20

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Creating objects

20.1 OVERVIEW

METHON]
L L

The dynamic model, whose major properties were reviewed in the
preceding presentations, is highly flexible; your systems may create objects
and attach them to entities at will, according to the demands of their
execution. The following discussion explores the two principal
mechanisms for producing new objects: thesation_instructiorand its

less frequently encountered sister, @reation_expression

A closely related mechanism -eloning — exists for duplicating
objects. This will be studied separately, with the mechanism for copying
the contents of an object onto another.

The creation constructs offer considerable flexibility, allowing you to
rely on language-defined initialization mechanisms for all the instances of
a class, but also to override these defaults with your own conventions, to
define any number of alternative initialization procedures, and to let each
creation instruction provide specific values for the initialization. You can
even instantiate an entity declared of a generic type — a non-trivial
problem since, fox declared of types in a classC [G], we don’t know
what actual typ& denotes in any particular case, and how one creates and
initializes instances of that type.

In using all these facilities, you should never forget the methodological
rule governing creation, as expressed by the following principle.

Creation principle

Any execution of a creation operation must produce an object that
satisfies the invariant of iteenerating class.

516

CREATING OBJECTS §20.2

Such is the theoretical role of creation: to make sure that any object we
create starts its life in a state satisfying the corresponding invariant. The
various properties of creation, reviewed next, are designed to ensure this
principle.

20.2 FORMS OF CREATION: AN OVERVIEW

You may use aCreation_instructiorto produce a totally new object,
initialize its variable fields to preset values, and attach itYarableentity

ks called thetarget of the creation and named in the instruction.

- =

§

The examples which follow assume that the target is of a reference

_ ; ; ; e S€e20.8, pae 534
(non-expanded) type. As will be seéelan, the Creation_instructioris below about Creation

also applicable to expanded types, although with a less interesting €instructions applied to

. expanded types
Syntactically, aCreation_instructioralways begins with the keyworu P P

create followed by the target. Here are some examples:

createaccountl [1] The respective targets
create pointl.make_polal(1, Pi/ 4) [14] :Liﬁﬁﬁ?f%t Eeolintl
create{ SAVINGS ACCOUNTaccountl [15]

create{ SEGMENT figurel.make(pointl, point?2) [16]

With form [1] you create an object of the type declared &mcountl
initialize it to default values, and attach it taccountl The default
initialization is language-defined, although you can override it for any class.

With form [14] you create an object of the type declared faintl,
apply the standard default initialization, complement the initialization by
calling make_polar(a procedure of the class, designated as one of its
“creation procedures”) with the given arguments, and attach the object to
pointl

Cased15] and[16] are respectively similar to the first two, but specify
an explicit type, in braces, for the new object. S@dicountlis of type
ACCOUNTform[1] creates an instance of that class, but f¢t&] creates
an instance oBAVINGS ACCOUNThis requiresSAVINGS _ACCOUNT
to be a descendant 8CCOUNT Similarly, in form[16], SEGMENTmust
be a descendant of the type, §8@URE, declared fofigurel

--- ADD INTRO TO CREATION EXPRESSIONS ---

Since the run-time effect of a creation instruction or expression is
essentially the same, it is convenient to have a name covering both:

Creation operation
A creation operationis a creation instruction or expression.

§20.3 BASIC FORM OF CREATION INSTRUCTIONS 517

20.3 BASIC FORM OF CREATION INSTRUCTIONS

Even though examplg] shows the most concise variant, a better place to
start studying th€reation_instructiois the more general variant illustrated
by [14]: createx.creation_proceduré...). Its effect is, in order, to:

1 «Create a new object — a direct instance of the Typkx.
2 «Initialize all the variable fields of that object to default values.

3« Call creation_procedureon the object, with the arguments given, to
complete its initialization.

4 « Attachx to the object.

The default initialization values used in st2@re adapted to the type of
each field corresponding to a variable attribute: zero for numbers, false for

booleans, void for references and so on. The full rule will aggear - “Delfault Initializa-
tion rule”, page 508
This form of the instruction is only valid if the base cla&@®f X's type

T lists creation_procedurén its Creatorgart.

Such aCreatorspart is permitted only in an effective class (since- "PARTS OF A
makes no sense to create direct instances of a deferred dladsve seen SLASS TEXT. 4.7,
. . . page 119
that it comes towards the beginning of a class text — just béfeegures
but afterinheritance— and consists of at least ofeation_clausesach
beginning with the keywordreate followed by a list of zero or more
procedures of the class, as in

classC ... inherit

create
make execute...

feature

ond

where make execute... are procedures o€. For the moment we are- Youcanusemorethan
restricting ourselves to just on@reation_clausgthe vast majority ofonecreation _clause

. . i alsq each one may
cases). By including such a clause, the authoCa$pecifies that anyegyict clients’ creation

Creation_instructioproducing direct instances of the class must be of privileges See below

of the two forms E%&iﬂ_ﬁg ERE-
ITY", 20.7 page531for
4 createx.make(...) [T, 20.

createx.executd...)

which will initialize the new object by calling the specified creation
procedure — with actual arguments whose types and number match those
of the formal arguments declared for the procedure.

518

CREATING OBJECTS §20.3

-®

The two creation-related construcieatorsand Creation_instructionboth

use the same keywourdeate This makes things easier to remember than if you
had to learn two keywords. No confusion can result since the constructs appear
in completely different syntactic contexts.

Creation procedures (also known agohstructors from C++
terminology) serve to apply initializations beyond the default ones if these
do not suffice. For example, the author of a cl&3INT in a graphics
system may wish to offer a creation mechanism that not only allocates a
new object but also initializes its fields according to coordinates provided
by the client. Here is an outline of such a class:

classPOINTinherit E:;gxggsps'?gfé%mesa
TRIGONOMETRY NOMETRYoffering
create) functions such asos
make_polarmake_cartesian andsin. The equality in
feat A consistent_ attributes
eature -- ACCess should be changedtoan
ro, theta REAL approximate equality to
X, ¥: REAL account for numerical

recision issues
feature -- Element change P

make_polalr, t: REAL
-- Set to polar coordinatest.
do
ro:=r; theta:=t
reset_from_polar
end

make_cartesiafa, b: REAL
-- Set to cartesian coordinatggb.
do
X:=ay:=b
reset_from_cartesian
end

... Other exported features

feature {NONE -- Implementation
consistent_attribute BOOLEAN

-- Do polar and cartesian attributes
-- represent same point?

do
Result= (x =ro * cos(thetgd) and

(y=ro* sin(thetgd)
end

§20.4 OMITTING THE CREATION PROCEDURE 519

REETHON
L L

reset_from_polar
-- Update cartesian coordinates from polar ones.
do
X:=ro* cos(thetg; y:=ro* sin(thetg
ensure
consistent_attributes
end

reset_from_cartesian
-- Update polar coordinates from cartesian ones.
do

ensure
consistent_attributes
end

invariant
consistentconsistent_attributes
end

With this design, the author of clas¥INT provides clients with two
creation mechanisms: one initializes a point by its polar coordinates, the
other by its cartesian coordinates. ExamplesQykation_instruction
assuming thgpointlis aVariableentity of typePOINT, are

create pointl.make_polai(2, Pi/ 4) If PiandSqrt2are real

¢ intl. K tesi t2 Sart constants with the val-
create pointl.make_cartesia(Sqrt2 Sqrt? ues suggested by their
namesthese instruc-

Names of the forrmake_somethingre common practice for creatictionswillhave the same
procedures, although by no means required. When a class has ju®ft

creation procedure, or one more fundamental than the others, the

convention is to call it jusmake— although if the procedure has no

arguments your clients can ignore it altogether, if youdefault_createas

will now be seen.

20.4 OMITTING THE CREATION PROCEDURE

In some common cases you can avoid specifying a creation procedure. This
gives the simplest possible form Gfeation_instructionllustrated by the
first of our initial examples:

createx

520 CREATING OBJECTS §20.4

This form is applicable when the base cl&sef x's type doesiot have a
Creatorspart. This is particularly useful for simple classes which do not
need particularly flexible creation mechanisms, but just provide clients
with a standard way to create instances without providing any specific
information. These instances will all be initialized in the same way. A
simple example is

m note
an description "%[Binary trees with hodes containing
I information of type G%5
classBINARY_TREKG]... feature -- Access
item G

-- Node information
left, right: BINARY_TREKEG]
-- Left and right children
feature -- Element change
... Features to set node information and attach children
end

Here a creation instruction, fdut of type BINARY_TREHESOME_TYPE
will simply be

m ‘ create bt ‘

] and will set all the fields of the resulting object to their default values: void
references foreft and right, the default value of the actual generic
parameter (whatever it may be) ftem

§20.4 OMITTING THE CREATION PROCEDURE 521

This simple form of theCreation_instructioris appropriate when the
object-creating client is happy to rely on a standard initialization. But even
in this case you may need more fine-tuning, because the language-defined
default initializations might not suit all classes. Consider

I 4 I classEMPLOYEEinherit

PERSON
I feature -- Access
Unknown_marital_statysSingle Widowed Divorced
INTEGER -4!Ill REDO EXAMPLE!N!

marital_statusINTEGER

feature
... Other features..

invariant

meaningful_marital_status
marital_status>= Unknown_marital_statuand
marital_status<= Divorced
end

We require, as expressed by the invariant, thatital_statushave one of

the values listed. Because this attribute is of tiid€ EGER the universal _ o
default initializations would set it to zero -pot compatiblewith the ST°&17 PTeP!e
invariant! Remember th€reationprinciple it is creation’s responsibility ~

to ensure that every new object satisfies the invariant.

One solution is to use a creation procedure:

I 4 I classEMPLOYEEnherit

PERSON
I create
make
feature -- Initialization
make
-- Initialize by setting marital status to “Unknown”.
do
marital_status= Unknown_marital_status
end

feature -- Access

... Other features and invariant as befare
end

Since the class now hasCGxeatorgart, the abbreviated formreate emp

(for emp of type EMPLOYER is no longer valid: we are back to the
previous technique and must write

CREATING OBJECTS §20.4

createemp make

This approach works but is a bit tedious for the clients since they must
specify a creation procedure for no clear benefit: only one such procedure
is availablemake and it takes no argument.

In such a case — providing a standard initialization, but not necessarily the
universal language-defined one — you can still make the simple creation form
createx valid for your clients. Do not include @reatorgart; just redefine the
proceduredefault_createwhich, coming from clas&\NY is a feature of all
classes. This redefinition will specify your desired initializations.

This technique relies on a simple convention: any classithout a
Creatorgart is treated as if it had one of the form

create
default_create

(If default_creatdas been renamed, this should use the new name instead.)
In other words, a class which doesn't list any creation procedures is
considered to have just one — its versionefault_create

Correspondingly, a&reation_instructiorof the form create x, which
doesn't specify a creation procedure, is treated as a shorthand for

createx.default_create

for x of a type based of (again with the understanding thatdéfault_
createhas been renamed, this unfolded form uses the new name).

With this technique we can adapt cld&SSIPLOYEEso that its clients
can create instances by writing just

k

createemp

with no creation procedure. The new form of the class is almost the same
as the last one seen, but instead of a specific creation procedieve
don’t include anyCreatorspart and just redefirdefault_create

§20.4 OMITTING THE CREATION PROCEDURE

523

classEMPLOYEEnherit
PERSON

redefinedefault_createend

feature -- Initialization

default_create
-- Initialize by setting marital status to “Unknown”.
do
marital_status= Unknown_marital_status
end

feature -- Access
... Other features and invariant as befare

end

Because such a class redeclares a fealefigult_createvhich it inherits in
non-deferred form, it must stateedefine default_createin some
Inheritancepart. HereEMPLOYEEnherits fromPERSONSo we just stick

this clause into the correspondifitheritancepart. If the class didn’'t have
anylnheritancepart — meaning that it only has an implicit parelY—

we would have to use the standard idiom enabling such a class to redefine
a feature coming fromANY: include aninheritancepart makingANY an
explicit rather than implicit parent. This would give:

classEMPLOYEEnherit
-- Here we mak@&NYan explicit parent:
ANY
redefinedefault_createend
feature -- Initialization
... Feature clauses and invariant as befare
end

Let's review the two schemes studied in the previous section and this one:

1 «To provide clients with specific creation procedures, which may take
arguments, include at the beginning of the clas¥@atorspart, of the
form createcpl, cp2 ... , where thecp; are procedures of the class. A
Creation_instructiorin this case must be of the foromreate x.cp(...)
wherecpis one of the specifietly.

2 » To make the simplified formreate x valid, you do not need to include
any Creatorgart: this form is equivalent to the previous case using for
cp the proceduredefault_create and an absentCreators part is
equivalent to one that lists only that procedure.

524 CREATING OBJECTS §20.4

At first these two cases may seem incompatible, but if you examine them
more closely you will realize they are not. The rule is simply that the
simplified formcreate x is valid if and only ifdefault_createin its local
version, is one of the creation procedures of the class. You can achieve this
property by not listing any creation procedures at all: this is equivalent to
listing default_createnly. But you can also haveGreatorgart, provided

it lists default_createpossibly among other procedures. This observation
yields a third case, combining the previous two:

3 « To make both forms of creation instruction valid — the form with an
explicit procedurecreate x.cp; (...) for somecp,, and the procedure-
less form,create x — simply include aCreatorgart that lists both the
desiredcp, and the class’s version défault_create

Here is an example of this last scheme, a variation @agdier class text:. see the original ver-

i &18
| d | classPOINTinherit sion on pagé 1€
= TRIGONOMETRY
] create

make_polarmake_cartesiardefault_create

feature
... Features as before

invariant
consistentconsistent_attributes
end

Then all of the following four creation instructions are valid:

(1]

createyour_point make_polar2, Pi/4)
(2]

createyour_point make_cartesia(Sqrt2 Sqrt2
3]

createyour_pointdefault_create
[4]

createyour_point

Forms3 and4 are exactly equivalent, so there is usually little reason to use
3 except if you insist on including the creation procedure for clarity.

Note that includingdefault_createamong the creation procedureZ creation principle
hence permittingl, makes sense only because the default initializatipage515
pripor| ensure the invariantonsistent_attributgeswvhich states that cartesian ana
polar coordinates agree — true if they are all zero, the default. When
thinking about creation, always keep in mind @reation principle

§20.4 OMITTING THE CREATION PROCEDURE 525

As a variation on this example, assume that you write a clazat
inherits from a parernB a procedureetwithout arguments, and waftto
offer its clients the procedure-less forreate x so that it will call setfor
initialization. A simple technique is:

| 4 | classC inherit
Tq B

rename
default_createasdiscarded
end
ANY
rename
default_createasset
undefine
set
select
set
end

feature

end

This uses goin to merge two inherited features, undefinotgfault_create . se¢THE JOIN
along one of the branches so that its joined featgecan override itsSMECHANISM”,
previous implementation. Corresponding creation instructions maj%‘ﬁgﬁ(3
written create x.

We can now summarize the basic rule for validity of a creation
instruction: thanstruction’s creation procedumust be one of thelass’s
creation procedureswith the understanding that:

1 < Every creation instruction uses a creation procedure — either explicit,
asincreatex.cp(...), orimplicit, as increatex, where the instruction’s
creation procedure efault_create

2 «Every class lists a set of creation procedures — either explicit, if the
class has &reatorgart, or implicitly taken to belefault_createn the
absence of &reatorsart.

This also suggests, as a special case, what you should do if for some reason
you donot want clients of a class to create any direct instances of it. Simply
include aCreatorgpart, but make it empty:

classNOT_INSTANTIABLEreate WARNING ot the rec-
-- Nothing at all listed here! ommended stylsee next
feature

=

I

—

end

526

CREATING OBJECTS §20.5

BEETHON)
[L

This falls under the “explicit” case of observatidrabove, so that under
observatior2 a creation instruction could only be valid if it were of the
form createx.cp (...) wherecp is a creation procedure of the class; but
there is no suchp since theCreatorgart, although present, is empty.

The style guideline in such a case is actually to write
classNOT_INSTANTIABLEcreate{ NONE

feature

end

which has exactly the same effect but emphasizes the creation b “fESTRICTING
listing NONEas the single creation (rather, non-creation) client, baseCREAIONAAILABIL:
conventions, seepelow, for restricting creation availability. Y, 20.7. page 531

Another way to make a class non-instantiable is to declare it as deferred. But
you might want to prohibit instantiation of a class even if it is effective. Then
you can use the technique just seen.

20.5 CREATORS AND INHERITANCE

7

(This section is a discussion of tladsenceof dependency between two
language concepts, so it introduces no new mechanism; it is a “comment”
and “methodology” section meant to dispel a possible confusion, which
might in particular follow from experience with other languages.)

You may have been wondering what effect the inheritance structure has
on the creation procedures of a class. The short answeo isffect Each
class is free to choose the procedures it wants to offer to its clients for
creation, regardless of its parents’ choices. The creation mechanism does
of course take full advantage of inheritance: creation procedures may be
obtained from parents and adapted through the usual inheritance
mechanisms of redefinition, renaming, effecting and so on. And in some
cases a class’s choice of creation procedures is directly connected to its
parents’ choices:

* A class may list as creation procedures (inQieatorspart) some or
even all of a parent’s own creation procedures.

 Aredefined creation procedure may need, as part of its execution, to call
the parent’s version, usually through theecursomechanism.

But all this is optional, not required, and neither theoretical analysis nor
analysis of practical examples suggests an obligatory connection. Counter-
examples indeed abound. Just think of a cR&4.YGON where a typical
creation procedure will take a list of vertices; for its RRECTANGLEhis

is most likely inappropriate, as we might use a center, an orientation and
two side lengths; then for a grandchiBiQUAREwe will again need
something different since we can dispense with one of these lengths.

§20.6 USING AN EXPLICIT TYPE 527

So the set of creation procedures of a class is entirely determined by its
Creatorsclause (or lack thereof, as we have seen), without interference
from the parents’ own clauses. This yields a simple semantics and avoids
confusion. Based on the needs of each class, you decide what creation
privileges you award tgour clients; you may reuse the parents’ creation
procedures, unchanged or extended, but only if you find them useful for
your own needs.

Eiffel's policy on relatingcreation statugo inheritance is similar to its. “Adapting the &port
policy onrelatingexportstatusto inheritance. There too every class is frstalus of inherited fea-
: . - - . tures 200
to make its own decisions for inherited features, regardless of its pa
choices. The only difference is the default: inherited features retain
original export status unless the heir explicitly overrides it (throuljlea_
exportsclause); in contrast, a creation procedure loses its creation status
unless the heir explicitly reaffirms it (by listing the procedure in its own
Creatorgpart). This difference follows from an analysis of what designers
most commonly need, in each case, in the practice of building systems.

20.6 USING AN EXPLICIT TYPE

In the variants seen so far, the type of the object created by a creation
instructioncreatex ... , with or without an explicit creation procedure, is
the typeT declared forx, the instruction’s target. You may want to use
another typé/ instead; this will be permitted ¥ conforms toT. The form

of the instruction in this case is one of

create{V} x.cp(..)
create{V} x

with the first one valid only ifcp is a creation procedure &f and the
second only ifdefault_creates a creation procedure &f (in particular if
V's base class has fireatorsart).

Specifying the creation type

Assume clasSEGMENTIis a descendant ¢fIGURE, and has a creation
= proceduremake with two formal arguments of typBOINT representing
the end points of a segment. The following will be valid:

[1]

fig: FIGURE
pointl, pointz POINT

create{ SEGMENT fig. make(pointl, point?

528

CREATING OBJECTS §20.6

and will have exactly the same effectfapas

(2]

fig: FIGURE seg SEGMENT
pointl, point2 POINT

create seg make(point, point?
fig := seg

where the last instruction is a polymorphic assignment, permitted by-"The Assignmentrule

Assignment rulesincesegconforms tdig. ;‘r?ggglémar; g]rﬁ;yggu(r);e

The explicitly typed formL brings nothing fundamentally new; itis Uit torset onpagias.

an abbreviation for the implicitly typed forrd, avoiding the need tc
introduce intermediate entities suchsag

As a consequence of this new form, we aefine thecreation type of a - The formal definition
creation instruction — the type of the object that it will create: in the previouswillappearon pagé43
form createx ... , the creation type is the type declared for the targen

the explicit formcreate{V} x ... , the creation type ¥

Choosing between types

To become really useful the example should include more than one case:
after all, if all you ever want to obtain is an instancesefGMENTthen you

do not needfig; seg suffices. Things become more interesting with a
scheme of the following kind, using a local variatideof type FIGURE

B
inspect
icon_selected by user
when Segment_icothen

create{ SEGMENT fig.make(pointl, point2
when Triangle_iconthen

create{ TRIANGLE fig.make(pointl, point2 point3
when Circle_iconthen

create{ CIRCLE fig.make(pointl, radiug
when ...

end

Here SEGMENTTRIANGLE CIRCLE ... are descendants 61GURE,

all with specific creation procedures, aBggment_icgnTriangle_icon
Circle_icon ... are integer constants with different values. Depending on
the icon selected by an interactive user, the above instruction creates an
object of the appropriate type, and attaditgto it.

§20.6 USING AN EXPLICIT TYPE 529

Were the explicitly typed form of the creation instruction not available,
you could still use the equivalence illustrated hyrather unpleasant here
because you need to declare a temporary ergéy {ri, circ, ...) for each
of the possible icon types.

Creation and deferred classes

g

Schemes helps understand the role déferred classes and typesis-a- — Althoughaclass may
vis creation. A class must be declareddaserred if it has at least onePe declaredadeferred
def df . q din th | itself inherited f even without deferred
eferred feature (introduce in the class itself, or inherited from & pareatyresthe common
and not effected — made effective — in the class). A deferred type iscase is for a deferred
based on a deferred class. In our example we may asBUGIgRE to be ﬁ'}"z‘)?g aoepei‘r’: dofgztﬂfres
deferred, but the concrete descendants used in the creation instructitseeo.11. pae 266

SEGMENTand so one — to be effective. The rule is that:

» Weneverpermit a creation instruction to use a deferred type as creasiiset instance” is in
type. As noted in the last chapter, creat@gectinstances of a deferrefactnotevendefined for
type would be asking for trouble, since clients could then ﬂﬁgﬁ%gggﬁﬁt)
unimplemented operations on these instances. The creation rules yaLUES”. 11.5. pge
chapter exclude this possibility; wittig of type FIGURE, we are not321

permitted to writecreatefig ... , with or without a creation procedure

* We may, however, uség as target of a creation instruction such as
create {SEGMENT fig.make (pointl, point2 or any of the others
above, even though the typefi] is deferred: that'’s fine as long as the
creation type of the instruction is explicit and effective, IKREGMENT
here. The instruction will create a direct instance of that type, so
everything is in order. Attaching this object to an entityof a deferred
type is also in order: it's simply an application of polymorphism.

In summary: we cannot creabdjects of deferred types, but we can have
entities of such types, which will become attached to instances of
conforming effective types.

Single choice and factory objects

METHON]
L i]

Beyond its applicability to polymorphic entities of deferred types, what
makes schem@ especially interesting is its connection wittynamic
binding: after executing the abowdulti_branchinstruction, you normally
should never have to discriminate again on the typégfinstead, to apply

an operation with different variants for the figures involved, you should use
a call of the form

‘ fig.display ‘

530

CREATING OBJECTS §20.6

where the operation, herdisplay is redefined in various ways in
descendants ofFIGURE This will select the appropriate version
depending on the exact type of the object to wHiglis attached, as a result
of the variable-type creation achieveddy

This example illustrates an important concept of Eiffel softwsggaisaz.6pagesss
development: th&ingle Choice principle The principle states that in on explicit discrimina-
software system that handles a number of variants of the same notiong%':i ';?'t;‘érstgel;g:fg:ze .
as the figure types in a graphics system) any exhaustive knowledge «gpject-Oriented Soft-
set of possible variants should be confined to st componentof the ware Constructioh in
system. This is essential to prevent future additions and modifications particular the Open-

. . . . Closed Principle.
requiring extensive system restructuring. P

Often, the component that performs the “Single Choice” will be the one
that initially creates instances of the appropriate objetustrates one
of the possible schemes.

There is a simpler scheme, avoiding any explicit control structure: the
clonable array techniquamplementing what the Design Pattern literature
calls theFactory Pattern, although it was described in Eiffel literature and
widely used in Eiffel programs many years before that term appeared in print.

Here is how it would work in this example. You assign a unique code to
every variant

Low_id Segment_idTriangle_id Circle_id, ... , High_id
-- REDO EXAMPLE -----------

and create a data structure, most conveniently an array, containing one
direct instance of each variant:

[4]

figure_factory ARRAYFIGURE] WARNING there is a
much more concise way
local _ to express thjsising
fig: FIGURE creation expressions
once andavoidingaltogether

the need to declare a
local variablefig. Seel,
page 551 which is the
-- Create and enterSEGMENTinstance: model you should use
create{ SEGMENT fig.make(...) for this pattern

Result put(fig, Segment_id

Resultmake(Low_id High_id)

-- Create and enterlRIANGLEinstance:
create{ TRIANGLE fig.make(...)
Result put(fig, Triangle_id

... Do the same for each variant
end

§20.7 RESTRICTING CREATION AVAILABILITY 531

Instead of makindigure_factorya once function you can declare it as an
attribute, and then initialize it accordingly (with the instructions of the above
routine body, substitutindigure_factoryfor Resul} in an initialization
module. But initialization modules that take care of initializations for many
different aspects of a system are not good for modular, extensible software
construction. Using a once function is usually a better approach since it has
the same effect but lets the initialization happen automatically the first time
any part of the system needs to acéggse_factory
figure_factory @ code

Then, whenever you actually need to select an alternative, you can avcdenotes the item of

e indexcode also written
explicit discrimination of3: replace thentireMulti_branchinstruction by ﬁgure_factgry'tem(code;
5] see36.4, pae 924

fig := clone(figure_factory @ code

wherecodeis the desired figure code (one®¢égment_idlriangle_idetc.).
Thefunctioncloneappearing on the right-hand side produces a new ot~ “CLONING AN
copied from its argument; so each time you Gsgou get a new objecS6B7j]ECT —21.4. pge
which, depending on the value of the indeode will be aSEGMENTor

aTRIANGLEand so on.

20.7 RESTRICTING CREATION AVAILABILITY

The Creatorgparts in the preceding examples had at most Greation_ — See7.7, paje 196

clause and any client could create direct instances through any ofon information hiding
ks creation procedures listed there. Itis also possible to define more restrictive

client creation privileges. Let us take a look at this simple facility which,

although not needed in elementary uses, helps build well-engineered

systems that thoroughly apply the principlerdérmation hiding.

You may indeed write &reatorgart with one or mor€reation_clause
listing procedures available for creation by specific clients, as in

a classC ... create
= make
I create{A, B}
jump_start bootstrap
feature
end

The firstCreation_claushas no restriction, so that any client can creaiRemember that descen-

direct instance of through an instructionreatex. make(...) for x of type dants ofaclassinclude
. . the class itself

C. Because of the restriction in the second clause, however, only ..c

descendants oA andB may use the given procedures for creation, in

instructionscreate x.jump_start(...) or create x.bootstrap(...).

532

CREATING OBJECTS §20.7

This possibility of including more than on€reation_clauseeach — “Restricting
specifying that certain procedures of the class are creation procedureports™. . pae 197
giving a creation availability status, is, as you will certainly have no....,
patterned after the convention for making the features of a class available
to clients with aspecifiedexport statusfor calls. In the same way that a

Feature_clausmay begin with one of

(1]
feature
... Declaration of features callable by all clients
feature {NONEB
(2]
... Declaration of features callable by no clients
(3]
feature { X, Y}

of XandY ...

... Declaration of features callable by descendants

aCreation_clausenay begin with one of

i

=

L

(1]

create

(2]
create{ NONE
... List of procedures available for creation to no cli
3]
create{X, Y}

... List of procedures available for creation
to descendants ofandy ...

... List of procedures available for creation to all clients

ents

Note, however, that such flexibility is not as essential for creation as it is
for feature call. As part of the fundamental O-O principles of abstraction
and information hiding, it is common to have several feature clauses
specifying different levels of call availability: to all clients, to some clients,

to no clients. This is less frequently useful for creation, and in practice

many classes have just oGiezation_clauseor none.

The language supports the full generality of the mechanism anyway,
partly for consistency with the other mechanism, and partly because the

extra control over creation availability is occasionally useful.

§20.7 RESTRICTING CREATION AVAILABILITY

533

. Make sure not to confuse the two forms of specifying availability. When
mm, YOU list a set of creation procedures, adj2 and3 for a classC, you are
ez, only controlling the validity of &Creation_instructioinvolving a creation

i call, such as

[1]

createx.cp(...)

for x of type C: valid everywhere in casg invalid everywhere witl2, and
valid only in descendants ofandY with 3. This is completely independent
of the availability status for plain (non-creation) calls such as

[1]

X«cp(...)

valid everywhere in casg, invalid everywhere witt2, and valid only in
descendants ok andY with 3. For the samep, the two properties are
separate. They reflect different semantics:

» The creation caltreate x.cp (...) creates an object and initializes it
usingcp.

* The plain callx.cp(...) usepto reinitialize an existing objee- a right
which, as the designer of a class, you may decide to grant or not to grant
to clients, regardless of the right you have granted regarding the use of
cp for creation-time initialization.

You may indeed be justified in deciding on different privileges in each case.
Consider a class manipulating bank accounts:

| o | class
me ACCOUNT

I create
make
feature {NONE -- Initialization
make(initial: AMOUNT)
-- Set balance tmitial .
isdo... end
feature -- Element change
withdraw (a: AMOUNT)
-- Record removal @ units of currency.
do...end
deposit(a: AMOUNT)
-- Record addition o units of currency.
do...end
... Other features, invariant.
end- classACCOUNT

534

CREATING OBJECTS §20.8

The use offeature {NONE for the declaration of the class’s creation
procedure is a common Eiffel idiom, but surprising at first here: why hide
this fundamental operation on the class? The reason is that we are hiding it
for call, not for creation. Th€reation_instruction

‘ createyour_accountmake(some_amouit ‘

is indeed valid sincenakeappears in an unrestrictéteatorsclause (lines
3 and 4, highlighted in the class above). Whabisvalid is a plain call

WARNING: not valid
‘ your_accountmake(some_amout ‘ with class text as given

which would reinitialize the account ®ome_amouniThe author of class
ACCOUNThas decided that the only way to affect the balance of an account
is to deposit or withdraw money (adding a value, positive or not, to the
balance, rather than setting it to a specified value). Such policies are often
legitimate and explain whigature { NONE is a common style for declaring

a creation procedure, even one that is unrestrictedly available for creation.

20.8 THE CASE OF EXPANDED TYPES

. =

§

---- THIS SECTION IS NOW WRONG, REWRITE (lazy initialization) --

The preceding examples assumed that the type of the target entity was
a reference (non-expanded) type. What if it is expanded?

In this case there is no need to create an object, since the value of the
target is already an object, not a reference to an object titatation_
instructionmust allocate dynamically.

Rather than disallowin@reation_instructioffior expanded targets, it is
convenient to define a simple semantics for the instruction in this case,
limited to the steps of the above process that still make sense: the
instruction will execute the default initializations on the object attached to
the target, then call the appropriate version d#fault create This
convention also has the advantage that if you change your mind about the
expanded status of a class you can change it without to worry about its
Creation_clausbecoming invalid.

As a consequence of this rule, if we have a class whose instances
contain sub-objects, as in

classCOMPOSITHeature
a: SOME_REFERENCE_TYPE
b: SOME_EXPANDED_ TYPE

o

§20.9 CREATING INSTANCES OF FORMAL GENERICS 535

then the default initialization rule for tHefield of aCOMPOSITEnNstance

will be to apply aCreation_instructionrecursively, to the corresponding
sub-object. This creation instruction will use as creation procedure the
version ofdefault_createn the corresponding base class.

--- NO LONGER QUITE TRUE, REWRITE ------ This semantic rule
justifies a basic constraint on expanded types (given in the chapter on
classes as th€lassHeaderrule): the base class of an expanded typast _ pagei2g
have its version oflefault_createas one of its creation procedures (eitt
explicitly in its Creatorgpart, or implicitly by not having &reatorgart).

This does not prevent the class from having other creation procedures if
desired; but for automatic initialization of sub-objects suchbathe
procedure to be applied idefault_create as any other choice would
require further information from the client (choice of creation procedure
and actual arguments).

20.9 CREATING INSTANCES OF FORMAL GENERICS

More delicate than the expanded types is the case in which we would like
to create an instance of one of thermal_generipparameter types of a
class, as icreatex.. wherex is of typeG in a clas<C [G].

The problem is tha®, in the class text, denotes not a known type but a
placeholder for many possible types or, in the case of unconstrained
genericity, any valid type. So we have no way to know what creation
procedures will be available on the corresponding instances.

This seems at first to preclude any hope of allowing creation
instructions in this case. Fortunately, constrained genericity allows an
elegant solution.

] As youknow, constrained genericity is the mechanism that allows u< *2onsSTRAINED
declare a class as GENERICITY”, 12.6,
page 346

classC[G — CONST ...
| |

where CONSTis a type, known as the constraining type for the formal
generic parametés. Then you may only write a generic derivati@T],
using a typeT as actual generic parameterJitonforms toG. The benefit

is that, within clas<C, you know that any entit of type G represents
objects of typ€l or conforming, so you may apply toany of the features
of T— rather than being limited, as in the unconstrained €3[8], to the
features of clasANY applicable to all types.

A small syntactic extension enables us to take advantage of constrained
genericity to allow creation of objects of generic type. Declare the class as

‘ classD [G — CONSTcreatecpl, cp2 ... end] ...

536 CREATING OBJECTS §20.9

to state thaG represents any type that both:
* (As always with constrained genericity) conform&ONST

» Admits as creation procedures its versionsf, cp2 ... , which must
be procedures cEFONST

These obligations are enforced: a generic derivabofil] will only be

valid if (as always)T conforms toCONSTand, in addition, the given
proceduregpl, cp2 ... are creation procedures ©fMore precisely, their
versionsin T— which may differ from the originals versions @ONSTas

a result of renaming, redefinition and effecting — must be listed among the
creation procedures of

With D declared as shown, it becomes possible xfdeclared of type
G in the text of clas® itself, to use a creation instruction

createx.cp, (args)

wherecp, is one of the procedures Bflisted in thecreate... end part for
CONSTas shown above, andrgs is a valid argument list for that
procedure. The instruction will always make sense dynamically since,
thanks to the preceding rule, the typeof x — in any valid generic
derivationD [T] — will always be a descendant@ONST so that:

* cp; will be one of its procedures, taking the appropriate arguments.

T will have listedcp, as one of its creation procedures (hence, among
other properties, we may expect thgtensures the invariant @.

As a special case, you can permit the procedure-less twemte x by
includingdefault_creatdrather, its name i€@ONST among thep,.

What's particularly useful in this mechanism is that at the levé) afe
only require the listedcp, to be procedures of the constraining type
CONST— so that we can ascertain, frdp’s text only, the validity ofargs
as arguments in the creation caleatex.cp (args): we do not require the
cp to becreation proceduresof CONST This last requirement will only
come up where it matters: in typ&sdescendants @ONSTused in actual
generic derivation® [T]. In such aT, the local version ofp must indeed
be one ofl’s creation procedures.

§20.9 CREATING INSTANCES OF FORMAL GENERICS

537

This means in particular that the above scheme will work even if

CONSTis deferred, as in

l%l

class
D [G - CONSTcreatecp end]
feature
some_routine
local
x. G
do

[createx.cp (3)|

end
end

deferred classCONSTfeature
cp(n: INTEGER
... Could be effective or deferred
end

g Other features, possibly including deferred ones
en

We don't care that the boxed creation instruction works on a targbbse
typeGis based on a deferred cla8®NSTand that the creation procedure
cp might itself be deferred ICONST any typeT used forG in practice
must make its version ap a creation procedure. This implies among other
things thatT is an effective class andp an effective procedure, so

everything will work properly.

Note that this creation mechanism for formal generics assumes
constrainedgenericity. In a clas< [G], where G is an unconstrained
generic parameter, no creation instructteatex ... is valid for x of type
G. This includes the procedure-less foomeate x; making it valid would
mean assuming thatefault_createwill be a creation procedures in all
possible types — certainly not true. You can, however, write the class as

classC [G —> ANYcreate default_createend]

thereby unfolding unconstrained genericity into its constrained equivalent.
Then the generic derivatio@ [T] will be valid for a typeT if and only if

T's base class doesn't list any creation procedures, ordisfigult_create
among its creation procedures. With this formQ¥ declarationcreate x

is valid in the text of class.

538 CREATING OBJECTS §20.10

; More generally, remember that the procedure-less foratex is only valid,
- for x of a formal generic type, if you have explicitly listedfault_creatéunder
its local name) in @reatesubclause after the constraint. There is no equivalent
here to the implicit rule of theCreatorspart, where requesting no creation
procedures means requestagfault_createnly. For generic parameters, you
don't get creation privileges unless you specify them expressly.

20.10 PRECONDITIONS OF CREATION PROCEDURES

The creation process, when it involves a creation procedure, applies it to an
object caught in its virginal state, just after default initializations. Such a

state does not, in general, satisfy the class invariant; it is indeed the very
purpose of the creation procedure to ensure the invariant from the first time.

A consequence of dealing with an object in such a fragile temporary
state is that the creation procedure must refrain, if it has a precondition,
from including in it certain properties that are meaningful only in later
stages of the object’s life. In particular

» The precondition should not use any feature of the object, since the
client could not legitimately access the value of that feature to ensure
the precondition. Assume for example a creation procedpmith a
precondition clausa > 0 wherea is an attribute; the client should be
able, before a creation instructionreatex.cp(...), to test forx.a > 0,
but this makes no sense since the required object doesn't exist yet. So
we must prohibit the use of arynqualified_call to a feature of any
kind, in the precondition.

* For the same reason, we must prohibit any us€wfrent, denoting a
current object that doesn’t exist yet.

The precondition can still refer to any properties of the creation procedure’s
arguments, including through feature calls on these arguments.

In addition, we have a requirement similar to the general rule for feature
availability in feature calls. That rulgpecified that any featupused in the — Precondition Export
precondition of a featurémust be available to all the clients to whiét"e: VAPE page233
itself is available, so that any client that may calf (...) may also check
for X.p. In the case of a creation instructioreatex.cp(...), we haveseen - ‘RESTRICTING
that a creation procedum must be “available for creation” to the clienﬁiﬁﬁg);‘AVA'é?'L‘
to any such clientp has to be available (for call). This is a new requirem%—’mL
since it is possible focp to be “available for creation” to a client, but n
available for call.

These observations lead to a rule on the precondition clauses of any
routine used as a creation procedure:

§20.11 CREATION SYNTAX AND VALIDITY 539

[. Creation Precondition rule VGCP

[EALTET, A Preconditionof a routiner is creation-valid if and only if its
unfolded formuf satisfies the following conditions:

1 - The predefined entit@urrent does not appear .

2 *No Unqualified_callappears inf.

3 « Every feature whose final name appears inutie available to
every class to whichis available for creation.

This definition is not itself a validity constraint, but is used by condiion
ofthe Creation Clause rubkelow; giving it a code as for a validity constrair- VGCG page54Q
enables compilers to provide a precise error message in case of a viol

Requiring preconditions to be creation-valid will ensure that a creation
procedure doesn't try to access, in the object being created, fields whose
properties are not guaranteed before initialization.

The definition relies on the “unfolded form” of an assertion, which
reduces it to a boolean expression with clauses separatesidyhen.
Because the unfolded form uses the Equivalent Dot Form, conditidso
governs the use of operators: wiilusalias "+", the expressioa + b will
be acceptable only if the featyskisis available for creation as stated.

20.11 CREATION SYNTAX AND VALIDITY

4 Here now are the precise rules applyingGeeatorsparts andCreation If skipping go to
A\ instructions. This section only formalizes previously introduced conceSREETORERPRES
mr'i so on first reading you magkip this section and the next two (whiguous oBJECTS”
formalize the semantics). 20.14, pae 550

First, the syntax of &reatorsart, an optional component of tli#ass The structure of &£lass
text, appearing towards theeginning of a class, afterinheritanceand Lerrt;)\iavgzlallgtsparts is
beforeFeatures T

The optionaHeader_

Creators parts commentemphasizes
Creators® Creation_claude g;,?lgg] farlty with the

. . clausegiven pagel37.
Creation_clausé create[Clientd

[Header_commeht
Creation_procedure_list

Creation_procedure_li# {Creation_procedurg"...}*
Creation_proceduré Feature_name

540 CREATING OBJECTS §20.11

To talk about the validity and semantics of creation clauses and creation
instructions, it is useful to take care once and for all of the special case of
default_createas creation procedure through the following definition:

Unfolded Creators part of a class

Theunfolded creators part of a classC is aCreatorddefined as:
1 «If C has aCreatorgartc: c.

2 «If Cisdeferred: an empt§reatorgart.

3 * Otherwise, &reatorgpart built as followsdc_nameéeing the
final name inC of its version ofdefault_creatdrom ANY.
create
dc_name

For generality the definition is applicable to any class, even though for a
deferred class (cas® it would be invalid to include &reatorspart. This
causes no problem since the rules never refer to a deferred class actually
extended with its unfolded creators part.

Case3 reflects theconvention that an absefitreatorart stands focreate - Discussedinformally
dc_name— normally createdefault_createbut dc_namemay be another In previous sections.
name if the class or one of its proper ancestors has rertafadt_create

With this we can define the constraint©@reatorspart of a class:

Creation Clause rule VGCC

VT A Creation_clausim theunfoldedcreatorgart of a clas€ is valid
if and only if it satisfies the following conditions, the last four fq
everyFeature_namep_namen the clause’s-eature_list

1 «C is effective.

=

2 «cp_nameappears only once in thesature_list

3 *cp_namas the final name of some proceduapsof C.
4 «cpis not aonce routine.

5 « The precondition afp, if any, iscreation-alid.

§20.11 CREATION SYNTAX AND VALIDITY 541

As a result of conditiong and4, a creation procedure may only be of the
do form (the most common case)©xternal

The prohibition of once creation procedures in conditios is a
consequence of the Creation principle: with a once procedure, the first
object created would satisfy the invariant (assuming the creation procedure
is correct), but subsequent creation instructions would not execute the call,
and hence would limit themselves to the default initializations, which
might not ensure the invariant.

As a corollary of conditior, a class that has no explicitreatorgpart may

not redefinedefault_creaténto a once routine, or inheritefault_createas a
once routine from one of its deferred parents. (Effective parents would
themselves violate the condition and hence be invalid.)

Condition 5 is the rule on preconditions of creation procedures, whose

- : : - < “PRECONDI-
rationale was discussed in the precediagtion. TIONSOF CREATION
To complement this study of the syntax and semanti&refitorgarts, PROCEDURES

. . . : 20.10, pge 538
it is useful to remind ourselves of their counterpart for generic parame

the Constraint_creatorsubclause of the syntax for generic constraints, a
simplified form of theCreatorgpart. Here is the relevant syntax:

Formal_generic€ "["Formal_generic_li&]" t;eTg‘r']Z‘r’)Vtzsrgﬁtszzg'”

. " syntax on paga43
Formal_generic_lis€ [Formal_generi"...] Véndityinupcg,\,_g

_ _ STRAINEDGENERIC-
Formal_generic@ [frozen] Formal_generic_name ITY”, 12.6, p@e 346

[Constraint

Formal_generic_namé Identifier

Constraint® "—>"Class_typgConstraint_creatdrs

Constraint_creator& createFeature_lisend

The applicable validity rule there was that the elements ofthegture_list

must be the names of distinct procedures of the constraining type —
corresponding to clausésand?2 of the Creation Clause rule above. There
was no need for an equivalent to the other clauses since they are taken care
of by the Creation Clause rule itself when we provide an actual generic
parameter conforming to the constraining type.

A language design note: it would have been possible toGrsatorsfor
Constraint_creatoypermitting a more flexible form of creation availability
specification for a generic parameter — with more than©reation_clause
each listing specific clients and procedures. This would in fact make the
language definition simpler by avoiding the constrGeinstraint_creators

The extra capabilities, however, seems useless, and could yield unduly
complicated-ormal_genericparts, so the language sticks to a primitive form

of Constraint_creatorfor generic parameters.

542 CREATING OBJECTS §20.11

The Creation Clause rule allows us to define the set of creation procedures
of a class:

o Creation procedures of a class
Thecreation proceduresof a class are all the features appearing

in anyCreation_clausef its unfolded creators part.

If there is an explicitCreatorspart, the creation procedures are the
procedures listed there. Otherwise there is only one creation procedure: the
class’s version oflefault_create

The following property is a consequence of the definitions of “unfolded
creators part” and “creation procedures of a class”.

Creation procedure property

An effective class has at least otreation procedure.

Those explicitly listed if any, otherwiskefault_create

Only in the first case (expliciCreatorspart) can the set of creatio~ Seetheexampleclass
procedures be empty: this is achieved, as we have seen, by inclucyr?Tg”;s‘szANT'ABLE
Creatorgpart, but an empty one, listing no name at all. PAgEES

We need a small refinement of this definition to extend it to the cas— Sé¢‘CREATING

i i i . INSTANCES OF FOR-
types, to support the mechanism d¢oeation on generic parameters: MAL GENERICS®

- 20.9, pae 535
Creation procedures of a type

Thecreation proceduresof a typeT are:
1 «If TisaFormal_generic_namtheconstrainingcreatordor T.

2 *» Otherwise, thereation procedures dfs base class.

The definition of cas@ is not good enough for cade because in the scheme
classD [G — CONSTcreatecpl, cp2 ... end] it would give us, as creation
procedures of5, the creation procedures FONST and what we want is

I something else: the set of procedurgsl, cp2 ... specifically listed after
CONST— the “constraining creators fo6G". These are indeed procedures of
CONSThbut they are not necessardyeationprocedures o0EONSTespecially
since CONSTcan be deferred. What matters is that they must be creation
procedures in any instantiatable descendaf@@NSTused as actual generic
parameter fo6.

§20.11 CREATION SYNTAX AND VALIDITY

543

Other useful definitions:

I ITEFIMET IS

7

BTN TAX

Available for creation; general creation procedure

A creation procedure of a clas listed in aCreation_clausec
of C's unfolded creatorspart, is available for creation to the
descendants of the classes given inGtientsrestriction ofcc, if
present, and otherwise to all classes.

If there is noClients restriction, the procedure is said to be
general creation procedure

Now for theCreation_instructioitself, starting with its syntax:

Creation instructions
Creation_instructior® create[Explicit_creation_typk
Creation_call

Explicit_creation_type® "{" Type"}"
Creation_call2 Variable[Explicit_creation_ca]l

Explicit_creation_call2 "." Unqualified_call

Every creation instruction hasceeation typeexplicit or implicit:

Creation target, creation type

The creation target (or just “target” if there is no ambiguity) of
aCreation_instructions theVariableof its Creation_call

Thecreation type of a creation instruction, denoting the type ¢
the object to be created, is:

instruction, if present.

As with aFeature_
clausethe absence of a
Clientsrestriction is
equivalent to a restric-
tion of the forn{ ANY} .

a

Remember, once again, that the descendants of a class include the class
itself. A Creation_clauswith no Clientspart, as increatecpl, cp2, ..., is
a shortcut for one with &lientspart listing onlyANY as increate{ ANY}

cpl cp2 ...

of

e The Explicit_creation_typeappearing (between braces) in the

* Otherwise, the type of the instructiotésget.

544

CREATING OBJECTS §20.11

so that in

e Jfe]

H

—

FREEVIEN

accountl ACCOUNT pointl, point2 POINT, figurel FIGURE

create accountl

create pointl.make_polaxl, Pi/4)

create{ SAVINGS_ACCOUNTaccountl

create{ SEGMENT figurel.make(pointl, point2

the creation types for the four instructions af€COUNT POINT,
SAVINGS_ACCOUN&Nd SEGMENT The targets araccountl pointl,
accountlandfigurel

The creation type of &reation_instructiois the type of the objects that
it may create. It will always satisfy the following property:

Creation Type theorem
Thecreation type of a creation instruction is alwaffsctive.

This theorem is corollarg of the Creation Instruction rule, seen next. TF=*The corollary is on
rule will need one more auxiliary definition: pageb4r.

Unfolded form of a creation instruction
Consider aCreation_instructiorci of creation typeCT. The
unfolded form of ci is a creation instruction defined as:

1 «If ci has arExplicit_creation_callthenci itself.
2 « Otherwise, &reation_instructionbtained fronti by making

the Creation_callexplicit, using asfeature name thefinal
name inCT of CTs version ofANYs default_create

This definition parallels the earlier one of “unfolded creators part of a class”
and expresses the property, stated informally before, that we understand the
procedure-less form of creatieneatex as a shortcut focreatex. default_
create(with the new name fatefault_createf different).

A final notion that the Creation Instruction rule will need is a prope€_“nr gunieht rile”, 1
defined only in assubsequenthapter, but already presented informallypage 626;.
the discussion of calls, and in fact rather obvious: the concept of ¢
being argument-valid. This property is part of the more complete
definition of call validity; it states that in a calkf (a, b, ¢) wherex is of
typeT andf is a feature off with formal argumentsil: T1; u2: T2, u3: T3,

§20.11 CREATION SYNTAX AND VALIDITY 545

RAL DT

the number of actual argumergsh, c must be the same as the number of
these formal arguments, here three, and each actual’s type must conform to
the corresponding formal’s type — here the typatd T1, of bto T2, and

of c to T3. We of course expect this fundamental property to hold for all
calls, and must enforce it for a creation instructicreate x.f (a, b, ¢)
involving aCreation_call This is claus@ of the following rule.

We indeed by now have enough preparation to express the validity rule
for creation instructions:

- - - Another version of
Creation Instruction rule VGCI this rule appears below

)) q page547, with clauses
A Creation_instructiomf creation typeCT, appearing in a class labeled by numbers

C, is valid if and only if it satisfies the following conditions: rather than letters
1 «CT conforms to théamet'’s type.

2 » The feature of th€reation_calbf the instruction’sunfolded
form isavailable for creation t€.

3« ThatCreation_calis agument-alid.
4 «CT is generic-creation-ready.

| can see that puzzled look on your face: surely, with all the possibilities
seen in this chapter, the complete validity constraint for creation
instructions must be longer?

In spite of its compactness, the Creation Instruction rule suffices in fact
to capture all properties of creation instructions thanks to the auxiliary
definitions of ‘treation typ& *“unfolded form of both a Creation_
instructionand aCreatorspart, “available for creatiofi and others. The
rule captures in particular the following cases:

» The procedure-less formreate x is valid only if CTs version of
default_creatas available for creation t@; this is because in this case
the unfolded form of the instruction eate x.dc_namewheredc
nameis CTs name fordefault_create On CTs side the condition
implies that there is either nBreatorgart (so thalCTs own unfolded
form listsdc_namaeas creation procedure), or that it has one making it
available for creation t& (through aCreation_claus&vith either no

Clientsspecification or one that lists an ancestaC)f
If CTis aFormal_generic_namis creation procedures are those listed

in the create subclause after the constraint. 8eate x is valid if and
only if the local version ofdefault createis one of them, and
createx.cp(...) only if cpis one of them.

If CTis generically derived, and its base class needs to perform creation
operations on targets of some of the formal generic types, the last
condition (generic-creation readiness) ensures that the corresponding
actual parameters are equipped with appropriate creation procedures.

546 CREATING OBJECTS §20.11

The very brevity of this rule may make it less suitable for one of the
applications of validity constraints: enabling compilers to produce precise
diagnostics in case of errors. For this reason a complementary rule,
conceptually redundant since it follows from the Creation Instruction rule,
but providing a more explicit view, appears next. It is statedanly if’

style rather than the usuaif ‘and only if' of other validity rules, since it
limits itself to a set of necessary validity conditions.

All together, these conditions do come close to the full set of sufficient
conditions listed in the first variant, but we don’t really care, since that first
variant gives us thef‘and only if property that we need.

§20.11 CREATION SYNTAX AND VALIDITY 547

ALY

Creation Instruction properties VGCP WARNING: although
this rule looks compli-

A Creation_instructiogi of creation typeCT, appearing in a class g:ﬁ;ds'to'fsc'gr‘:z‘é“ﬂzzies
C, is valid only if it satisfies the following conditions, assuming of a short and S?mme

CTis not aFormal_generic_nanand callingBCTthebaseclass rule: the original
of CT anddc theversion ofANYs default_creatén BCT: VGCI'. page 545

1 «-BCTis aneffective class.

2 «If ci includes aType part, the type it lists (which isCT)
conforms to the type of the instructiotésget.

3 «If ci has noCreation_call thenBCT either has ndCreators
part or has one that listic as one of the proceduregailable
to C for creation.

4 « If BCT has aCreatorgart which doesn't listlc, thenci has a
Creation_call

5 «|f ci has aCreation_calwhose featurd is notdc, thenBCT
has aCreatorspart which listsf as one of the procedures
available toC for creation.

6 ¢ If ci has a&Creation_callthat call isagument-alid.

If CTis aFormal_generic_namthe instruction is valid only if it
satisfies the following conditions:

7 «CT denotes &onstrained generic parameter.

8 « The Constraintfor CT specifies one or morprocedures as
constraining creators.

9 «If ci has noCreation_callone of the constraining creators i
the Constrain's version ofdefault_creatdrom ANY

10 «If ci has aCreation_callone of the constraining creators is
thefeature of theCreation_call

n

Compiler writers may refer, in error messages, to either these “Creation
Instruction Properties” or the earlier “Creation Instruction rule” of which
they are consequences. For the language defintti@fficial rule is the
Creation Instruction rule , which provides a necessary and sufficient set
of validity conditions.

The number of clauses in this second variant justdiesntrario using the

first variant as the official definition. Fundamentally, the rule is
straightforward once you have defined the “creation type”, explicit or implicit
and “unfolded” both the creation instruction and the creation type’s base class
to take care of theefault_createonvention, so that every class has a list of
creation procedures and every creation instruction lists a creation procedure.
Then the rule is simply that the creation type must be OK for the creation’s

548 CREATING OBJECTS §20.12

target, that the creation procedure must be available for creation, and that the
call must have valid arguments. That's all. The “corollaries” form is long
because it expands the various simplifications (creation type, creation
procedures of a class, creation procedure of an instruction) for the various
possible cases, and treats all these cases individually — accounting for
various errors that an absent-minded developer might make.

20.12 CREATION SEMANTICS

=2l With the preceding validity rules, we can define the precise semantics of a
Creation_instruction

Creation Instruction Semantics

The effect of a creation instruction tdrget x andcreationtype
TCis the effect of the following sequence of steps, in order:

1 «If there is not enough memory available for a new direct
instance ofTC, trigger anexception of type NO_MORE_
MEMORY in the routine that attempted to execute the
instruction. The remaining steps do not apply in this case

2 *Create a newlirectinstance ofT C, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an

expanded type.

3 < Call, on the resulting object, the feature of thequalified
call of the instruction'sunfolded form.

4 « Attachx to the object. ~ Seel9.3, pae 498
about areference being

attached to an object

§20.13 REMOTE CREATION 549

The rules requires theffectdescribed by this sequence of steps; it does not
require that the implementation literally carry out the steps. In particular, if
the target is expanded and has already been set to an object value, the
implementation (in the absence of cycles in the client relation between
expanded classes) maypt have to allocate new memoryinstead, it may

be able simply to reuse the memory previously allocated to that object.
(Because only expanded types conform to an expanded type, no references
may exist to the previous object, and hence it is not necessary to preserve
its value.) In that case, there will always at stepe “enough memory
available for a new direct instance” — the memory being reused — and so
the exception cannot happen.

One might expect, between stehand3, a step oflefault initialization
of the fields of the new object, since this is the intuitive semantics of the
language: integers initialized to zero, detachable references to void etc.
There is no need, however, for such a step since the Variable Senrateic—~ Pages13
implies that an attribute or other variable, unless previously set by w.
explicit attachment, is automatically set on first access. The rule implies for
example that an integer field will be set to zero. More generally, the
semantics of the language guarantees that in every run-time circumstance
any object field and local variable, even if never explicitly assigned to yet,
always has a well-defined value when the computation needs it.

About step3, remember that the notion ofitfoldedform” allows us to ~ Pages44
consider that every creation instruction has lamqualified_call in the
procedure-less forroreate x, this is a call talefault_create

Also note the order of steps: attachment to the taxgetthe last operation.

Until then, x retains its earlier value, void i is a previously unattached
reference.

20.13 REMOTE CREATION

—

The syntax of creation instructions does not support “remote creation”
instructions as in:

WARNING: syntacti-

‘ createxl.yl.cp(...) cally incorrect

To obtain an equivalent effect, assuming tkits of typeX and thatylis
an attribute of typ&'in X, you must introduce a specific procedur&in

L4]
=

make_yJarguments...)
-- Attachy1 to new instance of.
do
createyl.cp (argumenty
end

550

CREATING OBJECTS §20.14

METHON]
[L

so that instead of the above attempt at remote creation clients will use the
instruction

‘ xl.make yX...)

This is in line with the principle of information hiding: deciding whether
or not clients ofX may directly “create” they1 field is the privilege of the
designer oX who, if the answer is positive, will write a specific procedure
to grant this privilege — restricting its availability if desired.

20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS

We have seen all there is to see about creation instructions, but there
remains to study a variant of the mechanism: creatpnessions

Creation expressions will provide us wiinonymous objectsThe
objects that we produce with a creation instructiogatex... have a name
— X—in the software text. This is usually what we want, because after we
have created the object we will start manipulating it in the same routine, or
others of the same class. But in some cases the name is useless because all
we do with the newly created object is to pass it to another software
element. Having to declare a local variablgust for the purpose of a
creation instruction is a nuisance. A small nuisance to be sure, but whatever
the language can do to avoid writing useless elements will be good for the
quality of your software angour schedule. “Language terseness

and family vacations”
in SPOOF 84Sociol-

We saw an example of such a situation when examining the clory, " "o chology of

array technique. We had the following scheme Object-Oriented Fanat-
ics), Martha’s Vineyard
A figure_factory ARRAYFIGURE 1999 pp. 6574-6598
s local
| fig: FIGURE
once

Result make(Low_id High_id)

~ This was examplé,

-- Create and enterSEGMENTInstance: page 530 Seee simpler
create{ SEGMENT fig.make(...) formulation next

Resultput(fig, Segment_id

-- Create and enterllRIANGLEinstance:
create{ TRIANGLE fig.make(...)
Resultput(fig, Triangle_igd

... Do the same for each variant
end

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS

551

Allwe usefig for is to create successive objects — instances of descendants
of FIGURE But as soon as we have produced such an object with a
creation instruction, we store it into the corresponding entry oRbsult
array (by passing it to the corresponding assignment procedure), and we
will never, in this routine, need the object again! This is why we can reuse
the same local variablég, for everyFIGURE variant.

In this case the entitfig is not needed; neither is a separate creation
instruction. All we really want is an expression denoting the new object,

which we can directly pass to a routine or, as here, assign to an array element.

Creation expressions serve this need. They look like one of

[1]

create{ SOME_TYPE
[2]

create{ SOME_TYPE.creation_procedurg...)

The first variant, as you have guessed, is applical@&ME_TYPE base
class has n@reatorgart, or one that includegefault_creatgethe second,
if creation_procedurés one of its creation procedures.

Note how both variants look like@reation_instruction

* The first recalls the instructiocreate { SOME_TYPE target, with no
explicit Creation_call

» The second recaltseate{ SOME_ TYPEtarget. creation_proceduré...).

You see the idea: starting from a creation instruction, you will get a creation
expression simply by removing tharget— a natural convention, since
what you want is an anonymous object.

The constructs given (in any of the two fornj$] and [2]) are
expressionsdenoting values that can be assignedaaableentity, as in

‘x := create{ SEGMENT .make(pointl, point2 ‘

I

or, more commonly, passed as arguments to a routine, as in

o] —f=]

I

—

‘segment_operatio(u:reate{SEGMENT.make(pointL point2) ‘ Expression form

which has exactly the same effect as

segment_operatiofseg

create{ SEGMENT seg make(pointl, point2 Instruction form

552 CREATING OBJECTS §20.14

with seg declared of typeFIGURE (or directly of the ancestor type
SEGMENT in which case we can write the first line as juskeate
seg make(pointl, point2). With the creation expression we write a single
call instead of three components — the declaratiorsaxf the creation
instruction, and the call.

A difference with creation instructions is that for creation expressions
you may not omit thé&xplicit_creation_typeSOME_TYPBrSEGMENT
in the examples above. This is precisely because the created objects are
anonymous. In the instructiarreatetarget... , if no type is specified, we
use as creation type the typetafget, but for a creation expression there is
no namedarget so youmust specify{ SOME_TYPE in all cases.

Here is the clonable array extract rewritten with creation expressions:

figure_factory ARRAYFIGURE « The original was
exampled, page 530
once . .) repeated above on
Result make(Low_id High_id) pages50. To use the
array, use clone opera-
. . . tions see
-- Create and enter an instance of each desired Kind:

Result put(create{ SEGMENT . makg(...), Segment_id
Result put(create{ TRIANGLE .makq...), Triangle_id
... Similarly for each variant..

end

=
I

The comparison with the original form clearly shows the advantage of
creation expressions in such a case. It's not so much a matter of writing
less since Eiffel is happy to be verbose when needed, as when specifying
type properties of every entity, or expressing clear control structures.
Rather, it's about avoiding elements that bring no useful information and
can in fact, through their verbosity, obscure the text.

Note, however, that creation expressions are useful only in the special
case of creating an object for the sole purpose of passing it to another
software element, without using it further in the given routine. In every
other situation — that is to say, in the vast majority of object creation needs
— you should use a creatiamstruction

BEETHON]
L i}

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS 553

Do not then be misled by the observation that you can rewrite any
creation instruction

[1] Instruction form
createx...
as
[1] Expression form
WARNING this is not
X :=create{X_TYPE ... the recommended style

If you are going to do anything else wiif) you should stay with the first
form. In any case it saves you the need to speXify YPE which you have
already specified as the typexah its declaration.

In summary: reserve creation expressions for anonymous objects. This
important methodological note is in line with the general Eiffel principle
that the language should providme good way to address any specific
need. Both creation expressions and creation instructions are useful, each
appropriate in a different situation.

The syntax, validity and semantics of creation expressions will now
follow without further comment, since they are directly deduced from the
corresponding properties of creation instructions.

Creation expressions
Creation_expressio# createExplicit_creation_type ~ Explicit_creation_
- : type was defined on
[Explicit_creation_ca]l page543as{Typg}.

The concepts introduced for creation instructions transpose directly here:

Properties of a creation expression

The creation type andunfolded form of a creation expression
are defined as for a creation instruction.

The validity rule is also similar: « “Creation Instruc-
tion rule”, page 545
Creation Expression rule VGCE
CALTOI, A Creation_expressioof creation typeCT, appearing in a class

C, is valid if and only if it satisfies the following conditions:

1 « The feature of th€reation_calbf the expression’sinfolded
form isavailable for creation t&.

2 « ThatCreation_calis argument-valid.
3 +CT is generic-creation-ready.

554

CREATING OBJECTS §20.14

WALLDITT

Here too it is useful to have aorly if” version:

Creation Expression Properties ~ VGCX WARNING: a more
concise form ofthis rule

A Creation_expressioce of creation typeCT, appearing in a appears just before
classC, is valid only if it satisfies the following conditions — See‘Cr eation
assumingCT is not aFormal_generic_namand callingBCT Instructiorproperties”,
the baseclass ofCT anddcthe version oANYs default_create| — PageS47

in BCT:

1 BCTis aneffective class.

2 «If ce has noExplicit_creation_callthenBCT either has no
Creatorgpart or has one that listic as one of the procedure
available toC for creation.

12}

3 «If BCT has aCreatorspart which doesn't listlic, thence has
anExplicit_creation_call

4 «|If ce has anExplicit_creation_calivhose featurd is notdc,
then BCT has aCreatorspart which listsf as one of the
proceduresvailable toC for creation.

5 «|If cehas arExplicit_creation_callthat call isagument-walid.

If CTis aFormal_generic_namihe expression is valid only if it
satisfies the following conditions:

6 +CT denotes &onstrained generic parameter.

7 » The Constraintfor CT specifies one or morprocedures as
constraining creators.

8 ¢ If cehas noCreation_callone of the constraining creators is
the Constrains version ofdefault_creatdrom ANY

9 «If ce has aCreation_callone of the constraining creators i
thefeature of theCreation_call

[%2)

As with the correspondingCreationinstructionProperties”, this is not ar. «creation Instruc-
independent rule but a set of properties following from previtionproperties”.. page
constraints, expressed with more detailed requirements that may be Al

for error reporting by compilers.

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS 555

Finally, the semantics:
Creation Expression Semantics

The value of a creation expression of creation tyfieis —

except if stepl below triggers anexception, in which case the
expression has no value — a vahtéached to a new object as can
be obtained through the following sequence of steps:

1 «If there is not enough memory available for a new direct
instance ofTC, trigger an exceptiorof type NO MORE
MEMORY in the routine that attempted to execute the
expression. In this case the expression has no value and the
remaining steps do not apply.

2 «Create a newlirectinstance oflf C, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an
expanded type.

3« Call, on the resulting object, the feature of thequalified
call of the expression'snfolded form.

The notes appearing after the Creation Instruction Semanilesalso . “creation Instruc-

apply here. tion Semantics”, page
548

556 CREATING OBJECTS §20.14

	20 20 Creating objects
	Creation operation
	Unfolded Creators part of a class
	Creation procedures of a class
	Creation procedure property
	Creation procedures of a type
	Available for creation; general creation procedure
	Creation target, creation type
	Unfolded form of a creation instruction
	Properties of a creation expression

