
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
17
Control structures
17.1 OVERVIEW

17.2 COMPOUND

The first control structure,Compound, enables you to specify a list of
instructions to be executed in a specified order.

From its inconspicuous syntax, you wouldn’t guess that this is a
fundamental program composition mechanism: the instructions of a
Compoundare just written one after another, in the order of their
intended execution. You may emphasize the sequencing of the
instructions by using a separator, the semicolon, which is not only
discreet but optional to boot.

The previous discussions have described the “bones” of Eiffel software: the
module and type structure of systems. Here we begin studying the “meat”:
the elements that govern the execution of applications.

Control structures are the constructs used to schedule the run-time
execution of instructions. There are four of them: sequencing (compound),
conditional, multi-branch choice and loop. A complementary construct is
theDebug instruction.

As made clear by the definition of “non-exception semantics” in the
semantic rule forCompound, which indirectly governs all control
structures (since al instructions are directly or indirectly part of a
Compound), the default semantics assumes that none of the instructions
executed as part of a control structure triggers anexception. If an exception
does occur, the normal flow of control is interrupted, as described by the
rules of exception handling in the discussion of this topic.

→ Chapter26.



CONTROL STRUCTURES §17.2470
A typical specimen of theCompound construct is:

This Compoundis made of three instructions; it specifies the execution of

these instructions in the order given. The last of the three (aConditional

instruction, as studied below) itself includes a two-instructionCompound.

The use and non-use of semicolons in this example illustrate the

recommended style convention: no semicolon has been included between the

three instructions of the outermostCompoundsince they appear on separate

lines (the most common case), enough to remove any confusion. The two

instructions of the innermostCompound— inside theConditional— appear

on the same line; here the semicolon should be included for the benefit of the

human reader, even though compilers don’t need it.

The syntax forCompoundspecified:

In the common, non-confusing case, thestyle rule is to omit the

semicolons between instructions appearing on separate lines. The

semicolon in that case is just visual noise and actually hampers readability.

For successive instructions on the same line make sure tokeep the

semicolon. The above example illustrated this style rule, observed

throughout this book.

All this does not diminish the role of sequencing as a control structure,

even if the only syntactical trace left in the software text is the textual order

of instructions, indicating the temporal order in which they should be

executed at run time.

window1.display
mouse.wait_for_click(middle)
if not  last_event.is_null then

last_event.handle; screen.refresh
end

Compound=∆ { Instruction ";" …}*

→ “OPTIONAL
SEMICOLONS”,
34.10, page 909.



§17.2  COMPOUND 471
There is no validity rule forCompound. The semantic specification follows
from the above explanations:

Aside from its role as a control structure, theCompoundconstruct
serves an frequent syntactical need : allowing any construct that involves
an instruction — so that it may execute it as part of its own execution — to
involve any numberof instructions, including zero. The syntax of Eiffel
consistently adheres to this rule:Instructionnever appears in the definition
of a construct other thanCompound; other construct definitions use
Compound instead. They include:

Compound (non-exception) semantics

The effect of executing aCompound is:
• If it has zero instructions: to leave the state of the computation

unchanged.

• If it has one or more instructions: to execute the first instruction
of theCompound, then (recursively) to execute theCompound
obtained by removing the first instruction.

This specification, thenon-exception semanticsof Compound,
assumes that noexception istriggered. If the execution of any of
the instructions triggers an exception, the Exception Semantics
rule takes effect for the rest of theCompound’s instructions.

Less formally, this means executing the constituent instructions in the order
in which they appear in theCompound, each being started only when the
previous one has been completed.

Note that aCompoundcan be empty, in which case its execution has no
effect. This is useful for examples when refactoring the branches of a
Conditional: you might temporarily remove all the instructions of the
Else_part, but not theElse_partitself yet as you think it may be needed
later.



CONTROL STRUCTURES §17.3472
• The body of a non-deferred routine (constructInternal).

• TheThen_part andElse_partof aConditional instruction.

• TheWhen_part andElse_part of aMulti_branch instruction.

• TheInitialization andLoop_body of aLoop instruction.

• TheDebug instruction.

• TheRescue clause of a non-deferred routine.

17.3 CONDITIONAL

A basic algorithmic mechanism is the ability to discriminate between a se
of values, executing a different set of instructions in each case. Eiffel
provides three variants of this notion:Conditional, where discriminating
criteria are boolean conditions;Multi_branch, comparing an expression to
a set of specified values; andObject_test, matching a reference against a
specified object type. They’re studied in this section and the next two.

A Conditionalinstruction prescribes execution of one among a number
of possible compounds, the choice being made through boolean conditions
associated with each compound.

You should remain alert to an important aspect of the Eiffel method,
which de-emphasizes explicit programmed choices between a fixed set of
alternatives, in favor of automatic selection at run-time based on the type
of the objects to which an operation may be applied. Such an automatic
selection is achived by the object-oriented techniques of inheritance and
dynamic binding. This methodological guideline, discussed in more detail
below, does not diminish the usefulness ofConditionalinstructions — a
widely used mechanism —but should make you wary of complicated
decision structures with too manyelseifbranches. This applies even more
to theMulti_branch instruction studied next.

An exampleConditional is

whose execution is one among the following: execution of the compound
i1; i2 if x > 0 evaluates to true; execution ofi3 if the first condition does not
hold andx = 0 evaluates to true; execution ofi4; i5; i6 if none of the
previous two conditions holds.

if  x > 0 then
il ; i2

elseif x = 0 then
i3

else
i4; i5; i6

end

← Syntax on page218.

→ Page473.

→ Page473.

→ Page490.→ Page487.

→ Page490.

→ Page693.

→ “USING SELEC-
TIONINSTRUCTIONS
PROPERLY”,  17.6,
page 483.



§17.3  CONDITIONAL 473
There may be zero or more “elseif Compound” clauses. The “else
Compound” clause is optional; if it is absent, no instruction will be
executed when all boolean conditions are false.

The general form of the construct is

Two auxilary notions help define precisely the semantics of this construct.
As the syntax specification shows, aConditional begins with

wherecondition1 is a boolean expression andcompound1 is aCompound.
The remaining part may optionally begin withelseif. If so, we may
consider that it forms a new, simplerConditional, called itssecondary part:

The secondary part of the above exampleConditional is

The other useful notion is ”prevailing immediately”:

Conditionals
Conditional =∆ if Then_part_list [Else_part] end

Then_part_list=∆ { Then_partelseif…} +

Then_part=∆ Boolean_expressionthenCompound

Else_part=∆ elseCompound

if  condition1 then compound1

Secondary part
Thesecondary partof aConditionalpossessing at least oneelseifis
theConditionalobtained by removing the initial “if Then_part_list”
and replacing the firstelseif of the remainder byif .

if  x=0 then
i3

else
i4; i5; i6

end

Prevailing immediately
The execution of aConditionalstarting withif condition1 is said
to prevail immediately if condition1 has value true.



CONTROL STRUCTURES §17.4474
These conventions enable a simple definition of the semantics:

17.4 MULTI-BRANCH CHOICE

Like the conditional, theMulti_branch supports a selection between a
number of possible instructions. In contrast with theConditional, however,
the order in which the branches are written does not influence the effect of
the instruction. Indeed, the validity constraints seen below guarantee that
at most one of the selecting conditions may evaluate to true.

Like the Conditional, the Multi_branchinstruction is less commonly
used in proper Eiffel style than its counterparts in traditional design and
programming languages. This is explained in more detailbelow.

You may use aMulti_branch if the conditions are all of the form

or all of the form

whereexpis an expression, the same for every branch, thevi are constant
values, different for each branch and (in the second variant) theTi are all
distinct types, not conforming to one another. In such cases, the
Multi_branchprovides a more compact notation than theConditional, and
makes a more efficient implementation possible.

Conditional semantics

The effect of aConditional is:
• If it prevails immediately: the effect of the firstCompoundin

its Then_part_list.

• Otherwise, if it has at least oneelseif: the effect (recursively) of
its secondary part.

• Otherwise, if it has anElsepart: the effect of theCompoundin
thatElse part.

• Otherwise: no effect.

Like the instruction studied next, theConditional is a “multi-branch”
choice instruction, thanks to the presence of an arbitrary number ofelseif
clauses. These branches do not have equal rights, however; their conditions
are evaluated in the order of their appearance in the text, until one is found
to evaluate to true. If two or more conditions are true, the one selected will
be the first in the syntactical order of the clauses.

“Is expequal tovi ?”

“Is expof typeTi ?”

→ “USING SELEC-
TIONINSTRUCTIONS
PROPERLY”,  17.6,
page 483.



§17.4  MULTI-BRANCH CHOICE 475
Here is an example of the first kind, assuming an entitylast_inputof
typeCHARACTER:

Depending on the value oflast_input, this instruction selects and executes
one Compound among five possible ones. It selects the first
(command_table…) if last_inputis a lower-case or upper-case letter, that
is to say, belongs to one of the two intervals'a' .. 'z' and'A' .. 'Z', or is an
underscore'_'. It selects the second iflast_inputis a digit. It selects the third
(refresh the screen) for the characterControl_L, and the fourth (exit after
confirmation) for either one of two other control characters; here
Control_L, Control_C andControl_Qmust be constant attributes. In all
other cases, the instruction executes the fifth compound given
(display_proper_usage).

This example discriminates on the value of an expression of type
CHARACTER. Other permitted types include:INTEGER; STRING; and
TYPE[G] for someG, which describe object types (conforming toG). This
last possibility allows you to discriminate on the basis of thetypeof the
object attached at run time to the value of an arbitrary expression, as
illustrated by the following example of dealing with various kinds of
exception object:

inspect
last_input

when 'a' .. 'z', 'A' .. 'Z', '_' then
command_table.item(upper(last_input)).execute
screen.refresh

when '0' .. '9' then
history.item(last_input).display

when Control_Lthen
screen.refresh

when Control_C, Control_Qthen
confirmation.ask
if  confirmation.ok then

cleanup; exit
end

else
display_proper_usage

end



CONTROL STRUCTURES §17.4476
In this form the “inspect values” — the values listed in thewhen parts —
are type descriptors, each listing a type in braces, as{ OS_SIGNAL} . The
instruction examines the type of the object associated withlast_exception,
as given bylast_exception.type, and if it conforms to one of the types listed
executes the correspondingthenbranch; otherwise the instruction executes
its elsebranch. The validity rule requires that none of the types listed
conform to another, so there can be no ambiguity as to which branch will
be executed.

The expression that determines the choice —last_input and
last_exception.type in these two examples — has a name:

The inspect expressions of the last two examples arelast_choiceand
last_exception. The inspect expression may only be of one of the types
CHARACTER, INTEGER, STRING, TYPE.

The instruction includes one or moreWhen_part, each giving a list of
one or moreChoice, separated by commas, and aCompoundto be executed
when the value of the inspect expression is one of the givenChoicevalues.

EveryChoicespecifies zero or more inspect values. More precisely, a
Choiceis either a single constant (Manifest_constantor constant attribute)
or an interval of consecutive constants yielding all the interval’s elements
as inspect values. If present, the instruction’s optionalElse_partis executed
when the inspect expression is not equal to any of the inspect values.

inspect
last_exception.type

when { DEVELOPER_EXCEPTION} then
process_developer_exception

when { OS_SIGNAL}, { NO_MORE_MEMORY} then
cancel_operation

else
reset

end

Inspect expression
The inspect expressionof a Multi_branch is the expression
appearing after the keywordinspect.



§17.4  MULTI-BRANCH CHOICE 477
As the validity constraint will state precisely, all the inspect values must

all be of the same type as the inspect expression: all characters, all integers,

all strings or all types. They must all be different, and non-conforming in the

case of types; this avoids ambiguity, ensuring that the order of theWhen_part

branches has no influence on the semantics of the construct.

Every constant in the preceding examples is either aManifest_type, a

Manifest_constantsuch as'a' whose value is an immediate consequence of

the way it is written, or a constant attribute such asControl_Lwhose value

is given in a constant attribute declaration such as

Now the formal rules. First, the syntax ofMulti_branch:

To discuss the constraint and the semantics, it is convenient to consider the

unfolded formof the instruction. First, constant and type intervals have

similar properties, justifying a general term:

Control_L: CHARACTERis '%/217/'

Multi-branch instructions
Multi_branch =∆ inspectExpression

[When_part_list] [Else_part] end

When_part_list=∆ When_part+

When_part=∆ whenChoicesthen Compound

Choices=∆ { Choice "," …} +

Choice =∆ Constant| Manifest_type|
Constant_interval| Type_interval

Constant_interval=∆ Constant ".." Constant

Type_interval=∆ Manifest_type ".." Manifest_type

Interval
An interval  is aConstant_intervalor Type_interval.

→ On character codes
such as'%/217/' see
32.14, page 884.

ConstructConstant
describes manifest or
symbolic constants and
is studied in“GEN-
ERAL FORM OF
CONSTANTS”,  29.2,
page 777.



CONTROL STRUCTURES §17.4478
which enables us to define the unfolded form

The last unfolded form is based on another, for intervals:

Unfolded form of a multi-branch
To obtain theunfolded form of aMulti_branchinstruction, apply
the following transformations in the order given:
1 • Replace everyconstantinspect value by itsmanifest value.

2 • If the typeT of the inspect expression is anysizedvariant of
CHARACTER, STRINGor INTEGER, replace every inspect
valuev by { T}  v.

3 • Replace everyinterval by itsunfolded form.

Step2 enables us, with an inspect expression of a type such asINTEGER_8,
to use constants in ordinary notation, such as1, rather than the heavier
{ INTEGER_8} 1. Unfolded form constructs this proper form for us. The
rulesonconstants make this convention safe: a value that doesn’t match the
type, such as1000 here, will cause a validity error.

Unfolded form of an interval
Theunfolded form of aninterval a..b is the following (possibly
empty) list:
1 • If aandbare constants, both of either acharactertype, astring

type or anintegertype, and ofmanifestvaluesva andvb: the
list made up of all valuesi, if any, such thatva ≤ i ≤ vb, using
character, integer or lexicographical order respectively.

2 • If a andb are both of typeTYPE[T] for someT, and have
manifest valuesva and vb: the list containing every
Manifest_typeof the system conforming tovb and to which
vaconforms.

3 • If neither of the previous two cases apply: an empty list.

→ ---- [Add reference]



§17.4  MULTI-BRANCH CHOICE 479
An interval may not be empty:

The “manifestvalue” of a constant is the value that has been declared for
it, ignoring anyManifest_type: for example both1 and{ INTEGER_8} 1
have the manifest value 1.

The symbol.. is not a special symbol of the language but an alias for a
feature of the Kernel Library classPART_COMPARABLE, which for any
partially or totally ordered set and yielding the set of values between a
lower and an upper bound. Here, the bounds must be constant.

A note for implementers: type intervals such as{ U} ..{ T} , denoting all
types conforming toTand to whichU conforms, may seem to raise difficult
implementation issues: the set of types, which the unfolded form seems to
require that we compute, is potentially large; the validity (Multi-Branch
rule) requires that all types in the unfolded form be distinct, which seems
to call for tricky computations of intersections between multiple sets; and
all this may seem hard to reconcile with incremental compilation, since a
type interval may include types from both our own software and externally
acquired libraries, raising the question of what happens on delivery of a
new version of such a library, possibly without source code. Closer
examination removes these worries:

• There is no need actually to compute entire type intervals as defined by
the unfolded form. Listing{ U} ..{ T} simply means, when examining a
candidate typeZ, finding out whetherZ conforms toT andU to Z.

• To ascertain that such a type interval does not intersect with another
{ Y} ..{ X} , the basic check is thatY does not conform toT andU does
not conform toX.

• If we add a new set of classes and hence types to a previously validated
system, a new case of intersection can only occur if either: a new type
inherits from one of ours, a case that won’t happen for a completely
external set of reusable classes and, if it happens, should require re-
validating since existingMulti_branchinstructions may be affected; or
one of ours inherits from a new type, which will happen only when we
modify our softwareafter receiving the delivery, and again should
require normal rechecking.

Interval rule VOIN

An Interval is valid if and only if itsunfolded form is not empty.

→ ---- [Add reference]

→ In theKernelLibrary
specifications see
classes
“PART_COMPARABL
E”,  page 967, and
“INTERVAL”,  page
971.



CONTROL STRUCTURES §17.4480
So of the intervals

the first two unfold into

the third into the (infinite) set of strings lexicographically between"ab" and
"ad", and the last into an emptyChoiceslist. Thanks to unfolding, the
constraint and semantics may limit themselves to the case ofMulti_branch
instructions where everyChoice is aConstant or Manifest_type.

This definition also enables us to say exactly what “inspect values” means:

A Multi_branch must satisfy a validity constraint --- DEFINE
CONSTANT MANIFEST TYPE ---:

--- IN CLAUSE 2: CHECK THAT DEFINITION OF CONSTANT” FOR
TYPES ONLY COVERS CONSTANT TYPES ----

3 .. 5
'i' .. 'n'
"ab" .. "ad"
5 .. 3

3, 4, 5
'i' , 'j', 'k', 'l', 'm' 'n'

Inspect values of a multi-branch
The inspect valuesof a Multi_branch instruction are all the
values listed in theChoicesparts of the instruction’sunfolded
form.

The set of inspect values may be infinite in the case of a string interval, but this poses
no problem for either programmers or compilers, meaning simply that matches will
be determined through lexicographical comparisons.

Multi-branch rule VOMB

A Multi_branchinstruction is valid if and only if its unfolded
form satisfies the following conditions.
1 • Inspect values are all valid.

2 • Inspect values are allconstants.

3 • Themanifest values of any two inspect values are different.

4 • If the inspectexpression is of typeTYPE[T] for some typeT,
all inspect values are types.

5 • If case4 does not apply, the inspect expression is one of the
sized variants ofINTEGER, CHARACTERor STRING.



§17.4  MULTI-BRANCH CHOICE 481
The clauses guarantee that there won’t be any ambiguity for choosing the

branch to be executed, if any.

--- NOT TRUE ANY MORE, FIX THIS --- For inspect values of the

Manifest_typekind, such as{ SOME_TYPE} , clause4 requires that none

of the types listed conform to another. It rules out examples such as

where the classYOUR_DEVELOPER_EXCEPTIONinherits from

DEVELOPER_EXCEPTION. This may appear too strong a constraint until

you realize that giving non-ambiguous semantics to such examples would

require that we take into account the order of theWhen_partclauses: the

rule, presumably, would be to select the first one that matches. This

conflicts with the principle stating that the semantics of aMulti_branch

should never depend on the order of thewhen clauses.

If you do want type-based discrimination with more than one possibly

matching type, nestMulti_branch instructions, or use aConditional or

Object_conditional.

To define the semantics of aMulti_branch instruction, we will use the

concept of matching branch:

inspect
last_exception

when { YOUR_DEVELOPER_EXCEPTION} then
“Something”

when { DEVELOPER_EXCEPTION} then
“Something else”

end

Matching branch

During execution, amatching branch of a Multi_branchis a
When_partwp of its unfolded form, satisfying either of the
following for the valueval of its inspect expression:
1 •val ~ i, wherei is one of the non-Manifest_typeinspectvalues

listed in wp.

2 •val denotes aManifest_type listed among the choices ofwp.

WARNING: invalid
with the assumed inher-
itance link.



CONTROL STRUCTURES §17.4482
Case1 applies to aMulti_branch that lists actual inspect values:
integers, characters or strings. The matching criterion isequality in the
sense ofequal.

Case2 covers aMulti_branchthat discriminates on the type of an object
attached to the value of an expression. Note that a void value will never
have a matching branch.

The specification of aMulti_branch’s effect follows directly from
this definition.

Note the difference between the semantics ofConditionalandMulti_branch
when there’s noElse_partand none of the selection conditions holds:

• A Conditional just amounts to a null instruction in this case

• Multi_branch will fail , triggering an exception.

The reason is a difference in the nature of the instructions. AConditional
tries a number of possibilities in sequence until it finds one that holds. A
Multi_branch selects aCompound by comparing the value of an
expression with a fixed set of constants; theElse_branch, if present,
catches any other values.

The Multi-branch rule is designed to ensure that in any execution there will
be at most one matching branch.

In case1, we look for object equality, as expressed by~. Strings, in
particular, will be compared according to the functionis_equalof STRING.
A void value, even if type-wise permitted by the inspect expression, will
never have a matching branch.

In case2, we look for an exact type match, not just conformance. For
conformance, we have type intervals: to match types conforming to some
T, use{ NONE} ..{ T} ; for types to whichT conforms, use{ T} ..{ ANY} .

Multi-Branch semantics

Executing aMulti_branchwith a matchingbranch consists of
executing theCompoundfollowing thethen in that branch. In the
absence of matching branch:
1 • If the Else_partis present, the effect of theMulti_branchis

that of theCompound appearing in itsElse_part.

2 • Otherwise the executiontriggers an exception of type
BAD_INSPECT_VALUE.

→ “OBJECT EQUAL-
ITY”,  21.6, page 572

→ See26.12,page701,
aboutexceptionobjects.



§17.5  OBJECT TEST 483
If you expect such values to occur and want them to produce a null effect,
you should use anElse_partwith an emptyCompound. By writing a
Multi_branchwithout anElse_part, you state that you donot expect the
expression ever to take on a value not covered by the inspect values. If your
expectations prove wrong, the effect is to trigger an exception — not to smile,
do nothing, and pretend that everything is proceeding according to plan.

17.5 OBJECT TEST

--- SECTION REMOVED, BUT MATERIAL WILL BE REUSED FOR
NEW MECHANISM REPLACING ASSIGNMENT ATTEMPT S----

17.6 USING SELECTION INSTRUCTIONS PROPERLY

If you have accumulated some experience with some of the traditional
design or programming languages, many of which include a "case" or
"switch" instruction, you will recognize theMulti_branchas similar in
syntax and semantics. Similarly, theObject_testmay remind you of
techniques for discriminating between cases based on the type of an object,
sometimes known as “Run-Time Type Idenfification” or RTTI. But when it
comes to writing Eiffel applications, you should be careful to not misuse
these instructions. This warning extends toConditionalinstructions with
many branches.

Staying away from explicit discrimination is an important part of the
Eiffel approach to software construction. When a system needs to execute
one of several possible actions, the appropriate technique is usually not an
explicit test for all cases, as withMulti_branchor Conditional, but a more
flexible inheritance-based mechanism:dynamic binding. With explicit
tests, every discriminating software element must list all the available
choices — a dangerous practice since the evolution of a software project
inevitably causes choices to be added or removed. Dynamic binding avoids
this pitfall.

You should reserveMulti_branchinstructions, then, to simple situations
where a single operation depends on a fixed set of well-understood choices.

When the purpose is to apply a different operation to an object
depending on its type (for example categories of employees, for which a
certain operation, such as paying the salary, has a different effect), then
Multi_branch is not appropriate: instead, you should define different
classes that inherit from a common ancestor — for exampleMANAGER,
ENGINEERetc. all inheriting fromEMPLOYEE —and redefine one or
more features (such aspay_salary) to take care of the local context. Then
dynamic binding guarantees application of the proper variant: the call

Caroline.pay_salary

→ “D YNAMIC BIND-
ING”, 23.12,page630.



CONTROL STRUCTURES §17.6484
will automatically use the variant ofpay_salaryadapted to the exact type
of the object attached toCarolineat run time (which may be an instance of
MANAGER, orENGINEER etc.).

This is more flexible than aConditionalor Multi_branchthat lists the
choices explicitly, especially if other operations besidespay_salaryhave
variants for the given categories. To add a variant, it suffices to write a new
class, sayINTERN, as a descendantEMPLOYEE, equipped with new
versions of the operations that differ from the defaultEMPLOYEEversion.
Unlike a system that makes explicit choices throughConditional or
Multi_branchinstructions, a system built with this method will only have
to undergo minimal change for such an extension.

Explicit choices do have a role, as illustrated by the earlier examples of
Multi_branch. The first read

This decodes a user input consisting of a single character and executes an
action depending on that character, What is interesting is that the
Multi_branchdoes only the “easy” part: separating the major categories of
characters (letters, digits, control characters).

inspect
last_input

when 'a' .. 'z', 'A' .. 'Z', '_' then
command_table.item(upper(last_input)).execute
screen.refresh

when '0' .. '9' then
history.item(last_input).display

when Control_Lthen
screen.refresh

when Control_C, Control_Qthen
confirmation.ask
if  confirmation.ok then

cleanup; exit
end

else
display_proper_usage

end



§17.6  USING SELECTION INSTRUCTIONS PROPERLY 485
In the branches for letters and characters, however, the finer choice is
made not through explicit instructions but through dynamic binding. For
example, letters are used to index a tablecommand_tableof objects
representing command objects with operations such asexecute. (These
objects might beagents as studied in a later chapter.) After retrieving the
command object associated with the upper-case version of a given letter,
the aboveMulti_branchappliesexecuteto it, relying on dynamic binding
to ensure that the proper action will be selected.

Using aMulti_branchto discriminate between the actions associated
with individual letters 'A', 'B' etc. would have resulted in a more
complicated and inflexible architecture. At the outermost level, however,
the above extract does use aMulti_branch, which appears justified because
of the small number of cases involved and the diversity of actions in each
case, which do not fall into a single category such as “execute the command
attached to the selected object”.

The second example usedManifest_type inspect values:

Even though we are using aMulti_branch to select different actions
depending on the type of an object, we are not doing anything else with the
object in question. The choices, in addition, are from a fixed set of
possibilities — exception types — provided by the Kernel Library, not
under developer control.

If you do anything else with the inspected object, however,
Multi_branchwill cease to be the better choice and you should look into
dynamic binding and associated mechanisms.

inspect
last_exception.type

when { DEVELOPER_EXCEPTION} then
process_developer_exception

when { OS_SIGNAL}, { NO_MORE_MEMORY} then
cancel_operation

else
reset

end

→ Agents are the topic
of chapter27.

See also the Single
Choice principle in
“Object-Oriented Soft-
ware Construction”,
and, in the present book,
“Single choice and fac-
tory objects”,  page 529.



CONTROL STRUCTURES §17.7486
17.7 LOOP

The next control structure is the only construct (apart from recursive
routine calls) allowing iteration. This is theLoop instruction, describing
computations that obtain their result through successive approximations.

Loop structure and properties

The following example of a search routine illustrates theLoop construct
with all possible clauses:

TheLoopconstruct extends from the keywordfrom  to the firstend.

The Initialization clause (from…) introduces actions, here a call to
procedurechild_start, to be executed before the actual iteration starts. The
Loop_body(loop…) introduces the instruction to be iterated, here a call to
child_forth; this will be executed zero or more times, after theInitialization,
until theExit condition, introduced in theuntil … clause, is satisfied.

The optionalInvariant and Variant clauses help reason about a loop,
ascertain its correctness, and debug it:

search_same_child(sought: like first_child)
-- Move cursor to first child position wheresought

appears
-- at or after current position.
-- If no such position, move cursor after last item.

require
sought_child_exists: sought/= Void

do
from

child_start
invariant

0 <= position
position<= arity + 1

until
child_offor else(sought= child)

loop
child_forth

variant
arity — child_position + 1

end
ensure

(not child_off) implies (sought= child)
end

This example is close to
actual tree searching
routines in EiffelBase.
Actual versions, how-
ever,cancheck forequal
as well as ‘=’.

← “LOOP INVARI-
ANTS AND VARI-
ANTS”,9.11,page245.



§17.7  LOOP 487
• The keywordinvariant introduces an assertion, describing a property
that must be satisfied by the initialization and maintained by every
execution of the loop body if the exit condition is not satisfied.

• The keywordvariant introduces an integer expression which must be
non-negative after the initialization and will decrease whenever the
body is executed, but will remain non-negative; these properties ensure
that the loop’s execution terminates.

Here is the general form of theLoop construct.

TheInitialization(from clause) is required. If you do not need any specific
initialization, use afrom  clause with an emptyCompound, as in

Loops
Loop =∆ Initialization

[Invariant]
Exit_condition
Loop_body
[Variant]
end

Initialization =∆ from Compound

Exit_condition =∆ until Boolean_expression

Loop_body=∆ loop Compound

from
until

printer.queue_empty
loop

printer.process_next_job
end

← InvariantandVariant
were studied in9.11.



CONTROL STRUCTURES §17.7488
In general, however, theInitialization does introduce aCompoundof
one or more instructions, as in this example from a list duplication
routine in EiffelBase:

Loop semantics

The optionalInvariantandVariantparts have no effect on the execution of
a correct loop; they describe correctness conditions. Their precise use was
explained in the discussion of assertions and correctness. As a reminder:

• TheInvariantmust be ensured by theInitialization; any execution of the
Loop_bodystarted in a state where theInvariantis satisfied, but not the
Exit condition, must produce a state that satisfies theInvariantagain.

• TheInitialization must produce a state where theVariantexpression is
non-negative; and any execution of theLoop_bodystarted in a state
where theVarianthas a non-negative valuev and theExit condition is
not satisfied must produce a state in which theVariant is still non-
negative, but its new value is less thanv. Since theVariantis an integer
expression, this guarantees termination.

from
mark
Result.start

until
off

loop
Result.put (item)
forth
Result.forth

end

Loop semantics

The effect of aLoop is the effect ofexecuting theCompoundof
its Initialization, then itsLoop_body.
The effect of executing aLoop_body is:
• If the Boolean_expressionof the Exit_conditionevaluates to

true: no effect (leave the state of the computation unchanged).

• Otherwise: the effect ofexecuting theCompoundclause,
followed (recursively) by the effect of executing the
Loop_body again in the resulting state.

← “LOOP INVARI-
ANTS AND VARI-
ANTS”,9.11,page245.



§17.8  THE DEBUG INSTRUCTION 489
Ensuring non-void references in a loop

--- [SECTION REMOVED, SOME MATERIAL WILL BE REUSED] ---

17.8 THE DEBUG INSTRUCTION

The Debug instruction serves to request the conditional execution of a
certain sequence of operations, depending on a compilation option.

The existence of this instruction implies an obligation for Eiffel
development environments to include a user option for turning “Debug
mode” on and off and, more generally, to set a “Debug key”. TheLace
control language includes the necessary mechanisms, enabling you to set
the option at all relevant levels:

• Default for an entire system.

• Default for a cluster, overriding the system default.

• Value for a particular class, overriding the cluster default.

The basic form of aDebug instruction is

The instruction will be ignored at execution time if the Debug option is off.
If the option is on, the execution of theDebuginstruction is the execution
of all theinstructioni in the order given, as with aCompound.

A variant of the instruction enables you to exert finer control over the
debugging level by specifying one or more “debug key” in the form of a
Manifest_string in parentheses. For example:

This will be executed if and only if the Debug option has been turned on
either generally as before or specifically for the givenDebug_key. This way
you can exercise various parts of the software separately by playing with
the option, typically in theAce file, without touching the Eiffel text itself.

debug
instruction1
…
instructionn

end

debug("GRAPHICS_DEBUG")
instruction1
…
instructionn

end

→AppendixBdiscusses
Lace; see“SPECIFY-
ING OPTIONS”,  B.9,
page 1018.

→ The Ace file is the
Lace control file used
to set options. See
appendixB.



CONTROL STRUCTURES §17.8490
Here is the syntax of the instruction:

Key_listwasintroduced in connection with theOnceroutine specification:

Debug instructions
Debug =∆ debug [ "("Key_list ")" ]

Compoundend

Key_list =∆ { Manifest_string "," …} +

Debug semantics

A language processing tool must provide an option that makes its
possible to enable or disableDebuginstructions, both globally
and for individual keys of aKey_list. Such an option may be
settable for an entire system, or for individual classes, or both.
Letter case is not significant for a debug key.
The effect of aDebuginstruction depends on the mode that has
been set for thecurrent class:
• If the Debug option is on generally, or if the instruction

includes aKey_list and the option is on for at least one of the
keys in the list, the effect of theDebuginstruction is that of its
Compound.

• Otherwise the effect is that of a null instruction.

← Page218.


	17 17 Control structures
	17.1 OVERVIEW
	17.2 COMPOUND
	17.3 CONDITIONAL
	Secondary part
	Prevailing immediately

	17.4 MULTI-BRANCH CHOICE
	Inspect expression
	Interval
	Unfolded form of a multi-branch
	Unfolded form of an interval
	Inspect values of a multi-branch

	17.5 OBJECT TEST
	17.6 USING SELECTION INSTRUCTIONS PROPERLY
	17.7 LOOP
	Loop structure and properties
	Loop semantics
	Ensuring non-void references in a loop

	17.8 THE DEBUG INSTRUCTION


