
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
21
Comparing and duplicating
objects
21.1 OVERVIEW

21.2 COPYING AN OBJECT

---- MOVE AND REWRITE The first operation copies the fields of an
object onto those of another. It is provided by the procedurecopy from
classANY. Descendant classes may redefinecopyto provide a form of copy
specific to object of the corresponding types, but the original version is
always available through the frozen variantidentical_copy.

21.3 EQUALITY EXPRESSIONS

--- MOVED FROM EXPRESSION CHAPTER, NOT UPDATED --

The just studiedCreationinstruction is the basic language mechanism for
obtaining new objects at run time; it produces fresh direct instances of a
given class, initialized from scratch.

Sometimes you will need instead to copy the contents of an existing
object onto those of another. This is thecopying operation.

A variant of copying iscloning, which produces a fresh object by
duplicating an existing one.

For both copying and cloning, the default variants are “shallow”,
affecting only one object, butdeepversions are available to duplicate an
object structure recursively.

A closely related problem is that ofcomparingtwo objects for shallow
or deep equality.

The copying, cloning and comparison operations rely on only one
language construct (the object equality operator~) and are entirely defined
through language constructs but through routines that developer-defined
classes inherit from theuniversal class ANY. This makes it possible,
through feature redefinitions, to adapt the semantics of copying, cloning
and comparing objects to the specific properties of any class.

← “ANY”, 6.6, page
172;seealsochapter35
for more details.

COMPARING AND DUPLICATING OBJECTS §21.3558
An Equalityexpression serves to test equality of values with the symbol=,
or their inequality with the symbol/=. Typical examples are

Object comparison features fromANY

The features whosecontractviews appear below are provided by
classANY.

default_is_equal(other: ? like Current)
-- Is other attached to object field-by-field equal
-- to current object?

ensure
same_type:Result impliessame_type(other)
symmetric:Result = ((other /= Void) and then

other.default_is_equal(Current))
consistent:Result implies is_equal (other)

is_equal(other: ? like Current)
-- Is other attached to object considered equal
-- to current object?

ensure
same_type:Result impliessame_type(other)
symmetric:Result = ((other /= Void) and then

other.is_equal(Current))
consistent:default_is_equal(other) implies Result

The original version ofis_equalin ANYhas the same effect as
default_is_equal.

These are the two basic object comparison operations. The difference is
thatdefault_is_equalis frozen, always returning the value of field-by-field
identity comparison (for non-voidother); any class may, on the other hand,
redefineis_equal, in accordance with the pre- and postcondition, to reflect
a more specific notion of equality.

Both functions accept a void argument and will in that case, as the
header comment implies, returnFalse.

border_color= Black_color
window.height/= 0

§21.3 EQUALITY EXPRESSIONS 559
The syntax is straightforward:

The operators=, /= and~ have the sameprecedence as relational operators
such as< and>=, higher than the boolean operators such asand andor,
and lower than arithmetic operators such as+ and∗.

There is no constraint on equality expressions. In particular it is not
necessary that either of the operands conform to the other. If they don’t (or
if one is void and the other attached to an object) the result will be false,
but that doesn’t make the expression illegal: whatever the answer, it’s
permitted to ask the question.

The semantics of the equality operators and~ was explored in detail as
part of the discussion on reattachment. As a reminder,e ~ f is true if and
only if e and f are attached to equal objects, according to theis_equal
function from classANY; as toe= f :

1 • If both e andf are of reference types, the expression denotes reference
equality, true if and only ifeandf are either both void or attached to the
same object.

Equality expressions
Equality =∆ Expression Comparison Expression

Comparison=∆ "=" | "/=" | "~" | "/~"

Equality Expression Semantics

TheBoolean_expressione~ f hasvalue true if and only if thevalues
of e andf are bothattached and such thate.is_equal(f) holds.

The Boolean_expressione = f has value true if and only if the
values ofe andf are one of:
1 • Both void.

2 • Both attached to the same object withreference semantics.

3 • Both attached to objects withcopy semantics, and such that
e~ f holds.

The form with~ always denotes object equality. The form with= denotes
reference equality if applicable, otherwise object equality. Both rely, for
object equality, on functionis_equal— the version that can be redefined
locally in any class to account for a programmer-defined notion of object
equality adapted to the specific semantics of the class.

→ “Pr ecedence and
Parenthesized Form”,
page 758

See22.16, page 610.

COMPARING AND DUPLICATING OBJECTS §21.3560
2 • If either e or f is of an expanded type, the expression denotes object
equality; it returns the same result as .

If you need a different notion of equality you will, instead ofe = f, use
equal(e, f) which takes into account possible redefinitions ofequal.

Inequality is defined in terms of equality:

Inequality Expression Semantics

The expressione /= f has value true if and only ife = f has
value false.
The expressione /~ f has value true if and only ife ~ f has
value false.

§21.3 EQUALITY EXPRESSIONS 561
Copying and cloning features fromANY

The features whosecontractviews appear below are provided by
classANY assecret features.

copy(other: ? like Current)
-- Update current object using fields of object
-- attached toother, to yield equal objects.

require
exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: is_equal(other)

frozen default_copy(other: ? like Current)
-- Update current object using fields of object
-- attached toother, to yield identical objects.

require
exists:other /= Void
same_type:other.same_type(Current)

ensure
equal: default_is_equal(other)

frozen cloned: like Current
-- New object equal to current object
-- (relies oncopy)

ensure
equal: is_equal(Result)

frozen default_cloned: like Current
-- New object equal to current object
-- (relies ondefault_copy)

ensure
equal: default_is_equal(Result)

The original versions ofcopyandclonedin ANYhave the same
effect asdefault_copy anddefault_clonedrespectively.

COMPARING AND DUPLICATING OBJECTS §21.3562
Procedurecopyis called in the formx.copy(y) and overrides the fields of
the object attached tox. Functionclonedis called asx.clonedand returns
a new object, a “clone” of the object attached tox. These features can be
adapted to a specific notion of copying adapted to any class, as long as they
produce a result equal to the source, in the sense of the — also redefinable
— function is_equal. You only have to redefinecopy, sincecloneditself is
frozen, with the guarantee that it will follow any redefined version ofcopy;
the semantics ofcloned is to create a new object and applycopy to it.

In contrast,default_copyanddefault_cloned, which produce field-by-
field identical copies of an object, are frozen and hence always yield the
original semantics as defined inANY.

All these features aresecret in their original classANY. The reason is
that exporting copying and cloning may violate the intended semantics of
a class, and concretely its invariant. For example the correctness of a class
may rely on an invariant property such as

some_circumstanceimplies (some_attribute= Current)

stating that undersome_circumstance(a boolean property) the field
corresponding tosome_attributeis cyclic (refers to the current object
itself). Copying or cloning an object will usually not preserve such a
property. The class should then definitely not exportdefault_copyand
default_cloned, and should not exportcopyandclonedunless it redefines
copy in accordance with this invariant; such redefinition may not be
possible or desirable. Because these features are secret by default, software
authors must decide, class by class, whether to re-export them.

Deep equality, copying and cloning

The featureis_deep_equalof classANY makes it possible to
compare object structures recursively; the features ,deep_copy
and deep_clonedduplicate an object structure recursively.
Detailed descriptions are part of theELKS specification.

The default versions of the earlier features —default_is_equal,
default_copy, default_clonedand the original versions of their non-default
variants — are “shallow”: they compare or copy only one source object.
Thedeep version recursively compare or copy entire object structures.

§21.3 EQUALITY EXPRESSIONS 563
Effect of a copy operation

For the copy operation to succeed, both the source and the target must be
attached to objects. (Cloning, however, will work for void sources or targets.)

The figure illustrates the effect of a copy operation withx as target andy as
source. Ifcopyhas not been redefined for the generating class of the object
OX attached tox, you may obtain this effect through the call

Before the call,y was attached to the object labeled OY;x was attached to
the object labeled OX. What the fields of OX contained then does not
matter (since the call overwrites them), but this object must exist. The call
copies every field of OY onto the corresponding field of OX.

Since the argument ofcopyis declared of typelike Current, the type of
OY conforms to the type of OX, but actually a precondition ofcopy
requires more: the types of the two objects must be identical, so that their
fields will be in one-to-one correspondence. On the figure, the type of OX
and OY is calledTC.

x.copy(y)

base

previous
item "ABC"

count

left
right

value
buddy

buddy

value

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

base

previous
item "ABC"

count

(TC)
76

y

x

Pre-existing structure

Effect on target object
of copy operationx.copy(y)

OX

OY
Result of
copying an
object

COMPARING AND DUPLICATING OBJECTS §21.3564
The fields of OY include expanded values, such as the integercount, of
value76, and references such asbaseandprevious. In both cases, the copy
operation will simply copy the field. For reference fields, no attempt is
made to duplicate the data structure recursively: as a result, thebasefields
of both OX and OY will, after the call, be attached to the same object of
type TD. Applying copy to any object containing reference fields will,
indeed, always cause sharing of references;later in this chapter we will
encounter recursive copy routines,deep_copyand deep_clone, which
duplicate an entire object structure, following references recursively.

--- FIX --- As noted,copy requires a non-void source and target. For the
target, this is simply part of the general requirement onCall instructions: in
the above example,x, like the target of any other call, must be non-void
under penalty of raising an exception. For the source, the requirement is
expressed by the precondition ofcopy. A void source will trigger an
exception if the execution monitors preconditions.

Specification of default copy

We can now examine the exact specification ofcopy. First, the interface of
the procedure’s version in classANY:

Setting the style for other duplication and comparison routines,copyhas
two versions: one redefinable, the other (whose name begins with
identical_) frozen.

The second precondition clause uses functionsame_typeof ANY. Forx
andy attached to objects OX and OY,x.same_type(y) has value true if and
only if the type of OX has exactly the same type as OY.

copy, frozen identical_copy(other: like Current)
-- Copy fields ofother onto corresponding fields
-- of current object.

require
other_not_void: other/= Void
type identity: same_type(other)

ensure
equal: is_equal(other)

→ See21.5, page 571
below, about deep copy
and clone.

→ See next about the
functionsame_type
usedintheprecondition
and21.6, page 572
about the function
is_equal used in the
postcondition.

← Chapter5discussed
frozen features.

→ same_typeis dis-
cussed in“OBJECT
PROPERTIES”, 35.4,
page 919

§21.3 EQUALITY EXPRESSIONS 565
Here now is the precise effect of the standard version. Assumecopyhas
not been redefined and consider a callx.copy (y).

1 • As with any call, the targetx must benon-void (if it were void the call
would cause an exception); the first precondition clause ofcopystates
thaty must also be non-void. Let OX and OY be the attached objects at
the time of the call.

2 • The preconditionsame_typerequires that OX and OY have the same
type; letT be that type.

3 • If T is a basic type (BOOLEAN, CHARACTER, INTEGER, REAL or
POINTER), the effect of the call is to copy the value of OY onto OX.

4 • If OX and OY are special objects (sequences of values used to represent
strings or arrays), it is the implementation’s responsibility to ensure that
whenever such a situation arises — as a result of copying other objects
— the size of OX is at least as large as the size of OY. Then the call
copies the value of OY onto OX.

5 • In the remaining cases OX and OY are objects made of zero or more
fields, and the second precondition clause,other_same_type, implies
that the types of OX and OY are identical, so that for every field of OX
there is a field of the same type in OY. Then the call copies onto every
field of OX the corresponding field of OY.

As a consequence of the preconditionother_same_type, you cannot use a copy
operation to perform aconversion; a callyour_real.copy(your_integer)
is incorrect.

Tuning copy semantics

Any class may redefinecopyto provide a copying operation consistent with
the notion of object equality that has been deemed appropriate for the class.

Copy and equality are indeed intricately connected: the postcondition of
copy, given on the previous page, states that the copy must make the target
object equal to the source in the sense of functionis_equal, another feature
of ANYcovered in detaillater in this chapter. Clearly, if you redefine either
one ofcopyandis_equal, you must redefine the other as well, to maintain
consistent semantics for copying and equality according to the
postcondition redefinition rules.

Special objects are not
directly accessible to
software texts.See19.2,
page 498.

With repeated inherit-
ance, an attribute of TX
may yield two fields in
OY. TheSelect sub-
clause, 16.5, page 434,
determines which one is
thefield"corresponding"
to the relevant OX field.

→“CONVERSIONS”,
22.6, page 583.

←“REDECLARATION
AND ASSERTIONS”,
10.17, page 277.

COMPARING AND DUPLICATING OBJECTS §21.3566
Redefinitions ofcopyand is_equalare of two kinds, going in reverse
directions: one makes the semantics more “shallow” and the other makes it
more “deep”:

• Sometimes you want to loosen the condition under which two instances
of a class are considered equal, by ignoring some fields. Then copy can
be redefined to copy only the relevant fields.

• You may instead want copy and equality to involve not only the original
objects but also others to which they contain references.

In some cases you might want both: ignore some fields of the original objects,
but involve some other objects as well.

Many classes of the Kernel Library and EiffelBase provide examples of the
second kind, as they describe objects which are just headers for complex
structures; copy and equality will then involve complete structures, not just
the headers. For example the semantics of classARRAYsuggests an
implementation as illustrated:

The array object on the left is a header containing some general
information such as the number of elements,count, and a referenceareato
the special object containing the array elements (which are references on
the figure, but could be expanded values, for example of basic types). The
defaultcopywould only copy theARRAYobject; the procedurecopyas
redefined in classARRAYalso duplicates the special object containing the
array elements. The same scheme applies to classSTRING; the version of
copyin list classes such asLINKED_LISTandARRAYED_LISTcopies not
only the list headers but the list cells themselves.

The copy algorithm stops there, however: it doesn’t recursively duplicate the
actual contents of the list. It’s the same for arrays: in the above figure,
rb.copy(ra) will copy the special object shown under “Array elements”, but
not the objects to which its references are attached. For fully recursive
duplication, you can usedeep_copy, presentedlater in this chapter.

Part of the reason for redefininingcopyis indeed that sometimes the default
version — available asidentical_copy— doesn’t duplicate enough, while
deep_copyduplicates too much. By redefiningcopyyou can prescribe the
exact depth you want — in accordance with your desired notion of equality,
expressed by a redefinition ofis_equal — for habitual copy operations.

ra

(ARRAY)

Arraydescriptor
and array
elements

(See chapter36.)

Array elements

area

count

Arrays, strings and the
supporting Kernel
Library classes are cov-
ered in chapter36 and

Arrays, strings and the
supporting Kernel
Library classes are cov-
ered in chapter36 and
and10.

→ “DEEP COPYING
ANDCLONING”, 21.5,
page 571.

§21.4 CLONING AN OBJECT 567
21.4 CLONING AN OBJECT

Instead of copying an object, you can clone it; this creates a new object
rather than updating the fields of an existing object. In classANY, feature
clone is a function, so a call of the form

is syntactically an expression; evaluating it will return a new object, which
is a copy of the object attached toy if any. If y is void, the result is void.

Using cloning

The most obvious use ofclone is in an assignment:

where the type ofy must be a descendant of the type ofx. Thefigure used
to illustratex.copy(y) also describes the effect of this assignment; only now
the object OX represents a new object created by the assignment.

Another use ofclone is to pass a fresh copy of an existing object as
argument to a call, as in

Although closely related, copy and clone differ in three respects:

C1 •Copy modifies an existing object, whereas clone creates a new object.
In the above assignment, any earlier attachment betweenx and some
object is lost.

C2 •For copy to work, the target must be non-void; this is expressed
syntactically by the nature ofcopy, a procedure inANY. In contrast,
clone is a function and does not by itself have a target; it simply
produces a result. When used as part of an assignment of targetx as
above, it does not care whetherx is void or attached.

C3 •Finally, becauseclonedoes not presuppose an existing target object, it
can handle a void source. The result in this case is simply a void
reference.

Like copy, clone does not attempt to follow references for fields of
reference types, but simply copies the fields; a "deep" version isavailable.

As with a Creationinstruction, a call toclonewill fail, triggering an
exception (the same one, of typeNO_MORE_MEMORY) if it attempts to
create a new object and no memory is available for it.

clone(y)

x := clone(y)

some_routine(…, clone(y), …)

← Page563.

→ “DEEP COPYING
ANDCLONING”, 21.5,
page 571.

← “CREATION
SEMANTICS”, 20.12,
page 548.

COMPARING AND DUPLICATING OBJECTS §21.4568
Twin

The description ofcloneindicates (propertyC3 above) thatVoid is a valid
argument, for which the function will returnVoid as its result. This is
convenient in the vast majority of cases. If you do know that the source of
the clone operation is not void, you may, instead ofclone (y), use

The only advantage oftwin over clone— apart from being a little more
concise — is that its implementation doesn’t need to test forVoid, so it will
normally be slightly faster. But you should make sure to reservetwin for
cases in which the target is known for sure to be non-void, since a void
target would cause a run-time exception. If the case may arise, useclone,
which handles void references gracefully.

Whenever one of the routines of this chapter handles a certain type of value
and it is possible to define a reasonable default response for cases in which
that value is void, the routine follows the example ofcloneand treats that
value as an argument, not as the target of calls.

For a non-voidy, clone (y) and y.twin, both applicable, are guaranteed
always to yield the same value, thanks to the rules seen next.

Specification of default cloning
Here are the interfaces of functionclone and itstwin variant:

Why are clone and twin frozen? The reason is not that their effect is
immutable, but that you can change that effect without redefining the
functions. To guarantee compatible semantics for cloning and copying,
clone and twin are defined in terms ofcopy, and so will follow any
redefinition ofcopy.

y.twin
-- Defined only ify /= Void; then has same value asclone (y)

frozen clone(other: ANY): like other
--Void if other void; otherwise, new object equal to
-- object attached toother.

ensure
equal: equal(Result, other)
preserves_void: (other= Void) implies (Result=Void)
same_as_twin: (other/= Void) implies

equal(Result, other.twin)

frozen twin: like Current
-- New object equal to current object

ensure
not_void: Result/= Void
equal: Result.is_equal(Current)
same_as_clone: identical(Result, clone(Current))

The function ‘equal’
used in the postcondi-
tion is derived from
‘is_equal’. See below.

A frozen routine may,of
course, call routines
which are not frozen; it
will then be affected by
their redefinitions.

§21.4 CLONING AN OBJECT 569
More precisely, here is the definition of the semantics of a callclone(y):

1 • If the value ofy is void, the call returns a void value.

2 • If the value ofy is attached to an object OY, the call returns a newly
created object of the same type as OY, initialized by applyingcopy to
that object with OY as source.

The second case also defines the semantics ofy.twin. (For void y the
general rules on routine call imply that the call will trigger an exception.)

In exactly the same way, function functionequal, used in the postcondition
of clone, will automatically follow any redefinition ofis_equal, used in the
postcondition ofcopy. As we’ll see in the discussion of equality,equalis to
is_equallike clone to twin: it accepts a void target, but for non-void target
returns the same result.

To guarantee the original semantics of field-by-field duplication and ignore
any redefinition ofcopy, you may use functionidentical_clone, which has
the same signature asclone, and is defined in terms ofidentical_copy
exactly asclone is defined fromcopy.

In principle, clone is superfluous: you could in most cases use a
Creation and copy instead, replacing

In practice, however, several reasons justify a separateclone facility:

• It’s more concise to useclone than a creation followed by a copy,
particularly in an expression, or in an argument to a routine call
r (…, clone(x), …) where the other form would be much more verbose,
requiring the declaration of a local variableyand two extra instructions.

• If the associated class has two or more creation procedures, aCreation
instruction forces you to choose one, although the choice is irrelevant.

• The creation procedure may do some extra work, justified when you
create an object from scratch, but unneeded or harmful when all you
need is a duplicate of an existing object.

• A Creationforces the client to specify the exact type of the new object,
whereas a call toclone, as emphasized next, may dynamically produce
an object of one among several possible types, depending on the type of
the source, selected at run time. This is especially interesting for
Formal_generic_nametypes, sinceclonemay be applicableevenwhen
plain creation isn’t.

create y …
y.copy(x)

→ “OBJECT EQUAL-
ITY”, 21.6, page 572.

← “CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9, page 535.

COMPARING AND DUPLICATING OBJECTS §21.4570
Cloning, types and factories

If x is an expression of typeT, and its value is not void, the generating type
of the object created by a call toclone(x) is not necessarilyT: it is the type
U of the object to whichx is attached.U will always (ignoring the
conversion case) conform toT, but may be based on a proper descendant.
In factT might be deferred, in which case there are no objects of generating
typeT.

Assumefig1 andfig2 declared of the deferred typeFIGURE, with fig1
attached, at some point during execution, to an instance of an effective
descendant ofFIGURE, such asCIRCLE. Executing

will attachfig2 to anotherCIRCLE.

In such cases you don’t need to know the exact dynamic type of the
source (herefig1) when writing the instruction; because of polymorphism,
that type may be different for successive executions of the same instruction.

An earlier discussion introduced an important application of these
properties: how to implement afactory of objects through theclonable
array technique. The idea was simply to obtain a fresh instance of a type,
selected from a set of variants by a certaincode, by writing

where thefactoryis an array automatically created on first use — thanks to
the beauties of once functions and creation expressions — through a simple
function, worth showing again:

This provide a simple and easily extendible scheme, compatible with the
Single Choice principle and much preferable to the first form shown, which
used explicit discrimination through aMulti_branch.

fig2 := clone(fig1)

x := clone(factory @ code)

factory: ARRAY[FIGURE]
once

Result.make(Low_id, High_id)

-- Create and enter an instance of each desired kind:
Result.put(create{SEGMENT}.make(…), Segment_id)
Result.put(create{TRIANGLE}.make(…),Triangle_id)
… Similarly for each variant…

end

The generating type of
an object is the type of
which it is a direct
instance.See19.2,page
498.

← “Single choiceand
factoryobjects”, page
529; final, simplified
form on page530.

← First shown on page
530. The example
involves a set of figure
types.

← “Single choiceand
factoryobjects”, page
529; original form[1] ,
page527.

§21.5 DEEP COPYING AND CLONING 571
21.5 DEEP COPYING AND CLONING

The defaultclone and copy are, as noted,shallow: they do not follow
references, just copy fields of the source object as they appear.

You may in some cases need deep versions of these operations, which
will recursively duplicate an entire structure. The routinesdeep_cloneand
deep_copyof classANY, with the same signatures asclone and copy
respectively, fulfill this need. They will replicate an entire data structure,
creating as many new objects as needed.

If we take as an illustration the original exampleused to present shallow
copying, here is the result of a deep clone on the same structure:

Unlike their shallow counterpartsclone and copy, deep_cloneand
deep_copy cannot cause sharing of references between source and target.

The deep versions are frozen. Their postconditions involvedeep_equal,
studiedbelow.

← Page563.

base

previous
item "ABC"

count

left
right

value
buddy

buddy

value

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

y

x

Pre-existing structure

Structure created by a deep-clone operationx := deep_clone(y)

OY

base

previous
item "ABC"

count

left
right

value
buddy

buddy

value

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

Your usual supplier of
memory upgrades and
discount disks will be
happy to provide your
staff, at no charge, with
a full training session
on the use ofdeep_copy
anddeep_clone.

Result of deep
cloning

→ “DEEP EQUAL-
ITY”, 21.7, page 574.

COMPARING AND DUPLICATING OBJECTS §21.6572
21.6 OBJECT EQUALITY

---- OBSOLETE SECTION, REWRITE WITH ~ -----The discussion of
cloning and copying transposes readily to the problem of comparing
objects for equality. To determine if the objects attached tox and y are
equal, you may use the expression

Here is the result of applying the defaultequalto two valuesx andy.

1 • If any one ofx andy is void, the result is true if the other is also void,
and false otherwise. Cases2 to 5 assume that both arguments are
attached to respective objects OX and OY.

2 • .If the types of OX and OY are not identical, the result is false. For cases
3 to 5 let T be their common type.

3 • If T is a basic type, the result is true if and only if OX and OY are the
same value

4 • If OX and OY arespecialobjects (sequences of values used to represent
strings or arrays), the result is true if and only if the sequences have the
same length, and every field in one is identical to the field at the same
position in the other.

5 • Otherwise OX and OY are standard complex objects, and conformance
of TY to TX implies that for every field of OX there is a corresponding
field in OY. Then the result is true if and only if every reference field of
OX is attached to the same object as the corresponding field in OY, and
every subobject field of OX is (recursively) equal to the corresponding
field in OY.

This definition of equal’s semantics closely parallels the semantic
definition of copy; the five cases in both specifications match each other.
The two are indeed designed to be compatible since, as noted, a call of the
form x.copy(y) must ensure the postconditionequal(x, y).

Like copying, equality does not take conversions into account. The
expressionequal(0.0, 0) — with a real argument and an an integer argument
— will return false. To get different behavior you must take care of the
conversion yourselves.

equal(x, y)

For convenience, the
shortformofthefunction
equal appearsafter this
semantic specification.

← “Basic types”, ,
page 330

Special objects are not
directly accessible to
software texts.See19.2,
page 498.

§21.6 OBJECT EQUALITY 573
The rejection of any conversions is part of a more general decision reflected
in clause2 above: equality may only hold for objects of the exact same type.
You may be interested to know that the policy was more lax in early versions
of Eiffel (as reflected in the first edition of this book): it specified the value
true forequal(x, y) if the type ofy conforms to the type ofx and two objects
have equal fields for the attributes ofx’s type, even though OY may have more
fields. This policy was more flexible, and did not cause any major problems;
it went well, in particular, with the use ofis_equalas the basic equality
operation, explained next. It was abandoned, however, when critics pointed
out that it madeequala non-symmetric property — it could result inequal(x,
y) being true whileequal(x, y) is not — whereas equality, in mathematics, is
always symmetric. Hence the change to a more restrictive view of equality.

The short form ofequalhas not yet been given because in its postcondition
it mentions the next function of interest,is_equal. Here it is:

Functionis_equal, for its part, has a frozen synonymis_identical, and the
interface form

To change the semantics of equality in a particular class, just redefineis_equal;
you cannot directly redefineequal— as you can see above, it’s frozen — but
its postcondition guarantees thatequalwill follow automatically. An obvious
way to implementequal is indeed to rely onis_equal:

frozen equal(some: ANY; other: like some): BOOLEAN
-- Are some andother either both void or attached
-- to equal objects?

ensure
definition: Result= (some= Voidand other=Void) or

(some/= Voidand other/= Voidand then
some.is_equal(other))

symmetric: Result= equal(some, other)

is_equal(other: like Current): BOOLEAN
-- Is other attached to an object equal to current object?

ensure
only_if_not_void: Resultimplies other /= Void
same_type: Resultimplies same_type(other)
symmetric: Result= other.is_equal(Current)
consistent: is_identical(other) implies Result

if some= Void then
Result:= (other= Void)

else
Result:= some.is_equal(other)

end

COMPARING AND DUPLICATING OBJECTS §21.7574
Functionis_equalhas the same relationship toequalas twin to clone: it
works on a target and an argument as inx.is_equal(y), whereequaluses
two arguments as inequal(x, y). For non-voidx, the two will always yield
the same result, as defined above, but onlyequalaccepts a voidx; is_equal
requires a non-void target. So it is the more basic of the two, butequalis
more general.

Use equal (x, y) when there is any chance thatx could be void.
Otherwise you can still useequalexcept if you are concerned about the
small overhead of testing forVoid. Functionis_equalis the one to redefine
to introduce a specific semantics of equality for instances of a certain class.
As noted, this almost always implies an associated redefinition ofcopy.

Earlier on, we encountered library classes —ARRAY, STRING, list
implementations — that redefinecopyto duplicate not just the header of an
object structure but some of its contents too. These same classes redefine
is_equal to compare the contents and not just the header.

Like copy and clone, functions equal and is_equal have frozen
synonyms: identical and is_identical, both guaranteeing the original
semantics of exact field-by-field comparison.

21.7 DEEP EQUALITY

Like the shallow forms of copy and clone, the just explored shallow form
of equality testing has a deep counterpart inANY:

What exactly are “ isomorphic structures”? Clearly,deep_equalshould
yield true if one of the arguments results from adeep_cloneor deep_copy
applied to the other, asx andy on the figure that illustrated deep_clone. But
we shouldn’t limit ourselves to this case, because it excludes any sharing
between the two object structures, as in the following figure below, where
we are entitled to expect thatdeep_equal(x, y) will yield true.

frozen deep_equal(some: ANY; other: like some): BOOLEAN
-- Are some andother either both void
-- or attached to isomorphic object structures?

§21.7 DEEP EQUALITY 575
Here is the definition of deep equality (yielding true for such cases). It is
convenient to define the notion separately for references and for objects.

Two referencesx andy are deep-equal if and only if they are either both
void or attached to deep-equal objects.

Two objects OX and OY are deep-equal and only if they satisfy the
following four conditions:

1 • OX and OY have the same exact type.

2 • The objects obtained by setting all the reference fields of OX and OY (if
any) to void references are equal.

3 • For every void reference field of OX, the corresponding field of OY is void.

4 • For every non-void reference field of OX, attached to an object PX, the
corresponding field of OY is attached to an object PY, and it is possible
(recursively) to show, under the assumption that OX is deep-equal to
OY, that PX is deep-equal to PY.

Condition1 is the same as forequal: we want the types to be identical.

Conditions2 and3 express that every expanded or void field must be
equal to the field in the other object.

base

previous
item "ABC"

count

left
right

value
buddy

buddy

valuey

(TC)

(TD) (TE)

(TE)

8.1

9.6
76

base

previous
item "ABC"

count

left
right

(TC)

(TD)
76

x

OY

OX

A case of deep
equality

COMPARING AND DUPLICATING OBJECTS §21.7576
Condition4 handles the non-void reference fields. It is a bit subtle, as
often when recursion is involved. The phrasing seems strange: why not just
state that in this case PX must recursively be deep-equal toPY?

The problem is that such a condition, although not wrong, would be
impossible to prove, or disprove, for any cyclic data structures. Consider
the situation picture above, which might be the result of adeep_clone
operation. How can we check that the objects labeled X1 and Y1 are deep-
equal — which they clearly should be?

Condition1 will raise no problem since all objects are of the same type
T. Condition2 is readily satisfied since the only non-reference fields in X1
and Y1, theitemfields, are equal. Condition 3 is also immediate since both
previousfields are void. For condition 4, we must check recursively that the
objects X2 and Y2 are deep-equal.

Conditions2 and3 again hold trivially, covering fieldsitem andnext.
There remains to check condition4, in other words, that thepreviousfields
of X2 and Y2 are attached to deep-equal objects. But now you see the
problem: those attached objects are none other than X1 and Y1, and we are
back to square one.

item

previous

next

item

previous

next

Y1 Y2

(T) (T)

’A’ ’B’

item

previous

next

item

previous

next

X1 X2

(T) (T)

’A’ ’B’

y

x

Another case
of deep
equality

§21.7 DEEP EQUALITY 577
The phrasing of condition4 gets us out of this potentially endless
reasoning loop: when checking condition4 on the original objects X1 and
Y1, we only have to check that X2 and Y2 are deep-equalunder the
assumption that X1 and Y1 are themselves deep-equal. So here the
equality of theitem andnext fields suffices to terminate the proof.

If you are looking at this with a programmer’s rather than a
mathematician’s eyes, you will have understood this clause as meaning that
in an abstract traversal algorithm designed to check deep-equality of
objects, you maymark every previously encountered object so as not to
explore it again, avoiding infinite looping.

If, on the other hand, you also master the theoretical background, you
will have recognized the idea of self-conditional recursive proof: a
technique whereby, to prove a propertyR, you must first prove a property
of the form “if R holds, thenP holds” for some other propertyP. This is
exactly the scheme used, inaxiomatic specifications of programming
language semantics, to prove the correctness of a recursive routine.

On this theoretical per-
spective, see the book
“ Introduction to the
Theory of Program-
ming Language”",
eparticularly itssection
: 9.10.6 and the exam-
ple in 9.10.9.

COMPARING AND DUPLICATING OBJECTS §21.7578

	21 21 Comparing and duplicating objects
	21.1 OVERVIEW
	21.2 COPYING AN OBJECT
	21.3 EQUALITY EXPRESSIONS
	Object comparison features from ANY
	Copying and cloning features from ANY
	Deep equality, copying and cloning
	Effect of a copy operation
	Specification of default copy
	Tuning copy semantics

	21.4 CLONING AN OBJECT
	Using cloning
	Twin
	Specification of default cloning
	Cloning, types and factories

	21.5 DEEP COPYING AND CLONING
	21.6 OBJECT EQUALITY
	21.7 DEEP EQUALITY

