Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

14 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Conformance

14.1 OVERVIEW

Conformance is the most important characteristic of the Eiffel type system:
it determines when a type may be used in lieu of another.

The most obvious use of conformance is to make assignment and
argument passing type-safe: foof type T andy of typeV, the instruction
X := Y, and the calsome_routindy) with x as formal argument, will only
be valid if V is compatiblewith T, meaning that it eitheconformsor
convertsto T. Conformance also governs the validity of many other
constructs, as discussed below.

Conformance, as the rest of the type system, relies on inheritance. The
basic condition fol to conform toT is straightforward:

* The base class & must be a descendant of the base cla3s of

« If Vis a generically derived type, its actual generic parameters must
conform to the corresponding onesTirB [Y] conforms toA [X] only if
B conforms toA andY to X.

« If T is expanded, inheritance is not involvedcan only beT itself.

% Ifthisis your first reading, this simple explanation is probably sufficient to
understand the references to conformance in the rest of this book, and you

ﬂmlmi may want to move on right away to the next chapter.

A full understanding of conformance requires the formal rules
explained below, which take into account the details of the type system:
constrained and unconstrained genericity, special rules for predefined
arithmetic types, tuple types, anchored types.

The following discussion introduces the various conformance rules of the

language asDEFINITIONS’. Although not validity constraints themselves,

these rules play a central role in many of the constraints, so that language

processing tools such as compilers may need to refer to them in their error
messages. For that reason each rule has a validity code of theMabm

These rules appear in the index with other validity codes under “validity
constraints”, as well as separately under “conformance rules”.

376 CONFORMANCE 814.2

14.2 CONVERTIBILITY AND COMPATIBILITY

To permit assignment or argument passing, conformance is only one of the
two possibilities; the other isconvertibility, allowing reattachment
operations — assignment and argument passing — that convert the source
to the type of the target. Convertibility is particularly useful for arithmetic
types, allowing us to rely on standard mathematical conventions when
assigning, for example, an integer value to a real target.

Often, as in the rules for assignment and argument passing, we must
state that the type of an express&therconforms or converts to that of an
entity. We need a term that covers both mechanisms:

Compatibility between types
Atype iscompatible with another if it eithecconforms orcorverts

to it.

It is also useful to extend this notion to expressions, so that we carysay “
is compatible withx” rather than “the type of is compatible with that of
X"

Compatibility between expressions

An expressiorb is compatible with an expressioa if and only if
b eitherconforms orconverts toa.

For conformance we may define the notion now:

Expression conformance

An expressiorexpof type SOURCEconforms to an expression
ent of type TARGETIf and only if they satisfy the following
conditions:

1 «SOURCEconforms toTARGET
2 «If TARGETis attached, so SOURCE

3 «If SOURCEis expanded, its version of the functi@oned
from ANYis available to thbase class OFARGET

§14.3 APPLICATIONS OF CONFORMANCE 377

So conformance of expressions is more than conformance of their types.
Both conditions2 and 3 are essential. ConditioR guarantees that
execution will never attach a void value to an entity declared of an attached
type — a declaration intended precisely to rule out that possibility, so that
the entity can be used as target of calls. Condittoallows us, in the
semantics of attachment, to use a cloning operation when attaching an
object with “copy semantics”, without causing inconsistencies.

A later definition will state what it means for an expresdido convert
to another. As a special case these properties also apply to entities.

Conformance and convertibility aggclusive of each other, so we stuc' “Conversion princi-
the two mechanisms separately. The rest of the present discussple”. page 400
devoted to conformance.

14.3 APPLICATIONS OF CONFORMANCE

Conformance governs the validity of many language constructs. For a= Irithe first two cases

the following to be validy mustconform toT, with x of type T andy of (butnone of the otheJs
Vmay alsa@onverttoT.

typeV: See chaptet5.

» The assignment:=y.

» The routine calf (..., Yy, ...), wherex is the formal argument declared
in r at the position that has in the call.

 The creation instructionreate{V} x ..., which creates an instance of
V and attachesto it.

 The redeclaration of as being of typ&/ in a proper descendant, where
X is an attribute, a function, or a routine argument.

* Any use ofC[..., V, ...] with V as actual generic parameter, where the
corresponding formal generic parameteiQois constrained byf— in
other words, the class is declaredds.., G—>T, ...].

As these examples indicate, conformance is originally a relation between
types the language'’s rules specify when a typeonforms to a typé@.

The rest of this chapter starts with a generalization of the notion of
conformance, originally defined for types, to signatures. The discussion
then covers conformance rules for the various kinds of type studied in the
last three chapters: class types, first without genericity, then with genericity
added to the picture; formal generic parameters; expanded types; tuple
types; anchored types (including expression conformance).

378 CONFORMANCE §14.4

14.4 EXPRESSION AND SIGNATURE CONFORMANCE

We have already generalized the notion of conformance from types to
expressionsAnother useful generalization is ®&gnatures A signature .. The conformance
gives the full type information for a feature: the types of its argumentfonstrainlt for Qsigptarl]-
. . : . : ures IS clause O e
any, and of its result, if any. Conformance of signatures is ImpOrgeeciaration rule
because it governs redeclaration: whenever you redeclare a featurpage3o7

signature of the new version must conform to the signature of the origi..__.

The definition of conformance for signatures will follow immediately
from the definition for types: a signatuteonforms to a signaturgif and
only if every element of (the type of an argument or result) conforms to
the corresponding element f

] More precisely, recall that a signature is a pair of sequences of the "~ Signatures were
? defined inTHE SIG-

[Ag, - AL R | RE S i
where all elements involved are types; theare the types of the forme.

arguments (for a routine) ard is the result type (for a function or an

attribute). Either component of the pair, or both, may be empty (the first is

empty for an attribute or a routine without arguments; the second, for a
procedure). The second component has at most one element, but remember

that this element may be a tuple type, so for all practical purposes we can

deal with multiple-result functions.

Then from a definition of type conformance, as explored in the rest of
this chapter, we immediately infer a definition of signature conformance:

Tm Signature conformance VNCS
A signaturet = [Bq, ... By, [§ conforms to a signature

s=[Aq, ... A)l, [R] if and only if it satisfies the following
conditions:

1 «Each of the two components tthas the same number of
elements as the corresponding componest of

2 «Each type in each of the two components cdnformsto the
corresponding type in the corresponding componest of

3« Any B; not identical to the correspondiAgis detachable.

For a signature to conform: the argument types must conform (fA“query”isafunction

routine); the two signatures must both have a result type or both not hor attribute i.e. a fea-
. . . ture returning a result

(meaning they are bottjueries, or both procedures); and if there are re

types, they must conform.

Condition 3 adds a particular rule for “covariant redefinition” of
arguments as defined next.

§14.5 DIRECT AND INDIRECT CONFORMANCE 379

Covariant argument

In aredeclaration of a routine, a formal argumentasariant if
its type differs from the type of the corresponding argument in at
least one of thparents'versions.

From the preceding signature conformance rule, the type of a covariant
argument will have to be declared dstachable you cannot redefine
f(x: T)intof (x: U) even ifU conforms toT; you may, however, redefine it
to f (x: ?U). This forces the body of the redefined version, when applying
to x any feature off, to ensure that the value is indeed attached to an
instance otJ by applying arDbject_testfor example in the form

if {x: U} ytheny.feature_of Uelse... end

This protects the program frorgatcalls— wrongful uses, of a redefined
feature, through polymorphism and dynamic binding, to an actual
argument of the original, pre-covariant type.

The rule only applies targumentsnot results, which do not pose a risk
of catcall.

This rule is the reason why the Feature Declaration rule requires that if
any routine argument is of an anchored type, that type must be detachable,
since anchored declaration is a shorthand for explicit covariance.

14.5 DIRECT AND INDIRECT CONFORMANCE

Conformance is, with one restriction, a reflexive and transitive relation: any
type conforms to itself, and ¥ conforms tdJ andU to T, thenV conforms
to T. (The restriction is thak must not be expanded; see below.)

Also, replacing an actual generic parameter by a conforming type yields
a conforming type: iff conforms toX, thenB[Y] conforms tdB [X] for a class
B with one generic parameter; this generalizes to any number of parameters.

380 CONFORMANCE 814.5

We may use these properties to simplify the study of conformance rules.
By considering the relatiodirect conformance, which only covers the
case of a class conforming to a different one through no intermediary, we
can define general conformance by reflexive transitive closure:

General conformance VNCC

Let T andV be two typesV conforms to T if and only if one of
the following conditions holds:
1<V andT are identical.
2 *V conforms directly tor.
3V isNONEandT is adetachableeference type.
4 +VisB[Yy,... Yyl whereBis a generic clasg;is B [Xy,... Xy,

and for everyX; the correspondiny; is identical toX; or, if the

corresponding formal parameter does not speéifzen,
conforms (recursively) te;.

5T is areferencetype and, for some typ& (recursively),
V conforms tdJ andU conforms tor.

6 T or V or both are anchored types appearing in the same class

C, and thedeanchoredorm of V in C (recursively) conforms
to the deanchored form of

conformance is a case of conformance.

I Casa3introduces thelassNONEdescribing void values for reference = se¢NONE”, 6.7
You may assign such a value to a variable of a reference type not de®ae 175
as attached (as the role of such declarations is precisely to exclude void
values); an expanded target is also excluded since it requires an object.

Case4 covers the replacement of one or more generic parameters by
conforming ones, keeping the same base cR$%¥] conforms toB [X] if
Y conforms toX. (This does not yet address conformanc8{&1, ... Yn|
of atypeCT based on a clas3 different fromB.) Also note that thérozen
specification is precisely intended to preclude conformance other than
from the given type to itself.

Caseb is indirect conformance through an intermediate tipeNote
the restriction thatT be a reference type; this excludes indirect
conformance through an expanded type, as explained in later discussions.

Finally, cases allows us to treat any anchored type, for conformance as
for its other properties, as an abbreviation — a “macro” in programmer
terminology — for the type of its anchor.

Thanks to this definition of conformance in terms of direct
conformance, the remainder of the discussion of conformance only needs
to definedirect conformance rules for the various categories of type.

@ Casesl and 2 are immediate: a type conforms to itself, and direct

§14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE 381

The general conformance rules follow: for any tyde direct
conformance rules will yield the (possibly empty) &¥of types which
conform directly toT; then the types that conform b areT itself, the
members ofST, and, recursively, ifT is a reference type, any type
conforming to a member &T.

Before we move on, let's give a name, “conformance path”, to = ‘“THE REPEAED
sequence of types appearing implicitly in casef the definition. This'NgTESLTéy%%ﬁ_ON'

notion will be useful in particular in theiscussiorof repeatednheritance: straiNT”, 16.13,

page 455
o Conformance path
A conformance pathfrom a typeU to a typeT is a sequence of

typesTg, Ty, ... T, (n=1) such thaffyis U, T, is T, and everyT;
(for 0<i <n) conformsto T, . This notion also applies tasses — “CURRENTTYPE

by considering the associatedgrrent types. FEATURES OF A
TYPE”, 12.11, pge

2R7

14.6 CONFORMANCE TO ANON-GENERIC REFERENCE TYPE

Let us begin with the simple but common and important case of
conformance to a reference typeobtained directly from a non-generic
class. Then direct conformance is essentially inherita@&onforms
directly toB if Cis anheir of B. (As a consequenc®, conforms toB if D

is adescendanof B.) C (andD) may be generically derived or not.

Assume for example class declarations beginning with

classCl... inherit Al...
classC2[(Q] ... inherit A2...
expanded clas3[G, H — HASHABLE ... inherit A3...

|

Then, ifX is any type, andf any type conforming telASHABLE

C3is expandt_e;Cland
» C1 conforms directly t&AL C2are not this has no
influence on the discus-
. sion ButAl, A2andA3
» C2[X] conforms directly taA\2. must not be expanded

Seel4.9, pae 386 on
conformance to

* C3[X, Y] conforms directly teA3. expanded types

These examples assume that all the types involvedatteehed (the
default). Indeed if the target type is attached the source type must be
attached too; otherwise — in an attachment made valid by the conformance
— we could end up assigning a void value to an attached entity

382

CONFORMANCE 814.7

Here then is the rule:

Direct conformance: reference types VNCN
A Class_typ&CT of baseclassC conforms directly to areference
type BT if and only if it satisfies the following conditions:

1 « Applying CT's genericsubstitution to one of theonforming
parents ofC yieldsBT.

2 *|f BT is attached, so i€T.

The restriction to a reference type in this rule applies only to the target of
the conformanceBT. The sourceCT, may be expanded. As in the examples.

The basic conditiort, is inheritance. To handle genericity it applies t
“genericsubstitution” associated with every type: for example with a class
C [G, H] inheriting fromD [G], the typeC [T, U] has a generic substitution
associating to G andU to H. So it conforms to the result of applying that
substitution to thé&arentD [G]: the typeD [T].

Condition2 guarantees that we’ll never attach a value of a detachable
type — possibly void — to a target declared of an attached type; the
purpose of such a declaration is to avoid this very case. The other way
around, an attached type may conform to a detachable one.

This rule is the foundation of the conformance mechanism, relying on
the inheritance structure as the condition governing attachments and
redeclarations. The other rules cover refinements (involving in particular
genericity), iterations of the basic rule (as with “general conformance”)
and adaptations to special cases (such as expanded types).

14.7 GENERICALLY DERIVED REFERENCE TYPES

---- SECTION TO BE REWRITTEN OR REMOVED ---
Conformancef a
. . .) o generically derived
The next typing mechanism to take into account is genericity. A gertype such as BT to a
class such as non-generic one raises
no particular problem
and is covered by the
‘ above rule on non-
generic conformance

‘classB [G,H—DT,1] ... end

raises two kinds of conformance issues. One is the conformance to a
generically derived typ8T based orB, of the formB [TK, TL, TM]. The

other is conformance properties of the formal parame@&rdd, | ...
themselves, which within the class text represent types. This section deals
with the first issue; the next one will cover formal parameters.

§14.7 GENERICALLY DERIVED REFERENCE TYPES 383

When does a typ€T conforms toBT of the formB [TK, TL, TM]? For _ o, ca50
identicalB andC we already have the answer from cdsef the General o
Conformancerule: it tells us that in this cas€T must be of the form
B[TR TS TT] with the same number of parameters, witR conforming
to TK, TSto TLandTTto TM.

Thanks to this first rule, it suffices to examine the case of different tseeEXPANDED
classes, but the same actual generic parameters. Then to %Cmﬁé%
conformance of, sayC [Y] to B [X], you will check separately thipoyine éxp’,gfded
conformance o€ [Y] to B [Y], using the rule given below, and then shccase for which con-
that Y conforms toX, which will complete the deduction thanks to calsdormance possibilities

are very limited
of General Conformance. v

This is the basic idea for the Generic Substitution rule given below. I he
full rule is a little more delicate because of all the parameterization
involved, but the idea is easy to understand intuitively.

The reason we must be careful in stating the rule is that the two classes
involved, hereC and B, may have different formal generic parameters:
different in role, number or both. For example, given the above declaration
for Band

classC[P — DT, Q] inherit The constraining type
DT plays no role in this
B [TK’ R TM] example
end

we will want the typeCT defined as

\ C[TL, TN \

to conform to the typ8T defined above as

\ B[TK, TL, T™M] \

even though the number of generic parameters is different for each class.
Why CT should conform t@BT is intuitively clear: if we interpret the text

of C for the actual generic parameterg, corresponding td® and TN,
corresponding t@, the ParenB [TK, P, TM] listed in itsinheritanceclause
really stands foB [TK, TL, TM], which is preciselyBT.

On first reading, if you find this example sufficient to give an intuitive
understanding of conformance in such cases, you may wish to skip to the
next section.

384

CONFORMANCE 814.7

- =

-0

—

k

§

As the example shows, we will need to use substitutions (of actual to
formal generic parameters) to ascertain direct conformance rigorously. If
{x1, ..., xn} and{y], ..., yn} are sets with the same number of elements,

a substitution from the first set to the second is a one-to-one
correspondence between them, associating a different element of the
second to every element of the first. For example, a substitati@mong

six possible ones) frofil, U, V} to{L, M, N} is given by the table

The number of possible

omaps: to: substitutions between

T M two sets ofielementsis
the factorial ofn, here

U N 3=6.

V L

————— The notion of substitution serves to specify actual-formal
correspondence rigorously.

As in the non-generic case, you adisable conformance o€Tto BT even in —~ “NON-CONFORM-

the presence an inheritance link by usiiog-conforming inheritance. ING INHERIANCE”,
6.8,page178 The obser-

To see that the rule is in fact easy to apply, let us use it to check that thevation for non-generic
CT defined in the above example @JTL, TN] indeed conforms t@®T, rleiegenczggles was n
defined a8 [TK, TL, TM]. The assumption is th& is declared aB [G, H, B

1], with three formal parameters, and th@at[P, Q], with two formal

parameters, listB [TK, P, TM] asParent

The application is straightforward. Hene= 3 andm = 2; the types and
Formal_generimames appearing in the definition are:

X1:TK X2:TL X3:T™M
Gl:G G2:H G3:1
Y1:TL Y2: TN

H1:P H2:Q

Z1:TK Z2:P Z3:T™M

The substitutiono associate¥'1to H1 andY2to H2. In other words, it
defines the associations

omaps: to:
P TL
Q TN

and leaves other elements unchanged. So apptyiagheZj yields

omaps:‘ to: ‘ Comments

Z, TK o leave<Z,, i.e.TK, unchanged.

§14.8 FORMAL GENERIC PARAMETER CONFORMANCE 385

Z, TL This is the result of applying to Z,, i.e.P.

Z3 ™ o leave<Zs, i.e. TM, unchanged.

The three resulting typeBK, TL andTM are indeed, respectivel}(l, X2
andX3, showing thaC [TL, TN] does conform directly t8 [TK, TL, TM].

To show thatC [TL, TN] conforms toB [SK, SL, SM if TK conforms to
SK TL to SLandTM to SM, we would first use the Generic Substitution
rule, as was just done, to show conformanc8{dK, TL, TM], and then
apply casel of the General Conformance rule to obtain the required actual
generic parameters.

14.8 FORMAL GENERIC PARAMETER CONFORMANCE

The next case is Bormal_generic_nantype: a formal generic parametiThis assumes a single

to the enclosing class. In the text of a generic class constraints Multiple
constraints are

addressed belaw

‘classC [G,H—=CT,...] ... end

you may use the formal generic parametérandH as typesG andH
illustrate the two kinds of generic parameters, placing different
requirements on the types to be used as the corresponding actual generic
parameterss, unconstrained, stands for arbitrary typdsconstrained by

CT, stands for types that conform@ad.

As noted in the discussion of genericity, the base type of a constrairﬁ%
. . . ~12.3, pae 343pre-
Formal_generic_namsuch asH is the constraining type, hel@T. AN senied unconstrained
unconstrained generieormal_generic_nansuch a$s is considered to beand12.6,page346con-

constrained by the universal clasY, which serves as its base type. itzraliged gsg%rédty
10, pa

In both cases, th€ormal_generic_namwill conform directly to its ggg;ﬁsggg‘;;ﬁs"gs
constraining type@T or ANY). In the reverse direction, however, no direypes defining their
conformance is possible: if we allowed assigning to an entity of Gjoe ?ase g/gff Ont ﬁa@ﬁiﬁ_

. . page361for the multi-

Han expression ofa dlfferent type, we Wogld have no way Qf guarante; ciaint case
that this type is compatible for every possible actual generic parameter.

The rule for conformance to and from generic parameters follows from
these observations:

Direct conformance formal generic VNCF
Let G be a formal generic parameter of a cl&ssvhich in the text
of C may be used asFormal_generic_nantype. Then:
1 «No typeconforms directly to G.

2 «G conforms directly to every type listed in itsonstraint, and
to no other type.

386 CONFORMANCE 814.9

Remember from thegeneraldefinition of conformance that every type ~ Casel of General

- conforms (not directly) to itself. Cong)égwance rule
H “ ” H H pa T I
The last clause of the rule mentions “one or more” constraining types. - gTHECw:
i ; : MULTIPLE CON-
is because we allomore than one constraint, as in STRAINTS. 12.13.
’classD [G = {CONST1CONST2CONSTY ... page 359

whereG will conform to every one ofCONST1 CONST2 CONST3As
noted in the discussion of genericity, this occurs only rarely; most uses of
constrained genericity limit themselves to one constraint asGaathove.

In the case ofecursive generic constraints, as in — “RECURSIVE
@ GENERIC CON-
— STRAINTS’, 12.9,
‘classC [G, H—>ARRAY[G]] ... \ AN

I the rule is applicable without any need for a special clause: within the 2 pagess1
of C, H represents a type that only conforms direct\yAlRRAY[G]. This
corresponds to the property, ensured by @unstrainedsenericityrule,
that in a generic derivatio@ [T, U] the typeU must conform t(ARRAY[T].

14.9 EXPANDED TYPE CONFORMANCE

attribl T) attrib3
attrib2

A attrib2 attrib2
. : Cannot copy
attribl : attribl : bigger object
An instance ofl An instance oV onto smaller
N one
attrib3 (V

Typical instances

Two classes

§14.9 EXPANDED TYPE CONFORMANCE 387

What about the reverse direction — conformance of an expandedtfype

to a reference typBT? Here there is no implementation constraint since it
is always physically possible to reattach a reference to an object of arbitrary
size. But of course the attachment must be compatible with the type
system: the base type BT must conform tdRT.

(Case 1) (Case 2)
BEFORE | (OBJ1) y (OBJ1)
with ref with copy
semantics semantics
(Case 1) (Case 2)
(OBJ2)
X with cotpy
semantics
X (OBJ1)
AFTER Y |withref |
semantics (OBJ1)
Y| with copy
semantics

388 CONFORMANCE §14.10

These are the essential ideas. Now the details.

== First let's review the two forms of expanded type. Examples of the first
are ---- REMOVED ---------

Examples of the second case are

l% Q[X,Y,Z]

whereA andB have been declared agpanded clasgA non-genericB
generic). These types are their own base types; the base clasgearate
B. The basic typeBOOLEAN CHARACTER INTEGER REAL and
POINTERfall into this category.

<= REMOVED -----neno-

T Direct conformance expanded types VNCE a
No typeconforms directly to anexpanded type.

From the definition of general conformance, an expanded B/pstill
conforms of course, to itselfET may also conform to reference types
allowed by the corresponding ruléiICN); the corresponding assignmer
will use copy semantics. But no other type (except, per Ger
Conformance, foe of type ET, the typelike e, an abbreviation foET)
conforms toET.

Fay This rule might seem to preclude mixed-type operations of the kind widel\— Chapterl5.
o — accepted for basic types, such fag3) where the routind has a formal

argument of typ&EAL, oryour_integer_64= your_integer_16vith a target

of typeINTEGER_64and a source of typgdNTEGER_16Such attachments,
however, involveconversionfrom one type to another. What makes them
valid is not conformance butonvertibility, which does support a broad
range of safe mixed-type assignments.

14.10 TUPLE TYPE CONFORMANCE

Next consider tuple types. A tuple type is of the form
‘TUPLE[IabeI_I Ty, ...; label_n T,]

§14.10 TUPLE TYPE CONFORMANCE 389

where: the part in square brackets may be absent, giving the = Chpter13overed
general tuple typeTUPLE, the Ti, if present, are types, called tHuples
“parameters’ of the tuple type; and any of the label patébel i may

be absent. In fact, the labels will play no role in the conformance ruico.
TUPLE[A], TUPLE[x: A] and TUPLE [y: A] are all equivalent for

conformance purposedVe saw that the only role of the labels is to

define assignable attributes in the corresponding types.

There are two sources of conformance for tuple types:

* A tuple type conforms to any other having the same initial sequence of
parameter3;, ..., T, regardless of the labels present or not in either one.

« In addition, a special rule relates tuples to arrays. If we have a tuple
expression, especially in the form of a manifest typlt ..., xn|, it is
useful to treat it as an array. This will provide the equivalent of manifest
arrays — arrays defined by a list of their items — and is permitted by a
rule stating that a tuple type conforms &RRAY]T] if all of its
parameters conform b

The conformance rule for tuple types follows

Tm Direct conformance tuple types VNCT

A Tuple_typeU, of type sequences conforms directly to a type
Tif and only if T satisfies the following conditions:

1-Tis atuple type, of type sequerise
2 *The length ofisis greater than or equal to the lengttisof

3 « For every elemenX of ts, the corresponding element o$is
identical toX or, if X is not specifiedrozen, conforms tox.

No type conforms directly to a tuple type except as implied by
these conditions.

Labels, if present, play no part in the conformance.

----FOLLOWING NOT TRUE, REPLACE BY DISCUSSION OF
CONVERTIBIITY ---- allows tuples to be treated as arrays. So if every one
of the types ok1, x2, ..., xn conforms tar:

* You can write an assignmeat:= [x1, X2, ..., xn] wherea is of type
ARRAY[T]. This provides a simple means of array initialization, as in
ia:=[1, 2, 3] foria of typeARRAY[INTEGER.

*You can write a callsome_routine([x1, x2, ..., xn]) where the
corresponding formal argumentsome_routings of typeARRAY[T].

390 CONFORMANCE §14.11

14.11 ANCHORED TYPE CONFORMANCE

L] Anchored types greatly simplify, as you wikmember, the manageme - “ANCHORED
* of groups of entities that must keep the same type in redeclaratlon‘w

anchored type is of the form

‘ like anchor

whereanchoris the name of an attribute, function or formal argument — “CURRENT TYPE,
Current Such a declaration describes a type which is the same as th(%"\

of anchor but will automatically follow any redefinition of the type cH
anchorin a proper descendant. Usit@urrentas anchor means that the

type will be thecurrent type (class name with generic parameters if any).

There is no need for a special conformance rule, algtelause of the
General Conformance rule already told us that, for the purpose of
conformance, we should simply look at the “deanchored form” of an
anchored type.

	14 14 Conformance
	14.1 OVERVIEW
	14.2 CONVERTIBILITY AND COMPATIBILITY
	Compatibility between types
	Compatibility between expressions
	Expression conformance

	14.3 APPLICATIONS OF CONFORMANCE
	14.4 EXPRESSION AND SIGNATURE CONFORMANCE
	Covariant argument

	14.5 DIRECT AND INDIRECT CONFORMANCE
	Conformance path

	14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE
	14.7 GENERICALLY DERIVED REFERENCE TYPES
	14.8 FORMAL GENERIC PARAMETER CONFORMANCE
	14.9 EXPANDED TYPE CONFORMANCE
	14.10 TUPLE TYPE CONFORMANCE
	14.11 ANCHORED TYPE CONFORMANCE

