
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
19
Objects, values and entities
19.1 OVERVIEW

This chapter and the following one will illustrate the dynamic model
through figures representing values and objects. These figures and the
conventions only serve explanatory purposes. In particular:

• Although they may suggest the actual implementation techniques used
to represent values and objects at run time, they should not be construed
asprescribing any specific implementation.

• Do not confuse these conventions for representingdynamic(that is to
say, run-time) properties of systems with the graphical conventions for
representing classes, features, the client relation, inheritance, and other
static properties of software texts.

Wesaw that it is often convenient, in these representations of the static model,
to pictureattribute features in a form that resembles the representation of
objects in the dynamic model. But this should cause no ambiguity since one
convention applies to classes and the other to run-time objects.

The execution of an Eiffel system consists of creating, accessing and
modifyingobjects.

The following presentation discusses the structure of objects and how
they relate to the syntactical constructs that denote objects in software
texts:expressions. At run time, an expression may take on variousvalues;
every value is either an object or a reference to an object.

Among expressions,entities play a particular role. An entity is an
identifier (name in the software text), meant at execution time to denote
possible values. Some entities areread-only: the execution can’t change
their initial value. Others, calledvariables, can take on successive values
during execution as a result of such operations as creation and assignment.

The description of objects and their properties introduces thedynamic
model of Eiffel software execution: the run-time structures of the data
manipulated by an Eiffel system.

← “GRAPHICAL
REPRESENTATION”,
18.2, page 491.



OBJECTS, VALUES AND ENTITIES §19.2498
19.2 OBJECTS AND THEIR TYPES

During its execution, an Eiffel system will create one or more objects.

There will always be at least one: theroot object created on execution start.

A clear correspondence exists between objects, the dynamic (run-time)
notion, and on the other side types and classes, the static (programming-
time) notions. Every object proceeds from a type, itself based on a class.
The following definitions capture this correspondence:

An object may be aninstanceof many types: if it is an instance ofTC, it is
also an instance of any typeTB to which TC conforms. But it is adirect
instance of only one type, and so has just one generating type.

To obtain the generating type of the object attached tox, you may use:

whose value is an object denoting a type. The querytype, which comes
from the universal classANY, returns an object denoting a type, with the
associated feature; withx declared of typeTX, the type ofx.type itself is

based on the library classTYPE. More precisely,TYPE [TX] covers all
objects representing types thatconform to TX, includingTX itself.

19.3 VALUES AND INSTANCES

We saw in the discussion of types that any possible value for an entity is
either an object or areference. The notion of reference has a
precise definition:

Type, generating type of an object; generator

Every run-time object is adirect instance of exactly one
Class_or_tuple_typeof the system, called thegenerating typeof
the object, or just “the type of the object” if there is no ambiguity.
The baseclass of the generating type is called the object’s
generating class, orgenerator for short.

x.type

TYPE[TX]

←“Systemexecution”,
page 114

← “Direct instance”
wasdefinedonpage321.

← “Instanceofatype”,
page 322.

→ “OBJECT PROP-
ERTIES”,  35.4, page
919

← “Dir ect instances
and values of a type”,
page 321.



§19.3  VALUES AND INSTANCES 499
A non-void reference is “attached to” exactly one object, but an object may
be attached to several references.

The reserved wordVoid denotes a void reference. To find out if the value
of e is void, use the boolean expression

Values of anexpanded type can never be void.

The following figure shows conventions for representing a reference: by
an arrow — more precisely, a blue arrow in this book — if attached to an
object, by a special “grounding” symbol if void. Below an object you may
write its generating type, hereTC.

The four values on the figure are the fields of the object on the left. The first
and the third value from the top, labelednextandprevious, are references;
nextis attached to the object on the right, andpreviousis void. The figure
gives no information about the values in the expanded fieldsitem and
count, or about the fields of the object on the right.

The followingproperty is essential to the consistency of the Eiffel type
system and the dynamic model:

In particular, simple values such as integers, booleans and reals are objects.

Reference, void, attached, attached to
A reference is a value that is either:
• Void, in which case it provides no more information.

• Attached, in which case it gives access to an object. The
reference is said to beattached to that object, and the object
attached to the reference.

e= Void

Object principle

Every non-void value is either an object or a referenceattached
to an object.

See chapter35 about
the features of class
ANY. Void may be
implemented as an
attribute or a once func-
tion.

previous (TC)

item

count

Picturing
references,
attached and
void

← Following directly
from the“Instanceprin-
ciple”,  page 323.



OBJECTS, VALUES AND ENTITIES §19.4500
19.4 BASIC TYPES

A number of object types come from classes of the Kernel Library:
BOOLEAN; CHARACTER(64-bit) andCHARACTER_8; INTEGERand its
sized variantsINTEGER_8, INTEGER_16, INTEGER_32, INTEGER_64,
NATURAL, NATURAL_8, NATURAL_16, NATURAL_32,NATURAL_64;
REALand its sized variantsREAL_32 andREAL_64; andPOINTER.

The specification of their direct instances — boolean values, characters,
integers, floating-point numbers, and addresses for passing to external
software — appears in thechapter on basic types.

The specifications of direct instances appearing in the rest of the present
chapter exclude the case of basic types.

19.5 REFERENCE AND COPY SEMANTICS

19.6 COMPOSITE OBJECTS AND THEIR FIELDS

We will use specific terminology for non-basic types:

Object semantics
Every run-time object has eithercopy semantics or
reference semantics.
An object has copy semantics if and only if it is the result of
executing acreationoperation whosecreationtarget is of an
expanded type, or ofcloning such an object.

This property determines the role of the object when used as source of an
assignment: with copy semantics, it will be copied onto the target; with
reference semantics, a reference will be reattached to it.

Non-basic class, non-basic type, field
Any class other than thebasictypes is said to be anon-basic
class. Any type whosebaseclass is non-basic is anon-basic
type, and its instances arenon-basic objects.
A direct instance of a non-basic type is a sequence of zero or
more values, calledfields. There is one field for every attribute of
the type’s base class.

→ Chapter30.

This definition makes
no difference between
variable and constant
attributes. See the end
of this section.



§19.6  COMPOSITE OBJECTS AND THEIR FIELDS 501
Consider a class typeTC, of base classC, and an attributea of classC; let
TA be the type ofa. The possible values for the field corresponding to
attributea in a direct instance ofTCdepend on the nature ofTA. There are
three possible cases forTA:

1 • Reference type.

2 • Expanded type.

3 • Formal generic parameter of classC.

In case1, the field corresponding to attributea is a reference. That
reference may be void, or it may be attached to an instance ofTA’s base type
— not necessarily a direct instance. In the figure on the following page, the
first and third fields from the top are attached to the same object, calledO2.

In case2, the field corresponding to attributea is an instance of the
expanded typeTA. That field, then, is itself an object, called asubobjectof
the enclosing object. There are two cases:

• TAmay be a basic type; then the subobject is a basic object of that type;
the figure shows fields of typeINTEGERandREAL.

• If TA is a non-basic expanded type, the subobject is itself a non-basic
object. This applies to the last field of the left object on the figure. In
this case the enclosing object isacomposite object.

Finally, in case3, TA is a formal generic parameter of classC, the base class
of TC. Depending on whether the actual generic parameter is a reference
type or an expanded type, this will in fact yield either case1 or case2.

Subobject, composite object
Any expandedfield of an object is asubobject of that object.
An object that has anon-basic subobject is said to becomposite.

(TC)

(TA)

O2

of_reference_type

void_of_ref_type

also_of_ref_type

of_type_integer
237

of_type_real
45.46e2

of_some_
expanded_type

An object and
its fields

This represents a par-
tial snapshot taken dur-
ing the execution of a
possible system, illus-
trating some of the var-
ious kinds of field.



OBJECTS, VALUES AND ENTITIES §19.7502
The above definition of fields makes no difference between constant and
variable attributes: an attribute of either kind yields a field in every instance.
In a reasonable implementation, fields for constant attributes, being the same
value for every instance of a class, will not occupy any run-time space. This
indicates again that figures representing objects (such as the ones in this
chapter) do not necessary show actual object implementations. This book
uses "field" in the precise sense defined above, which does not always imply
an actual memory area in an object’s representation.

Here is a summary of the classification of objects:

19.7 REFERENCE ATOMICITY

The dynamic model as illustrated above has both composite objects,
containing subobjects, and references to objects. How do these notions
combine? In particular, can a system produce the run-time situation shown
on the following figure, where a reference is attached to a subobject of
another object?

Object

Basic
Non-basic

Instance of basic type Instance of
programmer-defined class

Non-Composite

Has subobjects No subobjects

composite
also_of_ref_type

of_type_integer
237

of_type_real
45.46e2

such asINTEGER

Kinds of object

(a) (b)

Reference to
subobject

WARNING: This illus-
trates an impossible sit-
uation.



§19.7  REFERENCE ATOMICITY 503
The answer is no. The semantics of reattachment operations (Assignment,
formal-actual argument association)will guarantee that a reference can
only become attached to a full object. Although objects themselves are not
“atomic”, since clients can modify individual fields by calling the
appropriate routines, the level of atomicity for attachingreferencesis an
entire object.

It is possible to conceive of a model that supports references to subobjects, as
was in fact the case in ISE Eiffel 2. But this significantly complicates the
dynamic model and the implementation, garbage collection in particular,
without bringing a clearly useful improvement in expressive power.

→Seecase[2] ofattach-
ment semantics table on
page590,andthediscus-
sion that follows.



OBJECTS, VALUES AND ENTITIES §19.8504
19.8 EXPRESSIONS AND ENTITIES

The discussion so far has defined the object structures that can be created
during system execution. To denote the objects and their fields in software
texts, you may use expressions — specimens of the constructExpression.

There are several forms of expression, which subsequent chapters cover
in detail. One form, the simplest, is of immediate interest: entities, which
consist of a single name.

Here is the corresponding syntax specification:

Entity, variable, read-only
An entity is anIdentifier, or one of two reserved words (Current
andResult), used in one of the following roles:
1 •Final name of an attribute of a class.

2 •Local variable of a routine orInline_agent, includingResult
for a query.

3 • Formal argument of a routine or inline agent.

4 •Object Test local.

5 •Current , the predefined entity used to represent a reference to
the current object (the target of the latest not yet completed
routine call).

Names of non-constant attributes and local variables arevariable
entities, also called justvariables. Constant attributes, formal
arguments, Object Test locals andCurrent areread-onlyentities.

Two kinds of operation, creation and reattachment, may modify the value
of a variable (a non-constant attribute, part of category1, or local variable,
category2. In the other four cases — constant attributes, formal arguments
(3), Object Test locals (4) andCurrent (5) — you may not directly modify
the entities, hence the nameread-only entity.

The term “constantentity” wouldn’t do, not so much because you can modify
the corresponding objects but because read-only entities (other than constant
attributes) do change at run time: a qualified callreattachesCurrent , and any
routine call reattaches the formal arguments.

Result appearing in thePostconditionof a constant attribute cannot be
changed at execution time, but for simplicity is considered part of local
variables in all cases anyway.

Entities and variables
Entity =∆ Variable | Read_only

Variable =∆ Variable_attribute | Local

Variable_attribute=∆ Feature_name

→ See8.6, page 221,
about local variables
andResult. Inline
agents are an described
in chapter27and
Object Test locals in
24.3, page 650.

→ Creation: chapter
20; reattachment:
chapter22.

→ “Curr entobject,cur-
rent routine”,  page 641



§19.8  EXPRESSIONS AND ENTITIES 505
The constraint on entities indicates that an entity must be of one of the five
forms listed above. In addition, local variables, formal arguments and
Object Test locals are only permitted in certain contexts:

A related rule defines what it means for an entity to be aVariable:

Local =∆ Identifier | Result

Read_only=∆ Formal | Constant_attribute| Current

Formal =∆ Identifier

Constant_attribute=∆ Feature_name

Entity rule VEEN

An occurrence of anentitye in the text of a classC (other than as
the feature of a qualified call) is valid if and only if it satisfies one
of the following conditions:
1 •e is Current .

2 •e is thefinal name of an attribute ofC.

3 •e is the local variableResult, and the occurrence is in a
Feature_body, Postcondition or Rescue part of an
Attribute_or_routinetext for aquery or anInline_agentwhose
signature includes a result type.

4 •e is Result appearing in thePostconditionof a constant
attribute’s declaration.

5 • e is listed in theIdentifier_listof anEntity_declaration_groupin
aLocal_declarationspart of a feature orInline_agentfa, and the
occurrence is in aLocal_declarations, Feature_bodyor Rescue
part forfa.

6 • e is listed in theIdentifier_listof anEntity_declaration_groupin
aFormal_argumentspart for a routiner, and the occurrence is in
adeclaration forr.

7 • e is listed in theIdentifier_listof anEntity_declaration_groupin
theAgent_argumentspart of anAgenta, and the occurrence is in
theAgent_bodyof a.

8 •e is theObject-TestLocal of anObject_test, and the occurrence
is in itsscope.

“Other than as feature of a qualified call” excludes from the rule any attribute,
possibly of another class, used as feature of a qualified call: ina.b the rule
applies toa but not tob. The constraint onb is theGeneralCall rule, requiring
b to be the name of a feature inD’s base class.

→ “ScopeofanObject-
TestLocal”, page653.

→ The General Call
rule is on page673.



OBJECTS, VALUES AND ENTITIES §19.9506
This will determine whether you may useeas the target of anAssignment.
Note thatv in clause2 has to be a local variable (including, as usualResult)
of the immediatelyenclosing routine or agents. Routines may not be
nested, but an agent appears in a routine (and possibly in another agent);
only the local variables of the immediately enclosing scope are assignable.

19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES

The semantic purpose of an entity is to be ready at execution time to deliver
an associated value whenever queried, orevaluated. The validity and
semantic rules of the language must ensure that whenever this happens the
entity denotesexactly one value, and to define what that value will be.

For read-only entities this is achieved through simple properties, whose
details appear in other chapters:

• A constant attribute has the valuespecified in its declaration.

• Current getsattached to the root object on system start, and at the start
of a qualified callx.f (…) denotes the value of the targetx.

• On entry to a routine, a formal argument getsattached to the value of
the corresponding actual.

For a variable, the picture is a bit more subtle. The result of the evaluation
is a consequence of the operations that may have affected the variable:

• Initialization , as it occurs on object creation (for an attribute) or a
routine call (for a local variable).

• Any assignment using the variable as its target.

Assignment has a well-defined semantics, discussed in detail in the
correspondingchapter. But the execution might evaluate the variable
before it has been the target of any explicit assignment; it is the task of
initialization rules to ensure that even in such a case every variable has one
well-defined value.

This is not the case in all programming languages; many leave it to the
programmer to ensure that every variable is assigned before use. In Eiffel, it
is a language design principle that the rules must be sufficient to deduce, for
any evaluation of any variable, a well-defined result.

Variable rule VEVA

A Variable entity v is valid if an only if it satisfies one of the
following conditions:
1 •v is thefinal name of avariable attribute ofC.

2 •v is the final name of alocal variable of the immediately
enclosing routine or agent.

→ Assignment is dis-
cussed in chapter22.

→ 29.10, page 803.

→ “Curr ent Seman-
tics”,  page 643.

→ “PRECISE CALL
SEMANTICS”,  23.17,
page 643.

→ Chapter22.



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 507
The value of a variable that hasn’t yet been the target of an assignment will
be determined by theinitialization rules that we will now study. These
rules determinewhich valuea variable will hold prior to assignment, and
when exactly that value will be set.

---- TO BE REDONE ---There are two possibilities, depending on the
type of the variable:

• The most common case covers variables ofbasic typesas well as non-
attached ones ofreference types. An attribute of such a type denotes a
field in the corresponding objects, and will accordingly be initialized as
part of object creation. A local variable (includingResultfor a function)
is initialized anew for each call of its routine. In both cases the initial
values are language-specified: zero for numbers, false for booleans, null
character for characters, and for references — covering all other
possibilities — a void reference.

• Expandedtypes raise a special issue because their semantics require
variables, when evaluated, always to be attached to an object of the
corresponding type. Such an object cannot just follow from the
declaration of the variable (like the value0, in the previous case, follows
from the declaration of anINTEGERvariable); it has to come out of a
creation instruction. The rule then is to create an object onfirst
evaluationof the variable — meaning for an attribute the first evaluation
for any given object, and for a local variable the first evaluation in any
given call. The evaluation will cause creation of an object of the
appropriate type, using the proceduredefault_create, which must be
one of the creation procedures of the type.

This is the gist of the rules. Let now see their precise form. First we name
---- REWRITE our two type categories:

Self-initializing type
A type isself-initializing  if it is one of:
1 • A detachable type.

2 • A self-initializing formal.

3 • An attached type (including expanded types and, as a special
case of these, basic types) whosecreationprocedures include
aversion ofdefault_create from ANY.



OBJECTS, VALUES AND ENTITIES §19.9508
:

A self-initializing type enables us to define a default initialization value:

• Use Void for a detachable type (case1, the easiest but also the least
interesting)

• Execute a creation instruction with the applicable version of
default_createfor the most interesting case:3, attached types, including
expanded types. This case also covers basic types, which all have a
default value given by the following rule.

A “self-initializing formal” (case2) is a generic parameter, so we don’t
exactly know which one of these three semantics will apply; but we do
require, through the Generic Derivation rule, that any attached type used as
actual generic parameter be self-initializing, meaning in this case that it
will provide default_create.

In the definition, the “creation procedures” of atypeare the creation
procedures of its baseclass or, for a formal generic parameter, its
“constraining creators”, the features listed as available for creation in its
constraining type.

The more directly useful notion is that of a self-initializingvariable,
appearing below.

The term “self-initializing” is justified by the following semantic rule,
specifying the actual initialization values for every self-initializing type.

Default Initialization rule

Every self-initializing type T has adefault initialization value
as follows:
1 • For adetachable type: a void reference.

2 • For a self-initializingattachedtype: an object obtained by
creating an instance ofT throughdefault_create.

3 • For a self-initializing formal: for every generic derivation,
(recursively) the default initialization value of the
corresponding actual generic parameter.

4 • ForBOOLEAN: the boolean value false.

5 • For asized variant ofCHARACTER: null character.

6 • For asized variant ofINTEGER: integer zero.

7 • For asized variant ofREAL: floating-point zero.

8 • ForPOINTER: a null pointer.

9 • ForTYPED_POINTER: an object representing a null pointer.



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 509
The notion generalizes ---- COMPLETE

T

---- EXPLAIN

This rule is the reason why everyone loves self-initializing types: whenever
execution catches an entity that hasn’t been explicitly set, it can (and,
thanks to the Entity Semantics rule, will) set it to a well-defined default
value. This idea gains extra flexibility, in the next definition, through the
notion of attributes with an explicit initialization.

Self-initializing variable
A variable isself-initializing  if one of the following holds:
1 • Its type is a self-initializing type.

2 • It is an attribute declared with anAttribute part such that the
entityResult is properly set at the end of itsCompound.

If a variable is self-initializing, we don’t need to worry about finding it with
an undefined value at execution time: if it has not yet been the target of an
attachment operation, automatic initialization can take over and set it to a
well-defined default value. That value is, in case1, the default value for its
type, and in case2 the result of the attribute’s own initialization. That
initialization must ensure thatResult is “properly set” as defined next
(partly recursively from the above definition) .

Evaluation position, precedes
An evaluation position is one of:
• In aCompound, one of itsInstruction components.

• In anAssertion, one of itsAssertion_clause components.

• In either case, a specialend position.

A position p precedesa positionq if they are both in the same
Compound or Assertion, and either:
• p andq are bothInstructionor Assertion_clausecomponents,

andp appears beforeq in the corresponding list.

• q is the end position andp is not.



OBJECTS, VALUES AND ENTITIES §19.9510
This notion is needed to ensure that entities are properly set before use.

In a compoundi1; i2; i3 we have four positions;i1 precedesi2, i3 and
the end position, and so on.

The relation as defined only applies tofirst-level components of the
compound: ifi2 itself contains a compound, for example if it is of the form
if c then i4; i5 end, theni4 is not an evaluation position of the outermost
compound, and so has no “precedes” relation with any ofi1, i2 andi3.

Setter instruction
A setter instruction is an assignment or creation instruction.
If x is a variable, a setter instruction is asetter for x if its
assignment target orcreation target isx.

Properly set variable
At anevaluationpositionepin a classC, a variablex is properly
set if one of the following conditions holds:
1 •x is self-initializing.

2 •ep is an evaluation position of theCompoundof a routine or
Inline_agentof the Internal form, one of whose instructions
precedesep and is asetter forx.

3 •x is a variable attribute, and is (recursively) properly set at the
end position of everycreation procedure ofC.

4 •ep is an evaluation position in aCompoundthat is part of an
instruction ep’, itself belonging to aCompound, and x is
(recursively) properly set at positionep’.

5 •ep is in a Postconditionof a routine orInline_agentof the
Internal form, andx is (recursively) properly set at the end
position of itsCompound.

6 •ep is Result in thePostcondition of a constant attribute



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 511
The key cases are2, particularly useful for local variables but also
applicable to attributes, and3, applicable to attributes when we cannot
deduce proper initialization from the enclosing routine but find that every
creation procedure will take care of it. Case4 accounts for nested
compounds. For assertions other than postconditions, which cannot use
variables other than attributes,3 is the only applicable condition. The
somewhat special case6 is a consequence of our classification ofResult
among local variables even in thePostcondition of a constant attribute.

As an artefact of the definition’s phrasing, every variable attribute is
“properly set” in any effective routine of a deferred class, since such a class
has no creation procedures. This causes no problem since a failure to set
the attribute properly will be caught, in the validity rule below, for versions
of the routine in effective descendants.

Variable Initialization rule VEVI

It is valid for an Expression, other than the target of an
Assigner_call, to be also aVariable if it is properly set at the
evaluationposition defined by the closest enclosingInstructionor
Assertion_clause.



OBJECTS, VALUES AND ENTITIES §19.9512
This is the fundamental requirement guaranteeing that the value will be
defined if needed.

Because of the definition of “properly set”, this requirement is
pessimistic: some examples might be rejected even though a “smart”
compiler might be able to prove, by more advanced control and data flow
analysis, that the value will always be defined. But then the same software
might be rejected by another compiler, less “smart” or simply using
different criteria. On purpose, the definition limits itself to basic schemes
that all compilers can implement.

If one of your software elements is rejected because of this rule, it’s a
sign that your algorithms fail to initialize a certain variable before use, or
at least that the proper initialization is not clear enough. To correct the
problem, you may:

• Add a version ofdefault_create to the class, as creation procedure.

• Give the attribute a specific initialization through an explicitAttribute
part that setsResult to the appropriate value.

Variable setting and its value
A setting for a variablex is any one of the following run-
time events, defining in each case thevalue of the setting:
1 • Execution of asetterfor x. (Value: the objectattachedto x by

the setter, or a void reference if none.)

2 • If x is avariableattribute with anAttributepart: evaluation of
that part, implying execution of itsCompound. (Value: the
object attached toResult at the end position of that
Compound, or a void reference if none.)

3 • If the typeT of x is self-initializing: assignment tox of T’s
default initialization value. (Value: that initialization value.)



§19.9  SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 513
As a consequence of case2, an attributea that is self-initializing through
an Attribute part ap is not set until execution ofap has reached its end
position. In particular, it is not invalid (although definitely unusual and
perhaps strange) for the instructionsap to use the valuea: as with a
recursive call in a routine, this will start the computation again at the
beginning ofap. For attributes as for routines, this raises the risk of infinite
recursion (perhaps higher for attributes since they have no arguments) and
it is the programmer’s responsibility to avoid this by ensuring that before a
recursive call the context will have sufficiently changed to ensure eventual
termination. No language rule can ensure this (in either the routine or
attribute cases) since this would amount to solving the “halting problem”,
a provably impossible task.

Another consequence of the same observation is that if the execution of
ap triggers an exception, and hence does not reach its end position, any
later attempt to accessa will also restart the execution ofap from the
beginning. This might trigger the same exception, or succeed if the
conditions of the execution have changed.

Execution context
At any time during execution, the currentexecution contextfor
a variable is the period elapsed since:
1 • For an attribute: the creation of thecurrent object.

2 • For a local variable: the start of execution of thecurrentroutine.

Variable Semantics

The value produced by the run-time evaluation of avariablex is:
1 • If the executioncontext has previously executed at least one

setting forx: thevalue of the latest such setting.

2 • Otherwise, if the typeT of x is self-initializing: assignment to
x of T’s default initialization value, causing a setting ofx.

3 • Otherwise, ifx is a variableattribute with anAttribute part:
evaluation of that part, implying execution of itsCompound
and hence a setting forx.

4 • Otherwise, ifx is Result in the Postconditionof a constant
attribute: thevalue of the attribute.



OBJECTS, VALUES AND ENTITIES §19.9514
The previous rule applies only to variables. We now generalize it to a
general rule governing all entities:

This rule is phrased so that the order of the first three cases is significant: if
there’s already been an assignment, no self-initialization is possible; and if
T has a default value, theAttribute part won’t be used.

The Variable Initialization rule ensures that one of these cases will
apply, so thatx will always have a well-defined result for evaluation. This
property was our main goal, and its achievement concludes the discussion
of variable semantics.

Entity Semantics rule

Evaluating anentity yields avalue as follows:
1 • ForCurrent : a valueattached to thecurrent object.

2 • For a formal argument of a routine orInline_agent: the value
of the corresponding actual at the time of thecurrent call.

3 • For a constant attribute: the value of the associated
Manifest_constantas determined by the Manifest Constant
Semantics rule.

4 • For anObject-TestLocal: as determined by the Object-Test
Local Semantics rule.

5 • For avariable: as determined by the Variable Semantics rule.

This rule concludes the semantics of entities by gathering all cases. It
serves as one of the cases of the semantics of expressions, since an entity
can be used as one of the forms ofExpression.

The Object-Test Local Semantics rule appears in the discussion of the
Object_test construct.

← “Curr entobject,cur-
rentroutine”, page641.


	19 19 Objects, values and entities
	19.1 OVERVIEW
	19.2 OBJECTS AND THEIR TYPES
	19.3 VALUES AND INSTANCES
	Reference, void, attached, attached to

	19.4 BASIC TYPES
	19.5 REFERENCE AND COPY SEMANTICS
	Object semantics

	19.6 COMPOSITE OBJECTS AND THEIR FIELDS
	Non-basic class, non-basic type, field
	Subobject, composite object

	19.7 REFERENCE ATOMICITY
	19.8 EXPRESSIONS AND ENTITIES
	Entity, variable, read-only

	19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES
	Self-initializing type
	Self-initializing variable
	Evaluation position, precedes
	Setter instruction
	Properly set variable
	Variable setting and its value
	Execution context



