
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
5

Features
5.1 OVERVIEW

5.2 THE ROLE OF FEATURES

A feature of a class describes an operation which is applicable to the
instances of the class. For example:

• A classSIGNALmight have such features asamplitude(amplitude of a
signal) ormodulate(modulate a signal with another).

• A classDOCUMENTmight have such features ascharacter_countorprint.
• A class ELECTRON might have such features asspin or valence.
• A classABSTRACT_NODEmight have such features asarity, is_leaf,

is_root, add_child or remove_child.
As these examples indicate, the operations represented by features may be
of two kinds:

• Some arequery operations, used to find out properties of objects
(“What is the amplitude of this signal? How many characters does this
document contain? Is this tree node a leaf?”).

• Others arecommands, used to change objects or apply actions to them
(“Print this document! Add a new child to this node!”).

A query will be implemented as an attribute or a routine. By nature, a
command will always be a routine.

A class is characterized by its features. Every feature describes an
operation for accessing or modifying instances of the class.

A feature is either anattribute, describing information stored with each
instance, or aroutine, describing an algorithm. Clients of a classC may
applyC’s features to instances ofC throughcall instructions or expressions.

Every feature has an identifier, which identifies it uniquely in its class.
In addition, a feature may have analias to permit calls using operator or
bracket syntax.

The following discussion introduces the various categories of feature,
explains how to write feature declarations, and describes the form of
feature names.

Queries are imple-
mented as attributes or
functions,commandsas
procedures.

FEATURES §5.3132
5.3 FEATURE CATEGORIES

The following diagram shows the variants of the notion of feature and the
associated terminology:

From the right, we have a classification based on the implementation of
features:

• A feature implemented by storing information in every instance of the
class (or, in the case of a constant, common to all instances) is anattribute .

• A feature implemented by an algorithm (a computation) applicable to
all instances of the class is aroutine. A routine that returns a result is a
function; one that doesn’t is aprocedure.

From the left, we have a classification based initially on more abstract
properties of features:

• A feature that does not return a result — but may modify its target object
— is acommand. Commands can only be implemented byprocedures
as just defined.

• A feature that provides a result — some information about its target
object — is aquery. A query may be implemented either by storing that
information, giving anattribute, or by computing that information when
requested, giving afunction.

This book is precise and careful in its use of the terminology. Please make
sure (possibly by reading this section once again) that you are familiar with
the exact meanings of all the terms:feature, command, query, routine,
function andattribute.

Feature

Command

Query

Feature

Routine

Attribute

Function

Procedure

Returns

No
result

result

No
result

Compu-

Memory

Compu-

Memory

Returns
result

tation

tation

§5.4 IMMEDIATE AND INHERITED FEATURES 133
The word “method”, sometimes used in the object-oriented literature, may be
viewed as a synonym for “routine”, i.e. a feature implemented by an
algorithm rather than stored. Although this is a well-accepted term, it is
redundant (there were already several words for this notion before O-O came
about: routine, subroutine, subprogram…) and leads to confusion with the
ordinary sense of the word “method”.

“Feature” is at a higher level, since it covers all categories. The closest word
in the C++/UML/Java literature is “member”. Many presentations treat
attributes as a data structure implementation mechanism, unrelated to
routines; this loses the notion that at the highest level of abstraction we only
have a notion of feature, with no commitment to any particular
implementation choice. It’s OK to export an attribute (there is no need to
encapsulate it in a function!) as long as, to the client, it appears only as a
query, with an interface that doesn’t betray whether the query is implemented
as an attribute or a function. This is Eiffel’s approach.

5.4 IMMEDIATE AND INHERITED FEATURES

The rest of this chapter will describe the properties ofFeaturesparts of a
class, which introduces zero or more “features of the class”.

When thinking about features, we must be careful not to confuse two
notions:

• The featuresintroduced in a class.

• The featuresof that class.

The reason for this distinction is inheritance, which enables a class, in
addition to the features declared in its own text, to obtain features declared
in other classes — its parents.

Here is the precise terminology.

Inherited, immediate; origin; redeclaration; introduce
Any featuref of a classC is of one of the following two kinds:
1 • If C obtainsf from one of itsparents,f is aninherited feature

of C. In this case any declaration off in C (adapting the
original properties off for C) is aredeclaration.

2 • If a declaration appearing inC applies to a feature that is not
inherited, the feature is said to beimmediate in C. ThenC is
the origin (short for “class of origin”) off, and is said to
introduce f.

The notion of parent is
studied in chapters6,
10 and16.

This defines the origin
of immediate features
only.The full definition,
also covering inherited
features, appears on
page305.

FEATURES §5.5134
The rest of this chapter only discusses immediate and redeclared
features, by describing theFeatures part of a class declaration.

5.5 FEATURES PART: EXAMPLE

A Featurespart is a sequence of one or moreFeature_clause, as in the
following sketch of a class from the EiffelBase Library:

A featureredeclaration is a declaration that locally changes an inherited
feature. The details of redeclaration appear in the study of inheritance;
what is important here is that a declaration in theFeaturespart only
introduces a new feature (called “immediate” inC, or “introduced” byC)
if it is not a redeclaration of some feature obtained from a parent.

Every feature of a class is immediate either in the class or in one of its
proper ancestors (parents, grandparents and so on).

note

... Notes clause omitted ...

class LINKED_LIST[T] inherit
LIST[T]

redefine
first, start, return

end

feature -- Access
first: T

-- Item at first position
require

not_empty: not empty
do

Result:= first_element.item
end

feature -- Measurement
count: INTEGER

-- Number of items in the list

... Other feature declarations andFeature_clauseomitted ...

feature { LINKED_LIST} -- Implementation
previous, next: like first_element

merge_left(other: like Current)
... Rest of procedure omitted ...

...Other feature declarations omitted...

→ Redeclaration is
studied in chapter10,
especially10.28, start-
ing on page306.

→ Inheritedfeaturesare
studied inchapters6,10
and16, with the full def-
inition on page462.

§5.5 FEATURES PART: EXAMPLE 135
A Featurespart contains one or moreFeature_clause. EachFeature_clause
is introduced by the keywordfeature, which may be followed, as in the last
two cases above, by aClientssubclause, which is a list of class names in
braces, as in{ A, B, C, …} .

All the features of aFeature_clausehave the sameexport status. If the
beginning of theFeature_clausegives a list of clients in braces, the clause’s
features are available for calls to those clients and their proper descendants
only; otherwise they are available to all clients. Here, for example:

• first andcount are available for calls to all clients.

• previous, nextandmerge_leftare available only toLINKED_LISTitself,
when used as its own client.

• The remaining features are available only toNONE; this means that they
are secret (accessible within classLINKED_LISTonly, without use of
dot notation).

For a class including many features, you may want to use more than one
Feature_clauseeven for features which all have the same export status.
This separates features into feature categories. In this case every
Feature_clauseshould begin (after the keywordfeature and theClients
list, if any) with aHeader_commentindicating the feature category. Here,
the comments indicating the various categories are

Because the inclusion of such aHeader_commentis part of the
recommended style, it appears as an optional component in the syntax for
Feature_clausegiven below. Eiffel tools — such as documentation tools, or
tools for archiving and retrieving classes — may treat it specially; for eon
it for contents. In particular, it appears in the “contractview” serving as the
basic documentation for a class.

feature { NONE} -- Implementation

first_element: LINKABLE[like first]
-- First linkable element

...Other feature declarations omitted...

invariant
empty= (first_element= Void)
...Other invariant clauses omitted...

end

-- Access
-- Measurement
-- Cursor movement
-- Implementation

→ Chapter7 explains
the details of the export
policy and of
Clientsclauses.

→“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.8, page 207.

FEATURES §5.6136
Although you may choose any text for header comments, the texts used
here —Accessand others — are among a dozen or so standard ones used,
always in the same order, throughout classes of EiffelBase and other
libraries. This yields a consistent style, greatly facilitating software
understanding and maintenance. It’s a good idea to use such a standard set
of headers; start from the one in EiffelBase and extend it if necessary.

5.6 GRAPHICAL REPRESENTATION

In BON (Business Object Notation), the suggested graphical
representation for classes and system structures, the features introduced in
a class should appear next to the ellipse representing that class.

If enough display space is available and you want a full representation
of the features, the format is that of afeature box appearing next to the
class ellipse, and shown on the next figure for part of the class sketched in
the previous section.

As in the textual form of the class, the features are grouped into
successive divisions according to their export status.

Each feature includes type information as needed: argument types for
routines; for a query (attribute or function), result type.

...

...

Annotations

previous: like first_element

merge_left: like Current

first_element: LINKABLE[like first]

first: G

count: INTEGER
...

LINKED_LIST
[G]

Exported

LINKED_LIST [G]

LINKED_LIST [G]

empty= (first_element= Void)

{ LINKED_LIST}

{ NONE}

Class invariant

Annotations

A class and its
feature box

§5.7 FEATURES PART: SYNTAX 137
This graphical notation takes up a large amount of space and is mostly
suitable for examining and designing classes in an interactive graphical
environment, where you can see the various properties displayed on
demand: the ellipses representing classes, the arrows representing the
client and inheritance relations, the feature boxes. For printing on paper, or
a whiteboard discussion, a more concise representation — frequently used
in the present book — is appropriate:

An additional convention will be seen in thediscussionof attributes: if you
know that a feature is an attribute, you may highlight this property by
enclosing the feature’s name in a rectangle.

5.7 FEATURES PART: SYNTAX

Here is the precise format of theFeaturespart of a class text, illustrated by
the above example.

The rest of this chapter concentrates on theFeature_declaration
construct, explaining what kinds of feature a class may declare.

Feature parts
Features=∆ Feature_clause+

Feature_clause=∆ feature [Clients]
[Header_comment]
Feature_declaration_list

Feature_declaration_list=∆ { Feature_declaration ";" …}*

Header_comment=∆ Comment

As part of a generalsyntacticalconvention, semicolons areoptional
between aFeature_declarationand the next. The recommendedstyle rule
suggests omitting them except in the infrequent case of two successive
declarations on a single line.

LINKED_LIST
[G]

first: T previous: like first_element

merge_left: like Current

first_element:
count: INTEGER

LINKABLE[like first]

A class with
some features

→ Page491.

→ The syntax for the
Clientspart appears on
page204.

← “Syntax (non-pro-
duction): Semicolon
Optionality rule”,
page 102

FEATURES §5.8138
5.8 FORMS OF FEATURE

By introducing anattributein a class, you specify that at run-time every
instance of the class will possess a certain value, or field, corresponding to
the attribute.

So you may picture any instance of the class as an object made of a
number of fields, each giving the value defined by the object for one of the
attributes of the class. The figure illustrates a direct instance of a classC
with three attributes,x, y andz. (To picture a non-direct instance, we would
also need to consider attributes introduced in proper descendants.)

An attribute is eithervariable or constant:

• If an attribute is variable, the corresponding field may be different for
various instances of the class and may change at run-time. As a
consequence, the actual values must be stored for each instance.

• If an attribute is constant, the corresponding field is the same value for
all instances, and may not change at run-time. This value appears in the
class as part of the attribute declaration.

By introducing aroutine in a class, you specify that a certain computation
(an algorithm) must be applicable to every instance of the class. A routine,
as we have seen, is either aprocedure or afunction:

• A procedure does not return a result; it may perform a number of
operations, which may modify the instance.

• A function returns a result and may also perform operations.

Feature categories: overview

Every feature of a class is either anattribute or aroutine.
An attribute is eitherconstant or variable.
A routine is either aprocedure or afunction.

A set of definitions in the discussion that follows introduces each of these
notions precisely, making it possible to recognize, from a valid feature
declaration, which kind of feature it introduces.

x is of typeINTEGER,z
of typeCHARACTER,
andyof some reference
type. The field fory is
attached to an object,
which the figure does
not show.

x

y

z

32

'A'

A class
instance with
its fields

§5.9 FEATURE DECLARATIONS: EXAMPLES 139
A functionshouldnotchangeany object, except if the change only affects
an object’s representation, not its abstract properties. Because language
processing tools cannot easily know which properties are abstract, the ban
on object-modifying functions is a methodological guideline — the
Command-Query Separation principle— and not a language rule.

5.9 FEATURE DECLARATIONS: EXAMPLES

To help you become familiar with the syntax of aFeature_declaration, here
are a few artificial examples illustrating the various possibilities. The next
sections give the precise syntax and detailed comments; for the most part,
however, the examples should suffice as a guide for declaring features. The
name of each example feature (such asfunction_without_arguments)
suggests its nature.

variable_attribute: INTEGER
-- Some field of integer type

other_variable_attribute: SOME_TYPE
-- Some other field, of another type

Constant_attribute: REAL= 3.141592
-- A constant real value used by the class

procedure(argument1: INTEGER; argument2: SOME_TYPE)

-- (Here should come the description
-- of the procedure’s intended effect.)

do
some_attribute.some_procedure
other_attribute.other_procedure

end

deferred_procedure(argument1: SOME_TYPE)
-- (Here should come the description
-- of the procedure’s intended effect.)

deferred
end

function_with_arguments(arg1, arg2: SOME_TYPE): OTHER_TYPE
-- (Here should come the description
-- of the result computed by the function.)

do
createResult
Result.some_procedure(arg2)

end

See"“ Object-Oriented
Software Construction” .

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

FEATURES §5.10140
5.10 FEATURE DECLARATIONS: SYNTAX

With the preceding examples in mind, we can now look at the exact
ingredients that make up aFeature_declaration_list.

Such a list introduces immediate features of a class. It is a sequence of
individual Feature_declaration clauses. In general each
Feature_declarationintroduces one feature, although it is possible to use a
single declaration to introduce two or more "synonym" features. Each
Feature_declaration includes the following pieces of information:

• The feature’s original name (or names in the case of synonyms).

• The type of the feature, if it is an attribute or a function.

• The formal arguments, if the feature is a routine (procedure or function)
with arguments.

• The actual value of the feature if it is a constant attribute.

function_without_arguments: INTEGER
-- (Here should come the description
-- of the result computed by the function.)

do
Result:= some_value

end

plusalias "+" (some_matrix: like Current): like Current
-- Matrix sum ofCurrent andsome_matrix

do
...(Computation of the sum intoResult)...

end

attribute_with_contract: SOME_TYPE
-- (Here should come the description of its role.)

require
some_property

attribute
ensure

other_property
end

self_initializing_attribute: SOME_TYPE
-- (Here should come the description of its role.)

attribute
initialization_instructions

end

§5.10 FEATURE DECLARATIONS: SYNTAX 141
• The contract and computation associated with the feature if applicable;
a routine in particular must have an associated algorithm, but an
attribute may also have a precondition and postcondition, as with
attribute_with_contract, and a self-initialization algorithm, as with
self_initializing_attribute.

• Possibly an Obsoleteclause for a routine whose use is no longer
recommended.

• Possiblythekeywordfrozen, appearing before the feature name to express
that the declaration is final (not subject to redefinition in descendants).

The precise syntax is:

The above examples illustrate some of the most important
valid combinations.

What appears before theDeclaration_bodyis not just a feature name but
aNew_feature_list, with the syntax

Feature declarations
Feature_declaration=∆ New_feature_list Declaration_body

Declaration_body=∆ [Formal_arguments] [Query_mark]
[Feature_value]

Query_mark=∆ Type_mark[Assigner_mark]

Type_mark=∆ ":" Type

Assigner_mark=∆ assign Feature_name

Feature_value=∆ [Explicit_value]
[Obsolete]
[Header_comment]
[Attribute_or_routine]

Explicit_value =∆ "=" Manifest_constant

Not all combinations ofFormal_arguments, Query_markandFeature_value
are possible; theFeatureBody rule andFeatureDeclarationrule will give
the exact constraints. For example it appears from the above syntax that both
aDeclaration_bodyand aFeature_valuecan be empty, since their right-side
components are all optional, but the validity constraints rule this out.

→ “OBSOLETE FEA-
TURES”,5.21,page163.

→ More on frozen dec-
larations in discussion
of the Feature Declara-
tion rule page160
below(condition4),
and of the Redefine Sub-
clause rule, page301
(condition2).

→ Pages144 and160.

→ The form of an
Extended_feature_nam
e and the rules on mul-
tiple feature declara-
tions appear later in
this chapter(5.18).

FEATURES §5.10142
where an Extended_feature_nameis a feature identifier possibly
complemented by anAlias (for operator features).

A Formal_argumentspart, possible only for a routine, describes the
arguments to a routine and their types. An example is

A Query_markis present to mark that the feature is a query (attribute or
function). It has aType_markspecifying the type of the information
returned by the query: for an attribute that’s the type of the field in instances
of the class, for a function, it’s the type of the result computed by an
execution of the function.. Examples ofType_markare

A Query_markmay also include an optionalAssigner_mark. This lets you
associate with the query a command of the class (a procedure), which can
then be used to change the value of the query for the target object. A typical
Assigner_markis:

This may appear in a declaration of a functionitem: T for some typeT, as in

whereput is a procedure of the same class, taking an argument of typeT.
This allows clients to use assignment syntax,x.item:= a (for a of typeT),
as an abbreviation for the feature callx.put(a). The mechanism also works
for queries with arguments, as inyour_array.item(i) := 5 for a featureitem
taking an integer argument, as it does in classARRAY[G], whereitemhas
an integer argument; the associated assigner procedure correspondingly
takes two two arguments, of typesG and INTEGER. (Thanks tobracket
syntax, you may also write this last example as your_array [i] := 5.)

New feature lists
New_feature_list=∆ { New_feature "," …} +

New_feature=∆ [frozen] Extended_feature_name

Having a list of features, rather than just one, makes it possible for
example to declare together several attributes of the same type or, in the case
of routines, to introduce several “synonym” routines, with the same body.

(arg1, arg2: TYPE1; arg3: TYPE2; arg4, arg5, arg6: TYPE3)

: INTEGER
: SOME_TYPE

assignput

item: T …

→ The syntax of
Formal_arguments
appears in8.3, page
215.

assign put

→ “BRACKET FEA-
TURE”, 5.17,page157.

§5.11 FEATURE BODIES 143
The procedure which anAssigner_markassociates with a query, such asput
in these examples, is called anassigner procedure. The assignment-like
instructions which this makes possible, such asx.item:= a — with
assignment-like syntax but the semantics of a call — is anassigner call.

TheFeature_valuepart, if present, gives the “value” of the feature, required
in two cases:

• For a constant attribute,it introduces a literal value (integer, string etc.)
with by an “equal: sign, as inOne: INTEGER= 1.

• For a routine, it introduces the routine text.

For an attribute you can use a full form similar to that of routines, as in
x: A ... attribute ... end, but for the most common case there’s an
abbreviated form of the declaration: justx: A.

In the above example, theFeature_valuefor constant_attributedefines
the constant’s value to be the real number 3.141592; theFeature_valuefor
procedure is

A Feature_valuemay, according to the syntax, introduce some or all of the
following components (the validity rules define which combinations are
possible):

• An Explicit_value to specify the value of aconstant attribute.

• An Obsolete mark to signal that the feature isobsolete.

• A Header_comment to explain the purpose of the feature.

• An Attribute_or_routinepart to give the detailed specification of a
routine or attribute, with clauses such as a precondition, a postcondition
or, for a routine, the associated algorithm, as detailed next.

5.11 FEATURE BODIES

Here indeed is the syntax ofAttribute_or_routine:

Subsequent chapters detail various elements of anAttribute_or_routine:

• A Precondition andPostcondition express thecontract of a feature.

• Local_declarationsintroduce local variables needed by the feature’s
algorithm if any.

-- (Here should come the description
-- of the procedure’s intended effect.)

do
some_attribute.some_procedure
other_attribute.other_procedure

end

→ “ASSIGNER PRO-
CEDURES”, 5.16,
page 155.

→ See29.2, page 777
and subsequent sec-
tions about constants.

→ “OBSOLETE FEA-
TURES”,5.21,page163.

→ Chapter9.
→ “LOCAL VARI-
ABLESANDRESULT”,
8.6, page 221.

FEATURES §5.11144
• A Feature_body gives details of its implementation as an
Effective_routinewith an associated algorithm, or an attribute, or states
that it is deferred routine, implemented only in proper descendants.

• A Rescueclause takes over if a run-timeexception arises during the
execution of the feature.

Only some combinations of these various clauses are meaningful. It is
convenient to state the corresponding validity rule at the level of a
Feature_value as a whole rather than justAttribute_or_routine:

Feature bodies
Attribute_or_routine=∆ [Precondition]

[Local_declarations]
Feature_body
[Postcondition]
[Rescue]
end

Feature_body=∆ Deferred | Effective_routine| Attribute

Feature Body rule VFFB

A Feature_valueis valid if and only if it satisfies one of the
following conditions:
1 • It has anExplicit_value and noAttribute_or_routine.

2 • It has anAttribute_or_routinewith a Feature_bodyof the
Attribute kind.

3 • It has noExplicit_valueand has anAttribute_or_routinewith
a Feature_bodyof the Effective_routinekind, itself of the
Internalkind (beginning withdo or once).

4 • It has noExplicit_valueand has anAttribute_or_routinewith
neither a Local_declarationsnor a Rescue part, and a
Feature_bodythat is eitherDeferredor anEffective_routine
of theExternal kind.

The Explicit_valueonly makes sense for an attribute — either declared
explicitly with Attribute or simply given a type and a value — so cases3
and4 exclude this possibility.

TheLocal_declarationsandRescueparts only make sense (case4) for
a feature with an associated algorithm present in the class text itself; this
means a routine that is neither deferred nor external, or an attribute with
explicit initialization.

→ Chapter8.

→ Chapter26.

The variants of
Feature_body appear
on page218 as part of
the discussion of rou-
tines.

§5.12 HOW TO RECOGNIZE FEATURES 145
5.12 HOW TO RECOGNIZE FEATURES

The precise form and properties of attributes and routines, as described by
the syntax given above forFeature_declaration, are studied in later
chapters. You should, however, learn right away how to recognize
attributes (constant or variable) and routines (procedures or functions).
This is not difficult and the above examples illustrate the most common
cases. First, variable attributes:

The first two features in the earlierexample, variable_attribute and
other_variable_attribute, were in this category. Here is an extract from a
Feature_clausewith two declarations introducing three variable attributes:

In both cases1 and 2 the feature will be an attribute. Case1 is the
implicit form where we don’t take the trouble to write the keyword
attribute , writing for example justyour_attribute: SOME_TYPE. Case2 is
the long form, explicitly using the keywordattribute and making it
possible, as with routines, to have aPrecondition, aPostcondition, and even
an implementation (including aRescueclause if desired) which will be
used, for “self-initializing” types, on first use of an uninitialized field.

The Feature Body rule is the basic validity condition on feature
declarations. But for a full view of the constraints we must take into
account a set of definitions appearing next, which say what it takes for a
feature declaration — already satisfying the Feature Body rule — to belong
to one of the relevant categories:variable attribute, constant attribute,
function, procedure. Another fundamental constraint, the Feature
Declaration rule (VFFD), will then require that the feature described by
any declaration match one of these categories. So the definitions below are
a little more than definitions: they collectively yield a validity requirement
complementing the Feature Body rule.

Variable attribute
A Feature_declarationis avariable attribute declaration if and
only if it satisfies the following conditions:
1 • There is noFormal_arguments part.

2 • There is aQuery_mark part.

3 • There is noExplicit_value part.

4 • If there is aFeature_valuepart, it has anAttribute_or_routine
with aFeature_body of theAttributekind.

count, capacity: INTEGER
backup: LINKED_LIST[INVESTMENT]

→ Page160.

← Page139.

FEATURES §5.12146
These examples use the abbreviated form without a keyword. You would
obtain the same semantics by specifyingattribute explicitly:

The keyword is required if you need to include a precondition, a
postcondition, or a for self-initialization algorithm, as in
attribute_with_contracts andself_initializing_attribute above, or

The next kind of feature is the constant attribute:

Two examples, introducing anInteger_constant andaManifest_stringare:

Even though the value is known from the declaration, it may still be useful
to associate a contract (precondition, postcondition or both) to emphasize
its more fundamental properties, which presumably would survive a
change of the value in a revision of the software:

count, capacity: INTEGER

bounding_rectangle: RECTANGLE
-- Smallest rectangle including this figure

require
non_empty: not empty

attribute
create Result.make(lower, leftmost, height, width)

ensure
Result.lower= lower ; Result.higher= higher
Result.leftmost= leftmost; Result.rightmost= rightmost
Result.height= height; Result.width= width

end

Constant attribute
A Feature_declarationis aconstant attribute declaration if and
only if it satisfies the following conditions:
1 • It has noFormal_arguments part.

2 • It has aQuery_mark part.

3 • There is aFeature_valuepart including anExplicit_value.

maximum_discount: INTEGER
message: STRING

And similarly forbackup.

attribute
end

= 25
= "No such site"

§5.12 HOW TO RECOGNIZE FEATURES 147
Finally, the case of a routine, with two variants:

In theexample illustrating the various categories of feature, the features
with the following names are routines:

plus, with its infix alias"+", is a function; the others are procedures or
functions as indicated by their names.

Why do we need such rules for recognizing various kinds of feature? To
put it more critically, why doesn’t the language distinguish more clearly
between them — for example by requiring specific keywords such as
procedure at the beginning of each declaration?

The reason ismethodological. As seen by clients, a feature is an abstract
property of the instances of the class. Its particular choice of
implementation within the class is a subordinate concern. As a
consequence, the syntax downplays the differences between these forms of
features instead of emphasizing them.

message: STRING= "No such site"

Routine, function, procedure
A Feature_declarationis a routine declaration if and only if it
satisfies the following condition:
• There is aFeature_valueincluding an Attribute_or_routine,

whoseFeature_bodyis of theDeferredorEffective_routinekind.

If a Query_markis present, the routine is afunction; otherwise it
is aprocedure.

For a routine theFormal_arguments(like theQuery_mark) may or may not
be present.

By convention this definition treats a deferred feature as a routine, even
though its effectings in proper descendants may be, in the case of a query,
attributes as well as functions.

procedure
deferred_procedure
function_with_arguments
function_without_arguments
plusalias "+"

ensure
Result/= Void
Result.count<= Max_message_length

← Page139 on.

FEATURES §5.13148
More precisely, what matters for clients is whether a feature returns a
result, or just affects the state of objects without directly producing a result.
This distinction is reflected in the following notions:

Of course, it is sometimes necessary to check what category a feature really
belongs to. As the above examples indicate, you should quickly become
familiar with the various forms.

5.13 THE SIGNATURE OF A FEATURE

As defined above, a query feature — attribute or function — has a result
type. But for any feature, query or command, we often need a more
complete characterization of the feature’s type properties, involving both
the type of its result (in the query case) and the number and type of its
arguments if any.

The notion ofsignature provides this. The signature of a feature is
made of two lists of types:

• The list of argument types (empty for an attribute, or a routine without
arguments).

• The list of result types (empty for a procedure).

To represent lists of types, we can borrow Eiffel’stuple notation, as in
[TYPE1, TYPE2, TYPE3]. (Such a list is not an Eiffel component, simply a
notation to talk about properties of Eiffel features.) So a function whose
declaration begins with

has the signature

We do not really need a sequence for the second component of a signature,
since it will have zero or one element (zero ifor a procedure, one for a
query). Using a list on both sides provides more symmetry and generality.
(The discussion of tuples willillustrate that symmetry.)

Command, query
A command is aprocedure. Aquery is anattribute orfunction.

These notions underlie two importantprinciples of the Eiffel method:

• The Command-Query separation principle, which suggests that queries
should not change objects.

• The Uniform Access principle, which enjoins, whenever possible, to
make no distinction between attributes and argumentless functions.

f (a: INTEGER; b: X): LINKED_LIST[STOCK] is...

[INTEGER, X], [LINKED_LIST[STOCK]]

See the discussion of
these principles in
"Object-Oriented Soft-
ware Construction"
and“UNIFORM
ACCESS”, 23.4, page
616in the present book.
These ideas also lead to
the notion of contract
view, studied in7.8,
page 207.

Chapter13 discusses
tuples.

→ “Emulatingmultiple
results”, page 371

§5.13 THE SIGNATURE OF A FEATURE 149
Here are the signatures of the features in the example at the beginning
of this chapter. An empty sequence is shown as[] .

The signatures ofvariable_attributeandfunction_without_argumentsare
identical, even though one is an attribute and the other a function. For
clients, asnoted, the difference won’t be visible.

The notion of signature deserves a precise definition:

In the above examples, the argument signature ofvariable_attributeis
[] (empty sequence); the argument signature ofprocedureis [INTEGER,
SOME_TYPE].

variable_attribute:
other_variable_attribute:
constant_attribute:
procedure:
deferred_procedure:
function_with_arguments:

function_without_arguments:
plusalias "+":
attribute_with_contract:
self_initializing_attribute:

[], [INTEGER]
[], [SOME_TYPE]
[], [REAL]
[INTEGER, SOME_TYPE], []
[SOME_TYPE], []
[SOME_TYPE, SOME_TYPE],

[OTHER_TYPE]
[], [INTEGER]
[like Current], [like Current]
[], [SOME_TYPE]
[], [SOME_TYPE]

Signature, argument signature of a feature
Thesignatureof a featuref is a pairargument_types, result_type
where argument_typesand result_type are the following
sequences of types:
• For argument_types: if f is a routine, the possibly empty

sequence of its formal argument types, in the order of the
arguments; iff is anattribute, an empty sequence.

• For result_type: if f is aquery, a one-element sequence, whose
element is the type off; if f is aprocedure, an empty sequence.

Theargument_types part is the feature’sargument signature.

The argument signature is an empty sequence for attributes and for routines
without arguments.

Seeabove,page147,and
“UNIFORMACCESS”,
23.4, page 616

FEATURES §5.14150
5.14 FEATURE NAME

Feature names serve to identify features.

A feature name always involves an identifier; this means that it is always
possible to write a valid call in ordinary object-orienteddotnotation, as in

For some features syntactic variants are available, but the availability of
these basic forms is guaranteed:

Such bracket aliases appear for example in theARRAY, LIST and
HASH_TABLEclasses of EiffelBase, so that you can access an element
of one of these structures ast [i], wherei is an integer in the first two
cases and a key in the last one.

x. f (a) -- Qualified: from a client, applied tox

f (a) -- Unqualified: from within the class,
-- applied to the current object

Feature principle

Every feature has an associated identifier.
Any valid call (qualified orunqualified) to the feature can be
expressed through this identifier.

The syntactic variants, available throughalias clauses, offer other ways to
express calls, reconciling object-oriented structure with earlier notations:

• You may qualify the name withalias "§" where§ is some operator. For
example if a feature is namedplus, clients must call it asa.plus(b); by
naming itplus alias "+" you still allow this form of calls — per the
Feature principle — but you also permita + b in accordance with
traditional syntax for arithmetic expressions. The details of alias
operators, as well as the associated conversion mechanism, appear next.

• You may also use a “bracket alias”, written simplyalias "[] " (with an
opening bracket immediately followed by a closing bracket). This
allows access through bracket syntaxx [index], For example
if a class describing some table structure has a feature
itemalias "[] " (index: H): G whereH is some index type, items can be
accessed throughyour_table.item(i) but also through the more concise
your_table[i]. Again this is just a syntactic facility: the second form is
a synonym for the first, which remains available.

→ As detailed in the
chapter on calls:
chapter23.

§5.14 FEATURE NAME 151
You may combine suchalias clauses in the extended feature name with
assignerprocedures. For example the EiffelBase classHASH_TABLE
defines the access feature

whereput is a procedure to insert an element with a given key. This means
that you can not only use bracket syntax for accessing items, as in

(an abbreviation foryour_element:= your_hash_table.item (your_key)),
but also in an assigner call

an abbreviation foryour_hash_table.put (your_element, your_key).

We have now seen all kinds of feature name. Here is the syntax:

For the record we mustclarify the use of quotes and spaces in anAlias:

itemalias "[] " (key: H): G assignput …

your_element:= your_hash_table[your_key]

your_hash_table[your_key] := your_element

Feature names
Extended_feature_name=∆ Feature_name [Alias]

Feature_name=∆ Identifier

Alias =∆ alias '" ' Alias_name'" ' [convert]

Alias_name=∆ Operator | Bracket

Bracket =∆ "[] "

The optionalconvert mark, for an operator feature, supports mixed-type
expressions causing a conversion of the target, as in the expression
your_integer+ your_real, which should use the “+” operation fromREAL,
not INTEGER, for compatibility with ordinary arithmetic practice. See the
presentation of conversions.

Syntax (non-production): Alias Syntax rule

The Alias_nameof an Alias must immediately follow and
precede the enclosing double quote symbols, with no intervening
characters (in particular nobreaks).
When appearing in such anAlias_name, the two-word operators
and then andor elsemust be written with one or more spaces
(but no other characters) between the two words.

Introduced in

→ “MIXED-TYPE
EXPRESSIONS: TAR-
GETCONVERSION”,
15.12, page 419.

→ Similar rules apply
to signed constants, in
“Syntax (non-produc-
tion): Sign Syntax
rule”, page 778, and,
further in that chapter,
to character and
string constants.

FEATURES §5.14152
It is useful to give official names to the aliased forms:

There are indeed three forms of call:

• For the standard case, identifier features, calls usedot notation, as in

• Giving a feature anoperatoralias, such asplusalias "+", allows calls to
take the form of ordinary arithmetic expressions, such asa + b, rather
than the more “obviously O-O” but heaviera.plus(b).

• A class may have one (and only one) feature with abracket alias, such
asitemalias "[]" . The purpose, for a class representing container data
structures such as arrays or tables, is to let clients access the structures
using the traditional syntax of array and function access, for example
your_array[x] as a synonym foryour_array.item (some_index).

In general, breaks or comment lines may appear between components
prescribed by a BNF-E production, making this rule necessary to
complement the grammar: you must writealias "+", notalias " + ".

Operator feature, bracket feature, identifier-only
A feature is anoperator feature if its Extended_feature_namefn
includes anOperatoralias, abracket feature if fn includes a
Bracket alias. It isidentifier-only if neither of these cases applies.

The most common case is identifier-only. The other two kinds provide
convenient modes of expression (“syntactic sugar”) for some cases where
a shorter form, compatible with traditional mathematical conventions, is
desirable forcalling the feature.

When referring to feature names, some syntax rules use the
Extended_feature_name, and some use theFeature_name, which is just the
identifier, dropping theAlias if any. The criterion is simple: when a class
text needs to refer to one of its own features, theFeature_nameis sufficient
since (from the Feature Identifier principle below) it uniquely identifies the
feature. So theExtended_feature_nameis used in only two cases: when
you first introduce a feature, in aFeature_declarationas discussed above,
and when youchangeits name for a descendant, in aRenameclause (for
both inheritance and constrained genericity).

This also means that in descendants of its original class a feature will
retain itsAlias, if any, unless a descendant explicitly renames it to a name
that may drop theAlias, or provide a new one. In particular, redeclaring a
feature does not affect itsAlias.

a.variable_attribute
b.procedure(b, c)
a.plus(b)
your_array.item(some_index)

→ Calls are studied in
chapter23. See also
chapter28 about
expressions.

→ “RENAMING”,
6.9, page 180.

→ Studied in more
detail in thenext section.

→ Studied in more
detail below.

§5.14 FEATURE NAME 153
Remember that the operator and bracket aliases are only there to allow a

form of feature call with a syntax other than dot notation, conforming to

widely accepted notations (operator expressions, bracket access for

arrays). Per theFeatureprinciple, every feature has aFeature_name(which

you can use to call the feature, although most people find the operator or

bracket form clearer when available). If we need to clarify, we talk of “the

identifier” of the feature:

This notion is closely related to one of the language’s design principles:

Another general notion that we need to define for feature name is when

two feature names or operators are “the same”. The definition ensures that

we ignore letter case:

Identifier of a feature name
The Identifier that starts aExtended_feature_nameis called the
identifier of that Extended_feature_nameand, by extension, of
the associated feature.

Feature Identifier principle

Given a classC and an identifierf, C contains at most one featureof
identifier f.

This principle reflects a criticalproperty of object-oriented programming
in general and Eiffel in particular: no “overloading” of feature names
within a class. It is marked as “validity” but has no code of its own since it
is just a consequence of other validity rules.

Same feature name, same operator, same alias
Two feature names are considered to be “the same feature name” if
and only iftheir identifiers have identicallower names.
Two operators are “the same operator” if they have identical
lower names.
An Alias in an Extended_feature_nameis “the same alias” as
another if and only if they satisfy the following conditions:
• They are either the sameOperatoror bothBracket.

• If either has aconvert mark, so does the other.

← Page150.

← Discussed at the end
of this chapter:“NO IN-
CLASS OVERLOAD-
ING”, 5.22, page 166.

← The lower name is
(page102) the name all
in lower case.

FEATURES §5.15154
5.15 OPERATOR FEATURES

Operator features — those declared with anAlias listing a binary or unary
operator — allow class authors, as previewed above, to provide their clients
with a form of call based on the time-honored conventions of arithmetic
expressions, using infix and prefix operators.

A matrix class can useplusalias"+" as the name of an addition function,
enablingusersof this feature towriteadditions in theusualmathematical form

rather than in dot notation, which in this case might come out as
matrix1.plus(matrix2).

Similarly, naming a negation functionnegatedalias "–" allows calls
written in the form– matrix1 as well asmatrix1.negated.

The following syntax shows that an operator is either a free operator
(Free_unaryor Free_binary)or a standard operator. The standard
operators, listed explicitly below, use special symbols, except for boolean
operators which, following tradition, use keywords, simple (asand) or
double (asand then).

So my_name, MY_NAMEand mY_nAMeare considered to be the same
feature name. The recommended style uses a name with an initial capital
and the rest in lower case (as inMy_name) for constant attributes, and the
lower name, all in lower case (as inmy_name) for all other features. If
letters appear in operator feature names, letter case is also irrelevant when
it comes to deciding which feature names are the same and which different.

This notion is useful in particular to enforce the rule that, in any class,
there can be only one feature of a given name (no “overloading”), and to
determine what constitutes a “name clash” under multiple inheritance. In
such cases the language rules simply ignore letter case.

matrix1 matrix2

Operators
Operator=∆ Unary | Binary

Unary =∆ not | "+" | "–" | Free_unary

Binary =∆ "+" | "–" | "∗" | "/" | "//" | "\\" | "^" | ".." |
"<" | ">" | "<=" | ">=" |
and |or |xor |and then|or else| implies |
Free_binary

→ “NO IN-CLASS
OVERLOADING”,
5.22, page 166.

+

§5.16 ASSIGNER PROCEDURES 155
The rule, givenformally in the lexical analysis chapter, lets you use the
symbols appearing in standard operators and any others non-alphabetic
symbols as long as the result does not create any ambiguity with standard
operators, special symbols, and predefined operators used for equality and
inequality (=, /=, ~, /~).

To avoid spurious parentheses in the writing of expressions, each of the
standard operators,UnaryandBinary, has a precedence level, according to
a table appearing in thediscussionof expressions. All free operators have
the same precedence, higher than for standardoperators.

Remember that an operator is not by itself a feature name but only
appears in thealias of an Extended_feature_name, which also lists an
identifier. This means that you neverhaveto use operator notation to call a
feature, as inmatrix1 + matrix2: dot notation, using the feature’s identifier
as inmatrix1.plus(matrix2), is always available, with the same semantics.

5.16 ASSIGNER PROCEDURES

Free operators enable developers to define their own operators with
considerable latitude. This is particularly useful in scientific
applications where it is common to define special notations, which
Eiffel will render as unary or infix operators. You may for example
define operators such as** , |–| (maybe as an infix alias for adistance
function), or various forms of arrow such as<–>, –|–>, =>.

In an assignmentx := v the targetx must be a variable. Ifitemis an attribute
of the typeT of a, programmers used to other languages may be tempted to
write an assignment such asa.item := v to assign directly to the
corresponding object field, but this is not permitted as it goes against all the
rules of data abstraction and object technology. The normal mechanism is
for the author of the base class ofT to provide a “setter” command
(procedure), sayput, enabling the clients to use a.put (v).

The class author may, for convenience, permita.item:= vas a shorthand
for this call a.put (v), by specifying put as an assigner command
associated withitem. An instruction such asa.item := v is not an
assignment, but simply a different notation for a procedure call; it is known
as anassigner call. This scheme, a notational simplification only, is also
convenient for features that have aBracketalias, allowing for example, with
a an array, an assigner calla [i] := v as shorthand for a calla.put (v, i).

The mechanism is applicable not just to attributes but (in line with the
Uniform Access principle) to all queries, including functions with arguments.

The following rules defines under what conditions you may, as author
of a class, permit such assigner calls from your clients by associating an
assigner command with a query.

→ “OPERATORS”,
32.13, page 882

→ “Operator prece-
dence levels”, page
759.

FEATURES §5.16156
In the conformance case, two-way compatibility would mean that the base
classes are proper descendants of each other, causing aninheritance cycle.

In the convertibility case, it would violate theConversionAsymmetryprinciple.

It is in fact possible to have conformance one way and convertibility the
other, but this case is not useful enough to justify a special rule.

Assigner Command rule VFAC

An Assigner_markappearing in the declaration of aqueryq with
n arguments (n ≥ 0) and listing aFeature_namefn, called the
assigner commandfor q, is valid if and only if it satisfies the
following conditions:

1 • fn is theidentifier of acommandc of the class.
2 •c hasn + 1 arguments.
3 • The type ofc’s first argument is the result type ofq.
4 • For everyi in 1..n, the type of thei+1-st argument ofc is the

type of thei-th argument ofq.

The feature q can only be a query since, from the syntax of
Declaration_body, an Assigner_markcan only appear as part of a
Query_mark, whose presence makes the feature a query.

In cases3 and4, we require the types to be identical, not just compatible
(converting or conforming). To understand why, recall that the assignment
a.item := y is only a shorthand for a calla.put (x) with, as a
typical implementation:

item: T assignputdo … end
put (b: U) do … item := b … end

Now assume thatU is not identical toT but only compatible with it, and
consider the procedure call

a.put (a.item)

or the equivalent assignment form

a.item := a.item

which are in principle useless — they reassign to a field its own value —
but should certainly permitted. They become invalid, however, because the
sourcea.item(actual argument of the call or right side of the assignment)
is of typeT, the target (the formal argument) of typeU, and it’s generally
impossible for two different types to be each compatible with the other.

This explains clause3: the first argument of the assigner procedure must
haveexactlythe same type as the result of the query. Similar reasoning
applied to other arguments (if any) leads to clause4.

WARNING: not valid
for differentT andU;
see text.

→ Prohibited by
clause1 of the Parent
rule, page176.

→ Page400.

§5.17 BRACKET FEATURE 157
5.17 BRACKET FEATURE

Besides operator aliases, the syntax ofAlias offers theBracketvariant,
allowing you for example to declare, in a classHASH_TABLE[G, H]
describing tables of elements of typeG with keys of typeH, a feature

This is a normal feature, here a function, distinguished only by a new form
of call. Although you may still use the standard dot-notation form

the bracket alias allows another phrasing for exactly the same semantics:

To avoid ambiguity, at most one feature of a class may have a bracket alias;
it must be a function with at least one argument. These requirements appear
in the general constraint on aliases: theAlias validity rule.

If the function has more than one argument, the bracket notation will
use commas, as inmatrix3[i, j, k].

It is often convenient, as already noted, to use the assigner procedure
mechanism in connection with a bracket alias. If the declaration ofitemreads

referring to a procedureput of the same class, with compatible signature:

then instead of

you may write, with identical semantics:

item (key: K): G
-- Item having the givenkey

require
present: has(key)

do
… “Appropriate implementation”…

ensure
…

end

your_table.item("ABC")

your_table

itemalias "[] " (key: K): G
… The rest as above…

put () … end

your_table.put (v, "ABC")

your_table v

← Bracket, page151.

alias "[] "

["ABC"]

→ Page162.

assignput

value: G; key: K

["ABC"] :=

FEATURES §5.18158
5.18 SYNONYMS AND MULTIPLE DECLARATION

Because the first part of aFeature_declarationis a New_feature_list, not
just oneExtended_feature_name, each feature declaration may introduce
more than one feature, as in

Such features introduced together are known as synonyms:

Synonym declarations should be viewed as an abbreviation, according to
the following rule:

: INTEGER -- Attributes
require … do … ensure… end -- Routines

Synonym
A synonymof a feature of a classC is a feature with a different
Extended_feature_namesuch that bothnames appear in the same
New_feature_list of aFeature_declaration of C.

Unfolded form of a possibly multiple declaration
Theunfolded form of a Feature_declarationlisting one or more
feature names, as in:

f1, f2, … , fn declaration_body (n ≥ 1)
where eachfi is aNew_feature, is the corresponding sequence of
declarations naming only one feature each, and with identical
declaration bodies, as in:

f1 declaration_body
f2 declaration_body
...
fn declaration_body

Thanks to the unfolded form, we may always assume, when studying the
validity and semantics of feature declarations, that each declaration applies
to only one feature name. This convention is used throughout the language
description; to define both thevalidity and the semantics, it simply refers
to the unfolded form, which may give several declarations even if they are
all grouped in the class text.

A multiple declaration introduces the feature names as synonyms. But
the synonymy only applies to the enclosing class; there is no permanent
binding between the corresponding features. Their only relationship is to
have the sameDeclaration_body at the point of introduction.

This means in particular that a proper descendant of the class may
rename orredeclare one without affecting the other.

Eachfi, being aNew_feature, may include afrozen mark. In the unfolded
form this mark only applies to thei-th declaration.

← Syntax on pages141
and142.

a, b, c
f, g

→ “Feature Declara-
tion rule”, page 160.

→Renaming:chapter6
Redeclaration: chapter
10.

§5.18 SYNONYMS AND MULTIPLE DECLARATION 159
When should we use multiple declarations? The last observations provide
a clue. If you anticipate that a feature may have different variants in
descendant classes, it may be better to introduce it as two features, initially
identical, in its class of origin. This is in particular the case when you
expect descendants to redefine the feature, but want to guarantee them
access to the original — for themselves and, if appropriate, their clients.
Then you should declare one of the two features as frozen.

ANY, the Kernel Library class serving as ancestor of all developer-
defined classes, provides several examples of this technique.ANYoffers a
general comparison function,is_equal, originally comparing two objects
for field-by-field equality. The semantics of the object comparison operator
~ is defined in terms ofis_equal. Any class may redefineis_equal(and
hence the meaning of~ for operands of the corresponding types) to account
for the specific semantics of equality desired for the class. For example, if
objectsL1 andL2 below are instances of a classINTEGER_SET, they are
not field-by-field equal (since they contain references to different objects),
but the author ofINTEGER_SETmay decide thatis_equaland ~ must
return true on these objects as they represent the same set. The class will
redefineis_equal to test for the desired notion of equality.

Along with such redefinitions ofis_equal, it is useful to keep the default
version (performing field-by-field comparison) for all classes. This is why
ANY introduces two equality functions, originally as synonyms:

with the consequence (enforced through thefrozen mark) that the second
function may not be redefined, so that developers can trust it to retain a
fixed, universal semantics — indeed, a fixed implementation.

It is also important to understand when multiple declarations arenot
appropriate. This includes the following two situations:

• If you devise abettername for an existing feature, but wish to provide
upward compatibility for existing clients and descendants, then a better
mechanism, described below, is available: “obsoleting” the feature. This
has the advantage of facilitating the eventual phasing out of the obsolete
version, whereas there is no incentive to remove a synonym.

is_equal, frozen default_is_equal
(x: like Current): BOOLEANis...

See21.6, page 572
about the respective
roles of functions
is_equal andequal.

51 8-5 33

(INTEGER_SET) (INTEGER_SET)

L1 L2 Equivalent
objects not
field-by-field
equal51 8-5 33

"Reusable Soft-
ware"discusses how to
choose the names of
library features; see
also Appendix34of the
present book.

FEATURES §5.19160
• The availability of a synonym mechanism is usually not a good excuse
for refusing to choose between possible names. Class designers,
especially designers ofreusablelibrary classes, should not be fickle;
even if two sets of names appear equally good, it is generally better to
choose just one than to provide both. By passing on the choice to client
developers, the latter solution would only confuse them, and make the
class appear more complex than it is.

These observations suggest that multiple declarations, although an
important facility for cases such as the one mentioned above, should
remain a relatively infrequent occurrence in normal Eiffel development.

The example also suggests what kinds of use are proper for frozen
features. The very idea of “freezing” a feature is, in general, contrary to the
fundamental Eiffel concepts of software extendibility and adaptability,
which the feature adaptation mechanisms (in particular redeclaration)
support directly. When you inherit from a class, you should be able to adapt
its features to the new context; you may use the assertion mechanism to
guarantee that the specification remains compatible with the framework
defined in the original, although the implementation may be different.

This mechanism is so central in the Eiffel method that it leaves only a
limited role for frozen features: taking care of predefined, system-level
operations such asis_identical, for which we require not only the
specification but the implementation to be determined once and for all.

5.19 VALIDITY OF FEATURE DECLARATIONS

To be valid, aFeature_declarationmust satisfy a constraint, known as the
Feature Declaration rule. Here is the rule in full, followed by a detailed
explanation of its clauses.

Feature Declaration rule VFFD

A Feature_declarationappearing in a classC is valid if and only if
it satisfies all of the following conditions for every declaration of
a featuref in itsunfolded form:

1 • TheDeclaration_bodydescribes a feature which, according to
the rules givenearlier, is one of:variableattribute, constant
attribute,procedure,function.

2 • f does not have thesamefeaturename as any other feature
introduced inC (in particular, any other feature of the unfolded
form).

3 • If f has the same feature name as thefinalname of any inherited
feature, theDeclaration_bodysatisfies theRedeclarationrule.

4 • If theDeclaration_bodydescribes adeferredfeature, then the
Extended_feature_name of f is not preceded byfrozen.

← The syntax of
Feature_declaration
was given on page141

← The rules for deter-
mining the kind of fea-
ture are those of5.12.

→ The full Redeclara-
tion rule isonpage307.

§5.19 VALIDITY OF FEATURE DECLARATIONS 161
Additional obligations apply if there is anAssigner_mark; they are covered
by the Assigner Procedure rule (automatically included thanks to theGeneral
Validity rule).

A redeclaration is either aredefinition of an inherited feature (changing its
specification, signature or implementation) or aneffecting (an effective
implementation of a feature inherited in deferred form). The exact
requirements in this case are captured by the Redeclaration rule, which will
be given when we complete the study of inheritance, redefinition and
deferred features.

A companion constraint, seen as part of the Redefine Subclause rule in alater
chapter, will prohibit theredefinition of a frozen feature.

5 • If the Declaration_bodydescribes aoncefunction, the result
type isstand-alone.

6 • Any anchored type for an argument isdetachable.

7 • TheAlias clause, if present, isalias-valid for f.

As stated at the beginning of the rule, the conditions apply to theunfolded
formof the declaration; thismeans that the rule treats a multiple declaration
f1, f2, ... , fn declaration_bodyas a succession ofn separate declarations
with different feature names but the samedeclaration_body.

Conditions1 and 2 are straightforward: theDeclaration_bodymust
make sense, and the name or names of the feature being introduced must
not conflict with those of any other feature introduced in the class.

In applying conditions2 and3, remember that two feature names are “the
same” not just if they are written identically, but also if they only differ by
letter case. Only the identifiers (Feature_name) of the features play a role
in this notion, not anyAlias they may have.

The Feature Namerule will state a consequence of conditions2 and3
that may be more appropriate for error messages in some cases of violation.

Condition4 prohibits afrozenfeature from being declared as deferred.
The two properties are conceptually incompatible since frozen features, by
definition, may not be redeclared, whereas the purpose of deferred features
is precisely to force redeclaration in proper descendants.

Condition 5 applies to once functions. Aonceroutine only executes its
body on its first call. Further calls have no effect; for a function, they yield
the result computed by the first call. This puts a special requirement on the
result typeT of such a function: if the class isgeneric,T should not depend
on any formal generic parameter, since successive calls could then apply to
instances obtained from different generic derivations; andT must not be
anchored, as in the context of dynamic binding it could yield incompatible
types depending on the type of the target of each particular call. The notion
of stand-alone typecaptures these constraints onT.

→ As defined on page
162 below.

← Assigner Procedure
rule:page156;General
Validity rule: page98.

← “Unfoldedformofa
possiblymultipledecla-
ration”, page 158.

← Definition of “same
featurename”,page153.

→ Page466.

←Frozen featureswere
introducedonpage142.

→ Page301.

→ “ONCE ROU-
TINES”,23.14,page633.

→ See, in the chapter
on types:“STAND-
ALONE TYPES”,
11.12, page 340.

FEATURES §5.19162
Such a feature must return a result and hence be a query — attribute or
function. An attribute is only possible in the unary case, and is indeed
permitted in line with theUniform Access principle, although in most
practical cases you’ll need a function.

Condition 6 addresses delicate cases of polymorphism and dynamic
binding, where anchored arguments and their implicit form of
“covariance” may cause run-time errors known as “catcalls”. It follows
from the general rule for signature conformance and isdiscussed with it.

The last condition,7, is the consistency requirement on features with an
operator or bracket alias. It relies on the following definition (which has a
validity code enabling compilers to give more precise error messages).

Alias Validity rule VFAV

An Alias clause isalias-valid for a featuref of a classC if and
only if it satisfies the following conditions:
1 • If it lists anOperatorop: f is aquery; no other query ofC has

anOperatoralias using thesameoperator and the same number
of arguments; and either:op is aUnaryandf has no argument,
or op is aBinary andf has one argument.

2 • If it lists a Bracket alias: f is a query with at least one
argument, and no other feature ofC has aBracket alias.

3 • If it includes aconvert mark: it lists anOperatorand f has
one argument.

4 • If it lists one of the “semistrict” operatorsand then, or else
andimplies: C is the Kernel Library classBOOLEAN.

The first two conditions express the uniqueness and signature requirements
on operator and bracket aliases:

• An operator featureplusalias "§" can be either unary (called as§ a) or
binary (called asa § b), and so must take either zero or one argument.
Two features may indeed share the same alias— likeidentityalias "+"
and plus alias "+", respectively unary and binary addition in class
INTEGERand others from the Kernel Library — as long as they have
different identifiers (hereidentityandplus) and different signatures, one
unary and the other binary.

• A bracket feature, of which there may be at most one in a class, will be
called under the formx [a1, … an] with n ≥ 1, and so must be a query
with at least one argument (and hence a function). Condition2 tells us
that there may be at most one bracket feature per class.

→ “Signature con-
formance”, page 378.

→ “UNIFORM
ACCESS”,23.4,page616.

§5.20 SCOPE OF NAMES 163
5.20 SCOPE OF NAMES

Any feature of a class is accessible for use in anyFeature_declarationof
the class, and in itsInvariant clause. Examples of the first use include
unqualified (direct) calls in theFeature_body, Precondition, Postcondition
andRescueclauses of a routine, and use asAnchor for anAnchoredtype
in a declaration of a feature or of a routine argument.

To avoid any ambiguity,constraints will prohibit reusing the name of a
feature of the class for any other entity appearing in the class: formal
argument or local variable of a routine, Object-Test Local of anObject_test.

The Feature Declaration rule doesnot, however, prohibit conflicts
between feature names and names ofclasses. It is possible for a feature to
bear the same lower name as a class of the universe. You may sometimes
find it convenient to write a feature declaration such as

in a class text which only needs one feature of a certain type (here given by
classERROR_WINDOW) if you consider that the type name provides
enough information to describe the role of the feature.

5.21 OBSOLETE FEATURES

As classes evolve in the constantly changing world of software
development, you may find that a feature is no longer satisfactory.

If all you need is to change its implementation, then you should be able
to update the feature without affecting its dependent classes (clients and
proper descendants). For example, you may change aFeature_body, even
if this causes replacing an attribute by a function or conversely, with
minimum impact on dependents.

Condition3 indicates that aconvert mark, specifying “target conversion”
as in your_integer+ your_real, makes sense only for features with one
argument, with anOperator which (from condition1) must be aBinary.

Condition4 addresses the special case of the threesemistrictboolean
operators, which follow unique semantic rules enabling them not to
evaluate their second operand in some cases:a and then b is guaranteed
not to evaluateb if a evaluates to false, the result then being necessarily
false. Although the language definition almost always provides generality
— based on the principle that if a technique is useful to the language
designer it must also be useful to the language user — it makes an
exception here, because there is no simple way for programmers to write a
semistrict function definition. Soand then, or elseandimplies are for the
private use of classBOOLEAN. As condition4 indicates, even its own
proper descendants cannot redefine these features.

error_window: ERROR_WINDOW

→ “SEMISTRICT
BOOLEAN OPERA-
TORS”,28.6,page765.

→ Seechapters8about
Feature_body, 9 about
Precondition andPost-
condition, 26 about
Rescue.

→Formalargumentrule,
page216;Local variable
rule, page222; Object
Test rule, page651.

FEATURES §5.21164
Unfortunately, this is not always the case. You may become unhappy
with a feature’s name, its signature or its specification — all of which are
part of the interface and known to the clients.

In such a situation, if you are certain that you have found a better
replacement for the feature, you should perform the change without delay,
for fear of prolonging the life of inferior software versions. But you must
also take into consideration any existing dependent classes that relied on
the feature. Clearly, you should avoid any change that would suddenly
prevent such classes from functioning; but you may want to encourage their
authors to adapt them to the new version within a reasonable time.

The preceding chapter showed how to declare an entireclass as
obsolete. This is a rather drastic decision; more often, the class as a whole
remains adequate, but you want to update a few features.

The feature obsolescence mechanism supports this need. By declaring a
feature asobsolete, you keep it usable exactly as it was, while alerting its users
to the existence of a better version. This provides a graceful way to phase out
a feature while remaining friends with the developers of its clients.

Both routines and attributes may become obsolete. To mark a routine
obsolete, give it anObsolete clause, of the form

where Messageis a Manifest_string. This serves to warn authors of
dependent classes that the routine should no longer be used. TheMessage
should direct readers to alternate features.

Here is an obsolete routine which once figured in classARRAYof the
Kernel Library:

obsolete Message

enter(i: INTEGER; new_value: T)

-- Replace bynew_value the element at index i
require

i >= lower; i <= upper
do

...(Appropriate algorithm)...
ensure

set:item(i) = new_value
end

The specification defines
theroutine’ssemantics.It
is normally expressed by
assertions;seechapter9.

← See4.11, page 128,
about obsoleting an
entire class.

obsolete"Use ’put(new_value, i)’ "

§5.21 OBSOLETE FEATURES 165
In older versions of the library,enterwas the routine used to replace by
new_valuethe value of the element at indexi in an array. An examination
of the consistency of names and conventions in the library resulted in a
decision to update the routine; both the name (putrather thanenter) and the
order of arguments were changed. TheMessage explains this change.

To avoid cluttering library classes with features that are no longer relevant,
library maintainers should not allow obsolete routines to loiter forever. After
a suitable grace period — time for one or two new releases of the software to
displace the older generations — they will have fulfilled their duties as
Client-Friendly Transition Facilitators and should be retired with honors.
This indeed happened to the above version ofenter, which (although fondly
remembered) disappeared long ago from classARRAY, allowing — by an
unforeseen twist of fate —enter to reappear as a synonym ofput.

The syntax of class-levelObsoleteclauses also applies — through the
production forFeature_value— to routine-level clauses; here it is again:

As we saw there, marking a feature asObsoletedoes not affect its
semantics. But language processing tools may produce a warning when
they process a client or descendant class that uses the feature. The warning
should include theMessage.

Thecontractview of a class does not retain any feature marked obsolete.

A compiler or other language processing tool may also go further and
provide an option that, under some conditions, will automatically update
the text of client classes, replacing all calls to an obsolete routine by the
body of the routine with appropriate argument substitution.

As noted in the discussion of obsolete classes, the availability of a
feature obsolescence mechanism is not an excuse to grant a reprieve to
software components that are buggy or otherwise deficient. If you discover
a specification, design or implementation flaw, only one reaction is
reasonable: correcting the mistake. A routine is a candidate for
obsolescence only when, as originally written, it adequately covered a
certain need, but is not in a manner satisfying your current standards. You
prefer the new version, but the obsolete version is notwrong; it’s just not
what you wish to keep for the future.

Obsolete=∆ obsoleteMessage

Message=∆ Manifest_string

← Page141.

←Thissyntaxappeared
originally on page129,
followed by the seman-
tics, applicable to obso-
lete features as well as
obsolete classes.

→“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.8, page 207.

FEATURES §5.22166
5.22 NO IN-CLASS OVERLOADING

A consequence of the various validity rules on features and their names —
to be expressed fully by theFeatureNamerule — is that Eiffel never
permits the same name to denote different features within the scope of a
given class. This is expressed by theFeature Name rule.

When you see a feature namef in a class you immediately know what
feature it refers to; and when you see a feature calla.f (…) with a of type
T you can immediately find the featuref to which it refers inT. (The actual
feature to be called may of course, as a result of dynamic binding, be a
redeclared version from a descendant.)

The full Feature Name rule appears only in a later chapter because it
must take into account, along with the features introduced in a class, those
inherited from its parents, and possibly renamed in the process: no name
conflicts must arise between any of these. The rule must handle the effect
of all inheritance mechanisms, including renaming, redefinition, and
sharing under repeated inheritance.

The result, however, is simple: no name conflicts, period. The
“overloading” mechanisms permitted by some languages is a confusing
facility with no known benefit. It contradicts the principles of object
technology and creates difficulties for both language users and compiler
writers. The idea of using the same name to denotedifferent thingswithin
a given scope can at best be described as rather puzzling.

Eiffel enforces instead the clear rule that in one class one feature name
means one thing. (Nothing prevents you, asnoted, from using the same
name for feature names andclass names, which can cause no ambiguity.)

The only form of overloading permitted by Eiffel is the reuse of a
feature name acrossdifferentclasses. The systematic naming conventions
of the recommended style actually encourage you in this direction; the idea
is to use a single name for features that correspond to thesamebasic
semantics adapted to different contexts — the reverse of in-class
overloading. Inter-class overloading takes its full power through dynamic
binding, which allows dynamic (run-time) selection of the proper semantic
variant, where intra-class overloading is static (compile-time). The
dynamic form of inter-class overloading can also be calledsemantic
overloading, in contrast with thesyntacticnature of in-class overloading.

What is commonly known as “operator overloading”, the possibility of
using the same operators, arithmetic in particular, for operations on
different data types, is provided in a more general and flexible way by the
combination ofAlias clauses, permitting operator syntax for calls, and the
conversion mechanism.

→ Page466.

← “SCOPE OF
NAMES”,5.20,page163.

	5 5 Features
	5.1 OVERVIEW
	5.2 THE ROLE OF FEATURES
	5.3 FEATURE CATEGORIES
	5.4 IMMEDIATE AND INHERITED FEATURES
	Inherited, immediate; origin; redeclaration; introduce

	5.5 FEATURES PART: EXAMPLE
	5.6 GRAPHICAL REPRESENTATION
	5.7 FEATURES PART: SYNTAX
	5.8 FORMS OF FEATURE
	Feature categories: overview

	5.9 FEATURE DECLARATIONS: EXAMPLES
	5.10 FEATURE DECLARATIONS: SYNTAX
	5.11 FEATURE BODIES
	5.12 HOW TO RECOGNIZE FEATURES
	Variable attribute
	Constant attribute
	Routine, function, procedure
	Command, query

	5.13 THE SIGNATURE OF A FEATURE
	Signature, argument signature of a feature

	5.14 FEATURE NAME
	Feature principle
	Syntax (non-production): Alias Syntax rule
	Operator feature, bracket feature, identifier-only
	Identifier of a feature name
	Same feature name, same operator, same alias

	5.15 OPERATOR FEATURES
	5.16 ASSIGNER PROCEDURES
	5.17 BRACKET FEATURE
	5.18 SYNONYMS AND MULTIPLE DECLARATION
	Synonym
	Unfolded form of a possibly multiple declaration

	5.19 VALIDITY OF FEATURE DECLARATIONS
	5.20 SCOPE OF NAMES
	5.21 OBSOLETE FEATURES
	5.22 NO IN-CLASS OVERLOADING

