21

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Comparing and duplicating
objects

21.1 OVERVIEW

The just studiecCreationinstruction is the basic language mechanism for
obtaining new objects at run time; it produces fresh direct instances of a
given class, initialized from scratch.

Sometimes you will need instead to copy the contents of an existing
object onto those of another. This is togying operation.

A variant of copying iscloning, which produces a fresh object by
duplicating an existing one.

For both copying and cloning, the default variants are “shallow”,
affecting only one object, buteepversions are available to duplicate an
object structure recursively.

A closely related problem is that ebmparingtwo objects for shallow
or deep equality.

The copying, cloning and comparison operations rely on only one
language construct (the object equality operajand are entirely defined
through language constructs but through routines that developer-defined
classes inherit from theiniversal class ANY This makes it possible~ “ANY", 6.6, page
through feature redefinitions, to adapt the semantics of copying, clq%nfgriaéfa?;f‘sam@s
and comparing objects to the specific properties of any class.

21.2 COPYING AN OBJECT

---- MOVE AND REWRITE The first operation copies the fields of an
object onto those of another. It is provided by the procedagy from
classANY Descendant classes may redefinpyto provide a form of copy
specific to object of the corresponding types, but the original version is
always available through the frozen variatgntical_copy

21.3 EQUALITY EXPRESSIONS

--- MOVED FROM EXPRESSION CHAPTER, NOT UPDATED --

558

COMPARING AND DUPLICATING OBJECTS §21.3

Object comparison features fromANY
The features whoseontractviews appear below are provided by
classANY
default_is_equalother: ? like Curren)
-- Is otherattached to object field-by-field equal
-- to current object?
ensure
same_typeResult impliessame_typéother)

symmetric:Result = ((other /= Void) and then
other.default_is_equa{Current))

consistentResult impliesis_equal(other)

is_equal(other: ? like Curreny
-- Is otherattached to object considered equal
-- to current object?
ensure
same_typeResult impliessame_typéother)

symmetric:Result= ((other/= Void) and then
otheris_equal(Current))

consistentdefault_is_equalother) implies Result

The original version ofs_equalin ANY has the same effect a
default_is_equal

192}

These are the two basic object comparison operations. The difference is
thatdefault_is_equaik frozen, always returning the value of field-by-field
identity comparison (for non-voidther); any class may, on the other hand,
redefines_equa) in accordance with the pre- and postcondition, to reflect

a more specific notion of equality.

Both functions accept a void argument and will in that case, as the
header comment implies, returalse

An Equalityexpression serves to test equality of values with the sympol
or their inequality with the symbdt. Typical examples are

border_color= Black_color
window height/= 0

§21.3 EQUALITY EXPRESSIONS 559

The syntax is straightforward:

Equality expressions
Equality 2 Expression Comparison Expressio

CompaI'ISOﬂé n_n I II/=II | n_n I ||/~||

>

such as< and>=, higher than the boolean operators suclaad andor, Parenthesizeddim”,
page 758

The operators, /= and~ have the samprecedence as relational operatc:=pr ecedence and

and lower than arithmetic operators such and(]

Fay There is no constraint on equality expressions. In particular it is not
/™= necessary that either of the operands conform to the other. If they don't (or
if one is void and the other attached to an object) the result will be false,
but that doesn't make the expression illegal: whatever the answer, it's
permitted to ask the question.

Equality Expression Semantics
TheBoolean_expressi@rfhasvalue true if and only if thealues
of e andf are bothattached and such thatis_equal(f) holds.

The Boolean_expressioe = f has value true if and only if the
values ofe andf are one of:

1 - Both void.

2 «Both attached to the same object wéference semantics.

3 *Both attached to objects wittbpy semantics, and such that
e~ fholds.

The form with~ always denotes object equality. The form witldenotes
reference equality if applicable, otherwise object equality. Both rely, for
object equality, on functiois_equal— the version that can be redefined
locally in any class to account for a programmer-defined notion of object
equality adapted to the specific semantics of the class.

| The semantics of the equality operators amds explored in detail as
T part of the discussion on reattachment. As a reminglerf is true if and
only if e andf are attached to equal objects, according toithequal
function from clas@\NY: as toe="1: See22.16. page 610

1 «If both e andf are of reference types, the expression denotes refel
equality, true if and only ie andf are either both void or attached to tiic
same object.

560 COMPARING AND DUPLICATING OBJECTS §21.3

2 «If eithere or f is of an expanded type, the expression denotes object
equality; it returns the same result as .

If you need a different notion of equality you will, instead ®f= f, use
equal(e, f) which takes into account possible redefinitionsafal

Inequality is defined in terms of equality:

Inequality Expression Semantics

The expressiore /= f has value true if and only i&é = f has
value false.
The expressiore /~ f has value true if and only & ~ f has
value false.

§21.3 EQUALITY EXPRESSIONS 561

Copying and cloning features fromANY

The features whoseontractviews appear below are provided by
classANY assecret features.

copy(other: ? like Curreny
-- Update current object using fields of object
-- attached tmther, to yield equal objects.
require
exists:other/= Void
same_typeother same_typé€Curreni
ensure
equal:is_equal(other)

frozen default_copyother: ? like Curren)
-- Update current object using fields of object
-- attached tmther, to yield identical objects.
require
exists:other/= Void
same_typeother same_typé€Curreni
ensure
equal:default_is_equalothen

frozen cloned like Current
-- New object equal to current object
-- (relies oncopy)
ensure
equal:is_equal(Resul}

frozen default_clonedlike Current
-- New object equal to current object
-- (relies ondefault_copy
ensure
equal:default_is_equalResul}
The original versions ofopyandclonedin ANY have the same
effect agdefault_copyanddefault_clonedespectively.

562 COMPARING AND DUPLICATING OBJECTS §21.3

Proceduresopyis called in the fornk.copy(y) and overrides the fields of

the object attached ta Functionclonedis called as<.clonedand returns

a new object, a “clone” of the object attachedktd'hese features can be
adapted to a specific notion of copying adapted to any class, as long as they
produce a result equal to the source, in the sense of the — also redefinable
— functionis_equal You only have to redefineopy sincecloneditself is
frozen, with the guarantee that it will follow any redefined versionagy,

the semantics aflonedis to create a new object and appbpyto it.

In contrastdefault_copyanddefault_clonedwhich produce field-by-
field identical copies of an object, are frozen and hence always yield the
original semantics as definedAmNY

All these features argecret in their original classANY The reason is
that exporting copying and cloning may violate the intended semantics of
a class, and concretely its invariant. For example the correctness of a class
may rely on an invariant property such as

some_circumstandenplies (some_attributes Curreni

stating that undersome_circumstancéa boolean property) the field
corresponding tcsome_attributeis cyclic (refers to the current object
itself). Copying or cloning an object will usually not preserve such a
property. The class should then definitely not expefault copyand
default_clonedand should not expodopyandclonedunless it redefines

copy in accordance with this invariant; such redefinition may not be
possible or desirable. Because these features are secret by default, software
authors must decide, class by class, whether to re-export them.

Deep equality, copying and cloning

The featureis_deep_equabf classANY makes it possible to
compare object structures recursively; the featurdsep copy
and deep_clonedduplicate an object structure recursively.
Detailed descriptions are part of tReKS specification.

The default versions of the earlier features -default_is_equal
default_copydefault_clonednd the original versions of their natefault
variants — are “shallow”: they compare or copy only one source object.
Thedeepversion recursively compare or copy entire object structures.

§21.3 EQUALITY EXPRESSIONS 563

Effect of a copy operation

For the copy operation to succeed, both the source and the target must be
attached to objects. (Cloning, however, will work for void sources or targets.)

Pre-existing structure

oy
base - value 8.1 Result of
item "ABC" copying an
: object
previous A (TD) (TE)
count 76 }/
(TO) value 9.6

(TB)

Effect on target object
of copy operationx.copy(y)

OX
base

item "ABC'

previous 4
count 76%

(TO)

The figure illustrates the effect of a copy operation witks target angl as
source. Ifcopyhas not been redefined for the generating class of the object
OX attached tx, you may obtain this effect through the call

| xcopy(y) |

Before the cally was attached to the object labeled Qi¥yas attached to
the object labeled OX. What the fields of OX contained then does not
matter (since the call overwrites them), but this object must exist. The call
copies every field of OY onto the corresponding field of OX.

Since the argument @pyis declared of typdike Current, the type of
QY conforms to the type of OX, but actually a precondition aufpy
requires more: the types of the two objects must be identical, so that their
fields will be in one-to-one correspondence. On the figure, the type of OX
and OY is called C.

564 COMPARING AND DUPLICATING OBJECTS §21.3

The fields of OY include expanded values, such as the intagert of
value76, and references such baseandprevious In both cases, the copy
operation will simply copy the field. For reference fields, no attempt is
made to duplicate the data structure recursively: as a resuliatbefields
of both OX and OY will, after the call, be attached to the same object of
type TD. Applying copyto any object containing reference fields will,
indeed, always cause sharing of referentat®r in this chapter we will - See2l.5, pae 571

. . . below about deep copy

encounter recursive copy routinedeep_copyand deep_clong which ;.4 clone
duplicate an entire object structure, following references recursively.

--- FIX --- As noted,copy requires a non-void source and target. For the
target, this is simply part of the general requiremen€taifi instructions: in
the above example, like the target of any other call, must be non-void
under penalty of raising an exception. For the source, the requirement is
expressed by the precondition obpy A void source will trigger an
exception if the execution monitors preconditions.

Specification of default copy

We can now examine the exact specificatiosaby First, the interface of
the procedure’s version in cla&slY

copy frozen identical_copy(other. like Curren) faniﬁgn'g; :btoutethe

-- Copy fields obtheronto corresponding fields usedmthepre;gﬁdmon
-- of current object. and21.6, pge 572
. about the function

require)) is_equalused in the
other_not_voidother/= Void postcondition
type identity same_typ¢other)

ensure

equatl is_equal(other)

Setting the style for other duplication and comparison routioepy has

two versions: one redefinable, the other (whose name begins - Chaptersdiscussed
. . frozen features
identical) frozen.

The second precondition clause uses functiame_typ®ef ANY For x o SSSZfS?HgE?E%ST-
andy attached to objects OX and O¥,same_typéy) has value true if an(proPERTIES”, 35.4,

only if the type of OX has exactly the same type as OY. page 919

§21.3 EQUALITY EXPRESSIONS 565

=== Here now is the precise effect of the standard version. Assumghas
‘ not been redefined and consider a xatbpy(y).

1 « As with any call, the target must benon-wid (if it were void the call
would cause an exception); the first precondition clauseopfy states
thaty must also be non-void. Let OX and OY be the attached objects at
the time of the call.

2 * The preconditiorsame_typaequires that OX and OY have the same
type; letT be that type.

3e«If Tis a basic type BEOOLEAN CHARACTERINTEGER REAL or
POINTER, the effect of the call is to copy the value of OY onto OX.

4 «1f OX and QY are special objects (sequences of values used to rep Special objects are not
strings or arrays), it is the implementation’s responsibility to ensuregg]?t\f\fg :tcecxeésé%egtg
WheneV(_ar such a s_ituation arises —as a result_ of copying other ol,ye 408 0
— the size of OX is at least as large as the size of QY. Then the can

copies the value of OY onto OX.

L. . With repeated inherit-

5 «In the remaining cases OX and OY are objects made of zero or ance an attribute of TX
fields, and the second precondition clausther _same_typamplies may yield two fields in
that the types of OX and OY are identical, so that for every field of GXca1¢ & o 434

there is a field of the same type in OY. Then the call copies onto &determines which one is

field of OX the corresponding field of OY. thefield"corresponding
to the relevant OX field

y As a consequence of the preconditaiher_same_typgou cannotuseacopy - “CONVERSIONS”
- operation to perform aonversion; a callyour_real.copy(your_integey 22.6, pae 583
is incorrect.

Tuning copy semantics

Any class may redefineopyto provide a copying operation consistent with
the notion of object equality that has been deemed appropriate for the class.

) Copy and equality are indeed intricately connected: the postcondition of

*="._ copy given on the previous page, states that the copy must make the target

object equal to the source in the sense of fundorqua) another feature

of ANYcovered in detailater in this chapter. Clearly, if you redefine eith "REDECLARATION

AND ASSERTIONS”,

one ofcopyandis_equa] you must redefine the other as well, to mainti;p 17 pge 577
consistent semantics for copying and equality according to

postcondition redefinition rules.

566

COMPARING AND DUPLICATING OBJECTS §21.3

Redefinitions ofcopyandis_equalare of two kinds, going in reverse
directions: one makes the semantics more “shallow” and the other makes it

meTHon] MOre “deep”:
L i .

» Sometimes you want to loosen the condition under which two instances
of a class are considered equal, by ignoring some fields. Then copy can
be redefined to copy only the relevant fields.

* You may instead want copy and equality to involve not only the original
objects but also others to which they contain references.

In some cases you might want both: ignore some fields of the original objects,
but involve some other objects as well.

Many classes of the Kernel Library and EiffelBase provide examples of the
second kind, as they describe objects which are just headers for complex
structures; copy and equality will then involve complete structures, not just
the headers. For example the semantics of clRRRAYsuggests an
implementation as illustrated:

Arraydescriptor
“ ’—‘ and array
Array elements I
count elements
area \—__> (See chaptes6.)

e i |

The array object on the left is a header containing some gelArays, strings and the
information such as the number of elementsynt and a referencareato i!lpp‘)”'”g Kernel

. ibrary classes are cow-
the special object containing the array elements (which are referencered in chaptess and
the figure, but could be expanded values, for example of basic types)andLo.
defaultcopywould only copy theARRAYobject; the procedureopy as
redefined in clas&\RRAYalso duplicates the special object containing the
array elements. The same scheme applies to SaBING the version of
copyin list classes such 4NKED_LISTandARRAYED_LISTopies not

only the list headers but the list cells themselves.

The copy algorithm stops there, however: it doesn’t recursively duplicate the
actual contents of the list. It's the same for arrays: in the above figure,
rb.copy(ra) will copy the special object shown under “Array elements”, but

not the objects to which its references are attached. For fully recursive

C C . “DEEP COPYING
duplication, you can usgeep_copypresentedater in this chapter. ANDCLONING', 215,

Part of the reason for redefininiegpyis indeed that sometimes the defaP2e 571
version — available aslentical_copy— doesn’t duplicate enough, while
deep_copyuplicates too much. By redefinirggpyyou can prescribe the
exact depth you want — in accordance with your desired notion of equality,
expressed by a redefinitionisf equal— for habitual copy operations.

§21.4 CLONING AN OBJECT 567

21.4 CLONING AN OBJECT

Instead of copying an object, you can clone it; this creates a new object
rather than updating the fields of an existing object. In cks¥ feature
cloneis a function, so a call of the form

‘ clone(y)

is syntactically an expression; evaluating it will return a new object, which
is a copy of the object attachedytd any. If y is void, the result is void.

Using cloning

The most obvious use ofoneis in an assignment:

‘ x := clone(y)

where the type of must be a descendant of the typexoThefigure used ~ Page563
to illustratex.copy(y) also describes the effect of this assignment; only r
the object OX represents a new object created by the assignment.

Another use oftloneis to pass a fresh copy of an existing object as
argument to a call, as in

some_routing..., clone(y), ...)

Although closely related, copy and clone differ in three respects:

C1 «Copy modifies an existing object, whereas clone creates a new object.
In the above assignment, any earlier attachment betweserd some
object is lost.

C2 «For copy to work, the target must be non-void; this is expressed
syntactically by the nature afopy a procedure imPANY In contrast,
cloneis a function and does not by itself have a target; it simply
produces a result. When used as part of an assignment of taeget
above, it does not care whetlxgs void or attached.

C3 «Finally, becauselonedoes not presuppose an existing target object, it
can handle a void source. The result in this case is simply a void
reference.

: . — “DEEP COPYING
Like copy clone does not attempt to follow references for fields 5o onng. 215,

reference types, but simply copies the fields; a "deep" versiamitable. page 571

As with a Creationinstruction, a call tclonewill fail, triggering an _ .-reation
exception (the same one, of typ®® MORE_MEMORYif it attempts to sSEMANTICS”, 20.12,
create a new object and no memory is available for it. bage 548

568 COMPARING AND DUPLICATING OBJECTS §21.4

Twin

The description otloneindicates (propert3 above) thatoidis a valid
argument, for which the function will returkioid as its result. This is
convenient in the vast majority of cases. If you do know that the source of
the clone operation is not void, you may, insteadafe(y), use

yatwin
-- Defined only ify /= Void; then has same value @sne(y)

The only advantage dfvin over clone— apart from being a little more
concise — is that its implementation doesn’t need to testdd, so it will
normally be slightly faster. But you should make sure to resemie for
cases in which the target is known for sure to be non-void, since a void
target would cause a run-time exception. If the case may arise|ase
which handles void references gracefully.

Whenever one of the routines of this chapter handles a certain type of value
and it is possible to define a reasonable default response for cases in which
that value is void, the routine follows the exampleaidne and treats that
value as an argument, not as the target of calls.

For a non-voidy, clone (y) andy.twin, both applicable, are guaranteed
always to yield the same value, thanks to the rules seen next.

Specification of default cloning

Here are the interfaces of functioloneand itstwin variant:
The function ‘equal’

frozen clone(other. ANY): like other used in the postcondi-
--Void if othervoid; otherwise, new object equal to tion is derived from
-- object attached tother is_equal’ See below
ensure

equal equal(Resulf other)
preserves_voidother= Void) implies (Result=Void)
same_as_twin(other/= Void) implies

equal(Resulf other twin)

frozen twin: like Current
-- New object equal to current object
ensure
not_void Result= Void
equat Resultis_equal(Curren)
same_as_clonédentical (Resulf clone(Currend)

Why are clone and twin frozen? The reason is not that their effectAfrozenroutine mapf

immutable, but that you can change that effect without redefining\‘l’v‘;]‘i‘éf]eaﬁg”ngot‘#g‘ze;t

functions. To_ guarantee compatible semantics for cloning and COPwill then be affected by
clone and twin are defined in terms ofopy and so will follow any their redefinitions

redefinition ofcopy

§21.4 CLONING AN OBJECT 569

=g More precisely, here is the definition of the semantics of aotatie(y):
‘ 1 «If the value ofy is void, the call returns a void value.

2 «If the value ofy is attached to an object QY, the call returns a newly
created object of the same type as QY, initialized by applygiogy to
that object with OY as source.

The second case also defines the semanticgtefin. (For void y the
general rules on routine call imply that the call will trigger an exception.)

In exactly the same way, function functiequal used in the postcondition _, «opJECT EQUAL-
of clone will automatically follow any redefinition ofs_equa) used in the ITY”, 21.6, pae 572
postcondition otopy As we’'ll see in the discussion of equaliggualis to

is_equallike cloneto twin: it accepts a void target, but for non-void target

returns the same result.

To guarantee the original semantics of field-by-field duplication and ignore
any redefinition ofopy you may use functiordentical_clonewhich has

the same signature agone and is defined in terms dfientical_copy
exactly axloneis defined frontopy

In principle, clone is superfluous: you could in most cases use a
Creationand copy instead, replacing
I createy ...
y=copy(x)

In practice, however, several reasons justify a sepal@tefacility:

* It's more concise to uselone than a creation followed by a copy,
particularly in an expression, or in an argument to a routine call
r (..., clone(x), ...) where the other form would be much more verbose,
requiring the declaration of a local varialyland two extra instructions.

« If the associated class has two or more creation procedufg®adion
instruction forces you to choose one, although the choice is irrelevant.

» The creation procedure may do some extra work, justified when you
create an object from scratch, but unneeded or harmful when all you
need is a duplicate of an existing object.

* A Creationforces the client to specify the exact type of the new object,
whereas a call talong as emphasized next, may dynamically produce
an object of one among several possible types, depending on the type of
: o : : .~ “CREATING
the source, selected at run time. This is especially interesting si\nces oF For-
Formal_generic_nantypes, sincelonemay be applicablevenwhen vaL GENERICS”,

plain creation isn't. 20.9, paje 535

570

COMPARING AND DUPLICATING OBJECTS §21.4

Cloning, types and factories

=

k

—

If xis an expression of typg and its value is not void, the generating tyThe generating type of
of the object created by a call tbone(X) is not necessarily: it is the type an object is the type of
U of the object to whichx is attached.U will always (ignoring the}’xgig?lge';:ef;%a .
conversion case) conform but may be based on a proper descendags

In fact T might be deferred, in which case there are no objects of generauny

typeT.

Assumefigl andfig2 declared of the deferred typdGURE, with figl
attached, at some point during execution, to an instance of an effective
descendant dfFIGURE, such a£IRCLE Executing

‘ fig2 := clone(fig)

will attachfig2 to anothelCIRCLE

In such cases you don’'t need to know the exact dynamic type of the
source (herdéigl) when writing the instruction; because of polymorphism,
that type may be different for successive executions of the same instruction.

An earlier discussion introduced an important application of th - “Single choiceand
properties: how to implementfactory of objects through theclonable gi;;?;}’ﬁ;y‘iﬁﬁ"gg%e
array technique. The idea was simply to obtain a fresh instance of a tyform on page&30.

selected from a set of variants by a certaide by writing

x := clone(factory @ codg

where thdactoryis an array automatically created on first use — thanks to
the beauties of once functions and creation expressions — through a simple
function, worth showing again:

=
i

factory. ARRAY[FIGURE| « Firstshown on page
530 The example
once . .) involves a set of figure
Resultmake(Low_id, High_id) types

-- Create and enter an instance of each desired kind:
Result put(create{ SEGMENT.make(...), Segment_id
Result put(create{ TRIANGLE .makg...), Triangle_id
... Similarly for each variant..
end

.1— “Single choiceand
This provide a simple and easily extendible scheme, compatible witle, 0 vopiects’ page

Single Choice principle and much preferable to the first form shown, ws29; original form[1],
used explicit discrimination through\édulti_branch pages2.

§21.5 DEEP COPYING AND CLONING 571

21.5 DEEP COPYING AND CLONING

The defaultclone and copy are, as notedshallow they do not follow
references, just copy fields of the source object as they appeatr.

You may in some cases need deep versions of these operations, which
will recursively duplicate an entire structure. The routidegp_clonand
deep_copyof classANY with the same signhatures afone and copy
respectively, fulfill this need. They will replicate an entire data structure,
creating as many new objects as needed.

If we take as an illustration the original exampiged to present shallov.: pagess3
copying, here is the result of a deep clone on the same structure:

Pre-existing structure Result of deep
oY cloning
base -—> value 81
item "ABC"
previous A
count 76 ;‘A
(TC)

Your usual supplier of
memory upgrades and

base —> discount disks will be
: " " happy to provide your
'tem_ ABC staff at no chargewith
previous a full training session
onthe use aleep_copy
count 76 % anddeep_clone
(TO)

/T

Unlike their shallow counterpartglone and copy deep_cloneand
deep_copyannot cause sharing of references between source and target.

The deep versions are frozen. Their postconditions invibbep_equal _, “DEep EQuAL-
studiedbelow. ITY”, 21.7, pme 574

572

COMPARING AND DUPLICATING OBJECTS §21.6

21.6 OBJECT EQUALITY

---- OBSOLETE SECTION, REWRITE WITH ~ ----- The discussion of
cloning and copying transposes readily to the problem of comparing
objects for equality. To determine if the objects attached tmdy are
equal, you may use the expression

equal(x, y)

Here is the result of applying the defaadfualto two values<andy. For conveniencehe
shortform ofthe function

equalappearsafterthis
1 «If any one ofx andy is void, the result is true if the other is also vosemantic specification
and false otherwise. Cas@sto 5 assume that both arguments
attached to respective objects OX and OY.

2 « If the types of OX and OY are not identical, the result is false. For cases
3to5 letT be their common type.

3 +If Tis a basic type, the result is true if and only if OX and QY are - %MFLSL
same value page o

4 « If OX and OY arespecialobjects (sequences of values used to repre?_pectilf:\l ObjectS_béllretnot
strings or arrays), the resultis true if and only if the sequences ha\ggfaretexissedo.2
same length, and every field in one is identical to the field at the spage 498

position in the other.

5 « Otherwise OX and QY are standard complex objects, and conformance
of TYto TXimplies that for every field of OX there is a corresponding
field in QY. Then the result is true if and only if every reference field of
OX is attached to the same object as the corresponding field in QY, and
every subobject field of OX is (recursively) equal to the corresponding
field in OY.

This definition of equals semantics closely parallels the semantic
definition of copy, the five cases in both specifications match each other.
The two are indeed designed to be compatible since, as noted, a call of the
form x.copy(y) must ensure the postconditiequal(x, V).

Like copying, equality does not take conversions into account. The
expressiorequal(0.0, 0) — with a real argument and an an integer argument
— will return false. To get different behavior you must take care of the
conversion yourselves.

§21.6 OBJECT EQUALITY

573

The rejection of any conversions is part of a more general decision reflected
in clause2 above: equality may only hold for objects of the exact same type.
You may be interested to know that the policy was more lax in early versions
of Eiffel (as reflected in the first edition of this book): it specified the value
true forequal(x, y) if the type ofy conforms to the type of and two objects
have equal fields for the attributesxcs type, even though OY may have more
fields. This policy was more flexible, and did not cause any major problems;
it went well, in particular, with the use dé_equalas the basic equality
operation, explained next. It was abandoned, however, when critics pointed
out that it madequala non-symmetric property — it could resultequal(x,

y) being true whileequal(x, y) is not — whereas equality, in mathematics, is
always symmetric. Hence the change to a more restrictive view of equality.

The short form okqualhas not yet been given because in its postcondition
it mentions the next function of interest, equal Here it is:

frozen equal(some ANY, other. like somg: BOOLEAN
-- Are someandother either both void or attached
-- to equal objects?
ensure

definition Result= (some= Void and other=Void) or
(some/= Void and other/= Voidand then
someis_equal(other))

symmetric Result= equal(some othe)

Functionis_equa] for its part, has a frozen synonyis) identical and the
interface form

is_equal(other. like Curren): BOOLEAN
-- Is otherattached to an object equal to current object?
ensure
only_if _not_voidResultimplies other/=Void
same_typeResulimplies same_typéother)
symmetric Result= otheris_equal(Curreni
consistentis_identical(other) implies Result

To change the semantics of equality in a particular class, just redefegual
you cannot directly redefinequal— as you can see above, it's frozen — but
its postcondition guarantees ttefualwill follow automatically. An obvious
way to implemengqualis indeed to rely ois_equal

if some= Voidthen

Result= (other= Void)
else

Result= someis_equal(other
end

574 COMPARING AND DUPLICATING OBJECTS §21.7

Functionis_equalhas the same relationship ¢gualastwin to clone it

works on a target and an argument as.is_equal(y), whereequaluses
two arguments as iaqual(x, y). For non-voidx, the two will always yield
the same result, as defined above, but @gjyalaccepts a void; is_equal
requires a non-void target. So it is the more basic of the twoehualis

more general.

Use equal (x, y) when there is any chance thatcould be void.
Otherwise you can still usequalexcept if you are concerned about the
small overhead of testing fdfoid. Functionis_equalis the one to redefine
to introduce a specific semantics of equality for instances of a certain class.
As noted, this almost always implies an associated redefinitioopgf

Earlier on, we encountered library classes ARRAY STRING list
implementations — that redefimepyto duplicate not just the header of an
object structure but some of its contents too. These same classes redefine
is_equalto compare the contents and not just the header.

Like copy and clone functions equal and is_equal have frozen
synonyms: identical and is_identical both guaranteeing the original
semantics of exact field-by-field comparison.

21.7 DEEP EQUALITY

Like the shallow forms of copy and clone, the just explored shallow form
of equality testing has a deep counterpafhy.

frozen deep_equalsome ANY, other. like som¢g: BOOLEAN
-- Are someandother either both void
-- or attached to isomorphic object structures?

What exactly are “ isomorphic structures”? Cleaidigep_equakhould

yield true if one of the arguments results fromeep_clon®r deep_copy
applied to the other, asandy on the figure that illustrated deep_clone. But
we shouldn’t limit ourselves to this case, because it excludes any sharing
between the two object structures, as in the following figure below, where
we are entitled to expect thdgéep_equafx, y) will yield true.

§21.7 DEEP EQUALITY 575

oY A case of deep
base 1 value g 1e— equality
item "ABC"
previous - (TE)
count 76 %
(TC) value 9.6

buddy
OX T (TB)
base +—p left —

item "ABC" right
previous (TD)
count 76%

(TC)

=== Here is the definition of deep equality (yielding true for such cases). It is
‘ convenient to define the notion separately for references and for objects.

Two referenceg andy are deep-equal if and only if they are either both
void or attached to deep-equal objects.

Two objects OX and QY are deep-equal and only if they satisfy the
following four conditions:

1 +0OX and QY have the same exact type.

2 * The objects obtained by setting all the reference fields of OX and OY (if
any) to void references are equal.

3 « For every void reference field of OX, the corresponding field of OY is void.

4 « For every non-void reference field of OX, attached to an object PX, the
corresponding field of QY is attached to an object PY, and it is possible
(recursively) to show, under the assumption that OX is deep-equal to
QY, that PX is deep-equal to PY.

@ Condition]1 is the same as fequal we want the types to be identical.

I Conditions2 and3 express that every expanded or void field must be
equal to the field in the other object.

576

COMPARING AND DUPLICATING OBJECTS §21.7

Condition4 handles the non-void reference fields. It is a bit subtle, as
often when recursion is involved. The phrasing seems strange: why not just
state that in this case PX must recursively be deep-eqgbaPto

Yl Y2 Another case

item A item B’ of deep

;_ previous |-e———— previous equality
7.

next ——p next]
M (ﬂ%

X1 X2
X > ;
item A item ‘B’

| previous <—-previ0us
%A

next ——— - Next]
M (U%

The problem is that such a condition, although not wrong, would be
impossible to prove, or disprove, for any cyclic data structures. Consider
the situation picture above, which might be the result afep_clone
operation. How can we check that the objects labeled X1 and Y1 are deep-
equal — which they clearly should be?

Condition1 will raise no problem since all objects are of the same type
T. Condition2 is readily satisfied since the only non-reference fields in X1
and Y1, thatemfields, are equal. Condition 3 is also immediate since both
previoudfields are void. For condition 4, we must check recursively that the
objects X2 and Y2 are deep-equal.

Conditions2 and 3 again hold trivially, covering fieldgem and next
There remains to check conditidnin other words, that thpreviousfields
of X2 and Y2 are attached to deep-equal objects. But now you see the
problem: those attached objects are none other than X1 and Y1, and we are
back to square one.

§21.7 DEEP EQUALITY 577

The phrasing of conditior gets us out of this potentially endless
reasoning loop: when checking conditidmon the original objects X1 and
Y1, we only have to check that X2 and Y2 are deep-eaualer the
assumption that X1 and Y1 are themselves deep-equal. So here the
equality of thaétemandnextfields suffices to terminate the proof.

If you are looking at this with a programmer's rather than a
@ mathematician’s eyes, you will have understood this clause as meaning that
I in an abstract traversal algorithm designed to check deep-equality of
objects, you maynark every previously encountered object so as not to
explore it again, avoiding infinite looping.

If, on the other hand, you also master the theoretical backgroundon this theoretical per-

will have recognized the idea of self-conditional recursive proofSPectivesee the book
Introduction to the

technique whereby, to prove a propeRyyou must first prove a propertrneory of Program-
of the form “if R holds, therP holds” for some other property. This is ming Language”,
exactly the scheme used, mxiomatic specifications of programmin&articularlyitssection

. . . : 9.10.6 and the exam-
Ianguage semantics, to prove the correctness of a recursive routine. ple in 9109.

578 COMPARING AND DUPLICATING OBJECTS §21.7

	21 21 Comparing and duplicating objects
	21.1 OVERVIEW
	21.2 COPYING AN OBJECT
	21.3 EQUALITY EXPRESSIONS
	Object comparison features from ANY
	Copying and cloning features from ANY
	Deep equality, copying and cloning
	Effect of a copy operation
	Specification of default copy
	Tuning copy semantics

	21.4 CLONING AN OBJECT
	Using cloning
	Twin
	Specification of default cloning
	Cloning, types and factories

	21.5 DEEP COPYING AND CLONING
	21.6 OBJECT EQUALITY
	21.7 DEEP EQUALITY

