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The inheritance relation
6.1 OVERVIEW

This chapter introduces the fundamental properties of inheritance,
concentrating on the first view — the module aspect. It describes in
particular therenamingmechanism, which brings considerable flexibility
by letting you decide anew in each class on the names of the features it
inherits.Laterchapters discuss the type view of inheritance, which leads to
Eiffel’s type system, and explore the feature adaptation mechanisms that go
with it: redefinition, effecting, undefinition, and the sharing and replication
mechanisms of repeated inheritance.

6.2 AN INHERITANCE PART

To define a class as inheriting from one or more others, include one or more
Inheritance parts, each introduced by the keywordinherit .

Below is a slightly simplified form (omitting in particular theNotes
clause) of the beginning of classFIXED_TREE from the EiffelBase
Library. It shows a typicalInheritancepart, indicating thatFIXED_TREE
obtains some of its features from three other classes:

• TREE, describing the general notion of tree, regardless of representation.
• CELL, describing elements used to store an individual piece of

information (such as a tree node).
• FIXED_LIST, providing some of the implementation.

Inheritance is one of the most powerful facilities available to software
developers. It addresses two key issues of software development,
corresponding to the two roles of classes:

• As a module extensionmechanism, inheritance makes it possible to
define new classes from existing ones by adding or adapting features.

• As atype refinementmechanism, inheritance supports the definition of
new types as specializations of existing ones, and plays a key role in
defining the type system.

→ Chapters11to13on
typing and14 on con-
formance.
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The classes listed in the twoInheritance parts, TREE, CELL and
FIXED_LIST, are said to be the “parent classes”, or just “parents”, of
FIXED_TREE. This is defined as a case ofmultiple inheritance.As the
fixed-tree example shows, there is often a need to adapt the features of
parents to a new class. This is achieved through theFeature_adaptationpart
of aParentpart, highlighted above: a Redefine clause for theTREEparent
and aRename clause forFIXED_LIST.

The first inheritance clause, introduced by justinherit , guarantees
conformance of the class to the two parents listed. The other one,
introduced byinherit { NONE} , provides non-conforming inheritance,
giving the new class access to the features of the parent —FIXED_LIST—
without introducing a “subtyping” (conformance) relation.

A Feature_adaptationpart may contain Redefine and Rename
subclauses, as here, as well as others —Undefine, New_exports, Select —
listed in the syntax below.

6.3 FORM OF THE INHERITANCE PART

Here is the relevant syntax:

class
FIXED_TREE[T]

inherit
TREE[T]

CELL [T]
inherit { NONE}

FIXED_LIST[T]

feature
… (Rest of class omitted) …

redefine
attach_to_higher

end

rename
off as child_off,
afteraschild_after,
beforeaschild_before

redefine
duplicate, first_child

end

→ The notion of parent
is defined precisely in
the next section.
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A Parent_listnames one or moreParentparts. Each is relative to a
Class_type, thatis to say a class nameB possibly followed by actual generic
parameters (as inB [T, U ]). B mustbe the name of a class in the universe to
which the current class belongs. This property yields a definition:

The earlier declaration ofFIXED_TREEcontainsParentparts for classes
TREE, CELL andFIXED_LIST.

Specifying{ NONE} ( aNon_conformancemarker) in anInherit_clause
yields a restricted form of inheritance, where the new class has access to
the features and invariant of each parent listed, but the corresponding types
do not conform to the parent types. This is known asnon-conforming
inheritance and detailedlater in this chapter.

Inheritance parts
Inheritance=∆ Inherit_clause+

Inherit_clause=∆ inherit [Non_conformance] Parent_list

Non_conformance=∆ "{" [NONE] "}"

Parent_list=∆ { Parent ";" …} +

Parent=∆ Class_type[Feature_adaptation]

Feature_adaptation=∆ [Undefine]
[Redefine]
[Rename]
[New_exports]
[Select]
end

As with all other uses of semicolons, the semicolon separating successive
Parentparts is optional. Thestyle guidelines suggest omitting it between
clauses that appear (as they should) on successive lines.

Parent part for a type, for a class
If a Parentpartpof anInheritancepart lists aClass_typeT, p is said
to be aParent partfor T, and also for thebase class ofT.

So ininherit TREE[T] there is aParentpart for the typeTREE[T] and for its
base classTREE. For convenience this definition, like those for “parent” and
“heir” below, applies to both types and classes.

→ “OPTIONALSEMI-
COLONS”,  34.10,
page 909.

→ Class types are stud-
ied in chapter11. The
requirement thatBbe a
class of the universe fol-
lows from the Class
Type rule, page325.

→ “NON-CONFORM-
INGINHERITANCE”,
6.8, page 178.
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After theClass_typein a Parentpart you may also specify an optional
Feature_adaptationclause listing the modifications that the new class
wants to perform on the features it inherits from that parent. These
modifications may affect various properties of the features, each handled
by a subclause ofFeature_adaptation:

• Their effectiveness status, deferred or effective (Undefine).

• Their signature and implementation (Redefine).

• Their names (Rename).

• Their export status (New_exports).

• Their resolution of dynamic binding conflicts under repeated
inheritance (Select).

Renameis studiedlater in this chapter, the others in subsequent chapters,
in particular onedevoted entirely to feature adaptation.

The syntax also tells us exactly when inheritance is “multiple”:

Multiple, single inheritance
A class hasmultiple inheritance if it has an Unfolded
Inheritancepart with two or moreParentparts. It hassingle
inheritance otherwise.

What counts for this definition is the number not of parent classes but of
Parentparts. If two clauses refer to the same parent class, this is still a case
of multiple inheritance, known asrepeated inheritanceand studiedlateron
its own. If there is noParentpart, the class (as will be seen below) has a de
facto parent anyway, theKernel Library classANY.

The definition refers to the “Unfolded” inheritance part which is usually just
theInheritancepart but may take into account implicit inheritance fromANY,
as detailed in the correspondingdefinition below.

Multiple inheritance is a frequent occurrence in Eiffel development; most
of the effective classes in the widely used EiffelBase library of data
structures and algorithms, for example, have two or more parents. The
widespread view that multiple inheritance is “bad” or “dangerous” is not
justified; most of the time, it results from experience with imperfect
multiple inheritance mechanisms, or improper uses of inheritance. Well-
applied multiple and repeated inheritance is a powerful way to combine
abstractions, and a key technique of object-oriented software development.

→ See6.9,page180on
Rename; chapter10on
Feature_adaptation,
especiallyRedefineand
Undefine(the latter in
10.19,page283); ,page
200 onNew_ exports;
16.12, page 455on
Select.

→ See chapter16

→ Page173.
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6.4 GRAPHICAL CONVENTION

In pictorial representations of system structures, where classes appear as
labeled ellipses, the inheritance relation is represented by single arrows
(red if color is available) pointing from heirs’ ellipses to parents’ ellipses.

6.5 RELATIONS INDUCED BY INHERITANCE

Inheritance introduces the “parent” and “heir” relations between classes:

Listing { NONE} indicates that the relation does not imply conformance of
the associated types:

The reflexive transitive closures of the basic relations are also of interest:

Inherit, heir, parent
A classC inherits from a type or classB if and only if C’s
Unfolded Inheritance Part contains aParent part forB.
B is then aparent of C (“parent type” or “parent class” if there is
any ambiguity), andC anheir (or “heir class”) ofB. Any type of
baseclassC is also an heir ofB (“heir type” in case of ambiguity).

Conforming, non-conforming parent
A parentB in anInheritancepart isnon-conforming if and only if
everyParentpartfor B in the clause appears in anInherit_clause
with aNon_conformance marker. It isconforming otherwise.

Ancestor types of a type, of a class
Theancestor types of atypeCT of base classC include:
1 •CT itself.

2 • (Recursively) The result of applyingCT’s genericsubstitution
to the ancestor types of everyparent type forC.

The ancestor types of aclass are the ancestor types of its
currenttype.

C

B
Parent and
heir

“Reflexive transitive
closure” means the
relation iterated any
number of times(zero
or more).
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From ancestor types we obtain ancestor classes, called just ancestors:

.

6.6 ANY

No class that you write is an orphan.

The convention ensuring this property — illustrated by the figure on the
facing page — is that any class that doesn’t have an explicitInheritance
part is considered to haveANY as its parent.

The figure also shows, at the bottom, a fictitious classNONE, studied
next. But there’s nothing fictitious aboutANY:

The basic notion is for ancestor types of a type. Case1 indicates that a type
is its own ancestor. Case2, the recursive case, applies the notion ofgeneric
substitutionintroduced in the discussion of genericity. The idea that if we
consider the typeC [INTEGER], with the class declarationclassC [G]
inherit D [G] …, the type to include in the ancestors ofC [INTEGER] as
a result of thisInheritancepart is notD [G], which makes no sense outside
of the text ofC, but D [INTEGER], the result of applying toD [G] the
substitutionG → INTEGER; this is the substitution that yields the type
C [INTEGER] from the classC [G] and is known as the generic
substitution of that type.

Ancestor, descendant
ClassA is anancestorof classB if and only if A is thebaseclass
of anancestor type ofB.
ClassB is adescendantof classA if and only if A is an ancestor
of B.

Any class, then, is both one of its own descendants and one of its own
ancestors.Proper descendants and ancestors exclude these cases.

Proper ancestor, proper descendant
Theproper ancestorsof a classC are itsancestors other thanC
itself. Theproper descendantsof a classB are itsdescendants
other thanB itself.

An important property of the inheritance structure is that every class
inherits, directly or indirectly, from a class calledANY, of which a version
is provided in the Kernel Library. The semantics of the language depends
on the presence of such a class, whether the library version or one that a
programmer has provided as a replacement.

→ “NONE”, 6.7,page
175.
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The fictitious clauseinherit ANY is conforming.

If a class had one or moreParentclauses, but all were non-conforming, it
would violate the Universal Conformance principle; wewon’t allow this. The
solution is simple: in this (rare) case, just addinherit ANY, explicitly.

ClassANYrule VHCA

Everysystem must include a non-generic class calledANY.

The key property ofANYis that it is not only an ancestor of all classes and
hence types, but that all typesconform to it, according to the following
principle, which is not a separate validity rule (although for reference it has
a code of its own) but a consequence of the definitions and rules below.

Universal Conformance principle VHUC

Every type conforms toANY.

To achieve the Universal Conformance principle, the semantics of the
language guarantees that a class that doesn’t list any explicitParentis
considered to haveANY as its parent. This is captured by the notion of
Unfolded Inheritance Part. The definition of “parent” below, and through it
the definition of “ancestor”, refer to the Unfolded Inheritance Part of a class
rather than its actualInheritancepart.

Unfolded Inheritance Part of a class
Any class C has an Unfolded Inheritance Part defined
as follows:
1 • If C has anInheritancepart: that part.
2 • Otherwise: anInheritancepart of the forminherit ANY.

A

Developer-defined
classes

NONE

ANY

B C

ED

The
inheritance
structure

→ “Parentrule”, page
176, condition4.
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The special status ofANYimplies two key properties, corresponding to
the type and module views of inheritance:

1 •ANYis the most general of directly useful types: any type that you may
define will conform toANY.

2 • The features ofANY, describing general-purpose operations, are
universal: any class that you may define will have access to them.

As a consequence of property1, if you want a routine to be applicable to
objects of arbitrary developer-defined types, you may give it an argument
of type ANY. An example is the function, declared inANY itself, that
produce aduplicate of an object:

Property2 provides every developer-defined class with a set of important
universal features coming fromANY. Some examples are the function
cloned as sketched above, the proceduresdefault_rescue and
default_creategiving default exception and creation behavior and the
functionoutproducing a string representation of any object.

If you write a class that has no explicitParent, and hence automatically
inheritsANY, you can’t do anything — renaming, redefinition,…— to the
features fromANY. If you do want to adapt them, the solution is simply to
make the inheritance explicit:

The special role ofANYturns any case ofmultiple inheritance into a case of
repeatedinheritance: on the earlierfigure,E is an heir to bothB andC, and
hence an indirect descendant ofANY in two ways. Such situations are
addressed through the normal rules of repeated inheritance (discussed below
and detailed in alater chapter). Unless you specify otherwise, repeated
inheritance fromANYwill produce the expected effect for a class such asE:
the class will have just one version of every feature fromANY, as if it there
were just one inheritance path.

cloned(other: ANY): like Current
-- Void if other is void; otherwise, new object
-- field-by-field identical to object attached toother

… Rest of routine omitted…

class C inherit

redefinecopy, default_rescue, … end
feature

…
end

→ “CLONING AN
OBJECT”,  21.4,
page 567.

→ See26.5, page 686,
aboutdefault_rescue.

ANY

← Page173.
→ Chapter16; see
especially“SHARING
ANDREPLICATION”,
16.4, page 428.
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6.7 NONE

The overall inheritancefigure shows, along withANYat the top, another
special class at the bottom:NONE. This class is considered to inherit from
all classes that have no other heirs — assuming appropriate renaming to
remove any resulting name clashes.

Unlike ANY, NONE does not actually exist as a class text (if only
because that text would need to be updated every time anyone, anywhere,
writes a new class!), but serves as a convenient fiction to make the
inheritance structure and the type system complete.

NONEhas no useful instance. It serves as the type ofVoid, which denotes
a void reference. SinceNONEis assumed to be a descendant of every class,
the Parent rulebelow implies that no class may be an heir ofNONE. The class
does not export any feature, to help ensure that no feature call has a void target.

6.6 PROHIBITING CYCLES

An important constraint governs the inheritance relation: there must be no
inheritance cycles.

In other words, you may not build a class structure as in the left part of the
figure, whereD inherits fromB, B from A, A from C andC from D. More
generally, it is invalid to have a set of classesC0, C1, …, Cn (n ≥ 1), where
C0 andCn are the same class and everyCi is an heir ofCi+1.

The reason for this restriction is easy to understand: makingC an heir
to B means defining the set of features ofC as an extension ofB’s feature
set; the relationship cannot be mutual.

Prohibiting cycles does not mean prohibiting a classD from being a
descendant of another classA in more than one way, as illustrated by the
structure appearing in the right part of the above figure. This is a caseof
repeated inheritance, valid if it meets the relevant validity constraints.

← Page173.

→ Page176.

Cycle
(INVALID )

Repeated
InheritanceA

D B

C

A

D

CB

(may be valid)

Invalid cycle
vs. valid
repeated
inheritance

→ Chapter16.
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These observations lead to the validity constraint onInheritance parts:

Parent rule VHPR

TheUnfoldedInheritancePart of a classD is valid if and only if
it satisfies the following conditions:
1 • In everyParentpart for a classB, B is not adescendant ofD.

2 • Noconforming parent is a frozen class.

3 • If two or more Parentparts are for classes which have a
common ancestorA, D meets the conditions of theRepeated
Inheritance Consistency constraint forA.

4 • If one or moreParentparts are present, at least one of them
is conforming.

5 • No two ancestor types ofD are differentgenericderivations of
the same class.

6 • EveryParent is generic-creation-ready.

Condition1 ensures that there are no cycles in the inheritance relation.

The purpose of declaring a class asfrozen (case2) is to prohibit
subtyping. We still permit thenon-conformingform of inheritance, which
permits reuse but not subtyping.

Condition 3 corresponds to the case of repeated inheritance; the
RepeatedInheritanceConsistency constraintwill guarantee that there is no
ambiguity on features thatD inherits repeatedly fromA.

Condition 4 governs non-conforming inheritance; it ensures the
Universal Conformance principle. If there are noInheritancepart we
accept this — since the rule applies to the Unfolded Inheritance Part of the
class — as shorthand for one of the forminherit ANY; but with an
Inheritancepart that would only have branches marked{ NONE} , this rule
would not apply, and so the current type would not conform toANY. If at
least one branch is conforming, then the corresponding parent type will
(through recursive application of the same property) conform toANY, and
so will the current type.

Condition 5 avoids ambiguity when one of the ancestor classes is a
generic classA [G] with, for example, a featuref (x: G); if we allowed a
classC to inherit from bothA [T] andA [U] for different typesT andU,
there could be no proper signature forf in C.

Condition6 also concerns the case of a generically derivedParentA [T];
requiring it to be “generic-creation-ready” guarantees that creation
operations onD or its descendants will function properly if they need to
create objects of typeT

→ Page458.

→ Page458.

→ Studied below:
“NON-CONFORM-
INGINHERITANCE”,
6.8, page 178.

→ Studied below:
“NON-CONFORM-
INGINHERITANCE”,
6.8, page 178.

→ “Generic-creation-
ready type”,  page 352.
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When applying the Parent rule, do not be misled by the “if” part of the “if
and only if”: to guarantee that anInheritancepart is valid, you will also have
to check conditions which do not appear explicitly in the rule. In particular:

• Every parentP must be a valid type; this means among other
requirements that ifP is generically derived, appearing asB [X, …],
thenB must be the name of a generic class in the surrounding universe
and the actual parametersX, … must be valid types matching the formal
parameters ofB.

• EveryFeature_adaptationclause (with itsRename, Redefineand other
subclauses) must be valid.

The Parent rule does not need, however, to express such requirements
explicitly: The General Validity rule implicitly adds to the constraint on any
construct the condition that all the sub-components are valid too. Be sure to
remember this convention — without which the validity rules would become
hopelessly complicated — whenever you see an “if and only if” validity
constraint throughout this book. If you have the impression that the constraint
does not cover every necessary condition, this is probably just because it
omits the validity requirements on sub-components, as permitted by the
General Validity rule.

6.7 ADAPTING INHERITED FEATURES

The major purpose of inheriting from one or more classes is to obtain their
features (together with the associated assertions, and the classes’
invariants) as an addition to one’s own. The features obtained by a class
from its parents are called itsinherited features. As already noted, this
yields one of the two categories of features of a class; the others are
immediate features, introduced in a class itself.

The very notion of inherited feature indicates how inheritance provides
an accumulation process enabling classes to use features defined in one or
more previously existing classes – its proper ancestors.

Although a class inherits all its proper ancestors’ features, it retains the
flexibility to adapt them to its own context in various ways:

• A feature introduced in a certain class under a certain name may be
known under different names in descendant classes. This is achieved
throughrenaming.

• A feature defined with a certain signature, specification and
implementation may get a new declaration changing any of these
properties. This is achieved throughredefinition.

• A feature introduced with a certain signature may get a new one. This is
also achieved through redefinition, and through the associated
mechanism ofanchored declaration.

→ The Class Type
rule,“VTCT”,  page
325, requiresPto be the
name of a class in the
universe. On generic
parameters,see the rule
“VTGD”,  page 351.

← General Validity
rule: page98.

← "Features of a class"
and"inherited fea-
tures" were first dis-
cussed in5.4, page 133
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• A feature introduced in a proper ancestor with a specification but no
implementation, known as adeferred feature, may get an
implementation. This is the process ofeffecting.

• If a classC inherits two or more deferred features with compatible
signatures and specifications, it may merge them into a single feature.
This is ajoin .

• When a classC inherits the same feature from two or more of its parents,
which themselves inherit it from a common ancestor, simple techniques are
available to ensure that the result inC is only one feature (sharing) or several
(duplication). The applicable rules are those ofrepeated inheritance.

• Under repeated inheritance, polymorphism and dynamic binding could
cause conflicts, which you must remove through theSelectmechanism.

The first of these techniques, renaming, is purely syntactical, affecting
feature names rather than the features themselves. It is studied later in this
chapter. The others determine the semantic adaptation of features to the
context of new descendants;later chapters explore them in detail.

6.8 NON-CONFORMING INHERITANCE

(The mechanism described here is for advanced users. On first reading you
mayskip the present section.)

One of the principal applications of inheritance — in its “type” rather
than “module” persona — is to govern conformance. The basic idea is
simple: in the most common cases, an assignment of the forma1 := b1with
a1 of typeA andb1 of typeB is valid if B is a descendant ofA. You can
similarly call f (b1) if f has a formal argument of typeA. The details appear
in theconformance chapter.

Sometimes, you may want inheritancewithout conformance: the
module-only side of inheritance, disallowing such assignments and
arguments passing. To force this it suffices to prefix the mention ofA in the
correspondingParent part by keyword{ NONE} , as in

Adding { NONE} in this fashion does not affect the basic properties of the
inheritance relation; it simply means that typeB will not conform to A
through this inheritance link.

The syntax is reminiscent of the possibility of declaring features in a clause
feature { NONE} , rather than justfeature, to restrict its export status.

classB inherit
A

… Feature_adaptation clause if needed…
… Rest of class omitted…

→ “THE JOIN
MECHANISM”,
10.21, page 286.

→ Chapter10 on fea-
ture adaptation and16
on repeated inheritance

→ Skip to“RENAM-
ING”,  6.9, page 180

→ Chapter14.

{ NONE}

In a case of repeated
inheritance,B might
still conform toA
through another inher-
itance link.
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This facility is useful only in specific cases of restricting an inheritance
link to “implementation inheritance” or “facility inheritance”: you want the
reusability benefits of inheritance, but not the subtyping part.

Some simple-minded presentations of object technology will tell you that this is
“wrong” and that inheritance should always involve subtyping. Although they
can legitimately point to incorrect uses of inheritance, it is improper to disallow
implementation inheritance altogether, as it has many perfectly valid uses. The
chapter on the methodology of inheritance inObject-Oriented Software
Constructiondiscusses these issues in detail and presents a taxonomy of the uses
of inheritance.

In this book we will see two major applications of non-conforming
inheritance, both of which use it to remove potential ambiguities: repeated
inheritance and convertibility.

• The repeated inheritance chapter will show that it is sometimes possible
for a class to obtain two different versions of a feature inherited from a
common ancestor through more than one path. This creates a potential
ambiguity because of polymorphism and dynamic binding, since a call
of the form a.f, wherea is of the repeated ancestor type, could in
principle trigger either of the two variants ifa is attached at run time to
an instance of the common descendant type. When such a conflict
arises, you will resolve it through aSelectclause. The problem only
arises, however, if both paths are conforming; by using non-conforming
inheritance whenever you don’t need subtyping you reduce the need for
Select and simplify your class texts.

• The study ofconvertibility will show how to make a type convertible to
another by including conversion procedures, as in

which makes assignments such asa1 := b1 (and corresponding argument
passing) valid; they will cause a conversion using the listed creation
procedurefrom_B. To avoid any ambiguity, theConversionProcedure
rule prohibits such a scheme whenB conforms toA, as this would also
make the assignment valid but with a different semantics (reference
reattachment with no conversion). Thegeneralprinciple is that a type may
conform or convert to another, but not both. In some cases you might still
like B to inherit fromA for its features only. It suffices in this case to make
B list {NONE} A, rather than justA, as itsParent.

This discussion also explains why we needed condition4 of theInheritance
rule, requiring that if there areParent parts they can’t all be non-
conforming: we need at least one conforming branch to ensure that all
types conform toANY — theUniversal Conformance rule.

classA create
from_Bconvert { B}

… Rest of class omitted…

→ Chapter15.

→ “Conversion Proce-
dure rule”,  page 403;
“Conversion princi-
ple”,  page 400.

←Page176(bothrules).
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The graphical representation of inheritance links has a slightly different
form (similar to theconventionfor the“expandedclient” relation) to signal
non-conforming inheritance:

6.9 RENAMING

As part of itsFeature_adaptation, anyParentpart may include aRename
subclause, which serves to adapt names of inherited features to the local
context of the newclass.

Here is aRename subclause from the previous example:

Renaming is especially useful in two cases:

• With renaming, you may correct anyname clashoccurring because of
multiple inheritance. A name clash occurs when two or more parents of
a class have a feature of the same name, and wouldusually make the
class invalid if not removed by renaming.

• Renaming also enables a class to offer its inherited features to its clients
and descendants under a terminology appropriate to its own context,
rather than to the context of the parents from which it inherited them. In
other words, it helps make sure that, beyond offering the rightfeatures,
you also offer them under the rightfeature names.

The general syntax of aRename clause is:

rename
off as child_off,
afteraschild_after,
beforeaschild_before

Rename clauses
Rename=∆ renameRename_list

Rename_list=∆ { Rename_pair "," …}*

Rename_pair=∆ Feature_nameasExtended_feature_name

→ Page194, in the
next chapter.

C

B
Parent and
non-
conforming
heir

→“NAMECLASHES”,
10.23, page 290, dis-
cusses the exact cases in
which name clashes
are prohibited.
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So if B has the features

you may define a new class

Then for the features offered byC to its direct clients:

• pluschanges its identifier tosumand keeps its alias. Without thealias
part it would no longer have an operator alias inC.

• multiplied is renamed totimes and loses its alias.
• dividedkeeps its identifier but changes its alias; you can’t change just

the alias without giving a full newExtended_feature_name, which in
this case reuses the previousFeature_name (the identifierdivided).

• item keeps its identifier and loses its bracket alias; again you have to
repeat the identifier.

• f takes over the bracket alias vacated byitem. Since every class may
have at most one feature with the bracket alias, this would not be
possible without the change toitem.

• g gets a new identifier and a new alias, thefree operator||.

The first component of aRename_pairis just aFeature_name, the identifier
for the feature; the second part is a fullExtended_feature_name, which may
include analias clause. Indeed:

• To identify the feature you are renaming, itsFeature_namesuffices.

• At the same time you are renaming the feature, you may give it a new
operator or bracket alias, or remove the alias if it had one.

Forms of feature adaptation other than renaming, in particular effecting and
redefinition, do not affect theAlias, if any, associated with aFeature_name.

plusalias "+"
multipliedalias "∗"
dividedalias "/"
itemalias "[]"
f
g

classC inherit
B

rename

end
… Rest of class omitted…

Warning: this is an ex-
treme case, illustrating
the possibilities but not
intended as a model
of style!plusas sumalias "+",

multipliedas times,
dividedas dividedalias "//",
itemas item,
f asf alias "[]",
g ash alias "||"

→ “F ree operator”,
page 883
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The aliases all assume that the corresponding features have the right
signatures; for example"+" as aBinary requires a one-argument query.

TheRename clause is subject to a constraint.:

Renaming is a purely syntactical mechanism:

This principle indeed adds nothing by itself to the semantics of the
language; it is there to remove any uncertainty. Experience has shown that
renaming sometimes confusesnewcomers to object technology —
surprisingly, since the idea is particularly simple: to distinguish between a
feature and its name.

6.10 FEATURES AND THEIR NAMES

A class defines a set of features, each with a certain feature names. The two
concepts are clearly distinct.

A feature is a certain component (attribute or routine), characterized by
a signature, an associated algorithm (for a routine), a value (for a constant
attribute), and possibly other properties. Such a feature is “a feature of” one
or more classes: the class which introduces it, and (subject to feature
adaptation mechanisms) all the descendants of that class.

Rename Clause rule VHRC

A Rename_pairof the formold_nameasnew_name, appearing
in theRenamesubclause of theParentpart forB in a classC, is
valid if and only if it satisfies the following conditions:
1 •old_name is thefinal name of a featuref of B.
2 •old_namedoes not appear as the first element of any other

Rename_pair in the sameRename subclause.
3 •new_name satisfies theFeature Name rule forC.
4 • The Alias of new_name, if present, isalias-valid for the

version off in C.

In condition4, the “alias-valid” condition captures the signature properties
allowing a query to have an operator or bracket aliases. It was enforced
when we wanted to give a feature an aliasin thefirst place and, naturally,
we encounter it again when we give it an alias through renaming.

Renaming principle

Renaming does not affect the semantics of aninherited feature.

The “positive” semantics of renaming (as opposed to the negative
observation captured by this principle) follows from the definition offinal
name andextended final nameof a featurebelow.

← “Alias Validity
rule”,  page 162

→ The Feature Name
rule, page466, express-
es that no other feature
of C hasnew_nameas
its final name.

→“FeatureNamerule”,
page 466.

← “Alias Validity rule”,
page 162.

← Clauses5 and7 of
“Feature Declaration
rule”,  page 160.

→ Page183.

See “Repentant Java
programmer can’t un-
derstand the difference
between a feature and a
feature name”, in Proc.
BEIROOT ‘05 (Bizarre
Experiences In Remedi-
al Object-Oriented
Training), Beirut, Aug.
2005, pages 22345-
27226.
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Every feature of a class has a name in that class. This association
between a feature and a feature name only eixts relative to the class. The
samefeature may have differentfeature namesin different classes.

This is precisely what renaming achieves. The presence, in aParent
clause forB in C, of aRename subclause of the form

implies that the inherited feature known asf in B is known asg in C.

The precise definitions are the following:

Also convenient is the notion of “inherited name” of an inherited feature:

rename…, f asg, …

Final name, extended final name, final name set
Every featuref of a classC has anextended final namein C, an
Extended_feature_name, and a final name, a Feature_name,
defined as follows:
1 • The final name is theidentifier of the extended final name.
2 • If f is immediate in C, its extended final name is the

Extended_feature_nameunder whichC declares it.
3 • If f is inherited,f is obtained from a feature of aparentB of C.

Let extended_parent_namebe (recursively) the extended final
name of that feature inB, andparent_nameits final name off
in B. Then the extended final name off in C is:

- If theParentpart forB in C contains aRename_pairof the
form rename parent_nameas new_name: new_name.
- Otherwise:extended_parent_name.

The final names of all the features of a class constitute thefinal
name setof a class.

Since an inherited feature may be obtained from two or more parent features,
case3 only makes sense if they are all inherited under the same name. This
will follow from the final definition of “inherited feature” in the discussion of
repeated inheritance.

The extended final name is anExtended_feature_name, possibly including
anAlias part; the final name is its identifier only, aFeature_name, without
the alias. The recursive definition defines the two together.

Inherited name
The inherited name of a feature obtained from a featuref of a
parentB is thefinal name off in B.

The notion of"class of
origin" was first intro-
duced on page133.The
full definition appears
on page305.

→ How the final name
set is actually deter-
mined depends on
renaming, redefinition
and joining, as dis-
cussed in chapters10
and16. See further
comments about the
final name set on page
465.

→ “Inherited fea-
tures”,  page 462.



THE INHERITANCE RELATION §6.10184
Renaming — to press the point! — does not change any of the inherited
features, but simply changes the names under which those features will be
known by clients and descendants. Consider a featuref, which has the final
nameold_name in a classB. By writing an heirC as

you decide to make the inherited feature available toC, C’s descendants
and (if it is exported)C’s clients under the namenew_name.

As a consequence, you have also freed the inherited name off, here
old_name, so that another feature ofC may now use this name. That other
feature could come from various places:

1 • It could be a new feature introduced byC itself, for which you wish to
use the nameold_name.

2 • It could be a feature inherited from a parent ofC other thanB, and
having the nameold_namein that parent. Here, without renaming, you
would have introduced a — usually invalid — name clash inC.

3 • It could even be a feature inherited fromB or another parent under some
other name, and renamedold_name in C. This case is somewhat
contorted, but it does occasionally arise.

Whatever the case, remember that if you do decide to reuseold_namefor
another feature ofC, you do not introduce any connection between that
feature and the original featuref, obtained fromB under the inherited name
old_name. The two are unrelated; for example one could be a procedure
and the other an attribute.

The following example illustrates these properties. Assume a class
COLORSwith features of namesred, orange, black, white, andFRUITS
with a feature of nameorange_fruit. You can write a class of the form

In the rest of the language description, references to the “name” of a
feature, if not further qualified, always denote the final name.

classC inherit
…,
B

rename…, , … endold_nameas new_name
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The featureorangeof classCOLORSis known inFRUITS_AND_COLORS
as orange_color; this makes the nameorange available for the feature
inherited fromFRUITSunder the nameorange_fruit. The featurered of
COLORSis known inFRUITS_AND_COLORSas red_color, making the
nameredfree for a new attribute introduced inFRUITS_AND_COLORSwith
no connection to the originalred. Finally each ofCOLORS’s featuresblack
andwhite is known inFRUITS_AND_COLORS under the other’s name.

As this example illustrates, you should understand the renamings induced by
a Renamesubclause as all simultaneous; this allows such constructions as
renameblackaswhite, whiteasblackto make sense. In other words, even if
the Renamesubclause includes aRename_pairold_nameas new_name,
other occurrences ofold_nameor new_nameas the first element of a
Rename_pairin the same subclause must still be interpreted as in the parent.

This last case, which swaps the names of two inherited features, is rather
extreme. It illustrates, however, the importance of renaming to the building
of professional-quality reusable software components. Writing a class as
heir to another means endowing the new class with a certainfunctionality,
as provided by the parent’s features. But this does not by itself make these
features available under aterminologyconsistent with the heir’s specific
context. Renaming is there to guarantee that, for the heir, its clients and its
descendants, the terminology is just as right as the functionality is.

An auxiliary notion resulting from this discussion proves convenient:

class FRUITS_AND_COLORSinherit
COLORS

rename

end
FRUITS

rename

end
feature

end

Declaration for a feature
A Feature_declarationin a classC, listing aFeature_namefn, is a
declaration for a featuref if and only if fn is thefinalname off in C.

Although it may seem almost tautological, we need this definition so that
we can talk about a declaration “for” a featuref whetherf is immediate —
in which casefn is just the name given in its declaration — or inherited,
with possible renaming. This will be useful in particular when we look at a
redeclaration, which overrides a version inherited from a parent.

There is no assumption
that these classes and
featureshaveanyuseas
abstractions reflecting
their names; they just
illustrate some lan-
guage properties.

orangeas orange_color, redas red_color,
blackas white, whiteas black

orange_fruitas orange

red: INTEGER
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6.11 INDEPENDENCE OF INHERITANCE AND EXPANSION

The “expanded” or “reference” status of a class is not inherited.

As you may remember, aClass_header may begin with

as opposed to the more commonclass C or deferred classC. If the
expandedmark is present, the class and types based on it are said to be
expanded. Creation of an instance, as in

will yield an objects withcopy semanticsrather than reference semantics.
What effect does this have on heirs ofC?

The answer is straightforward: no effect. The only consequence of the
expansion status of a class is the semantics of objects of the corresponding
types, such as the object attached tox above. An expanded class may inherit
from a non-expanded one, and conversely. The expansion status is not
transmitted, but entirely determined by the class’s ownClass_header.

This convention makes it easy to provide both a reference and expanded
versions of the same class, as in

The two classes have the same features; one is expanded, the other is not.
Because of the rules on creation, each will have to list the procedures, if
any, that it plans to use as creation procedures.

expanded classC…

x: C
…
createx.…

class RCfeature
… Full class declaration: feature declarations, invariant etc.…

end

expanded class EC inherit
RC
-- No need to write anything else, except possibly
-- Notes and Creation clauses

end

→ See“CLASS TEXT
STRUCTURE”,  4.6,
page 117..
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