
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
14
Conformance
14.1 OVERVIEW

If this is your first reading, this simple explanation is probably sufficient to
understand the references to conformance in the rest of this book, and you
may want to move on right away to the next chapter.

These rules appear in the index with other validity codes under “validity
constraints”, as well as separately under “conformance rules”.

Conformance is the most important characteristic of the Eiffel type system:
it determines when a type may be used in lieu of another.

The most obvious use of conformance is to make assignment and
argument passing type-safe: forx of typeT andy of typeV, the instruction
x := y, and the callsome_routine(y) with x as formal argument, will only
be valid if V is compatiblewith T, meaning that it eitherconformsor
converts to T. Conformance also governs the validity of many other
constructs, as discussed below.

Conformance, as the rest of the type system, relies on inheritance. The
basic condition forV to conform toT is straightforward:

• The base class ofV must be a descendant of the base class ofT.

• If V is a generically derived type, its actual generic parameters must
conform to the corresponding ones inT: B [Y] conforms toA [X] only if
B conforms toA andY to X.

• If T is expanded, inheritance is not involved:V can only beT itself.

A full understanding of conformance requires the formal rules
explained below, which take into account the details of the type system:
constrained and unconstrained genericity, special rules for predefined
arithmetic types, tuple types, anchored types.

The following discussion introduces the various conformance rules of the
language as “DEFINITIONS”. Although not validity constraints themselves,
these rules play a central role in many of the constraints, so that language
processing tools such as compilers may need to refer to them in their error
messages. For that reason each rule has a validity code of the formVNCx.

CONFORMANCE §14.2376
14.2 CONVERTIBILITY AND COMPATIBILITY

To permit assignment or argument passing, conformance is only one of the
two possibilities; the other isconvertibility , allowing reattachment
operations — assignment and argument passing — that convert the source
to the type of the target. Convertibility is particularly useful for arithmetic
types, allowing us to rely on standard mathematical conventions when
assigning, for example, an integer value to a real target.

Often, as in the rules for assignment and argument passing, we must
state that the type of an expressioneitherconforms or converts to that of an
entity. We need a term that covers both mechanisms:

It is also useful to extend this notion to expressions, so that we can say “y
is compatible withx” rather than “the type ofy is compatible with that of
x”::

For conformance we may define the notion now:

Compatibility between types
A type iscompatiblewith another if it eitherconforms orconverts
to it.

Compatibility between expressions
An expressionb is compatible with an expressiona if and only if
b eitherconforms orconverts toa.

Expression conformance
An expressionexpof typeSOURCEconforms to an expression
ent of type TARGETif and only if they satisfy the following
conditions:
1 •SOURCEconforms toTARGET.

2 • If TARGET is attached, so isSOURCE.

3 • If SOURCEis expanded, its version of the functioncloned
from ANY is available to thebase class ofTARGET.

§14.3 APPLICATIONS OF CONFORMANCE 377
14.3 APPLICATIONS OF CONFORMANCE

Conformance governs the validity of many language constructs. For any of
the following to be valid,V mustconform toT, with x of typeT andy of
typeV:

• The assignmentx := y.

• The routine callr (…, y, …), wherex is the formal argument declared
in r at the position thaty has in the call.

• The creation instructioncreate { V} x …, which creates an instance of
V and attachesx to it.

• The redeclaration ofx as being of typeV in a proper descendant, where
x is an attribute, a function, or a routine argument.

• Any use ofC […, V, …] with V as actual generic parameter, where the
corresponding formal generic parameter ofC is constrained byT— in
other words, the class is declared asC […, G –> T, …].

As these examples indicate, conformance is originally a relation between
types: the language’s rules specify when a typeV conforms to a typeT.

The rest of this chapter starts with a generalization of the notion of
conformance, originally defined for types, to signatures. The discussion
then covers conformance rules for the various kinds of type studied in the
last three chapters: class types, first without genericity, then with genericity
added to the picture; formal generic parameters; expanded types; tuple
types; anchored types (including expression conformance).

So conformance of expressions is more than conformance of their types.
Both conditions2 and 3 are essential. Condition2 guarantees that
execution will never attach a void value to an entity declared of an attached
type — a declaration intended precisely to rule out that possibility, so that
the entity can be used as target of calls. Condition3 allows us, in the
semantics of attachment, to use a cloning operation when attaching an
object with “copy semantics”, without causing inconsistencies.

A later definition will state what it means for an expressionb to convert
to anothera. As a special case these properties also apply to entities.

Conformance and convertibility areexclusive of each other, so we study
the two mechanisms separately. The rest of the present discussion is
devoted to conformance.

→ “Conversion princi-
ple”, page 400.

→ In the first two cases
(but none of the others)
VmayalsoconverttoT.
See chapter15.

CONFORMANCE §14.4378
14.4 EXPRESSION AND SIGNATURE CONFORMANCE

We have already generalized the notion of conformance from types to
expressions. Another useful generalization is tosignatures. A signature
gives the full type information for a feature: the types of its arguments, if
any, and of its result, if any. Conformance of signatures is important
because it governs redeclaration: whenever you redeclare a feature, the
signature of the new version must conform to the signature of the original.

The definition of conformance for signatures will follow immediately
from the definition for types: a signaturet conforms to a signatures if and
only if every element oft (the type of an argument or result) conforms to
the corresponding element ofs.

More precisely, recall that a signature is a pair of sequences of the form

where all elements involved are types; theAi are the types of the formal
arguments (for a routine) andR is the result type (for a function or an
attribute). Either component of the pair, or both, may be empty (the first is
empty for an attribute or a routine without arguments; the second, for a
procedure). The second component has at most one element, but remember
that this element may be a tuple type, so for all practical purposes we can
deal with multiple-result functions.

Then from a definition of type conformance, as explored in the rest of
this chapter, we immediately infer a definition of signature conformance:

[A1, … An], [R]

Signature conformance VNCS

A signature t = [B1, … Bn], [S] conforms to a signature
s= [A1, … An], [R] if and only if it satisfies the following
conditions:
1 • Each of the two components oft has the same number of

elements as the corresponding component ofs.

2 • Each type in each of the two components oft conformsto the
corresponding type in the corresponding component ofs.

3 • Any Bi not identical to the correspondingAi is detachable.

For a signature to conform: the argument types must conform (for a
routine); the two signatures must both have a result type or both not have it
(meaning they are bothqueries, or both procedures); and if there are result
types, they must conform.

Condition 3 adds a particular rule for “covariant redefinition” of
arguments as defined next.

← The conformance
constraint for signa-
tures is clause2 of the
Redeclaration rule,
page307

← Signatures were
defined in“THE SIG-
NATURE OF A FEA-
TURE”, 5.13,page148.

A “query” is a function
or attribute, i.e. a fea-
ture returning a result.

§14.5 DIRECT AND INDIRECT CONFORMANCE 379

14.5 DIRECT AND INDIRECT CONFORMANCE

Conformance is, with one restriction, a reflexive and transitive relation: any
type conforms to itself, and ifV conforms toU andU to T, thenV conforms
to T. (The restriction is thatT must not be expanded; see below.)

Also, replacing an actual generic parameter by a conforming type yields
a conforming type: ifYconforms toX, thenB [Y] conforms toB [X] for a class
B with one generic parameter; this generalizes to any number of parameters.

Covariant argument
In a redeclaration of a routine, a formal argument iscovariant if
its type differs from the type of the corresponding argument in at
least one of theparents’versions.

From the preceding signature conformance rule, the type of a covariant
argument will have to be declared asdetachable: you cannot redefine
f (x: T) into f (x: U) even ifU conforms toT; you may, however, redefine it
to f (x: ?U). This forces the body of the redefined version, when applying
to x any feature off, to ensure that the value is indeed attached to an
instance ofU by applying anObject_test, for example in the form

if { x: U} y then y.feature_of_U else… end

This protects the program fromcatcalls— wrongful uses, of a redefined
feature, through polymorphism and dynamic binding, to an actual
argument of the original, pre-covariant type.

The rule only applies toarguments, not results, which do not pose a risk
of catcall.

This rule is the reason why the Feature Declaration rule requires that if
any routine argument is of an anchored type, that type must be detachable,
since anchored declaration is a shorthand for explicit covariance.

CONFORMANCE §14.5380
We may use these properties to simplify the study of conformance rules.
By considering the relationdirect conformance, which only covers the
case of a class conforming to a different one through no intermediary, we
can define general conformance by reflexive transitive closure:

General conformance VNCC

Let T andV be two types.V conforms to T if and only if one of
the following conditions holds:
1 •V andT are identical.
2 •V conforms directly toT.
3 •V is NONE andT is adetachablereference type.
4 •V is B [Y1,… Yn] whereB is a generic class,T is B [X1,… Xn],

and for everyXi the correspondingYi is identical toXi or, if the
corresponding formal parameter does not specifyfrozen,
conforms (recursively) toXi.

5 •T is a referencetype and, for some typeU (recursively),
V conforms toU andU conforms toT.

6 •T or V or both are anchored types appearing in the same class
C, and thedeanchoredform of V in C (recursively) conforms
to the deanchored form ofT.

Cases1 and 2 are immediate: a type conforms to itself, and direct
conformance is a case of conformance.

Case3 introduces theclassNONEdescribing void values for references.
You may assign such a value to a variable of a reference type not declared
as attached (as the role of such declarations is precisely to exclude void
values); an expanded target is also excluded since it requires an object.

Case4 covers the replacement of one or more generic parameters by
conforming ones, keeping the same base class:B [Y] conforms toB [X] if
Y conforms toX. (This does not yet address conformance toB [Y1, … Yn]
of a typeCTbased on a classC different fromB.) Also note that thefrozen
specification is precisely intended to preclude conformance other than
from the given type to itself.

Case5 is indirect conformance through an intermediate typeU. Note
the restriction thatT be a reference type; this excludes indirect
conformance through an expanded type, as explained in later discussions.

Finally, case6 allows us to treat any anchored type, for conformance as
for its other properties, as an abbreviation — a “macro” in programmer
terminology — for the type of its anchor.

Thanks to this definition of conformance in terms of direct
conformance, the remainder of the discussion of conformance only needs
to definedirect conformance rules for the various categories of type.

← See“NONE”, 6.7,
page 175.

§14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE 381
The general conformance rules follow: for any typeT, direct
conformance rules will yield the (possibly empty) setSTof types which
conform directly toT; then the types that conform toT areT itself, the
members ofST, and, recursively, ifT is a reference type, any type
conforming to a member ofST.

Before we move on, let’s give a name, “conformance path”, to the
sequence of types appearing implicitly in case5 of the definition. This
notion will be useful in particular in thediscussionof repeatedinheritance:

14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE

Let us begin with the simple but common and important case of
conformance to a reference typeB obtained directly from a non-generic
class. Then direct conformance is essentially inheritance:C conforms
directly toB if C is anheir of B. (As a consequence,D conforms toB if D
is adescendant of B.) C (andD) may be generically derived or not.

Assume for example class declarations beginning with

Then, ifX is any type, andY any type conforming toHASHABLE:

• C1 conforms directly toA1.

• C2 [X] conforms directly toA2.

• C3 [X, Y] conforms directly toA3.

These examples assume that all the types involved areattached (the
default). Indeed if the target type is attached the source type must be
attached too; otherwise — in an attachment made valid by the conformance
— we could end up assigning a void value to an attached entity

Conformance path
A conformance pathfrom a typeU to a typeT is a sequence of
typesT0, T1, … Tn (n ≥ 1) such thatT0 is U, Tn is T, and everyTi
(for 0 ≤ i < n) conformstoTi+1. This notion also applies toclasses
by considering the associatedcurrent types.

class C1… inherit A1…
class C2 [G] … inherit A2…
expanded class C3 [G, H –> HASHABLE] … inherit A3…

→ “THE REPEATED
INHERITANCE CON-
SISTENCY CON-
STRAINT”, 16.13,
page 455.

← “CURRENTTYPE,
FEATURES OF A
TYPE”, 12.11, page
357

C3is expanded,C1and
C2 are not; this has no
influence on the discus-
sion.ButA1,A2andA3
must not be expanded.
See14.9, page 386, on
conformance to
expanded types.

CONFORMANCE §14.7382
Here then is the rule:

14.7 GENERICALLY DERIVED REFERENCE TYPES

---- SECTION TO BE REWRITTEN OR REMOVED ---

The next typing mechanism to take into account is genericity. A generic
class such as

raises two kinds of conformance issues. One is the conformance to a
generically derived typeBT based onB, of the formB [TK, TL, TM]. The
other is conformance properties of the formal parametersG, H, I …
themselves, which within the class text represent types. This section deals
with the first issue; the next one will cover formal parameters.

Direct conformance: reference types VNCN

A Class_typeCTof baseclassCconforms directly to areference
typeBT if and only if it satisfies the following conditions:
1 • Applying CT’s genericsubstitution to one of theconforming

parents ofC yieldsBT.

2 • If BT is attached, so isCT.

The restriction to a reference type in this rule applies only to the target of
the conformance,BT. The source,CT, may be expanded.

The basic condition,1, is inheritance. To handle genericity it applies the
“genericsubstitution” associated with every type: for example with a class
C [G, H] inheriting fromD [G], the typeC [T, U] has a generic substitution
associatingT to G andU to H. So it conforms to the result of applying that
substitution to theParentD [G]: the typeD [T].

Condition2 guarantees that we’ll never attach a value of a detachable
type — possibly void — to a target declared of an attached type; the
purpose of such a declaration is to avoid this very case. The other way
around, an attached type may conform to a detachable one.

This rule is the foundation of the conformance mechanism, relying on
the inheritance structure as the condition governing attachments and
redeclarations. The other rules cover refinements (involving in particular
genericity), iterations of the basic rule (as with “general conformance”)
and adaptations to special cases (such as expanded types).

class B [G, H –> DT, I] … end

As in the examples.

Conformanceof a
generically derived
type such as BT to a
non-generic one raises
no particular problem
and is covered by the
above rule on non-
generic conformance.

§14.7 GENERICALLY DERIVED REFERENCE TYPES 383
When does a typeCTconforms toBTof the formB [TK, TL, TM]? For
identicalB andC we already have the answer from case4 of theGeneral
Conformancerule: it tells us that in this caseCT must be of the form
B [TR, TS, TT] with the same number of parameters, withTRconforming
to TK, TS to TL andTT to TM.

Thanks to this first rule, it suffices to examine the case of different base
classes, but the same actual generic parameters. Then to check
conformance of, say,C [Y] to B [X], you will check separately the
conformance ofC [Y] to B [Y], using the rule given below, and then show
thatY conforms toX, which will complete the deduction thanks to case4
of General Conformance.

This is the basic idea for the Generic Substitution rule given below. The
full rule is a little more delicate because of all the parameterization
involved, but the idea is easy to understand intuitively.

The reason we must be careful in stating the rule is that the two classes
involved, hereC and B, may have different formal generic parameters:
different in role, number or both. For example, given the above declaration
for B and

we will want the typeCT defined as

to conform to the typeBT defined above as

even though the number of generic parameters is different for each class.
Why CT should conform toBT is intuitively clear: if we interpret the text
of C for the actual generic parametersTL, corresponding toP, andTN,
corresponding toQ, the ParentB [TK, P, TM] listed in itsInheritanceclause
really stands forB [TK, TL, TM], which is preciselyBT.

On first reading, if you find this example sufficient to give an intuitive
understanding of conformance in such cases, you may wish to skip to the
next section.

class C [P –> DT, Q] inherit
B [TK, P, TM]
…

end

C [TL, TN]

B [TK, TL, TM]

← Page380.

See“EXPANDED
TYPE CONFORM-
ANCE”, 14.9,page386
about the expanded
case, for which con-
formance possibilities
are very limited.

The constraining type
DTplays no role in this
example.

CONFORMANCE §14.7384
As the example shows, we will need to use substitutions (of actual to
formal generic parameters) to ascertain direct conformance rigorously. If
{ x1, … , xn} and{ y1, … , yn} are sets with the same number of elements,
a substitution from the first set to the second is a one-to-one
correspondence between them, associating a different element of the
second to every element of the first. For example, a substitutionσ (among
six possible ones) from{ T, U, V} to { L, M, N} is given by the table

-----The notion of substitution serves to specify actual-formal
correspondence rigorously.

As in the non-generic case, you candisableconformance ofCT to BTeven in
the presence an inheritance link by usingnon-conforming inheritance.

To see that the rule is in fact easy to apply, let us use it to check that the type
CT defined in the above example asC [TL, TN] indeed conforms toBT,
defined asB [TK, TL, TM]. The assumption is thatB is declared asB [G, H,
I], with three formal parameters, and thatC [P, Q], with two formal
parameters, listsB [TK, P, TM] asParent.

The application is straightforward. Heren = 3 andm= 2; the types and
Formal_generic names appearing in the definition are:

X1 : TK X2: TL X3 : TM

G1 : G G2: H G3 : I

Y1 : TL Y2: TN

H1 : P H2 : Q

Z1 : TK Z2 : P Z3 : TM

The substitutionσ associatesY1 to H1 andY2 to H2. In other words, it
defines the associations

and leaves other elements unchanged. So applyingσ to theZj yields

σ maps: to:

T M

U N

V L

σ maps: to:

P TL

Q TN

σ maps: to: Comments

Z1 TK σ leavesZ1, i.e.TK, unchanged.

The number of possible
substitutions between
two sets ofnelements is
the factorial ofn, here
3! = 6.

← “NON-CONFORM-
ING INHERITANCE”,
6.8,page178.Theobser-
vation for non-generic
reference types was in
14.6, page 381.

§14.8 FORMAL GENERIC PARAMETER CONFORMANCE 385
The three resulting typesTK, TL andTM are indeed, respectively,X1, X2
andX3, showing thatC [TL, TN] does conform directly toB [TK, TL, TM].

To show thatC [TL, TN] conforms toB [SK, SL, SM] if TK conforms to
SK, TL to SLandTM to SM, we would first use the Generic Substitution
rule, as was just done, to show conformance toB [TK, TL, TM], and then
apply case4 of the General Conformance rule to obtain the required actual
generic parameters.

14.8 FORMAL GENERIC PARAMETER CONFORMANCE

The next case is aFormal_generic_nametype: a formal generic parameter
to the enclosing class. In the text of a generic class

you may use the formal generic parametersG andH as types.G andH
illustrate the two kinds of generic parameters, placing different
requirements on the types to be used as the corresponding actual generic
parameters:G, unconstrained, stands for arbitrary types;H, constrained by
CT, stands for types that conform toCT.

As noted in the discussion of genericity, the base type of a constrained
Formal_generic_namesuch asH is the constraining type, hereCT. An
unconstrained genericFormal_generic_namesuch asG is considered to be
constrained by the universal classANY, which serves as its base type.

In both cases, theFormal_generic_namewill conform directly to its
constraining type (CTor ANY). In the reverse direction, however, no direct
conformance is possible: if we allowed assigning to an entity of typeG or
H an expression of a different type, we would have no way of guaranteeing
that this type is compatible for every possible actual generic parameter.

The rule for conformance to and from generic parameters follows from
these observations:

Z2 TL This is the result of applyingσ to Z2, i.e.P.

Z3 TM σ leavesZ3, i.e.TM, unchanged.

class C [G, H –> CT,…] … end

Direct conformance: formal generic VNCF

LetGbe a formal generic parameter of a classC, which in the text
of C may be used as aFormal_generic_name type. Then:
1 • No typeconforms directly to G.

2 •G conforms directly to every type listed in itsconstraint, and
to no other type.

This assumes a single
constraints. Multiple
constraints are
addressed below.

←12.3, page 343 pre-
sented unconstrained,
and12.6,page346con-
strained, genericity.
12.10, page 355
addressed the use of
generic parameters as
types, defining their
base type on page356
(page361for the multi-
constraint case).

CONFORMANCE §14.9386
Remember from thegeneraldefinition of conformance that every type
conforms (not directly) to itself.

The last clause of the rule mentions “one or more” constraining types. This
is because we allowmore than one constraint, as in

whereG will conform to every one ofCONST1, CONST2, CONST3. As
noted in the discussion of genericity, this occurs only rarely; most uses of
constrained genericity limit themselves to one constraint as withC above.

In the case ofrecursive generic constraints, as in

the rule is applicable without any need for a special clause: within the text
of C, H represents a type that only conforms directly toARRAY[G]. This
corresponds to the property, ensured by theConstrainedGenericityrule,
that in a generic derivationC [T, U] the typeU must conform toARRAY[T].

14.9 EXPANDED TYPE CONFORMANCE

---------- TO BE REWRITTEN -----------

.

class D [G –> {CONST1, CONST2, CONST3}] …

classC [G, H –> ARRAY[G]] …

← Case1 of General
Conformance rule,
page380.
← “THE CASE OF
MULTIPLE CON-
STRAINTS”, 12.13,
page 359.

← “RECURSIVE
GENERIC CON-
STRAINTS”, 12.9,
page 354.

← Page351

Cannot copy
bigger object
onto smaller
one.

An instance of T

attrib1

attrib2

An instance of V

attrib1

attrib3

attrib2

V

T

Two classes

Typical instances

attrib1

attrib2

attrib3

§14.9 EXPANDED TYPE CONFORMANCE 387
What about the reverse direction — conformance of an expanded typeET
to a reference typeRT? Here there is no implementation constraint since it
is always physically possible to reattach a reference to an object of arbitrary
size. But of course the attachment must be compatible with the type
system: the base type ofET must conform toRT.

y
BEFORE

x
AFTER

(Case 1)

(OBJ1)
y

(Case 2)

(OBJ1)

with copy
semantics

with ref
semantics

y

(Case 1)

(OBJ1)

x
(OBJ2)

with copy
semantics

with ref
semantics

y

(Case 2)

(OBJ1)

with copy
semantics

CONFORMANCE §14.10388
These are the essential ideas. Now the details.

First let’s review the two forms of expanded type. Examples of the first
are ---- REMOVED ---------

Examples of the second case are

whereA andB have been declared asexpanded class(A non-generic,B
generic). These types are their own base types; the base classes areA and
B. The basic typesBOOLEAN, CHARACTER, INTEGER, REAL and
POINTER fall into this category.

---- REMOVED ------------

14.10 TUPLE TYPE CONFORMANCE

Next consider tuple types. A tuple type is of the form

A
B [X, Y, Z]

Direct conformance: expanded types VNCE

No typeconforms directly to anexpanded type.

From the definition of general conformance, an expanded typeET still
conforms, of course, to itself.ET may also conform to reference types as
allowed by the corresponding rule (VNCN); the corresponding assignments
will use copy semantics. But no other type (except, per General
Conformance, fore of type ET, the typelike e, an abbreviation forET)
conforms toET.

This rule might seem to preclude mixed-type operations of the kind widely
accepted for basic types, such asf (3) where the routinef has a formal
argument of typeREAL, oryour_integer_64:= your_integer_16with a target
of typeINTEGER_64and a source of typeINTEGER_16. Such attachments,
however, involveconversion from one type to another. What makes them
valid is not conformance butconvertibility , which does support a broad
range of safe mixed-type assignments.

TUPLE[label_1: T1; …; label_n: Tn]

→ .

→ Chapter15.

§14.10 TUPLE TYPE CONFORMANCE 389
where: the part in square brackets may be absent, giving the most
general tuple type,TUPLE; the Ti, if present, are types, called the
“parameters” of the tuple type; and any of the label partslabel_i: may
be absent. In fact, the labels will play no role in the conformance rules:
TUPLE [A], TUPLE [x: A] and TUPLE [y: A] are all equivalent for
conformance purposes.We saw that the only role of the labels is to
define assignable attributes in the corresponding types.

There are two sources of conformance for tuple types:

• A tuple type conforms to any other having the same initial sequence of
parametersT1, …, Tn, regardless of the labels present or not in either one.

• In addition, a special rule relates tuples to arrays. If we have a tuple
expression, especially in the form of a manifest tuple[x1, …, xn], it is
useful to treat it as an array. This will provide the equivalent of manifest
arrays — arrays defined by a list of their items — and is permitted by a
rule stating that a tuple type conforms toARRAY[T] if all of its
parameters conform toT.

The conformance rule for tuple types follows

----FOLLOWING NOT TRUE, REPLACE BY DISCUSSION OF
CONVERTIBIITY ---- allows tuples to be treated as arrays. So if every one
of the types ofx1, x2, …, xn conforms toT:

• You can write an assignmenta := [x1, x2, …, xn] wherea is of type
ARRAY[T]. This provides a simple means of array initialization, as in
ia := [1, 2, 3] for ia of typeARRAY[INTEGER].

• You can write a callsome_routine([x1, x2, …, xn]) where the
corresponding formal argument insome_routine is of typeARRAY[T].

Direct conformance: tuple types VNCT

A Tuple_typeU, of type sequenceus, conforms directly to a type
T if and only ifT satisfies the following conditions:
1 •T is a tuple type, of type sequencets.

2 • The length ofus is greater than or equal to the length ofts.

3 • For every elementX of ts, the corresponding element ofus is
identical toX or, if X is not specifiedfrozen, conforms toX.

No type conforms directly to a tuple type except as implied by
these conditions.

Labels, if present, play no part in the conformance.

← Chapter13 overed
tuples.

CONFORMANCE §14.11390
14.11 ANCHORED TYPE CONFORMANCE

Anchored types greatly simplify, as you willremember, the management
of groups of entities that must keep the same type in redeclarations. An
anchored type is of the form

whereanchoris the name of an attribute, function or formal argument, or
Current. Such a declaration describes a type which is the same as the type
of anchor but will automatically follow any redefinition of the type of
anchor in a proper descendant. UsingCurrent as anchor means that the
type will be thecurrent type (class name with generic parameters if any).

There is no need for a special conformance rule, as thelastclause of the
General Conformance rule already told us that, for the purpose of
conformance, we should simply look at the “deanchored form” of an
anchored type.

like anchor

← “ANCHORED
TYPES”, 11.10, page
331.

← “CURRENT TYPE,
FEATURES OF A
TYPE”, 12.11, page
357.

	14 14 Conformance
	14.1 OVERVIEW
	14.2 CONVERTIBILITY AND COMPATIBILITY
	Compatibility between types
	Compatibility between expressions
	Expression conformance

	14.3 APPLICATIONS OF CONFORMANCE
	14.4 EXPRESSION AND SIGNATURE CONFORMANCE
	Covariant argument

	14.5 DIRECT AND INDIRECT CONFORMANCE
	Conformance path

	14.6 CONFORMANCE TO A NON-GENERIC REFERENCE TYPE
	14.7 GENERICALLY DERIVED REFERENCE TYPES
	14.8 FORMAL GENERIC PARAMETER CONFORMANCE
	14.9 EXPANDED TYPE CONFORMANCE
	14.10 TUPLE TYPE CONFORMANCE
	14.11 ANCHORED TYPE CONFORMANCE

