Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

1 7 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Control structures

17.1 OVERVIEW

The previous discussions have described the “bones” of Eiffel software: the
module and type structure of systems. Here we begin studying the “meat”:
the elements that govern the execution of applications.

Control structures are the constructs used to schedule the run-time
execution of instructions. There are four of them: sequencing (compound),
conditional, multi-branch choice and loop. A complementary construct is
the Debuginstruction.

— As made clear by the definition of “non-exception semantics” in the
?semantic rule forCompoung which indirectly governs all control
structures (since al instructions are directly or indirectly part of a
Compoung, the default semantics assumes that none of the instruc- Chapter26.
executed as part of a control structure triggersxeeption|f an exception
does occur, the normal flow of control is interrupted, as described by the
rules of exception handling in the discussion of this topic.

17.2 COMPOUND

The first control structureCompoung enables you to specify a list of
instructions to be executed in a specified order.

From its inconspicuous syntax, you wouldn’'t guess that this is a
fundamental program composition mechanism: the instructions of a
Compoundare just written one after another, in the order of their
intended execution. You may emphasize the sequencing of the
instructions by using a separator, the semicolon, which is not only
discreet but optional to boot.



470

CONTROL STRUCTURES §17.2

A typical specimen of th€Eompoundconstruct is:

L':'*.TJ

=

BEETHOND
L L

BEETHON]
il

windowLdisplay

mousewait_for_click(middle

if not last_eventis_nullthen
last_eventhandle screenrefresh

end

This Compounds made of three instructions; it specifies the execution of
these instructions in the order given. The last of the thre@djaditional
instruction, as studied below) itself includes a two-instrugiompound

The use and non-use of semicolons in this example illustrate the
recommended style convention: no semicolon has been included between the
three instructions of the outermaSbmpoundsince they appear on separate
lines (the most common case), enough to remove any confusion. The two
instructions of the innermostompound— inside theConditional— appear

on the same line; here the semicolon should be included for the benefit of the
human reader, even though compilers don'’t need it.

The syntax foilCompoundspecified:

Compound2 {Instruction™;" ...}*

In the common, non-confusing case, tkgyle rule is to omit the - “OPTIONAL

. . . . . SEMICOLONS”
semicolons between instructions appearing on separate lines. 34.10_pae 909

semicolon in that case is just visual noise and actually hampers reada......,.

For successive instructions on the same line make surkeép the
semicolon. The above example illustrated this style rule, observed
throughout this book.

All this does not diminish the role of sequencing as a control structure,
even if the only syntactical trace left in the software text is the textual order
of instructions, indicating the temporal order in which they should be
executed at run time.



§17.2 COMPOUND

471

—

There is no validity rule foCompoundThe semantic specification follows
from the above explanations:

Compound (non-exception) semantics

The effect of executing @ompounds:

e Ifit has zero instructions: to leave the state of the computation
unchanged.

 Ifithas one or more instructions: to execute the first instruction
of the Compoundthen (recursively) to execute tliismmpound
obtained by removing the first instruction.

This specification, theon-exception semantic®f Compoung
assumes that nexception istriggered. If the execution of any of
the instructions triggers an exception, the Exception Semantics
rule takes effect for the rest of tA@mpound instructions.

Less formally, this means executing the constituent instructions in the order
in which they appear in thEompound each being started only when the
previous one has been completed.

Note that &Compounccan be empty, in which case its execution has no
effect. This is useful for examples when refactoring the branches of a
Conditional you might temporarily remove all the instructions of the
Else_partbut not theElse pariitself yet as you think it may be needed
later.

Aside from its role as a control structure, t®mpoundconstruct
serves an frequent syntactical need : allowing any construct that involves
an instruction — so that it may execute it as part of its own execution — to
involve any numberof instructions, including zero. The syntax of Eiffel
consistently adheres to this rulestructionnever appears in the definition
of a construct other thatCompoungl other construct definitions use
Compoundnstead. They include:



472

CONTROL STRUCTURES §17.3

» The body of a non-deferred routine (constiuttrna). « Syntax on pag2l18
» TheThen_parandElse_parof a Conditionalinstruction. - Page473
* TheWhen_pariandElse_pariof aMulti_branchinstruction. - Page473
« Thelnitialization andLoop_bodyof aLoop instruction. - Page487.
» The Debuginstruction. - Page490
* TheRescueclause of a non-deferred routine. - Page693

17.3 CONDITIONAL

A basic algorithmic mechanism is the ability to discriminate between a se
of values, executing a different set of instructions in each case. Eiffel
provides three variants of this notio@onditiona) where discriminating
criteria are boolean conditionstulti_branch comparing an expression to

a set of specified values; afithject_testmatching a reference against a
specified object type. They're studied in this section and the next two.

A Conditionalinstruction prescribes execution of one among a number
of possible compounds, the choice being made through boolean conditions
associated with each compound.

You should remain alert to an important aspect of the Eiffel method,
which de-emphasizes explicit programmed choices between a fixed set of
alternatives, in favor of automatic selection at run-time based on the type
of the objects to which an operation may be applied. Such an automatic
selection is achived by the object-oriented techniques of inheritance and
dynamic binding. This methodological guideline, discussed in more detalil
belan, does not diminish the usefulness @bnditionalinstructions — a - “USING SELEC-
widely used mechanism —but should make you wary of complicz;'é’o’\ggg;@clyg’\‘s
decision structures with too mamyseifbranches. This applies even mcpae 483~
to theMulti_branchinstruction studied next.

An exampleConditionalis

if x> 0then
il;i2
elseifx=0then
i3
else
i4;i5; i6
end

whose execution is one among the following: execution of the compound
i1; 12 if x> 0 evaluates to true; executionigfif the first condition does not
hold andx = O evaluates to true; execution ef; i5; i6 if none of the
previous two conditions holds.



§17.3 CONDITIONAL

473

There may be zero or moreetseif Compound clauses. The élse
Compound clause is optional; if it is absent, no instruction will be
executed when all boolean conditions are false.

The general form of the construct is

Conditionals
Conditional 2 if Then_part_lisfElse_paitend

Then_part_list® {Then_parelseif...}*

Then_part® Boolean_expressidhen Compound

Else_part® elseCompound

Two auxilary notions help define precisely the semantics of this construct.

As the syntax specification showsCanditionalbegins with

if condition, then compoung

wherecondition, is a boolean expression andmpounglis aCompound
The remaining part may optionally begin witkdseif If so, we may
consider that it forms a new, simpléonditiona] called itssecondary part

T Secondary part
Thesecondary partof aConditionalpossessing at least oalseifis

the Conditionalobtained by removing the initialf*Then_part_list
and replacing the firgtiseifof the remainder biy.

The secondary part of the above exanipdeditionalis

I o I if x=0then
=t i3

I else

i4; 15; 16
end

The other useful notion is "prevailing immediately”:

Prevailing immediately

The execution of &onditionalstarting withif conditiony is said
to prevail immediately if condition has value true.




474

CONTROL STRUCTURES §17.4

T

These conventions enable a simple definition of the semantics:

Conditional semantics

The effect of &Conditionalis:

» If it prevails immediately: the effect of the firsEompoundn
its Then_part_list

e Otherwise, if it has at least omdseif the effect (recursively) of
its secondary patrt.

e Otherwise, if it has ailsepart: the effect of th€ompoundn
thatElsepart.

* Otherwise: no effect.

Like the instruction studied next, th€onditionalis a “multi-branch”
choice instruction, thanks to the presence of an arbitrary numbelseif
clauses. These branches do not have equal rights, however; their conditions
are evaluated in the order of their appearance in the text, until one is found
to evaluate to true. If two or more conditions are true, the one selected will
be the first in the syntactical order of the clauses.

17.4 MULTI-BRANCH CHOICE

o]

®

BEETHON)
L !

1

Like the conditional, theMiulti_branch supports a selection between a
number of possible instructions. In contrast with @@nditional however,

the order in which the branches are written does not influence the effect of
the instruction. Indeed, the validity constraints seen below guarantee that
at most one of the selecting conditions may evaluate to true.

Like the Conditiona) the Multi_branchinstruction is less commonly
used in proper Eiffel style than its counterparts in traditional design and

programming languages. This is explained in more detdow. ~ “USING SELEC-

. , . TIONINSTRICTIONS
You may use a/ulti_branchif the conditions are all of the form  pr5pERY”. 176

page 483

“Is expequal tov; ?” ‘

or all of the form

“Is expof typeT, ?” ‘

whereexpis an expression, the same for every branchyjlaee constant
values, different for each branch and (in the second variant];taee all
distinct types, not conforming to one another. In such cases, the
Multi_branchprovides a more compact notation than @enditional and
makes a more efficient implementation possible.



§17.4 MULTI-BRANCH CHOICE

475

I

Here is an example of the first kind, assuming an erést_inputof
type CHARACTER

inspect
last_input
when'a' ..'Z,’A'..'Z," '"then
command_tablatem (uppellast_inpu}).execute
screenrefresh
when'0' .. '9 then
history.item (last_inpuj.display
when Control_Lthen
screenrefresh
when Control_G Control_Qthen
confirmation ask
if confirmationokthen
cleanup exit
end
else
display_proper_usage
end

Depending on the value ¢dist_input this instruction selects and executes
one Compound among five possible ones. It selects the first
(command_table.) if last_inputis a lower-case or upper-case letter, that
is to say, belongs to one of the two intervals. . 'Z and'A' .. 'Z, oris an
underscoré . It selects the secondldst_inputis a digit. It selects the third
(refresh the screen) for the charadBantrol_L, and the fourth (exit after
confirmation) for either one of two other control characters; here
Control_L, Control_Cand Control_Q must be constant attributes. In all
other cases, the instruction executes the fifth compound given
(display_proper_usage

This example discriminates on the value of an expression of type
CHARACTER Other permitted types includédNTEGER STRING and
TYPE[G] for someG, which describe object types (conforming@d. This
last possibility allows you to discriminate on the basis of tyyee of the
object attached at run time to the value of an arbitrary expression, as
illustrated by the following example of dealing with various kinds of
exception object:



476 CONTROL STRUCTURES §17.4

| a | inspect
T last_exceptiontype

when {DEVELOPER_EXCEPTIONhen
process_developer_exception

when{OS_SIGNAL { NO_MORE_MEMOR}Ythen
cancel_operation

else
reset

end

In this form the “inspect values” — the values listed in thieen parts —

are type descriptors, each listing a type in brace$ QS SIGNAL. The
instruction examines the type of the object associated lagth exception

as given bytast_exceptiortype and if it conforms to one of the types listed
executes the corresponditigen branch; otherwise the instruction executes
its else branch. The validity rule requires that none of the types listed
conform to another, so there can be no ambiguity as to which branch will
be executed.

The expression that determines the choice last input and
last_exceptiontypein these two examples — has a name:

o Inspect expression
The inspect expressionof a Multi_branchis the expression

appearing after the keywonaspect

The inspect expressions of the last two exampleslase choiceand
last_exceptionThe inspect expression may only be of one of the types
CHARACTERINTEGER STRING TYPE

The instruction includes one or movéhen_parteach giving a list of
one or moreéChoice separated by commas, and@ampoundo be executed
when the value of the inspect expression is one of the dilericevalues.

Every Choicespecifies zero or more inspect values. More precisely, a
Choiceis either a single constanti@nifest_constarr constant attribute)
or an interval of consecutive constants yielding all the interval’s elements
as inspect values. If present, the instruction’s optiéis¢ _paris executed
when the inspect expression is not equal to any of the inspect values.



§17.4 MULTI-BRANCH CHOICE 477

As the validity constraint will state precisely, all the inspect values must
all be of the same type as the inspect expression: all characters, all integers,
all strings or all types. They must all be different, and non-conforming in the
case of types; this avoids ambiguity, ensuring that the order oftien_part
branches has no influence on the semantics of the construct.

Every constant in the preceding examples is eithitaaifest_typea
Manifest_constarguch asa’ whose value is an immediate consequence of
the way it is written, or a constant attribute suclCamtrol_Lwhose value
is given in a constant attribute declaration such as

Control_L: CHARACTERs '%/217/ — On character codes
such as%/217' see

32.14, pae 884

Now the formal rules. First, the syntaxMdfilti_branch

— . . . ConstructConstant
Multi-branch instructions describes manifest or
i A i symbolic constants and
Multi_branch £ |nspectExpre§S|on - ctudied HGEN-
[When_part_ligt[Else_paitend ERAL FORM OF
A CONSANTS”, 29.2,
When_part_list? When_part page 777

When_part? when Choiceshen Compound
Choices2 {Choice"" ...}*

Choice2 Constan{ Manifest_typ¢
Constant_intervglType_interval

Constant_interva® Constant'.." Constant
Type_interval2 Manifest_type'. ." Manifest_type

Interval
An interval is aConstant_intervabr Type_interval

To discuss the constraint and the semantics, it is convenient to consider the
unfolded formof the instruction. First, constant and type intervals have
similar properties, justifying a general term:



478

CONTROL STRUCTURES §17.4

which enables us to define the unfolded form

Unfolded form of a multi-branch
To obtain theunfolded form of aMulti_branchinstruction, apply
the following transformations in the order given:
1 « Replace evergonstaninspect walue by itsmanifest alue.

2 «If the typeT of the inspect expression is asizedvariant of
CHARACTERSTRINGor INTEGER replace every inspect
valuev by {T} v.

3 *Replace everinterval by itsunfolded form.

Step2 enables us, with an inspect expression of a type subtidsGER_8

to use constants in ordinary notation, suchlasather than the heavier

{INTEGER_8 1. Unfolded form constructs this proper form for us. The

ruleson constants make this convention safe: a value that doesn’t matc— -— [Add reference]
type, such a&000here, will cause a validity error.

I Ne 1ast unToloea Torm IS basea on anotner, Tor Intervais:

Unfolded form of an interval

Theunfolded form of aninterval a. .b is the following (possibly

empty) list:

1 « If aandb are constants, both of eithecharactetype, astring
type or anintegertype, and ofmanifestvaluesva andvb: the
list made up of all values if any, such thava<i < vb, using
character, integer or lexicographical order respectively.

2 «If a andb are both of typel' YPE[T] for someT, and have
manifest valuesva and vb: the list containing every
Manifest_typeof the system conforming teb and to which
va conforms.

3 ¢ If neither of the previous two cases apply: an empty list.




§17.4 MULTI-BRANCH CHOICE 479

LALIDI Y

The “manifestvalue” of a constant is the value that has been declare(- - [Add reference]
it, ignoring anyManifest_type for example bothl and{INTEGER_§ 1
have the manifest value 1.

The symbol. . is not a special symbol of the language but an alias f
feature of the Kernel Library clas?ART_COMPARABLEBEwhich for any - IntheKemelLibrary
partially or totally ordered set and yielding the set of values betweSPecificatons see

classes
lower and an upper bound. Here, the bounds must be constant. “PART_COMRRABL

A note for implementers: type intervals such{& . .{ T}, denoting all 5 229¢ 567 aggdge
types conforming td and to whichJ conforms, may seem to raise difficLoz1
implementation issues: the set of types, which the unfolded form see!
require that we compute, is potentially large; the validity (Multi-Branch
rule) requires that all types in the unfolded form be distinct, which seems
to call for tricky computations of intersections between multiple sets; and
all this may seem hard to reconcile with incremental compilation, since a
type interval may include types from both our own software and externally
acquired libraries, raising the question of what happens on delivery of a
new version of such a library, possibly without source code. Closer
examination removes these worries:

 There is no need actually to compute entire type intervals as defined by
the unfolded form. Listing U} . .{ T} simply means, when examining a
candidate typ&, finding out whetheZ conforms tol andU to Z.

« To ascertain that such a type interval does not intersect with another
{Y}..{X}, the basic check is th&tdoes not conform tG@ andU does
not conform toX.

« If we add a new set of classes and hence types to a previously validated
system, a new case of intersection can only occur if either: a new type
inherits from one of ours, a case that won’'t happen for a completely
external set of reusable classes and, if it happens, should require re-
validating since existinglulti_branchinstructions may be affected; or
one of ours inherits from a new type, which will happen only when we
modify our softwareafter receiving the delivery, and again should
require normal rechecking.

An interval may not be empty:

Interval rule VOIN
An Intervalis valid if and only if itsunfolded form is not empty.




480

CONTROL STRUCTURES §17.4

So of the intervals

WALIDITY

"ab' .. "ad"
5..3

the first two unfold into

3,4,5
|i|, Ij', |k|, |||1 |m| |n|

the third into the (infinite) set of strings lexicographically betwéat' and
"ad', and the last into an emptghoiceslist. Thanks to unfolding, the
constraint and semantics may limit themselves to the caskitif branch
instructions where everghoiceis aConstanior Manifest_type

This definition also enables us to say exactly what “inspect values” means:

Inspect values of a multi-branch

The inspect valuesof a Multi_branch instruction are all the
values listed in theChoicesparts of the instruction'sinfolded
form.

The set of inspect values may be infinite in the case of a string interval, but this poses
no problem for either programmers or compilers, meaning simply that matches will
be determined through lexicographical comparisons.

A Multi_branch must satisfy a validity constraint --- DEFINE
CONSTANT MANIFEST TYPE ---:
Multi-branch rule VOMB

A Multi_branchinstruction is valid if and only if its unfolded
form satisfies the following conditions.

1 «Inspect @alues are all valid.
2 e Inspect values are abnstants.
3 * Themanifest walues of any two inspect values are different,

4 « If the inspectexpression is of typd YPE[T] for some typeT,
all inspect values are types.

5 «If case4 does not apply, the inspect expression is one of the
sized variants oNTEGER CHARACTERor STRING

--- IN CLAUSE 2: CHECK THAT DEFINITION OF CONSTANT” FOR
TYPES ONLY COVERS CONSTANT TYPES ----



§17.4 MULTI-BRANCH CHOICE 481

The clauses guarantee that there won't be any ambiguity for choosing the
branch to be executed, if any.

--- NOT TRUE ANY MORE, FIX THIS --- For inspect values of the
Manifest_typekind, such a§ SOME_TYPE, clause4 requires that none
of the types listed conform to another. It rules out examples such as

i WARNING invalid
Li] mspect . with the assumed inher-
e last_exception itance link
I when{YOUR_DEVELOPER_EXCEPTIQIlthen
“Something”

when{DEVELOPER_EXCEPTIONhen
“Something else”
end

where the classYOUR_DEVELOPER_EXCEPTIONnherits from
DEVELOPER_EXCEPTION his may appear too strong a constraint until
you realize that giving non-ambiguous semantics to such examples would
require that we take into account the order of thieen_pariclauses: the
rule, presumably, would be to select the first one that matches. This
conflicts with the principle stating that the semantics dflalti_branch
should never depend on the order ofiulien clauses.

[ pcesi]

If you do want type-based discrimination with more than one possibly
matching type, nesMulti_branch instructions, or use aonditional or
Object_conditional

To define the semantics of lulti_branchinstruction, we will use the
concept of matching branch:

Matching branch
During execution, anatching branch of a Multi_branchis a

When_partwp of its unfolded form, satisfying either of the
following for the valueral of itsinspect g&pression:

1 eval~i, wherei is one of the noriManifest_typdanspectvalues
listed inwp.

2 +val denotes &Manifest_typeisted among the choices wp.




482

CONTROL STRUCTURES §17.4

The Multi-branch rule is designed to ensure that in any execution there will
be at most one matching branch.

In casel, we look for object equality, as expressed HyStrings, in
particular, will be compared according to the functisnequalof STRING
A void value, even if type-wise permitted by the inspect expression, will
never have a matching branch.

In case2, we look for an exact type match, not just conformance. For
conformance, we have type intervals: to match types conforming to some
T, use{ NONRE . .{ T}; for types to whicl conforms, us€¢T}..{ANY}.

Casel applies to aMulti_branch that lists actual inspect values:

integers, characters or strings. The matching criterioagisality in the *YOBZJlEgT Ee 5/;;
ITY”, 21.6, paje 572
sense oéqual

Case2 covers aMulti_branchthat discriminates on the type of an object
attached to the value of an expression. Note that a void value will never
have a matching branch.

The specification of aviulti_branchs effect follows directly from
this definition.

Multi-Branch semantics

Executing aMulti_branchwith a matchingbranch consists of
executing theCcompoundollowing thethenin that branch. In the
absence of matching branch:

1 «If the Else_partis present, the effect of thiglulti_branchis
that of theCompoundappearing in it&lse part

2 «Otherwise the executiorriggers an exception of type — See26.12,page 701,
BAD_INSPECT VALUE trggers P YD about exception objects

Note the difference between the semantic€ ofiditionalandMulti_branch
when there’s n&lse_parand none of the selection conditions holds:

« A Conditional just amounts to a null instruction in this case
« Multi_branchwill fail, triggering an exception.

The reason is a difference in the nature of the instructionSoAditional
tries a number of possibilities in sequence until it finds one that holds. A
Multi_branch selects aCompound by comparing the value of an
expression with a fixed set of constants; these branchif present,
catches any other values.



§17.5 OBJECT TEST 483

If you expect such values to occur and want them to produce a null effect,
you should use arlse_partwith an empty Compound By writing a
Multi_branchwithout anElse_part you state that you doot expect the
expression ever to take on a value not covered by the inspect values. If your
expectations prove wrong, the effect is to trigger an exception — not to smile,
do nothing, and pretend that everything is proceeding according to plan.

17.5 OBJECT TEST

--- SECTION REMOVED, BUT MATERIAL WILL BE REUSED FOR
NEW MECHANISM REPLACING ASSIGNMENT ATTEMPT S----

17.6 USING SELECTION INSTRUCTIONS PROPERLY

If you have accumulated some experience with some of the traditional
design or programming languages, many of which include a "case" or

Fgmar "switch” instruction, you will recognize th&lulti_branchas similar in
syntax and semantics. Similarly, thebject testmay remind you of
techniques for discriminating between cases based on the type of an object,
sometimes known as “Run-Time Type Idenfification” or RTTI. But when it
comes to writing Eiffel applications, you should be careful to not misuse
these instructions. This warning extendsGonditionalinstructions with
many branches.

Staying away from explicit discrimination is an important part of the
Eiffel approach to software construction. When a system needs to execute
one of several possible actions, the appropriate technique is usually not an
explicit test for all cases, as wittiulti_branchor Conditional, but a more
flexible inheritance-based mechanisdynamic binding. With explicit _ «p ynamIC BIND-
tests, every discriminating software element must list all the availING”. 23.12 page63Q
choices — a dangerous practice since the evolution of a software pr_,_ _.
inevitably causes choices to be added or removed. Dynamic binding avoids
this pitfall.

You should reservilulti_branchinstructions, then, to simple situations
where a single operation depends on a fixed set of well-understood choices.

When the purpose is to apply a different operation to an object
depending on its type (for example categories of employees, for which a
certain operation, such as paying the salary, has a different effect), then
Multi_branch is not appropriate: instead, you should define different
classes that inherit from a common ancestor — for exaripMNAGER
ENGINEERetc. all inheriting fromEMPLOYEE —and redefine one or
more features (such asy_salary to take care of the local context. Then
dynamic binding guarantees application of the proper variant: the call

Caroline.pay_salary ‘




484 CONTROL STRUCTURES §17.6

will automatically use the variant gfay_salaryadapted to the exact type
of the object attached Warolineat run time (which may be an instance of
MANAGER or ENGINEERetc.).

This is more flexible than &onditionalor Multi_branchthat lists the
choices explicitly, especially if other operations besigag_salaryhave
variants for the given categories. To add a variant, it suffices to write a new
class, sayINTERN as a descendarEMPLOYEE equipped with new
versions of the operations that differ from the def&iMPLOY EEversion.
Unlike a system that makes explicit choices througbnditional or
Multi_branchinstructions, a system built with this method will only have
to undergo minimal change for such an extension.

Explicit choices do have a role, as illustrated by the earlier examples of
Multi_branch The first read

I d I inspect
o last_input

] when'a' ..'Z,’'A".."'Z," 'then
command_tablatem(uppellast_inpu}).execute
screenrefresh

when'0' .. '9 then
history.item (last_inpu}.display
when Control_Lthen
screenrefresh
when Control_G Control_Qthen
confirmation ask
if confirmationokthen
cleanup exit
end
else
display_proper_usage
end

This decodes a user input consisting of a single character and executes an
action depending on that character, What is interesting is that the
Multi_branchdoes only the “easy” part: separating the major categories of
characters (letters, digits, control characters).



§17.6 USING SELECTION INSTRUCTIONS PROPERLY 485

In the branches for letters and characters, however, the finer choice is
made not through explicit instructions but through dynamic binding. For
example, letters are used to index a tabemmand_tableof objects
representing command objects with operations sucbkxasute (These
objects might begents as studied in a later chapter.) After retrieving — Agents are the topic
command object associated with the upper-case version of a given of chapte2?.
the aboveViulti_branchappliesexecutdo it, relying on dynamic binding
to ensure that the proper action will be selected.

Using aMulti_branchto discriminate between the actions associagﬁejalso t_he_SIingle

. . .. . oIce principle In
with individual letters'A’, 'B' etc. would have resulted in a mo“‘Object-pOrienFt)e_d Soft-

complicated and inflexible architecture. At the outermost level, howewvare Construction;

] ) . and in the present bogk
the above extract does us#lalti_branch which appears justified becau«single choice and fac-
of the small number of cases involved and the diversity of actions in {O%-0biects”. pae 529
case, which do not fall into a single category such as “execute the cominanu

attached to the selected object”.

The second example uskthnifest_typeinspect values:

I

inspect
last_exceptiontype
when{DEVELOPER_EXCEPTIONhen
process_developer_exception
when{OS_SIGNAL { NO_MORE_MEMOR}Ythen
cancel_operation
else
reset

end

Even though we are using ulti_branchto select different actions
depending on the type of an object, we are not doing anything else with the
object in question. The choices, in addition, are from a fixed set of
possibilities — exception types — provided by the Kernel Library, not
under developer control.

If you do anything else with the inspected object, however,
Multi_branchwill cease to be the better choice and you should look into
dynamic binding and associated mechanisms.



486 CONTROL STRUCTURES §17.7

17.7 LOOP

The next control structure is the only construct (apart from recursive
routine calls) allowing iteration. This is tHeoop instruction, describing
Mi'-i-! computations that obtain their result through successive approximations.

Loop structure and properties

The following example of a search routine illustrates tth@p construct
with all possible clauses:

m search_same_chilgought like first_child) This example is close to
T -- Move cursor to first child position whersought ?;jﬁﬁge,ﬁ E?f?é%]g;ge
appears Actual versionshow-
-- at or after current position. evercan checkfoequal
-- If no such position, move cursor after last item.
require
sought_child_existsought/= Void
do
from
child_start
invariant
0 <= position
position<= arity + 1
until
child_offor else(sought= child)
loop
child_forth
variant
arity — child_position + 1
end
ensure
(not child_off) implies (sought= child)
end

TheLoop construct extends from the keywdrdm to the firstend.

The Initialization clause {from...) introduces actions, here a call to
procedurechild_start to be executed before the actual iteration starts. The
Loop_body(loop...) introduces the instruction to be iterated, here a call to
child_forth; this will be executed zero or more times, afterithidalization,

until the Exit condition, introduced in thentil ... clause, is satisfied.
< “LOOP INVARI-

The optionallnvariantand Variant clauses help reason about a I0O(ANTS AND %RI-
ascertain its correctness, and debug it: ANTS".9.11 page245




§17.7 LOOP

487

BTN TAX

» The keywordinvariant introduces an assertion, describing a property
that must be satisfied by the initialization and maintained by every

execution of the loop body if the exit condition is not satisfied.

» The keywordvariant introduces an integer expression which must be
non-negative after the initialization and will decrease whenever the
body is executed, but will remain non-negative; these properties ensure

that the loop’s execution terminates.

Here is the general form of th@op construct.

Loops
Loop 2 Initialization
[Invariani
Exit_condition
Loop_body
[Variang
end

Initialization 2 from Compound
Exit_condition2 until Boolean_expression

Loop_body2 loop Compound

~ InvariantandVariant
were studied i9.11

Thelnitialization (from clause) is required. If you do not need any specific

initialization, use drom clause with an emptgompoundgas in

from
until

printer.queue_empty
loop

printer. process_next_job
end




488 CONTROL STRUCTURES §17.7

In general, however, thiitialization does introduce &ompoundof
one or more instructions, as in this example from a list duplication
routine in EiffelBase:

d from

- mark

] Result start

until
off

loop
Result put (item)
forth
Resultforth

end

Loop semantics

Ir ot Loop semantics

The effect of d_oopis the effect ofexecuting theCompoundof

its Initialization, then itsLoop_body

The effect of executing laoop_bodyis:

 If the Boolean_expressioof the Exit_conditionevaluates tg
true: no effect (leave the state of the computation unchanged).

e Otherwise: the effect ofexecuting the Compound clause,
followed (recursively) by the effect of executing the
Loop_bodyagain in the resulting state.

L] The optionalnvariantandVariantparts have no effect on the execution of
a correct loop; they describe correctness conditions. Their precise use was

explained in the discussion of assertions and correctness. As a remir='T00P INVARI-
ANTS AND XRI-

« Thelnvariantmust be ensured by theitialization; any execution of the N=-9-11.0a02245
Loop_bodystarted in a state where thesariantis satisfied, but not the
Exit condition, must produce a state that satisfiesrthegiantagain.

* Thelnitialization must produce a state where thigriantexpression is
non-negative; and any execution of theop_ bodystarted in a state
where theVarianthas a non-negative valieand theExit condition is
not satisfied must produce a state in which teiant is still non-
negative, but its new value is less thanSince thé/ariantis an integer
expression, this guarantees termination.



§17.8 THE DEBUG INSTRUCTION 489

Ensuring non-void references in a loop

--- [SECTION REMOVED, SOME MATERIAL WILL BE REUSED] ---

17.8 THE DEBUG INSTRUCTION

The Debuginstruction serves to request the conditional execution of a
certain sequence of operations, depending on a compilation option.

The existence of this instruction implies an obligation for Eiffel
development environments to include a user option for turning “Debug
mode” on and off and, more generally, to set a “Debug key”. Lhee - AppendiBdiscusses
control language includes the necessary mechanisms, enabling youLace se¢ SPECIEY-

, _ ING OPTIONS”, B.9,
the option at all relevant levels: vage 1018

« Default for an entire system.
« Default for a cluster, overriding the system default.
« Value for a particular class, overriding the cluster default.

The basic form of ®ebuginstruction is

I

debug
instruction

instructiory,
end

The instruction will be ignored at execution time if the Debug option is off.
If the option is on, the execution of th&ebuginstruction is the execution
of all theinstruction) in the order given, as with@mpound

A variant of the instruction enables you to exert finer control over the
debugging level by specifying one or more “debug key” in the form of a
Manifest_stringn parentheses. For example:

I

debug ("GRAPHICS_DEBUQ
instruction

instructiory,
end

. . . . . — The Ace file is the
This will be executed if and only if the Debug option has been turne.ace control file used

either generally as before or specifically for the giisrbug_keyThis way to set gfﬁigonssee
you can exercise various parts of the software separately by playing®*Pe"***
the option, typically in théce file, without touching the Eiffel text itself.




490 CONTROL STRUCTURES §17.8

Here is the syntax of the instruction:

Debug instructions
Debug? debug[ "("Key_list")"]

Compoundend

Key_listwasintroduced in connection with th@nceroutine specification:. page218

Key list & {Manifest_string'," ...}*

jEEE| Debug semantics
A language processing tool must provide an option that makes its

possible to enable or disablgebuginstructions, both globally
and for individual keys of &ey _list Such an option may be
settable for an entire system, or for individual classes, or both.

Letter case is not significant for a debug key.

The effect of aDebuginstruction depends on the mode that has

been set for theurrent class:

e If the Debug option is on generally, or if the instruction
includes aKey_listand the option is on for at least one of the
keys in the list, the effect of theebuginstruction is that of itg
Compound

* Otherwise the effect is that of a null instruction.




	17 17 Control structures
	17.1 OVERVIEW
	17.2 COMPOUND
	17.3 CONDITIONAL
	Secondary part
	Prevailing immediately

	17.4 MULTI-BRANCH CHOICE
	Inspect expression
	Interval
	Unfolded form of a multi-branch
	Unfolded form of an interval
	Inspect values of a multi-branch

	17.5 OBJECT TEST
	17.6 USING SELECTION INSTRUCTIONS PROPERLY
	17.7 LOOP
	Loop structure and properties
	Loop semantics
	Ensuring non-void references in a loop

	17.8 THE DEBUG INSTRUCTION


