
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
12
Genericity
12.1 OVERVIEW

The discussion of generically derived types will proceed as with other
kinds of type in the previous chapter: to define the semantics of a type, it
suffices to say whether it is reference or expanded, and to define itsbase
type, always a Class_or_tuple_type. If the type is itself a
Class_or_tuple_type, we must also define itsbase class, which determines
its instances. For exampleLIST[INTEGER] hasLISTas its base class, and
is its own base type.

A subsequent chapter discusses the relatedconformance properties.

12.2 GENERIC CLASSES

To obtain generically derived types, we start fromgeneric classessuch as
LIST, with one or moreformal generic parameterssuch asG.

Generic classes describe flexible structures having variants
parameterized by types. Often these arecontainer data structures, used
to gather objects of various possible types; examples include lists, stacks,
arrays and the like, which contain objects of arbitrary type. The generic
parameters of such classes specify the types of objects to be kept in the
container structures, such as the elements of an array.

The types discussed so far were directly defined by classes. Thegenericity
mechanism, still based on classes, gives us a new level of flexibility
throughtype parameterization. You may for example define a class as
LIST [G], yielding not just one type but many:LIST[INTEGER],
LIST [AIRPLANE] and so on, parameterized byG.

Parameterized classes such asLIST are known asgeneric classes; the
resulting types, such asLIST [INTEGER], are generically derived.
“Genericity” is the mechanism making generic classes and generic
derivations possible.

Two forms of genericity are available: withunconstrainedgenericity,G
represents an arbitrary type; withconstrainedgenericity, you can demand
certain properties of the types represented byG, enabling you to do more
with G in the class text.

→ Chapter14.

Container data struc-
tureswerementioned in
10.8, page 262.

GENERICITY §12.2342
The following examples from EiffelBase show beginnings
(Class_headerfollowed byFormal_generics) of classes with unconstrained
generic parameters:

In each case,G is a formal generic parameter of the class, representing
the types of objects to be kept in an instance of the class – a tree, a linked
stack, an array. Classes may have more than one formal generic parameter;
the next section will give an example with two parameters.

To derive a type from a generic class — called thebase classof the
derivation — you must provide a type, called anactual generic
parameter, for each of the formal generic parameters of the base class.
This will yield agenerically derivedtype. The derived type is expanded if
the base class is expanded, a reference type otherwise. Generic derivation,
applied to the above base classes, will yield types such as

Instances of the first type represent trees of integers; instances of the
second one represent trees of paragraphs (that is to say, trees of instances
of the reference typePARAGRAPH); and so on. The base classes are,
respectively,TREE, TREE, LINKED_LIST, TREE andARRAY.

Since all these base classes have exactly one formal generic parameter,
each of the above generically derived types is obtained by providing one
actual generic parameter. The actual generic parameters areINTEGERfor
the first example,PARAGRAPHfor the second and third,TREE [TREE
[PARAGRAPH]] for the fourth, LINKED_LIST [TREE [LINKED_LIST
[PARAGRAPH]]] for the last.

The actual generic parameter is a type; it may itself be generically
derived; the last two examples illustrate this possibility, which leads to
nested genericity without any limit on the depth of nesting.

In the syntax specification, the place where all this appears is the
Class_typeconstruct, introducedearlier as

Actual_generics hasn’t been defined until now. Here it is:

deferred class TREE[G] ...
class LINKED_LIST[G] ...
class ARRAY[G] ...

TREE[INTEGER]
TREE[PARAGRAPH]
LINKED_LIST[PARAGRAPH]]
TREE[TREE[PARAGRAPH]]
ARRAY[LINKED_LIST[TREE[LINKED_LIST[PARAGRAPH]]]]

Class_type=∆ Class_name [Actual_generics]

Actual generic parameters
Actual_generics=∆ "[" Type_list "]"

Type_list =∆ { Type "," …} +

← This was in the pre-
vious chapter, page
320.

§12.3 GENERIC CLASSES AND GENERIC DERIVATIONS 343
12.3 GENERIC CLASSES AND GENERIC DERIVATIONS

The construct that makes a class generic isFormal_generics, optionally
appearing after theClass_header of aClass_declaration, with this structure:

and a straightforward validity constraint:

The optionalConstraintpart of the form–>CONSTRAINING_TYPEputs
a requirement on acceptable actual generic parameters: they must conform
to theCONSTRAINING_TYPE. If it is not present, any type will do.

Formal generic parameters
Formal_generics=∆ "[" Formal_generic_list "]"

Formal_generic_list=∆ { Formal_generic ","…} +

Formal_generic=∆ [frozen] Formal_generic_name
[Constraint]

Formal_generic_name=∆ [?] Identifier

Formal Generic rule VCFG

A Formal_genericspart of aClass_declarationis valid if and only
if every Formal_generic_nameG in its Formal_generic_list
satisfies the following conditions:
1 •G is different from the name of any class in theuniverse.

2 •G is different from any otherFormal_generic_nameappearing
in the sameFormal_generics_part.

Adding thefrozen qualification to a formal generic, as inD [frozen G]
rather than justC [G], means that conformance on the corresponding
generically derived classes requires identical actual parameters: whereas
C [U] conforms toC [T] if U conforms toT, D [U] does not conform to
D [T] if U is notT.

Adding the? mark to aFormal_generic_name, as in? G, means that the
class may declareself-initializing variables (variables that will be
initialized automatically on first use) of typeG; this requires that any actual
generic parameter that is an attached type must also be self-initializing, that
is to say, makedefault_create from ANY available for creation.

← Class_declaration
was given in chapter4,
which on page128pre-
viewed the syntax
shown here.

→Arulealsoapplies to
theConstraint part:
“Generic Constraint
rule”, page 349.

GENERICITY §12.4344
Let’s make the basic terminology precise:

Among the above examples,PARAGRAPHis non-generic, as a class and as
a type (any non-generic class is also a type).LINKED_LIST, TREEand
ARRAYare generic classes; to produce a generic derivation from one of
them, you choose a suitable actual generic parameter, and get a generically
derived type such asLINKED_LIST[INTEGER].

The expansion status of a generically derived typeT follows from its
base class, independently of the actual generic parameters:T is expanded
if its base class is an expanded class; otherwise it is a reference type.

12.4 SELF-INITIALIZING FORMALS

---- EXPLAIN

Generic class; constrained, unconstrained
Any class declared with aFormal_genericspart (constrained or
not) is a generic class.
If a formal generic parameter of a generic class is declared with
a Constraint, the parameter isconstrained; if not, it is
unconstrained.
A generic class is itselfconstrained if it has at least one
constrained parameter,unconstrained otherwise.

A generic class does not describe a type but a template for a set of possible
types. To obtain an actual type, you must provide anActual_genericslist,
whose elements are themselves types. This has a name too, per the
following definition.

Generic derivation, non-generic type
The process of producing a type from a generic class by
providing actual generic parameters isgeneric derivation.
A type resulting from a generic derivation is agenerically
derived type, or justgeneric type.
A type that is not generically derived is anon-generic type.

It is preferable to stay away from the term “generic instantiation” (sometimes
used in place of “generic derivation”) as it creates a risk of confusion with the
normal meaning of “instantiation” in object-oriented development: therun-
time process of obtaining an object from a class.

§12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY 345
12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY

If a formal generic parameter is constrained, appearing asG –> T, the
constraintT determines what operations are applicable, in the class to an
entity of typeG: the features ofT. This will be formalized very simply by
defining the base type ofG, in this case, as beingT.

In the case of unconstrained genericity, we don’t know anything about
future actual generic parameters: inC [G], G can represent any type. The
only operations that we can apply in this case are those ofANY, since we
know every Eiffel class conforms toANY. We’ll in fact allow these
operations, and treatG as if it were constrained byANY.

This observation allows us to simplify the validity and semantics by
treating in the same way all formal generic parameters, constrained and
unconstrained, thanks to the following convention, which also allows us in
every case to talk about “the constraint” of a formal generic parameter:

--- For the language description, it’s convenient to avoid treating

A straightforward constraint applies to unconstrained generic derivations:
a generically derived type of the formC [T, …], whereC does not declare
any constraints for its generic parameters if any, is valid if and only if:

• C is indeed a generic class.

• The number ofTypecomponentsT, … in theActual_genericslist is the
same as the number ofFormal_generic parameters in the
Formal_generic_list of C’s declaration.

Self-initializing formal
A Formal_generic_parameteris self-initializing if and only if its
declaration includes the optional? mark.

This is related to the notion of self-initializingtype: a type which makes
default_createfrom ANYavailable for creation. The rule will be that an
actual generic parameter corresponding to a self-initializing formal must
itself, if attached, be a self-initializing type.

Constraint, constraining types of aFormal_generic

The constraint of a formal generic parameter is itsConstraint
part if present, and otherwiseANY.
Its constraining types are all the types listed in its
Constraining_typesif present, and otherwise justANY.

← “Universal Con-
formance principle”,
page 173.

GENERICITY §12.6346
This property does not appear as a separate validity constraint since, thanks
to the ----- REWRITE notion of unfolded form, it will follow as a special
case of the validity rule for the constrained case, where we treat
unconstrained genericity as constrained byANY.

12.6 CONSTRAINED GENERICITY

In the above unconstrained examples of genericity, any type was acceptable
as actual generic parameter; this is because we do not require any special
property of the objects to be entered into an array, inserted into a tree or
pushed onto a stack. As long as operations applicable to all objects (such
as assignment, copying or equality testing) are available, we can write the
generic class, for exampleTREE[T], without any specific knowledge about
the actual types to be used forT.

In some cases, however, you will need a guarantee that these types
possess specific properties, so that the class text may apply certain
operations to the corresponding objects. A typical example is a generic
classVECTOR[T …] describing vectors, which must support an addition
operation. To add two vectors, you need the ability to add two vector
elements; in other words, you need an addition operation onT. ThenT
cannot be an arbitrary type.

With constrained genericity, you can guarantee thatT supports addition,
by requiring any actual generic parameter forT to be based on a descendant
of a class that includes an addition routine. The class will appear as

in reference to classNUMERICof the Kernel Library, describing numerical
values and having among others a featureplus alias "+" representing
addition. Numerical classes such asINTEGERandREALare descendants of
NUMERIC, as will be any class that you want to declare as providing a
number or number-like facility (for example classVECTORitself). The
Constraint part –> NUMERIC indicates that a generic derivation
VECTOR[SOME_TYPE] will be valid if and only ifSOME_TYPEconforms
to NUMERIC. So you may useVECTOR[INTEGER], VECTOR[REAL], or
evenVECTOR[VECTOR[INTEGER]] if you have madeVECTOR itself
inherit from NUMERIC, but not VECTOR[PARAGRAPH] if class
PARAGRAPHis not a descendant ofNUMERIC.

Class HASH_TABLE of EiffelBase provides another example of
constrained generic class. This class describes tables of elements,
retrievable through associated keys. Its text begins with

class VECTOR[G –> NUMERIC]…

class HASH_TABLE[G; KEY –> HASHABLE]...

This is a"constraint" on
"unconstrained" generic-
ity. Sometimes language
meets metalanguage.

§12.6 CONSTRAINED GENERICITY 347
The class has two generic parameters. The first one,G, plays the same role
as those encountered in the previous section; it stands for the type of table
elements, and is unconstrained. The second one,KEY, is constrained by the
Kernel Library classHASHABLE.

The constraint means that the base class of any actual generic parameter
used forKEYmust be a descendant of the constraining class,HASHABLE.
HASHABLE is a simple Kernel Library class introducing a function

In other words, keys must be "hashable" into integer values. An example of
a class that inherits fromHASHABLEis the Kernel Library classSTRING,
describing character strings, for which a standardhash_codefunction is
provided. An example of a type generically derived fromHASH_TABLEis

As illustrated by these examples, the basic syntax for constrained formal
generic parameters includes, after the parameter, aConstraint of the form

The effect of such aConstraint, if present, is to restrict allowable actual
generic parameters to types that conform to the givenClass_or_tuple_type.

Recall that a typeC conforms to a typeB if the base class ofC is a descendant
of the base class ofB; also, if C is generically derived, its actual generic
parameters must (recursively) conform to those ofB. In theHASH_TABLE
case conformance is ensured by the property thatSTRING, as specified by the
Kernel Library, inherits fromHASHABLE.

Two supplementary facilities are available:

• You can require certain creation procedures.

• You can use multiple constraints.

The first of these enables you to write something like

hash_code: INTEGER
--Hash_code value

deferred
end

HASH_TABLE[PARAGRAPH; STRING]

–> Class_or_tuple_type

class D [G –> CONSTcreatecp1, cp2, … end] …

The –> symbol is remi-
niscent of the arrow
used in inheritance dia-
grams.

The next chapter covers
conformance.

→ See“CREATING
INSTANCES OF FOR-
MAL GENERICS”,
20.9,page535for a full
discussion.

GENERICITY §12.7348
wherecp1, cp2, … must be procedures of typeCONST. The purpose — as
explained in detail in the chapter on creation — is to allow creation of
objects of typeG: within the class, withx declared of typeG, you can use
a creation instruction of the formcreatex.cp1 (actuals) and similarly for
the other listed procedures, assuming validactualsarguments. A generic
derivationD [T] will then requireT to declare its versions ofcp1, cp2, …
as creation procedures. InCONSTitself, cp1, cp2, … must be procedures,
but they do not have to becreationprocedures, since what matters is to be
able to use them to create instances of actual generic parameters such asT.

The second facility enables you to specify multiple constraints, as in

meaning that any actual parameterT in a generic derivationD [T] must
conform toall of CONST1, CONST2, CONST3.

It is in fact possible to combine both of these two facilities, as in

More generally, as the rest of this chapter will show, multiple constraints
significantly complicate the syntax and validity of generic constraints, as well
as the definition of the base type for formal generic parameters. This is a typical
“borderline” facility, whose presence in the language is subject to criticism.

Most developments do not need it, but there are cases, mostly involving
libraries, when working without multiple constraints would make things
awkward. When you have control over all classes involved, you can in
principle get away with single constraints only, achieving the effect of
D [G –> {CONST1, CONST2}] by usingD [G –> {CONST12}] , after writing
a classCONST12that inherits fromCONST1andCONST2. But this doesn’t
work with pre-existing classes, especially those from the Kernel Library
and other fundamental libraries: with multiple constraints you can write
D [G –> { COMPARABLE, NUMERIC}] , which will acceptINTEGERor
REAL as an actual generic parameter; but defining a class
COMPARABLE_NUMERIC that inherits from COMPARABLE and
NUMERICwon’t help you sinceINTEGER, REALand the like do not know
it. And you cannot define new classes —NUMERIC_HASHABLEand so on
— for every potentially useful combination.

So even though multiple constraints are useful for only a minority of cases
and users, they arevery desirable to these users for those cases, explaining
why the language supports them in spite of the added complication.

12.7 RULES ON CONSTRAINED GENERICITY

Now for the precise syntax and validity of constrained genericity. The
construct that remains to be specified isConstraint:

class D [G –> {CONST1; CONST2, CONST3}] …

class D [G –> {CONST1; CONST2createcp1, cp2, … end}] …

§12.7 RULES ON CONSTRAINED GENERICITY 349
There are two validity rules. One governs theConstraintpart of the
declaration of a constrained generic class; the other, complementing the
Unconstrained Genericity rule, governs the validity of a type derived from
In addition, of course, the base class must exist in the universe; this is a
consequence of the Class Type rule. First:

Generic constraints
Constraint=∆ "–>" Constraining_types

[Constraint_creators]

Constraining_types=∆ Single_constraint|Multiple_constraint

Single_constraint=∆ Type[Renaming]

Renaming=∆ Renameend

Multiple_constraint=∆ "{" Constraint_list"}"

Constraint_list=∆ { Single_constraint"," …} +

Constraint_creators=∆ createFeature_listend

Generic Constraint rule VTGC

A Constraintpart appearing in theFormal_genericspart of a class
C is valid if and only if it satisfies the following conditions for
everySingle_constraintlisting a typeT in its Constraining_types:
1 •T involves no anchored type.

2 • If a Renamingclauserename rename_listend is present, a
class definition of the formclass NEW inherit T rename
rename_listend (preceded bydeferred if the baseclass ofT
is deferred) would be valid.

This is a validity
“constraint” on the
generic “constraints”
of Eiffel classes.
Sometimes language
meets metalanguage.

GENERICITY §12.7350
The last observation suggests a name for the resulting features:

The usual situation, with a declaration involving aConstraint_creators

the names listed,cp1, cp2, …, should denote procedures ofCONST. They
don’t have to becreationprocedures ofCONST— this will be required
only in the actual generic parameter, as stated by the next rule — and can
in fact be deferred, but they have to be known procedures ofCONSTso that
we can assess the validity of a creation call such ascreatex.cp1(actuals),
especially the validity of the chosenactuals.

--- EXPLAIN CLAUSE 4 (INCLUDING CASE OF TUPLES ---

Next, the rule for generically derived types. The two properties already
cited for the unconstrained case still apply: the number and types of actual
parameters must match those of the formal parameters. In addition:

• Wherever a formal generic parameter is constrained, the corresponding
actual parameter must conform to the constraining type or types.

There is no requirement here on theConstraint_creatorspart, although in
most cases it will list names (afterRenaming) of creation procedures of the
constraining types. The precise requirement is captured by other rules.

Condition2 implies that the features listed in theConstraint_creators
are, after possibleRenaming, names of features of one or more of the
constraining types, and that no clash remains that would violated the rules
on inheritance. In particular, you can use theRenamingeither to merge
features if they come from the same seeds, or (the other way around)
separate them.

If T is based on a deferred class the fictitious classNEW should be
declared asdeferred too, otherwise it would be invalid ifT has deferred
features. On the other hand,NEWcannot be valid ifT is based on a frozen
class; in this case it is indeed desirable to disallow the use ofT as a
constraint, since the purpose of declaring a classfrozen is to prevent
inheritance from it

Constraining creation features
If G is a formal generic parameter of a class, theconstraining
creators of G are the features ofG’s Constraining_types, if any,
corresponding after possibleRenamingto the feature names
listed in theConstraining_creators if present.

Constraining creators should be creation procedures, but not necessarily (as
seen below) in the constraining types themselves; only their instantiatable
descendants are subject to this rule.

class D [G –> CONSTcreatecp1, cp2, … end] …

§12.7 RULES ON CONSTRAINED GENERICITY 351
• If there is a Constraint_creatorspart requiring some creation
procedures, these must indeed be creation procedures in the actual
generic parameter.

Here is the precise formulation:

At first the phrasing of clause2 seems more complicated than
necessary: why must the actual generic parameter conform not just toD but
to “the type obtained by applying toU by ...”? This is to permitrecursive
generic constraints, as detailed next. For most practical cases, however,
you can understand clause2 as if it just read

The role of this condition is to make sure that if the operations of a class
C […, G, …] may include creations on targets of the formal generic type
G, any associated actual generic parameterT will support such creations.
The basic

Generic Derivation rule VTGD

Let C be a generic class. AClass_typeCThavingC asbaseclass
is valid if and only if it satisfies the following conditions for every
actual generic parameterT and every Single_constraintU
appearing in the constraint for the corresponding formal generic
parameterG:
1 • The number of Type components inCT’s Actual_genericslist

is the same as the number ofFormal_genericparameters in the
Formal_generic_list of C’s declaration.

2 •T conforms to the type obtained by applying toU thegeneric
substitution ofCT.

3 • If C is expanded,CT is generic-creation-ready.

4 • If G is a self-initializing formal andT is attached, thenT is a
self-initializing type.

In the case of unconstrained generic parameters, only condition1 applies,
since the constraint in that case isANY, which trivially satisfies the other
two conditions.

Condition3 follows from thesemanticrule permitting “lazy” creation
of entities of expanded types on first use, throughdefault_create. Generic-
creation-readiness (definednext) is a condition on the actual generic
parameters that makes such initialization safe if it may involve creation of
objects whose type is the corresponding formal parameters.

Condition4 guarantees that ifC relies, for some of its variables of type
G, on automatic initialization on first use,T provides it, if attached
(remember that this includes the case of expanded types), by making
default_createfromANYavailable for creation. IfT is detachable this is not
needed, sinceVoid will be a suitable initialization value.

→ Page352.

GENERICITY §12.8352
“T conforms to the constraining type”

12.8 CONSTRAINTS AND CREATION

Consider a formal generic parameterG; under what conditions can we
create an object of typeG, for example through an instruction
createx.make(…) with x of type G in one of the routines of the class?
Including a Constraint_creatorsenables you to specify the applicable
creation procedures forG, as in G –> CONSTcreate makeend. The
corresponding actual generic parameters will then have to provide the
listed features, heremake, as creation procedures when needed. This is not
a constraint on all generic derivations, however; only on those raising the
possibility of a creation on the corresponding parameter. So at this stage we
don’t have a constraint, just a definition:

Generic-creation-ready type
A type is generic-creation-ready if and only if every actual
generic parameterTof itsdeanchoredform satisfies the following
conditions:
1 • If the specification of the corresponding formal generic

parameter includes aConstraint_creators, theversions inT of
the constraining creators for the corresponding formal
parameter arecreation procedures, andT is (recursively)
generic-creation-ready.

2 • If T is expanded, it is (recursively) generic-creation-ready.

§12.8 CONSTRAINTS AND CREATION 353
--------- NEXT SECTIONS OBSOLETE

Clause --- covers the case of aConstraint including a
Constraint_creatorsand complements the preceding rule (Generic
Constraint). In

the Generic Constraint rule requiredcp1, cp2, … to be procedures of
CONST. In a generic derivationD [T], T must be, as per clause2, a type
conforming toCONST; in addition, clause --- tells us thatT must make sure
to specifycp1, cp2, … as creation procedures. (As a consequence, they
cannot for example be deferred.)

Both of these clauses apply to every constraining type in the case of a
multiple constraintD [G –> {CONST1, CONST2}]

No specific validity rule applies to the generic constraints themselves (CONST,
CONST1, CONST2). A generic constraint must simply be a valid type. It might
even involve a generic parameter, or evenbea generic parameter; this is the
case of “recursive generic constraints”, the topic of the next section.

Although phrased so that it is applicable to any type, the condition is only
interesting for generically derived types of the formC […, T, …]. Non-
generically-derived types satisfy it trivially since there is no applicableT.

The role of this condition is to make sure that if classC […, G , …]
may cause a creation operation on a target of typeG — as permitted only
if the class appears asC […, G –>CONSTcreatecp1, … end, …] — then
the corresponding actual parameters, such asT, will support the given
features — the “constraining creators” — as creation procedures.

It might then appear that generic-creation-readiness is a validity
requirement onany actual generic parameter. But this would be more
restrictive than we need. For exampleT might be a deferred type; then it
cannot have any creation procedures, but that’s still OK because we cannot
create instances ofT, only of its effective descendants. Only if it is possible
to create an actual object of the type do we require generic-creation-
readiness. Overall, we need generic-creation-readiness only in specific
cases, including:

• For the creation type of a creation operation: conditions4 of the
Creation Instruction rule and3 of the Creation Expression rule.

• For aParent in anInheritance part: condition6 of theParent rule.

• For an expanded type: condition3of the just seenGenericDerivationrule.

class D [G –> CONSTcreatecp1, cp2, … end] …

→ Pages545 and553.

← Page176.

← Page351.

GENERICITY §12.9354
12.9 RECURSIVE GENERIC CONSTRAINTS

(The case described in this section does not arise in elementary uses, and
may be skipped in a first reading.)

To understand the last part of clause2 of the Constrained Genericity
rule, assume you want to define a class as

This makes perfect sense and the intent is clear: you want to allow any type
of the formC [T, U] whereT is an arbitrary type andU is ARRAY[T] or a
type conforming toARRAY[T]. So the following will be valid

But for exampleC [INTEGER, REAL] is not valid. Similarly, you should
be able to define

meaning: the first actual generic parameter must conform to the first, and
conversely. Only derivations of the formC [T, T], using the same type as
actual generic parameter, will be valid. Unlike the first example, this
scheme seems useless, but there is no reason to disallow it.

This explains the phrasing of clause2 of the Constrained Genericity
rule. The simpler phrasing

“T conforms to the constraining type”

is appropriate in ordinary, non-recursive cases; but in our first example
ARRAY[INTEGER] does not conform toARRAY[G]; actually this
conformance question is meaningless since there usually won’t even be a
typeG in the class that wants to useC [INTEGER; ARRAY[INTEGER]] .
Similarly, in theC [G –>H; H –> G] example, if we want to useC [T, T] in
a certain class other thanC, the questions “doesT conform toG?” and
“doesT conform toH?” are meaningless in that class.

For such conformance questions to become meaningful, we must first
replace, in the constraint, any occurrence of a formal parameter by the
corresponding actual parameter. Hence the rephrased clause:

“T conforms to the type obtained from the constraining type by
replacing every ocurrence of a formal generic parameter ofC by the
corresponding actual generic parameter inCT.”

classC [G; H –> ARRAY[G]] ...

C [INTEGER; ARRAY[INTEGER]]
C [POLYGON; ARRAYED_LIST[POLYGON]]

-- WhereARRAYED_LIST is a descendant ofARRAY

classC [G –>H; H –> G] ...

The Class Type rule
appeared on page325.

§12.10 SEMANTICS OF GENERIC TYPES 355
12.10 SEMANTICS OF GENERIC TYPES

We must now define the semantics of types involving genericity. This
includes both generically derived types andFormal_generic_name
(covering the formal generic parameters themselves, when used as types
within the class text).

As noted in the previous chapter, defining the semantics of a type involves
saying whether it is expanded or reference, and specifying its base type, as
well as its base class if it is aClass_type.

For a generically derivedClass_typethe definition is an immediate
generalization of thenon-generic case:

The other case is formal generics. In a generic classC […, G, …], a
formal parameterG, constrained or unconstrained (syntactically known as
a Formal_generic_name), stands for any type to be provided as actual
parameter in generic derivations of the class. Within the text ofC, you may
useG wherever the syntax requires a type.

For example, the EiffelBase text of

declares a number of features usingGorKEYas type of an argument, result
or local variable. Typical is the function

whichusesbothof theformalgenericparametersasFormal_generic_nametypes.

It is in fact easier to start with the constrained case. For a constrained
parameter such asKEY, the only available information is provided by the
constraining type, hereHASHABLE; the features of that type’s base class
are the only operations that we know can be applied to entities of the
Formal_generic_nametype. The rule follows, applicable to the case of a
single constraint (the next section will address multiple constraints):

Generically derived class type semantics

A genericallyderivedClass_typeof the formC […], whereC is
a generic class, isexpanded ifC is anexpandedclass,reference
otherwise. It is its ownbase type, and itsbase class isC.

SoLINKED_LIST[POLYGON] is its own base type, and its base class is
LINKED_LIST.

class HASH_TABLE[G; KEY –> HASHABLE]...

item(access_key: KEY): G
-- Item associated withaccess_key, if present;
-- otherwise default value of typeG.

do… Routine body omitted… end

← “Type Semantics
rule”, page 325.

← “Non-genericclass
typesemantics”,page
327.

The type of the function
result in theactualclass
is notexactlyGbutlike
last_put’ , where
‘ last_put’ is an
attribute of typeG.
See11.10, page 331
below, on such
"anchored" types.

GENERICITY §12.10356
In C [G –> I, I –> T, H–> E [G, H]] (unlikely to arise in practice):

• The constraint ofI is T (case1).

• Applying constraint ofG is T, the base type ofI: case2 first gives .

• Without the substitutio

As usual for a type that is not aClass_or_tuple_type, the base class of a
Formal_generic_nametype is its base type’s base class. SoHASHABLE, in
the classHASH_TABLE[G; KEY–>HASHABLE], is both the base type
and the base class ofKEY.

What about an unconstrainedFormal_generic_namesuch asG in
HASH_TABLE? Every object ever manipulated by a system is an instance
of some class, and every developer-written class is a descendant of the
universal library classANY. In other words,HASH_TABLEcould be
equivalently declared as

This is a general rule: we consider an unconstrained generic parameter as
if it were constrained byANY. Hence the definition of the base type for
unconstrained generics, a special case of the preceding rule:

Base type of a single-constrained formal generic
Thebasetype of a constrainedFormal_generic_nameG having
as itsconstraining types aSingle_constraint listing a typeT is:
1 • If T is aClass_or_tuple_type: T.

2 • Otherwise (T is aFormal_generic_name): the base type ofT if
it can be determined by (recursively) case1, otherwiseANY.

The definition is never cyclic since the only recursive part is the use of case
1 from case2.

Case1 is the common one: forC [G –> T] we use as base type ofG, in
C, the base type ofT. We need case2 to make sure that this definition is not
cyclic, because we permit cases such asC [G, H–> D [G]] , and as a
consequence cases such asC [G –> H, H–> G] or evenC [G –> G] even
though they are not useful; both of these examples yieldANYas base types
for the parameters.

As a result of thedefinition of “constraining types”, the base type of an
unconstrained formal generic, such asG in C [G], is alsoANY.

class HASH_TABLE[G –> ANY; KEY –> HASHABLE]...

Base type of an unconstrained formal generic
The base type of an unconstrainedFormal_generic_nametype
is ANY.

← See the Base rule,
page324.

← “ANY”, 6.6, page
172;seealsochapter35
for more details.

§12.11 CURRENT TYPE, FEATURES OF A TYPE 357
This also enables us to consider that every formal generic parameter has a
constraining type, taking it to beANY for an unconstrained parameter.

The last definitions do not give the full semantics of a
Formal_generic_nametype, but only its base type. We also need to specify
whether the type is reference or expanded. This is, however, the one case
in which we can’t know for sure: only the actual parameter passed in a
particular generic derivation will tell.

12.11 CURRENT TYPE, FEATURES OF A TYPE

This discussion of genericity — now complete except for the special case
of multiple constraints covered below — leads to a notion that will be
convenient in future discussions. The presentation of classes noted that
every Eiffel construct is part of a class, thecurrentclass. Often, what we
will need is not just a class but a type. Hence the notion ofcurrent type. As
long as classes were not generic, the current type was the same as the
current class; but now the notion becomes more interesting, although
straightforward.

Assume that we are asked “what is the type of valid targets forf ?”,
wheref is a feature of a generic classC [G]. The answer is, of course,C [G]
itself. Answering “the current class” would not do, sinceC by itself is not
a type — only a type template, which yields a type if we provide an
appropriate generic parameter.

This is one of the lessons of this chapter: the concepts of class and type
— although closely related since every type is based on a class— are not
identical. The difference comes not only from genericity but also from
anchoring; the answer to the question “what is the base type oflike Current
in C?” would also beC [G].

This will be called thecurrent type:

Reference or expanded status of a formal generic
A Formal_generic_namerepresents areference type or
expandedtype depending on the corresponding status of the
associated actual generic parameter in a particulargeneric
derivation.

Current type
Within a class text, thecurrent type is the type obtained from the
current class by providing as actual generic parameters, if
required, the class’s own formal generic parameters.

Clearly, the base class of the current type is always the current class.

← “THE CURRENT
CLASS”,4.5,page117.

GENERICITY §12.12358
In the same vein, since the type will often be our first source of
information — before the underlying class — it is also useful to allow
ourselves to extend the notion of “features of a class”:

You may note in particular that with genericity we often need to refer to
the type rather than the class. If a generic classC [G] has a feature

then for a of type C [T] (a type generically derived from C by using T as
actual generic parameter) a call of the form

requires an argument y of type T (not G, which is only a placeholder within
the text of class C). This means that to understand f and its type properties
fully we need to consider not just as afeature of a certain class(the class
C) but as afeature of a certain type(the typeC [T]).

12.12 APPLYING GENERICITY TO TYPES

Genericity means that we must be careful when using terms such as “the
type of an expression” or “the type of a feature” if a generic derivation is
involved. Consider a generic class

and a clientD with a declaration

for some typeT, for exampleINTEGERor ARRAY[REAL]. In the context
of classD we may ask the questions:

• What is the type ofx.some_query?

• What expressionsy are valid in a callx.some_routine(y)?

Features of a type
The features of a type are the features of itsbase class.

These are the features applicable to the type’s instances (which are also
instances of its base class).

f (x: G)

a.f (y)

classC [G] feature

some_query: G

some_routine(arg: G) is do … end

… Other features…
end

x: C [T]

§12.13 THE CASE OF MULTIPLE CONSTRAINTS 359
Viewed from withinC the type ofsome_queryis G, but this makes no sense
in the context ofx.some_queryas used inD, where we may consider that
G is simply a placeholder for the actual generic parameter,T in this case -
--- .

Similarly, an argumenty that we will pass in the callx.some_routine(y)
must be of typeG or conforming.

These observations lead to the following substitution rule:

In the examples cited this yields the typeT, as desired, both as the result
type of x.some_queryand as the type to which arguments to
x.some_routine(…) must conform.

12.13 THE CASE OF MULTIPLE CONSTRAINTS

(This last section covers an advanced technique needed only in special
cases. On first reading you may skip to the next chapter.)

As noted, it is possible for aFormal_generic_nameto have several
constraints, as in

The role of the base class and type, as usual, is to tell us what featuresf we
may use for a callx.f (...) for x of typeG. In the case of a single constraint
CONST1, the answer was simply: those ofCONST1.

Here, the basic idea is just as straightforward: we will acceptf as long
as it denotes a feature inany of the constraining types.

Generic substitution
Every typeT defines a mappingσ from names to types known as
its generic substitution:
1 • If T is generically derived, σ associates to every

Formal_generic_name the corresponding actual parameter.

2 • Otherwise,σ is the identity substitution.

Generic Type Adaptation rule

The signature of an entity or featuref of a typeT of baseclassC
is the result of applyingT’s generic substitution to the signature
of f in C.

The signature include both the type of an entity or query, and the argument
types for a routine; the rule is applicable to both parts.

class D [G –> {CONST1, CONST2, CONST3}] …

GENERICITY §12.13360
Of course, the same feature name might denote features in several of
these types. That’s not to scare us, since we know that any valid actual
generic parameterT for G will have to inherit from all of theCONSTi and
hence resolve the conflicts according to the rules of the preceding chapters
(renaming, sharing or select under repeated inheritance). But this may still
leave some ambiguities as to whatx.f (...)means forx of typeG in classD.
To keep matters simple we take the following rule:

----- TO BE UPDATED TO ACCOUNT FOR NEW RENAMING ----

1 • If all the matchingf in the constraining types have a common seed
(meaning they all come from a single feature of a common ancestor, as
would be the case iff is equalor print from classANY), there won’t be
any problem: in any acceptable actual generic parameterT for G, either
the corresponding version off will be shared, or aselectwill designate
one of the versions as the official one forT.

• Otherwise, there will be a name clash thatT will have to resolve through
renaming, but we don’t want to go into this. We just renounce the
feature for entities of typeG.

• -----------------

•

•

The following validity constraint expresses this rule:

--- EXPLAIN CLAUSE 2 ---

Generically constrained feature name
Consider a generic classC, a constrainedFormal_generic_name
G of C, a typeT appearing as one of theConstraining_typesfor
G, and a featuref of namefnamein the baseclass ofT. The
generically constrained namesof f for G in C are:
1 • If one or moreSingle_constraintclauses forT include a

Renamepart with a clausefname as ename, where the
Feature_namepart of ename(an Extended_feature_name) is
gname: all suchgname.

2 • Otherwise: justfname.

§12.13 THE CASE OF MULTIPLE CONSTRAINTS 361
Can we stop here? Not quite. We do need a precise notion of base type
reflecting the Multiple Constraints rule. Although there is nothing
inherently difficult in the rule, turning it into a definition of the base type
for a multiply constrainedFormal_generic_namerequires some care.
Intuitively this base type should be the “lowest common ancestor” of the
constraintsCONST1, CONST2,…, but there is no such notion: the set of
common ancestors — a non-empty set since it contains at leastANY —
doesn’t necessarily include one that inherits from all the others, as in this
situation if there are no other non-kernel classes involved:

To obtain a theoretical answer (the practical answer being given by the
informal rule above), we simply build a fictitious “lowest common
ancestor” with all conflicts removed. Hence the definition:

Multiple Constraints rule VTMC

A feature of namefnameis applicable in a classC to a targetx
whose type is aFormal_generic_nameG constrained by two or
more typesCONST1, CONST2,…, if and only if it satisfies the
following conditions:
1 • At least one of theCONSTi has a feature available toC whose

generically constrained name forG in C is fname.
2 • If this is the case for two or more of theCONSTi, all the

corresponding features names, after possible renaming
throughRenamingclauses in the constraints, are the same.

Base type of a multi-constraint formal generic type
The basetype of a multiply constrainedFormal_generic_name
type is a type generically derived, with the same actual parameters
as the current class, from a fictitious class with none of the
optional parts except forFormal_genericsand anInheritance
clause that lists all the constraining types as parents and resolves
any conflicts between potentially ambiguous features by
renaming them to new names not available to developers.

CONST1

A

CONST2

B

No lowest
common
ancestor

GENERICITY §12.13362
This definition is a little as if we decided to replace the above inheritance
structure by the following one, preventingA andB from resolving, each in
its own desired manner, any name clashes that might arise between features
of CONST1 andCONST2.

FICTITIOUS represents the constraint we would be using if we were
limited to a single constraint forG: features applicable toG, assuming the
declarationclassD [G –> {CONST1, CONST2}] , are those you could use
if the declaration wereclassD [G –> {FICTITIOUS}] .

Even though the basic idea of this definition is simple (you may apply
to a multiply constrainedFormal_genericany of the constraining types’
features that are not ambiguous), the recourse to a fictitious type is not too
pleasant conceptually, and explains the doubt, expressed earlier, whether
multiple constraints are really worth the trouble.

Note that the last validity rule, the Multiple Constraints rule, is
conceptually redundant. The general rule that governs the applicability of
a feature to a target is the Single-Level Call rule which (combined with the
Export rule, both in thechapteron calls) essentially states thatf is a valid
feature for the callx.f (...) if it is a feature of the base type ofx (and is
exported as appropriate). This is in fact the reason why take the trouble to
define the base type — always aClass_or_tuple_type, with clearly
identifiable features — for every kind of type. All that the Multiple
Constraints rule states is the application of the Single Call rule to the case
of a multiply constrainedFormal_generic_name, using the just given
definition of the base type in this case.

But the Single Call rule in this case is so indirect, relying through the
base type on a fictitious class, that compiler writers will likely prefer, for
the error message they display in case of a wrongf, to cite the Multiple
Constraints rule.

Artificial
lowest
common
ancestor

CONST1

A

CONST2

B

FICTITIOUS

→ “Class-Level Call
rule”, page 628;
“Export rule”, page
624.

	12 12 Genericity
	12.1 OVERVIEW
	12.2 GENERIC CLASSES
	12.3 GENERIC CLASSES AND GENERIC DERIVATIONS
	Generic class; constrained, unconstrained
	Generic derivation, non-generic type

	12.4 SELF-INITIALIZING FORMALS
	Self-initializing formal

	12.5 CONSTRAINED AND UNCONSTRAINED GENERICITY
	Constraint, constraining types of a Formal_generic

	12.6 CONSTRAINED GENERICITY
	12.7 RULES ON CONSTRAINED GENERICITY
	Constraining creation features

	12.8 CONSTRAINTS AND CREATION
	Generic-creation-ready type

	12.9 RECURSIVE GENERIC CONSTRAINTS
	12.10 SEMANTICS OF GENERIC TYPES
	Base type of a single-constrained formal generic
	Base type of an unconstrained formal generic
	Reference or expanded status of a formal generic

	12.11 CURRENT TYPE, FEATURES OF A TYPE
	Current type
	Features of a type

	12.12 APPLYING GENERICITY TO TYPES
	Generic substitution
	Generic Type Adaptation rule

	12.13 THE CASE OF MULTIPLE CONSTRAINTS
	Generically constrained feature name
	Base type of a multi-constraint formal generic type

