Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

5 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Features

5.1 OVERVIEW

A class is characterized by its features. Every feature describes an
operation for accessing or modifying instances of the class.

A feature is either aattribute, describing information stored with each
instance, or aoutine describing an algorithm. Clients of a claSanay
applyC's features to instances Gfthroughcall instructions or expressions.

Every feature has an identifier, which identifies it uniquely in its class.
In addition, a feature may have alfias to permit calls using operator or
bracket syntax.

The following discussion introduces the various categories of feature,
explains how to write feature declarations, and describes the form of
feature names.

5.2 THE ROLE OF FEATURES

A feature of a class describes an operation which is applicable to the
instances of the class. For example:

« A classSIGNALmight have such features asplitude(amplitude of a
e signal) ormodulate(modulate a signal with another).

* A classDOCUMENTmight have such features@saracter_countr print.
* A classELECTRONmight have such features sfsnor valence

* A classABSTRACT_NODmight have such features asty, is_leaf
is_root, add_childor remove_child

As these examples indicate, the operations represented by features mgesies are imple-

of two kinds: mented as attributes or
]])] functionscommandsas
* Some arequery operations, used to find out properties of objeprocedures

("What is the amplitude of this signal? How many characters does this
document contain? Is this tree node a leaf?”).

 Others areommands used to change objects or apply actions to them
(“Print this document! Add a new child to this node!”).

A query will be implemented as an attribute or a routine. By nature, a
command will always be a routine.

132 FEATURES 85.3

5.3 FEATURE CATEGORIES

The following diagram shows the variants of the notion of feature and the
associated terminology:

CommanUe——pp Procedur

No
result
No .
result Routine
Compu-
Returns tation
result
Feature Function Feature
Compu
tation
Returns
result Memory
Query
Memory]
Attribute

From the right, we have a classification based on the implementation of
features:

* A feature implemented by storing information in every instance of the
class (or, inthe case of a constant, common to all instance}isinte .

« A feature implemented by an algorithm (a computation) applicable to
all instances of the class igautine. A routine that returns a resultis a
function; one that doesn't isgrocedure.

From the left, we have a classification based initially on more abstract
properties of features:

- Afeature that does not return a result — but may modify its target object
— is acommand Commands can only be implementeddrgcedures
as just defined.

* A feature that provides a result — some information about its target
object —is aguery. A query may be implemented either by storing that
information, giving arattribute, or by computing that information when
requested, giving function

This book is precise and careful in its use of the terminology. Please make
sure (possibly by reading this section once again) that you are familiar with
the exact meanings of all the termfeature command query routine,
functionandattribute

§5.4 IMMEDIATE AND INHERITED FEATURES 133

METHON]
L |

The word “method”, sometimes used in the object-oriented literature, may be
viewed as a synonym for “routine”, i.e. a feature implemented by an
algorithm rather than stored. Although this is a well-accepted term, it is
redundant (there were already several words for this notion before O-O came
about: routine, subroutine, subprogram and leads to confusion with the
ordinary sense of the word “method”.

“Feature” is at a higher level, since it covers all categories. The closest word
in the C++/UML/Java literature is “member”. Many presentations treat
attributes as a data structure implementation mechanism, unrelated to
routines; this loses the notion that at the highest level of abstraction we only
have a notion of feature, with no commitment to any particular
implementation choice. It's OK to export an attribute (there is no need to
encapsulate it in a function!) as long as, to the client, it appears only as a
query, with an interface that doesn’t betray whether the query is implemented
as an attribute or a function. This is Eiffel’s approach.

5.4 IMMEDIATE AND INHERITED FEATURES

F oy

The rest of this chapter will describe the properties-ehtureparts of a
class, which introduces zero or more “features of the class”.

When thinking about features, we must be careful not to confuse two
notions:

* The featuretntroduced in a class.

* The featuresf that class.
The reason for this distinction is inheritance, which enables a clasThe notion of parent is
addition to the features declared in its own text, to obtain features decstudied in chapters,

. . 10and16.
in other classes — its parents.

Here is the precise terminology.

Inherited, immediate; origin; redeclaration; introduce

Any featuref of a clas<C is of one of the following two kinds:

1 « If C obtainsf from one of itsparentsf is aninherited feature
of C. In this case any declaration 6fin C (adapting the
original properties of for C) is aredeclaration. _ .

This defines the origin

2 «If a declaration appearing i@ applies to a feature that is ngt of immediate features
inherited, the feature is said to mamediatein C. ThenC is only. The full definition
.. " . . . also covering inherited
the origin (short for “class of origin”) off, and is said to features appears on

introduce f. page305

134 FEATURES 85.5

A featureredeclaration is a declaration that locally changes an inhe - Rédeclaration is
feature. The details of redeclaration appear in the study of inherite:ts“;é‘zg;&‘g‘ggf%’&_
yvhat is important here is that a declar_atlon in ﬂ‘ﬁeaturespart ONlY ing on page306
introduces a new feature (called “immediate”Gnor “introduced” byC)

if it is not a redeclaration of some feature obtained from a parent.

Every feature of a class is immediate either in the class or in one of its
proper ancestors (parents, grandparents and so on).

The rest of this chapter only discusses immediate and redec;dggzr;;egggg:ggsl%re
features, by describing tiiesaturegpart of a class declaration. and 16, with the full def-

inition on paget62

5.5 FEATURES PART: EXAMPLE

A Featuregart is a sequence of one or mdfeature_clauseas in the
following sketch of a class from the EiffelBase Library:

m note

] ... Notes clause omitted ...
classLINKED_LIST[T] inherit
LISTI[T]
redefine
first, start, return

end

feature -- Access
first T
-- Item at first position
require
not_emptynot empty
do
Result= first_elementitem
end

feature -- Measurement
count INTEGER
-- Number of items in the list

... Other feature declarations adnelature_clausemitted ...
feature { LINKED_LIST} -- Implementation
previous next like first_element

merge_lef(other. like Curreny
... Rest of procedure omitted ...

...Other feature declarations omitted...

§5.5 FEATURES PART: EXAMPLE 135

feature { NONE -- Implementation

first_elementLINKABLE][like first]
-- First linkable element

...Other feature declarations omitted...

invariant
empty= (first_element Void)
...Other invariant clauses omitted...
end

A Featurepart contains one or mofecature_clausd&achFeature_clause
is introduced by the keyworf@ature, which may be followed, as in the last
two cases above, by@lientssubclause, which is a list of class hames in
braces, as i{A, B, C, ...}.

All the features of deature_clauskave the samexport status If the - Chapter7 explains
beginning of thé=eature_clausgives a list of clients in braces, the clausg:ﬁig;t:r':z %‘;the export
features are available for calls to those clients and their proper descelcjientsclauses

only; otherwise they are available to all clients. Here, for example:
« first andcountare available for calls to all clients.

* previous nextandmerge_lefare available only taINKED_LISTitself,
when used as its own client.

» The remaining features are available onl\WONE this means that they
are secret (accessible within cldd®KED_LISTonly, without use of
dot notation).

For a class including many features, you may want to use more than one
Feature_clauseven for features which all have the same export status.
This separates features into feature categories. In this case every
Feature_clausshould begin (after the keyworigature and theClients

list, if any) with aHeader_commerindicating the feature category. Here,
the comments indicating the various categories are

-- Access

-- Measurement

-- Cursor movement
-- Implementation

Because the inclusion of such Header_commenis part of the

recommended style, it appears as an optional component in the syntax for
Feature_clausgiven below. Eiffel tools — such as documentation tools, quOCUMENTING
_tools for archiving an_d retrieving class_es —lmay treat ,|1t spe_czlally; fOr 113 CLIENT INTER.
it for contents. In particular, it appears in theohtractview” serving as therace oF A CLASS”,

basic documentation for a class. 7.8, paje 207.

136 FEATURES 85.6

Although you may choose any text for header comments, the texts used
here —Accessand others — are among a dozen or so standard ones used,
prrion always in the same order, throughout classes of EiffelBase and other
| libraries. This yields a consistent style, greatly facilitating software
understanding and maintenance. It's a good idea to use such a standard set
of headers; start from the one in EiffelBase and extend it if necessary.

5.6 GRAPHICAL REPRESENTATION

In BON (Business Object Notation), the suggested graphical
representation for classes and system structures, the features introduced in
a class should appear next to the ellipse representing that class.

If enough display space is available and you want a full representation
of the features, the format is that of@ature box appearing next to the
class ellipse, and shown on the next figure for part of the class sketched in
the previous section.

LINKED_LIST[G]

A class and its
o Annotations feature box

—
‘ Exported

first: G
count INTEGER

{LINKED_LIST}
LINKED LIST previous like first_element
[G] merge_left like Current
{NONE

first_elementLINKABLE [like first]

Class invariant
empty= (first_element Void)

Annotations

mKED_LIST[G] _/

As in the textual form of the class, the features are grouped into
successive divisions according to their export status.

Each feature includes type information as needed: argument types for
routines; for a query (attribute or function), result type.

§5.7 FEATURES PART: SYNTAX 137

This graphical notation takes up a large amount of space and is mostly
suitable for examining and designing classes in an interactive graphical
environment, where you can see the various properties displayed on
demand: the ellipses representing classes, the arrows representing the
client and inheritance relations, the feature boxes. For printing on paper, or
a whiteboard discussion, a more concise representation — frequently used
in the present book — is appropriate:

merge_left like Current A class with

some features
first T [LINKED_LISTY previouslike first_element

count INTEGER [G]
first_element

LINKABLE [like first]

An additional convention will be seen in théscussiorof attributes: if you _, page491.
know that a feature is an attribute, you may highlight this property
enclosing the feature’s name in a rectangle.

5.7 FEATURES PART: SYNTAX

BTNTAL

Here is the precise format of tieeaturepart of a class text, illustrated by
the above example.

Feature parts
- The syntax for the

Features® Feature_claude Clientspartappears on

Feature_clausé feature [Clientg page204

[Header_commeht
Feature_declaration_list

Feature_declaration_li# {Feature_declaratioh" ...}*

Header_commer2 Comment

As part of ageneralsyntacticalcorvention, semicolons areptional . “Syntax (non-po-
between d&eature_declaratioand the next. The recommendstyle rule guctﬂ)wn

i . . lonality rule
suggests omitting t_hem except in the infrequent case of two succcrp—ﬁelo2
declarations on a single line.

The rest of this chapter concentrates on theature declaration
construct, explaining what kinds of feature a class may declare.

138 FEATURES §5.8

5.8 FORMS OF FEATURE

Feature categories: overview

Every feature of a class is eitherattribute or aroutine
An attribute is eitheconstantor variable
A routine is either @rocedureor afunction

A set of definitions in the discussion that follows introduces each of these
notions precisely, making it possible to recognize, from a valid feature
declaration, which kind of feature it introduces.

By introducing arattributein a class, you specify that at run-time every
instance of the class will possess a certain value, or field, corresponding to
the attribute.

So you may picture any instance of the class as an object made of a
number of fields, each giving the value defined by the object for one of the
attributes of the class. The figure illustrates a direct instance of aClass
with three attributess, y andz. (To picture a non-direct instance, we would
also need to consider attributes introduced in proper descendants.)

A class

X 32 instance with
its fields

y e

z A .
xis of typeNTEGER z
of typeCHARACTER

. . . . andy of some reference
An attribute is eithevariable or constant type The field fory is

])])]] attached to an object
« If an attribute is variable, the corresponding field may be differentwhich the figure does

various instances of the class and may change at run-time. M°tshow
consequence, the actual values must be stored for each instance.

« If an attribute is constant, the corresponding field is the same value for
all instances, and may not change at run-time. This value appears in the
class as part of the attribute declaration.

By introducing aroutinein a class, you specify that a certain computation
(an algorithm) must be applicable to every instance of the class. A routine,
as we have seen, is eithgoracedure or afunction:

« A procedure does not return a result; it may perform a number of
operations, which may modify the instance.

« A function returns a result and may also perform operations.

§85.9 FEATURE DECLARATIONS: EXAMPLES

139

METHOND
L

5.9 FEATURE DECLARATIONS: EXAMPLES

To help you become familiar with the syntax ofaature_declaratiohere

are a few artificial examples illustrating the various possibilities. The next
sections give the precise syntax and detailed comments; for the most part,
however, the examples should suffice as a guide for declaring features. The
name of each example feature (such faaction_without_arguments
suggests its nature.

variable_attribute INTEGER
-- Some field of integer type

other_variable_attributeSOME_TYPE
-- Some other field, of another type

Constant_attributeREAL= 3.141592
-- A constant real value used by the class

procedure(argumentl INTEGER argument2SOME_TYPE

-- (Here should come the description
-- of the procedure’s intended effect.)
do
some_attributesome_procedure
other_attribute other_procedure
end

deferred_proceduréargumentl SOME_TYPB
-- (Here should come the description
-- of the procedure’s intended effect.)
deferred
end

function_with_argumentargl, arg2 SOME_TYPE OTHER_TYP
-- (Here should come the description
-- of the result computed by the function.)
do
create Result
Resultsome_proceduréarg?)
end

A function shouldnot changeary object, except if the change only affectga« Object-Oriented
an object’s representation, not its abstract properties. Because lanSoftwae Constructioh.

] processing tools cannot easily know which properties are abstract, th
on object-modifying functions is a methodological guideline — -
Command-Query Separation principte and not a language rule.

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

140

FEATURES §5.10

function_without_argumenttiNTEGER
-- (Here should come the description

-- of the result computed by the function.)
do

Result=some_value
end

plusalias"+" (some_matrixlike Curren): like Current
-- Matrix sum ofCurrentandsome_matrix
do

...(Computation of the sum in®esulj...
end

attribute_with_contractSOME_TYPE
-- (Here should come the description of its role.)
require
some_property
attribute
ensure
other_property
end

self_initializing_attribute SOME_TYPE

-- (Here should come the description of its role.)
attribute

initialization_instructions

end

5.10 FEATURE DECLARATIONS: SYNTAX

With the preceding examples in mind, we can now look at the exact

ingredients that make upFeature_declaration_list

Such a list introduces immediate features of a class. It is a sequence of

individual Feature _declaration clauses. In general

Feature_declaratiantroduces one feature, although it is possible to use a
single declaration to introduce two or more "synonym" features. Each

Feature_declaratioincludes the following pieces of information:

» The feature’s original name (or names in the case of synonyms).

* The type of the feature, if it is an attribute or a function.

 The formal arguments, if the feature is a routine (procedure or function)

with arguments.

* The actual value of the feature if it is a constant attribute.

§5.10 FEATURE DECLARATIONS: SYNTAX 141

» The contract and computation associated with the feature if applicable;
a routine in particular must have an associated algorithm, but an
attribute may also have a precondition and postcondition, as with
attribute_with_contragt and a self-initialization algorithm, as with
self_initializing_attribute
— “OBSOLETE FEA-
« Possibly an Obsoleteclause for a routine whose use is no IonQMQ%163
recommended.

« Possiblythekeywordfr ozen appearing before the feature name to expr2iore on frozen dec-

that the declaration is final (not subject to redefinition in descendants]arations in discussion
of the Feature Declara-

tion rule pagel60

The precise syntax is: below(conditiond),
and of the Redefine Sub-
clause rulepage301
Feature declarations| (condition2).
Feature_declaratio® New_feature_list Declaration_body

Declaration_body2 [Formal_argumen}§Query_mark
[Feature_valde
Query_mark2 Type_marKAssigner_mark
Type_mark2 ":" Type

Assigner_mark® assignFeature_name

Feature_valué [Explicit_valug
[Obsoleté
[Header_commeht
[Attribute_or_routing

Explicit_value2 "=" Manifest_constant

are possible; th€eatureBody rule andFeatureDeclarationrule will give - Pagesl44and160
the exact constraints. For example it appears from the above syntax that potn
aDeclaration_bodwand aFeature_valuean be empty, since their right-side

components are all optional, but the validity constraints rule this out.

Not all combinations ofFormal_argumenfQuery_marlandFeature_value

The above examples illustrate some of the most impor- The form of an

valid combinations Extended_feature_nam
) e and the rules on mul-

tiple feature declara-

What appears before tiieclaration _bodis not just a feature name bitions appear later in

aNew_feature_listwith the syntax this chapters.19.

142

FEATURES §5.10

New feature lists
New_feature_lis® {New feature'," ...}*

New_feature2 [frozen] Extended_feature_name

where an Extended_feature_namés a feature identifier possibly
complemented by aflias (for operator features).

Having a list of features, rather than just one, makes it possible for
example to declare together several attributes of the same type or, in the case
of routines, to introduce several “synonym” routines, with the same body.

A Formal_agumentspart, possible only for a routine, describes 1~ The syntax of

arguments to a routine and their types. An example is Formal_arguments
appears ir8.3, pae

‘ (argl, arg2 TYPE? arg3 TYPE2 arg4, arg5, arg6: TYPE3 ‘ 218

A Query_markis present to mark that the feature is a query (attribute or
function). It has aType_markspecifying the type of the information
returned by the query: for an attribute that's the type of the field in instances
of the class, for a function, it's the type of the result computed by an
execution of the function.. ExamplesTofpe_markare

:INTEGER
: SOME_TYPE

A Query_markmay also include an optionalssigner_markThis lets you
associate with the query a command of the class (a procedure), which can
then be used to change the value of the query for the target object. A typical
Assigner_marks:

‘ assignput ‘

This may appear in a declaration of a functitem T for some typ€T, as in

‘ item T assignput ... ‘

whereputis a procedure of the same class, taking an argument offtype
This allows clients to use assignment syntexitem:= a (for a of typeT),

as an abbreviation for the feature calput(a). The mechanism also works
for queries with arguments, asyour_arrayitem(i) := 5for a featurétem
taking an integer argument, as it does in claBRAY[G], whereitemhas
an integer argument; the associated assigner procedure correspondinB(T]_QIXCKET FEA
takes two two arguments, of typ€&and INTEGER (Thanks tobraclet re’ 5 17 pae157

syntax, you may also write this last examplg@sr_array|[i] := 5.)

§5.11 FEATURE BODIES 143

The procedure which afssigner_marlassociates with a query, suchpag
in these examples, is called assigner procedureThe assignment-like
instructions which this makes possible, such »astem:= a — with

assignment-like syntax but the semantics of a call — @&saigner call - “ASSIGNER PR-
CEDURES”, 5.16,

TheFeature_valupart, if present, gives the “value” of the feature, requilpage 155
in two cases:

* For a constant attribute,it introduces a literal value (integer, string etc.)
with by an “equal: sign, as i@ne INTEGER= 1.

 For a routine, it introduces the routine text.

For an attribute you can use a full form similar to that of routines, as in
X: A ... attribute ... end, but for the most common case there's an
abbreviated form of the declaration: jusi\.

In the above example, thesature valufor constant_attributelefines
the constant’s value to be the real number 3.14159Z#ature valufor
procedureis

-- (Here should come the description
-- of the procedure’s intended effect.)
do
some_attributesome_procedure
other_attribute other_procedure
end

A Feature_valumay, according to the syntax, introduce some or all of the
following components (the validity rules define which combinations are
possible):

- , . - See29.2, pae 777
» An Explicit_valueto specify the value of @onstant attribte. and subsequent sec-

tions about constants

* An Obsoletemark to signal that the featureabsolete.
_ — “OBSOLETE FEA-
» A Header_commertb explain the purpose of the feature. TURES”,5.21,page 163

« An Attribute_or_routinepart to give the detailed specification of a
routine or attribute, with clauses such as a precondition, a postcondition
or, for a routine, the associated algorithm, as detailed next.

5.11 FEATURE BODIES

Here indeed is the syntax Aftribute_or_routine
Subsequent chapters detail various elements éftabute_or_routine

A PreconditiorandPostconditiorexpress theontract of a feature. - Chapter9.
o . ~ “LOCAL VARI-
« Local_declarationsntroduce bcal variables needed by the featureaBLESANDRESUIT,

algorithm if any. 8.6, pae 221

144

FEATURES §5.11

[EALininy

Feature bodies
Attribute_or_routine2 [Preconditiof
[Local_declaratioris
Feature_body
[Postconditioh
[Rescug
end

Feature_body2 Deferred| Effective_routing Attribute

* A Feature_body gives details of its implementation as e"chapters.
Effective_routinaewith an associated algorithm, or an attribute, or stawes
that it is deferred routine, implemented only in proper descendants.

» A Rescueclause takes over if a run-timgxception arises during th:— Chapter26.
execution of the feature.

Only some combinations of these various clauses are meaningful. It is
convenient to state the corresponding validity rule at the level of a

Feature_valuas a whole rather than justtribute_or_routine

Feature Body rule VFFB

A Feature valuas valid if and only if it satisfies one of the
following conditions:
1 «It has arExplicit_valueand noAttribute_or_routine

2 «It has anAttribute_or_routinewith a Feature _bodyof the

Attribute kind.
3 « It has noExplicit_valueand has arttribute _or_routinewith Ehe variakr)lt?j of
- : : : eature_bodwpppear
a Featurt_a_bod)of th_e Eff(_actlve_routlneklnd, itself of the on page218as part of
Internalkind (beginning withdo or once. the discussion of rou-

4 « 1t has noExplicit_valueand has arttribute_or_routinewith tines

neither a Local declarationsnor a Rescue part, and a
Feature_bodyhat is eitherDeferredor an Effective_routine
of theExternalkind.

The Explicit_valueonly makes sense for an attribute — either declared
explicitly with Attribute or simply given a type and a value — so ca8es
and4 exclude this possibility.

The Local_declarationandRescueparts only make sense (ca$efor
a feature with an associated algorithm present in the class text itself; this
means a routine that is neither deferred nor external, or an attribute with
explicit initialization.

§5.12 HOW TO RECOGNIZE FEATURES

145

In both cased and 2 the feature will be an attribute. Cagdeis the
implicit form where we don't take the trouble to write the keyword
attribute , writing for example jusyour_attribute SOME_TYPECas& is
the long form, explicitly using the keywordttribute and making it
possible, as with routines, to hav@eeconditionaPostconditiopand even
an implementation (including Rescueclause if desired) which will be
used, for “self-initializing” types, on first use of an uninitialized field.

The Feature Body rule is the basic validity condition on feature
declarations. But for a full view of the constraints we must take into
account a set of definitions appearing next, which say what it takes for a
feature declaration — already satisfying the Feature Body rule — to belong
to one of the relevant categoriegariable attribute constant attribute
function procedure Another fundamental constraint, the Feature
Declaration rule YEED), will then require that the feature described - Pagel60
any declaration match one of these categories. So the definitions below are
a little more than definitions: they collectively yield a validity requirement
complementing the Feature Body rule.

5.12 HOW TO RECOGNIZE FEATURES

1

]

The precise form and properties of attributes and routines, as described by
the syntax given above foFeature declaratipnare studied in later
chapters. You should, however, learn right away how to recognize
attributes (constant or variable) and routines (procedures or functions).
This is not difficult and the above examples illustrate the most common
cases. First, variable attributes:

Variable attribute

A Feature_declaratiois avariable attribute declaration if and
only if it satisfies the following conditions:

1 «There is ndg-ormal_argumentpart.
2 * There is @uery_markpart.
3 ¢ There is ndexplicit_valuepart.

4 « If there is aFeature_valupart, it has amttribute_or_routine
with aFeature bodypf theAttribute kind.

The first two features in the earli@xample, variable_attribute and - Pagel3a
other_variable_attributewere in this category. Here is an extract from a
Feature_clauswith two declarations introducing three variable attributes:

count capacity INTEGER
backup LINKED_LIST[INVESTMENT

146

FEATURES §5.12

These examples use the abbreviated form without a keyword. You would
obtain the same semantics by specifyatigibute explicitly:

attribute
end

The keyword is required if you need to include a precondition, a
postcondition, or a for self-initialization algorithm, as in
attribute_with_contractaindself_initializing_attributeabove, or

bounding_rectangleRECTANGLE
-- Smallest rectangle including this figure
require
non_emptynot empty
attribute
create Result make(lower, leftmost height width)
ensure
Resultlower = lower; Result higher= higher
Result leftmost= leftmost, Result rightmost= rightmost
Result height= height; Resultwidth = width
end

The next kind of feature is the constant attribute:

Constant attribute

A Feature_declaratiois aconstant attribute declaration if and
only if it satisfies the following conditions:

1 It has nd-ormal_argumentpart.
2 «It has &uery_markpart.
3 ¢ There is d&eature_valupart including arExplicit_value

Two examples, introducing dnteger_constant araManifest_strincare:

maximum_discountNTEGER =25
messageSTRINC ="No such site"

Even though the value is known from the declaration, it may still be useful
to associate a contract (precondition, postcondition or both) to emphasize
its more fundamental properties, which presumably would survive a
change of the value in a revision of the software:

count capacity INTEGER And similarly forbackup

§5.12 HOW TO RECOGNIZE FEATURES

147

14]
=

messageSTRING="No such site"
ensure
Result/= Void
Resultcount<= Max_message_length

Finally, the case of a routine, with two variants:

I ITEFIMET IS

Routine, function, procedure

A Feature_declaratiois aroutine declaration if and only if it

satisfies the following condition:

e There is aFeature_valudancluding an Attribute_or_routing
whoserFeature bodis of theDeferredor Effective_routinekind.

If a Query_marks present, the routine isfanction; otherwise it
is aprocedure.

For a routine thé&ormal_argument@ike theQuery_markmay or may not
be present.
By convention this definition treats a deferred feature as a routine, even

though its effectings in proper descendants may be, in the case of a query,
attributes as well as functions.

In theexample illustrating the various categories of feature, the feat::“page1390n
with the following names are routines:

|

METHON]
L L]

procedure
deferred_procedure
function_with_arguments
function_without_arguments
plusalias"+"

plus, with its infix alias"+", is a function; the others are procedures or
functions as indicated by their names.

Why do we need such rules for recognizing various kinds of feature? To
put it more critically, why doesn’t the language distinguish more clearly
between them — for example by requiring specific keywords such as
procedure at the beginning of each declaration?

The reason imethodological. As seen by clients, a feature is an abstract
property of the instances of the class.
implementation within the class is a subordinate concern. As a

consequence, the syntax downplays the differences between these forms of
features instead of emphasizing them.

Its particular choice of

148 FEATURES §5.13

More precisely, what matters for clients is whether a feature returns a
result, or just affects the state of objects without directly producing a result.
This distinction is reflected in the following notions:

o Command, query
A commandis aprocedure. Auery is anattribute orfunction.

These notions underlie two importaminciples of the Eiffel method: See the discussion of
P these principles in

» The Command-Query separation principle, which suggests that qL"object-Oriented Soft-

should not change objects. ware Constructioh
and“UNIFORM

» The Uniform Access principle, which enjoins, whenever possibleaACCESS’, 23.4, e

make no distinction between attributes and argumentless function8L6in the present book
Theseideas alsoleadto

Of course, it is sometimes necessary to check what category a featurethe notion of contract
belongs to. As the above examples indicate, you should quickly bec”®% gt(;‘;"ed 7.8,
familiar with the various forms. '

5.13 THE SIGNATURE OF AFEATURE

As defined above, a query feature — attribute or function — has a result
type. But for any feature, query or command, we often need a more

k=amsid complete characterization of the feature’s type properties, involving both
the type of its result (in the query case) and the number and type of its
arguments if any.

The notion ofsignature provides this. The signature of a feature is
made of two lists of types:

« The list of argument types (empty for an attribute, or a routine without
arguments).

* The list of result types (empty for a procedure).

To represent lists of types, we can borrow Eiffeiple notation, as inChapterl3discusses
[TYPE1 TYPE2 TYPEJ. (Such a list is not an Eiffel component, simply“"¢®

notation to talk about properties of Eiffel features.) So a function wt

declaration begins with

\ f (2 INTEGER b: X): LINKED_LIST[STOCK is... \

has the signature
\ [INTEGER X], [LINKED_LIST[STOCK] \

We do not really need a sequence for the second component of a signature,

since it will have zero or one element (zero ifor a procedure, one for a

query). Using a list on both sides provides more symmetry and gener-"“Emulatingmultiple
(The discussion of tuples willustrate that symmetry.) results”. page 371

§5.13 THE SIGNATURE OF A FEATURE 149

Here are the signatures of the features in the example at the beginning
of this chapter. An empty sequence is showjfj.as

variable_attribute [1, [INTEGER
aan other_variable_attribute [1,[SOME_TYPE
I constant_attribute [1,[REAL
procedure [INTEGER SOME_TYPE[]
deferred_procedure [SOME_TYPE[]

function_with_arguments [SOME_TYPESOME_TYPE
[OTHER_TYPE

function_without_arguments [], [INTEGER

plusalias"+": [like Currenti, [like Curren{

attribute_with_contract [1,[SOME_TYPE

self_initializing_attribute [1,[SOME_TYPE

The signatures ofariable_attributeandfunction_without_argumentre
identical, even though one is an attribute and the other a function. For

clients, asoted, the difference won't be visible. Seeabove, padd7,and
“UNIFORMACCESS”,

23.4, pae 616

The notion of signature deserves a precise definition:

Signature, argument signature of a feature

Thesignature of a featurd is a pairargument_typesesult_type

where argument_typesand result_type are the following

sequences of types:

e For argument_typesif f is a routine, the possibly empty
sequence of its formal argument types, in the order of|the
arguments; if is anattribute, an empty sequence.

e Forresult_typeif fis aquery, a one-element sequence, whose
element is the type df if fis aprocedure, an empty sequence.

Theargument_typepart is the feature'argument signature

The argument signature is an empty sequence for attributes and for routines
without arguments.

In the above examples, the argument signatuneaaible_attributeis
[1 (empty sequence); the argument signaturerotedureis [INTEGER
SOME_TYPE

150

FEATURES §85.14

5.14 FEATURE NAME

1

m

Feature names serve to identify features.

A feature name always involves an identifier; this means that it is always

possible to write a valid call in ordinary object-orientgot notation, as in- As detailed in the
chapter on calls:

X. f(a) -- Qualified: from a client, applied to chapter23.
f@@) -- Unqualified: from within the class,
-- applied to the current object

For some features syntactic variants are available, but the availability of
these basic forms is guaranteed:

Feature principle

Every feature has an associated identifier.

Any valid call (qualified orunqualified) to the feature can b
expressed through this identifier.

D

The syntactic variants, available througlias clauses, offer other ways to
express calls, reconciling object-oriented structure with earlier notations:

* You may qualify the name withlias"§" where§ is some operator. For
example if a feature is namgxus clients must call it as.plus(b); by
naming itplus alias "+" you still allow this form of calls — per the
Feature principle — but you also pernat+ b in accordance with
traditional syntax for arithmetic expressions. The details of alias
operators, as well as the associated conversion mechanism, appear next.

You may also use a “bracket alias”, written simplyas "[]" (with an
opening bracket immediately followed by a closing bracket). This
allows access through bracket syntax[inde§, For example

if a class describing some table structure has a feature
itemalias"[]" (index H): G whereH is some index type, items can be
accessed througfour_tablaitem(i) but also through the more concise
your_table[i]. Again this is just a syntactic facility: the second form is
a synonym for the first, which remains available.

Such bracket aliases appear for example in ARRAY LIST and
HASH_TABLElasses of EiffelBase, so that you can access an element
of one of these structures a§], wherei is an integer in the first two
cases and a key in the last one.

§5.14 FEATURE NAME 151

BTN TAX

You may combine suchlias clauses in the extended feature name with
assignerprocedures. For example the EiffelBase cl&sSH_TABLEIntroduced in

defines the access feature

’itemalias"[]" (key H): G assignput... ‘

whereputis a procedure to insert an element with a given key. This means
that you can not only use bracket syntax for accessing items, as in

‘ your_element=your_hash_tablgyour_key

(an abbreviation foyour_element= your_hash_tablatem (your_key),
but also in an assigner call

‘your_hash_tabl{eyour_kei' = your_element ‘

an abbreviation foyour_hash_tableput (your_elementyour_key.
We have now seen all kinds of feature name. Here is the syntax:

Feature names
Extended_feature _nanmg Feature_namfAlias]

Feature_namé Identifier
Alias 2 alias™' Alias_name" ' [converd]
Alias_name2 Operator] Bracket
Bracket2 "[]"

The optionalconvert mark, for an operator feature, supports mixed-type

expressions causing a conversion of the target, as in the expressi— “MIXED-TYPE
your_integer+ your_real which should use the+" operation fromREAL, EXPRESSIONSAR-
not INTEGER for compatibility with ordinary arithmetic practice. See the GETCONVERSION',
presentation of conversions. 15.12. pge 419

For the record we mustarify the use of quotes and spaces iaas: ~ — Similar rules apply
to signed constantt

“Syntax (non-poduc-

Syntax (non-production): Alias Syntax rule S

. . . . further in that chapter
The Alias_nameof an Alias must immediately follow and to character and P

precede the enclosing double quote symbols, with no intervening string constants
characters (in particular rimeaks).
When appearing in such aklias_namethe two-word operators
and then andor else must be written with one or more spaces
(but no other characters) between the two words.

152

FEATURES §85.14

In general, breaks or comment lines may appear between components
prescribed by a BNF-E production, making this rule necessary to
complement the grammar: you must watas"+", notalias" + "

It is useful to give official names to the aliased forms:

IIIII':"- TS

Operator feature, bracket feature, identifier-only

A feature is aroperator feature if its Extended_feature nanfre
includes anOperatoralias, abracket feature if fn includes a
Bracketalias. It isidentifier-only if neither of these cases applies.

The most common case is identifier-only. The other two kinds provide
convenient modes of expressiomsyhtactic sugdi for some cases where
a shorter form, compatible with traditional mathematical conventions, is

desirable forcalling the feature. _ Calls are studied in
. chapter23. See also
When referring to feature names, some syntax rules USEchapter28about

Extended_feature nanend some use thesature _nameavhich is just theexpressions
identifier, dropping the\lias if any. The criterion is simple: when a class

text needs to refer to one of its own features,kbature_namis sufficient

since (from the Feature Identifier principle below) it uniquely identifies the

feature. So théxtended feature nanig used in only two cases: when

you first introduce a feature, infeeature_declaratioas discussed above,

and when yolwchangets name for a descendant, inRenameclause (for - ‘RENAMING”,
both inheritance and constrained genericity). 6.9. pge 180

This also means that in descendants of its original class a feature
retain itsAlias, if any, unless a descendant explicitly renames it to a name
that may drop thé\lias, or provide a new one. In particular, redeclaring a
feature does not affect itdias.

There are indeed three forms of call:
 For the standard case, identifier features, callslosaotation, as in

=
I

a.variable_attribute

b. procedure(b, ¢)

a.plus(b)
your_arrayitem(some_index

* Giving a feature aoperatomlias, such aplusalias"+", allows calls to —. Studied in more
take the form of ordinary arithmetic expressions, such ash, rather detailinthe nextsection
than the more “obviously O-O” but heaviemplus (b).

« A class may have one (and only one) feature witlraclet alias, such -, studied in more
asitemalias"[]". The purpose, for a class representing container detail below
structures such as arrays or tables, is to let clients access the struc....o
using the traditional syntax of array and function access, for example
your_array[X] as a synonym foyour_arrayitem (some_index

§5.14 FEATURE NAME 153

7

Remember that the operator and bracket aliases are only there to allow a
form of feature call with a syntax other than dot notation, conforming to
widely accepted notations (operator expressions, bracket access for
arrays). Per thEeatureprinciple, every feature hasseature_namg@vhich . page1s0
you can use to call the feature, although most people find the opera

bracket form clearer when available). If we need to clarify, we talk of “the
identifier” of the feature:

HEFISNITHIN

ALY

Identifier of a feature name

The Identifier that starts &xtended feature nani® called the
identifier of that Extended_feature nanand, by extension, of
the associated feature.

This notion is closely related to one of the language’s design principles:

Feature Identifier principle

Given a clas€ and an identifief, C contains at most one featuré
identifier f.

This principle reflects a criticgdroperty of object-oriented programmirZ Discussed atthe end
in general and Eiffel in particular: nooVerloading of feature namesof this chapter:NO IN-

e . PR . . _"CLASS OERLGAD-
within a class. Itis marked as “validity” but has no code of its own sinC\G 5 22, page 166
is just a consequence of other validity rules.

Another general notion that we need to define for feature name is when
two feature names or operators are “the same”. The definition ensures that
we ignore letter case:

Same feature name, same operator, same alias
Two feature names are considered tothe ‘same feature naméif The _

R B R 3 R 3 - e lower name IS

and only iftheir identifers have identicdbwer names. (page102) the name all

Two operators arethe same operatot if they have identical in lower case
lower names.

An Alias in an Extended_feature_name “the same alia8 as
another if and only if they satisfy the following conditions:

e They are either the samperatoror bothBracket
* If either has @onvert mark, so does the other.

154

FEATURES §5.15

Somy_nameMY_NAMEand mY_nAMeare considered to be the same
feature name. The recommended style uses a name with an initial capital
and the rest in lower case (asMy_namé for constant attributes, and the
lower name, all in lower case (as my_namg for all other features. If
letters appear in operator feature names, letter case is also irrelevant when
it comes to deciding which feature names are the same and which different.

This notion is useful in particular to enforce the rule that, in any class,
there can be only one feature of a given name"pverloading”), and to _, “NO IN-CLASS
determine what constitutes adme clashunder multiple inheritance. IrQVERLQADING”,
such cases the language rules simply ignore letter case. 5.22. pge 166

5.15 OPERATOR FEATURES

Operator features — those declared withAdias listing a binary or unary
operator — allow class authors, as previewed above, to provide their clients
with a form of call based on the time-honored conventions of arithmetic
expressions, using infix and prefix operators.

A matrix class can usglusalias"+" as the name of an addition function,
enabling users of this feature to write additions in the usual mathematical form

k

I BTNTAX

‘ matrix1 + matrix2

rather than in dot notation, which in this case might come out as
matrix1. plus(matrix2).

Similarly, naming a negation functionegatedalias "—" allows calls
written in the form- matrix1 as well asnatrixl.negated

The following syntax shows that an operator is either a free operator
(Free_unaryor Free_binary)or a standard operator. The standard
operators, listed explicitly below, use special symbols, except for boolean
operators which, following tradition, use keywords, simple gasl) or
double (asand then).

Operators
Operator2 Unary|Binary
Unary & not | "+" | "-" | Free_unary
Binary & "+ | Ot WA
II<II | II>II II<:II ll>:II |
and|or |xor |and then|or else|implies|
Free_binary

§5.16 ASSIGNER PROCEDURES 155

Free operators enable developers to define their own operators with
considerable latitude. This is particularly useful in scientific
applications where it is common to define special notations, which
Eiffel will render as unary or infix operators. You may for example
define operators such &s, |-| (maybe as an infix alias for distance
function), or various forms of arrow such @s>, —|—> =>.

The rule, giverformally in the lexical analysis chapter, lets you use — “OPERATORS",.
symbols appearing in standard operators and any others non-alph%ﬁ@@2
symbols as long as the result does not create any ambiguity with sta....... .
operators, special symbols, and predefined operators used for equality and

inequality &, /=, ~, [-).

To avoid spurious parentheses in the writing of expressions, each of the
standard operatorsinaryandBinary, has a precedence level, according to
a table appearing in thdiscussiorof expressions. All free operators hay:T “operator prece-

the same precedence, higher than for standardoperators. glggcew_mgg

) Remember that an operator is not by itself a feature name but
/®m. appears in thalias of an Extended_feature_namwhich also lists an
identifier. This means that you nevsaiveto use operator notation to call a
feature, as imatrix1 + matrix2 dot notation, using the feature’s identifier
as inmatrix1. plus(matrix2), is always available, with the same semantics.

5.16 ASSIGNER PROCEDURES

In an assignment:= vthe targek must be a variable. ifemis an attribute

of the typeT of a, programmers used to other languages may be tempted to
write an assignment such asitem := v to assign directly to the
corresponding object field, but this is not permitted as it goes against all the
rules of data abstraction and object technology. The normal mechanism is
for the author of the base class ®fto provide a “setter” command
(procedure), saput, enabling the clients to useput (v).

The class author may, for convenience, peanitem:=v as a shorthand
for this call a.put (v), by specifying put as anassigner command
associated withitem An instruction such as.item := v is not an
assignment, but simply a different notation for a procedure call; it is known
as anassigner call This scheme, a notational simplification only, is also
convenient for features that havBeacketalias, allowing for example, with
a an array, an assigner cal[i] := v as shorthand for a call put (v, i).

The mechanism is applicable not just to attributes but (in line with the
Uniform Access principle) to all queries, including functions with arguments.

The following rules defines under what conditions you may, as author
of a class, permit such assigner calls from your clients by associating an
assigner command with a query.

156

FEATURES §85.16

WALLDITT

Assigner Command rule VFAC

An Assigner_marlappearing in the declaration ofyaeryq with

n arguments{ = 0) and listing aFeature_namén, called the
assigner commandfor g, is valid if and only if it satisfies the
following conditions:

1 «fnis theidentifier of acommanc: of the class.
2 *c hasn + 1 arguments.
3 * The type of’s first argument is the result type mf

4 «For everyi in 1. .n, the type of the+1-st argument ot is the
type of thei-th argument o#.

The featureq can only be a query since, from the syntax of
Declaration_body an Assigner_markcan only appear as part of a

kFaesi - Query _markwhose presence makes the feature a query.

In cases and4, we require the types to be identical, not just compatible
(converting or conforming). To understand why, recall that the assignment
a.item := y is only a shorthand for a calh.put (X) with, as a
typical implementation:

itent T assignputdo ... end]\(/VAEfI;IINGtr_:_ot vgltlzd
. : —— or differentT and U,
put(b: U)do ... item:=b... end see text

Now assume that is not identical toT but only compatible with it, and
consider the procedure call

‘ a.put (a.item) ‘

or the equivalent assignment form

‘a.item:z a.item ‘

which are in principle useless — they reassign to a field its own value —
but should certainly permitted. They become invalid, however, because the
sourcea.item (actual argument of the call or right side of the assignment)
is of typeT, the target (the formal argument) of typke and it's generally
impossible for two different types to be each compatible with the other.

In the conformance case, two-way compatibility would mean that the basz, prohibited by

classes are proper descendants of each other, caugihgdiance gcle. clausel of the Parent
rule, pagel76.

— Page400

Inthe convertibility case, it would violate ti@rversionAsymmetryprinciple.

It is in fact possible to have conformance one way and convertibility the
other, but this case is not useful enough to justify a special rule.

This explains claus@g: the first argument of the assigner procedure must
haveexactlythe same type as the result of the query. Similar reasoning
applied to other arguments (if any) leads to clalise

§5.17 BRACKET FEATURE 157

5.17 BRACKET FEATURE

Besides operator aliases, the syntaxAtifis offers theBracketvariant, _ gracket page151
allowing you for example to declare, in a clad®\SH_TABLE[G, H]
describing tables of elements of typeavith keys of typeH, a feature

L4
-

item alias "[]" (key. K): G
-- Iltem having the givekey
require
present has(key)
do
... "Appropriate implementation?..
ensure

end

This is a normal feature, here a function, distinguished only by a new form
of call. Although you may still use the standard dot-notation form

‘ your_tableitem("ABC') ‘

the bracket alias allows another phrasing for exactly the same semantics:

‘ your_table["ABC'] ‘

To avoid ambiguity, at most one feature of a class may have a bracket alias;
it must be a function with at least one argument. These requirements appear
in the general constraint on aliases: Aias validity rule. - Pagel62

If the function has more than one argument, the bracket notation
use commas, as matrix3[i, j, K.

It is often convenient, as already noted, to use the assigner procedure
mechanism in connection with a bracket alias. If the declaratidgammfeads

I

itemalias"[]" (key K): G assignput
... The rest as above.

referring to a procedungut of the same class, with compatible signature:

‘put(value: G; key: K ... end ‘

then instead of

‘ your_table put (v, "ABC’) ‘

you may write, with identical semantics:

‘your_table["ABC‘] = v ‘

158 FEATURES §5.18

5.18 SYNONYMS AND MULTIPLE DECLARATION

Because the first part of Beature_declaratiois aNew_feature_listnot ~ Syntaxon pagestl
just oneExtended_feature nameach feature declaration may introdu?"d142
more than one feature, as in

a, b, c: INTEGER -- Attributes
f, g require ... do... ensure...end -- Routines

Such features introduced together are known as synonyms:

G Synonym
I A synonymof a feature of a clasS is a feature with a different

Extended_feature_narsach that botlnames appear in the same
New_feature_lisbf aFeature_ declaratioof C.

Synonym declarations should be viewed as an abbreviation, according to
the following rule:

Unfolded form of a possibly multiple declaration

Theunfolded form of a Feature declaratidisting one or more
feature names, as in:
fy, fo, ... , T, declaration_body (n=1)
where eacly is aNew_featureis the corresponding sequence of
declarations naming only one feature each, and with identjcal
declaration bodies, as in:
f; declaration_body
f, declaration_body

f, declaration_body

Thanks to the unfolded form, we may always assume, when studying the

validity and semantics of feature declarations, that each declaration applies

to only one feature name. This convention is used throughout the language
description; to define both thalidity and the semantics, it simply refe - ‘Featue Declag-
to the unfolded form, which may give several declarations even if theyio rule”. page 160
all grouped in the class text.

A multiple declaration introduces the feature names as synonyms. But

@ the synonymy only applies to the enclosing class; there is no permanent

I binding between the corresponding features. Their only relationship is to
have the samBeclaration_bodyat the point of introduction.

This means in particular that a proper descendant of the class - Renamingchaptei6

rename oredeclare one without affecting the other. ?gdec'arat'on"hamer

Eachf;, being aNew_featurg may include &rozen mark. In the unfolded
form this mark only applies to theh declaration.

§5.18 SYNONYMS AND MULTIPLE DECLARATION 159

When should we use multiple declarations? The last observations provide
a clue. If you anticipate that a feature may have different variants in
mermony - descendant classes, it may be better to introduce it as two features, initially
| identical, in its class of origin. This is in particular the case when you
expect descendants to redefine the feature, but want to guarantee them
access to the original — for themselves and, if appropriate, their clients.
Then you should declare one of the two features as frozen.

ANY the Kernel Library class serving as ancestor of all develoSee21.6, pge 572
defined classes, provides several examples of this techridiéoffers a 280Ut e respective
general comparison functiors_equa) originally comparing two objectss_equalandequal
for field-by-field equality. The semantics of the object comparison opel
~ is defined in terms ofs_equal Any class may redefinis_equal(and
hence the meaning effor operands of the corresponding types) to account
for the specific semantics of equality desired for the class. For example, if
objectsL1 andL2 below are instances of a clad$éTEGER_SETthey are
not field-by-field equal (since they contain references to different objects),
but the author oINTEGER_SETmay decide thats_equaland ~ must
return true on these objects as they represent the same set. The class will
redefines_equalto test for the desired notion of equality.

L1 L2 Equivalent
objects not
field-by-field

. —+—» 515338 | —+— 515338 equal
(INTEGER_SEJ (INTEGER_SEJ

Along with such redefinitions ak_equa] it is useful to keep the default
version (performing field-by-field comparison) for all classes. This is why
ANY introduces two equality functions, originally as synonyms:

is_equaj frozen default_is_equal
(x: like Curren): BOOLEAN:s...

with the consequence (enforced throughfiiogen mark) that the second
function may not be redefined, so that developers can trust it to retain a
fixed, universal semantics — indeed, a fixed implementation.

It is also important to understand when multiple declarationshate
appropriate. This includes the following two situations:

mMEETHON]

I «If you devise abettername for an existing feature, but wish to provi“Reusable Soft-
upward compatibility for existing clients and descendants, then a b‘é"ﬁ‘;ﬁsde'st%”esﬁg;gg"go
mechanism, described below, is available: “obsoleting” the feature. jiprary features see
has the advantage of facilitating the eventual phasing out of the obgalso Appendig4of the

version, whereas there is no incentive to remove a synonym. present book

160

FEATURES §5.19

BEETHON)
L !

» The availability of a synonym mechanism is usually not a good excuse
for refusing to choose between possible names. Class designers,
especially designers gkusabldibrary classes, should not be fickle;
even if two sets of names appear equally good, it is generally better to
choose just one than to provide both. By passing on the choice to client
developers, the latter solution would only confuse them, and make the
class appear more complex than it is.

These observations suggest that multiple declarations, although an
important facility for cases such as the one mentioned above, should
remain a relatively infrequent occurrence in normal Eiffel development.

The example also suggests what kinds of use are proper for frozen
features. The very idea of “freezing” a feature is, in general, contrary to the
fundamental Eiffel concepts of software extendibility and adaptability,
which the feature adaptation mechanisms (in particular redeclaration)
support directly. When you inherit from a class, you should be able to adapt
its features to the new context; you may use the assertion mechanism to
guarantee that the specification remains compatible with the framework
defined in the original, although the implementation may be different.

This mechanism is so central in the Eiffel method that it leaves only a
limited role for frozen features: taking care of predefined, system-level
operations such ass_identical] for which we require not only the
specification but the implementation to be determined once and for all.

5.19 VALIDITY OF FEATURE DECLARATIONS

WAL DT

To be valid, aFeature_declaratiomust satisfy a constraint, known as tl The syntax of
Feature Declaration rule. Here is the rule in full, followed by a deta¢ature_declaration

. . was given on page4l
explanation of its clauses.

Feature Declaration rule VFFD

A Feature_declaraticappearing in a clasSis valid if and only if
it satisfies all of the following conditions for every declaration of
a featurd in its unfolded form:

1 « TheDeclaration_bodgescribes a feature which, accordingto - The {#'elf_ f(éf dfefter-
the rules giverearlier, is one ofyariableattribute, constant | {770 e CAC 4
attribute, procedurefunction.

2 «f does not have theamefeaturename as any other featur
introduced inC (in particular, any other feature of the unfolde
form).

3 ¢ If f has the same feature name adii@ name of any inherited
feature, thédeclaration_bodsgatisfies th&®edeclarationule. ~ The full Redeclara-

]] tionruleis on pag807.

4 « If the Declaration_bodyescribes aeferredfeature, then the

Extended_feature nanoffis not preceded biyozen.

o

§5.19 VALIDITY OF FEATURE DECLARATIONS 161

5 «|f the Declaration_bodylescribes ancefunction, the result
type isstand-alone.

6 * Any anchored type for an argumentistachable.

7 « TheAlias clause, if present, &lias-\alid for f. — As defined on page
e ., 162below

Additional obligations apply if there is afdissigner_markthey are covered Assigner Procedure
by the Assigner Procedure rule (automatically included thanks tGémeral je: page1 56 General

Validity rule). Validity rule: page98.

As stated at the beginning of the rule, the conditions apply taitielded
formof the declaration; thimeans that the rule treats a multiple declarati-- “Svlececfornota.
fy, fp, ..., fy declaration_bodyas a succession of separate declarationasion’ page 158

with different feature names but the sagieelaration_body

Conditions1 and 2 are straightforward: thé®eclaration_bodymust
make sense, and the name or names of the feature being introduced must
not conflict with those of any other feature introduced in the class.

A redeclaration is either gedefinition of an inherited feature (changing its
specification, signature or implementation) or effiecting (an effective
implementation of a feature inherited in deferred form). The exact
requirements in this case are captured by the Redeclaration rule, which will
be given when we complete the study of inheritance, redefinition and
deferred features.

A% Inapplying conditiong and3, remember that two feature names ai@e” — Definition of “same
/™% same” not just if they are written identically, but also if they only differ featurename’pagels3
‘ETI letter case. Only the identifier§éature_nan)eof the features play a role
in this notion, not anylias they may have.

The Feature Nammule will state a consequence of conditichand3 - Page46é
that may be more appropriate for error messages in some cases of Vio.w.uw...

Condition4 prohibits afrozenfeature from being declared as deferr¢-"Frozenfeatureswere
The two properties are conceptually incompatible since frozen featurentroducedonpagg42
definition, may not be redeclared, whereas the purpose of deferred features
is precisely to force redeclaration in proper descendants.

A companion constraint, seen as part of the Redefine Subclause rusén a — Page301
chapter, will prohibit theedefinitionof a frozen feature.

Condition 5 applies to once functions. Anceroutine only executes its- “ONCE ROU-
body on its first call. Further calls have no effect; for a function, they yilINES".23.14pa0e633
the result computed by the first call. This puts a special requirement on the

result typeT of such a function: if the class generic,T should not depend

on any formal generic parameter, since successive calls could then apply to

instances obtained from different generic derivations; &mdust not be See. in the chanter
anchored, as in the context of dynamic binding it could yield incompat,, typésf‘STAND-p
types depending on the type of the target of each particular call. The nALONE TYPES”

of stand-alone typeaptures these constraintsn 11.12, pge 340

162 FEATURES §5.19

Condition 6 addresses delicate cases of polymorphism and dynamic
binding, where anchored arguments and their implicit form of
“covariance” may cause run-time errors known as “catcalls”. It follows
from the general rule for signature conformance aisiussed with it. - “Signature con-

-y "
The last condition?, is the consistency requirement on features with 2™"2"6¢"P8e 378
operator or bracket alias. It relies on the following definition (which he
validity code enabling compilers to give more precise error message:

: Alias Validity rule VFAV

UALIDITY An Alias clause isalias-valid for a featuref of a classC if and

only if it satisfies the following conditions:

1 «If it lists anOperatorop: f is aquery; no other query ot has
anOperatorlias using theameoperator and the same numbe
of arguments; and eithespis aUnaryandf has no argument,
or opis aBinary andf has one argument.

2 ¢If it lists a Bracket alias: f is a query with at least one
argument, and no other feature®has aBracketalias.

3 «If it includes aconvert mark: it lists anOperatorandf has
one argument.

4 «|f it lists one of the $emistrict” operatorand then, or else
andimplies: C is the Kernel Library cladlBOOLEAN

=

The first two conditions express the unigueness and signature requirements
on operator and bracket aliases:
R

I An operator featurplusalias"8" can be either unary (called 8s) or
binary (called as 8 b), and so must take either zero or one argument.

Two features may indeed share the same alias—idi>ity alias "+"

and plus alias "+", respectively unary and binary addition in class

INTEGERand others from the Kernel Library — as long as they have

different identifiers (her&lentityandplus) and different signatures, one

unary and the other binary.

Such a feature must return a result and hence be a query — attribute or

function. An attribute is only possible in the unary case, and is indeed

permitted in line with theUniform Access principle, although in most _ <UnFORM
practical cases you'll need a function. ACCESS’ 23.4page616

* A bracket feature, of which there may be at most one in a class, wi
called under the formt [ay, ... a,] with n= 1, and so must be a query
with at least one argument (and hence a function). Condgitatls us
that there may be at most one bracket feature per class.

§5.20 SCOPE OF NAMES 163

Condition3 indicates that @onvert mark, specifying “target conversion”
as inyour_integer+ your_real makes sense only for features with one
Eamsd grgument, with a®peratowhich (from conditioril) must be d@inary.

Condition4 addresses the special case of the tls@mistrictboolean
operators, which follow unique semantic rules enabling them not to
evaluate their second operand in some cagesid then b is guaranteed
not to evaluaté if a evaluates to false, the result then being necessarily
false. Although the language definition almost always provides generality
— based on the principle that if a technique is useful to the language
designer it must also be useful to the language user — it makes an
exception here, because there is no simple way for programmers to write a
semistrict function definition. Sand then, or elseandimplies are for the
private use of clasBOOLEAN As condition4 indicates, even its own
proper descendants cannot redefine these features.

5.20 SCOPE OF NAMES

Any feature of a class is accessible for use in &eypture_declaratioof - Seechapte@about
the class, and in itsnvariant clause. Examples of the first use inclufeature_bod about
i . . " ... _PreconditiorandPost-
unqualified (direct) calls in theeature_bodyPrecondition Postcondition o gition 26 about
andRescueclauses of a routine, and use/aschorfor an Anchoredtype Rescue

in a declaration of a feature or of a routine argument.

To avoid any ambiguityconstraints will prohibit reusing the name of = Formalargumentrule
feature of the class for any other entity appearing in the class: foPage21§ Local variable

. . . . le, page222, Object
argumentor local variable of a routine, Object-Test Local dbaject_test rTlégt ﬁf}g paéﬂljec

The Feature Declaration rule doest, however, prohibit conflicts
between feature names and namesla$sesilt is possible for a feature to
bear the same lower name as a class of the universe. You may sometimes
find it convenient to write a feature declaration such as

Li] [error_window ERROR_WINDOW |
Tq

in a class text which only needs one feature of a certain type (here given by
classERROR_WINDOWif you consider that the type name provides
enough information to describe the role of the feature.

5.21 OBSOLETE FEATURES

As classes evolve in the constantly changing world of software
development, you may find that a feature is no longer satisfactory.

If all you need is to change its implementation, then you should be able
to update the feature without affecting its dependent classes (clients and
proper descendants). For example, you may charigeaéure_bodyeven
if this causes replacing an attribute by a function or conversely, with
minimum impact on dependents.

164

FEATURES §5.21

Unfortunately, this is not always the case. You may become unhThe specification defines
with a feature’s name, its signature or its specification — all of whichtheroutine’s semanticts

; : [I d b
part of the interface and known to the clients. Y oo

assertionssee chapte?.

In such a situation, if you are certain that you have found a bec....
replacement for the feature, you should perform the change without delay,
for fear of prolonging the life of inferior software versions. But you must
also take into consideration any existing dependent classes that relied on
the feature. Clearly, you should avoid any change that would suddenly
prevent such classes from functioning; but you may want to encourage their
authors to adapt them to the new version within a reasonable time.

The preceding chapter showed how to declare an eiwtiss as . seet.11 pae 128
obsolete. This is a rather drastic decision; more often, the class as a about Olbsoletlng an
remains adequate, but you want to update a few features. entire class

The feature obsolescence mechanism supports this need. By declaring a
feature agbsolete you keep it usable exactly as it was, while alerting its users
to the existence of a better version. This provides a graceful way to phase out
a feature while remaining friends with the developers of its clients.

Both routines and attributes may become obsolete. To mark a routine
obsolete, give it a®bsoleteclause, of the form

obsoleteMessage

where Messageis a Manifest_string This serves to warn authors of
dependent classes that the routine should no longer be useiedsage
should direct readers to alternate features.

Here is an obsolete routine which once figured in claBRAYof the
Kernel Library:

==
i

enter(i: INTEGER new_valueT)
obsolete"Use 'put(new_valuei)
-- Replace byew_valudghe element at index
require
i >=lower, i <= upper

i

do

...(Appropriate algorithm)...
ensure

set:item(i) = new_value
end

§5.21 OBSOLETE FEATURES 165

METHON]
L i]

METHON]
L |

In older versions of the librargnterwas the routine used to replace by
new_valudhe value of the element at indein an array. An examination

of the consistency of names and conventions in the library resulted in a
decision to update the routine; both the nam (ather tharenter) and the
order of arguments were changed. Messageexplains this change.

To avoid cluttering library classes with features that are no longer relevant,
library maintainers should not allow obsolete routines to loiter forever. After
a suitable grace period — time for one or two new releases of the software to
displace the older generations — they will have fulfilled their duties as
Client-Friendly Transition Facilitators and should be retired with honors.
This indeed happened to the above versioarder which (although fondly
remembered) disappeared long ago from clABRAY allowing — by an
unforeseen twist of fate -enterto reappear as a synonympoit

The syntax of class-leveDbsoleteclauses also applies — through the
production forFeature_value— to routine-level clauses; here it is agair Page141

A ~ Thissyntaxappeared
Obsolete2 obsoleteMessage originally on pagel29
Message® Manifest_string followed by the seman-

tics, applicable to obso-

lete features as well as
obsolete classes

As we saw there, marking a feature @¥soletedoes not affect its
semantics. But language processing tools may produce a warning when
they process a client or descendant class that uses the feature. The warning
should include th&lessage

Thecontractview of a class does not retain any feature marked obso/- “-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,

A compiler or other language processing tool may also go further7.8. paje 207
provide an option that, under some conditions, will automatically update
the text of client classes, replacing all calls to an obsolete routine by the
body of the routine with appropriate argument substitution.

As noted in the discussion of obsolete classes, the availability of a
feature obsolescence mechanism is not an excuse to grant a reprieve to
software components that are buggy or otherwise deficient. If you discover
a specification, design or implementation flaw, only one reaction is
reasonable: correcting the mistake. A routine is a candidate for
obsolescence only when, as originally written, it adequately covered a
certain need, but is not in a manner satisfying your current standards. You
prefer the new version, but the obsolete version iswroing it's just not
what you wish to keep for the future.

166 FEATURES §5.22

5.22 NO IN-CLASS OVERLOADING

A consequence of the various validity rules on features and their names —

to be expressed fully by thEeatureNamerule — is that Eiffel never_, pagessa
permits the same name to denote different features within the scope <. «
given class. This is expressed by Beature Name rule.

When you see a feature narhim a class you immediately know what
feature it refers to; and when you see a featureadl(...) with a of type
T you can immediately find the featuiréo which it refers inT. (The actual
feature to be called may of course, as a result of dynamic binding, be a
redeclared version from a descendant.)

The full Feature Name rule appears only in a later chapter because it
must take into account, along with the features introduced in a class, those
inherited from its parents, and possibly renamed in the process: no name
conflicts must arise between any of these. The rule must handle the effect
of all inheritance mechanisms, including renaming, redefinition, and
sharing under repeated inheritance.

The result, however, is simple: no name conflicts, period. The
“overloading” mechanisms permitted by some languages is a confusing
facility with no known benefit. It contradicts the principles of object
technology and creates difficulties for both language users and compiler
writers. The idea of using the same name to deddferent thingswithin
a given scope can at best be described as rather puzzling.

Eiffel enforces instead the clear rule that in one class one feature name
means one thing. (Nothing prevents you,naéed, from using the samz “scopPEe oF
name for feature names acldssnames, which can cause no ambiguitNAMES". 5.20page163

The only form of overloading permitted by Eiffel is the reuse o _
feature name acrosffferentclasses. The systematic naming conventions
of the recommended style actually encourage you in this direction; the idea
is to use a single name for features that correspond tcsaéneebasic
semantics adapted to different contexts — the reverse of in-class
overloading. Inter-class overloading takes its full power through dynamic
binding, which allows dynamic (run-time) selection of the proper semantic
variant, where intra-class overloading is static (compile-time). The
dynamic form of inter-class overloading can also be calethantic
overloading, in contrast with tleyntacticnature of in-class overloading.

What is commonly known as “operator overloading”, the possibility of
using the same operators, arithmetic in particular, for operations on
different data types, is provided in a more general and flexible way by the
combination ofAlias clauses, permitting operator syntax for calls, and the
conversion mechanism.

	5 5 Features
	5.1 OVERVIEW
	5.2 THE ROLE OF FEATURES
	5.3 FEATURE CATEGORIES
	5.4 IMMEDIATE AND INHERITED FEATURES
	Inherited, immediate; origin; redeclaration; introduce

	5.5 FEATURES PART: EXAMPLE
	5.6 GRAPHICAL REPRESENTATION
	5.7 FEATURES PART: SYNTAX
	5.8 FORMS OF FEATURE
	Feature categories: overview

	5.9 FEATURE DECLARATIONS: EXAMPLES
	5.10 FEATURE DECLARATIONS: SYNTAX
	5.11 FEATURE BODIES
	5.12 HOW TO RECOGNIZE FEATURES
	Variable attribute
	Constant attribute
	Routine, function, procedure
	Command, query

	5.13 THE SIGNATURE OF A FEATURE
	Signature, argument signature of a feature

	5.14 FEATURE NAME
	Feature principle
	Syntax (non-production): Alias Syntax rule
	Operator feature, bracket feature, identifier-only
	Identifier of a feature name
	Same feature name, same operator, same alias

	5.15 OPERATOR FEATURES
	5.16 ASSIGNER PROCEDURES
	5.17 BRACKET FEATURE
	5.18 SYNONYMS AND MULTIPLE DECLARATION
	Synonym
	Unfolded form of a possibly multiple declaration

	5.19 VALIDITY OF FEATURE DECLARATIONS
	5.20 SCOPE OF NAMES
	5.21 OBSOLETE FEATURES
	5.22 NO IN-CLASS OVERLOADING

