestor.

Even in a single system, this policy means that you can removeS— if
you find it is no longer needed — without causing compilation errors in the
classes that list it in theirClientsparts. With a stricter rule, you would have
to removeSfrom every suchClientspart. But then if you later change your
mind — as part of the normal hesitations of an incremental design process
— you would have to put it back in each of these places. This process is
tedious, and it wouldn’t take many iterations until programmers start
making many features public just in case — hardly an improvement for
information hiding, the purpose of all this.

→ Next section: “-
DOCUMENTINGTHE
CLIENT INTERFACE
OF A CLASS”, 7.8,
page 207

CLIENTS AND EXPORTS §7.7204
Here is the syntax of theClients part:

This construct may appear in two positions. One is in aNew_exports, as
seen next; the other is as an optional component of aFeature_clause, as in

These properties may at first seem at odds with the language’s emphasis on
including validity constraints that permit detection of errors and
inconsistencies at compile time. But in fact there is no adverse effect:

• As noted, permitting aClientspart in a classC to listing a non-exist
classS gives us useful flexibility. Of course you may misspell a class
name in aClientspart and, in the absence of any constraint, not get a
validity error. But this is not really cause for concern: if you mean to
exportf to A in C and mistakenly start theFeature_clausewith feature
{ B} instead offeature { A} , then for any callc1.f (…) with c1 of type
C in A you will get a validity error. So the absence of a constraint on the
class names listed in aClientspart introduces no risk of accidentally
violating information hiding requirements.

This policy contrasts with theClassTyperule, which addresses the only other
possible use of aClass_namein the language: as part of aClass_type. There
we will need, of course, to require that any class used as part of a type be part
of the surrounding universe.

• Similar reasoning explains why it is not invalid for a class to appear
twice in a Clients part, as in{ A, A} . Export privileges extend to
descendants; so if we disallowedfeature { A, A} we should also prohibit
feature { A, B} if B is a proper descendant ofA, since exporting toAalso
exports toB. Such a rule is too complicated for the benefits it brings.

Since there is no restriction on the classes listed in theClass_list, one of
them may be the enclosing class or one of its ancestors, allowing the class,
as noted earlier, to make a feature selectively available to the current class.

Now for New_exports. It is an optional element ofFeature_adaptation
in a Parentpart, as illustrated byFIXED_STACKabove, and has the
following form:

Clients
Clients =∆ "{" Class_list "}"

Class_list=∆ { Class_name "," …} +

feature { A,B,C}
… Feature declarations…

There isno validity constraint onClientspart. In particular, it is valid for
aClients part both:

• To list a class that does not belong to the universe.

• To list a class twice.

← Feature_clause was
specified on page137.

→ “Class Type rule”,
page 325.

← Syntax on page169.

§7.7 EXPORT CONTROLS AND INFORMATION HIDING 205
A constraint applies to anyNew_exports clause:

Export adaptation
New_exports=∆ export New_export_list

New_export_list=∆ {New_export_item ";" …}+

New_export_item=∆ Clients[Header_comment] Feature_set

Feature_set=∆ Feature_list |all

Feature_list=∆ {Feature_name "," …}+

Export List rule VLEL

A New_exportsclause appearing in classC in aParentpart for a
parentB, of the form

export
{ class_list1} feature_set1
…
{ class_listn} feature_setn

is valid if and only if for everyfeature_seti (for i in the interval
1..n) that is aFeature_list (rather thanall):
1 • Every elements of the list is thefinal name of a feature ofC

inherited fromB.

2 • No feature name appears more than once in any such list.

To obtain the export status of a feature, we need to look at theFeature_clause
that introduces it if it is immediate, at the applicableNew_exportsclause, if
any, if it is inherited, and at theFeature_clausecontaining its redeclaration if
it is inherited and redeclared. In aNew_exports, the keywordall means that
the chosen status will apply to all the features inherited from the given parent.

The following definitions and rules express these properties. They start
by extending the notion of “client set” from entireClients parts to
individual features.

Client set of a feature
The client set of a featuref of a classC, of final namefname,
includes the following classes (for all cases that match):
1 • If f is introduced orredeclared inC: the client set of the

Feature_clause of thedeclaration forf in C.
2 • If f is inherited: the union of the client sets (recursively) of all

its precursors fromconforming parents.
3 • If the Feature_setof one or moreNew_exportsclauses ofC

includes fnameor all, the union of the client sets of their
Clientsparts.

←TheoptionalHeader_
commentindicatesafea-
ture category: see, page
200.

CLIENTS AND EXPORTS §7.7206
This is what “available”, used informally up to now, exactly means:

This definition is the principal rule for determining the export status of a
feature. It has two important properties:

• The different cases are cumulative rather than exclusive. For example a
“redeclared” feature (case1) is also “inherited” (case2) and the
applicableParent part may have aNew_exports(case3).

• As a result of case2, the client set can never diminish under
conforming inheritance: features can win new clients, but never lose
one. This is necessary under polymorphism and dynamic binding to
avoid certain type of “catcalls” leading to run-time crashes.

Available for call, available
A featuref is available for call, or justavailable for short, to a
classC or to a typebased onC, if and only ifC belongs to the
client set off.

In line with others in the present discussion, the definition of “available
for call” introduces a notion aboutclassesand immediately generalizes it
to types based on those classes.

The key validity constraint on calls, export validity, will express that a
call a.f (…) can only be valid iff is available to the type ofa.

There is also a notion of “available for creation”, governing whether a
Creation_call create a.f (…) is valid. “Available” without further
qualification means “available for call”.

There are three degrees of availability, as given by the following definition.

Exported, selectively available, secret
The export status of a feature of a class is one of the following:
1 • The feature may beavailable to all classes. It is said to be

exported, orgenerally available.

2 • The feature may be available to specific classes (other than
NONEandANY) only. In that case it is also available to the
descendants of all these classes. Such a feature is said to be
selectively available to the given classes and their
descendants.

3 • Otherwise the feature is available only toNONE. It is then said
to besecret.

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”, 20.7, page 531.

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 207
7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS

Now that we have seen the details of the client and export mechanisms, we
can obtain an answer to a central issue of software development, especially
relevant to the component-based, reuse-oriented software culture promoted
by Eiffel: how can the author of a class provide authors of client and
descendant classes, and maintainers of the class itself, with a clear
description of the facilities offered?

Selecting features

A class will be documented through its features (as well as other properties
such as the class invariant and the list of its parents). The first question is:
which features do we show? Not necessarily all of them: for example, a
client class needs only the features available to it, while a descendant has
access to all features. Also, we might consider inherited features, or not.
These observation suggest two orthogonal distinctions:

• Between views relevant to authors of: the class itself; all clients; a
specific client (taking into account selective exports as discussed earlier
in this chapter); proper descendants.

• Betwen views that take into account:immediatefeatures and invariant
clauses (those from the class itself) only;inherited ones as well.

Retaining the useful combinations gives the following ways of selecting
features to document:

This is the fundamental terminology for information hiding, which
determines when it is possible to call a feature through aqualified callx.f.
As special cases:

• A feature introduced byfeature { NONE} (case3) is available to no
useful classes.

• A feature introduced byfeature { ANY} , or justfeature, is available to
all classes and so will be considered to fall under case1.

• A feature introduced byfeature {A, B, C} , where none of{ A, B, C} is
ANY, falls under case2.

A feature available to a class is also available to all the proper descendants
of that class.

Available
to all clients

Available to clientX Available to descendants
(all features)

Immediate + redeclared Incremental
view

X-client incremental view

All including inherited
features (“flat views”)

Client view X-client view Descendant view

Orevenfeature{ANY,A,
B,…} ; adding classes
afterANYbringsnothing.

CLIENTS AND EXPORTS §7.8208
In the first row, we select not only immediate features but also those
inherited from a parent andredeclared. This is for two reasons:

• The combination of immediate and redeclared features gives us a good
idea of the “added value” of the class: what it adds to its parents’
features. The termincremental viewexpresses this notion.

• More prosaically, such a view is easy to produce: a simple parsing tool,
working on the basis of just one class without having to access its proper
ancestors, can process all feature declarations — not having to
differentiate between new declarations andredeclarations — and, on the
basis ofClientsparts, retain the public ones (incremental view) or those
available to a specific client (X-client view).

In the second row, we include all inherited features.

Contract views

Once we have selected the features to document, what information do we
retain for them? The most obvious answer would be to give the source
code. But this is usually not appropriate: for a “client programmer” (author
of a client class), the class text usually includes implementation details
along with interface properties. The principle of information hiding
requires that we include only the latter. For the view to be offered to a client
programmer, the interface properties include:

• The name of a feature.

• Its signature: types of arguments and result if any.

• Thecontracts: precondition, postcondition.

• Some properties of the class other than its features, in particular the
class invariant.

Introducing this new dimension into our classification gives the following
variant of the previous table, again retaining useful combinations only:

The leftmost column yields the most intereresting form of documentation
for Eiffel classes: thecontract view, incremental or not.

Available
to all clients,
contracts only

Available to clientX,
contracts only

Available to descendants
(all features), source text

Immediate + redeclared Incremental
contract view

X-client incremental
contract view

All including inherited
features (“flat views”)

Contract view X-client contract view Descendant view

It would be possible to
spot the redefinitions
(by analyzing the
Redefine clauses) but
not the effectings.

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 209
Here are the precise definitions leading to this notion. The basic ideas are
in the preceding discussion, but the defintions need to take all cases and
details into account.

These notions yield the definition of the incremental contract view:

Secret, public
A property of a class text issecretif and only if it involves any of
the following, describing information on whichclient classes
cannot rely to establish their correctness:
1 • Any feature that is notavailable to the given client, unless this

is overridden by the next case.

2 • Any feature that is notavailable for creation to the
given client, unless this is overridden by the previous case.

3 • The body and rescue clause of any feature, except for the
information that the feature is external orOnceand, in the last
case, its once keys if any.

4 • For a query without formal arguments, whether it is
implemented as anattribute or a function, except for the
information that it is aconstant attribute.

5 • Any Assertion_clausethat (recursively) includes secret
information.

6 • Any parent part for a non-conformingparent (and as a
consequence the very presence of that parent).

7 • The information that a feature is frozen.

Any property of a class text that is not secret ispublic.

Software developers must be able to use a class as supplier on the basis of
public information only.

A feature may be available for call, or for creation, or both (cases1 and
2). If either of these properties applies, the affected clients must know
about the feature, even if they can use it in only one of these two ways.

Whether a feature is external (case3) or constant (case4) determines
whether it is possible to use it in aNon_object_calland hence is public
information.

Incremental contract view, short form
The incremental contract view of a class, also called itsshort
form , is a text with the same structure as the class but retaining only
public properties.

CLIENTS AND EXPORTS §7.8210
Below is an extract — beginning, middle and end — from the
incremental contract view of theHASH_TABLEclass of EiffelBase,
displayed at the click of a button by Eiffel Software’s EiffelStudio (5.6)
running on Windows.

As you will note from this example, the view relies on syntactic
conventions slightly different from those of Eiffel; for example, it uses
class interface instead of the Eiffel keywordclass. This avoids any
confusion with actual Eiffel, since a short form is not a classtextbut class
documentation. The above definition indeed leaves environments such
freedom as to the exact appearance of such views; it only specifies which
information to retain and which to discard.

Eiffel environments usually provide tools that automatically produce the
incremental contract view of a class from the class text. This provides the
principal form of software documentation: abstract yet precise, and
extracted from the program text rather than written and maintained
separately.

The definition specifies the information that the incremental contract
view must retain, but not its exact display format, which typically will be
close to Eiffel syntax.

An
incremental
contract view
(extracts)

§7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS 211
The next definition introduces the non-incremental variant:

The contract views, incremental and full, are a fundamental tool for
many aspects of software construction. By providing the right level of
abstraction to talk about classes, they constitute the Eiffel method’s
technique of choice for discussing class designs and documenting reusable
components. The resulting documentation is free — no need to hire a
technical writer, since environment tools take care of producing the
document — and, being extracted from the class text, is not subject to the
major risk of software documentation, thereverse Dorian Gray
phenomenon: ceasing to be truthful as the software evolves.

Contract view, flat-short form
Thecontract view of a class, also called itsflat-short form , is a
text following the same conventions as theincrementalcontract
view form but extended to include information aboutinherited as
well asimmediate features, the resultingcombinedpreconditions
andpostconditions and theunfoldedform of the classinvariant
including inherited clauses.

The contract view is the full interface information about a class, including
everything that clients need to know (but no more) to use it properly. The
“combined forms” of preconditions and postconditions take into account
parents’ versions as possibly modified byrequire elseandensure then
clauses, and hence describing features’ contracts as they must appear to the
clients. The “unfolded form” of the class invariant includes clauses from
parents. In all these, of course, we still eliminate any clause that includes
secret information, as with the incremental contract view.

The contract view is the principal means of documenting Eiffel
software, in particular libraries of reusable components. It provides the
right mix of abstraction, clarity and precision, and excludes
implementation-dependent properties. Being produced automatically by
software tools from the actual text, it does not require extra effort on the
part of software developers, and stands a much better chance to remain
accurate when the software changes.

CLIENTS AND EXPORTS §7.8212

	7 7 Clients and exports
	7.1 OVERVIEW
	7.2 ENTITIES
	7.3 CONVENTIONS
	Client relation between classes and types
	Client relation between classes
	Indirect client
	Supplier

	7.4 SIMPLE CLIENTS
	Simple client

	7.5 EXPANDED CLIENTS
	Expanded client

	7.6 GENERIC CLIENTS
	Generic client, generic supplier

	7.7 EXPORT CONTROLS AND INFORMATION HIDING
	Restricting exports
	Exporting to oneself
	Exporting to descendants
	Making a feature secret
	Adapting the export status of inherited features
	Expanding or restricting the export status
	The export status of features
	Client set of a Clients part
	Rules on setting the export status
	Client set of a feature
	Available for call, available
	Exported, selectively available, secret

	7.8 -DOCUMENTING THE CLIENT INTERFACE OF A CLASS
	Selecting features
	Contract views
	Secret, public
	Incremental contract view, short form
	Contract view, flat-short form

