Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

2 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Syntax, validity and semantics

2.1 OVERVIEW

To study the details of Eiffel, you will need a few conventions and basic
rules. In particular, you will need to understand the role of the three levels
of language description:

» Syntax, defining the textual structure of Eiffel software.

« Validity , defining when a syntactically well-formed software element
has a meaning.

» Semantics specifying what that meaning is, in terms of its effect on the
software’s execution.

Each of these levels conditions the next: validity is only defined for a
syntactically legal element, and semantics only for a valid element. This
chapter defines the three levels more precisely and introduces the notations
used, in the rest of the book, to describe the syntax, validity and semantics of
Eiffel constructs. It also offers an overviewarrectnessa part of semantics.

Before proceeding, you should have read the note about the langua - “Aboutthelanguaye
description stylafter the Prefce. description”, pae xv

2.2 SYNTAX: COMPONENTS, SPECIMENS, CONSTRUCTS

Eiffel's syntax defines the structure of class texts.

The structure only: to express furthienitations on legal texts, we need validity - See below.7 and

constraints; and to describe the effect of these texts, we need semantic rule2.8 startingonpagéé,
about validity con-

straints and2.9 about

Syntax, BNF-E semantics

Syntaxis the set of rules describing the structure of software texts.
The notation used to define Eiffel's syntax is caBdt--E.

SYNTAX, VALIDITY AND SEMANTICS §2.2

“BNF” is Backus-Naur Forma traditional technique for describing the
syntax of a certain category of formalismscghtext-free languag&s
originally introduced for the description of Algol 60. BNF-E adds a few
conventions — one production per construct, a simple notation for repetitions
with separators — to make descriptions clearer. The range of formalisms that
can be described by BNF-E is the same as for traditional BNF.

Here are the key syntax notions:

Component, construct, specimen

Any class text, or syntactically meaningful part of it, such asjan
instruction, an expression or an identifier, is callesbenponent
The structure of any kind of components is described by a
construct. A component of a kind described by a certain
construct is called specimenof that construct.

For example, any particular class text, built according to the rules given in
this language description, ismponentThe constructClassdescribes
the structure of class texts; any class textspacimerof that construct. At
the other end of the complexity spectrum, an identifier such as
your_variableis a specimen of the construdentifier.

Although we could use the term “instance” in lieu of “specimen”, it could

cause confusion with the instances of an Eiffel class — the run-time objects
built according to the class specification.

An important convention will simplify the discussions:

Construct Specimen convention

The phrase “arX”, where X is the name of aonstruct, serves as
a shorthand for “@pecimen oi”.

For example, “aClas$s means “a specimen of construtlass: a text
built according to the syntactical specification of the cons@isgs

This example illustrates another convention

Construct Name convention

Everyconstruct has a name starting with an upper-case letterjand
continuing with lower-case letters, possibly with underscores|(to
separate parts of the name if it uses several English words).

BesidesClass examples of construct names incluBarenthesize@and Aopendid. S
Unlabeled_assertion_clauggvery non-terminal appears in the index wi; f r?:getli)géﬁ(
the page of its syntactical definition. Appendix gives the full list.

Typesetting conventions complement the Construct Name convention:- “Textual coven-
construct names, such &3ass always appear in Roman and Green— tions”, page 94
distinguishing them from the blue of Eiffel text, asiasult:= x.

§2.3 TERMINALS, NON-TERMINALS AND TOKENS 87

2.3 TERMINALS, NON-TERMINALS AND TOKENS

Every construct is either a “terminal” or a “non-terminal’:

Terminal, non-terminal, token

Specimens of @erminal construct have no further syntactica
structure. Examples include:

* Resered words such ag andResult

¢ Manifestconstants such as the inte@34 symbols such as
(semicolon) and- (plus sign).

« Identifiers (used to denote classes, features, entities) such as
LINKED_LISTandput.

The specimens of terminal constructs are catkdns

In contrast, the specimens of rron-terminal construct are
defined in terms of other constructs.

Chapter32, about the

. . lexical structure
Tokens (also calledexical component$ form the basic vocabulary Oexplains the various

Eiffel texts. By starting with tokens and applying the rules of syntax kinds of tokens
may build more complex components — specimens of non-terminals.

An example of non-terminal ionditiona] whose specimens are
“conditional instructions” such as

‘ if a> bthen put(a) elseput(b) end ‘

Such a non-terminal construct specimen includes further syntactical
components, here the expressorr b and the instructiongut (a) and
put(b) — themselves specimens of non-terminals, with further sub-
components. We may represent the full structure as a “syntax tree” as
illustrated on the next page.

2.4 THE LEXICAL LEVEL

As the figure shows, constructs defining keywords and symbols, suth as
and;, do not have construct names, since they each have a single specimen
(if etc.) which you can use directly to refer to the construct.

Other terminal constructs such &entifier represent many possible
specimens (an infinity of them in the case Idéntifien. So, like non-
terminal constructs, they need a name and a description of how to obtain
their specimens. They are calléekical constructs. Other examples of
lexical constructs includénteger denoting unsigned integer constants,
such as598 and String, denoting sequences of arbitrary characters. As
noted earlier, the specimens of a lexical construct, such as individual
integers or strings, are callezkens

88 SYNTAX, VALIDITY AND SEMANTICS §2.5

(Conditiona) A syntax tree

showing the
structure of a
construct

: . specimen
if (Then_part_list (Else_paix end

For the syntax produc-
tions see g. appendix
J. A few intermediate

. nodeg(non-terminal}
(Then_paix else (Instructior) have been omitted for

I simplicity
\ (Instruction) (Cal)

(Expressioh then (Identl\ (Actualg

\ ifier) put

Binary_expression (Call) | (Expressioh
\\(ACt“a'S) | (dentifien
(Expression b

(Expr- | (Binary) (Expressiol
ession put —
(Ident- (Identifie) terminal
fier) Terminal
a > b | (Identifien a (Identifien (Construct_nanje

Lexical constructs are covered in a latdrapter. Because tokens ha- Chapter32
such a simple structure, we usually don't need, for lexical constructs
formal production rules that we will study next for non-terminal constru
We satisfy ourselves with definitions such as fdantifieris a sequence o.
one or more characters, of which the firstis a letter and any subsequent one
a letter or a number or an underscore”.

2.5 PRODUCTIONS

To specify a non-terminal construct we need to define what its possible
specimens are. That was true for terminals too, but here we require a little
more machinery, in the form ofggoductionfor every non-terminal:

§2.5 PRODUCTIONS 89

CITCATEDY Production
A production is a formal description of the structure of a

specimens of aon-terminalkconstruct. It has the form

Construct right-side
whereright-sidedescribes how to obtain specimens oftlestruct.

The symbo2 may be read aloud as “is defined as”.

_ BNF-E uses exactly one production for each non-terminal. The reason for
P i1 this convention is explained below.

We need three kinds of right side:

Kinds of production

A production is of one of the following three kinds, distinguished
by the form of theight-side

* Aggregate describing a construct whose specimens are made
of a fixed sequence of parts, some of which may be optional.

* Choice describing a construct having a set of given variants.

* Repetition, describing a construct whose specimens are made of
a variable number of parts, all specimens of a given construct.

The rest of this section explores them in turn.

Aggregate productions

The right-side of an Aggregate production lists one or more constructs,
some of which may be in square brackets to indicate optional parts. This
specifies that, to obtain a specimen of the left-hand side construct, you
simply provide asuccession(*aggregatiori) of specimens of the listed

constructs, in the order given. So flreduction - Page473
Conditional 2 if Then_part_lisfElse_paitend

indicates that a&Conditionalis made of the keywordf, followed by a
Then_part_lis(that is to say, a specimen of thé&en_part_listonstruct),
possibly followed by arftlse part— “possibly” because brackets indicate
an optional component —, followed by the keywerdl. More generally:

90 SYNTAX, VALIDITY AND SEMANTICS §2.5

A Aggregate production
An aggregateright side is of the forntC; C, ... C,, (n > 0), where

every one of th&; is aconstruct and any contiguous subsequence
may appear in square bracket$@s.. Gj] for1<i<j<n.
Every specimen of the corresponding construct consists of a
specimen ofC,, followed by a specimen df,, ..., followed by a
specimen ofC,,, with the provision that for any subsequence jin
brackets the corresponding specimens may be absent.

Choice productions

A Choiceproduction also lists a number of constructs, but with a different
purpose: we want to state that a specimen of the left-hand side construct is
a specimen obne — any one — of the listed constructs (rather than
specimens odll the non-optional specimens, as in the aggregate case).

We separate the alternatives by vertical bate suggest exclusive
choice. Forexample: - Page320

BTATAZ Type é CIaSS_OI’_'[Up|e_typp
Formal_generic_namle

Anchored

This specifies that aType is one of: a Class_or_tuple typea
Formal_generic_namanAnchored More generally:

HEFINITHIN

Choice production

A choiceright side is of the fornC; | G, | ... | G, (n > 0), where
every one of th€; is a construct.

Every specimen of the correspondingpnstruct consists of
exactly one specimen of one of tfie

Repetition productions

Use a Repetition production for a certain construct to express that its
specimens are made afiy number of specimens of some given construct,
separated, if more than one, by a specified separator. The production will
use braces, and three dotsto suggest repetition; it will also list either an
asterisklif “any number” means “zero or more”, or a plus sifjto specify

“one or more”.

§2.5 PRODUCTIONS

So aright side of the forfC § ...} " means “one or more specimens of
C, to be separated 8, where§ is a separator symbol or, more generally
a construct. Replacé by Ufor “zero or more”, allowing constructs with

empty specimens.

Forexample:

l_l_l“ i Then_part_list2 {Then_parelseif...}*

- Page473

means that a specimen©fien_part_list— representing the “then part” of

a conditional instruction, as specified by the productionGonditional

shown earlier as an example of aggregate — consists of one or more
Then_parclauses, separated, if more than one, by the keywtseif So

typical specimens ofhen_part_lisare of the forms

; t1
aamriin tl elseift2
I tl elseift2 elseift3

and so on, wherd, t2, t3 ... are specimens dfhen_part

If the production had used an asterisk * instead of a plube empty
text would also have been an acceptable speciméheof part_list

More generally:

Repetition production, separator

A repetition right side is of one of the two forms
{Cs..}*
{Ccs..}"

whereC and§ (theseparator) areconstructs.

Every specimen of the corresponding construct consists of Z
or more (one or more in the second form) specimenS,afach
separated from the next, if any, by a specime® of

The following abbreviations may be used if the separator is em
C*
C+

pty:

The last two cases are not common, since most repetitions involve a
separator, but for those that don’t the simpler notation suffices.

92 SYNTAX, VALIDITY AND SEMANTICS §2.5

Using recursive productions

You will note that many productions appear to define constructs recursively
(that is to say, in terms of themselves). For example the grammar includes
I the following three productions:

= Instruction 2 ... Other choices ..Clonditional
Conditional 2 if Then_part_lisfElse_padtend

Else_part2 elseCompound
+

Compound 2 {Instruction "" ...}

which, taken together, show thanstruction is defined in terms of
Conditiona) defined in terms oElse_partdefined in terms o€ompound
defined in terms ofnstruction This may seem strange (if you haven't seen
syntax descriptions before), but in fact may make perfect sense.

Such recursive chains, to be useful, must always include a Choice
production, with at least one branch leading to a construct entirely defined
from terminals. Although the mathematical theory falls beyond the scope
of this book, the general idea is that if the mutually recursive productions
involving a construch are

T1IBT2
A|T3

d A
] B

whereT1, T2 andT3 are terminal constructs, then the possible specimens
of A are of the form

> 1>

t1t3 t2
t1t1t3t21t2
t1t1tlt3t21t21t2
... and so on..

wheretl is a specimen of1 etc.
For a detailed discus-

Informally, you may view a set of mutually recursive productions as ar;iooigtcs’f\}mgﬁiﬂg’e%:g'
equatiofN =T + A DN, whereN is the.vector.of non-tgrmlnals\(.andB N hese commentsee the
the last example)T is a vector of terminalsA is a matrix of terminals, +iS pook “Introduction to

choice (the same as |), anmdis concatenation. Then the solution of the the Theory of Program-
equation iN=T+A OT +A20T + A3 + ... ming Languages

§2.5 PRODUCTIONS 93

The language definition makes only moderate use of recursion thanks to the
availability of Repetition productions: when the purpose is simply to
describe a construct whose specimens may contain successive specimens
of another construct, a Repetition generally gives a clearer picture.
Recursion remains necessary to describe constructs with unbounded
nesting possibilities, such &onditionalandLoop.

One production per non-terminal

The conventions of ensure a property mentioned earlier:

Basic syntax description rule
Everynon-terminatonstruct is defined by exactly opeoduction.

Unlike in most BNF variants, every BNF-E production always uses exactly
one of Aggregate, Choice and Repetitioeyermixing them in the right
sides. This convention yields a considerably clearer grammar, even if it has
a few more productions (which in the end is good since they give a more
accurate image of the language’s complexity).

We donot, for example, define
Type 2 ... Other Choices.. |like Anchor

with the last Choice branch involving an Aggregate. Instead, we use two
productions, one Choice and one Aggregate:

Type 2 ... Other Choices ..Anchored
Anchored? like Anchor

Non-production syntax rules

BNF-E and other BNF variants only cover a certain category of

grammatical structures, known as “context-free”. Not all properties of

interest are context-free; in addition some could in principle be described
by context-free productions, but not easily.

To capture such properties we must use any applicable description
technique, often just plain English (but as usual with much care and
precision). We call such excursions from BNF “non-production” rules:

Non-production syntax rule

A non-production syntax rule, marked “fion-productioiy’, is a
syntax property expressed outside of BiNF-E formalism.

94 SYNTAX, VALIDITY AND SEMANTICS §2.6

Unlike validity rules, non-production syntax rules belong to the syntax,
that is to say the description of the structure of Eiffel texts, but they capture
properties that are not expressible, or not conveniently expressible, through
a context-free grammar.

For example the BNF-E Aggregate productions allow successive right-
side components to be separated by an arbitrary break — any sequence of
spaces, tabs and “new line” characters. In a few cases, for example in an
Alias declaration such aaias"+", it is convenient to use BNF-E — with a
right-side listing the keywordlias, a double quote, a®peratorand again
a double quote — but we need poohibit breaks between either double
quote and the operator. In other cases nequire at least one break
character. We still use BNF-E to specify such constructs, but add a non-
production syntax rule stating the supplementary constraints.

2.6 REPRESENTING TERMINALS

As shown by the preceding examples, the right sides of productions often
list some terminals. This raises a problem for reserved words, which might
be mistaken for construct names — consider for example the keyword
classand the constructlass— and special symbols, some of which, such
as{, [and+, are also used as symbols of the syntax notation.

The following conventions remove any ambiguity.

Textual conventions

The syntax (BNF-E) productions and other rules of the Standard

apply the following conventions:

1 « Symbols of BNF-E itself, such as the vertical bars | signal
a choice production, appear in black (non-bold, non-italic).

>

g

2 *« Any construct name appears dark green(non-bold, non-
italic), with a first letter in upper case, @mss

3 ¢« Any component (Eiffel text element) appearbine.

4 « The double quote, one of Eiffelspecialsymbols, appears in
productions as'": a double quote character (blue like other
Eiffel text) enclosed in two single quote characters (black
since they belong to BNF-E, not Eiffel).

5¢All other special symbols appear in double quotes, for
example a comma as", an assignment symbol as=", a
single quote as™ (double quotes black, single quote blue).

§2.6 REPRESENTING TERMINALS

95

6 *Keywords and othereseredwords, such aslassandResult,
appear inbold (blue like other Eiffel text), except UPLE
They do not require quotes since the conventions avoid
ambiguity with construct name<Classis the name of a
constructclassa keyword.

7 « Examples of Eiffel comment text appear in non-bold, nan-
italic (and in blue), as A comment

8 « Other elements of Eiffel text, such as entities and feature names
(including in comments) appear in non-bddaic (blue). This
also applies tAdUPLE

The color-related parts of these conventions do not affect [the
language definition, which remains unambiguous under black-
and-white printing (thanks to the letter-case and font parts of the
conventions). Color printing is recommended for readability.

Because of the difference between casesd 3, { denotes the opening
brace as it might appear in an Eiffel class text, whereas { is a symbol of the
syntax description, used in repetition productions.

In case2 the use of an upper-case first letter is a consequence of the
“Construct Name ceention”. «~ Pageg6.

Special symbols are normally enclosed in double quotes asrcept
for the double quote itself which, to avoid any confusion, appears enclosed
in single quotes (cas®. In either variant, the enclosing quotes — double
or single respectively — are not part of the symbol.

In some contexts, such as ttableof all suchsymbols, special symbole, pagessq 1140
(casegt andb) appear in bold for emphasis.

In application of caseg and8, occurrences of Eiffel entities or feature
names in comments appear in italics, to avoid confusion with other
comment text, as in a comment

-- Update the value ofalue
where the last word denotes a query of naaieein the enclosing class.

As an example, here is the syntactic definition of the construct
Compoundggiven by a repetition production. A specimen@mpounds
formed of zero or more specimensloétruction separated by semicolons:

Compound 2 {Instruction™;" ...} *

96

SYNTAX, VALIDITY AND SEMANTICS §2.7

2.7 VALIDITY

e

The productions and other elements labedgdTaX, as described so far,
specify the structure of constructs. In many cases, however, adherence to
the structural requirements does not suffice to guarantee that a specimen of
a construct will be meaningful.

For example, the followingAssignmentis built according to the- The specification of

i i ~ati i . Assignmenis on page
syntactical specification of the corresponding construct: 581, The right side in
x:=f func(a +b X) this example is a speci-

men of qualifiecCall,

. . . : h t
But this does not mean that tiessignmentwill be acceptable in eveng, pageia

possible context. It must also satisfy certain rules regarding the types . «.«
components involved, the number of arguments passed to a routine such as
funcetc. Such supplementary requirements are called validity constraints

Validity constraint

A validity constraint on aconstruct is a requirement that every
syntactically well-formeapecimen of the construct must satisfy
to be acceptable as part of a software text.

Validity constraints come in addition to syntactic rules, and are in fact
defined only for what the definition calls “syntactically well-formed
specimens”. In théssignmenexample, the validity constraint is:

Assignment rule VBAR — See afull discussion
of this constraint on

page582

An Assignmentis valid if and only if its source expressiorn
conforms to itdarget entity.

(The “target entity” is the left sidex in the example; the “source
expression” is the right side.)

Such validity constraints are introduced by t#eIDITY road sign as
shown. Every constraint has a four-character code, Yi@&#®&R uniquely
identifying it. You do not need to pay any attention to these codes as you
are first reading this book; but implementors of language processing tools,
especially compilers, should include the appropriate code in any error
message that reports a constraint violation. Then, if you get one of these
error messages during system development, you will be able to look up the
code in the index of this book, where they all appear under the heading
“validity codes”, directing you to the detailed explanation of the language
rule that you may have violated.

Some compilers, such as Eiffel Software’s EiffelStudio environment,
give you the exact validity constraint, out of this book, as part of the
error message.

§2.8 INTERPRETING THE CONSTRAINTS 97

The first letter of a validity code is always(for “Validity”), the second
one identifies the chapter, such Bdor this chapter; the last two are a
mnemonics for the constraint, for example for Assignment Rule.

A number of the validity rules have been reorganized from the previou:~ “CHANGES IN

") : . . VALIDITY CON-
editions. The appendix on changggesthe list of differences. STRAINTS AND CON-

FORMANCHRULES”,

Many constraints, such as tkeatureDeclaratiorrule, VFFED, list several
conditions, each identified with a number. Error messages in this = Pagel60
should include not just the constraint code but also the number o
particular condition which was violated, for examyle~D (2).

Valid

A constructspecimen, built according to the syntax structure
defined by the construct’s production, is said tovbkd, and will
be accepted by théanguageprocessingtools of any Eiffel
environment, if and only if it satisfies thalidity constraints, if
any, applying to the construct.

2.8 INTERPRETING THE CONSTRAINTS

To avoid confusion, use the language properly, and benefit from the
diagnostics of compilers and other tools, you must understand the precise
nature of constraints and the conventions governing their interpretation.

Almost all the constraints listed in this book arecessary and sufficient
conditions This is not the usual style for other programming language
descriptions, which commonly tell you that specimens of a certain
constructmustsatisfy a certain property, anay notbe of a certain form.
Constraints in this book tell you instead that specimens of a certain
construct will be validif and only if they meet a specified set of
requirements.

As discussed in th@refice, such a form is preferable, since it allo'*<gogrormal -
you not just to detect that certain specific componentsatrealid, but alsoITy”, page xvi
to ascertain without doubt whether an arbitrary compoisesalid.

This style requires a general convention. When reading the Assignment
rule, VBAR used in the previous section to illustrate the notion of
constraint, it may have struck you that the rule cannot possibly suffice to
ensure the validity of the example assignment: what about the validity of
the right side,f.func (a + b, x), which must satisfy all the validity
constraints on function calléunca properly defined and exported function
applicable to objects off's type, with exactly two formal arguments of
types matching the actual arguments given)?

98 SYNTAX, VALIDITY AND SEMANTICS §2.9

Spelling out all such conditions on the components of a construct would
lead to needlessly complex and repetitive validity constraints. Instead, all
validity discussions rely on a universal interpretation rule:

; General Validity rule VBGV

UALIDITY Every validity constraint relative to aonstruct is considered tg
include an implicit supplementary condition stating that every
component of the construct satisfies every validity constraint
applicable to the component.

In the Assignmentcase, this means that constraifBARis considered to
be automatically extended with the condition

“ ... andx satisfiesall validity constaintson specimensf VVariable ~ — The constraint on
Variableis the Entity

andy satisfiesall validity constaints on specimens Bfkpressioh rule, page505; for the

I,constraints oreExpres-
sionsee chaptep8..

so that, for the exampléssignmen@bove, the Assignment rule implicit
requires that.func(a + b, x) be a valid function call.

2.9 SEMANTICS

Lexical, syntactic and validity rules are only there to help us ensure that our
software makes sense. The next question — even more important — is:
whatis that sense? The task of semantics is to answer that question.

Semantics
Thesemanticsof a construcispecimen that is syntactically legal

andvalid is the construct’s effect on the execution of a system that
includes the specimen.

The “effect” may include executing actions, producing a value, or both. It is
defined by a rule markesEMANTICS. For specimens having subcomponents,
the rule will recursively refer to the semantics of the subcomponents.

y The definition of “semantics” above explicitly bassumes that the
/™" construct is syntactically legal and valid. When reading $E®IANTICS
paragraphs, remember that they only apply to valid specimens. In many
cases, the semantic rules would not even make sense otherwise; attempting
to describe the effect of an invalid component is useless.

Most construct presentations will cover first syntax, then validity, then
semantics. This is the expected order: first how to build language components

pErTnnn of a certain kind; then what restrictions may exist on their parts; finally, what

b the result means. In a few cases, the semantics comes before the validity; such
departures from the normal sequence occur when the best way to understand
the reason for a constraint is to look first at the construct’s effect in valid cases,
andthen find out what is required for that semantics to make sense. The change
of order in such cases is, of course, only a pedagogical device; as everywhere
else, the semantic specification is meaningless for invalid components.

§2.10 CORRECTNESS 99

2.10 CORRECTNESS

=

I

o

Validity is only a structural property; execution of valid Eiffel softwa< “railure” is a tech-

may produce undesired results, or not terminate, or produce an excehicaltermdefinedinthe

that lead tdailure discussion of excep-
e tions in chapteR6.

The loop from until Falseloop endis a valid instruction, but, if executed,

will never terminate. This loop has an empty
initialization (from),
. ... anempty loop body
Even for a valid component, then, we need a more advanced criteriol(oop), and an exit con-

component’s ability to operate properly at run-time. This is ca\ﬁitilgn S‘:hgtL%g Sever
. old. Seée' ”

correctnessand is a more elusive aim than validity, since it |nvoI\417_7 T

semantic properties. —

Ascertaining the correctness of an executable software compenagte ionsspecif-
requires two pieces of information: what the component does cationsandcorrectness
implementation), but also what it is expected to do (its specificatiorare studiedin chaptes.
contract). Eiffel supports both aspects: along with the executable elenr
of a class (the bodies of its routines, made of executable instructions)
may provideassertions which state the contracts.

A class will be said to be correct if its features are guaranteed to perform
according to their contracts.

2.11 TWO-TIER DEFINITION AND UNFOLDED FORMS

A number of Eiffel mechanisms provide high-level idioms for program

schemes that could also be addressed — less concisely, or less elegantly —

through other constructs. As a simple example, foMalti_branch

instruction dealing with character constants, ymay use characte .« Ti-BRANCH

intervals rather than listing individual characters; instead of writing CHOICE”, 17.4,page
474

L4]
-

inspect
char

when 'a, b, '¢, 'd, '€ then [1]
casel

else
case2

end

you may replace the consecutive character choices by a single interval:

]

|

when 'a'.. 'e then -- The rest as above [2]

100 SYNTAX, VALIDITY AND SEMANTICS §2.11

The effect is the same but the text is simpler. We may call such language
mechanismsecond-tierwhere the first tier would contain the constructs
that cannot easily be expressed in terms of any others. The presence of
second-tier constructs doesn’t contradict the Eiffel language design
principle that “the language should provideegood way to do anything
useful”, since the intention of the second-tier mechanisms is to provide a
significantly better means of expression in applicable cases.

For such mechanisms the language definition often relies on the
technique ofinfolded forms. The idea is simply to define the properties of
second-tier variants in terms of the more basic constructs; then it suffices
to define the validity constraints, semantic specification, or both, for these
basic forms. In the discussion of multi-branch instructions dégnition , p,geszq
of “Unfolded form of a Multi_brancH reduces any variant of thc
instruction to one without intervals, so that the unfolded form of vafi2int
above is [1]. After that, the validity and semantic definition for
Multi_branchonly address (through a number of intermediate definitions)
the case of unfolded forms.

We will find unfolded forms useful for specifying the following constructs:
- Unfolded form defi-

* Multiple declarations. nition: : page158
* Inheritanceparts, to ensure conformance of all type&ndy - Pagel73
* Only clauses in postconditions. ~. Page239
* Assertions. ~ Page25Q
* Precursar - Page299
* Anchored declarations. _ Page337.
» Formal generic parameters — Page345

* Tuples, through the notion of “anonymous class”.
« Conversion — Paged07.
» Multi_branchchoice instruction and associateterval definitions. - Pagesi78and478

« Creatorgoart of a class. ~ Page54Q
« Creation instruction. - Page544
« Assigner call. ~ Page592
* Non-object call. — Pages522
* Once routine in the case of a “fresh” call. ~ Pages537.

» Operator expressions, which we unfold into steps: first through - 'Pagesr60and771
“Parenthesized Form” to remove potential ambiguities thanks to
operator precedence; then through the “Equivalent Dot Form” reduce
every expression to@all.

§2.12 THE CONTEXT OF EXECUTING SYSTEMS 101

2.12 THE CONTEXT OF EXECUTING SYSTEMS

As explained in the next chapter, the executable units of Eiffel software are
called “systems” (although many people also use the more traditional term
“program”). The following terminology will serve to discuss the context of
system execution:

Execution terminology
e Run time is the period during whichsystem is executed.

e The machine is the combination of hardware (one or more
computers) and operating system through which you |can
execute systems.

 The machine type, that is to say a certain combination of
computer type and operating system, is callpthdorm .

» Language processing toolserve to build, manipulate, explore
and execute the text of an Eiffel system on a machine.

=

The most obvious example of a language processing tool is an Eiffel
compiler or interpreter, which you can use to execute a system. But many
other tools can manipulate Eiffel texts: Eiffel-aware editors, browsers to
explore systems and their properties, documentation tools, debuggers,
configuration management systems. Hence the generality of the term
“language processing tdol

2.13 TEXTUAL CONVENTIONS

Eiffel texts are written in “free format”: the only purpose of separat™ Style guidelines are
them into lines and including extra “white space” (space or tab characgf topic of appendix
in these lines is to improve the readability of class texts, according tC ...

style rules of later chapter.
A language processing tool treats any sequence of line separa” “BREAKS”, 32,5

spaces and tabs between lexical elements of the language as aPa0e871
“break”, asexplained in the chapter on the lexical structure. For such a tool
the only relevant information is the presence of a break, not its precise
makeup — for example its use of a line return rather than a space — which
is interesting only for human readers.

Eiffel is case-insensitre: “Letter Caserule”
page 876

Case Insensitivity principle

In writing the letters of andentifierserving as name for a class,
feature or entity, or aesered word, using the upper-case g
lower-case versions has no effect on the semantics.

—

102 SYNTAX, VALIDITY AND SEMANTICS §2.13

So you can write a class or feature nameD&CUMENT documentand
evendOcUmEnNTwith exactly the same meaning.

Hence the definitions:

o Upper name, lower name
Theupper nameof anldentifieror Operatoii is i written with all

letters in upper case; ikswer name, i with all letters in lower case.

ﬂ In the example the lower namedecumenand the upper nami2OCUMENT

The definition is mostly useful for identifiers, but the names of some
:'""i“"‘“ operators, such asd and other boolean operators, also contain letters.

The reason for not letting letter case stand in the way of semantic
interpretation is that it is simply too risky to let the meaning of a software
text hang on fine nuances of writing, such as changing a letter into its upper-
case variant; this can only cause confusion and errors. Different things
should, in reliable and maintainable software, have clearly different names.

Letter case is of course significant in “manifest strings”, denoting texts to be
taken verbatim, such as error messages or file names.

This letter case policy goes with strong rulestyhe:

» Classes and types should always use the upper name, as with a
classDOCUMENT

« Non-constant features and entities should always use the lower name, as
with an attributedocument

« Constants and “once” functions should use the lower name with the first
letter changed to upper, as with a constant attriboiment

These rules are detailed in the correspondihapter. They are for thi~ Chapter34.
benefit of your fellow human readers; language processing tools su

prmpnr compilers will ignore them, except if they include an option for enforcing
style standards. Do apply these standards: one of the attractions of Eiffel is

its readability; consistency of Eiffel style, from Sad Paulo to Sakhalin,
makes it even better.

Another convention that greatly facilitates the writing and maintenance
of Eiffel systems is the optional nature of semicolons:

Syntax (non-production): Semicolon Optionality rule

In writing specimens ofiny construct defined by a Repetition
production specifying the semicolon""as separator, it is
permitted, without any effect on the syntax structure, validity and
semantics of the software, to omit any of the semicolons, or to
add a semicolon after the last element.

§2.13 TEXTUAL CONVENTIONS 103

This rule applies to instructions, declarations, successive groups of formal
arguments, and many other Repetition constructs. It does not rely on the
layoutof the software: Eiffel’'s syntax is free-format, so that a return to the
next line has the same effect as one or more spaces or any other “break”.
Rather than relying on line returns, the Semicolon Optionality rule is
ensured by the syntax design of the language, which guarantees that
omitting a semicolon never creates an ambiguity.

The rule also guarantees that an extra semicolon at the endaa$in
instead of jusa ; bis harmless.

The style guidelines suggest omitting semicolons (which would only
obscure reading) for successive elements appearing on separate lines, as is
usually the case for instructions and declarations, and including them to
separate elements on a given line.

Because the semicolon is still formally in the grammar, programmers
used to languages where the semicolon is an instrutgioninator who
may then out of habit add a semicolon after every instruction, will not
suffer any adverse effect, and will get the expected meaning.

104 SYNTAX, VALIDITY AND SEMANTICS §2.13

	2 2 Syntax, validity and semantics
	2.1 OVERVIEW
	2.2 SYNTAX: COMPONENTS, SPECIMENS, CONSTRUCTS
	Syntax, BNF-E
	Component, construct, specimen
	Construct Specimen convention
	Construct Name convention

	2.3 TERMINALS, NON-TERMINALS AND TOKENS
	Terminal, non-terminal, token

	2.4 THE LEXICAL LEVEL
	2.5 PRODUCTIONS
	Production
	Kinds of production
	Aggregate productions
	Aggregate production
	Choice productions
	Choice production
	Repetition productions
	Repetition production, separator
	Using recursive productions
	One production per non-terminal
	Basic syntax description rule
	Non-production syntax rules
	Non-production syntax rule

	2.6 REPRESENTING TERMINALS
	Textual conventions

	2.7 VALIDITY
	Validity constraint
	Valid

	2.8 INTERPRETING THE CONSTRAINTS
	2.9 SEMANTICS
	Semantics

	2.10 CORRECTNESS
	2.11 TWO-TIER DEFINITION AND UNFOLDED FORMS
	2.12 THE CONTEXT OF EXECUTING SYSTEMS
	Execution terminology

	2.13 TEXTUAL CONVENTIONS
	Upper name, lower name
	Syntax (non-production): Semicolon Optionality rule

