Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

1 9 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Objects, values and entities

19.1 OVERVIEW

The execution of an Eiffel system consists of creating, accessing and
modifying objects

The following presentation discusses the structure of objects and how
they relate to the syntactical constructs that denote objects in software
texts:expressionsAt run time, an expression may take on varioaties
every value is either an object or a reference to an object.

Among expressionsentities play a particular role. An entity is an
identifier (name in the software text), meant at execution time to denote
possible values. Some entities aead-only: the execution can't change
their initial value. Others, calledariables, can take on successive values
during execution as a result of such operations as creation and assignment.

The description of objects and their properties introduceslyimamic
model of Eiffel software execution: the run-time structures of the data
manipulated by an Eiffel system.

This chapter and the following one will illustrate the dynamic model
through figures representing values and objects. These figures and the
conventions only serve explanatory purposes. In particular:

« Although they may suggest the actual implementation techniques used
to represent values and objects at run time, they should not be construed
asprescribingany specific implementation.

» Do not confuse these conventions for representijmgamic(that is to
say, run-time) properties of systems with the graphical conventions for
FEmEH representing classes, features, the client relation, inheritance, and other
static properties of software texts.

We saw that it is often convenient, in these representations of the static mode — “GRAPHICAL
to picture attribute features in a form that resembles the representation 0REPRESENATION”,
objects in the dynamic model. But this should cause no ambiguity since orm“p@ﬂl
convention applies to classes and the other to run-time objects.

498 OBJECTS, VALUES AND ENTITIES 8§19.2

19.2 OBJECTS AND THEIR TYPES

During its execution, an Eiffel system will create one or more objects.

There will always be at least one: #uet object created on execution start. . “Systemexecution”
page 114
A clear correspondence exists between objects, the dynamic (run-
notion, and on the other side types and classes, the static (programming-
time) notions. Every object proceeds from a type, itself based on a class.
The following definitions capture this correspondence:

l—l—l Type, generating type of an object; generator

Every run-time object is adirect instance of exactly one - "Directinstance”
Class_or_tuple_typef the system, called thgenerating typeof wasdefinedonpagl.

the object, or just “the type of the object” if there is no ambiguity.

The baseclass of the generating type is called the object
generating classorgenerator for short.

o

An object may be ainstanceof many types: if itis an instance @1C, itis - ‘Instanceofatype”.
also an instance of any typeB to which TC conforms. But it is alirect page 322
instance of only one type, and so has just one generating type.

To obtain the generating type of the object attachegdytou may use:

X.type

whose value is an object denoting a type. The qugpg which comes _, «oBJECT PROP-
from the universal clas8NY returns an object denoting a type, with tERTIES". 35.4. pge
associated feature; withdeclared of typ&X, the type ok.typeitself is 919

\ TYPE[TX] \

based on the library clasEYPE More precisely, TYPE[TX] covers all
objects representing types tltainformto TX, includingTX itself.

19.3 VALUES AND INSTANCES

We saw in the discussion of types that any possible value for an enti’- “Dir ect instances

either an object or eeference The notion of reference has 21dvaluesofatype’,
. L page 321

precise definition:

§19.3 VALUES AND INSTANCES 499

k.

-y

"IETI

.

Reference, void, attached, attached to

A referenceis a value that is either:
* Void, in which case it provides no more information.

« Attached, in which case it gives access to an object. The
reference is said to battached tothat object, and the object
attached to the reference.

A non-void reference is “attached to” exactly one object, but an object may
be attached to several references.

The reserved wor¥oid denotes a void reference. To find out if the valSee chaptes5 about

. . : the features of class
of eis void, use the boolean expression ANY Void may be
- implemented as an
‘ e=Void attribute or a once func-
tion.

Values of arexpandedype can never be void.

The following figure shows conventions for representing a reference: by
an arrow — more precisely, a blue arrow in this book — if attached to an
object, by a special “grounding” symbol if void. Below an object you may
write its generating type, hefeC.

: |—| Picturing

references,
attached and

previous - (TO void
count 777,

The four values on the figure are the fields of the object on the left. The first
and the third value from the top, labeledxtandprevious are references;
nextis attached to the object on the right, gmmdviousis void. The figure
gives no information about the values in the expanded fig&ta and
count or about the fields of the object on the right.

item

The following property is essential to the consistency of the Eiffel ty— Following directly

system and the dynamic model: from the Instanceprin:
ciple”, page 322

Object principle

Every nonvoid value is either an object or a referenttached
to an object.

In particular, simple values such as integers, booleans and reals are objects.

500 OBJECTS, VALUES AND ENTITIES 8§19.4

19.4 BASIC TYPES

A number of object types come from classes of the Kernel Library:
BOOLEAN CHARACTERG64-bit) andCHARACTER_SNTEGERand its
sized variantSNTEGER_8INTEGER_16INTEGER_32INTEGER_64
NATURAL NATURAL_8 NATURAL_16 NATURAL_3NATURAL_64
REALand its sized varianBEAL_32andREAL_64 andPOINTER

The specification of their direct instances — boolean values, characters,
integers, floating-point numbers, and addresses for passing to external
software — appears in tiohapter on basic types. — Chapter30.

The specifications of direct instances appearing in the rest of the present
chapter exclude the case of basic types.

19.5 REFERENCE AND COPY SEMANTICS

Object semantics
Every run-time object has eithercopy semantics or
reference semantics

An object has copy semantics if and only if it is the result jof
executing acreationoperation whosereationtarget is of an

expanded type, or afloning such an object.

This property determines the role of the object when used as source of an
assignment: with copy semantics, it will be copied onto the target; with
reference semantics, a reference will be reattached to it.

19.6 COMPOSITE OBJECTS AND THEIR FIELDS

We will use specific terminology for non-basic types:

Non-basic class, non-basic type, field

Any class other than thbasictypes is said to be aon-basic
class Any type whosebaseclass is non-basic is aon-basic
type, and its instances an®n-basic objects This definition makes

A directinstance of a non-basic type is a sequence of zerg or no P"gffe”%e bet"\{eep
S g 5 . variaple and constan
more values, calleields. There is one field for every attribute of ibtes See the end

the type’s base class. of this section

§19.6 COMPOSITE OBJECTS AND THEIR FIELDS 501

Consider a class typeC, of base clas€, and an attribute of classC; let

TA be the type ofa. The possible values for the field corresponding to
attributea in a direct instance of C depend on the nature . There are
three possible cases foA

1 «Reference type.
2 < Expanded type.
3 «Formal generic parameter of class

=== In casel, the field corresponding to attribute is a reference. That
reference may be void, or it may be attached to an instant&slase type

— not necessarily a direct instance. In the figure on the following page, the
first and third fields from the top are attached to the same object, caled

of_reference_type An object and

: its fields
vmd_of_ref_typem

also_of _ref_type|

This represents a par-

. tial snapshot taken dur

of_type_lntegsr ing the execution of a
37 possible systenilus-

of type real 02 trating some of the var
45.46e2 ious kinds of field

of_some__
expanded_type

(™A
(TO

In case2, the field corresponding to attribute is an instance of the

expanded typ&A. That field, then, is itself an object, calledabobjectof
the enclosing object. There are two cases:

» TAmay be a basic type; then the subobject is a basic object of that type;
the figure shows fields of typR TEGERandREAL

« If TAis a non-basic expanded type, the subobject is itself a non-basic
object. This applies to the last field of the left object on the figure. In
this case the enclosing object txanpositeobject.

Subobject, composite object
Any expandedield of an object is aubobjectof that object.

An object that has aon-basic subobject is said to bemposite

Finally, in case, TAis a formal generic parameter of cld@ghe base class
of TC. Depending on whether the actual generic parameter is a reference
type or an expanded type, this will in fact yield either dasecase2.

502 OBJECTS, VALUES AND ENTITIES 8§19.7

; The above definition of fields makes no difference between constant and
-~ variable attributes: an attribute of either kind yields a field in every instance.
‘ETE‘ In a reasonable implementation, fields for constant attributes, being the same

value for every instance of a class, will not occupy any run-time space. This
indicates again that figures representing objects (such as the ones in this
chapter) do not necessary show actual object implementations. This book
uses "field" in the precise sense defined above, which does not always imply
an actual memory area in an object’s representation.

Here is a summary of the classification of objects:

Object Kinds of object

Instance of
rogrammer-defined class

Instance of basic typ,
such asINTEGER

Non-basic
Basic _
Has subobject No subobjects
Composite Non-
composite

|:| also_of_ref_type

of_type_integszg)7

of_type_real
45.46e2

19.7 REFERENCE ATOMICITY

The dynamic model as illustrated above has both composite objects,
containing subobjects, and references to objects. How do these notions
combine? In particular, can a system produce the run-time situation shown
on the following figure, where a reference is attached to a subobject of

another object?

Reference to

4/@ Su bobject

WARNING This illus-
trates an impossible sit
uation

G) (b)

§19.7 REFERENCE ATOMICITY 503

[P]

The answer is no. The semantics of reattachment operatimsgyiment - See casfg] of attach-

formal-actual argument association)ll_guarantee that a reference cmentsemantics table on
. . pageb90 and the discus-

only become attached to a full object. Although objects themselves algign that follows

“atomic”, since clients can modify individual fields by calling tt

appropriate routines, the level of atomicity for attachieferenceds an

entire object.

Itis possible to conceive of a model that supports references to subobjects, as
was in fact the case in ISE Eiffel 2. But this significantly complicates the
dynamic model and the implementation, garbage collection in particular,
without bringing a clearly useful improvement in expressive power.

504

OBJECTS, VALUES AND ENTITIES 8§19.8

19.8 EXPRESSIONS AND ENTITIES

The discussion so far has defined the object structures that can be created
during system execution. To denote the objects and their fields in software
texts, you may use expressions — specimens of the con&ixpeession

There are several forms of expression, which subsequent chapters cover

Entity, variable, read-only

An entity is anldentifier, or one of two reserved word€(irrent
andResult), used in one of the following roles:
1 «Final name of an attribute of a class.

2 sLocal variable of a routine omline_agentincluding Result
for a query.

3 *Formal argument of a routine or inline agent.
4 «QObject st local.

routine call).
Names of non-constant attributes and local variablesamiable
entities, also called justariables. Constant attributes, forma
arguments, Object Test locals a@drrent areread-only entities.

5 «Current, the predefined entity used to represent a reference to
the current object (the target of the latest not yet completed

in detail. One form, the simplest, is of immediate interest: entities, which
consist of a single name.

- Se€B.6, pae 221
about local variables

andResult Inline
agents are an described
in chapter27 and
Object Test locals in

24.3, pae 650

Two kinds of operation, creation and reattachment, may modify the v='Creation: chapter
of a variable (a non-constant attribute, part of catedowyr local variable,20 reattachment:

categony2. In the other four cases — constant attributes, formal argum®
(3), Object Test localsA) andCurrent (5) — you may not directly modify
the entities, hence the namead-onlyentity.

The term ‘tonstanentity” wouldn’t do, not so much because you can modify

hapter22.

the corresponding objects but because read-only entities (other than constant

attributes) do change at run time: a qualified cadittache€urrent, and any

routine call reattaches the formal arguments.

Result appearing in thePostconditionof a constant attribute cannot be

- “Curr entobject,cur-
rent ioutine”, page 641

changed at execution time, but for simplicity is considered part of local

variables in all cases anyway.
Here is the corresponding syntax specification:

I BTNTAX

Entities and variables
Entity 2 Variable| Read_only

Variable 2 Variable_attributd Local

Variable_attribute? Feature_name

§19.8 EXPRESSIONS AND ENTITIES 505

Al ininy

Local & Identifier| Result
Read_only2 Formal| Constant_attributpCurrent
Formal 2 Identifier
Constant_attribut® Feature_name

The constraint on entities indicates that an entity must be of one of the five
forms listed above. In addition, local variables, formal arguments and
Object Test locals are only permitted in certain contexts:

Entity rule VEEN

An occurrence of apntity e in the text of a clas€ (other than as
the feature of a qualified call) is valid if and only if it satisfies one
of the following conditions:

1e.eisCurrent.
2 *eis thefinal name of an attribute .

3 e is the local variableResult, and the occurrence is in a
Feature _body Postcondition or Rescue part of an
Attribute_or_routindext for aquery or arinline_agentvhose
signature includes a result type.

4 +e is Result appearing in thePostconditionof a constant
attribute’s declaration.

5 «eis listed in theldentifier_listof anEntity _declaration_grouin
alocal_declarationpart of a feature oinline_agenfa, and the
occurrence is in &ocal_declarationd=eature_bodpr Rescue
part forfa.

6 «eis listed in theldentifier_listof anEntity _declaration_grouin
aFormal_argumenigart for a routing, and the occurrence is in
adeclaration for.

7 «eis listed in theldentifier_listof anEntity _declaration_grouijm
theAgent_argumentgart of anAgenta, and the occurrence is in
theAgent_bodyof a.

8 *eis theObject-TestLocal of anObject_testand the occurrence

is in itsscope. ~ “ScopeofanObject-
TestlLocal”, page653

“Other than as feature of a qualified call” excludes from the rule any attribute,

possibly of another class, used as feature of a qualified cadl: lirthe rule

applies taa but not tob. The constraint ob is theGeneralCall rule, requiring — The General Call
b to be the name of a featurelirs base class. rule is on pagé73

A related rule defines what it means for an entity to Yereble

506 OBJECTS, VALUES AND ENTITIES 8§19.9

Variable rule VEVA

T A Variable entity v is valid if an only if it satisfies one of the
following conditions:

1 «vis thefinal name of avariable attrilbite ofC.

2 +v is the final name of docal variable of the immediately
enclosing routine or agent.

This will determine whether you may us@s the target of aAssignment -, Assignmenis dis-
Note thatvin clause2 has to be a local variable (including, as usdakuly cussed in chaptér2.
of the immediatelyenclosing routine or agents. Routines may not

nested, but an agent appears in a routine (and possibly in another &

only the local variables of the immediately enclosing scope are assigr

19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES

2] The semantic purpose of an entity is to be ready at execution time to deliver
an associated value whenever queried ewvaluated The validity and
semantic rules of the language must ensure that whenever this happens the
entity denotegxactly onevalue, and to define what that value will be.

For read-only entities this is achieved through simple properties, whose
details appear in other chapters:

* A constant attribute has the vagecified in its declaration. - 29.10, pae 803
« Current getsattached to the root object on system start, and at the =*“Clir ent Seman-
of a qualified calk.f (...) denotes the value of the target tics”, page 643
* On entry to a routine, a formal argument gatsached to the value cZ “PRECISE CALL
the corresponding actual. SEMANTICS”, 23.17,
page 643

For a variable, the picture is a bit more subtle. The result of the evalui
is a consequence of the operations that may have affected the variabie:

« Initialization , as it occurs on object creation (for an attribute) or a
routine call (for a local variable).

« Any assignmentusing the variable as its target.

Assignment has a well-defined semantics, discussed in detail in the
correspondingchapter. But the execution might evaluate the varie'Chapter22
before it has been the target of any explicit assignment; it is the ta:
initialization rules to ensure that even in such a case every variable he
well-defined value.

This is not the case in all programming languages; many leave it to the
programmer to ensure that every variable is assigned before use. In Eiffel, it
is a language design principle that the rules must be sufficient to deduce, for
any evaluation of any variable, a well-defined result.

X
-®

§19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 507

The value of a variable that hasn’t yet been the target of an assignment will
be determined by thaitialization rules that we will now study. These
rules determinavhich valuea variable will hold prior to assignment, and
whenexactly that value will be set.

---- TO BE REDONE ---There are two possibilities, depending on the
type of the variable:

» The most common case covers variablebadic typess well as non-
attached ones a&ference typesAn attribute of such a type denotes a
field in the corresponding objects, and will accordingly be initialized as
part of object creation. A local variable (includigesultffor a function)
is initialized anew for each call of its routine. In both cases the initial
values are language-specified: zero for numbers, false for booleans, null
character for characters, and for references — covering all other
possibilities — a void reference.

Expandedtypes raise a special issue because their semantics require
variables, when evaluated, always to be attached to an object of the
corresponding type. Such an object cannot just follow from the
declaration of the variable (like the valQgin the previous case, follows
from the declaration of alNTEGERvariable); it has to come out of a
creation instruction. The rule then is to create an objectfimst
evaluationof the variable — meaning for an attribute the first evaluation
for any given object, and for a local variable the first evaluation in any
given call. The evaluation will cause creation of an object of the
appropriate type, using the procedufefault_creatgewhich must be

one of the creation procedures of the type.

This is the gist of the rules. Let now see their precise form. First we name
---- REWRITE our two type categories:

Self-initializing type
A type isself-initializing if it is one of:
1 « A detachable type.
2 « A self-initializing formal.

3 * An attached type (including expanded types and, as a spécial
case of these, basic types) whaseationprocedures include
aversion ofdefault_creatdrom ANY

508

OBJECTS, VALUES AND ENTITIES 8§19.9

A self-initializing type enables us to define a default initialization value:

» Use Void for a detachable type (cade the easiest but also the least
interesting)

* Execute a creation instruction with the applicable version of
default_creatdor the most interesting casg;attached types, including
expanded types. This case also covers basic types, which all have a
default value given by the following rule.

A “self-initializing formal” (case2) is a generic parameter, so we don'’t
exactly know which one of these three semantics will apply; but we do
require, through the Generic Derivation rule, that any attached type used as
actual generic parameter be self-initializing, meaning in this case that it
will provide default_create

In the definition, the “creation procedures” oftgpe are the creation
procedures of its baselass or, for a formal generic parameter, its
“constraining creators”, the features listed as available for creation in its
constraining type.

The more directly useful notion is that of a self-initializingriable,
appearing below.

The term “self-initializing” is justified by the following semantic rule,
specifying the actual initialization values for every self-initializing type.

Default Initialization rule
Every self-initializing type T has adefault initialization value
as follows:
1 - For adetachable type: a void reference.

2 *For a self-initializingattachedtype: an object obtained by
creating an instance dfthroughdefault_create

3 ¢ For aself-initializing formal: for every generic derivation
(recursively) the default initialization value of the
corresponding actual generic parameter.

4 « ForBOOLEAN the boolean value false.

5 ¢ For asized \ariant of CHARACTERnNull character.

6 « For asized \ariant ofINTEGER integer zero.

7 * For asized \ariant ofREAL floating-point zero.

8 * ForPOINTER a null pointer.

9 «ForTYPED_POINTERan object representing a null pointe

D

=

§19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 509

This rule is the reason why everyone loves self-initializing types: whenever
execution catches an entity that hasn’'t been explicitly set, it can (and,
thanks to the Entity Semantics rule, will) set it to a well-defined default
value. This idea gains extra flexibility, in the next definition, through the
notion of attributes with an explicit initialization.

The notion generalizes ---- COMPLETE

Self-initializing variable
A variable isself-initializing if one of the following holds:
1 «Its type is a self-initializing type.

2 |t is an attribute declared with akttribute part such that the
entity Resultis properly set at the end of iompound

If a variable is self-initializing, we don’t need to worry about finding it with

an undefined value at execution time: if it has not yet been the target of an
attachment operation, automatic initialization can take over and set it to a
well-defined default value. That value is, in cds¢he default value for its
type, and in cas@ the result of the attribute’s own initialization. That
initialization must ensure thaResult is “properly set” as defined next
(partly recursively from the above definition) .

N

---- EXPLAIN

Evaluation position, precedes
An evaluation positionis one of:
e In aCompoundgone of itsnstructioncomponents.
« In anAssertion one of itsAssertion_clauseomponents.
* In either case, a speciahd position

A position p precedesa positionq if they are both in the same
Compoundor Assertion and either:

e pandq are bothinstructionor Assertion_clauseomponents
andp appears beforg in the corresponding list.

e qis the end position arglis not.

510

OBJECTS, VALUES AND ENTITIES 8§19.9

This notion is needed to ensure that entities are properly set before use.

In a compoundl; i2; i3 we have four positions] precedes2, i3 and
the end position, and so on.

The relation as defined only applies ficst-level components of the
compound: ifi2 itself contains a compound, for example if it is of the form
if ctheni4; i5 end, theni4 is not an evaluation position of the outermost
compound, and so has no “precedes” relation with aiiy, & andi3.

Setter instruction

A setter instruction is an assignment or creation instruction.

If x is avariable, a setter instruction is setter for x if its
assignment tget orcreation taget isx.

Properly set variable

At an evaluationpositionepin a classC, a variablex is properly
setif one of the following conditions holds:

1 xis self-initializing.
2 *epis an evaluation position of theompoundof a routine or

Inline_agentof the Internalform, one of whose instructions
precedespand is asetter forx.

3 *Xxis a variable attribute, and is (recursively) properly set at the
end position of evergreation procedure .

4 «epis an evaluation position in @ompoundhat is part of an
instruction ep’, itself belonging to aCompound and x is
(recursively) properly set at positiep’.

5eepis in a Postconditionof a routine orlnline_agentof the
Internalform, andx is (recursively) properly set at the end
position of itsCompound

6 *epis Resultin thePostconditiorof a constant attribute

§19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 511

Al ininy

The key cases ar@, particularly useful for local variables but also
applicable to attributes, angl applicable to attributes when we cannot
deduce proper initialization from the enclosing routine but find that every
creation procedure will take care of it. Cageaccounts for nested
compounds. For assertions other than postconditions, which cannot use
variables other than attribute8,is the only applicable condition. The
somewhat special cageis a consequence of our classificationResult
among local variables even in tRestconditiorof a constant attribute.

As an artefact of the definition’s phrasing, every variable attribute is
“properly set” in any effective routine of a deferred class, since such a class
has no creation procedures. This causes no problem since a failure to set
the attribute properly will be caught, in the validity rule below, for versions
of the routine in effective descendants.

Variable Initialization rule VEVI

It is valid for an Expression other than the target of an
Assigner_call to be also avariableif it is properly set at the
evaluationposition defined by the closest enclosingtructionor
Assertion_clause

512 OBJECTS, VALUES AND ENTITIES 8§19.9

This is the fundamental requirement guaranteeing that the value will be
defined if needed.

Because of the definition of “properly set”, this requirement is
pessimistic: some examples might be rejected even though a “smart”
compiler might be able to prove, by more advanced control and data flow
analysis, that the value will always be defined. But then the same software
might be rejected by another compiler, less “smart” or simply using
different criteria. On purpose, the definition limits itself to basic schemes
that all compilers can implement.

If one of your software elements is rejected because of this rule, it's a
sign that your algorithms fail to initialize a certain variable before use, or
at least that the proper initialization is not clear enough. To correct the
problem, you may:

» Add a version oflefault_createo the class, as creation procedure.

* Give the attribute a specific initialization through an expli&itribute
part that setResultto the appropriate value.

Variable setting and its value

A setting for a variablex is any one of the following run-
time events, defining in each case Yhkie of the setting:

1 « Execution of asetterfor x. (Value the objeciattachedo x by
the setter, or a void reference if none.)

2 «If x is avariableattribute with anAttribute part: evaluation of
that part, implying execution of it€ompound (Value the
object attached toResult at the end position of that
Compounglor a void reference if none.)

3 «If the typeT of x is self-initializing: assignment ta of T's
default initialization \alue. {/alue that initialization value.)

§19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES 513

As a consequence of cagean attributea that is self-initializing through

an Attribute part ap is not set until execution ofp has reached its end
position. In particular, it is not invalid (although definitely unusual and
perhaps strange) for the instructioap to use the valuea: as with a
recursive call in a routine, this will start the computation again at the
beginning ofap. For attributes as for routines, this raises the risk of infinite
recursion (perhaps higher for attributes since they have no arguments) and
it is the programmer’s responsibility to avoid this by ensuring that before a
recursive call the context will have sufficiently changed to ensure eventual
termination. No language rule can ensure this (in either the routine or
attribute cases) since this would amount to solving the “halting problem”,
a provably impossible task.

Another consequence of the same observation is that if the execution of
ap triggers an exception, and hence does not reach its end position, any
later attempt to access will also restart the execution afp from the
beginning. This might trigger the same exception, or succeed if the
conditions of the execution have changed.

Execution context

At any time during execution, the curregiecution contexitfor
a variable is the period elapsed since:

1 < For an attribute: the creation of ttwerrent object.
2 « For alocal variable: the start of execution of tugerentroutine.

Variable Semantics

The value produced by the run-time evaluation gadablex is:

1 « If the executioncontet has previously executed at least one
setting forx: thevalue of the latest such setting.

2 « Otherwise, if the typd of x is self-initializing: assignment to
x of T's default initialization \alue, causing a setting xf

3 « Otherwise, ifx is avariableattribute with anAttribute part:
evaluation of that part, implying execution of i@mpound
and hence a setting far

4 « Otherwise, ifx is Result in the Postconditionof a constant
attribute: thevalue of the attribute.

514 OBJECTS, VALUES AND ENTITIES 8§19.9

This rule is phrased so that the order of the first three cases is significant: if
there’s already been an assignment, no self-initialization is possible; and if
T has a default value, thgtribute part won't be used.

The Variable Initialization rule ensures that one of these cases will
apply, so thak will always have a well-defined result for evaluation. This
property was our main goal, and its achievement concludes the discussion
of variable semantics.

The previous rule applies only to variables. We now generalize it to a
general rule governing all entities:

Entity Semantics rule
Evaluating arentity yields avalue as follows:

1 «ForCurrent: a valueattached to theurrent object. . _
~ “Curr entobject,cur-

2 «For a formal argument of a routine lmine_agentthe value rentroutine”, page641
of the corresponding actual at the time ofdherent call.
3 e¢For a constant attribute: the value of the associated
Manifest_constanas determined by the Manifest Constant
Semantics rule.
4 « For anObject-TestLocal: as determined by the Object-Test
Local Semantics rule.

5 ¢ For avariable: as determined by the Variable Semantics rule.

This rule concludes the semantics of entities by gathering all cases. It
serves as one of the cases of the semantics of expressions, since an entity
can be used as one of the form&gpression

The Object-Test Local Semantics rule appears in the discussion of the
Object_testonstruct.

	19 19 Objects, values and entities
	19.1 OVERVIEW
	19.2 OBJECTS AND THEIR TYPES
	19.3 VALUES AND INSTANCES
	Reference, void, attached, attached to

	19.4 BASIC TYPES
	19.5 REFERENCE AND COPY SEMANTICS
	Object semantics

	19.6 COMPOSITE OBJECTS AND THEIR FIELDS
	Non-basic class, non-basic type, field
	Subobject, composite object

	19.7 REFERENCE ATOMICITY
	19.8 EXPRESSIONS AND ENTITIES
	Entity, variable, read-only

	19.9 SEMANTICS: EVALUATING AND INITIALIZING ENTITIES
	Self-initializing type
	Self-initializing variable
	Evaluation position, precedes
	Setter instruction
	Properly set variable
	Variable setting and its value
	Execution context

