
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
20
Creating objects
20.1 OVERVIEW

The dynamic model, whose major properties were reviewed in the
preceding presentations, is highly flexible; your systems may create objects
and attach them to entities at will, according to the demands of their
execution. The following discussion explores the two principal
mechanisms for producing new objects: theCreation_instructionand its
less frequently encountered sister, theCreation_expression.

A closely related mechanism —cloning — exists for duplicating
objects. This will be studied separately, with the mechanism for copying
the contents of an object onto another.

The creation constructs offer considerable flexibility, allowing you to
rely on language-defined initialization mechanisms for all the instances of
a class, but also to override these defaults with your own conventions, to
define any number of alternative initialization procedures, and to let each
creation instruction provide specific values for the initialization. You can
even instantiate an entity declared of a generic type — a non-trivial
problem since, forx declared of typeG in a classC [G], we don’t know
what actual typeG denotes in any particular case, and how one creates and
initializes instances of that type.

In using all these facilities, you should never forget the methodological
rule governing creation, as expressed by the following principle.

Creation principle

Any execution of a creation operation must produce an object that
satisfies the invariant of itsgenerating class.

CREATING OBJECTS §20.2516
20.2 FORMS OF CREATION: AN OVERVIEW

You may use aCreation_instructionto produce a totally new object,
initialize its variable fields to preset values, and attach it to aVariableentity
called thetarget of the creation and named in the instruction.

The examples which follow assume that the target is of a reference
(non-expanded) type. As will be seenbelow, the Creation_instructionis
also applicable to expanded types, although with a less interesting effect.

Syntactically, aCreation_instructionalways begins with the keyword
create, followed by the target. Here are some examples:

With form [1] you create an object of the type declared foraccount1,
initialize it to default values, and attach it toaccount1. The default
initialization is language-defined, although you can override it for any class.

With form [14] you create an object of the type declared forpoint1,
apply the standard default initialization, complement the initialization by
calling make_polar(a procedure of the class, designated as one of its
“creation procedures”) with the given arguments, and attach the object to
point1.

Cases[15] and[16] are respectively similar to the first two, but specify
an explicit type, in braces, for the new object. So ifaccount1is of type
ACCOUNT, form [1] creates an instance of that class, but form[15] creates
an instance ofSAVINGS_ACCOUNT. This requiresSAVINGS_ACCOUNT
to be a descendant ofACCOUNT. Similarly, in form[16], SEGMENTmust
be a descendant of the type, sayFIGURE, declared forfigure1.

--- ADD INTRO TO CREATION EXPRESSIONS ---

Since the run-time effect of a creation instruction or expression is
essentially the same, it is convenient to have a name covering both:

Such is the theoretical role of creation: to make sure that any object we
create starts its life in a state satisfying the corresponding invariant. The
various properties of creation, reviewed next, are designed to ensure this
principle.

create account1 [1]
create point1.make_polar(1, Pi / 4) [14]
create{ SAVINGS_ACCOUNT} account1 [15]
create{ SEGMENT} figure1.make(point1, point2) [16]

Creation operation
A creation operation is a creation instruction or expression.

See20.8, page 534
below, about Creation
instructions applied to
expanded types.

The respective targets
areaccount1, point1,
account1, figure1.

§20.3 BASIC FORM OF CREATION INSTRUCTIONS 517
20.3 BASIC FORM OF CREATION INSTRUCTIONS

Even though example[1] shows the most concise variant, a better place to
start studying theCreation_instructionis the more general variant illustrated
by [14]: createx.creation_procedure(…). Its effect is, in order, to:

1 • Create a new object — a direct instance of the typeT of x.

2 • Initialize all the variable fields of that object to default values.

3 • Call creation_procedureon the object, with the arguments given, to
complete its initialization.

4 • Attachx to the object.

The default initialization values used in step2 are adapted to the type of
each field corresponding to a variable attribute: zero for numbers, false for
booleans, void for references and so on. The full rule will appearlater.

This form of the instruction is only valid if the base classC of x’s type
T lists creation_procedure in itsCreators part.

Such aCreatorspart is permitted only in an effective class (since it
makes no sense to create direct instances of a deferred class).Wehaveseen
that it comes towards the beginning of a class text — just beforeFeatures
but afterInheritance— and consists of at least oneCreation_clause, each
beginning with the keywordcreate followed by a list of zero or more
procedures of the class, as in

where make, execute… are procedures ofC. For the moment we are
restricting ourselves to just oneCreation_clause(the vast majority of
cases). By including such a clause, the author ofC specifies that any
Creation_instructionproducing direct instances of the class must be of one
of the two forms

which will initialize the new object by calling the specified creation
procedure — with actual arguments whose types and number match those
of the formal arguments declared for the procedure.

class C … inherit
…

feature
…

end

createx.make(…)
createx.execute(…)

→ “Default Initializa-
tion rule”, page 508.

← “PARTS OF A
CLASS TEXT”, 4.7,
page 119.

create
make, execute, …

→Youcanusemorethan
oneCreation_clause;
also, each one may
restrict clients’ creation
privileges. See below
“RESTRICTING CRE-
ATION AVAILABIL-
ITY”, 20.7,page531for
full details.

CREATING OBJECTS §20.3518
The two creation-related constructs,CreatorsandCreation_instruction, both
use the same keywordcreate. This makes things easier to remember than if you
had to learn two keywords. No confusion can result since the constructs appear
in completely different syntactic contexts.

Creation procedures (also known as “constructors” from C++
terminology) serve to apply initializations beyond the default ones if these
do not suffice. For example, the author of a classPOINT in a graphics
system may wish to offer a creation mechanism that not only allocates a
new object but also initializes its fields according to coordinates provided
by the client. Here is an outline of such a class:

class POINTinherit
TRIGONOMETRY

create
make_polar, make_cartesian

feature -- Access
ro, theta: REAL
x, y: REAL

feature -- Element change
make_polar(r, t: REAL)

-- Set to polar coordinatesr, t.
do

ro := r; theta:= t
reset_from_polar

end

make_cartesian(a, b: REAL)
-- Set to cartesian coordinatesa, b.

do
x := a; y := b
reset_from_cartesian

end

… Other exported features…
feature { NONE} -- Implementation

consistent_attributes: BOOLEAN
-- Do polar and cartesian attributes
-- represent same point?

do
Result:= (x = ro * cos(theta)) and

(y = ro * sin (theta))
end

Thisexampleassumesa
library classTRIGO-
NOMETRY offering
functions such ascos
andsin. The equality in
consistent_ attributes
shouldbechangedtoan
approximateequality to
account for numerical
precision issues.

§20.4 OMITTING THE CREATION PROCEDURE 519
With this design, the author of classPOINT provides clients with two
creation mechanisms: one initializes a point by its polar coordinates, the
other by its cartesian coordinates. Examples ofCreation_instruction,
assuming thatpoint1 is aVariable entity of typePOINT, are

Names of the formmake_somethingare common practice for creation
procedures, although by no means required. When a class has just one
creation procedure, or one more fundamental than the others, the
convention is to call it justmake— although if the procedure has no
arguments your clients can ignore it altogether, if you usedefault_createas
will now be seen.

20.4 OMITTING THE CREATION PROCEDURE

In some common cases you can avoid specifying a creation procedure. This
gives the simplest possible form ofCreation_instruction, illustrated by the
first of our initial examples:

reset_from_polar
-- Update cartesian coordinates from polar ones.

do
x := ro * cos(theta); y := ro * sin (theta)

ensure
consistent_attributes

end

reset_from_cartesian
-- Update polar coordinates from cartesian ones.

do
…

ensure
consistent_attributes

end

invariant
consistent: consistent_attributes

end

create point1.make_polar(2, Pi / 4)
create point1.make_cartesian(Sqrt2, Sqrt2)

create x

If Pi andSqrt2are real
constants with the val-
ues suggested by their
names, these instruc-
tions will have the same
effect.

CREATING OBJECTS §20.4520
This form is applicable when the base classC of x’s type doesnot have a
Creatorspart. This is particularly useful for simple classes which do not
need particularly flexible creation mechanisms, but just provide clients
with a standard way to create instances without providing any specific
information. These instances will all be initialized in the same way. A
simple example is

Here a creation instruction, forbt of typeBINARY_TREE[SOME_TYPE],
will simply be

and will set all the fields of the resulting object to their default values: void
references forleft and right, the default value of the actual generic
parameter (whatever it may be) foritem.

note
description: "%[Binary trees with nodes containing

information of type G%]"
class BINARY_TREE[G]… feature -- Access

item: G
-- Node information

left, right: BINARY_TREE[G]
-- Left and right children

feature -- Element change
… Features to set node information and attach children…

end

create bt

§20.4 OMITTING THE CREATION PROCEDURE 521
This simple form of theCreation_instructionis appropriate when the
object-creating client is happy to rely on a standard initialization. But even
in this case you may need more fine-tuning, because the language-defined
default initializations might not suit all classes. Consider

We require, as expressed by the invariant, thatmarital_statushave one of
the values listed. Because this attribute is of typeINTEGER, the universal
default initializations would set it to zero —not compatiblewith the
invariant! Remember theCreationprinciple: it is creation’s responsibility
to ensure that every new object satisfies the invariant.

One solution is to use a creation procedure:

Since the class now has aCreatorspart, the abbreviated formcreateemp
(for emp of type EMPLOYEE) is no longer valid: we are back to the
previous technique and must write

classEMPLOYEEinherit
PERSON

feature -- Access
Unknown_marital_status, Single, Widowed, Divorced:

INTEGER --!!!!! REDO EXAMPLE!!!!!!
marital_status: INTEGER

feature
… Other features…

invariant
meaningful_marital_status:

marital_status>= Unknown_marital_statusand
marital_status<= Divorced

end

class EMPLOYEEinherit
PERSON

feature -- Access
… Other features and invariant as before…

end

Creation principle:
page515.

create
make

feature -- Initialization
make

-- Initialize by setting marital status to “Unknown”.
do

marital_status:= Unknown_marital_status
end

CREATING OBJECTS §20.4522
This approach works but is a bit tedious for the clients since they must
specify a creation procedure for no clear benefit: only one such procedure
is available,make, and it takes no argument.

In such a case — providing a standard initialization, but not necessarily the
universal language-defined one — you can still make the simple creation form
createx valid for your clients. Do not include aCreatorspart; just redefine the
proceduredefault_createwhich, coming from classANY, is a feature of all
classes. This redefinition will specify your desired initializations.

This technique relies on a simple convention: any classC without a
Creatorspart is treated as if it had one of the form

(If default_createhas been renamed, this should use the new name instead.)
In other words, a class which doesn’t list any creation procedures is
considered to have just one — its version ofdefault_create.

Correspondingly, aCreation_instructionof the form create x, which
doesn’t specify a creation procedure, is treated as a shorthand for

for x of a type based onC (again with the understanding that, ifdefault_
createhas been renamed, this unfolded form uses the new name).

With this technique we can adapt classEMPLOYEEso that its clients
can create instances by writing just

with no creation procedure. The new form of the class is almost the same
as the last one seen, but instead of a specific creation proceduremakewe
don’t include anyCreators part and just redefinedefault_create:

create emp.make

create
default_create

create x.default_create

create emp

§20.4 OMITTING THE CREATION PROCEDURE 523
Because such a class redeclares a featuredefault_createwhich it inherits in
non-deferred form, it must stateredefine default_create in some
Inheritancepart. HereEMPLOYEEinherits fromPERSON, so we just stick
this clause into the correspondingInheritancepart. If the class didn’t have
anyInheritancepart — meaning that it only has an implicit parent,ANY—
we would have to use the standard idiom enabling such a class to redefine
a feature coming fromANY: include anInheritancepart makingANYan
explicit rather than implicit parent. This would give:

Let’s review the two schemes studied in the previous section and this one:

1 • To provide clients with specific creation procedures, which may take
arguments, include at the beginning of the class aCreatorspart, of the
form createcp1, cp2, … , where thecpi are procedures of the class. A
Creation_instructionin this case must be of the formcreatex.cp (…)
wherecp is one of the specifiedcpi.

2 • To make the simplified formcreatex valid, you do not need to include
anyCreatorspart: this form is equivalent to the previous case using for
cp the proceduredefault_create; and an absentCreators part is
equivalent to one that lists only that procedure.

class EMPLOYEEinherit
PERSON

feature -- Initialization

feature -- Access
… Other features and invariant as before…

end

class EMPLOYEEinherit
-- Here we makeANYan explicit parent:

feature -- Initialization
… Feature clauses and invariant as before…

end

redefinedefault_createend

default_create
-- Initialize by setting marital status to “Unknown”.

do
marital_status:= Unknown_marital_status

end

ANY
redefinedefault_createend

CREATING OBJECTS §20.4524
At first these two cases may seem incompatible, but if you examine them
more closely you will realize they are not. The rule is simply that the
simplified formcreatex is valid if and only ifdefault_create, in its local
version, is one of the creation procedures of the class. You can achieve this
property by not listing any creation procedures at all: this is equivalent to
listing default_createonly. But you can also have aCreatorspart, provided
it lists default_create, possibly among other procedures. This observation
yields a third case, combining the previous two:

3 • To make both forms of creation instruction valid — the form with an
explicit procedure,create x.cpi (…) for somecpi, and the procedure-
less form,createx — simply include aCreatorspart that lists both the
desiredcpi and the class’s version ofdefault_create.

Here is an example of this last scheme, a variation on anearlier class text:

Then all of the following four creation instructions are valid:

Forms3 and4 are exactly equivalent, so there is usually little reason to use
3 except if you insist on including the creation procedure for clarity.

Note that includingdefault_createamong the creation procedures,
hence permitting4, makes sense only because the default initializations
ensure the invariantconsistent_attributes, which states that cartesian and
polar coordinates agree — true if they are all zero, the default. When
thinking about creation, always keep in mind theCreation principle.

class POINTinherit
TRIGONOMETRY

create
make_polar, make_cartesian, default_create

feature
… Features as before…

invariant
consistent: consistent_attributes

end

[1]

create your_point.make_polar(2, Pi/4)
[2]

create your_point.make_cartesian(Sqrt2, Sqrt2)
[3]

create your_point.default_create
[4]

createyour_point

← See the original ver-
sion on page518.

← Creation principle:
page515.

§20.4 OMITTING THE CREATION PROCEDURE 525
As a variation on this example, assume that you write a classC that
inherits from a parentB a proceduresetwithout arguments, and wantC to
offer its clients the procedure-less formcreatex so that it will callsetfor
initialization. A simple technique is:

This uses ajoin to merge two inherited features, undefiningdefault_create
along one of the branches so that its joined featureset can override its
previous implementation. Corresponding creation instructions may be
writtencreate x.

We can now summarize the basic rule for validity of a creation
instruction: theinstruction’s creation proceduremust be one of theclass’s
creation procedures, with the understanding that:

1 • Every creation instruction uses a creation procedure — either explicit,
as increatex.cp(…), or implicit, as increatex, where the instruction’s
creation procedure isdefault_create.

2 • Every class lists a set of creation procedures — either explicit, if the
class has aCreatorspart, or implicitly taken to bedefault_createin the
absence of aCreators part.

This also suggests, as a special case, what you should do if for some reason
you donot want clients of a class to create any direct instances of it. Simply
include aCreators part, but make it empty:

class C inherit
B

rename
default_create asdiscarded

end
ANY

rename
default_create as set

undefine
set

select
set

end
feature

…
end

class NOT_INSTANTIABLEcreate
-- Nothing at all listed here!

feature
…

end

← See“THE JOIN
MECHANISM”,
10.21, page 286.

WARNING: not the rec-
ommendedstyle;seenext.

CREATING OBJECTS §20.5526
This falls under the “explicit” case of observation1 above, so that under
observation2 a creation instruction could only be valid if it were of the
form createx.cp (…) wherecp is a creation procedure of the class; but
there is no suchcpsince theCreators part, although present, is empty.

The style guideline in such a case is actually to write

which has exactly the same effect but emphasizes the creation ban by
listing NONEas the single creation (rather, non-creation) client, based on
conventions, seenbelow, for restricting creation availability.

Another way to make a class non-instantiable is to declare it as deferred. But
you might want to prohibit instantiation of a class even if it is effective. Then
you can use the technique just seen.

20.5 CREATORS AND INHERITANCE

(This section is a discussion of theabsenceof dependency between two
language concepts, so it introduces no new mechanism; it is a “comment”
and “methodology” section meant to dispel a possible confusion, which
might in particular follow from experience with other languages.)

You may have been wondering what effect the inheritance structure has
on the creation procedures of a class. The short answer is:no effect. Each
class is free to choose the procedures it wants to offer to its clients for
creation, regardless of its parents’ choices. The creation mechanism does
of course take full advantage of inheritance: creation procedures may be
obtained from parents and adapted through the usual inheritance
mechanisms of redefinition, renaming, effecting and so on. And in some
cases a class’s choice of creation procedures is directly connected to its
parents’ choices:

• A class may list as creation procedures (in itsCreatorspart) some or
even all of a parent’s own creation procedures.

• A redefined creation procedure may need, as part of its execution, to call
the parent’s version, usually through thePrecursor mechanism.

But all this is optional, not required, and neither theoretical analysis nor
analysis of practical examples suggests an obligatory connection. Counter-
examples indeed abound. Just think of a classPOLYGON, where a typical
creation procedure will take a list of vertices; for its heirRECTANGLEthis
is most likely inappropriate, as we might use a center, an orientation and
two side lengths; then for a grandchildSQUAREwe will again need
something different since we can dispense with one of these lengths.

class NOT_INSTANTIABLE

feature
…

end

create{ NONE}

→ “RESTRICTING
CREATIONAVAILABIL-
ITY”, 20.7, page 531.

§20.6 USING AN EXPLICIT TYPE 527
So the set of creation procedures of a class is entirely determined by its
Creatorsclause (or lack thereof, as we have seen), without interference
from the parents’ own clauses. This yields a simple semantics and avoids
confusion. Based on the needs of each class, you decide what creation
privileges you award toyour clients; you may reuse the parents’ creation
procedures, unchanged or extended, but only if you find them useful for
your own needs.

Eiffel’s policy on relatingcreation statusto inheritance is similar to its
policy onrelatingexportstatusto inheritance. There too every class is free
to make its own decisions for inherited features, regardless of its parents’
choices. The only difference is the default: inherited features retain their
original export status unless the heir explicitly overrides it (through aNew_
exportsclause); in contrast, a creation procedure loses its creation status
unless the heir explicitly reaffirms it (by listing the procedure in its own
Creatorspart). This difference follows from an analysis of what designers
most commonly need, in each case, in the practice of building systems.

20.6 USING AN EXPLICIT TYPE

In the variants seen so far, the type of the object created by a creation
instructioncreatex … , with or without an explicit creation procedure, is
the typeT declared forx, the instruction’s target. You may want to use
another typeV instead; this will be permitted ifV conforms toT. The form
of the instruction in this case is one of

with the first one valid only ifcp is a creation procedure ofV, and the
second only ifdefault_createis a creation procedure ofV (in particular if
V’s base class has noCreators part).

Specifying the creation type

Assume classSEGMENTis a descendant ofFIGURE, and has a creation
proceduremake, with two formal arguments of typePOINT representing
the end points of a segment. The following will be valid:

create{ V} x.cp (..)
create{ V} x

[1]
fig: FIGURE
point1, point2: POINT
…

← “Adapting the export
status of inherited fea-
tures”, , page 200.

create{ SEGMENT} fig.make(point1, point2)

CREATING OBJECTS §20.6528
and will have exactly the same effect onfig as

where the last instruction is a polymorphic assignment, permitted by the
Assignment rule sinceseg conforms tofig.

The explicitly typed form1 brings nothing fundamentally new; it is just
an abbreviation for the implicitly typed form2, avoiding the need to
introduce intermediate entities such asseg.

As a consequence of this new form, we candefine thecreation type of a
creation instruction — the type of the object that it will create: in the previous
form createx … , the creation type is the type declared for the target,x; in
the explicit formcreate{ V} x … , the creation type isV.

Choosing between types

To become really useful the example should include more than one case:
after all, if all you ever want to obtain is an instance ofSEGMENT, then you
do not needfig; seg suffices. Things become more interesting with a
scheme of the following kind, using a local variablefig of typeFIGURE:

HereSEGMENT, TRIANGLE, CIRCLE, … are descendants ofFIGURE,
all with specific creation procedures, andSegment_icon, Triangle_icon,
Circle_icon, … are integer constants with different values. Depending on
the icon selected by an interactive user, the above instruction creates an
object of the appropriate type, and attachesfig to it.

[2]
fig: FIGURE; seg: SEGMENT
point1, point2: POINT
…

[3]
inspect

icon_selected_by_user
when Segment_iconthen

when Triangle_iconthen

when Circle_iconthen

when …
…

end

create seg.make(point, point2)
fig := seg

→TheAssignmentrule,
stating that the type of
an assignment’s source
must conform to that of
its target, isonpage582.

→ Theformaldefinition
willappearonpage543.

create{ SEGMENT} fig.make(point1, point2)

create{ TRIANGLE} fig.make(point1, point2, point3)

create{ CIRCLE} fig.make(point1, radius)

§20.6 USING AN EXPLICIT TYPE 529
Were the explicitly typed form of the creation instruction not available,
you could still use the equivalence illustrated by2, rather unpleasant here
because you need to declare a temporary entity (seg, tri , circ, …) for each
of the possible icon types.

Creation and deferred classes

Scheme3 helps understand the role ofdeferred classes and typesvis-à-
vis creation. A class must be declared asdeferred if it has at least one
deferred feature (introduced in the class itself, or inherited from a parent,
and not effected — made effective — in the class). A deferred type is one
based on a deferred class. In our example we may assumeFIGURE to be
deferred, but the concrete descendants used in the creation instructions —
SEGMENTand so one — to be effective. The rule is that:

• Weneverpermit a creation instruction to use a deferred type as creation
type. As noted in the last chapter, creatingdirectinstances of a deferred
type would be asking for trouble, since clients could then call
unimplemented operations on these instances. The creation rules of this
chapter exclude this possibility; withfig of type FIGURE, we are not
permitted to writecreate fig … , with or without a creation procedure.

• We may, however, usefig as target of a creation instruction such as
create { SEGMENT} fig.make(point1, point2) or any of the others
above, even though the type offig is deferred: that’s fine as long as the
creation typeof the instruction is explicit and effective, likeSEGMENT
here. The instruction will create a direct instance of that type, so
everything is in order. Attaching this object to an entityfig of a deferred
type is also in order: it’s simply an application of polymorphism.

In summary: we cannot createobjectsof deferred types, but we can have
entities of such types, which will become attached to instances of
conforming effective types.

Single choice and factory objects

Beyond its applicability to polymorphic entities of deferred types, what
makes scheme3 especially interesting is its connection withdynamic
binding: after executing the aboveMulti_branchinstruction, you normally
should never have to discriminate again on the type offig; instead, to apply
an operation with different variants for the figures involved, you should use
a call of the form

fig.display

←Althoughaclassmay
be declared asdeferred
even without deferred
features, the common
case is for a deferred
class to have one or
more deferred features.
See10.11, page 266.

“Direct instance” is in
factnotevendefined for
deferred types. See
“INSTANCES AND
VALUES”, 11.5, page
321.

CREATING OBJECTS §20.6530
where the operation, heredisplay, is redefined in various ways in
descendants ofFIGURE. This will select the appropriate version
depending on the exact type of the object to whichfig is attached, as a result
of the variable-type creation achieved by3.

This example illustrates an important concept of Eiffel software
development: theSingle Choice principle. The principle states that in a
software system that handles a number of variants of the same notion (such
as the figure types in a graphics system) any exhaustive knowledge of the
set of possible variants should be confined to justone componentof the
system. This is essential to prevent future additions and modifications from
requiring extensive system restructuring.

Often, the component that performs the “Single Choice” will be the one
that initially creates instances of the appropriate objects;3 illustrates one
of the possible schemes.

There is a simpler scheme, avoiding any explicit control structure: the
clonable array technique, implementing what the Design Pattern literature
calls theFactory Pattern, although it was described in Eiffel literature and
widely used in Eiffel programs many years before that term appeared in print.

Here is how it would work in this example. You assign a unique code to
every variant

and create a data structure, most conveniently an array, containing one
direct instance of each variant:

Low_id, Segment_id, Triangle_id, Circle_id, … , High_id:
-- REDO EXAMPLE -----------

[4]
figure_factory: ARRAY[FIGURE]

local
fig: FIGURE

once
Result.make(Low_id, High_id)

-- Create and enter aSEGMENT instance:
create{ SEGMENT} fig.make(…)
Result.put (fig, Segment_id)

-- Create and enter aTRIANGLEinstance:
create{ TRIANGLE} fig.make(…)
Result.put (fig, Triangle_id)

… Do the same for each variant…
end

Seealso17.6,page483,
on explicit discrimina-
tion. For further discus-
sion of these issues see
“Object-Oriented Soft-
ware Construction”, in
particular the Open-
Closed Principle. .

WARNING: there is a
muchmoreconciseway
to express this, using
creation expressions
andavoidingaltogether
the need to declare a
localvariablefig.See1,
page 551, which is the
model you should use
for this pattern.

§20.7 RESTRICTING CREATION AVAILABILITY 531

-

Instead of makingfigure_factorya once function you can declare it as an
attribute, and then initialize it accordingly (with the instructions of the above
routine body, substitutingfigure_factory for Result) in an initialization
module. But initialization modules that take care of initializations for many
different aspects of a system are not good for modular, extensible software
construction. Using a once function is usually a better approach since it has
the same effect but lets the initialization happen automatically the first time
any part of the system needs to accessfigure_factory.

Then, whenever you actually need to select an alternative, you can avoid the
explicit discrimination of3: replace theentireMulti_branch instruction by

wherecodeis the desired figure code (one ofSegment_id, Triangle_idetc.).
Thefunctioncloneappearing on the right-hand side produces a new object
copied from its argument; so each time you use5 you get a new object
which, depending on the value of the indexcode, will be aSEGMENT, or
aTRIANGLE and so on.

20.7 RESTRICTING CREATION AVAILABILITY

The Creatorsparts in the preceding examples had at most oneCreation_
clause, and any client could create direct instances through any of the
creation procedures listed there. It is also possible to define more restrictive
client creation privileges. Let us take a look at this simple facility which,
although not needed in elementary uses, helps build well-engineered
systems that thoroughly apply the principle ofinformation hiding.

You may indeed write aCreatorspart with one or moreCreation_clause
listing procedures available for creation by specific clients, as in

The firstCreation_clausehas no restriction, so that any client can create a
direct instance ofC through an instructioncreatex.make(…) for x of type
C. Because of the restriction in the second clause, however, only the
descendants ofA and B may use the given procedures for creation, in
instructionscreate x.jump_start(…) or create x.bootstrap(…).

[5]
fig := clone(figure_factory @ code)

class C … create
make

jump_start, bootstrap
feature

…
end

figure_factory @ code
denotes the item of
indexcode,also written
figure_factory.item(code);
see36.4, page 924.

→ “CLONING AN
OBJECT”, 21.4, page
567.

← See7.7, page 196,
on information hiding.

create{ A, B}

Remember that descen
dants of a class include
the class itself.

CREATING OBJECTS §20.7532
This possibility of including more than oneCreation_clause, each
specifying that certain procedures of the class are creation procedures and
giving a creation availability status, is, as you will certainly have noted,
patterned after the convention for making the features of a class available
to clients with aspecifiedexport statusfor calls. In the same way that a
Feature_clause may begin with one of

aCreation_clause may begin with one of

Note, however, that such flexibility is not as essential for creation as it is
for feature call. As part of the fundamental O-O principles of abstraction
and information hiding, it is common to have several feature clauses
specifying different levels of call availability: to all clients, to some clients,
to no clients. This is less frequently useful for creation, and in practice
many classes have just oneCreation_clause, or none.

The language supports the full generality of the mechanism anyway,
partly for consistency with the other mechanism, and partly because the
extra control over creation availability is occasionally useful.

[1]

… Declaration of features callable by all clients…

[2]

… Declaration of features callable by no clients…
[3]

… Declaration of features callable by descendants
of X andY …

[1]

… List of procedures available for creation to all clients…
[2]

… List of procedures available for creation to no clients…
[3]

… List of procedures available for creation
to descendants ofX andY…

← “Restricting
exports”, , page 197.

feature

feature { NONE}

feature { X, Y}

create

create{ NONE}

create{ X, Y}

§20.7 RESTRICTING CREATION AVAILABILITY 533
Make sure not to confuse the two forms of specifying availability. When
you list a set of creation procedures, as in1, 2 and3 for a classC, you are
only controlling the validity of aCreation_instructioninvolving a creation
call, such as

for x of typeC: valid everywhere in case1, invalid everywhere with2, and
valid only in descendants ofXandYwith 3. This is completely independent
of the availability status for plain (non-creation) calls such as

valid everywhere in case1, invalid everywhere with2, and valid only in
descendants ofX andY with 3. For the samecp, the two properties are
separate. They reflect different semantics:

• The creation callcreate x.cp (…) creates an object and initializes it
usingcp.

• The plain callx.cp(…) usescpto reinitialize an existing object – a right
which, as the designer of a class, you may decide to grant or not to grant
to clients, regardless of the right you have granted regarding the use of
cp for creation-time initialization.

You may indeed be justified in deciding on different privileges in each case.
Consider a class manipulating bank accounts:

[1]

createx.cp (…)

[1]

x.cp (…)

class
ACCOUNT

feature { NONE} -- Initialization
make(initial : AMOUNT)

-- Set balance toinitial .
is do … end

feature -- Element change
withdraw(a: AMOUNT)

-- Record removal ofa units of currency.
do … end

deposit(a: AMOUNT)
-- Record addition ofa units of currency.

do … end
… Other features, invariant…

end-- classACCOUNT

create
make

CREATING OBJECTS §20.8534
The use offeature { NONE} for the declaration of the class’s creation
procedure is a common Eiffel idiom, but surprising at first here: why hide
this fundamental operation on the class? The reason is that we are hiding it
for call, not for creation. TheCreation_instruction

is indeed valid sincemakeappears in an unrestrictedCreatorsclause (lines
3 and 4, highlighted in the class above). What isnot valid is a plain call

which would reinitialize the account tosome_amount. The author of class
ACCOUNThas decided that the only way to affect the balance of an account
is to deposit or withdraw money (adding a value, positive or not, to the
balance, rather than setting it to a specified value). Such policies are often
legitimate and explain whyfeature {NONE} is a common style for declaring
a creation procedure, even one that is unrestrictedly available for creation.

20.8 THE CASE OF EXPANDED TYPES

---- THIS SECTION IS NOW WRONG, REWRITE (lazy initialization) --

The preceding examples assumed that the type of the target entity was
a reference (non-expanded) type. What if it is expanded?

In this case there is no need to create an object, since the value of the
target is already an object, not a reference to an object that aCreation_
instruction must allocate dynamically.

Rather than disallowingCreation_instructionfor expanded targets, it is
convenient to define a simple semantics for the instruction in this case,
limited to the steps of the above process that still make sense: the
instruction will execute the default initializations on the object attached to
the target, then call the appropriate version ofdefault_create. This
convention also has the advantage that if you change your mind about the
expanded status of a class you can change it without to worry about its
Creation_clause becoming invalid.

As a consequence of this rule, if we have a class whose instances
contain sub-objects, as in

createyour_account.make(some_amount)

your_account.make(some_amount)

class COMPOSITEfeature
a: SOME_REFERENCE_TYPE
b: SOME_EXPANDED_TYPE
…

end

WARNING: not valid
with class text as given.

§20.9 CREATING INSTANCES OF FORMAL GENERICS 535
then the default initialization rule for theb field of aCOMPOSITEinstance
will be to apply aCreation_instruction, recursively, to the corresponding
sub-object. This creation instruction will use as creation procedure the
version ofdefault_create in the corresponding base class.

--- NO LONGER QUITE TRUE, REWRITE ------This semantic rule
justifies a basic constraint on expanded types (given in the chapter on
classes as theClassHeaderrule): the base class of an expanded typemust
have its version ofdefault_createas one of its creation procedures (either
explicitly in its Creatorspart, or implicitly by not having aCreatorspart).
This does not prevent the class from having other creation procedures if
desired; but for automatic initialization of sub-objects such asb the
procedure to be applied isdefault_create, as any other choice would
require further information from the client (choice of creation procedure
and actual arguments).

20.9 CREATING INSTANCES OF FORMAL GENERICS

More delicate than the expanded types is the case in which we would like
to create an instance of one of theFormal_genericparameter types of a
class, as increatex.. wherex is of typeG in a classC [G].

The problem is thatG, in the class text, denotes not a known type but a
placeholder for many possible types or, in the case of unconstrained
genericity,any valid type. So we have no way to know what creation
procedures will be available on the corresponding instances.

This seems at first to preclude any hope of allowing creation
instructions in this case. Fortunately, constrained genericity allows an
elegant solution.

As youknow, constrained genericity is the mechanism that allows us to
declare a class as

whereCONSTis a type, known as the constraining type for the formal
generic parameterG. Then you may only write a generic derivationC [T],
using a typeT as actual generic parameter, ifT conforms toG. The benefit
is that, within classC, you know that any entityx of type G represents
objects of typeT or conforming, so you may apply tox any of the features
of T — rather than being limited, as in the unconstrained caseC [G], to the
features of classANY, applicable to all types.

A small syntactic extension enables us to take advantage of constrained
genericity to allow creation of objects of generic type. Declare the class as

class C [G –> CONST] …

class D [G –> CONST

← Page126,

← “CONSTRAINED
GENERICITY”, 12.6,
page 346,

createcp1, cp2, … end] …

CREATING OBJECTS §20.9536
to state thatG represents any type that both:

• (As always with constrained genericity) conforms toCONST.

• Admits as creation procedures its versions ofcp1, cp2, … , which must
be procedures ofCONST.

These obligations are enforced: a generic derivationD [T] will only be
valid if (as always)T conforms toCONSTand, in addition, the given
procedurescp1, cp2, … are creation procedures ofT. More precisely, their
versionsin T — which may differ from the originals versions inCONSTas
a result of renaming, redefinition and effecting — must be listed among the
creation procedures ofT.

With D declared as shown, it becomes possible, forx declared of type
G in the text of classD itself, to use a creation instruction

wherecpi is one of the procedures ofD listed in thecreate… endpart for
CONST as shown above, andargs is a valid argument list for that
procedure. The instruction will always make sense dynamically since,
thanks to the preceding rule, the typeT of x — in any valid generic
derivationD [T] — will always be a descendant ofCONST, so that:

• cpi will be one of its procedures, taking the appropriate arguments.

• T will have listedcpi as one of its creation procedures (hence, among
other properties, we may expect thatcpi ensures the invariant ofT).

As a special case, you can permit the procedure-less formcreate x by
includingdefault_create(rather, its name inCONST) among thecpi.

What’s particularly useful in this mechanism is that at the level ofD we
only require the listedcpi to be procedures of the constraining type
CONST— so that we can ascertain, fromD’s text only, the validity ofargs
as arguments in the creation callcreatex.cpi (args): we do not require the
cpi to becreation proceduresof CONST. This last requirement will only
come up where it matters: in typesT, descendants ofCONSTused in actual
generic derivationsD [T]. In such aT, the local version ofcpi must indeed
be one ofT’s creation procedures.

createx.cpi (args)

§20.9 CREATING INSTANCES OF FORMAL GENERICS 537
This means in particular that the above scheme will work even if
CONST is deferred, as in

We don’t care that the boxed creation instruction works on a targetx whose
typeG is based on a deferred classCONST, and that the creation procedure
cp might itself be deferred inCONST: any typeT used forG in practice
must make its version ofcpa creation procedure. This implies among other
things thatT is an effective class andcp an effective procedure, so
everything will work properly.

Note that this creation mechanism for formal generics assumes
constrainedgenericity. In a classC [G], whereG is an unconstrained
generic parameter, no creation instructioncreatex … is valid forx of type
G. This includes the procedure-less formcreatex: making it valid would
mean assuming thatdefault_createwill be a creation procedures in all
possible types — certainly not true. You can, however, write the class as

thereby unfolding unconstrained genericity into its constrained equivalent.
Then the generic derivationC [T] will be valid for a typeT if and only if
T’s base class doesn’t list any creation procedures, or listsdefault_create
among its creation procedures. With this form ofC’s declaration,createx
is valid in the text of classC.

class
D [G –> CONSTcreatecpend]

feature
some_routine

local
x: G

do
createx.cp (3)

end
end

deferred class CONSTfeature
cp (n: INTEGER)

… Could be effective or deferred…
end

… Other features, possibly including deferred ones…
end

classC [G –> ANYcreate default_create end]

CREATING OBJECTS §20.10538
More generally, remember that the procedure-less formcreatex is only valid,
for xof a formal generic type, if you have explicitly listeddefault_create(under
its local name) in acreatesubclause after the constraint. There is no equivalent
here to the implicit rule of theCreatorspart, where requesting no creation
procedures means requestingdefault_createonly. For generic parameters, you
don’t get creation privileges unless you specify them expressly.

20.10 PRECONDITIONS OF CREATION PROCEDURES

The creation process, when it involves a creation procedure, applies it to an
object caught in its virginal state, just after default initializations. Such a
state does not, in general, satisfy the class invariant; it is indeed the very
purpose of the creation procedure to ensure the invariant from the first time.

A consequence of dealing with an object in such a fragile temporary
state is that the creation procedure must refrain, if it has a precondition,
from including in it certain properties that are meaningful only in later
stages of the object’s life. In particular

• The precondition should not use any feature of the object, since the
client could not legitimately access the value of that feature to ensure
the precondition. Assume for example a creation procedurecp with a
precondition clausea > 0 wherea is an attribute; the client should be
able, before a creation instructioncreatex.cp (…), to test forx.a > 0,
but this makes no sense since the required object doesn’t exist yet. So
we must prohibit the use of anyUnqualified_call, to a feature of any
kind, in the precondition.

• For the same reason, we must prohibit any use ofCurrent, denoting a
current object that doesn’t exist yet.

The precondition can still refer to any properties of the creation procedure’s
arguments, including through feature calls on these arguments.

In addition, we have a requirement similar to the general rule for feature
availability in feature calls. That rulespecified that any featurepused in the
precondition of a featuref must be available to all the clients to whichf
itself is available, so that any client that may callx.f (…) may also check
for x.p. In the case of a creation instructioncreatex.cp (…), we haveseen
that a creation procedurecp must be “available for creation” to the client;
to any such client,p has to be available (for call). This is a new requirement
since it is possible forcp to be “available for creation” to a client, but not
available for call.

These observations lead to a rule on the precondition clauses of any
routine used as a creation procedure:

←PreconditionExport
rule: VAPE, page233.

← “RESTRICTING
CREATIONAVAILABIL-
ITY”, 20.7, page 531

§20.11 CREATION SYNTAX AND VALIDITY 539
20.11 CREATION SYNTAX AND VALIDITY

Here now are the precise rules applying toCreatorsparts andCreation
instructions. This section only formalizes previously introduced concepts,
so on first reading you mayskip this section and the next two (which
formalize the semantics).

First, the syntax of aCreatorspart, an optional component of theClass
text, appearing towards thebeginning of a class, afterInheritanceand
beforeFeatures:

Creation Precondition rule VGCP

A Preconditionof a routiner is creation-valid if and only if its
unfolded formuf satisfies the following conditions:
1 • The predefined entityCurrent does not appear inuf.

2 • NoUnqualified_call appears inuf.

3 • Every feature whose final name appears in theuf is available to
every class to whichr is available for creation.

This definition is not itself a validity constraint, but is used by condition5
of the Creation Clause rulebelow; giving it a code as for a validity constraint
enables compilers to provide a precise error message in case of a violation.

Requiring preconditions to be creation-valid will ensure that a creation
procedure doesn’t try to access, in the object being created, fields whose
properties are not guaranteed before initialization.

The definition relies on the “unfolded form” of an assertion, which
reduces it to a boolean expression with clauses separated byand then.
Because the unfolded form uses the Equivalent Dot Form, condition3 also
governs the use of operators: withplusalias "+", the expressiona + b will
be acceptable only if the featureplus is available for creation as stated.

Creators parts
Creators=∆ Creation_clause+

Creation_clause=∆ create[Clients]
[Header_comment]
Creation_procedure_list

Creation_procedure_list=∆ {Creation_procedure","…}+

Creation_procedure=∆ Feature_name

→ VGCC, page540.

If skipping, go to
“CREATIONEXPRES-
SIONS AND ANONY-
MOUS OBJECTS”,
20.14, page 550.

The structure of aClass
text,with all its parts, is
on page119.

The optionalHeader_
comment emphasizes
the similarity with the
syntax of aFeature_
clause, given page137.

CREATING OBJECTS §20.11540
To talk about the validity and semantics of creation clauses and creation
instructions, it is useful to take care once and for all of the special case of
default_create as creation procedure through the following definition:

With this we can define the constraint onCreators part of a class:

Unfolded Creators part of a class
Theunfolded creators part of a classC is aCreatorsdefined as:
1 • If C has aCreators part c: c.

2 • If C is deferred: an emptyCreators part.

3 • Otherwise, aCreatorspart built as follows,dc_namebeing the
final name inC of its version ofdefault_create from ANY:

create
dc_name

For generality the definition is applicable to any class, even though for a
deferred class (case2) it would be invalid to include aCreatorspart. This
causes no problem since the rules never refer to a deferred class actually
extended with its unfolded creators part.

Case3 reflects theconvention that an absentCreatorspart stands forcreate
dc_name— normally createdefault_create, but dc_namemay be another
name if the class or one of its proper ancestors has renameddefault_create.

Creation Clause rule VGCC

A Creation_clausein theunfoldedcreatorspart of a classC is valid
if and only if it satisfies the following conditions, the last four for
everyFeature_namecp_namein the clause’sFeature_list:
1 •C is effective.

2 •cp_nameappears only once in theFeature_list.

3 •cp_name is the final name of some procedurecpof C.

4 •cp is not aonce routine.

5 • The precondition ofcp, if any, iscreation-valid.

←Discussedinformally
in previous sections.

§20.11 CREATION SYNTAX AND VALIDITY 541
Condition 5 is the rule on preconditions of creation procedures, whose
rationale was discussed in the precedingsection.

To complement this study of the syntax and semantics ofCreatorsparts,
it is useful to remind ourselves of their counterpart for generic parameters:
the Constraint_creatorssubclause of the syntax for generic constraints, a
simplified form of theCreators part. Here is the relevant syntax:

The applicable validity rule there was that the elements of theFeature_list
must be the names of distinct procedures of the constraining type —
corresponding to clauses1 and2 of the Creation Clause rule above. There
was no need for an equivalent to the other clauses since they are taken care
of by the Creation Clause rule itself when we provide an actual generic
parameter conforming to the constraining type.

A language design note: it would have been possible to useCreatorsfor
Constraint_creators, permitting a more flexible form of creation availability
specification for a generic parameter — with more than oneCreation_clause,
each listing specific clients and procedures. This would in fact make the
language definition simpler by avoiding the constructConstraint_creators.
The extra capabilities, however, seems useless, and could yield unduly
complicatedFormal_genericsparts, so the language sticks to a primitive form
of Constraint_creators for generic parameters.

As a result of conditions1 and4, a creation procedure may only be of the
do form (the most common case) orExternal.

The prohibition of once creation procedures in condition4 is a
consequence of the Creation principle: with a once procedure, the first
object created would satisfy the invariant (assuming the creation procedure
is correct), but subsequent creation instructions would not execute the call,
and hence would limit themselves to the default initializations, which
might not ensure the invariant.

As a corollary of condition4, a class that has no explicitCreatorspart may
not redefinedefault_createinto a once routine, or inheritdefault_createas a
once routine from one of its deferred parents. (Effective parents would
themselves violate the condition and hence be invalid.)

Formal_generics=∆ "["Formal_generic_list"]"

Formal_generic_list=∆ [Formal_generic","…]

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

Formal_generic_name=∆ Identifier

Constraint=∆ "–>" Class_type[Constraint_creators]

Constraint_creators=∆ createFeature_listend

← “PRECONDI-
TIONSOFCREATION
PROCEDURES”,
20.10, page 538.

← This was first seen in
the chapter on types;
syntax on page343,
validity in “CON-
STRAINEDGENERIC-
ITY”, 12.6, page 346.

CREATING OBJECTS §20.11542
The Creation Clause rule allows us to define the set of creation procedures
of a class:

Only in the first case (explicitCreatorspart) can the set of creation
procedures be empty: this is achieved, as we have seen, by including a
Creators part, but an empty one, listing no name at all.

We need a small refinement of this definition to extend it to the case of
types, to support the mechanism forcreation on generic parameters:

Creation procedures of a class
Thecreation proceduresof a class are all the features appearing
in anyCreation_clause of itsunfolded creators part.

If there is an explicitCreatorspart, the creation procedures are the
procedures listed there. Otherwise there is only one creation procedure: the
class’s version ofdefault_create.

The following property is a consequence of the definitions of “unfolded
creators part” and “creation procedures of a class”.

Creation procedure property

An effective class has at least onecreation procedure.

Those explicitly listed if any, otherwisedefault_create.

Creation procedures of a type
Thecreation procedures of a typeT are:
1 • If T is aFormal_generic_name, theconstrainingcreatorsfor T.

2 • Otherwise, thecreation procedures ofT’s base class.

The definition of case2 is not good enough for case1, because in the scheme
classD [G –> CONSTcreatecp1, cp2, … end] it would give us, as creation
procedures ofG, the creation procedures ofCONST, and what we want is
something else: the set of procedurescp1, cp2, … specifically listed after
CONST— the “constraining creators forG”. These are indeed procedures of
CONST, but they are not necessarilycreationprocedures ofCONST, especially
sinceCONSTcan be deferred. What matters is that they must be creation
procedures in any instantiatable descendant ofCONSTused as actual generic
parameter forG.

←Seetheexampleclass
NOT_INSTANTIABLE
on page525.

← See“CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9, page 535.

§20.11 CREATION SYNTAX AND VALIDITY 543
Other useful definitions:

Remember, once again, that the descendants of a class include the class
itself. A Creation_clausewith noClientspart, as increatecp1, cp2, …, is
a shortcut for one with aClientspart listing onlyANY, as increate{ ANY}
cp1, cp2, …

Now for theCreation_instruction itself, starting with its syntax:

Every creation instruction has acreation type, explicit or implicit:

Available for creation; general creation procedure
A creation procedure of a classC, listed in aCreation_clausecc
of C’s unfoldedcreatorspart, is available for creation to the
descendants of the classes given in theClientsrestriction ofcc, if
present, and otherwise to all classes.
If there is noClients restriction, the procedure is said to be a
general creation procedure.

Creation instructions
Creation_instruction=∆ create[Explicit_creation_type]

Creation_call

Explicit_creation_type=∆ "{" Type"}"

Creation_call=∆ Variable[Explicit_creation_call]

Explicit_creation_call=∆ "." Unqualified_call

Creation target, creation type
Thecreation target (or just “target” if there is no ambiguity) of
aCreation_instruction is theVariable of itsCreation_call.
Thecreation type of a creation instruction, denoting the type of
the object to be created, is:
• The Explicit_creation_typeappearing (between braces) in the

instruction, if present.

• Otherwise, the type of the instruction’starget.

As with aFeature_
clause, the absence of a
Clients restriction is
equivalent to a restric-
tion of the form{ANY} .

CREATING OBJECTS §20.11544
so that in

the creation types for the four instructions areACCOUNT, POINT,
SAVINGS_ACCOUNTandSEGMENT. The targets areaccount1, point1,
account1 andfigure1.

The creation type of aCreation_instructionis the type of the objects that
it may create. It will always satisfy the following property:

This theorem is corollary1 of the Creation Instruction rule, seen next. That
rule will need one more auxiliary definition:

This definition parallels the earlier one of “unfolded creators part of a class”
and expresses the property, stated informally before, that we understand the
procedure-less form of creationcreatex as a shortcut forcreatex.default_
create (with the new name fordefault_create if different).

A final notion that the Creation Instruction rule will need is a property
defined only in asubsequentchapter, but already presented informally in
the discussion of calls, and in fact rather obvious: the concept of a call
being argument-valid. This property is part of the more complete
definition of call validity; it states that in a callx.f (a, b, c) wherex is of
typeT andf is a feature ofT with formal argumentsu1: T1; u2: T2; u3: T3,

account1: ACCOUNT; point1, point2: POINT; figure1: FIGURE
…
create account1
create point1.make_polar(1, Pi/4)
create{ SAVINGS_ACCOUNT} account1
create{ SEGMENT} figure1.make(point1, point2)

Creation Type theorem

Thecreation type of a creation instruction is alwayseffective.

Unfolded form of a creation instruction
Consider aCreation_instructionci of creation typeCT. The
unfolded form of ci is a creation instruction defined as:
1 • If ci has anExplicit_creation_call, thenci itself.

2 • Otherwise, aCreation_instructionobtained fromci by making
the Creation_callexplicit, using asfeaturename thefinal
name inCT of CT’s version ofANY’s default_create.

→ The corollary is on
page547.

→For thefulldefinition
see the.
→ “Ar gument rule”,
page 626;.

§20.11 CREATION SYNTAX AND VALIDITY 545
the number of actual argumentsa, b, c must be the same as the number of
these formal arguments, here three, and each actual’s type must conform to
the corresponding formal’s type — here the type ofa to T1, of b to T2, and
of c to T3. We of course expect this fundamental property to hold for all
calls, and must enforce it for a creation instructioncreate x.f (a, b, c)
involving aCreation_call. This is clause3 of the following rule.

We indeed by now have enough preparation to express the validity rule
for creation instructions:

I can see that puzzled look on your face: surely, with all the possibilities
seen in this chapter, the complete validity constraint for creation
instructions must be longer?

Creation Instruction rule VGCI

A Creation_instructionof creation typeCT, appearing in a class
C, is valid if and only if it satisfies the following conditions:
1 •CT conforms to thetarget’s type.

2 • The feature of theCreation_callof the instruction’sunfolded
form isavailable for creation toC.

3 • ThatCreation_call is argument-valid.

4 •CT is generic-creation-ready.

In spite of its compactness, the Creation Instruction rule suffices in fact
to capture all properties of creation instructions thanks to the auxiliary
definitions of “creation type”, “ unfolded form” of both a Creation_
instructionand aCreatorspart, “available for creation” and others. The
rule captures in particular the following cases:

• The procedure-less formcreate x is valid only if CT’s version of
default_createis available for creation toC; this is because in this case
the unfolded form of the instruction iscreate x.dc_name, wheredc_
name is CT’s name fordefault_create. On CT’s side the condition
implies that there is either noCreatorspart (so thatCT’s own unfolded
form listsdc_nameas creation procedure), or that it has one making it
available for creation toC (through aCreation_clausewith either no
Clients specification or one that lists an ancestor ofC).

• If CT is aFormal_generic_name, its creation procedures are those listed
in thecreatesubclause after the constraint. Socreatex is valid if and
only if the local version ofdefault_createis one of them, and
createx.cp (…) only if cp is one of them.

• If CT is generically derived, and its base class needs to perform creation
operations on targets of some of the formal generic types, the last
condition (generic-creation readiness) ensures that the corresponding
actual parameters are equipped with appropriate creation procedures.

→ Another version of
this ruleappearsbelow,
page547, with clauses
labeled by numbers
rather than letters.

CREATING OBJECTS §20.11546
All together, these conditions do come close to the full set of sufficient
conditions listed in the first variant, but we don’t really care, since that first
variant gives us the “if and only if” property that we need.

The very brevity of this rule may make it less suitable for one of the
applications of validity constraints: enabling compilers to produce precise
diagnostics in case of errors. For this reason a complementary rule,
conceptually redundant since it follows from the Creation Instruction rule,
but providing a more explicit view, appears next. It is stated in “only if”
style rather than the usual “if and only if” of other validity rules, since it
limits itself to a set of necessary validity conditions.

§20.11 CREATION SYNTAX AND VALIDITY 547
The number of clauses in this second variant justifiesa contrariousing the
first variant as the official definition. Fundamentally, the rule is
straightforward once you have defined the “creation type”, explicit or implicit
and “unfolded” both the creation instruction and the creation type’s base class
to take care of thedefault_createconvention, so that every class has a list of
creation procedures and every creation instruction lists a creation procedure.
Then the rule is simply that the creation type must be OK for the creation’s

Creation Instruction properties VGCP

A Creation_instructionci of creation typeCT, appearing in a class
C, is valid only if it satisfies the following conditions, assuming
CT is not aFormal_generic_nameand callingBCTthebaseclass
of CT anddc theversion ofANY’s default_create in BCT:
1 •BCT is aneffective class.
2 • If ci includes aType part, the type it lists (which isCT)

conforms to the type of the instruction’starget.
3 • If ci has noCreation_call, thenBCT either has noCreators

part or has one that listsdcas one of the proceduresavailable
to C for creation.

4 • If BCThas aCreatorspart which doesn’t listdc, thenci has a
Creation_call.

5 • If ci has aCreation_callwhose featuref is notdc, thenBCT
has aCreatorspart which listsf as one of the procedures
available toC for creation.

6 • If ci has aCreation_call, that call isargument-valid.

If CT is aFormal_generic_name, the instruction is valid only if it
satisfies the following conditions:
7 •CT denotes aconstrained generic parameter.
8 • The Constraintfor CT specifies one or moreprocedures as

constraining creators.
9 • If ci has noCreation_call, one of the constraining creators is

theConstraint’s version ofdefault_create from ANY.
10 •If ci has aCreation_call, one of the constraining creators is

thefeature of theCreation_call.

Compiler writers may refer, in error messages, to either these “Creation
Instruction Properties” or the earlier “Creation Instruction rule” of which
they are consequences. For the language definition,the official rule is the
Creation Instruction rule , which provides a necessary and sufficient set
of validity conditions.

WARNING: although
this rule looks compli-
cated, it is in fact just a
series of consequences
of a short and simple
rule: the original
“VGCI”, page 545.

CREATING OBJECTS §20.12548
target, that the creation procedure must be available for creation, and that the
call must have valid arguments. That’s all. The “corollaries” form is long
because it expands the various simplifications (creation type, creation
procedures of a class, creation procedure of an instruction) for the various
possible cases, and treats all these cases individually — accounting for
various errors that an absent-minded developer might make.

20.12 CREATION SEMANTICS

With the preceding validity rules, we can define the precise semantics of a
Creation_instruction.

Creation Instruction Semantics

The effect of a creation instruction oftargetx andcreationtype
TC is the effect of the following sequence of steps, in order:
1 • If there is not enough memory available for a new direct

instance ofTC, trigger anexception of type NO_MORE_
MEMORY in the routine that attempted to execute the
instruction. The remaining steps do not apply in this case.

2 • Create a newdirect instance ofTC, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an
expanded type.

3 • Call, on the resulting object, the feature of theUnqualified_
call of the instruction’sunfolded form.

4 •Attachx to the object. ← See19.3, page 498
about a reference being
attached to an object.

§20.13 REMOTE CREATION 549
20.13 REMOTE CREATION

The syntax of creation instructions does not support “remote creation”
instructions as in:

To obtain an equivalent effect, assuming thatx1 is of typeX and thaty1 is
an attribute of typeY in X, you must introduce a specific procedure inX

The rules requires theeffectdescribed by this sequence of steps; it does not
require that the implementation literally carry out the steps. In particular, if
the target is expanded and has already been set to an object value, the
implementation (in the absence of cycles in the client relation between
expanded classes) maynot have to allocate new memory; instead, it may
be able simply to reuse the memory previously allocated to that object.
(Because only expanded types conform to an expanded type, no references
may exist to the previous object, and hence it is not necessary to preserve
its value.) In that case, there will always at step1 be “enough memory
available for a new direct instance” — the memory being reused — and so
the exception cannot happen.

One might expect, between steps2 and3, a step ofdefault initialization
of the fields of the new object, since this is the intuitive semantics of the
language: integers initialized to zero, detachable references to void etc.
There is no need, however, for such a step since the Variable Semanticsrule
implies that an attribute or other variable, unless previously set by an
explicit attachment, is automatically set on first access. The rule implies for
example that an integer field will be set to zero. More generally, the
semantics of the language guarantees that in every run-time circumstance
any object field and local variable, even if never explicitly assigned to yet,
always has a well-defined value when the computation needs it.

About step3, remember that the notion of “unfoldedform” allows us to
consider that every creation instruction has anUnqualified_call; in the
procedure-less formcreate x, this is a call todefault_create.

Also note the order of steps: attachment to the targetx is the last operation.
Until then, x retains its earlier value, void ifx is a previously unattached
reference.

create x1.y1.cp (…)

make_y1(arguments: …)
-- Attachy1 to new instance ofY.

do
create y1.cp (arguments)

end

→ Page513.

← Page544.

WARNING: syntacti-
cally incorrect.

CREATING OBJECTS §20.14550
so that instead of the above attempt at remote creation clients will use the
instruction

This is in line with the principle of information hiding: deciding whether
or not clients ofX may directly “create” they1 field is the privilege of the
designer ofX who, if the answer is positive, will write a specific procedure
to grant this privilege — restricting its availability if desired.

20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS

We have seen all there is to see about creation instructions, but there
remains to study a variant of the mechanism: creationexpressions.

Creation expressions will provide us withanonymous objects. The
objects that we produce with a creation instructioncreatex… have a name
— x — in the software text. This is usually what we want, because after we
have created the object we will start manipulating it in the same routine, or
others of the same class. But in some cases the name is useless because all
we do with the newly created object is to pass it to another software
element. Having to declare a local variablex just for the purpose of a
creation instruction is a nuisance. A small nuisance to be sure, but whatever
the language can do to avoid writing useless elements will be good for the
quality of your software andyour schedule.

We saw an example of such a situation when examining the clonable
array technique. We had the following scheme

x1.make_y1(…)

figure_factory: ARRAY[FIGURE]
local

fig: FIGURE
once

Result.make(Low_id, High_id)

-- Create and enter aSEGMENT instance:
create{ SEGMENT} fig.make(…)
Result.put (fig, Segment_id)

-- Create and enter aTRIANGLEinstance:
create{ TRIANGLE} fig.make(…)
Result.put (fig, Triangle_id)

… Do the same for each variant…
end

“Language terseness
and family vacations”,
in SPOOF 84(Sociol-
ogy and Psychology of
Object-Oriented Fanat-
ics),Martha’sVineyard,
1999, pp. 6574-6598.

← This was example4,
page 530. Seee simpler
formulation next.

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS 551
All we usefig for is to create successive objects — instances of descendants
of FIGURE. But as soon as we have produced such an object with a
creation instruction, we store it into the corresponding entry of theResult
array (by passing it to the corresponding assignment procedure), and we
will never, in this routine, need the object again! This is why we can reuse
the same local variable,fig, for everyFIGURE variant.

In this case the entityfig is not needed; neither is a separate creation
instruction. All we really want is an expression denoting the new object,
which we can directly pass to a routine or, as here, assign to an array element.

Creation expressions serve this need. They look like one of

The first variant, as you have guessed, is applicable ifSOME_TYPE’s base
class has noCreatorspart, or one that includesdefault_create; the second,
if creation_procedure is one of its creation procedures.

Note how both variants look like aCreation_instruction:

• The first recalls the instructioncreate { SOME_TYPE} target, with no
explicit Creation_call.

• The second recallscreate{SOME_TYPE} target.creation_procedure(…).

You see the idea: starting from a creation instruction, you will get a creation
expression simply by removing thetarget — a natural convention, since
what you want is an anonymous object.

The constructs given (in any of the two forms[1] and [2]) are
expressions, denoting values that can be assigned to aVariableentity, as in

or, more commonly, passed as arguments to a routine, as in

which has exactly the same effect as

[1]
create{ SOME_TYPE}

[2]
create{ SOME_TYPE} .creation_procedure(…)

x := create{ SEGMENT} .make(point1, point2)

segment_operation(create{ SEGMENT} .make(point1, point2))

create{ SEGMENT} seg.make(point1, point2)
segment_operation(seg)

Expression form.

Instruction form.

CREATING OBJECTS §20.14552
with seg declared of typeFIGURE (or directly of the ancestor type

SEGMENT, in which case we can write the first line as justcreate

seg.make(point1, point2)). With the creation expression we write a single

call instead of three components — the declaration ofseg, the creation

instruction, and the call.

A difference with creation instructions is that for creation expressions

you may not omit theExplicit_creation_type, SOME_TYPEor SEGMENT

in the examples above. This is precisely because the created objects are

anonymous. In the instructioncreatetarget… , if no type is specified, we

use as creation type the type oftarget; but for a creation expression there is

no namedtarget, so youmust specify{ SOME_TYPE} in all cases.

Here is the clonable array extract rewritten with creation expressions:

The comparison with the original form clearly shows the advantage of

creation expressions in such a case. It’s not so much a matter of writing

less, since Eiffel is happy to be verbose when needed, as when specifying

type properties of every entity, or expressing clear control structures.

Rather, it’s about avoiding elements that bring no useful information and

can in fact, through their verbosity, obscure the text.

Note, however, that creation expressions are useful only in the special

case of creating an object for the sole purpose of passing it to another

software element, without using it further in the given routine. In every

other situation — that is to say, in the vast majority of object creation needs

— you should use a creationinstruction.

figure_factory: ARRAY[FIGURE]
once

Result.make(Low_id, High_id)

-- Create and enter an instance of each desired kind:
Result.put(create{SEGMENT}.make(…), Segment_id)
Result.put(create{TRIANGLE}.make(…),Triangle_id)
… Similarly for each variant…

end

← The original was
example4, page 530,
repeated above on
page550. To use the
array, use clone opera-
tions; see

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS 553
Do not then be misled by the observation that you can rewrite any
creation instruction

as

If you are going to do anything else withx, you should stay with the first
form. In any case it saves you the need to specifyX_TYPE, which you have
already specified as the type ofx in its declaration.

In summary: reserve creation expressions for anonymous objects. This
important methodological note is in line with the general Eiffel principle
that the language should provideone good way to address any specific
need. Both creation expressions and creation instructions are useful, each
appropriate in a different situation.

The syntax, validity and semantics of creation expressions will now
follow without further comment, since they are directly deduced from the
corresponding properties of creation instructions.

The concepts introduced for creation instructions transpose directly here:

 The validity rule is also similar:

[1]
create x…

[1]

x := create{ X_TYPE} …

Creation expressions
Creation_expression=∆ createExplicit_creation_type

[Explicit_creation_call]

Properties of a creation expression
The creation type andunfolded form of a creation expression
are defined as for a creation instruction.

Creation Expression rule VGCE

A Creation_expressionof creation typeCT, appearing in a class
C, is valid if and only if it satisfies the following conditions:
1 • The feature of theCreation_callof the expression’sunfolded

form isavailable for creation toC.

2 • ThatCreation_call is argument-valid.

3 •CT is generic-creation-ready.

Instruction form.

Expression form.
WARNING: this is not
the recommended style.

← Explicit_creation_
type, was defined on
page543 as{Type} .

← “Cr eation Instruc-
tion rule”, page 545.

CREATING OBJECTS §20.14554
Here too it is useful to have an “only if” version:

Creation Expression Properties VGCX

A Creation_expressionce of creation typeCT, appearing in a
classC, is valid only if it satisfies the following conditions,
assumingCT is not aFormal_generic_nameand callingBCT
thebaseclass ofCT anddc the version ofANY’s default_create
in BCT:

1 •BCT is aneffective class.

2 • If ce has noExplicit_creation_call, thenBCT either has no
Creatorspart or has one that listsdc as one of the procedures
available toC for creation.

3 • If BCThas aCreatorspart which doesn’t listdc, thencehas
anExplicit_creation_call.

4 • If ce has anExplicit_creation_callwhose featuref is not dc,
then BCT has aCreatorspart which listsf as one of the
proceduresavailable toC for creation.

5 • If cehas anExplicit_creation_call, that call isargument-valid.

If CT is aFormal_generic_name, the expression is valid only if it
satisfies the following conditions:
6 •CT denotes aconstrained generic parameter.
7 • The Constraintfor CT specifies one or moreprocedures as

constraining creators.
8 • If cehas noCreation_call, one of the constraining creators is

theConstraint’s version ofdefault_create from ANY.
9 • If ce has aCreation_call, one of the constraining creators is

thefeature of theCreation_call.

As with the corresponding “CreationInstructionProperties”, this is not an
independent rule but a set of properties following from previous
constraints, expressed with more detailed requirements that may be useful
for error reporting by compilers.

WARNING: a more
concise formof this rule
appears just before.

← See“Cr eation
Instructionproperties”,
page 547.

← “Cr eation Instruc-
tionproperties”, ,page
547.

§20.14 CREATION EXPRESSIONS AND ANONYMOUS OBJECTS 555
Finally, the semantics:

Creation Expression Semantics

The value of a creation expression of creation typeTC is —
except if step1 below triggers anexception, in which case the
expression has no value — a valueattached to a new object as can
be obtained through the following sequence of steps:
1 • If there is not enough memory available for a new direct

instance ofTC, trigger an exceptionof type NO_MORE_
MEMORY in the routine that attempted to execute the
expression. In this case the expression has no value and the
remaining steps do not apply.

2 • Create a newdirect instance ofTC, with referencesemantics
if CT is a referencetype andcopy semantics ifCT is an
expanded type.

3 • Call, on the resulting object, the feature of theUnqualified_
call of the expression’sunfolded form.

The notes appearing after the Creation Instruction Semanticsrule also
apply here.

← “Cr eation Instruc-
tionSemantics”,,page
548.

CREATING OBJECTS §20.14556

	20 20 Creating objects
	Creation operation
	Unfolded Creators part of a class
	Creation procedures of a class
	Creation procedure property
	Creation procedures of a type
	Available for creation; general creation procedure
	Creation target, creation type
	Unfolded form of a creation instruction
	Properties of a creation expression

