
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
G

Changes from early versions
G.1 OVERVIEW

The previous appendix summarized the history of Eiffel versions and
described the changes from Eiffel 3, as described in the first edition of this
book, to Eiffel 5.

The present discussion recalls briefly what had changed from the very
first incarnations of Eiffel, especially ISE Eiffel 2 — used in the first (1988)
edition of the bookObject-Oriented Software Construction, which was
many people’s original introduction to Eiffel — to Eiffel 3. It will provide
current Eiffel users with a glimpse of the language’s early evolution.

G.2 SCOPE OF THE CHANGES

Whereas changes from Eiffel 3 to Eiffel 5 essentially don’t break any
existing code, the changes from Eiffel 2 to Eiffel 3 did not guarantee
backward compatibility, since it was felt appropriate to tune some of the
original constructs. The translation, however, was simple and systematic,
enabling ISE to provide a translator that automatically converted most of a
system and left only a few items for manual programmer action, such as
renaming any identifiers conflicting with new keywords.

The differences were of three kinds:

• Changes to the concrete syntax, improving the consistency of the
language and the clarity of software texts.

• Adjustment or clarification of the semantics of a few constructs, taking
care of cases which proved confusing, such as the combination of
repeated inheritance and redeclaration.

• A few new constructs to increase the expressive power of the language.

For more historical back-
groundseeAppendixE,A
brief history of Eiffel.

CHANGES FROM EARLY VERSIONS §G.31068
G.3 OLDER POST-OOSC-1 EXTENSIONS

Prior to Eiffel 3, the following mechanisms were added in versions 2.1
(mid-1988), 2.2 (mid-1989) and 2.3 (mid-1990) of ISE Eiffel, after the
original publication of the bookObject-Oriented Software Construction
(hereafterOOSC-1) in March of 1988:

• Constrained genericity, enabling a generic class to place certain
requirements, expressed through inheritance, on possible actual generic
parameters. (OOSC-1in fact mentioned this, but only in an exercise.)

• The Indexingclause (nowNotes) for recording important information
about a class, to be used by archival, browsing and query tools.

• The Assignment_attempt, with its ?= symbol, for type-safe assignments
going against the inheritance hierarchy, widely imitated in other languages.

• Infix and prefix operators, for more flexible call syntax.

• Expanded types, supporting composite objects and avoiding
unnecessary dynamic allocation.

• The Obsoleteclause (in classes and routines) for smooth library
evolution.

• Uniquevalues to define integer codes without having to choose values.

• TheMulti_branchinstruction for discriminating between a set of cases
without using dynamic binding. (This was limited to character and
integer values; the extension to intervals came with Eiffel 3, and to
strings and type descriptors with Eiffel 5.)

• The boolean operator for implication (implies), which was previously
expressed through the operatoror else.

• Support for double-precision reals (typeDOUBLE, later removed).

• Basic expanded classes from the Kernel Library, definingBOOLEAN,
CHARACTER, INTEGER, REAL and (then)DOUBLE.

• The join mechanism for merging one or more inherited deferred
routines with compatible signatures and specifications. (In 2.3 this
required a now obsolete keyword,define, and an effecting of the
resulting features.)

• More flexibility in the interface with other languages, in particular
through the introduction of the$ symbol (@ in 2.3).

The rest of this appendix covers changes from Eiffel 2.3 to Eiffel 3, first
introduced in 1993.

§G.4 SEMICOLONS 1069
G.4 SEMICOLONS

Eiffel originally used semicolons as separators. With Eiffel 3, semicolons
were made optional in most cases. For a while, the style rules still
recommended including them, until it was realized — partly from
comments of students in programming classes — that instead of helping
readability they obscured software texts, providing no benefit except in the
rare case of multiple instructions on a single line. Thestyle rules were
revised to reflect this realization that most instruction-separating
semicolons are just noise.

G.5 FEATURE ADAPTATION

Thesyntax of theFeature_adaptationsubclause, in theParentclause of an
Inheritancepart, indicating changes in inherited features, was made more
regular by the introduction of a requiredendterminator, consistent with the
conventions used elsewhere in the language (routine declarations, control
structures). Previously, there was noend; this meant that a mistakenly
added extra semicolon, for example between aRenameand aRedefine
subclauses, could make the construct ambiguous, resulting in minor but
annoying syntactical errors. This is now harmless, and semicolons have, as
noted, been made mostly irrelevant anyway.

G.6 SPECIFYING EXPORT STATUS

Eiffel 3 removed theexport clause which was used, at the beginning of a
class, to specify the export regime of every feature of the class. Instead,
there may be more than oneFeature_clause; each defines the export regime
of the features it introduces. If aFeature_clausejust begins with the
feature keyword with no further qualification, all the features it introduces
are publicly available.

To obtain the effect of a secret feature, begin theFeature_clause with

To obtain the effect of a feature available selectively to specified classes,
begin the Feature_clause with

feature { NONE}

feature { A, B, C}

“OPTIONAL SEMICO-
LONS”, 34.10,page909.

Page169.

Chapter7, Clients and
exports, gives all the
details of how to set the
export status of features.

CHANGES FROM EARLY VERSIONS §G.71070
This also removed the need for therepeatsubclause (which was part of an
export clause and served to repeat a parent’s export specification). By
default, inherited features keep the export status they had in the parent,
unless they are redefined. The status of a redefined feature is determined by
the qualification of theFeature_clausein which the redefinition occurs. To
change the status of an inherited feature that is not redefined, use anexport
subclause in the Feature_adaptation clause at the point of inheritance, as in

Here all features inherited fromC are secret, except forremoveandcount,
available toA andB, andput, available to all clients

G.7 ADAPTING PRECONDITIONS AND POSTCONDITIONS

Another important language improvement affects the rule on adaptation of
preconditions and postconditions for redefined routines is now alanguage
mechanism, rather than a purely methodological guideline. In pre-version
3, a Preconditionor Postconditionalways appeared in full, even for a
redefined routine for which the assertions had not changed. If they did
change, you were only supposed to replace an original precondition with a
weaker one, or an original postcondition with a stronger one; but the
language did not support these rules directly.

It now does. In a redefined routine, an absent Precondition means “keep
the original’s precondition”, and similarly for an absent postcondition. You
may change these assertions using the forms

which yields as new preconditions and postconditions theor and and,
respectively, of the original versions with the added ones, automatically
enforcing the rule on precondition weakening and postcondition strengthening.

class D inherit
C

export
{ NONE} all
{ A, B} remove, count
{ ANY} put

end
…

require else new_precondition_clause
ensure then new_postcondition_clause

“REDECLARATION
AND ASSERTIONS”,
10.17, page 277.

§G.8 REMOVING AMBIGUITIES IN REPEATED INHERITANCE 1071
G.8 REMOVING AMBIGUITIES IN REPEATED INHERITANCE

Separate paths of repeated inheritance may cause a feature to be redefined
in different ways. The 2.3 language specification left it to the
implementation to resolve the dynamic binding conflicts that may arise in
such a case.

To solve this issue, Eiffel 3 introduced aSelectclause, in theInheritance
part for a class. An example, assumingB andD both inherit a featuref from
a common ancestorA and both redefine it, was:

A potential ambiguity arises only with calls of the forma1.f for a declared
of typeA but dynamically attached to an instance ofD. Theselectresolves
this ambiguity by prescribing the use ofbf, theB version, in this case.

Eiffel 5 replaces this mechanism by the mechanism of non-conforming
inheritance, slightly less flexible but simpler.

G.9 RENAMING, REDEFINING, UNDEFINING AND JOINING

In pre-version 3, it was possible to duplicate an inherited feature by
renaming it and keeping the old one under a different name; dynamic
binding would then apply to entities of the parent type will trigger the
redefined version. This mechanism was difficult to explain and was
replaced by theSelect clause just described (then by non-conforming
inheritance). It was in fact unnecessary since repeated inheritance also
achieves feature duplication in a more uniform way.

ComplementingRedefine, a new clause,Undefine, was introduced to
allow de-effecting a feature inherited in effective form, making it deferred.
A related constraint was added to prohibit redefining an effective feature
into a deferred one, since one may now use undefinition instead.

class D inherit
B

renamef as bf selectbf end
-- This select theB version for
-- dynamic binding fromA.

C
renamef as cf end

…

“THE REPEATED
INHERITANCE CON-
SISTENCY CON-
STRAINT”, 16.13,
page 455.

“UNDEFINING A
FEATURE”, 10.19,
page 283.

CHANGES FROM EARLY VERSIONS §G.101072
In an extension and simplification of the language semantics, inheriting
two or more deferred features under the same name will yield a single
deferred feature. This is known as the join mechanism and is useful to
merge abstractions. An essentially equivalent mechanism existed in pre-
version 3 but required the inheriting class to effect the features and to mark
them using the keyworddefine (not a reserved word any more). These
restrictions do not apply any more.

By combining the previous two possibilities, you may merge a set of
effective features inherited from parents, one of these features imposing its
implementation on the others.

G.10 SYNONYMS

Eiffel 3 introduced thepossibility of introducing two or more features with
a single declaration, as in

This is equivalent to duplicate declarations; the features declared together
are not otherwise connected. Redefining or renaming one in a proper
descendant has no effect on the others.

G.11 FROZEN FEATURES

To preserve not just the specification of a feature (through its assertions)
but also its exact implementation in descendants,you may, since Eiffel 3,
declare it asfrozen. This prevents any redefinition in descendants.
Combined with the synonym mechanism, as in

which preventsf1 from being redefined, but does not so restrictf2, this
makes it possible to provide both a fixed version and a redefinable one. This
scheme can be used for a number of features of the universal classANY,
such as copy, close, is_equal, which have both a standard version and one
adaptable to any class.

G.12 ANCHORING TO A FORMAL ARGUMENT

In an anchoreddeclaration of the formlike anchor, Eiffel 3 made it
possible to useanchor not just Current or an attribute of the enclosing
class, but also, in a routine text, a formal argument of that routine, as in

f1, f2 (…) is …

frozen f1, f2 (…) is …

equal(some: ANY; other: like some): BOOLEANis …
clone(other: ANY): like otheris …

“SYNONYMS AND
MULTIPLE DECLA-
RATION”, 5.18, page
158

“REDECLARATION
RULES”, 10.28,page306.

“ANCHOREDTYPES”,
11.10, page 331.

§G.13 CREATION SYNTAX 1073
In a call toequal, the type of the second actual argument must conform to
that of the first. Iny := clone(x), the type ofx must conform to that ofy.

G.13 CREATION SYNTAX

Eiffel 1 and 2 permitted a single creation mechanism per class, called under
the form x.Create. Eiffel 3 introduced the notion of multiple creation
procedures, and a syntax of the form

or, if D is a descendant of the type declared forx:

The idea was right but the syntax, with its reliance on a special symbol!,
departed from the usual principles of clarity of Eiffel. It was replaced in
Eiffel 5 by akeyword-based form, using the keywordcreate.

G.14 UNIFORM SEMANTICS FOR DOT NOTATION

Thex.Createnotation of Eiffel 1 and 2 was not the only case in which the
dot in x.f had special semantics. For all “normal”f, the notation x dot f
described the application of featuref to the object attached tof, and
requiredx to be non-void, triggering an exception otherwise.

The convention was different, however, for a small set of special
language-defined features:Create, Clone, Forget, Void and Equal. For
these, the operation really applied to the reference value ofx, and was legal
even ifx was void (not attached to any object).

These cases were removed in Eiffel 3 to ensure full consistency: dot
notation always has the semantics of an operation applicable to an object,
and requiresx to be non-void. A voidx will cause an exception.

Clone, Forget, Void and Equal are no longer reserved words of the
language; instead, the operations use features of the universal classANY, of
which all Eiffel classes are descendants. These features’ names (clone,
Voidandequal) are normal identifiers, and proper descendants ofANYmay
rename the features. The cloning instructiony.Clone(x) is now written as
the assignmenty := clone (x). The instructionx.Forget is written as the

! ! x.make(arg1, …) -- With creation proceduremake
! ! x -- Without a creation procedure

! TYPE! x.make(arg1, …)
! TYPE! x

Chapter20 discusses
creation.

CHANGES FROM EARLY VERSIONS §G.151074
assignmentx := Void. FeatureVoidof classANYreturns a reference of type
NONE, the class that has no instances. The test for a void reference,
previously writtenx.Void, is nowx = Void. The object equality test, instead
of x.Equal(y), is nowequal(x, y). Since the routines involved are normal
features ofANY, descendants may redefine them while, as noted, always
retaining their frozen synonyms.

G.15 MANIFEST ARRAYS

In the same way that aSTRINGobject may be given in manifest form (such
as "some string value"), rather than by successive calls to fill its character
positions, Eiffel 3 introduced manifest arrays, such as

which defines an array by its elements. Complemented in Eiffel 5 by tuples,
this provides a simple way to achieve the effect of routines with a variable
number of arguments.

G.16 DEFAULT RESCUE

It is often convenient to define a default exception response for those
routines which do not have a specificRescueclauses. In pre-version 3, this
was done by having aRescueclause at the class level. The rescue clause
was not passed on to descendants because of potential conflicts in the case
of multiple inheritance.

As simpler and more flexibleconvention was introduced by Eiffel 3.
The universal classANY has a proceduredefault_rescue, which does
nothing. Any class may redefine this procedure to perform specific
exception handling actions. Any routine with no Rescue clause is
considered to have aRescueclause that just callsdefault_rescue. This
means that any exception occurring in such a routine will lead to the default
exception handling mechanism defined at the level of its class.

G.17 EXPANDED CLASSES

As a notational facility, Eiffel 3 made it possible todeclarea class as
expanded classE, implying that any type based onE will be expanded.
Previously, you could use the typeexpandedT based on an existing type
T, but you couldn’t specify that a class gives expanded type by default.

G.18 SEMANTICS OF EXPANDED TYPES

In what was probably the only non-trivial modification of an existing
semantic property, the effect of an assignment

<<val1, val2, …>>

ref := exp

“MANIFESTARRAYS”,
36.6, page 927.

“THE DEFAULT RES-
CUE”, 26.5, page 686.

“CLASS HEADER”,
4.9, page 124.

§G.19 FREE INFIX AND PREFIX OPERATORS 1075
where the type ofref is a reference type and the type ofexpis expanded, is
specified as creating a new object identical to the value ofexp(a clone) and
attachingref to it.

Previously, no cloning occurred;ref would just become attached to the
value of exp, a sub-object or some other object. This introduced a
possibility for objects to contain references to sub-objects of other objects.
This possibility, of dubious benefit, appears to have been used rarely if
ever; it did, however, considerably complicate the run-time model and the
implementation, in particular the garbage collector.

G.19 FREE INFIX AND PREFIX OPERATORS

Infix and prefix operators, restricted in Eiffel 2 to predefined symbols —
arithmetic such as+, relational such as<, boolean such asand — now
enjoy full syntactic status: you may give an infix or prefix alias to any
function with the appropriate signature (no argument for prefix, one
argument for infix), and define your own “free operators”, whose symbols
must start in Eiffel 3 with one of the four characters@ #|& . Eiffel 5 further
generalized this to almost arbitrary names.

For compatibility with tradition, boolean operators still use alphabetic
keywords (such asand and or else). They are the only ones, however;
integer operators use non-alphabetic symbols:// and \\ replaced thediv and
mod of Eiffel 2.

G.20 OBSOLETE CLAUSE

For consistency, theObsoleteclause of an obsolete routine now appears
after theis keyword rather than before.

A class may also have an obsolete clause, indicating that usage of the
class as a whole is discouraged — because you have written a better version
that is not fully compatible, or just prefer a different class name. The
Obsoleteclause in this case comes just before theClass_header(that is to
say, beforeclass, deferred classor expanded class, but after theNotes
clause if any).

G.21 RESERVED WORDS

The following ten names could be used as identifiers in pre-3 Eiffel. They
became reserved words with Eiffel 3:

alias, all, creation, elseif, frozen, NONE, POINTER, select,
separate, strip

Table titled“The seman-
ticsofconformancereat-
tachment”, page 590.

“OPERATOR FEA-
TURES”, 5.15, page
154.

“OBSOLETE FEA-
TURES”,5.21,page163.

AppendixK lists
reserved words. See
also, in the appendix
before the present one,
“LEXICAL AND SYN-
TACTIC CHANGES”,
F.6, page 1060.

CHANGES FROM EARLY VERSIONS §G.221076
The following eleven, decreasing the overall count, ceased to be reserved:

(Other than not being needed any more,name may have been the worst
choice of keyword in the history of programming languages, as every Eiffel
beginner was bound to use it as identifier in a simple application, then
wonder why the compiler was complaining.) The change fromelsif to
elseifreflected the general rule that no Eiffel reserved word should use an
abbreviation, although in the absence of a proper English word for the
associated conceptelseifremains, to this day, the only reserved word in the
language that does not consist of a single English word.

Of the new Eiffel 3 reserved words listed above, several have lost their
reserved status in Eiffel 5:creation (now merged withcreate, coming back
from Eiffel 1 and 2 with a new font style),selectandstrip . Don’t use them
yet as identifiers, however, since compilers such as ISE Eiffel may still for
a while support the Eiffel 3 constructs in the sake of compatibility.

The role ofcreation in Eiffel 3 was to introduce the constructCreatorsthat
lists the creation procedures of a class. It’s simpler and clearer to use the same
keywordcreateas in creation instructions.

G.22 OTHER LEXICAL CHANGES

To improve readability of manifest number constants (integers, reals),
Eiffel 3 introduced the possibility of using underscores to delimit groups of
three digits in both the integral and (for a real constant) decimal parts. The
commas do not affect the value. For example, 62_525_300.751_6 denotes
the same value as 62525300.7516.

The representation ofspecialcharacters uses the percent sign% rather
than the backslash\.

Clone, Create, define, div, elsif, Equal, Forget, mod, name,
Nochange, repeat

ConstructsCreators,
page539,andCreation_
instruction, page543.

“INTEGER CON-
STANTS”, 29.5, page
782.; “REAL CON-
STANTS”, 29.6, page
782

“CHARACTER CON-
STANTS”, 29.7, page
783.

	G G Changes from early versions

