12

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Genericity

12.1 OVERVIEW

The types discussed so far were directly defined by classegertaicity
mechanism, still based on classes, gives us a new level of flexibility
throughtype parameterization. You may for example define a class as
LIST [G], yielding not just one type but manyIST[INTEGER,
LIST[AIRPLANE and so on, parameterized By

Parameterized classes suchL&ST are known ageneric classesthe
resulting types, such akIST [INTEGER, are generically derived
“Genericity” is the mechanism making generic classes and generic
derivations possible.

Two forms of genericity are available: witmconstrainedjenericity,G
represents an arbitrary type; witlonstrainedyenericity, you can demand
certain properties of the types representedshgnabling you to do more
with G in the class text.

The discussion of generically derived types will proceed as with other
kinds of type in the previous chapter: to define the semantics of a type, it
suffices to say whether it is reference or expanded, and to defihages
type, always a Class or_tuple type If the type is itself a
Class_or_tuple_typave must also define itsase classwhich determines
its instances. For exampldST[INTEGER hasLISTas its base class, and
is its own base type.

A subsequent chapter discusses the retaaatbrmanceproperties. - Chapterl4.

12.2 GENERIC CLASSES

[]

To obtain generically derived types, we start frgeneric classesuch as
LIST, with one or moréormal generic parametersuch ass.

Generic classes describe flexible structures having varicsitainer data struc-
parameterized by types. Often these ematainer data structures used tures were mentionedin
to gather objects of various possible types; examples include lists, st?:p@&
arrays and the like, which contain objects of arbitrary type. The generic
parameters of such classes specify the types of objects to be kept in the
container structures, such as the elements of an array.

342 GENERICITY 8§12.2

The following examples from EiffelIBase show beginnings
(Class_headdollowed byFormal_generigof classes with unconstrained
generic parameters:

deferred classTREE[G] ...

classLINKED_LIST[G] ...
classARRAYG] ...

In each caseG is aformal generic parameter of the class, representing

the types of objects to be kept in an instance of the class — a tree, a linked
stack, an array. Classes may have more than one formal generic parameter;
the next section will give an example with two parameters.

To derive a type from a generic class — called Hase clasof the
derivation — you must provide a type, called attual generic
parameter, for each of the formal generic parameters of the base class.
This will yield agenerically derivedtype. The derived type is expanded if
the base class is expanded, a reference type otherwise. Generic derivation,
applied to the above base classes, will yield types such as

! TREE[INTEGER
ey TREE[PARAGRAPH
| LINKED_LIST[PARAGRAPH]
TREE[TREE[PARAGRAPH]
ARRAY[LINKED_LIST[TREE[LINKED_LIST[PARAGRAPH]]

Instances of the first type represent trees of integers; instances of the
second one represent trees of paragraphs (that is to say, trees of instances
of the reference typ®ARAGRAPH and so on. The base classes are,
respectivelyTREE TREE LINKED_LIST TREEandARRAY

Since all these base classes have exactly one formal generic parameter,
each of the above generically derived types is obtained by providing one
actual generic parameter. The actual generic parametehs B ERfor
the first examplePARAGRAPHor the second and thirdlREE[TREE
[PARAGRAPH for the fourth, LINKED_LIST [TREE [LINKED_LIST
[PARAGRAPH] for the last.

The actual generic parameter is a type; it may itself be generically
derived; the last two examples illustrate this possibility, which leads to
nested genericity without any limit on the depth of nesting.

In the syntax specification, the place where all this appears is the

Class_typeonstruct, introducedarlier as — This was in the pre-
=] | Class_typef Class_nam@Actual_generics | 33" chapterpage

Actual_generichasn’t been defined until now. Here it is:

Actual generic parameters
Actual_generic® "[" Type_list"]"

Type_list2 {Type"" ...}*

§12.3 GENERIC CLASSES AND GENERIC DERIVATIONS 343

12.3 GENERIC CLASSES AND GENERIC DERIVATIONS

ETHNTAL

[RALinie

The construct that makes a class generié-dgsmal_generigsoptionally

appearing after th€lass_headesf aClass_declaratigiwith this structure: _ ciass_declaration
was given in chaptet,
which on page.28pre-

Formal generic parameters viﬁwed r:he syntax
Formal_generic€ "[" Formal_generic_list]" shown here
Formal_generic_lis {Formal_generi¢,"...}*
Formal_generic@ [frozen] Formal_generic_name
[Constraint
Formal_generic_namé [?] Identifier
and a straightforward validity constraint:
Formal Generic rule VCFG ~ Arulealsoappliesto
theConstrainiart
A Formal_genericpart of aClass_declaratiois valid if and only “Generic Constaint
rule”, page 349

if every Formal_generic hamé& in its Formal_generic_list
satisfies the following conditions:

1 -G is different from the name of any class in timverse.

2 *Gis different from any othelFormal_generic_nanappearing
in the samé-ormal_generics_part

Adding thefrozen qualification to a formal generic, as D [frozen G]

rather than jusiC [G], means that conformance on the corresponding
generically derived classes requires identical actual parameters: whereas
C [U] conforms toC [T] if U conforms toT, D [U] does not conform to

D [T] if Uis notT.

Adding the? mark to aFormal_generic_namas in? G, means that the
class may declareself-initializing variables (variables that will be
initialized automatically on first use) of tyfi& this requires that any actual
generic parameter that is an attached type must also be self-initializing, that
is to say, makeefault_creatdrom ANY available for creation.

The optionalConstrainpart of the form->CONSTRAINING_TYPjiits
a requirement on acceptable actual generic parameters: they must conform
to theCONSTRAINING_TYRH it is not present, any type will do.

344 GENERICITY 812.4

Let's make the basic terminology precise:

Tm Generic class; constrained, unconstrained

Any class declared with Bormal_genericpart (constrained or
not) is ageneric class

If a formal generic parameter of a generic class is declared with
a Constraint the parameter isconstrained if not, it is
unconstrained

A generic class is itseltonstrained if it has at least one
constrained parametemconstrained otherwise.

A generic class does not describe a type but a template for a set of possible
types. To obtain an actual type, you must providedatual _genericdist,

whose elements are themselves types. This has a name too, per the
following definition.

Generic derivation, non-generic type
The process of producing a type from a generic class |by
providing actual generic parametergéneric derivation

A type resulting from a generic derivation is generically
derived type, or justgeneric type

A type that is not generically derived iman-generic type

Itis preferable to stay away from the term “generic instantiation” (sometimes

used in place of “generic derivation”) as it creates a risk of confusion with the
EETPREE normal meaning of “instantiation” in object-oriented development:rtire
gt time process of obtaining an object from a class.

Among the above exampldRARAGRAPHs non-generic, as a class and as

a type (any non-generic class is also a typeNKED_LIST TREEand
ARRAYare generic classes; to produce a generic derivation from one of
them, you choose a suitable actual generic parameter, and get a generically
derived type such ddNKED_LIST[INTEGER.

The expansion status of a generically derived tygellows from its
base class, independently of the actual generic paraméter&xpanded
if its base class is an expanded class; otherwise it is a reference type.

12.4 SELF-INITIALIZING FORMALS

---- EXPLAIN

§12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY 345

Self-initializing formal

A Formal_generic_parametisrself-initializing if and only if its
declaration includes the optiorfamark.

This is related to the notion of self-initializingpe a type which makes
default_creatdrom ANY available for creation. The rule will be that an
actual generic parameter corresponding to a self-initializing formal must
itself, if attached, be a self-initializing type.

12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY

If a formal generic parameter is constrained, appearin® as> T, the
constraintT determines what operations are applicable, in the class to an
entity of typeG: the features of. This will be formalized very simply by
defining the base type &, in this case, as beify

In the case of unconstrained genericity, we don’t know anything about
future actual generic parameters:GriG], G can represent any type. The
only operations that we can apply in this case are thoge\bf since we
know every Eiffel class conforms t&ANY We’'ll in fact allow these - “Universal Con-

operations, and tre& as if it were constrained BYNY formance principle”.
page 173

This observation allows us to simplify the validity and semantics
treating in the same way all formal generic parameters, constraineu aiu
unconstrained, thanks to the following convention, which also allows us in
every case to talk about “the constraint” of a formal generic parameter:

Constraint, constraining types of a~ormal_generic
The constraint of a formal generic parameter is ionstraint
part if present, and otherwigeNY

Its constraining types are all the types listed in its
Constraining_typel present, and otherwise jusNY

--- For the language description, it's convenient to avoid treating

A straightforward constraint applies to unconstrained generic derivations:
a generically derived type of the for@[T, ...], whereC does not declare
any constraints for its generic parameters if any, is valid if and only if:

» Cis indeed a generic class.

* The number offypecomponentq, ... in theActual_genericéist is the
same as the number of-ormal_generic parameters in the
Formal_generic_lisof C's declaration.

346

GENERICITY 812.6

This property does not appear as a separate validity constraint since, thanks
to the ----- REWRITE notion of unfolded form, it will follow as a special
case of the validity rule for the constrained case, where we treat

unconstrained genericity as constrainedAbiY This is a'constraint on

"unconstrainetigenerie
ity. Sometimes language

12.6 CONSTRAINED GENERICITY meets metalanguage

In the above unconstrained examples of genericity, any type was acceptable
as actual generic parameter; this is because we do not require any special
property of the objects to be entered into an array, inserted into a tree or

pushed onto a stack. As long as operations applicable to all objects (such
as assignment, copying or equality testing) are available, we can write the

generic class, for exampleREE[T], without any specific knowledge about

the actual types to be used for

In some cases, however, you will need a guarantee that these types
possess specific properties, so that the class text may apply certain
operations to the corresponding objects. A typical example is a generic
classVECTORJT ...] describing vectors, which must support an addition
operation. To add two vectors, you need the ability to add two vector
elements; in other words, you need an addition operatioif.crhen T
cannot be an arbitrary type.

With constrained genericity, you can guarantee Theupports addition,
by requiring any actual generic parameterTao be based on a descendant
of a class that includes an addition routine. The class will appear as

classVECTORG —> NUMERIQ....

in reference to claddUMERICof the Kernel Library, describing numerical
values and having among others a featphes alias "+" representing
addition. Numerical classes suchlidl§ EGERandREALare descendants of
NUMERIG as will be any class that you want to declare as providing a
number or number-like facility (for example clasCTORitself). The
Constraint part —> NUMERIC indicates that a generic derivation
VECTOR SOME_TYPEwiIll be valid if and only if SOME_TYPEonforms
to NUMERIC So you may us¥ ECTORINTEGER, VECTORREAL, or
evenVECTORVECTOR[INTEGEHR] if you have made/ECTOR itself
inherit from NUMERIC, but not VECTORPARAGRAPH if class
PARAGRAPHS not a descendant BMUMERIC

Class HASH_TABLE of EiffelBase provides another example of
constrained generic class. This class describes tables of elements,
retrievable through associated keys. Its text begins with

classHASH_TABLHEG; KEY - HASHABLE ..

§12.6 CONSTRAINED GENERICITY 347

The class has two generic parameters. The first@nplays the same role

as those encountered in the previous section; it stands for the type of table
elements, and is unconstrained. The secondiB¥,is constrained by the
Kernel Library clas$iASHABLE

The constraint means that the base class of any actual generic paréThe = symbol is remi-
used forKEY must be a descendant of the constraining cldgsSHABLE TSt i‘;fhtgr?t:r’]rcog"dia_
HASHABLEis a simple Kernel Library class introducing a function grams
hash _codeINTEGER

--Hash_code value
deferred

end

In other words, keys must be "hashable” into integer values. An example of
a class that inherits frordHASHABLES the Kernel Library clasSTRING
describing character strings, for which a standaagh_coddunction is
provided. An example of a type generically derived frellsSH_TABLES

\ HASH_TABLEPARAGRAPHSTRING \

As illustrated by these examples, the basic syntax for constrained formal
generic parameters includes, after the paramet&opatraintof the form

|L‘I'-Ll ‘ —> Class_or_tuple_type ‘

The effect of such &onstraint if present, is to restrict allowable actual
generic parameters to types that conform to the givi@ss_or_tuple_type

Recall that a typ€ conforms to a typ® if the base class ¢ is a descendant The nextchapter covers
of the base class d; also, if C is generically derived, its actual generic conformance
parameters must (recursively) conform to thos®&oln theHASH_TABLE

case conformance is ensured by the propertySA&ING as specified by the

Kernel Library, inherits frolHASHABLE

Two supplementary facilities are available:

* You can require certain creation procedures.

- See’'CREATING

* You can use multiple constraints. INSTANCES OF FOR-
MAL GENERICS”

20.9.page535forafull
The first of these enables you to write something like discussion

‘classD [G = CONSTcreatecpl, cp2, ... end ...

348 GENERICITY 812.7

wherecpl, cp2, ... must be procedures of ty@@ONST The purpose — as
explained in detail in the chapter on creation — is to allow creation of
objects of typeG: within the class, withx declared of typés, you can use

a creation instruction of the formreatex.cpl (actual9 and similarly for

the other listed procedures, assuming validualsarguments. A generic
derivationD [T] will then requireT to declare its versions afpl, cp2 ...

as creation procedures. CONSTitself, cpl, cp2, ... must be procedures,
but they do not have to bareationprocedures, since what matters is to be
able to use them to create instances of actual generic parameters Juch as

The second facility enables you to specify multiple constraints, as in
‘ classD [G = {CONST1CONST2CONSTY ... ‘

meaning that any actual paramefem a generic derivatio [T] must
conform toall of CONST1CONST2CONST3

Itis in fact possible to combine both of these two facilities, as in
‘classD [G = {CONST1CONSTZXreatecpl, cp2 ... end}] ... \

significantly complicate the syntax and validity of generic constraints, as well
as the definition of the base type for formal generic parameters. This is a typical

@ More generally, as the rest of this chapter will show, multiple constraints
I “borderline” facility, whose presence in the language is subject to criticism.

Most developments do not need it, but there are cases, mostly involving
libraries, when working without multiple constraints would make things
awkward. When you have control over all classes involved, you can in
principle get away with single constraints only, achieving the effect of
D [G —{CONST1CONSTZ] by usingD [G—{CONST1Y, after writing

a classCONST12hat inherits fromCONST1andCONST2But this doesn’t
work with pre-existing classes, especially those from the Kernel Library
and other fundamental libraries: with multiple constraints you can write
D [G = {COMPARABLE NUMERIG], which will acceptiINTEGERor
REAL as an actual generic parameter; but defining a class
COMPARABLE_NUMERIC that inherits from COMPARABLE and
NUMERICwon't help you sinceNTEGER REALand the like do not know

it. And you cannot define new classesNUMERIC_HASHABLENd so on

— for every potentially useful combination.

So even though multiple constraints are useful for only a minority of cases
and users, they aneery desirable to these users for those cases, explaining
why the language supports them in spite of the added complication.

12.7 RULES ON CONSTRAINED GENERICITY

Now for the precise syntax and validity of constrained genericity. The
construct that remains to be specifie@straint

§12.7 RULES ON CONSTRAINED GENERICITY

349

ETHNTAL

[RALinie

Generic constraints

Constraint? "—>" Constraining_types
[Constraint_creatofs

Constraining_typeé€ Single_constrairiultiple_constrain

Single_constrain® Type[Renaming
Renaming® Renameend
Multiple_constraint® "{" Constraint_list}"

Constraint_list2 {Single_constraint," ...}*

Constraint_creator8 createFeature_lisend

There are two validity rules. One governs tl®nstraintpart of the
declaration of a constrained generic class; the other, complementing the
Unconstrained Genericity rule, governs the validity of a type derived from
In addition, of course, the base class must exist in the universe; this is a
consequence of thelass VYpe rule. First:

Generic Constraint rule VTGC

A Constrainpart appearing in theormal_genericpart of a class
C is valid if and only if it satisfies the following conditions fo
everySingle_constrairlisting a typeT in its Constraining_types
1 T involves no anchored type.

2 «If a Renamingclauserename rename_listend is present, a
class definition of the forntlass NEW inherit T rename
rename_lisend (preceded byleferred if the baseclass ofT
is deferred) would be valid.

[

This is a validity
“constraint” on the
generic “constraints”
of Eiffel classes.
Sometimes language
meets metalanguage.

350 GENERICITY 812.7

There is no requirement here on thenstraint_creatorgart, although in
most cases it will list names (aftBenaming of creation procedures of the
constraining types. The precise requirement is captured by other rules.

Condition2 implies that the features listed in tli&onstraint_creators
are, after possibl&enaming names of features of one or more of the
constraining types, and that no clash remains that would violated the rules
on inheritance. In particular, you can use fRenamingeither to merge
features if they come from the same seeds, or (the other way around)
separate them.

If T is based on a deferred class the fictitious cld&3V should be
declared asleferred too, otherwise it would be invalid if has deferred
features. On the other handEWcannot be valid ifT is based on a frozen
class; in this case it is indeed desirable to disallow the us& a$ a
constraint, since the purpose of declaring a clisgen is to prevent
inheritance from it

The last observation suggests a name for the resulting features:

Constraining creation features

If Gis a formal generic parameter of a class, tlo@straining
creators of G are the features dd's Constraining_typedf any,
corresponding after possibleenamingto the feature names
listed in theConstraining_creatoi§ present.

seen below) in the constraining types themselves; only their instantiatable
descendants are subject to this rule.

Constraining creators should be creation procedures, but not necessarily (as

The usual situation, with a declaration involvinG@nstraint_creators
‘ classD [G = CONSTcreatecpl, cp2 ... end] ...

the names listed;pl, cp?2 ..., should denote procedures@ONST They

don’t have to becreationprocedures o£ONST— this will be required

only in the actual generic parameter, as stated by the next rule — and can
in fact be deferred, but they have to be known procedur€STso that

we can assess the validity of a creation call suctreatex.cpl(actualg,
especially the validity of the chosantuals

--- EXPLAIN CLAUSE 4 (INCLUDING CASE OF TUPLES ---

Next, the rule for generically derived types. The two properties already
cited for the unconstrained case still apply: the number and types of actual
parameters must match those of the formal parameters. In addition:

* Wherever a formal generic parameter is constrained, the corresponding
actual parameter must conform to the constraining type or types.

§12.7 RULES ON CONSTRAINED GENERICITY 351

o

WAL IDITY

«If there is a Constraint_creatorspart requiring some creation
procedures, these must indeed be creation procedures in the actual
generic parameter.

Here is the precise formulation:

Generic Derivation rule VTGD

Let C be a generic class. Blass_typeCT havingC asbaseclass
is valid if and only if it satisfies the following conditions for every
actual generic parametef and every Single constraintU
appearing in the constraint for the corresponding formal generic
paramete(G:

1 « The number of Type components@T’s Actual_genericdist
is the same as the numberfafrmal _generiparameters in the
Formal_generic_lisof C's declaration.

2 « T conforms to the type obtained by applyingUWahe generic
substitution ofCT.

3 «If Cis expandedCT is generic-creation-ready.

4 «If G is a self-initializing formal and' is attached, thefl is a
self-initializing type.

In the case of unconstrained generic parameters, only conditpplies,
since the constraint in that caseAslY which trivially satisfies the other
two conditions.

Condition3 follows from thesemanticule permitting “lazy” creation
of entities of expanded types on first use, throdgfault_createGeneric-
creation-readiness (definguext) is a condition on the actual gener:s pagess2
parameters that makes such initialization safe if it may involve creation ot
objects whose type is the corresponding formal parameters.

Condition4 guarantees that @ relies, for some of its variables of type
G, on automatic initialization on first usd, provides it, if attached
(remember that this includes the case of expanded types), by making
default_creatédrom ANYavailable for creation. [is detachable this is not
needed, sinc¥oid will be a suitable initialization value.

At first the phrasing of claus@ seems more complicated than
necessary: why must the actual generic parameter conform not [Diito
to “the type obtained by applying 1d by ...”? This is to permitecursive
generic constraintsas detailed next. For most practical cases, however,
you can understand claudes if it just read

The role of this condition is to make sure that if the operations of a class
CI..., G, ...] may include creations on targets of the formal generic type
G, any associated actual generic paramétetill support such creations.
The basic

352 GENERICITY 8§12.8

“T conforms to the constraining type

12.8 CONSTRAINTS AND CREATION

Consider a formal generic parametér under what conditions can we
create an object of typeG, for example through an instruction
createx.make(...) with x of type G in one of the routines of the class?
Including a Constraint_creatorgnables you to specify the applicable
creation procedures foB, as in G —> CONSTcreate makeend. The
corresponding actual generic parameters will then have to provide the
listed features, hemnmake as creation procedures when needed. This is not
a constraint on all generic derivations, however; only on those raising the
possibility of a creation on the corresponding parameter. So at this stage we
don’t have a constraint, just a definition:

Generic-creation-ready type

A type is generic-creation-ready if and only if every actual
generic parametdrof its deanchorefbrm satisfies the following
conditions:

1If the specification of the corresponding formal genefi
parameter includes@onstraint_creatoysheversions inT of
the constraining creators for the corresponding forma
parameter arecreation procedures, and is (recursively)
generic-creation-ready.

c

2 «If T is expanded, it is (recursively) generic-creation-ready.

§12.8 CONSTRAINTS AND CREATION 353

Although phrased so that it is applicable to any type, the condition is only
interesting for generically derived types of the fo@x..., T, ...]. Non-
generically-derived types satisfy it trivially since there is no applichble

The role of this condition is to make sure that if cl&$..., G, ...]
may cause a creation operation on a target of tgpe- as permitted only
if the class appears &[..., G—>CONSTcreatecpl, ... end, ...] —then
the corresponding actual parameters, sucH,asill support the given
features — the “constraining creators” — as creation procedures.

It might then appear that generic-creation-readiness is a validity
requirement onany actual generic parameter. But this would be more
restrictive than we need. For examglenight be a deferred type; then it
cannot have any creation procedures, but that’s still OK because we cannot
create instances df only of its effective descendants. Only if it is possible
to create an actual object of the type do we require generic-creation-
readiness. Overall, we need generic-creation-readiness only in specific
cases, including:

* For the creation type of a creation operation: conditignsf the
Creation Instruction rule aritlof the Creation Expression rule. - Pagess45and553

 For aParentin aninheritancepart: conditiorg of theParent rule. - Pagel76
« For an expanded type: conditiGf the just seeseneridDerivationrule. . pagess1,

--------- NEXT SECTIONS OBSOLETE

Clause --- covers the case of &onstraint including a
Constraint_creatorsand complements the preceding rule (Generic
Constraint). In

‘classD [G = CONSTcreatecpl, cp2 ... end] ...

the Generic Constraint rule requireppl, cp2 ... to be procedures of
CONST In a generic derivatio® [T], T must be, as per clauge a type
conforming toCONSTIn addition, clause --- tells us th@itmust make sure

to specifycpl, cp2 ... as creation procedures. (As a consequence, they
cannot for example be deferred.)

Both of these clauses apply to every constraining type in the case of a
multiple constrainD [G — {CONST1CONSTZ

No specific validity rule applies to the generic constraints themseG@NST
CONST1CONSTZ2. A generic constraint must simply be a valid type. It might
even involve a generic parameter, or ev@a generic parameter; this is the
case of “recursive generic constraints”, the topic of the next section.

354 GENERICITY 8§12.9

12.9 RECURSIVE GENERIC CONSTRAINTS

(The case described in this section does not arise in elementary uses, and
.ii may be skipped in a first reading.)

To understand the last part of claudef the Constrained Genericity
rule, assume you want to define a class as

Li] ‘ classC [G; H —> ARRAY[G]] ... ‘

This makes perfect sense and the intent is clear: you want to allow anyrhétass Type rule
of the formC [T, U] whereT is an arbitrary type and is ARRAY[T] or a appeared on pagé25
type conforming teARRAY[T]. So the following will be valid

C[INTEGER ARRAY[INTEGER]
C[POLYGONARRAYED_LISTPOLYGON]
-- WhereARRAYED _LISTs a descendant &lRRAY

But for exampleC [INTEGER REAL is not valid. Similarly, you should
be able to define

‘ classC[G —>H; H—>G] ...

e
i

meaning: the first actual generic parameter must conform to the first, and
conversely. Only derivations of the for [T, T], using the same type as
actual generic parameter, will be valid. Unlike the first example, this
scheme seems useless, but there is no reason to disallow it.

This explains the phrasing of claugeof the Constrained Genericity
rule. The simpler phrasing

“T conforms to the constraining type

is appropriate in ordinary, non-recursive cases; but in our first example
ARRAYINTEGER does not conform toARRAY[G]; actually this
conformance question is meaningless since there usually won’t even be a
type G in the class that wants to uSE[INTEGER ARRAY[INTEGEHR].
Similarly, in theC [G —>H; H —> G] example, if we want to us€ [T, T] in

a certain class other thad, the questions “doe$ conform toG?” and
“doesT conform toH?” are meaningless in that class.

For such conformance questions to become meaningful, we must first
replace, in the constraint, any occurrence of a formal parameter by the
corresponding actual parameter. Hence the rephrased clause:

“T conforms to the type obtained from the constraining type by
replacing every ocurrence of a formal generic parametet by the
corresponding actual generic parameteiGi.”

§12.10 SEMANTICS OF GENERIC TYPES 355

12.10 SEMANTICS OF GENERIC TYPES

We must now define the semantics of types involving genericity. This
includes both generically derived types ariebrmal_generic_name
(covering the formal generic parameters themselves, when used as types
within the class text).

As noted in the previous chapter, defining the semantics of a type involveZ “Type Semantics
saying whether it is expanded or reference, and specifying its base type, rule”, page 325
well as its base class if it iS@ass_type

For a generically derivedClass_typethe definition is an immediat;- “Non-genericclass

S . - typesemantics”, page
generalization of thaon-generic case: 327,

Generically derived class type semantics

A genericallyderived Class_typef the formC[...], whereC is
a generic class, isxpanded ifC is anexpandedclass,reference
otherwise. It is its owbase type, and itsase class i€.

SoLINKED_LIST[POLYGON is its own base type, and its base class is
LINKED_LIST

The other case is formal generics. In a generic ca$s., G, ...], a
formal paramete, constrained or unconstrained (syntactically known as
a Formal_generic_nan)estands for any type to be provided as actual
parameter in generic derivations of the class. Within the tegt, gbu may
useG wherever the syntax requires a type.

For example, the EiffelBase text of
\ classHASH_TABLHG; KEY - HASHABLE.. \

declares a number of features usthgr KEY as type of an argument, result
or local variable. Typical is the function

item (access_keyKEY): G The type of the function
-- Item associated witAccess_keyf present; resultinthe actual class
-- otherwise default value of ty& Isnot exactlys butlike
) . ast_put, where
do... Routine body omitted.. end ‘last_putis an
attribute of types.

which uses both of the formal generic parametefea®al_generic_nantgpes. gelél-lo eh 331
L . .) elow on sucl
It is in fact easier to start with the constrained case. For a constré'anchored types

parameter such d€EY, the only available information is provided by the
constraining type, herd ASHABLE the features of that type’s base class
are the only operations that we know can be applied to entities of the
Formal_generic_nantype. The rule follows, applicable to the case of a
single constraint (the next section will address multiple constraints):

356

GENERICITY 812.10

Base type of a single-constrained formal generic

The basetype of a constrainefformal_generic_nam@ having

as itsconstraining types &ingle_constrainlisting a typer is:

1-If Tis aClass_or_tuple_typd.

2 « Otherwise Tis aFormal_generic_nanyghe base type of if
it can be determined by (recursively) cAsetherwiseANY

The definition is never cyclic since the only recursive part is the use of case
1 from case.

Casel is the common one: fo€ [G —> T] we use as base type & in
C, the base type of. We need casto make sure that this definition is not
cyclic, because we permit cases suchGafG, H-> D [G]], and as a
consequence cases suchCags —> H, H—> G] or evenC [G —> G] even
though they are not useful; both of these examples yidl¥as base types
for the parameters.

As a result of thelefinition of “constraining types”, the base type of an
unconstrained formal generic, such@a C [G], is alsS)ANY
INnC[G—>I,1 —>T, H->E [G, H]] (unlikely to arise in practice):
» The constraint of is T (casel).
» Applying constraint of5 is T, the base type df case2 first gives .
 Without the substitutio

As usual for a type that is not@lass_or_tuple typdhe base class of - See the Base ryle
Formal_generic_nantgpe is its base type’s base classFBSSHABLE in Pages24

the classHASH_TABLHG; KEY—>HASHABLEH, is both the base type

and the base classiKEY.

What about an unconstraingdormal_generic_namsuch asG in
HASH_TABLRE Every object ever manipulated by a system is an instance
of some class, and every developer-written class is a descendant of the
universal library classANY. In other words,HASH_ TABLEcould be - ‘ANY"._6.6. page
equivalently declared as 172 seealsochaptetd

for more details
‘ classHASH_TABLHG — ANY, KEY - HASHABLE .. ‘

This is a general rule: we consider an unconstrained generic parameter as
if it were constrained byYANY Hence the definition of the base type for
unconstrained generics, a special case of the preceding rule:

Base type of an unconstrained formal generic

The base type of an unconstrainédrmal_generic_nantype
is ANY

§12.11 CURRENT TYPE, FEATURES OF A TYPE 357

This also enables us to consider that every formal generic parameter has a
constraining type, taking it to beANY for an unconstrained parameter.

The last definitions do not give the full semantics of a
Formal_generic_namygpe, but only its base type. We also need to specify
whether the type is reference or expanded. This is, however, the one case
in which we can’t know for sure: only the actual parameter passed in a
particular generic derivation will tell.

Reference or expanded status of a formal generic

A Formal_generic_nameepresents areference type or
expandedtype depending on the corresponding status of the
associated actual generic parameter in a particgkmeric
derivation.

12.11 CURRENT TYPE, FEATURES OF ATYPE

This discussion of genericity — now complete except for the special case

of multiple constraints covered below — leads to a notion that will be

convenient in future discussions. The presentation of classes noted that

every Eiffel construct is part of a class, tberrentclass Often, what we — “THE CURRENT
will need is not just a class but a type. Hence the notiotunfent type As CLASS".4.5.pagell’
long as classes were not generic, the current type was the same as the

current class; but now the notion becomes more interesting, although
straightforward.

Assume that we are asked “what is the type of valid targetd 6y
wheref is a feature of a generic cla€4G]. The answer is, of cours€,[G]
itself. Answering “the current class” would not do, sinEdy itself is not
a type — only a type template, which yields a type if we provide an
appropriate generic parameter.

This is one of the lessons of this chapter: the concepts of class and type
— although closely related since every type is based on a class— are not
identical. The difference comes not only from genericity but also from
anchoring; the answer to the question “what is the base tyjieeoCurrent
in C?” would also beC [G].

This will be called theurrent type

Current type
Within a class text, theurrent type is the type obtained from the

current class by providing as actual generic parameters, if
required, the class’s own formal generic parameters.

Clearly, the base class of the current type is always the current class.

358 GENERICITY 812.12

In the same vein, since the type will often be our first source of
information — before the underlying class — it is also useful to allow
ourselves to extend the notion of “features of a class”:

Features of a type
The features of a type are the features dfatse class.

These are the features applicable to the type’s instances (which are also
instances of its base class).

You may note in particular that with genericity we often need to refer to
the type rather than the class. If a generic ¢Ia$3] has a feature

‘f(x: G) \

then for a of type C [T] (a type generically derived from C by using T as
actual generic parameter) a call of the form

laf) |

requires an argumenty of type T (not G, which is only a placeholder within
the text of class C). This means that to understand f and its type properties
fully we need to consider not just adeature of a certain clas@he class

C) but as deature of a certain typghe typeC [T]).

12.12 APPLYING GENERICITY TO TYPES

Genericity means that we must be careful when using terms such as “the
type of an expression” or “the type of a feature” if a generic derivation is
involved. Consider a generic class

classC [G] feature
some_queryG
some_routindarg: G) isdo... end
... Other features..

end

and a clienD with a declaration
‘x: c[m

for some typeT, for example N TEGERor ARRAY[REAL]. In the context
of classD we may ask the questions:

* What is the type of.some_query

* What expressiongare valid in a calkk.some_routingy)?

§12.13 THE CASE OF MULTIPLE CONSTRAINTS 359

Viewed from withinC the type olsome_queris G, but this makes no sense
in the context ok.some_quenras used irD, where we may consider that
G is simply a placeholder for the actual generic paraméten,this case -

Generic substitution

Every typeT defines a mapping from names to types known a
its generic substitutiorn

1eIf T is generically derved, o associates to every
Formal_generic_nanthe corresponding actual parameter.

2 * Otherwiseg is the identity substitution.

12}

Similarly, an argumeny that we will pass in the cak. some_routingy)
must be of typé& or conforming.

These observations lead to the following substitution rule:

Generic Type Adaptation rule

The signature of an entity or featuref a typeT of baseclassC
is the result of applyin@’s generic substitution to the signatur
of finC.

[¢]

The signature include both the type of an entity or query, and the argument
types for a routine; the rule is applicable to both parts.

In the examples cited this yields the typeas desired, both as the result
type of x.some_queryand as the type to which arguments to
X.some_routing...) must conform.

12.13 THE CASE OF MULTIPLE CONSTRAINTS

4 (This last section covers an advanced technique needed only in special
= \% cases. On first reading you may skip to the next chapter.)

I As noted, it is possible for &ormal_generic_namt® have several
constraints, as in

‘classD [G = {CONST1CONST2CONSTY ... \

The role of the base class and type, as usual, is to tell us what fettuees
may use for a calk.f (...) for x of typeG. In the case of a single constraint
CONST1the answer was simply: those@DNST1

Here, the basic idea is just as straightforward: we will ac€estlong
as it denotes a featureany of the constraining types.

360 GENERICITY 812.13

Of course, the same feature name might denote features in several of
these types. That's not to scare us, since we know that any valid actual
generic parametéer for G will have to inherit from all of theCONSTand
hence resolve the conflicts according to the rules of the preceding chapters
(renaming, sharing or select under repeated inheritance). But this may still
leave some ambiguities as to whatf (...) means fox of typeG in classD.

To keep matters simple we take the following rule:

----- TO BE UPDATED TO ACCOUNT FOR NEW RENAMING ----

1 «If all the matchingf in the constraining types have a common seed
(meaning they all come from a single feature of a common ancestor, as
would be the case fifis equalor print from classANY), there won't be
any problem: in any acceptable actual generic paranidiarG, either
the corresponding version bfvill be shared, or &electwill designate
one of the versions as the official one Tor

 Otherwise, there will be a name clash thatill have to resolve through
renaming, but we don’t want to go into this. We just renounce the
feature for entities of typ&.

Generically constrained feature name

Consider a generic clasy a constraineétormal_generic_name

G of C, a typeT appearing as one of theonstraining_typefor

G, and a featurd of namefnamein the baseclass ofT. The

generically constrained name®f f for G in C are:

1«If one or moreSingle constrainclauses forT include a
Renamepart with a clausefname as ename where the
Feature_nampart ofename(an Extended_feature_namis
gname all suchgname

2 * Otherwise: justname

The following validity constraint expresses this rule:

--- EXPLAIN CLAUSE 2 ---

§12.13 THE CASE OF MULTIPLE CONSTRAINTS 361

: Multiple Constraints rule VTMC

A feature of namdnameis applicable in a clas€ to a targetx

whose type is &ormal_generic_nam@ constrained by two or

more typesCONST1 CONSTZ2.., if and only if it satisfies the

following conditions:

1 « At least one of th€ ONSThas a feature available @whose
generically constrained name f8rin C is fname

2 «If this is the case for two or more of tHeONST, all the

corresponding features names, after possible renaming
throughRenamingclauses in the constraints, are the same|

ALY

Can we stop here? Not quite. We do need a precise notion of base type
reflecting the Multiple Constraints rule. Although there is nothing
inherently difficult in the rule, turning it into a definition of the base type
for a multiply constrained~ormal_generic_nameequires some care.
Intuitively this base type should be the “lowest common ancestor” of the
constraintSCONST1 CONSTZ2..., but there is no such notion: the set of
common ancestors — a hon-empty set since it contains at Addgt—
doesn't necessarily include one that inherits from all the others, as in this
situation if there are no other non-kernel classes involved:

d No lowest
CONST CONST! common

ancestor

A B

To obtain a theoretical answer (the practical answer being given by the
informal rule above), we simply build a fictitious “lowest common
ancestor” with all conflicts removed. Hence the definition:

Base type of a multi-constraint formal generic type

The basetype of a multiply constraineéormal_generic_name
type is atype generically derived, with the same actual parameters
as the current class, from a fictitious class with none of the

optional parts except foFormal_genericand anlnheritance
clause that lists all the constraining types as parents and resolves
any conflicts between potentially ambiguous features |by

renaming them to new names not available to developers.

362 GENERICITY 812.13

This definition is a little as if we decided to replace the above inheritance
structure by the following one, preventidgandB from resolving, each in
its own desired manner, any name clashes that might arise between features

of CONST1andCONST?2
Artificial
CONST) CONST) lowest
common
ancestor
FICTITIOUS
A B

FICTITIOUS represents the constraint we would be using if we were
limited to a single constraint fdg: features applicable 1@, assuming the
declaratiorclassD [G = {CONST1CONSTZ], are those you could use

if the declaration werelassD [G — {FICTITIOUS].

Even though the basic idea of this definition is simple (you may apply
to a multiply constrainedrormal_generi@any of the constraining types’
features that are not ambiguous), the recourse to a fictitious type is not too
pleasant conceptually, and explains the doubt, expressed earlier, whether
multiple constraints are really worth the trouble.

Note that the last validity rule, the Multiple Constraints rule, is

@ conceptually redundant. The general rule that governs the applicability of

I a feature to a target is the Single-Level Call rule which (combined with the

Export rule, both in thehapteron calls) essentially states thiais a valid - “Class-Level Call
feature for the calk.f (...) if it is a feature of the base type af(and is WSi
exported as appropriate). This is in fact the reason why take the troulg; " 's+-P2%
define the base type — always @ass or_tuple typewith clearly
identifiable features — for every kind of type. All that the Multipie
Constraints rule states is the application of the Single Call rule to the case
of a multiply constrained~ormal_generic_nameusing the just given
definition of the base type in this case.

But the Single Call rule in this case is so indirect, relying through the
base type on a fictitious class, that compiler writers will likely prefer, for
the error message they display in case of a wriyrig cite the Multiple
Constraints rule.

	12 12 Genericity
	12.1 OVERVIEW
	12.2 GENERIC CLASSES
	12.3 GENERIC CLASSES AND GENERIC DERIVATIONS
	Generic class; constrained, unconstrained
	Generic derivation, non-generic type

	12.4 SELF-INITIALIZING FORMALS
	Self-initializing formal

	12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY
	Constraint, constraining types of a Formal_generic

	12.6 CONSTRAINED GENERICITY
	12.7 RULES ON CONSTRAINED GENERICITY
	Constraining creation features

	12.8 CONSTRAINTS AND CREATION
	Generic-creation-ready type

	12.9 RECURSIVE GENERIC CONSTRAINTS
	12.10 SEMANTICS OF GENERIC TYPES
	Base type of a single-constrained formal generic
	Base type of an unconstrained formal generic
	Reference or expanded status of a formal generic

	12.11 CURRENT TYPE, FEATURES OF A TYPE
	Current type
	Features of a type

	12.12 APPLYING GENERICITY TO TYPES
	Generic substitution
	Generic Type Adaptation rule

	12.13 THE CASE OF MULTIPLE CONSTRAINTS
	Generically constrained feature name
	Base type of a multi-constraint formal generic type

