
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
2

Syntax, validity and semantics
2.1 OVERVIEW

To study the details of Eiffel, you will need a few conventions and basic
rules. In particular, you will need to understand the role of the three levels
of language description:

• Syntax, defining the textual structure of Eiffel software.

• Validity , defining when a syntactically well-formed software element
has a meaning.

• Semantics, specifying what that meaning is, in terms of its effect on the
software’s execution.

Each of these levels conditions the next: validity is only defined for a
syntactically legal element, and semantics only for a valid element. This
chapter defines the three levels more precisely and introduces the notations
used, in the rest of the book, to describe the syntax, validity and semantics of
Eiffel constructs. It also offers an overview ofcorrectness, a part of semantics.

Before proceeding, you should have read the note about the language
description styleafter the Preface.

2.2 SYNTAX: COMPONENTS, SPECIMENS, CONSTRUCTS

Eiffel’s syntax defines the structure of class texts.

The structure only: to express furtherlimitations on legal texts, we need validity
constraints; and to describe the effect of these texts, we need semantic rules.

Syntax, BNF-E
Syntax is the set of rules describing the structure of software texts.
The notation used to define Eiffel’s syntax is calledBNF-E.

← “Aboutthelanguage
description”, page xv.

→ See below2.7 and
2.8,startingonpage96,
about validity con-
straints, and2.9 about
semantics.

SYNTAX, VALIDITY AND SEMANTICS §2.286
Here are the key syntax notions:

An important convention will simplify the discussions:

This example illustrates another convention

BesidesClass, examples of construct names includeParenthesizedand
Unlabeled_assertion_clause. Every non-terminal appears in the index with
the page of its syntactical definition. Anappendix gives the full list.

“BNF” is Backus-Naur Form, a traditional technique for describing the
syntax of a certain category of formalisms (“context-free languages”),
originally introduced for the description of Algol 60. BNF-E adds a few
conventions — one production per construct, a simple notation for repetitions
with separators — to make descriptions clearer. The range of formalisms that
can be described by BNF-E is the same as for traditional BNF.

Component, construct, specimen
Any class text, or syntactically meaningful part of it, such as an
instruction, an expression or an identifier, is called acomponent.
The structure of any kind of components is described by a
construct. A component of a kind described by a certain
construct is called aspecimen of that construct.

For example, any particular class text, built according to the rules given in
this language description, is acomponent. TheconstructClassdescribes
the structure of class texts; any class text is aspecimenof that construct. At
the other end of the complexity spectrum, an identifier such as
your_variable is a specimen of the constructIdentifier.

Although we could use the term “instance” in lieu of “specimen”, it could
cause confusion with the instances of an Eiffel class — the run-time objects
built according to the class specification.

Construct Specimen convention
The phrase ‘‘anX’’, whereX is the name of aconstruct, serves as
a shorthand for ‘‘aspecimen ofX’’.

For example, ‘‘aClass’’ means ‘‘a specimen of constructClass’’: a text
built according to the syntactical specification of the constructClass.

Construct Name convention
Everyconstruct has a name starting with an upper-case letter and
continuing with lower-case letters, possibly with underscores (to
separate parts of the name if it uses several English words).

Typesetting conventions complement the Construct Name convention:
construct names, such asClass, always appear in Roman and inGreen—
distinguishing them from the blue of Eiffel text, as inResult := x.

→ AppendixJ, Syntax
in alphabetical order

→ “Textual conven-
tions”, page 94.

§2.3 TERMINALS, NON-TERMINALS AND TOKENS 87
2.3 TERMINALS, NON-TERMINALS AND TOKENS

Every construct is either a ‘‘terminal’’ or a ‘‘non-terminal’:

An example of non-terminal isConditional, whose specimens are
“conditional instructions” such as

Such a non-terminal construct specimen includes further syntactical
components, here the expressiona > b and the instructionsput (a) and
put (b) — themselves specimens of non-terminals, with further sub-
components. We may represent the full structure as a “syntax tree” as
illustrated on the next page.

2.4 THE LEXICAL LEVEL

As the figure shows, constructs defining keywords and symbols, such asif
and;, do not have construct names, since they each have a single specimen
(if etc.) which you can use directly to refer to the construct.

Other terminal constructs such asIdentifier represent many possible
specimens (an infinity of them in the case ofIdentifier). So, like non-
terminal constructs, they need a name and a description of how to obtain
their specimens. They are calledlexical constructs. Other examples of
lexical constructs includeInteger, denoting unsigned integer constants,
such as598, andString, denoting sequences of arbitrary characters. As
noted earlier, the specimens of a lexical construct, such as individual
integers or strings, are calledtokens.

Terminal, non-terminal, token
Specimens of aterminal construct have no further syntactical
structure. Examples include:
• Reserved words such asif andResult.
• Manifestconstants such as the integer234; symbols such as;

(semicolon) and+ (plus sign).
• Identifiers (used to denote classes, features, entities) such as

LINKED_LISTandput .
The specimens of terminal constructs are calledtokens.
In contrast, the specimens of anon-terminal construct are
defined in terms of other constructs.

Tokens (also calledlexical components) form the basic vocabulary of
Eiffel texts. By starting with tokens and applying the rules of syntax you
may build more complex components — specimens of non-terminals.

if a > b then put (a) else put (b) end

Chapter32, about the
lexical structure,
explains the various
kinds of tokens.

SYNTAX, VALIDITY AND SEMANTICS §2.588
Lexical constructs are covered in a laterchapter. Because tokens have
such a simple structure, we usually don’t need, for lexical constructs, the
formal production rules that we will study next for non-terminal constructs.
We satisfy ourselves with definitions such as “anIdentifieris a sequence of
one or more characters, of which the first is a letter and any subsequent one
a letter or a number or an underscore”.

2.5 PRODUCTIONS

To specify a non-terminal construct we need to define what its possible
specimens are. That was true for terminals too, but here we require a little
more machinery, in the form of aproduction for every non-terminal:

(Then_part_list)

(Then_part)

(Else_part)

(Identifier)

(Actuals)

(Expression)

(Ident-
ifier)

a

if

put

(Conditional)

then

else

end

(Expression)

(Instruction)

(Call)(Binary_expression)

(Expr-
ession)

(Binary) (Expression)

a b

(Instruction)

(Identifier)>

(Ident-
ifier)

(Actuals)

b

put

(Call)

(Expression)

(Identifier)

(Construct_name)

Non-
terminal

Terminal

(Identifier)

A syntax tree
showing the
structure of a
construct
specimen

For the syntax produc-
tions, see e.g. appendix
J. A few intermediate
nodes(non-terminals)
have been omitted for
simplicity.

→ Chapter32.

§2.5 PRODUCTIONS 89
We need three kinds of right side:

The rest of this section explores them in turn.

Aggregate productions

The right-sideof an Aggregate production lists one or more constructs,
some of which may be in square brackets to indicate optional parts. This
specifies that, to obtain a specimen of the left-hand side construct, you
simply provide asuccession(“aggregation”) of specimens of the listed
constructs, in the order given. So theproduction

indicates that aConditional is made of the keywordif , followed by a
Then_part_list(that is to say, a specimen of theThen_part_listconstruct),
possibly followed by anElse_part— “possibly” because brackets indicate
an optional component —, followed by the keywordend. More generally:

Production
A production is a formal description of the structure of all
specimens of anon-terminalconstruct. It has the form

Construct=∆ right-side
whereright-sidedescribes how to obtain specimens of theConstruct.

The symbol=∆ may be read aloud as “is defined as”.
BNF-E uses exactly one production for each non-terminal. The reason for
this convention is explained below.

Kinds of production

A production is of one of the following three kinds, distinguished
by the form of theright-side:
• Aggregate, describing a construct whose specimens are made

of a fixed sequence of parts, some of which may be optional.
• Choice, describing a construct having a set of given variants.
• Repetition, describing a construct whose specimens are made of

a variable number of parts, all specimens of a given construct.

Conditional =∆ if Then_part_list[Else_part] end

→ Page473.

SYNTAX, VALIDITY AND SEMANTICS §2.590
Choice productions

A Choiceproduction also lists a number of constructs, but with a different
purpose: we want to state that a specimen of the left-hand side construct is
a specimen ofone — any one — of the listed constructs (rather than
specimens ofall the non-optional specimens, as in the aggregate case).

We separate the alternatives by vertical bars| to suggest exclusive
choice. Forexample:

This specifies that aType is one of: a Class_or_tuple_type, a
Formal_generic_name, anAnchored. More generally:

Repetition productions

Use a Repetition production for a certain construct to express that its
specimens are made ofany number of specimens of some given construct,
separated, if more than one, by a specified separator. The production will
use braces, and three dots… to suggest repetition; it will also list either an
asterisk∗ if “any number” means “zero or more”, or a plus sign+ to specify
“one or more”.

Aggregate production
An aggregateright side is of the formC1 C2 ... Cn (n > 0), where
every one of theCi is aconstruct and any contiguous subsequence
may appear in square brackets as[Ci ... Cj] for 1 ≤ i ≤ j ≤ n.
Every specimen of the corresponding construct consists of a
specimen ofC1, followed by a specimen ofC2, ..., followed by a
specimen ofCn, with the provision that for any subsequence in
brackets the corresponding specimens may be absent.

Type =∆ Class_or_tuple_type |
Formal_generic_name |
Anchored

Choice production
A choiceright side is of the formC1 | C2 | ... | Cn (n > 0), where
every one of theCi is a construct.
Every specimen of the correspondingconstruct consists of
exactly one specimen of one of theCi.

→ Page320.

§2.5 PRODUCTIONS 91
So a right side of the form{C § …} + means “one or more specimens of
C, to be separated by§”, where§ is a separator symbol or, more generally
a construct. Replace+ by ∗ for “zero or more”, allowing constructs with
empty specimens.

For example:

means that a specimen ofThen_part_list— representing the “then part” of
a conditional instruction, as specified by the production forConditional
shown earlier as an example of aggregate — consists of one or more
Then_partclauses, separated, if more than one, by the keywordelseif. So
typical specimens ofThen_part_list are of the forms

and so on, wheret1, t2, t3 … are specimens ofThen_part.

If the production had used an asterisk * instead of a plus+, the empty
text would also have been an acceptable specimen ofThen_part_list.

More generally:

The last two cases are not common, since most repetitions involve a
separator, but for those that don’t the simpler notation suffices.

Then_part_list=∆ { Then_partelseif…} +

t1
t1 elseif t2
t1 elseif t2 elseif t3

Repetition production, separator
A repetition right side is of one of the two forms

{C § ...}*
{C § ...}+

whereC and§ (theseparator) areconstructs.
Every specimen of the corresponding construct consists of zero
or more (one or more in the second form) specimens ofC, each
separated from the next, if any, by a specimen of§.
The following abbreviations may be used if the separator is empty:

C*
C+

→ Page473.

SYNTAX, VALIDITY AND SEMANTICS §2.592
Using recursive productions

You will note that many productions appear to define constructs recursively
(that is to say, in terms of themselves). For example the grammar includes
the following three productions:

which, taken together, show thatInstruction is defined in terms of
Conditional, defined in terms ofElse_part, defined in terms ofCompound,
defined in terms ofInstruction. This may seem strange (if you haven’t seen
syntax descriptions before), but in fact may make perfect sense.

Such recursive chains, to be useful, must always include a Choice
production, with at least one branch leading to a construct entirely defined
from terminals. Although the mathematical theory falls beyond the scope
of this book, the general idea is that if the mutually recursive productions
involving a constructA are

whereT1, T2 andT3 are terminal constructs, then the possible specimens
of A are of the form

wheret1 is a specimen ofT1 etc.

Informally, you may view a set of mutually recursive productions as an
equationN = T + A ∗ N, whereN is the vector of non-terminals (A andB in
the last example),T is a vector of terminals,A is a matrix of terminals, + is
choice (the same as |), and∗ is concatenation. Then the solution of the

equation isN = T + A ∗ T + A2 ∗ T + A3 ∗T + ...

Instruction =∆ ... Other choices ... |Conditional

Conditional =∆ if Then_part_list[Else_part] end

Else_part =∆ else Compound

Compound =∆ { Instruction ";" …} +

A =∆ T1 B T2

B =∆ A | T3

t1 t3 t2
t1 t1 t3 t2 t2
t1 t1 t1 t3 t2 t2 t2
… and so on ...

 For a detailed discus-
sion of the theory of fix-
points, which underlies
thesecomments,see the
book “Introduction to
the Theory of Program-
ming Languages”.

§2.5 PRODUCTIONS 93
One production per non-terminal

The conventions of ensure a property mentioned earlier:

We donot, for example, define

Type =∆ … Other Choices… | like Anchor

with the last Choice branch involving an Aggregate. Instead, we use two
productions, one Choice and one Aggregate:

Non-production syntax rules

BNF-E and other BNF variants only cover a certain category of
grammatical structures, known as “context-free”. Not all properties of
interest are context-free; in addition some could in principle be described
by context-free productions, but not easily.

To capture such properties we must use any applicable description
technique, often just plain English (but as usual with much care and
precision). We call such excursions from BNF “non-production” rules:

The language definition makes only moderate use of recursion thanks to the
availability of Repetition productions: when the purpose is simply to
describe a construct whose specimens may contain successive specimens
of another construct, a Repetition generally gives a clearer picture.
Recursion remains necessary to describe constructs with unbounded
nesting possibilities, such asConditional andLoop.

Basic syntax description rule

Everynon-terminalconstruct is defined by exactly oneproduction.

Unlike in most BNF variants, every BNF-E production always uses exactly
one of Aggregate, Choice and Repetition,nevermixing them in the right
sides. This convention yields a considerably clearer grammar, even if it has
a few more productions (which in the end is good since they give a more
accurate image of the language’s complexity).

Type =∆ ... Other Choices ... |Anchored
Anchored=∆ like Anchor

Non-production syntax rule
A non-production syntax rule, marked “(non-production)”, is a
syntax property expressed outside of theBNF-E formalism.

SYNTAX, VALIDITY AND SEMANTICS §2.694
2.6 REPRESENTING TERMINALS

As shown by the preceding examples, the right sides of productions often
list some terminals. This raises a problem for reserved words, which might
be mistaken for construct names — consider for example the keyword
classand the constructClass— and special symbols, some of which, such
as{ , [and +, are also used as symbols of the syntax notation.

The following conventions remove any ambiguity.

Unlike validity rules, non-production syntax rules belong to the syntax,
that is to say the description of the structure of Eiffel texts, but they capture
properties that are not expressible, or not conveniently expressible, through
a context-free grammar.

For example the BNF-E Aggregate productions allow successive right-
side components to be separated by an arbitrary break — any sequence of
spaces, tabs and “new line” characters. In a few cases, for example in an
Alias declaration such asalias"+", it is convenient to use BNF-E — with a
right-side listing the keywordalias, a double quote, anOperatorand again
a double quote — but we need toprohibit breaks between either double
quote and the operator. In other cases werequire at least one break
character. We still use BNF-E to specify such constructs, but add a non-
production syntax rule stating the supplementary constraints.

Textual conventions

The syntax (BNF-E) productions and other rules of the Standard
apply the following conventions:
1 • Symbols of BNF-E itself, such as the vertical bars | signaling

a choice production, appear in black (non-bold, non-italic).

2 • Any construct name appears indark green(non-bold, non-
italic), with a first letter in upper case, asClass.

3 • Any component (Eiffel text element) appears inblue.

4 • The double quote, one of Eiffel’sspecialsymbols, appears in
productions as '" ': a double quote character (blue like other
Eiffel text) enclosed in two single quote characters (black
since they belong to BNF-E, not Eiffel).

5 • All other special symbols appear in double quotes, for
example a comma as ",", an assignment symbol as ":=", a
single quote as "'" (double quotes black, single quote blue).

§2.6 REPRESENTING TERMINALS 95
As an example, here is the syntactic definition of the construct
Compound, given by a repetition production. A specimen ofCompoundis
formed of zero or more specimens ofInstruction, separated by semicolons:

6 •Keywords and otherreservedwords, such asclassandResult,
appear inbold (blue like other Eiffel text), exceptTUPLE.
They do not require quotes since the conventions avoid
ambiguity with construct names:Class is the name of a
construct,classa keyword.

7 • Examples of Eiffel comment text appear in non-bold, non-
italic (and in blue), as-- A comment.

8 • Other elements of Eiffel text, such as entities and feature names
(including in comments) appear in non-bolditalic (blue). This
also applies toTUPLE.

The color-related parts of these conventions do not affect the
language definition, which remains unambiguous under black-
and-white printing (thanks to the letter-case and font parts of the
conventions). Color printing is recommended for readability.

Because of the difference between cases1 and3, { denotes the opening
brace as it might appear in an Eiffel class text, whereas { is a symbol of the
syntax description, used in repetition productions.

In case2 the use of an upper-case first letter is a consequence of the
“Construct Name convention”.

Special symbols are normally enclosed in double quotes (case5), except
for the double quote itself which, to avoid any confusion, appears enclosed
in single quotes (case4). In either variant, the enclosing quotes — double
or single respectively — are not part of the symbol.

In some contexts, such as thetableof all suchsymbols, special symbols
(cases4 and5) appear in bold for emphasis.

In application of cases7 and8, occurrences of Eiffel entities or feature
names in comments appear in italics, to avoid confusion with other
comment text, as in a comment

-- Update the value ofvalue.

where the last word denotes a query of namevaluein the enclosing class.

Compound { Instruction";" …} *

← Page86.

→ Pages880, 1140.

=
∆

SYNTAX, VALIDITY AND SEMANTICS §2.796
2.7 VALIDITY

The productions and other elements labeledSYNTAX, as described so far,
specify the structure of constructs. In many cases, however, adherence to
the structural requirements does not suffice to guarantee that a specimen of
a construct will be meaningful.

For example, the followingAssignment is built according to the
syntactical specification of the corresponding construct:

x := f. func(a + b, x)

But this does not mean that theAssignmentwill be acceptable in every
possible context. It must also satisfy certain rules regarding the types of the
components involved, the number of arguments passed to a routine such as
funcetc. Such supplementary requirements are called validity constraints

Validity constraints come in addition to syntactic rules, and are in fact
defined only for what the definition calls “syntactically well-formed
specimens”. In theAssignment example, the validity constraint is:

(The “target entity” is the left side,x in the example; the “source
expression” is the right side.)

Such validity constraints are introduced by theVALIDITY road sign as
shown. Every constraint has a four-character code, hereVBAR, uniquely
identifying it. You do not need to pay any attention to these codes as you
are first reading this book; but implementors of language processing tools,
especially compilers, should include the appropriate code in any error
message that reports a constraint violation. Then, if you get one of these
error messages during system development, you will be able to look up the
code in the index of this book, where they all appear under the heading
“validity codes”, directing you to the detailed explanation of the language
rule that you may have violated.

Some compilers, such as Eiffel Software’s EiffelStudio environment,
give you the exact validity constraint, out of this book, as part of the
error message.

Validity constraint
A validity constraint on aconstruct is a requirement that every
syntactically well-formedspecimen of the construct must satisfy
to be acceptable as part of a software text.

Assignment rule VBAR

An Assignmentis valid if and only if its source expression
conforms to itstarget entity.

→ The specification of
Assignment is on page
581. The right side in
this example is a speci-
men of qualifiedCall,
whose syntax appears
on page618.

→ See a full discussion
of this constraint on
page582.

§2.8 INTERPRETING THE CONSTRAINTS 97
The first letter of a validity code is alwaysV (for “Validity”), the second
one identifies the chapter, such asB for this chapter; the last two are a
mnemonics for the constraint, for exampleAR for Assignment Rule.

A number of the validity rules have been reorganized from the previous
editions. The appendix on changesgives the list of differences.

Many constraints, such as theFeatureDeclarationrule,VFFD, list several
conditions, each identified with a number. Error messages in this case
should include not just the constraint code but also the number of the
particular condition which was violated, for exampleVFFD (2).

2.8 INTERPRETING THE CONSTRAINTS

To avoid confusion, use the language properly, and benefit from the
diagnostics of compilers and other tools, you must understand the precise
nature of constraints and the conventions governing their interpretation.

Almost all the constraints listed in this book arenecessary and sufficient
conditions. This is not the usual style for other programming language
descriptions, which commonly tell you that specimens of a certain
constructmustsatisfy a certain property, ormay notbe of a certain form.
Constraints in this book tell you instead that specimens of a certain
construct will be valid if and only if they meet a specified set of
requirements.

As discussed in thePreface, such a form is preferable, since it allows
you not just to detect that certain specific components arenotvalid, but also
to ascertain without doubt whether an arbitrary componentis valid.

This style requires a general convention. When reading the Assignment
rule, VBAR, used in the previous section to illustrate the notion of
constraint, it may have struck you that the rule cannot possibly suffice to
ensure the validity of the example assignment: what about the validity of
the right side,f.func (a + b, x), which must satisfy all the validity
constraints on function calls (funca properly defined and exported function
applicable to objects off’s type, with exactly two formal arguments of
types matching the actual arguments given)?

Valid
A constructspecimen, built according to the syntax structure
defined by the construct’s production, is said to bevalid, and will
be accepted by thelanguageprocessingtools of any Eiffel
environment, if and only if it satisfies thevalidity constraints, if
any, applying to the construct.

→ “CHANGES IN
VALIDITY CON-
STRAINTS AND CON-
FORMANCERULES”,

→ Page160.

← See“FORMAL-
ITY”, page xvi.

SYNTAX, VALIDITY AND SEMANTICS §2.998
Spelling out all such conditions on the components of a construct would
lead to needlessly complex and repetitive validity constraints. Instead, all
validity discussions rely on a universal interpretation rule:

In theAssignmentcase, this means that constraintVBARis considered to
be automatically extended with the condition

“ … andx satisfiesall validity constraintsonspecimensof Variable,
andy satisfies all validity constraints on specimens ofExpression”

so that, for the exampleAssignmentabove, the Assignment rule implicitly
requires that f.func(a + b, x) be a valid function call.

2.9 SEMANTICS

Lexical, syntactic and validity rules are only there to help us ensure that our
software makes sense. The next question — even more important — is:
what is that sense? The task of semantics is to answer that question.

The “effect” may include executing actions, producing a value, or both. It is
defined by a rule markedSEMANTICS. For specimens having subcomponents,
the rule will recursively refer to the semantics of the subcomponents.

The definition of “semantics” above explicitly bassumes that the
construct is syntactically legal and valid. When reading theSEMANTICS

paragraphs, remember that they only apply to valid specimens. In many
cases, the semantic rules would not even make sense otherwise; attempting
to describe the effect of an invalid component is useless.

Most construct presentations will cover first syntax, then validity, then
semantics. This is the expected order: first how to build language components
of a certain kind; then what restrictions may exist on their parts; finally, what
the result means. In a few cases, the semantics comes before the validity; such
departures from the normal sequence occur when the best way to understand
the reason for a constraint is to look first at the construct’s effect in valid cases,
and then find out what is required for that semantics to make sense. The change
of order in such cases is, of course, only a pedagogical device; as everywhere
else, the semantic specification is meaningless for invalid components.

General Validity rule VBGV

Every validity constraint relative to aconstruct is considered to
include an implicit supplementary condition stating that every
component of the construct satisfies every validity constraint
applicable to the component.

Semantics
Thesemanticsof aconstructspecimen that is syntactically legal
andvalid is the construct’s effect on the execution of a system that
includes the specimen.

→ The constraint on
Variable is the Entity
rule, page505; for the
constraints onExpres-
sionsee chapter28..

§2.10 CORRECTNESS 99
2.10 CORRECTNESS

Validity is only a structural property; execution of valid Eiffel software
may produce undesired results, or not terminate, or produce an exception
that lead tofailure.

The loop from until False loop end is a valid instruction, but, if executed,
will never terminate.

Even for a valid component, then, we need a more advanced criterion: the
component’s ability to operate properly at run-time. This is called
correctnessand is a more elusive aim than validity, since it involves
semantic properties.

Ascertaining the correctness of an executable software component
requires two pieces of information: what the component does (its
implementation), but also what it is expected to do (its specification, or
contract). Eiffel supports both aspects: along with the executable elements
of a class (the bodies of its routines, made of executable instructions), you
may provideassertions, which state the contracts.

A class will be said to be correct if its features are guaranteed to perform
according to their contracts.

2.11 TWO-TIER DEFINITION AND UNFOLDED FORMS

A number of Eiffel mechanisms provide high-level idioms for program
schemes that could also be addressed — less concisely, or less elegantly —
through other constructs. As a simple example, for aMulti_branch
instruction dealing with character constants, youmay use character
intervals rather than listing individual characters; instead of writing

you may replace the consecutive character choices by a single interval:

inspect
char

when then [1]
case1

else
case2

end

when then -- The rest as above [2]

This loop has an empty
initialization (from),
an empty loop body
(loop), and an exit con-
dition that can never
hold. See“LOOP”,
17.7, page 486.

→ “Failure” is a tech-
nical termdefined in the
discussion of excep-
tions in chapter26.

→ Assertions, specifi-
cationsandcorrectness
are studied in chapter9.

→ “MUL TI-BRANCH
CHOICE”, 17.4,page
474.

'a', 'b', 'c', 'd', 'e'

'a'.. 'e'

SYNTAX, VALIDITY AND SEMANTICS §2.11100
The effect is the same but the text is simpler. We may call such language
mechanismssecond-tier, where the first tier would contain the constructs
that cannot easily be expressed in terms of any others. The presence of
second-tier constructs doesn’t contradict the Eiffel language design
principle that “the language should provideonegood way to do anything
useful”, since the intention of the second-tier mechanisms is to provide a
significantly better means of expression in applicable cases.

For such mechanisms the language definition often relies on the
technique ofunfolded forms. The idea is simply to define the properties of
second-tier variants in terms of the more basic constructs; then it suffices
to define the validity constraints, semantic specification, or both, for these
basic forms. In the discussion of multi-branch instructions, thedefinition
of “Unfolded form of a Multi_branch” reduces any variant of the
instruction to one without intervals, so that the unfolded form of variant[2]
above is [1]. After that, the validity and semantic definition for
Multi_branchonly address (through a number of intermediate definitions)
the case of unfolded forms.

We will find unfolded forms useful for specifying the following constructs:

• Multiple declarations.

• Inheritance parts, to ensure conformance of all types toANY.

• Only clauses in postconditions.

• Assertions.

• Precursor.

• Anchored declarations.

• Formal generic parameters

• Tuples, through the notion of “anonymous class”.

• Conversion

• Multi_branchchoice instruction and associatedInterval definitions.

• Creatorspart of a class.

• Creation instruction.

• Assigner call.

• Non-object call.

• Once routine in the case of a “fresh” call.

• Operator expressions, which we unfold into steps: first through the
“Parenthesized Form” to remove potential ambiguities thanks to
operator precedence; then through the “Equivalent Dot Form” reduce
every expression to aCall.

→ Page478.

→ Unfolded form defi-
nition: : page158.

→ Page173.

→ Page239.

→ Page250.

→ Page299.

→ Page337.

→ Page345.

→ Page407.

→ Pages478and478.

→ Page540.

→ Page544.

→ Page592.

→ Pages622.

→ Pages637.

→ Pages760 and771.

§2.12 THE CONTEXT OF EXECUTING SYSTEMS 101
2.12 THE CONTEXT OF EXECUTING SYSTEMS

As explained in the next chapter, the executable units of Eiffel software are
called “systems” (although many people also use the more traditional term
“program”). The following terminology will serve to discuss the context of
system execution:

2.13 TEXTUAL CONVENTIONS

Eiffel texts are written in “free format”: the only purpose of separating
them into lines and including extra “white space” (space or tab characters)
in these lines is to improve the readability of class texts, according to the
style rules ofa later chapter.

A language processing tool treats any sequence of line separations,
spaces and tabs between lexical elements of the language as a single
“break”, asexplained in the chapter on the lexical structure. For such a tool
the only relevant information is the presence of a break, not its precise
makeup — for example its use of a line return rather than a space — which
is interesting only for human readers.

Eiffel is case-insensitive:

Execution terminology
• Run time is the period during which asystem is executed.

• The machine is the combination of hardware (one or more
computers) and operating system through which you can
execute systems.

• The machine type, that is to say a certain combination of
computer type and operating system, is called aplatform .

• Language processing toolsserve to build, manipulate, explore
and execute the text of an Eiffel system on a machine.

The most obvious example of a language processing tool is an Eiffel
compiler or interpreter, which you can use to execute a system. But many
other tools can manipulate Eiffel texts: Eiffel-aware editors, browsers to
explore systems and their properties, documentation tools, debuggers,
configuration management systems. Hence the generality of the term
“ language processing tool”.

Case Insensitivity principle

In writing the letters of anIdentifierserving as name for a class,
feature or entity, or areserved word, using the upper-case or
lower-case versions has no effect on the semantics.

→ Style guidelines are
the topic of appendix
34.

→ “BREAKS”, 32.5,
page 871

→ “Letter Caserule”,
page 876

SYNTAX, VALIDITY AND SEMANTICS §2.13102
Hence the definitions:

These rules are detailed in the correspondingchapter. They are for the
benefit of your fellow human readers; language processing tools such as
compilers will ignore them, except if they include an option for enforcing
style standards. Do apply these standards: one of the attractions of Eiffel is
its readability; consistency of Eiffel style, from Saõ Paulo to Sakhalin,
makes it even better.

Another convention that greatly facilitates the writing and maintenance
of Eiffel systems is the optional nature of semicolons:

So you can write a class or feature name asDOCUMENT, documentand
evendOcUmEnT with exactly the same meaning.

Upper name, lower name
Theupper nameof anIdentifieror Operatori is i written with all
letters in upper case; itslower name, i with all letters in lower case.

In the example the lower name isdocumentand the upper nameDOCUMENT.

The definition is mostly useful for identifiers, but the names of some
operators, such asand and other boolean operators, also contain letters.

The reason for not letting letter case stand in the way of semantic
interpretation is that it is simply too risky to let the meaning of a software
text hang on fine nuances of writing, such as changing a letter into its upper-
case variant; this can only cause confusion and errors. Different things
should, in reliable and maintainable software, have clearly different names.

Letter case is of course significant in “manifest strings”, denoting texts to be
taken verbatim, such as error messages or file names.

This letter case policy goes with strong rules onstyle:

• Classes and types should always use the upper name, as with a
classDOCUMENT.

• Non-constant features and entities should always use the lower name, as
with an attributedocument.

• Constants and “once” functions should use the lower name with the first
letter changed to upper, as with a constant attributeDocument.

Syntax (non-production): Semicolon Optionality rule

In writing specimens ofany construct defined by a Repetition
production specifying the semicolon ";" as separator, it is
permitted, without any effect on the syntax structure, validity and
semantics of the software, to omit any of the semicolons, or to
add a semicolon after the last element.

→ Chapter34.

§2.13 TEXTUAL CONVENTIONS 103
This rule applies to instructions, declarations, successive groups of formal
arguments, and many other Repetition constructs. It does not rely on the
layoutof the software: Eiffel’s syntax is free-format, so that a return to the
next line has the same effect as one or more spaces or any other “break”.
Rather than relying on line returns, the Semicolon Optionality rule is
ensured by the syntax design of the language, which guarantees that
omitting a semicolon never creates an ambiguity.

The rule also guarantees that an extra semicolon at the end, as ina ; b ;
instead of justa ; b is harmless.

The style guidelines suggest omitting semicolons (which would only
obscure reading) for successive elements appearing on separate lines, as is
usually the case for instructions and declarations, and including them to
separate elements on a given line.

Because the semicolon is still formally in the grammar, programmers
used to languages where the semicolon is an instructionterminator, who
may then out of habit add a semicolon after every instruction, will not
suffer any adverse effect, and will get the expected meaning.

SYNTAX, VALIDITY AND SEMANTICS §2.13104

	2 2 Syntax, validity and semantics
	2.1 OVERVIEW
	2.2 SYNTAX: COMPONENTS, SPECIMENS, CONSTRUCTS
	Syntax, BNF-E
	Component, construct, specimen
	Construct Specimen convention
	Construct Name convention

	2.3 TERMINALS, NON-TERMINALS AND TOKENS
	Terminal, non-terminal, token

	2.4 THE LEXICAL LEVEL
	2.5 PRODUCTIONS
	Production
	Kinds of production
	Aggregate productions
	Aggregate production
	Choice productions
	Choice production
	Repetition productions
	Repetition production, separator
	Using recursive productions
	One production per non-terminal
	Basic syntax description rule
	Non-production syntax rules
	Non-production syntax rule

	2.6 REPRESENTING TERMINALS
	Textual conventions

	2.7 VALIDITY
	Validity constraint
	Valid

	2.8 INTERPRETING THE CONSTRAINTS
	2.9 SEMANTICS
	Semantics

	2.10 CORRECTNESS
	2.11 TWO-TIER DEFINITION AND UNFOLDED FORMS
	2.12 THE CONTEXT OF EXECUTING SYSTEMS
	Execution terminology

	2.13 TEXTUAL CONVENTIONS
	Upper name, lower name
	Syntax (non-production): Semicolon Optionality rule

