
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
C

On language design and evolution
After an evening at the theater, we may have enjoyed the show or hated it, but meeting
the playwright for a few more explanations at no extra charge — our last chance of
understanding what hereally meant — is not most people’s idea of how to finish off the
evening nicely.

Undaunted by the dangers, however, I have included in this appendix a few comments
on the process of language design, which will perhaps help put the rest of this book in a
broader perspective. The only other aims of this informal and unpretentious discussion
are to encourage further thinking, and to direct the reader’s attention to the seldom
discussed topic of language evolution — what happens after the initial design.

C.1 SIMPLICITY, COMPLEXITY

One view of design holds that good languages should be small. For many years the best way
to discredit any proposed design was to hint at similarity with PL/I. Just uttering that name
from the back of the room was guaranteed to bring laughter to the audience and ridicule to
the presenter. But many successful languages are large and complex; C++ is the most obvious
example, but Java is just as typical; a look at the description of Java initialization semantics
at http://www.javaworld.com/javaworld/jw-03-1998/jw-03-initialization.html should be
enough to dispel any suspicion of simplicity.

Oversize has many damaging consequences: making it harder to learn the language;
causing surprises even to experienced users, since they often will master only a subset,
and may involuntarily use properties they don’t know; increasing the likelihood that
compilers will be buggy, bloated, and late.

But languages should not be too simple, and the language designer should not resist
useful additions on principle. One can conjecture that Pascal could have had a much
more significant industrial role if a few extensions (such as variable-length array access
and an elementary module facility) had been included in the standard in the late
nineteen-seventies or early eighties. They were not, and Pascal was largely displaced by
C, certainly a regrettable development for software engineering.

So the truth has to be somewhere between the monsters of complexity and the zen-
like masterpieces of ascetism — between the bonzai and the baobab.

The classic article
on language design
is C.A.R. Hoare’s
“Hints on Program-
ming Language
Design”, reprinted
in [Hoare’s]
“Essays in Comput-
ing Science”, ed.
C.B Jones,Prentice-
Hall International,
1989, pp. 193-214.

ON LANGUAGE DESIGN AND EVOLUTION §C.21032
To complicate the discussion, there is no single definition of size. This book occupies
800 pages, which would seem to suggest that Eiffel is complex. But then most of these
pages are devoted to comments and explanations, and it is possible to talk just about pure
Lisp (or for that matter just about love, another seemingly simple concept) over many more
pages. Then if you consider that the syntax diagrams occupy only four pages, Eiffel is very
simple. From yet another viewpoint, the language properties which enable a beginner to
start writing useful software, may be defined in the 20 pages of chapter1; that is pretty
short too. A “reference only” extract of the book, retaining only the formal rules (syntax,
validity, semantics) interspersed throughout the text, takes up about 40 pages.

We could paraphrase a famous quote and state that a language should be as small as
possible but no smaller. That doesn’t help much. More interesting is the answer Jean
Ichbiah gave to the journalist (for the bulletin of INRIA) who, at the time of Ada’s
original publication, asked him what he had to say to those who criticized the language
as too big and complex: “Small languages”, he retorted, “solve small problems”.

This comment is relevant because Ada, although undoubtedly a “big language”,
differs from others in that category by clearly showing (even to its critics) that it was
designedand has little gratuitous featurism. As with other serious languages, the whole
design is driven by a few powerful ideas, and every feature has a rational justification.
You may disagree with some of these ideas, contest some of the justifications, and dislike
some of the features, but it would be unfair to deny the consistency of the edifice.
Consistency is indeed the key: size, however defined, is a measure, but consistency is the
goal.

C.2 CONSISTENCY

Consistency means having a goal: never departing from a small number of powerful ideas,
taking them to their full realization, and not bothering with anything that does not fit with
the overall picture. Transposed to human affairs this may lead to fanaticism, but for
language design no other way exists: unless you apply this principle you will never obtain
an elegant, teachable and convincing result.

Note the importance for the selected ideas to possess both of the properties
mentioned: each idea should bepowerful, and there should be asmall numberof them.
Eiffel may be defined by something like twenty key concepts. Here, as an illustration,
are a few of them:

• Software architectures should be based on elements communicating
through clearly defined contracts, expressed through formal
preconditions, postconditions and invariants.

• Classes(abstract data types) should serve as both modules and types,
and the modular and typing systems should entirely be based on classes.
(Two immediate consequences are that no routine may exist except as
part of a class defining its target type, and that Eiffel systems do not
have a main program.)

§C.2 CONSISTENCY 1033
• Classes should beparameterizableby types to support the construction
of reusable software components.

• Inheritance is both a module extension facility and a subtyping
mechanism. Attempts to restrict the mechanism to only one of these
aspects, in the name of some misdirected attempt at purity, only serve
to trouble the programmer with irrelevant questions. Attempt to portray
multiple inheritance as evil only stem from clearly inadequate uses, or
badly conceived language mechanisms.

• The only way to perform an actual computation is tocall a (dynamically
bound) feature on an object.

• Whenever possible, software systems shouldavoid explicit
discrimination between a fixed list of cases, and instead rely on
automatic selection at run time through dynamic binding.

• Client uses of classes should only rely on the officialinterface.

• A strong distinction should be maintained betweencommands
(procedures) andqueries (functions and attributes).

• A contract violation(exception) should lead to either organized failure
or an attempt to use another strategy.

• It should be possible for a static tool to determine the type consistency
of every operation by examining the software text, before execution
(static typing).

• It should be possible to build sophisticatedrun-time object structures,
modeling the often complex relations that exist in the external systems being
modeled, and to let the supporting implementations take care ofgarbage
collectionto reclaim unused space automatically.

Eiffel is nothing else than these ideas and their companions taken to their full consequences.

Why is consistency so important? One obvious reason is that it determines your
ability to teach the language: someone who understands the twenty or so basic ideas will
have no trouble mastering the details.

Another justification of the consistency principle is that with more than a few basic
ideas the language design becomes simply unmanageable. Language constructs have a
way of interacting with each other which can drive the most careful designers crazy. This
is why the idea of orthogonality, popularized by Algol 68, does not live up to its
promises: apparently unrelated aspects will produce strange combinations, which the
language specification must cover explicitly.

An extreme example in Eiffel is the combination of theobsolete and join
mechanisms, two seemingly unrelated facilities. A class may declare a feature as
obsolete to prepare for its eventual removal without destroying existing software; this is
a fundamental tool for library design and evolution. In the inheritance mechanism, a
class may merge (“join”) features inherited from different parents. No two mechanisms
seem at first sight more “orthogonal” with each other. Yet they raise a specific question:

ON LANGUAGE DESIGN AND EVOLUTION §C.31034
the Join rule must give all the properties of the feature that results from joining a few
inherited features, in terms of the properties of the inherited versions; but then one of
these features may be obsolete. Not the most fascinating use of language facilities; but
there is no reason to disallow it. (This would require an explicit constraint anyway, and
simplicity would not be the winner.) Now does this make the joined version obsolete?
The language specification must give an answer. (The answer is no.)

Such cases should suffice to indicate how crucial it is to eliminate anything that is not
essential. Many extensions, which might seem reasonable at first, would raise endless
questions because of their possible interactions with others.

Another interesting example of interference is the absence of garbage collection in
most C++ implementation. Although often justifiedex post factoin the name of the C
philosophy of putting the programmer in control of every detail, this limitation is in
reality a consequence of the language’s design: the presence of C-style casts makes it
possible to disguise a pointer into something else, thus fooling a garbage collector and
leading to serious potential errors. Many programmers do not realize how a seemingly
remote property of the type system exerts such a direct influence on the very practical
issue of memory management.

C.3 UNIQUENESS

Taken to its full consequences, the principle of Consistency implies the principle of
Uniqueness, which states that the language design should provide one good way to
express every operation of interest; it should avoid providing two.

This idea explains, for example, why Eiffel, almost alone among general-purpose
languages, supports only one form of loop. Why offer five or six variants (test at the
beginning, the end or the middle, direct or reverse condition, “for” loop offering
automatic transition to the next element etc.) while a single, general one will be easy to
learn and remember, and everything else may be programmed from it?

The loop example deserves further attention. A well-written Eiffel application will
have few loops: a loop is an iteration mechanism on a data structure (such as a file or
list); it should be written as a general-purpose routine in a reusable class, and then
adapted to specific contexts through the techniques illustrated in the discussion of
iterators. (Such pre-programmed iteration mechanisms are indeed available from
libraries.) Then having to writei := i + 1 manually for the equivalent of a For loop is not
a problem.

This observation, which would not necessarily transpose to another language,
illustrates an important aspect of the Eiffel method, which makes almost all “X
considered harmful” observations, for arbitraryX, obsolete.

The mechanism for marking constructs as harmful is paradoxical: as soon as you
recognize some patternX as useful, this immediately makes it harmful, by suggesting
that you should not from then on reproduceX-like patterns in your software texts, but
instead hideX in a reusable software component and then reuse that component directly.

§C.3 UNIQUENESS 1035
Loops are harmful, then, not because they pose a danger by themselves (as may be
argued of goto instructions), but because their very usefulness as a common pattern of
data structure traversal suggests packaging them in reusable components describing
higher-level, more abstract forms of these patterns. The only danger here would be long-
term — not taking advantage of potential reuse.

The principle of Uniqueness is a particularly useful guide for language evolution,
after initial design. It is natural for users of a language to request new facilities that
simplify their job. Most of the time, it was possible to do this job before, which suggests
that the principle requires rejecting these extensions. But that’s not necessarily a correct
interpretation, since the principle requires providing onegoodway of addressing each
need. The question then becomes whether the previous way is good enough.

Creation expressions provide a good example. Until recently, Eiffel had a creation
instruction (to create and initialize an object) but no creation expressions. The initial
version of the present chapter in the first edition of this book explained the rationale in
detail, stating, however, that creation expressions might have a role in the future. That
future has come. Along with a creation instruction

which creates an object of the appropriate type, attaches it tox, and initializes it with the
given procedure and arguments, you may also write

whereTYPE is the type ofx. (In both cases some variations and simplifications are
available.) Is this a violation of the principle of Uniqueness? As presented, yes. But in
practice no good programmer will ever use form [B] in the case given, because there is
a better way: form [A], which avoids the need to specify the type. Why specifyTYPE
since (the language being strongly typed) it follows from the declaration ofx? There is
no good reason.Creationexpressions, however, are useful in another case: creating an
object whose only use is to be passed as an argument to a routine. Then you can write

where the restriction to creation instructions would make things far more cumbersome:

Experienced users found that such schemes occurred frequently and caused useless effort
and distraction. It’s not a matter of keystrokes, as a longer form is preferable when it adds
relevant information; it’s a matter of not wasting one’s time in repetitive schemes that
bring nothing new and obscure the truly relevant parts of the software.

create x.make (...) [A]

x := {TYPE} .make (...) [B]

some_routine(..., {TYPE} .make (...), ...)

new_object: TYPE -- Declare local Variable just for this purpose
...
create new_object.make (...)
some_routine (..., new_object, ...)

ON LANGUAGE DESIGN AND EVOLUTION §C.41036
So the two mechanisms, creation instructions and creation expressions, are both
useful because they cover complementary needs.

A similar example is and “Inspect” instructions. Because of Eiffel’s emphasis on
avoiding explicit discrimination and relying on dynamic binding instead, all in the name
of modular, extensible, reusable architectures, the language did not initially (until 1989)
include multi-branch mechanisms. As experience grew, it became clear that such
mechanisms were still needed in some cases, where they did not conflict with object-
oriented principles. Hence the introduction of Inspect instruction (a kind ofcase... of
discriminating on integers or characters). It is significant that the original solution erred
on the side of caution: only when extensive experience clarified the conditions under
which explicit discrimination was still legitimate did we go for the corresponding
extensions. Better be restrictive at first, and loosen the strings later when you fully
understand what’s truly needed and what would be mere featurism.

C.4 TOLERANCE AND DISCIPLINE

Using the word “restrictive” reminds us of the somewhat disciplinarian attitude that is
not infrequent in the software community. One commonly hears such phrases as
“preventing the programmers from doing their dirty tricks”. It is as if language designers
were invested with a moral mission, and languages were a rampart against the threat of
the developers’ natural uncleanliness.

I disagree with this view. (This will seem surprising to those who have heard Eiffel
being categorized, I believe quite wrongly, as a language of the restrictive school.)
Programming language designers are not in the chastity belt business. Their role, to
repeat a comment which I first heard many years ago from C.H.A. Koster, is not to
prevent developers from writing bad software (a hopeless endeavor anyway), but to
enable them to write good software; and perhaps to make the task pleasurable as well.

This must be applied together with the principle of Uniqueness. If you exclude a
certain facility, be it the goto or function pointers, it is not to save humanity from some
abomination (although you may also be doing that) but because you are providing
elsewhere a better way to achieve the goals which the excluded constructs purported to
address. Loops and conditionals are better than gotos, and dynamic binding under the
control of static typing is better than function pointers or explicit discrimination.

In other words, if a design is defined as much by what it leaves out as by what it
includes, one cannot justify the exclusions without knowing the inclusions.

These ideas pervade Eiffel. The language’s ambition is to support an elegant and
powerful method for analysis, design, implementation and reuse, and to help competent
developers produce high-quality software. The method is precisely defined, and the
language does not attempt to promote any other way of developing software; but it also
does not attempt to prevent its users from applying their creativity.

The details of the inheritance mechanism provide a clear example of these principles.
The relation between inheritance and information hiding is a controversial topic; Eiffel
takes the view that descendants should be entirely free to define the export status of inherited
features, without being constrained by their ancestors’ choice. Nothing really forces

§C.5 METHODOLOGY 1037
everyone to agree: a project leader may take a more restrictive approach and, for example,
prohibit the hiding of a feature exported by a parent. It is not difficult to write a tool that
will check adherence to this rule. Had the language specification taken the restrictive stand,
it would have been impossible for a project leader to enforce the inverse policy.

In summary: language designers should not exclude “bad” constructs out of a desire
to punish or restrict the users of the language; that is not their job. The exclusions are
justified only by the inclusions: the designer should focus on the constructs that he
deems essential, and his responsibility is then to remove everything else, lest he produce
a monster of complexity.

C.5 METHODOLOGY

In a bad language design, the programmer is presented with a wealth of facilities, and
left to figure out when to use each, when not, and which to choose when more than one
appears applicable.

In a good design, each language facility goes with a precise theory — presumably
explained in the accompanying book or books — of the purpose it serves: when it is
desirable, when it is not.

C.6 MEA CULPA, MEA MAXIMA CULPA

The surest sign of a problematic design is the presence, in a language manual, of
comments stating that some constructs should never be used. A typical example in the
C++ and Java literature is the (justified) advice to avoid direct assignments to fields of
objects, as inx.a := b, which indeed violate all the principles of information hiding and
object technology.

The natural question — especially for such a recent design as Java, which does not
have the excuse of being constrained by the requirement of full compatibility with C
— is how one can justify producing a programming language and immediately starting
to warn users against certain facilities. If the designer truly thinks (asks the naïve
observer) that a certain construct is harmful, could he perhaps not have refrained from
including it in the first place? Is the designer not the one who decides what goes in and
what stays out?

Loving your language means never having to say you’re sorry.

C.7 THE LANGUAGE AND THE LIBRARIES

In a method supporting reusability, it is often possible and desirable to provide a new
feature through a library facility rather than through a language change.

Like some other languages, Eiffel uses libraries for mechanisms such as input and
output, rather than defining language constructs. The inheritance mechanism also
provides a classANY, inherited by all classes and offering them a number of crucial
general-purpose features:copy, clone, deep_clone(producing recursive copies of
arbitrarily large and complex object structures), equality,out (which produces a
printable image of any value or object).

ON LANGUAGE DESIGN AND EVOLUTION §C.81038
Other powerful library mechanisms include theSTORABLEclass, providing a
straightforward way to store an object structure — again, arbitrarily large and complex —
into a file, or to transmit it across a network, in a machine-independent format if desired.

A cynic might question the benefit of extending the libraries to keep the language
simple. Indeed, tough problems of consistency and simplicity do arise for libraries.
There is an important difference, however: one of level. The library as well as any user
application are defined with respect to the basis provided by the language. Because
everything else relies on it, this basis must be kept simple at all costs. Complexity should
be avoided in libraries too, of course, but the consequences are less grave.

Mathematical theories provide the appropriate comparison. Adding a language construct
is like adding an axiom, certainly not a decision to be taken lightly. Adding a library class or
routine is simply like adding another theorem, inferred from the current axioms.

The interaction of libraries and language in Eiffel is sometimes intricate. The basic
exception mechanism is very simple; classEXCEPTIONSprovides further tuning, for
example to handle various kinds of exception differently, or to ignore certain signals.
Similarly, MEMORYprovides finer control over the garbage collector.INTERNALgives
access to the internal structure of objects, useful to write system-level tools or interfaces
to databases. Arrays are not a language construct but come from a library classARRAY,
since an array can be described as an abstractly specified object, in the same way as a list
or a stack; this greatly simplifies the language and makes programs more consistent and
readable. The notion ofTUPLE is handled in a similar way. In both cases, there is a
language connection through special syntax for manifest arrays or tuples.

Similarly, all basic types, fromINTEGERto BOOLEANandSTRINGare formally
treated as classes (unlike the solution of C++ and Java, which separates the basic types
from the rest of the type system). To the programmer, these are normal classes, which
can be browsed through the normal tools. The compiler, however, cheats since it knows
about these classes and can generate better code for them. This is an attempt to combine
the best of both worlds: the consistency, simplicity and elegance resulting from a
uniform type system; and the efficiency resulting from special knowledge.

C.8 ON SYNTAX

One of the most amusing characteristics of the software development community, from
a language designer’s viewpoint, is the discrepancy between professed beliefs and real
opinions on the subject of programming language syntax. The official consensus is that
syntax, especially “concrete” syntax (governing the textual appearance of software texts)
does not matter. All that counts is structure and semantics.

Believe this and be prepared for a few surprises. You replace a parenthesis by a square
bracket in the syntax of some construct, and the next day a million people march on
Parliament to demand hanging of the traitors.

Of the pretense (syntax is irrelevant) and the actual reaction (syntax matters), the one
to be believed is the latter. Not that haggling over parentheses is very productive, of

§C.8 ON SYNTAX 1039
course, but unsatisfactory syntax usually reflects deeper problems, often semantic ones:
form betrays contents.

Once a certain notation makes its way into the language, it will be used thousands of
times by thousands of people: by readers to discover and understand software texts; by
writers to express their ideas. If its esthetically wrong, it cannot be successful.

There is no recipe for esthetic success, but here again consistency is key. To take just
one example, Eiffel follows Ada in making sure that any construct that requires an
instruction (such as the body of a Loop, the body of a Routine or a branch of a
Conditional) actually takes a sequence of instructions, or Compound. This is one of the
simple and universal conventions which make the language easy to remember.

For syntax, some pragmatism does not hurt. A modern version of the struggle between
big-endians and little-endians provides a good example. The programming language world
is unevenly divided between partisans of the semicolon (or equivalent) as terminator and
the Algol camp of semicolon-as-delimiter. Although the accepted wisdom nowadays is
heavily in favor of the first approach, I belong to the second school. But in practice what
matters is not anyone’s taste but convenience for software developers: adding or forgetting
a semicolon should not result in any unpleasant consequences.

In the syntax of Eiffel, the semicolon is theoretically a delimiter (between
instructions, declarations,Note_valuesclauses,Parentparts); but the syntax was so
designed as to make the semicolon syntactically redundant, useful only to improve
readability; so in most contexts it is optional.

This tolerance is made possible by two syntactical properties: an empty construct is
always legal; and the use of proper construct terminators (oftenend) ensures that no new
component of a text may be mistaken for the continuation of the previous construct. For
example in

there is no syntactic ambiguity, even without a semicolon, since no construct may involve
two adjacent identifiers.

It is interesting to note here that the study often invoked to justify the C-Java-Ada
style of semicolon as terminator (Gannon and Horning, IEEETSE, June 1975) actually
used subjects that were trained in PL/I and a test “separator” language that apparently
treated successive semicolons as an error, a completely unrealistic assumption. This
seems to invalidate the piece of conventional wisdom that asserts separators are better
than terminators. The experience of Eiffel since semicolons were made optional
massively suggests that semicolons are in most cases a mere nuisance.

Another example of the importance of syntax is the dominant practice, in the C-C+-
Java-Perl etc. world, of the equality symbol= as assignment operator, going against
centuries of mathematical tradition. Experienced programmers, so the argument goes,
will never make the error. In fact they make it often. A recent review of the BSD
operating system source, performed over one week-end, identified three cases ofif (x = y)
— a typo forif (x == y) which, unfortunately, is legal in C and C++ although it leads to

.x := y
a := b

ON LANGUAGE DESIGN AND EVOLUTION §C.91040
unexpected results. (In Java, at least, the first form is invalid so the error will have no
catastrophic consequence.) Syntax matters.

C.9 THE INVENTOR AND THE ASSEMBLER

One of the most original comments in Hoare’sHints is the suggestion that the two main
tasks of language design are best handled by different people: one proposes constructs,
the other refrains from invention but assembles other people’s suggestions into a coherent
engineering construction.

The design of Eiffel has tried to disprove this rule. Eiffel embodies a significant
number of inventions. Although many have been contributed by other people, a number
of the concepts were devised and integrated in a single process. They include such ideas
as once routines for shared objects and decentralized initialization, the multiple
inheritance mechanism, object-oriented contracts and their relation with inheritance,
renaming, and many others. I hope the result shows that the roles of construct inventor
and system assembler are in fact compatible.

C.10 FROM THE INITIAL DESIGN TO THE ASYMPTOTE

Although the programming literature contains a few references on language design, less
attention has been devoted to the subject of evolution after initial design. Yet successful
languages live and change; none of the major languages in use today still adheres to the
letter of its original definition. How do the design principles governing the childhood of
a language carry over to adolescence and adulthood?

Software developers are inordinately opinionated people, especially on the subject of
languages. Inevitably, they will come up with requests for change and extensions. Add
to this tremendous and constant source of ideas the contribution of co-workers, users,
course participants, colleagues in panels at conferences, and you get a constant influx of
new ideas.

In the current state of technology a new element, exciting and sometimes frightening,
complements these traditional sources of input: the net. Electronic mail and Usenet
forums mean that thousands of people can learn in a few hours about the latest
announcements, ideas, proposals, opinions and suggestions — and react to them. For
Eiffel this has been a tremendous benefit. The number of people who have sent public or
private comments is incomparably greater than what it would have been just a few years
earlier. Even Ada, probably the language most widely and thoroughly debated before its
final design, was born before network access became available on a grand scale, and did
not benefit from the unique combination of breadth, depth and timeliness made possible
by today’s technology.

It is striking to see how many of these ideas are in fact excellent; but this does not
mean that they should all be included!

First they may raise subtle or major incompatibilities with other language features;
but even if this is not the case they will make the language more complex. The designers
must weigh the evidence: is the purported benefit really worth the increase in

§C.11 EXTENSIONS 1041
complexity? In nine out of ten cases the answer is no. Again this usually is no reflection
on the quality of the idea. But the designers’ primary responsibility is to keep in mind
the elegance of the overall picture.

What can one do in such a context? The best tactics is to say “no”, explain that you
are on your way to Vladivostok, and emerge some time later to see if there is still anyone
around. This is the basic policy: do not change anything unless you cannot find any more
arguments for the status quo.

But saying “no” most of the time is not an excuse for not listening. Almost any single
criticism or suggestion contains something useful for the language designers. This
includes comments by novices as well as expert users. Most of the time, however, you
must go beyond what the comment says. Usually, what you get is presented as a solution;
you must see through it and discover theproblemthat it obscures. The users and critics
understand many things that the designers do not; the users, in particular, are the ones
who have to live with the language day in and day out. But design is the job of the
designers; you cannot expect users to do it for you. (Sometimes, of course, they will:
someone comes up with just the right suggestion. This happened several times in the
history of Eiffel. Then you can be really grateful.)

So there are deep and shallow comments but almost no useless ones. Sometimes the
solution simply resides in better documentation. Often it lies in a tool, not in any
language change. Even more often, as discussed above, the problem may be handled by
library facilities: after all, this is the aim of an object-oriented language — not to solve
all problems, but to provide the basic mechanisms for solving highly diverse problems.

Once in a while, however, none of this will work. You realize that some facility is
missing, or inadequately addressed. When this happens — and only as a last resort —
the tough conservative temporarily softens his stance. There are two cases, truly
different: an extension, or a change.

C.11 EXTENSIONS

Extensions are the language designer’s secret vice — the dieter’s chocolate mousse on
his birthday. After much remonstrance and lobbying you finally realize what many users
of the language had known for a long time: that some useful type of computation is harder
to express than it should be. You know it is extension season.

There is one and only one kind of acceptable language extension: the one that dawns
on you with the sudden self-evidence of morning mist. It must provide a complete
solution to a real problem, but usually that is not enough: almost all good extensions
solve several potential problems at once, through a simple addition. It must be
straightforward, elegant, explainable to any competent user of the language in a minute
or two. (If it takes three, forget it.) It must fit perfectly within the spirit and letter of the
rest of the language. It must not have any dark sides or raise any unanswerable questions.
And because software engineering is engineering, and unimplemented ideas are worth
little more than the whiteboard marker which serves to sketch them, you must see the
implementation technique. The implementors’ group in the corner of the room is

ON LANGUAGE DESIGN AND EVOLUTION §C.121042
grumbling, of course — what good would a nongrumbling implementor be? — but you
and they see that they can do it.

When this happens, then there is only one thing to do: go home and forget about it all
until the next morning. For in most cases it will be a false alarm. If it still looks good
after a whole night, then the current month may not altogether have been lost.

C.12 CHANGES

What happens if you realize that some existing language feature, which may be used by
thousands of applications out in the field, could have been designed better?

The most common answer is that one should forget about it. This is also the path of
least resistance: listening to the Devil of Eternal Compatibility with the Horrors of the
Past, whose constant advice is to preserve at all costs the tranquillity of current users.
The long-term price, however, is languages that forever keep remnants from another age.
For a glimpse of the consequences, it suffices to look at recent versions of Fortran, still
retaining (although they are meant for the most powerful parallel computers of
tomorrow) some constructs reflecting the idiosyncrasies of the IBM 701’s 1951
architecture, or at more recent “object-oriented” extensions of C, faithfully reproducing
all the flaws of their parent, compounded by extra levels of complexity.

The other policy is harder to sustain, but it is also safer for the long term: if something
can indeed be done better, and the difference matters, then change the construct. Such
cases should of course be rare and far between — otherwise one can doubt the very
soundness of the original design. They should meet two conditions:

1 • There must be wide agreement that the new solution is significantly better than the
original one. It must not entail any negative consequence other than its
incompatibility.

2 • The implementors must provide a conversion mechanism for existing software.

If these conditions are met, then I believe one should cut one’s losses and go ahead with
the change. To act otherwise is to act arrogantly (pretending that something is perfect
when it is not), or to sacrifice long-term quality for short-term tranquillity.

All the issues discussed above arose in the transition between successive versions of
Eiffel. It is only for the language users to judge whether the changes and extensions were
justified, and whether they followed the principles discussed here. More striking than the
changes has been the stability of Eiffel: the language’s key properties, especially its
semantics, are essentially identical to what was described in the very first publication.
But the maintainers of Eiffel have not refrained from making changes, including
incompatible ones. It is surprising to see both the intellectual cowardice of many people
in language committees, and the positive reaction of actual users. If a change is
beneficial, clearly explained, carefully prepared, and well organized (avoiding pointing
a gun to their head: changenow or die!), they will go for it.

§C.13 THE POLITICS OF LANGUAGE EVOLUTION 1043
C.13 THE POLITICS OF LANGUAGE EVOLUTION

The mention of committees brings in the final observation of this overview,
addressing not the technology of language evolution but its politics. A number of
models are possible:

• The Town Hall model.

Everyone votes, and the majority wins.

• The Venetian model.

The Doges haggle it out between themselves.

• The Tammany Hall model.

Everyone votes, and the bosses haggle it out between themselves.

• The dog pack model.

He who shouts the loudest wins.

• The Usenet model.

He who shouts the longest wins.

• The dictatorship model.

The dictator wins(until toppled).

• The engineering project model.

The chief engineer wins, but only if he can convince the other
engineers most of the time.

• The CEO model

Like the engineering project model, but the board must approve
major decisions.

Without reference to the management of society, where different criteria apply, I have
through my experience come to the conclusion that the appropriate model for language
evolution is one of the last two. Democracy is admirable for the government of humans,
but a language is before all an engineering project, and someone should be in charge. As
in a company, many checks and balances should be provided, and the chief engineer
should very seldom be permitted to pass his views just because he is the chief engineer.
A technical leader who has to govern by fiat — as opposed to convincing the troops on
the sheer strength of technical arguments — will not remain a leader for very long.

Once in a while, hedoesget his druthers on the grounds of authority, simply because
several good choices are available and someone needs to decide; this is usually for
concrete syntax details. Such cases should remain rare. After all, if the chief engineer
deserves the position at all, his ideas, or more commonly his ability to sort out the good
ideas from the bad, regardless of who originated them, should be better than everyone
else’s, so he should expect to win on the merits.

ON LANGUAGE DESIGN AND EVOLUTION §C.131044

	C C On language design and evolution

