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The Inheritance relation

6.1 OVERVIEW

Inheritance is one of the most powerful facilities available to software
developers. It addresses two key issues of software development,
corresponding to the two roles of classes:

* As amodule extensionmechanism, inheritance makes it possible to
define new classes from existing ones by adding or adapting features.

* As atype refinementmechanism, inheritance supports the definition of
new types as specializations of existing ones, and plays a key role in
defining the type system.

This chapter introduces the fundamental properties of inheritance,
concentrating on the first view — the module aspect. It describes in

particular therenamingmechanism, which brings considerable flexibility

by letting you decide anew in each class on the names of the features it
inherits.Laterchapters discuss the type view of inheritance, which leac- Chapterslito13on
Eiffel's type system, and explore the feature adaptation mechanisms ti}ypr';‘gni’;dl“ on con-
with it: redefinition, effecting, undefinition, and the sharing and repllcaL-..

mechanisms of repeated inheritance.

6.2 AN INHERITANCE PART

To define a class as inheriting from one or more others, include one or more
Inheritanceparts, each introduced by the keywaorderit .

Below is a slightly simplified form (omitting in particular thigotes
clause) of the beginning of clagsIXED_TREEfrom the EiffelBase
Library. It shows a typicalnheritancepart, indicating thaFIXED_TREE
obtains some of its features from three other classes:

* TREE describing the general notion of tree, regardless of representation.
* CELL, describing elements used to store an individual piece of
information (such as a tree node).

» FIXED_LIST providing some of the implementation.
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class
FIXED_TREHT]
inherit
TREE[T]
redefine

attach_to_higher
end

CELL[T]
inherit {NONE
FIXED_LIST[T]

rename
off aschild_off
afteraschild_after,
beforeaschild_before
redefine
duplicate first_child
end

feature
... (Rest of class omitted).

The classes listed in the twinheritance parts, TREE CELL and - Thenotion of parent
FIXED_LIST are said to be the “parent classes”, or jugarents”, Of{f,gigfigéggﬁely n
FIXED_TREE This is defined as a case ofultiple inheritance.As the

fixed-tree example shows, there is often a need to adapt the features of

parents to a new class. This is achieved througlrttegure adaptatiquart

of aParentpart, highlighted above: a Redefine clause fortREEparent

and aRenameclause folFIXED_LIST

The first inheritance clause, introduced by jusherit, guarantees
conformance of the class to the two parents listed. The other one,
introduced byinherit {NONE, provides non-conforming inheritance,
giving the new class access to the features of the pargritxED_LIST—
without introducing a “subtyping” (conformance) relation.

A Feature_adaptatiorpart may contain Redefine and Rename
subclauses, as here, as well as othergrdefing New_exportsSelect —
listed in the syntax below.

6.3 FORM OF THE INHERITANCE PART

Here is the relevant syntax:
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BTN TAL
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Inheritance parts
Inheritance2 Inherit_clausé

Inherit_clause2 inherit [Non_conformandeParent_list
Non_conformancé "{" [NONH "}"

Parent_list2 {Parent’;" ...}*
Parent2 Class_typgFeature_adaptatipn

Feature_adaptatiof [Undefing
[Redefing
[Renamé
[New_exportf
[Select
end

As with all other uses of semicolons, the semicolon separating succe- “OPTIONAL SEMI-
Parentparts is optional. Thetyle guidelines suggest omitting it betwew
clauses that appear (as they should) on successive lines. page 209

A Parent_listnames one or morarentparts. Each is relative to 2 . types are stud-
Class_typethatis to say a class nant&possibly followed by actual generied in chapte1. The
parameters (as iB [T, U]). B mustbe the name of a class in the universe®€auirementthaBbe a

class of the universe fol-
which the current class belongs. This property yields a definition: lows from the Class

Type rule page325

Parent part for a type, for a class

If a Parenpartp of aninheritancepart lists &Class_typd, pis said
to be aParentpartfor T, and also for thbase class of.

Soininherit TREE[T] there is éParenpart for the typel REE[T] and for its
base clas$REE For convenience this definition, like those for “parent” and
“heir” below, applies to both types and classes.

The earlier declaration dFIXED_TREEcontainsParentparts for classes
TREE CELLandFIXED_LIST

Specifying{ NONE (aNon_conformancenarker) in aninherit_clause
yields a restricted form of inheritance, where the new class has access to
the features and invariant of each parent listed, but the corresponding 'VRgs_conrorw-
do not conform to the parent types. This is knownras-conformingiNG INHERITANCE”,
inheritanceand detailedater in this chapter. 6.8, pge 178
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After the Class_typén a Parenipart you may also specify an optional
Feature_adaptationlause listing the modifications that the new class
wants to perform on the features it inherits from that parent. These
modifications may affect various properties of the features, each handled
by a subclause dfeature_adaptation

* Their effectiveness status, deferred or effectivedefing.
* Their signature and implementatidRedefing.

» Their namesKenamg

« Their export status\New_exportk

* Their resolution of dynamic binding conflicts under repeated
inheritance $elec).

Renamss studiedater in this chapter, the others in subsequent chap*?ees.9.page 1800n

in particular onalevoted entirely to feature adaptation. RenamechapterLOon
Feature_adaptation
especialyRedefineand

The syntax also tells us exactly when inheritance is “multiple”: Undefine(the latter in
10.19page283); , page
lusrsieris | g g : : 200onNew_ exports
Multiple, single inheritance 16.12. pae 4550n
A class hasmultiple inheritance if it has an Unfolded Select

Inheritancepart with two or moreParentparts. It hassingle
inheritance otherwise.

What counts for this definition is the number not of parent classes but of

Parentparts. If two clauses refer to the same parent class, this is still a case

of multiple inheritance, known agpeated inheritanceand studiedateron See chaptet6
its own. If there is ndParentpart, the class (as will be seen below) has a de™ PIELo
facto parent anyway, th€ernel Library clasé&\NY

The definition refers to the “Unfolded” inheritance part which is usually just
thelnheritancegpart but may take into account implicit inheritance fréiy
as detailed in the correspondidefinition below. - Pagel73

of the effective classes in the widely used EiffelBase library of data
wmnny  Structures and algorithms, for example, have two or more parents. The
" widespread view that multiple inheritance is “bad” or “dangerous” is not
justified; most of the time, it results from experience with imperfect
multiple inheritance mechanisms, or improper uses of inheritance. Well-
applied multiple and repeated inheritance is a powerful way to combine
abstractions, and a key technique of object-oriented software development.

@ Multiple inheritance is a frequent occurrence in Eiffel development; most
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6.4 GRAPHICAL CONVENTION

In pictorial representations of system structures, where classes appear as
labeled ellipses, the inheritance relation is represented by single arrows
(red if color is available) pointing from heirs’ ellipses to parents’ ellipses.

4 \ Parent and
B heir

C

6.5 RELATIONS INDUCED BY INHERITANCE

Inheritance introduces the “parent” and “heir” relations between classes:

Inherit, heir, parent
A classC inherits from a type or clas8 if and only if C's

Unfolded Inheritance &'t contains &arentpart forB.

B is then gparent of C (“parent type” or “parent class” if there is
any ambiguity), andC anheir (or “heir class”) ofB. Any type of
baseclassC is also an heir oB (“heir type” in case of ambiguity).

Listing {NONE indicates that the relation does not imply conformance of
the associated types:

Conforming, non-conforming parent

A parentB in anInheritancegoart isnon-conforming if and only if
everyParentpartfor B in the clause appears in amherit_clause
with aNon_conformancenarker. It isconforming otherwise.

The reflexive transitive closures of the basic relations are also of intefg&iaxive transitive
closure” means the

relation iterated any
Ancestor types of a type, of a class number of fmefzero
Theancestor typesof atypeCT of base clas€ include: or morg.
1 «CTitself.

2 « (Recursively) The result of applyir@T's genericsubstitution
to the ancestor types of evargrent type focC.

The ancestor types of alass are the ancestor types of it
currenttype.

12}
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The basic notion is for ancestor types of a type. Caselicates that a type

is its own ancestor. Cagthe recursive case, applies the notiogefieric
substitutionintroduced in the discussion of genericity. The idea that if we
consider the typeC [INTEGER, with the class declaratioalassC [G]
inherit D [G] ..., the type to include in the ancestors@fINTEGER as

a result of thidnheritancepart is notD [G], which makes no sense outside
of the text ofC, but D [INTEGER, the result of applying t® [G] the
substitutionG — INTEGER this is the substitution that yields the type
C[INTEGER from the classC[G] and is known as the generic
substitution of that type.

From ancestor types we obtain ancestor classes, called just ancestors:

Ancestor, descendant
ClassAis anancestorof classB if and only if Ais thebaseclass

of anancestor type dB.
ClassB is adescendanbf classA if and only if Ais an ancestor
of B.

Any class, then, is both one of its own descendants and one of its own
ancestorsProperdescendants and ancestors exclude these cases.

Proper ancestor, proper descendant

Theproper ancestorsof a classC are itsancestors other thab
itself. Theproper descendantf a classB are itsdescendants
other tharB itself.

6.6 ANY

No class that you write is an orphan.

An important property of the inheritance structure is that every class
inherits, directly or indirectly, from a class callédNY, of which a version
is provided in the Kernel Library. The semantics of the language depends
on the presence of such a class, whether the library version or one that a
programmer has provided as a replacement.

The convention ensuring this property — illustrated by the figure on the
facing page — is that any class that doesn’t have an expfibiritance
part is considered to hayd\Y as its parent.

The figure also shows, at the bottom, a fictitious clEINE studled - M
next. But there’s nothing fictitious aboANY:
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(Al inin T

Al ininy

The
ANY inheritance

/ + \ structure
A B D,

* Developer-deﬁeﬁ\*
classes

/DQ:%AE//?

ClassANYrule VHCA
Everysystem must include a non-generic class caly

The key property oANYis that it is not only an ancestor of all classes and
hence types, but that all typesnform to it, according to the following
principle, which is not a separate validity rule (although for reference it has
a code of its own) but a consequence of the definitions and rules below.

Universal Conformance principle  VHUC
Every type conforms t&NY

To achieve the Universal Conformance principle, the semantics of the
language guarantees that a class that doesn't list any exphcéntis
considered to havANY as its parent. This is captured by the notion of
Unfolded Inheritance Part. The definition of “parent” below, and through it
the definition of “ancestor”, refer to the Unfolded Inheritance Part of a class
rather than its actuahheritancepart.

Unfolded Inheritance Part of a class

Any class C has an Unfolded Inheritance Part defined
as follows:

1 «If C has arinheritancepart: that part.

2 « Otherwise: amnheritancepart of the forminherit ANY

The fictitious claus@eherit ANYis conforming.

If a class had one or morearentclauses, but all were non-conforming, it
would violate the Universal Conformance principle; wen't allow this. The - “Parentrule”, page
solution is simple: in this (rare) case, just auerit ANY explicitly. 176 condition4.
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The special status &NYimplies two key properties, corresponding to
the type and module views of inheritance:

1 «ANYis the most general of directly useful types: any type that you may
define will conform tcANY

2+The features ofANY describing general-purpose operations, are
universal: any class that you may define will have access to them.

As a consequence of propettyif you want a routine to be applicable to
objects of arbitrary developer-defined types, you may give it an argument
of type ANY An example is the function, declared ANY itself, that
produce auplicate of an object:

cloned(other. ANY): like Current ~ “CLONING AN
-- Void if otheris void; otherwise, new object oBJECT . 214,
-- field-by-field identical to object attacheddther page=nt

... Rest of routine omitted.

Property2 provides every developer-defined class with a set of important

universal features coming frolANY Some examples are the function

cloned as sketched above, the procedureefault escue and
default_creategiving default exception and creation behavior and - See26.5, pae 686
functionout producing a string representation of any object. aboutdefault_rescue

If you write a class that has no expli¢tarentand hence automatically
inheritsANY you can’'t do anything — renaming, redefinitian,— to the
features fromANY If you do want to adapt them, the solution is simply to
make the inheritance explicit:

classC inherit
ANY

redefinecopy default_rescue... end
feature

end

The special role oANYturns any case ahultipleinheritance into a case of
repeatednheritance: on the earlidigure, E is an heir to bottB andC, and ~ Pagel73

hence an indirect descendant ANY in two ways. Such situations are - Chapterl6; see
addressed through the normal rules of repeated inheritance (discussed be;?\lpggg”gw
f':md (_Jletalled in aater_chapter). Unless you specify otherwise, repeated;g , hae 428 '
inheritance fromANYwill produce the expected effect for a class sucltas

the class will have just one version of every feature frAhY as if it there

were just one inheritance path.
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6.7 NONE

The overall inheritancefigure shows, along witthANY at the top, anothe”_ page172
special class at the bottoMdONE This class is considered to inherit fro

all classes that have no other heirs — assuming appropriate renam..., ..
remove any resulting name clashes.

Unlike ANY NONE does not actually exist as a class text (if only
because that text would need to be updated every time anyone, anywhere,
writes a new class!), but serves as a convenient fiction to make the
inheritance structure and the type system complete.

NONEhas no useful instance. It serves as the typéoad, which denotes
a void reference. SinddONEis assumed to be a descendant of every class,
the Parent ruleelow implies that no class may be an heiNDNE The class | pagei76
does notexport any feature, to help ensure that no feature call has avoid ... y<..

6.6 PROHIBITING CYCLES

An important constraint governs the inheritance relation: there must be no
inheritance cycles.

Invalid I
oy (A e (A Invalid oycle
may be val repeated
/ \ / \ inheritance
»

\/a \?S(

In other words, you may not build a class structure as in the left part of the
figure, whereD inherits fromB, B from A, A from C andC from D. More
generally, it is invalid to have a set of classgs C,, ..., C, (n = 1), where

Cy andC,, are the same class and ev€rys an heir ofCj, ;.

The reason for this restriction is easy to understand: makiag heir
to B means defining the set of featuresas an extension @'s feature
set; the relationship cannot be mutual.

> Prohibiting cycles does not mean prohibiting a cl&sfrom being a
descendant of another cla&sn more than one way, as illustrated by the

structure appearing in the right part of the above figure. This is a ce—~ Chapterl6.
repeated inheritance valid if it meets the relevant validity constraints
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These observations lead to the validity constrairihberitanceparts:
Parent rule VHPR
Ty TheUnfoldedInheritancePart of a clas® is valid if and only if

it satisfies the following conditions:
1 «In everyParentpart for a clas®, B is not adescendant dD.
2 *No conforming parent is a frozen class.

3 «If two or more Parentparts are for classes which have |a
common ancestoh, D meets the conditions of tHeepeated
Inheritance Consistep@constraint forA.

4 «If one or moreParentparts are present, at least one of them
is conforming.

5 «No two ancestor types @f are differengenericderivations of
the same class.

6 * EveryParentis generic-creation-ready.

Condition1 ensures that there are no cycles in the inheritance relatio - Page458

The purpose of declaring a class fiszen (case?2) is to prohibit
subtyping. We still permit theaon-conformingorm of inheritance, which
permits reuse but not subtyping.

Condition 3 corresponds to the case of repeated inheritance; the
RepeatedinheritanceConsisteng constrainwill guarantee that there is n - Page4s8
ambiguity on features th&t inherits repeatedly frorA.

Condition 4 governs non-conforming inheritance; it ensures th- Studied below:
Universal Conformance principle. If there are htheritancepart we Wé"
accept this — since the rule applies to the Unfolded Inheritance Part (s g pae 178 '
class — as shorthand for one of the foimherit ANY, but with an
Inheritancepart that would only have branches mark&tONE, this rule
would not apply, and so the current type would not conformioy If at
least one branch is conforming, then the corresponding parent type will
(through recursive application of the same property) confordNg and

so will the current type.

Condition 5 avoids ambiguity when one of the ancestor classes - Studied below:
generic clas#\ [G] with, for example, a feature(x: G); if we allowed aWé"
classC to inherit from bothA [T] andA [U] for different typesT andU, g8 pae 178 '

there could be no proper signatureffor C.

Condition6 also concerns the case of a generically derRecbniA[T];
requiring it to be 9Yeneric-creation-ready” guarantees that crea’- “Generic-creation-
operations orD or its descendants will function properly if they needready type”. pge 352
create objects of type
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Foy

When applying the Parent rule, do not be misled by the “if” part of the “if
and only if”: to guarantee that dnheritancepart is valid, you will also have
to check conditions which do not appear explicitly in the rule. In particular:
* Every parentP must be a valid type; this means among ot- The Class Type
requirements that iP is generically derived, appearing BS[X, ...], g‘z'g’;\égﬁr%ﬁ%%me
thenB must be the name of a generic class in the surrounding Unitname of a class in the

and the actual parametexs... must be valid types matching the formuniverse On generic
parameterssee the rule

parameters oB. “VIGD",_page 351

EveryFeature_adaptatiaciause (with itsSRenameRedefineand other
subclauses) must be valid.

The Parent rule does not need, however, to express such requirements

explicitly: The General Validity rule implicitly adds to the constraint on any

construct the condition that all the sub-components are valid too. Be sure to

remember this convention — without which the validity rules would become o

hopelessly complicated — whenever you see an “if and only if’ validity - General Validity
. . . . . rule: page98.

constraint throughout this book. If you have the impression that the constrair .

does not cover every necessary condition, this is probably just because it

omits the validity requirements on sub-components, as permitted by the

General \lidity rule.

6.7 ADAPTING INHERITED FEATURES

[ ]

The major purpose of inheriting from one or more classes is to obtain - "Features of aclags
features (together with the associated assertions, and the cl@nd’inherited fea-

. . . , . tures' were first dis-
invariants) as an addition to one’s own. The features obtained by a yssed ir5.4. pae 133
from its parents are called iigherited features. As already noted, th

yields one of the two categories of features of a class; the othere ...

immediatefeatures, introduced in a class itself.

The very notion of inherited feature indicates how inheritance provides
an accumulation process enabling classes to use features defined in one or
more previously existing classes — its proper ancestors.

Although a class inherits all its proper ancestors’ features, it retains the
flexibility to adapt them to its own context in various ways:

« A feature introduced in a certain class under a certain name may be
known under different names in descendant classes. This is achieved
throughrenaming.

« A feature defined with a certain signature, specification and
implementation may get a new declaration changing any of these
properties. This is achieved througguefinition.

* A feature introduced with a certain signature may get a new one. This is
also achieved through redefinition, and through the associated
mechanism o&nchored declaration
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6.8 NON-CONFORMING INHERITANCE

i
Y

& %

A

« A feature introduced in a proper ancestor with a specification but no
implementation, known as adeferred feature, may get an
implementation. This is the processeffiecting.

« If a classC inherits two or more deferred features with compatible
signatures and specifications, it may merge them into a single feature.

This is gjoin. - “THE JOIN.
MECHANISM”

* When a clas€ inherits the same feature from two or more of its parel0.21. pae 286
which themselves inherit it from a common ancestor, simple techniques cue
available to ensure that the resul@iis only one feature (sharing) or several
(duplication). The applicable rules are thoseepeated inheritance

» Under repeated inheritance, polymorphism and dynamic binding could
cause conflicts, which you must remove through3kéctmechanism.

The first of these techniques, renaming, is purely syntactical, affecting
feature names rather than the features themselves. It is studied later in this
chapter. The others determine the semantic adaptation of features to the

context of new descendanlater chapters explore them in detalil. — ChapterlOon fea-
ture adaptation and6

on repeated inheritance

(The mechanism described here is for advanced users. On first readir — Skip t'RENAN-
1 H .
may skip the present section.) ING", 6.9, pge 180

One of the principal applications of inheritance — in its “type” rather
than “module” persona — is to govern conformance. The basic idea is
simple: in the most common cases, an assignment of thedrmb1 with
al of type A andbl of typeB is valid if B is a descendant @k. You can
similarly callf (bl) if f has a formal argument of tyge The details appear
in theconformance chapter. - Chapterl4.

Sometimes, you may want inheritanagithout conformance: the
module-only side of inheritance, disallowing such assignments and
arguments passing. To force this it suffices to prefix the mentiénmthe
correspondindParentpart by keyword NONE, as in

classB inherit
{NONE A
... Feature_adaptaticciause if needed.
... Rest of class omitted.

Adding {NONE in this fashion does not affect the basic properties of the
inheritance relation; it simply means that tyBewill not conform to A |

.. . . n a case of repeated
through this inheritance link. inheritance B might

. . . . . still conform toA
The syntax is reminiscent of the possibility of declaring features in a clausthrough another inher-

feature {NONR, rather than judeature, to restrict its export status. itance link
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mMEETHON]
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This facility is useful only in specific cases of restricting an inheritance
link to “implementation inheritance” or “facility inheritance”: you want the
reusability benefits of inheritance, but not the subtyping part.

Some simple-minded presentations of object technology will tell you that this is
“wrong” and that inheritance should always involve subtyping. Although they
can legitimately point to incorrect uses of inheritance, it is improper to disallow
implementation inheritance altogether, as it has many perfectly valid uses. The
chapter on the methodology of inheritance ®@bject-Oriented Software
Constructiordiscusses these issues in detail and presents a taxonomy of the uses
of inheritance.

In this book we will see two major applications of non-conforming
inheritance, both of which use it to remove potential ambiguities: repeated
inheritance and convertibility.

» The repeated inheritance chapter will show that it is sometimes possible
for a class to obtain two different versions of a feature inherited from a
common ancestor through more than one path. This creates a potential
ambiguity because of polymorphism and dynamic binding, since a call
of the form a.f, wherea is of the repeated ancestor type, could in
principle trigger either of the two variantsdfis attached at run time to
an instance of the common descendant type. When such a conflict
arises, you will resolve it through &electclause. The problem only
arises, however, if both paths are conforming; by using non-conforming
inheritance whenever you don't need subtyping you reduce the need for
Selectand simplify your class texts.

The study ottonvertibility will show how to make a type convertible t- Chapterls.
another by including conversion procedures, as in

I

classA create
from_Bconvert { B}
... Rest of class omitted.

which makes assignments sucteds= b1 (and corresponding argume - “Conversion Poce-
passing) valid; they will cause a conversion using the listed crezf?'g(’fn\r/“e'gi"onpa‘?%F
procedurefrom_B To avoid any ambiguity, th€onversion Procedurepie”, page 400

rule prohibits such a scheme whBrconforms toA, as this would alsc

make the assignment valid but with a different semantics (referc....
reattachment with no conversion). Taeneraprinciple is that a type may

conform or convert to another, but not both. In some cases you might still

like Bto inherit fromA for its features only. It suffices in this case to make

B list{NONE A, rather than jusA, as itsParent

This discussion also explains why we needed cond#iofithelnheritance - Pagel76(bothrule3.
rule, requiring that if there aré’arentparts they can’t all be non

conforming: we need at least one conforming branch to ensure that all

types conform t&ANY — theUniversal Conformance rule.
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The graphical representation of inheritance links has a slightly diffe— Page194 in the
form (similar to thecorventionfor the“expandedtlient” relation) to signalext chapter
non-conforming inheritance:

Parent and
non-
conforming
heir

) -9

6.9 RENAMING

As part of itsFeature_adaptatigany Parentpart may include &ename
subclause, which serves to adapt names of inherited features to the local
context of the newlass

Here is aRenamesubclause from the previous example:

d rename

e off aschild_off

] afteraschild_after
beforeaschild_before

Renaming is especially useful in two cases:

s * With renaming, you may correct amame clashoccurring because of
multiple inheritance. A name clash occurs when two or more parents of
a class have a feature of the same name, and waudlly make the_ “NAMECLASHES”

class invalid if not removed by renaming. 10.23, pge 29Qdis-
cusses the exact cases in

. .. . . which name clashes
» Renaming also enables a class to offer its inherited features to its Care prohibited

and descendants under a terminology appropriate to its own context,
rather than to the context of the parents from which it inherited them. In
other words, it helps make sure that, beyond offering the fegitres

you also offer them under the rigieiture names

The general syntax ofRenameclause is:

Rename clauses
Rename2 renameRename_list

Rename_lis {Rename_pait," ...}*

Rename_pai@ Feature_namasExtended_feature_name
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The first component of Rename_pais just aFeature_namehe identifier
for the feature; the second partis a falltended_feature_namehich may
include aralias clause. Indeed:

« To identify the feature you are renaming,Ftsature_namsuffices.

« At the same time you are renaming the feature, you may give it a new
operator or bracket alias, or remove the alias if it had one.

Forms of feature adaptation other than renaming, in particular effecting and
redefinition, do not affect th&lias, if any, associated withlaeature_name

So if B has the features

plusalias"+"
multipliedalias " [
dividedalias"/"

itemalias"[]"
f
g
you may define a new class
F : Warning: this is an ex-
classC inherit treme case, illustrating
B the possibilities but not
rename intended as a model

i |
plusassumalias"+", of style!

multipliedastimes
dividedasdividedalias"//",
itemasitem,
fasf alias"[]",
gashalias"||"
end
... Rest of class omitted.

Then for the features offered Bto its direct clients:
« pluschanges its identifier teumand keeps its alias. Without tladias
part it would no longer have an operator alia€.in
» multipliedis renamed téimesand loses its alias.

« dividedkeeps its identifier but changes its alias; you can't change just
the alias without giving a full neviextended_feature_namwhich in
this case reuses the previdtmsature_naméhe identifiedivided).

« item keeps its identifier and loses its bracket alias; again you have to
repeat the identifier.
« f takes over the bracket alias vacatediteyn Since every class may
have at most one feature with the bracket alias, this would not b’gareeo cator”
. . - d p
possible without the changeitem page 883

* g gets a new identifier and a new alias, ftlee operatof].
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The aliases all assume that the corresponding features have the right
signatures; for example" as aBinary requires a one-argument query. _ «ajias validity

. . . . "
TheRenameclause is subject to a constraint.: e, page 162

— The Feature Name
Rename Clause rule VHRC rule, paged66 express-

A Rename_paiof the formold_nameas new_nameappearing | &S thatno otherfeature
of C hasnew_nameas

in the Renamesubclause of th@arentpart forB in a classC, is its final name
valid if and only if it satisfies the following conditions:

1 +old_namés thefinal name of a featurfeof B.

2 *0ld_namedoes not appear as the first element of any other
Rename_paiin the samé&enamesubclause.

3 *new_namesatisfies thé&eature Name rule faz. - “FeatueNameule”

4 +The Alias of new_namgif present, isalias-\alid for the Ppage 466
version off in C.

WAL DT

In condition4, the “alias-\alid” condition captures the signature propert’- “Alias \alidity rule”
allowing a query to have an operator or bracket aliases. It was enf®®e162

when we wanted to give a feature an aliashefirst place and, naturally _ cjauses and7 of
we encounter it again when we give it an alias through renaming.  ‘Featue Declaation

L . . rule”, page 160
Renaming is a purely syntactical mechanism:

Renaming principle
Renaming does not affect the semantics ahbarited feature.

The “positive” semantics of renaming (as opposed to the negative
observation captured by this principle) follows from the definitiofiél
nameandextended final name a featurebelow. - Pagel83

This principle indeed adds nothing by itself to the semantics of uic
language; it is there to remove any uncertainty. Experience has shown that
; : ; See “Repentant Java
renaming sometimes confusagwcomers to object technology ~programmer can't un-
surprisingly, since the idea is particularly simple: to distinguish betwederstand the difference

feature and its name. between afeatureanda
feature name”, in Proc.

6.10 FEATURES AND THEIR NAMES oA
al Object-Oriented

@ A class defines a set of features, each with a certain feature names. TlTraining), Beirut, Aug.

concepts are clearly distinct. ggggépages 22345-

I A feature is a certain component (attribute or routine), characterized by
a signature, an associated algorithm (for a routine), a value (for a constant
attribute), and possibly other properties. Such a featurefisdture of one
or more classes: the class which introduces it, and (subject to feature
adaptation mechanisms) all the descendants of that class.
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Every feature of a class has a name in that class. This association
between a feature and a feature name only eixts relative to the class. The
samefeaturemay have differerfieature namem different classes.

This is precisely what renaming achieves. The presence,Harant
clause foB in C, of aRenamesubclause of the form

rename...,fasg, ...

implies that the inherited feature knownfés B is known agy in C.

The precise definitions are the following:

TLFTHET e . L . The notion ofclass of
Final name, extended final name, final name set origin" was first intro-
. . duced on pagé&33 The
Every featurd of a classC has arextended final namen C, an full definition appears
Extended_feature_namand afinal name, a Feature_name on page305
defined as follows: . How the final name
1 « The final name is thidentifier of the extended final name. set is actually deter-

mined depends on

2«If f is immediate inC, its extended final name is the renamingredefinition
Extended feature nanmmder whichC declares it. and joining as dis-

.. . . . cussed in chapterd)
3 «If fisinherited f is obtained from a feature ofgarents of C. and16. See further

Letextended_parent_narbe (recursively) the extended final ~ comments about the
name of that feature iB, andparent_namats final name of 2%35" name set on page
in B. Then the extended final namefaf Cis: T
- If the Parenpart forB in C contains &rename_paiof the
form rename parent_name&snew_namenew_name
- Otherwiseextended_parent_name
The final names of all the features of a class constituteitfad:
name setof a class.

Since an inherited feature may be obtained from two or more parent feature— ‘“Inherited fea-
case3 only makes sense if they are all inherited under the same name. Thtures”. page 462
will follow from the final definition of “inherited feature” in the discussion of
repeated inheritance.

The extended final name is &xtended_feature_nanggossibly including

anAlias part; the final name is its identifier onlyFeeature _namavithout

the alias. The recursive definition defines the two together.

Also convenient is the notion of “inherited name” of an inherited feature:

Inherited name

The inherited name of a feature obtained from a featufref a
parentB is thefinal name of in B.
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In the rest of the language description, references to the “name” of a
feature, if not further qualified, always denote the final name.

Renaming — to press the point! — does not change any of the inherited
@ features, but simply changes the names under which those features will be
I known by clients and descendants. Consider a feétwigich has the final
nameold_namen a clas®. By writing an heilC as

A classC inherit

| B

rename..., old_nameasnew_name ... end

you decide to make the inherited feature availabl€t&’'s descendants
and (if it is exportedT's clients under the nanreew_name

As a consequence, you have also freed the inherited narfiehefe
old_nameso that another feature 6fmay now use this name. That other
feature could come from various places:

1 « It could be a new feature introduced 6yitself, for which you wish to
use the nameld_name

2«1t could be a feature inherited from a parent@fther thanB, and
having the nameld_namen that parent. Here, without renaming, you
would have introduced a — usually invalid — name clagb.in

3 It could even be a feature inherited fr@wr another parent under some
other name, and renameamld_namein C. This case is somewhat
contorted, but it does occasionally arise.

Whatever the case, remember that if you do decide to reldseamefor
another feature o€, you do not introduce any connection between that
feature and the original featufgobtained fronB under the inherited name
old_name The two are unrelated; for example one could be a procedure
and the other an attribute.

The following example illustrates these properties. Assume a class
COLORSwith features of namesed, orange black white, andFRUITS
with a feature of namerange_fruit You can write a class of the form
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4 classFRUITS_AND_COLORi&herit There is no assumption
COLORS that these classes and
—— features have any use as
I rename abstractions reflecting
orangeasorange_colorredasred_color their namesthey just
blackaswhite whiteas black illustrate some lan-
end guage properties
FRUITS
rename
orange_fruitasorange
end
feature
red: INTEGER
end

The featureorangeof classCOLORSs known inFRUITS_AND_COLORS
as orange_coloy this makes the namerange available for the feature
inherited fromFRUITSunder the namerange_fruit The featurered of
COLORSIs known inFRUITS_AND_COLORS&sred_color making the
nameredfree for a new attribute introducedmRUITS _ AND_COLOR®ith
no connection to the originaéd. Finally each ofCOLORS featuresblack
andwhiteis known inFRUITS_AND_COLOR®E&nder the other’s name.

As this example illustrates, you should understand the renamings induced by

a Renamesubclause as all simultaneous; this allows such constructions as

renameblackaswhite, whiteasblackto make sense. In other words, even if

the Renamesubclause includes Rename_paiold_nameas new_namg

other occurrences obld_nameor new_nameas the first element of a

Rename_paiin the same subclause must still be interpreted as in the parent.
This last case, which swaps the names of two inherited features, is rather
extreme. ltillustrates, however, the importance of renaming to the building
of professional-quality reusable software components. Writing a class as
heir to another means endowing the new class with a cduattionality
as provided by the parent’s features. But this does not by itself make these
features available undertarminologyconsistent with the heir's specific
context. Renaming is there to guarantee that, for the heir, its clients and its
descendants, the terminology is just as right as the functionality is.

© 0
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x
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An auxiliary notion resulting from this discussion proves convenient:

Declaration for a feature

A Feature_declaratidn a clas<C, listing aFeature_namfn, is a
declaration for a featurd if and only iffnis thefinalname of in C.

Although it may seem almost tautological, we need this definition so that
we can talk about a declaration “for” a featdnehetherf is immediate —

in which casdhn is just the name given in its declaration — or inherited,
with possible renaming. This will be useful in particular when we look at a
redeclaration which overrides a version inherited from a parent.
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6.11 INDEPENDENCE OF INHERITANCE AND EXPANSION

The “expanded” or “reference” status of a class is not inherited.

As you may remember,@ass_headanay begin with _, Se¢‘CLASS TEXT
dod clasE STRICTURE’”, 4.6
expanded clas<... page 117.

as opposed to the more commotass C or deferred classC. If the
expandedmark is present, the class and types based on it are said to be
expanded. Creation of an instance, as in

x: C

createX....

will yield an objects withcopy semanticeather than reference semantics.
What effect does this have on heirs0sf

expansion status of a class is the semantics of objects of the corresponding
types, such as the object attached &iove. An expanded class may inherit
from a non-expanded one, and conversely. The expansion status is not
transmitted, but entirely determined by the class’s Olsiss_header

The answer is straightforward: no effect. The only consequence of the

This convention makes it easy to provide both a reference and expanded
versions of the same class, as in

classRCfeature
... Full class declaration: feature declarations, invariant.efc.
end

expanded clas€Cinherit
RC
-- No need to write anything else, except possibly
-- Notes and Creation clauses

end

The two classes have the same features; one is expanded, the other is not.
Because of the rules on creation, each will have to list the procedures, if
any, that it plans to use as creation procedures.
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