31

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Interfacing with C, C++ and
other environments

31.1 OVERVIEW: THE COMPONENT COMBINATOR

Object technology as realized in Eiffel is abaambining components

Not all of these components are necessarily written in the same language;
in particular, as organizations move to Eiffel, they will want to reuse their
existing investment in components from other languages, and make their
Eiffel systems interoperate with non-Eiffel software.

Eiffel is a “pure” O-O language, not a hybrid between object principles
and earlier approaches such as C, and at the same tiopeaframework
for combining software written in various languages. These two properties
might appear contradictory, as if consistent use of object technology meant
closing oneself off from the rest of the programming world. But it's exactly
the reverse: a hybrid approach, trying to be O-O as well as something
completely different, cannot succeed at both since the concepts are too
distant. Eiffel instead strives, by providing a coherent object framework —
with such principles as Uniform Access, Command-Query Separation,
Single Choice, Open-Closed and Design by Contract — todmvgonent
combinatorcapable of assembling software bricks of many different kinds.

The following presentation describes how Eiffel systems can integrate
components from other languages and environments.

The more frequent case of external interfacemlsout Eiffel routines
calling non-Eiffel ones. The reverse need (foreign to Eiffekali-in) also
exists. The mechanisms described in this chapter cover both.

Many applications will be happy enough to use the pure Eiffel
mechanisms described in the rest of this book, and will not require any
direct interfaces with other languages. (The next section explains what
circumstances may including foreign software in an Eiffel system.) If you
are mostly interested in understanding the techniques of Eiffel proper, you
should probably get familiar with the principles of external calls by reading
this section and the next four, and move on to the next chapter.

814

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.2

If you do study the details, you will note that they include, particule‘Even under extreme

in the specific external sublanguages supporting interaction with C, duress999873% of
Eiffel programmers still

imwoi and Dynamic Link Libraries, a number of specific mechanisms that cpgose Eiffel’in Proc.

appear too rich when compared to the general sobriety of Eiffel's deof STOOP-soLOW
Do not be put off by this wealth of possibilities; the aim is not to complicggr;grfoﬁiz‘rﬁi’nzf Sock-
Eiffel but to enable Eiffel developers to take full advantage of non-Eiopject-oriented Pro-
software at minimum effort. Any new, advanced technology such as Egrammers and Society
must provide effective bridges to older technologies, so that its user:{g(gtg&gé’t‘%:&'-'m'
leverage off existing investment. In particular, having powerful C and (sjng-singNY), Jan
interface sublanguages won't detract you from the simplicity of Ei2001 pp 5670-8782
programming; the effect instead will be that if ydahave to interface with

C and C++ you will be able to do everything you need on the Eiffel side,

rather than having to write speciajltie codé in those languages. Eiffel
programmersremarkably, prefer to program in Eiffel; carefully crafted

interface sublanguages enable them to talk freely to the rest of the world

without having to leave their language, techniques and tools of choice.

In accordance with the terminology used for the different forms- In special cases the
Routine_bodyn the syntax specifications, the discussion will use the t<nc]’itg§trb'§“l‘5?#;9ifse”
internal routine for any Eiffel routine accessible to language processsee below
tools, andexternal routine for other routines. The name “external” refe
to the routine as viewed from the Eiffel text; the form of the routine &

appears in its original language will be calledftireign routine.

The semantic specifications presented in this chapter involve
semantics of languages other than Eiffel. Granting non-Eiffel software
access to Eiffel objects may defeat the properties guaranteed by the
semantic rules of this book. You should exercise care to confine the foreign
languages to their proper role, avoiding unwanted interference with Eiffel
object structures and algorithms.

31.2 WHAT EIFFEL CAN DO WITH THE REST OF THE WORLD

Here is some of what you can do with the foreign language facilities
described in this chapter.

* You may declare an Eiffel routine asternal, specifying that it comes
from a foreign language. To the rest of the Eiffel software, the routine
looks as if it were a normal Eiffel routine; but calls to it will execute the
foreign code, which must of course have been compiled by a compiler
for the foreign language. This is possible in principle for any foreign
language, and guaranteed for C, C++, Java and Fortran 95.

* You may specify that an external routine, known in Eiffel under a
certain name, hadnother namein its native language, for example if
that name is not legal in Eiffel.

* You may specify that an external routine is actually implemented by a
C macro, avoiding the overhead of function calls.

§31.3 WHEN TO USE EXTERNAL SOFTWARE

815

* You may associate a function and a procedur a “getter” and a
“setter” — to a C structure gtruct”), so that a call to the function will
automatically access, and a call to the procedure modify, a specified
field of that structure.

* You may everinclude C code inlinein the body of an external routine,
so that the external routine is in this case “internal” in the sense that it
is specified within the Eiffel code, rather than elsewhere.

* You may use from Eiffel the routines oL (Dynamic Link Library).
You may specify the library and routines in your Eiffel text or, to make
the process fully dynamic, you may obtain or compute this information
at run time, just when you need to access the DLL elements.

* You may use from Eiffel all the facilities of a C++ classiember
functions, static members data members constructors, destructors.

* You may use thé.egacy++tool to produce &++ class wrapper an
Eiffel class, automatically generated, that makéighe facilities of a
C++ class (as listed above: member functions, data members and so on)
available to the rest of the Eiffel system.

» Going the other way around, you may use fBecil library to let
external software do everything with an Eiffel system that you can doin
Eiffel: create Eiffel objects, call on them any of the features of the
corresponding classes, and so on. In other words Cecil lets you treat an
Eiffel system as packagethat the rest of the world can use as a library.

 That library can be dynamic: you cgenerate a DLL from an Eiffel
system.

* You can also generateOM components(for Microsoft's Component
Object Model) and even XYZ components for execution on the XYZ
virtual machine.

The next sections describe these mechanisms in detail, after a brief review
of the proper role of foreign software elements in the development process.

31.3 WHEN TO USE EXTERNAL SOFTWARE

mMEETHON]
L i |

Why use external software? After all, Eiffel is a complete programming
language, and many systems do not need any external software.

Four cases, however, may require interfacing Eiffel classes with
software written in other languages:

1 «Reuse of older software elements.

2 *Use of libraries written in other languages.

3 ¢ Access to low-level platform-dependent properties.
4 « Use of Eiffel as a tool for re-engineering of software.

816 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.3

Both casesl and 2 result from the obvious observation that Eiffel
developments do not proceed alone in the software world, but must be
combined with other products. In cakean organization may want to reuse
previously developed elements as part of a new system. In Zaidee
system will use existing primitives providing facilities in a specialized area
— graphics, databases, user interfaces, expert systems...

In case3, you need to access primitives which depend on the hardware
or the operating system, available through external routines.

In cased, an older non-Eiffel system must be converted to more modern
software technology, but you want to proceed in stages. A possible strategy
is to start by isolating appropriate abstractions in the existing software, and
to build classes around them; the architecture of the resulting system will
be expressed in Eiffel, using the structural mechanisms described in this
book — classes, information hiding, genericity, inheritance, assertions —
but the actual computations will still be performed by external routine
calls. Here Eiffel serves as a packaging mechanism more than as a down-
to-details programming language. This effort may be a first step towards
more thorough re-engineering of the software, encompassing the internals
as well as the structure. This is not an all-or-nothing decision: you may
redo some of the components in Eiffel, for example the most advanced or
innovative ones, and leave some others in the original language if they are
stable and satisfactory.

The external facilities, detailed in the rest of this chapter, include:

* The possibility of specifying a routine &x«terna) to indicate that it is
written in another language and compiled separately; this notion will
occupy the major part of the discussion.

* As a special case of thexternalmechanism, the C-Eiffel Interface
Sublanguage, and the corresponding C++ facilities, enabling Eiffel
software to take advantage of special foreign facilities such as C’s
macros and C++'s constructors (next section).

» TheLegacy++tool for automatic Eiffel wrapping of C++ classes.
« Cecil, the C-Eiffel Call-In Library, allowing other languages to use

almost all of Eiffel's facilities. (The initial C is in the acronym for
historical reasons, but Cecil can be used from any other language.)

§31.4 REGISTERED LANGUAGES AND THE ROLE OF C 817

31.4 REGISTERED LANGUAGES AND THE ROLE OF C

Eiffel's external facilities depend in part — especially in the call-in case —
on the properties of external languages; short of covering every
programming language in existence, the specification cannot be
exhaustive. It includes explicit knowledge about a few languages, said to
be theregistered languagescurrently C, C++, Java, Fortran 95 and Eiffel
itself. Any Eiffel compiler must support an interface to the registered
languages, as described in this chapter.

Including Eiffel among the registered “foreign” languages is more a matter

of completeness than of obvious necessity. Although in principle this allows

you to integrate previously compiled Eiffel classes as if they were external

software,better way are usually available; a good Eiffel environment should

be able to treat such classes like other Eiffel classes and perform all the
relevant type checking. Another possible use of Eiffel as registered foreign
language is to integrate Eiffel classes compiled with another compiler,

although better interoperability mechanisms are desirable.

Among the registered languag€s,and its more recent varia@t++, play
a particular role for a number of technical, political and historical reasons:

« Since the mid-nineteen seventies, C has become the lowliagek
franca of computing, available on almost all platforms and known to a
growing majority of programmers.

» Almost all dominant operating systems are written in C sometimes with
more recent additions in C++.

» Most programs — from operating systems and database management
systems to graphical libraries, object request brokers and other
component-based development tools, development environments and
many others — provide an Application Programming Interface (API)
for C programs if they provide an API at all. When they offer more than
one API, the one for C is often the reference. So a carefully engineered
C binding is critical for many industrial developments.

» C compilers have benefited from wide use and several decades of
research on compilation technology, aimed at producing efficient code.

« Although C has undergone changes, source code portability is
reasonably good for programmers who follow some basic precautions.

» Many Eiffel implementations, such as ISE Eiffel, compile to C, taking
advantage of the preceding properties, in particular wide availability,
portability, and efficient code generation.

* A high-level language, Eiffel needs a good intermediary to access
facilities from the machine and the operating system. C, more effective
as atool for use bgrogramsthan by humans, plays that role quite well.
Libraries such as EiffelBase go to C when they occasionally must get
out of the high-level language framework to access the nuts and bolts of
the machine. C then plays for the Eiffel programmer exactly the same
role that assembly language plays for the C programmer.

818

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.5

For all these reasons a special set of facilities — almost a mini-lang - “THE CINTERACE
within Eiffel, the C-Eiffel InterfaceSublanguge — is available for thoseSUBLANGUGE..

, . 31.11, pae 832
programmers who need fine-tuned access to C mechanisms from |
The Sublanguage allows you for example to use C macros, “struc. ,
include files, C dynamic link libraries (DLLS), or even to incluidéne C
codein Eiffel routines.

Similar possibilities alsaexist for C++, giving Eiffel access to th¢- “THE C++
components of C++ classes — member functions, constructors, destriy LIERACE

i SUBLANGUWGE”,
— and complemented by the automatic Legacy++ wrapper. 31.12, pge 837

The role of these facilities is quite clear: to take the best advantage of C
software, while writingas little C as possibleEiffel programmers prefer
writing Eiffel. They know that the world isn't all Chanel perfumes and
candlelight dinners, and that once in a while one must tender to the more
mundane necessities of life. But then they expect the Eiffel compiler,
through the Eiffel-C interface, to do much of the grunt work, and limit their
use of C to the indispensable minimum.

31.5 BASICS OF EXTERNAL ROUTINES

We now start the study of the basic foreign affairs constiexcgrnal

As seen in theliscussiorof routines, theRoutine_bodyof anEffective — Routine_bodywas
routine, instead of using the more commiaternalform (beginning with g'fg‘ﬁfed 8.5, pae
N 218 The syntax is on

do oronce), may be of théexternalform, which indicates that a call to thpagez18 The syntax

routine is a call to some outside software component. for Externalappeared
on pageBl1g itis repro-
An Externalclause begins with the keyworkternal, followed by a duced below
Manifest_stringndicating the language in which the routine is written. It
may also contain aBxternal_namsubclause, beginning witllias, giving
the routine’s name in its language of origin (or, in the case of inline C
routines, the actual C text).

Here is an example of external routine

f close(filedesc INTEGER: INTEGER
-- Close file associated wifiledesc¢
-- record status in result.
require
descriptor_existsexists(associated_fil¢filedesg)
external
nen
ensure
zero_iff_ok
(Result= 0) = closed(associated_fil¢filedesg)

end

§31.5 BASICS OF EXTERNAL ROUTINES 819

As this example shows, an external routine may haveszonditiorand
a Postcondition

Functionf_closeperforms a certain action and returns a status report
<%= through its result. This technique is not normally employed by Eiffel
"ETmfunctions, which should instead record the status in an attribute; in

communicating with external software, however, there may be no better way.

You may use artxternal_namesubclause, beginning withlias, to
refer to an external routine through a name other than the one it has in the
foreign language. For example:

m file_statugfiledesc INTEGER: INTEGER
L external
| "c
alias
" fstat
end

The alias specifies that any call téle_statuswill cause a call to the C
function of name fstat There are two possible reasons for such a subclause:

» The native name may be legal in the foreign language but not in Eiffel,
as in thefile_statusexample where the function naméstat legal in C,
is illegal in Eiffel since it starts with an underscore.

* Even if the foreign name abides by Eiffel rules, it may violate the
naming conventions of your project.

In the absence of adiassubclause, the feature name passed to the exti— The lower name is

i the name all in upper
software is théower name of the feature. chse SeaTEXTUAL

So even if you give to an external feature a name following the letter casCONVENTIONS

conventions of another language, suchSatValuefor an external routine 213.pge 101
implemented in C, the name passed to C will dsvalue Even if it is
sErEThnn implemented as an external routine, an Eiffel feature should follow Eiffel

‘Wr'" conventions: call iset_valueand useailias "SetValué.

Here is the basic syntax Bkternalroutine bodies:

External routines
External2 external External_languagfExternal_nampe

External_languagé Unregistered_languade
Registered_language

Unregistered_languade Manifest_string

External_name? alias Manifest_string

820 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.5

The Externalclause is the mechanism that enables Eiffel to interface with
other environments and serve as a “component combinator” for software
reuse and particularly for taking advantage of legacy code.

By default the mechanism assumes that the external routine has the
same name as the Eiffel routine. If this is not the case, use an
External_nameof the form alias "ext_name’ The name appears as a
Manifest_string in quotes, not an identifier, because external languages
may have different naming conventions; for example an underscore may
begin a feature name in C but not in Eiffel, and some languages are case-
sensitive for identifiers whereas Eiffel is not.

Instead of calling a pre-existing foreign routine, it is possible to include
inline C or C++ code; thaliasclause will host that code, which can access
Eiffel objects through the arguments of the external routine.

The language name Ekternal _language can be an
Unregistered_language string in quotes such d<Cobol". Since the
content of the string is arbitrary, there is no guarantee that a particular Eiffel
environment will support the corresponding language interface. This is the
reason for the other varianRegistered_languagevery Eiffel compiler
must support the language nam&s’, "C++" and dll. Details of the
specific mechanisms for every sughgistered_languaggpear below.

Some of thevalidity rules below include a provision, unheard of in other
parts of the language specification, allowing Eiffel language processing
tools to rely onnon-Eiffel toolsto enforce some conditions. A typical
example is a rule that requires an external name to denote a suitable foreign
function; often, this can only be ascertained by a compiler for the foreign
language. Such rules should be part of the specification, but we can’t
impose their enforcement on an Eiffel compiler without asking it also to
become a compiler of C, C++ etc.; hence this special tolerance.

The generatemantic®f executing external calls appeared as part of the
general semantics of calls. The semantic rules of the present discussion
address specific cases, in particular inline C and C++.

Although you may intermix routines of thiexternalandinternalforms,
it is common practice to separate the two categories, grouping external
prron] routines into their owr-eature_clausdn some cases you will even find
“wrapper” classes consisting mostly or entirely of external routines,
encapsulating a set of external facilities into an abstraction usable directly
by the rest of the Eiffel software.

§31.6 EXECUTING AN EXTERNAL CALL 821

31.6 EXECUTING AN EXTERNAL CALL

Foy

Before exploring the varieties of foreign interfacing mechanisms, we must
understand the precise semantics of external calls, previewed in the general
discussion of call semantics. Only three aspects differ from the semantics
of Internalroutines:

1 « Actual-formal argument association.

2 «Value to be returned, if the routine is a function.

3 « Execution of th&koutine_body

The next section will cover itentsand2. Item 3, the simplest, was handleZ “PRECISE CALL

by the generalliscussion of call semantics. Quoting: --- CHECK ---- SEMANTICS”, 23.17,
page 643

If dfis an external routine, the effect of the call is to execute that
routine on the actual arguments given, if any, according to the
rules of the language in which it is written.

Heredf is the version of to be applied to the given target, deduced from
the rules of call semantics (dynamic binding).

.. ~ Thenotionof current
In addition to its official arguments, an Eiffel routine has access tcOIDject was defined on

curr entobject—the target of the current call. This important property dpagess1
not necessarily hold for a foreign routine:

« If the foreign routine was written independently of Eiffel, it does not use
the current object. Accordingly, the call, as specified by the above
semantics, will not pass the current object. A typical case is a call to a
primitive of a pre-existing graphics or database package.

* Another case is that of foreign routines specifically written for the neZ- *Curr entobjectand
of an Eiffel application. Such routines may need access to the curoutine”. page 640
object; you must then explicitly pa€sirrentas one of the arguments

31.7 ARGUMENT AND RESULT TRANSMISSION

The semantics of passing arguments, and of returning the result for a
function, raises the problem of attachment between Eiffel values and
foreign entities.

For internal routines, theemantiaule was simple, being deduced (lik'= “PrRECISE cALL
the semantics ofssignmeninstructions) from the semantics of the direSEM/é\ZlngT%S"| 23.17,
. . . page e seman-
reattachment mechanlsm._ at call time, each formal argument becy ¢ ot girect reattach-
attached to the corresponding actual; at return time, the result of a funment was ir22.7.page

is the final value attached to the functioRissultentity. 283

The semantic specification of a direct reattachment allowed flexible
combinations of expanded and reference types in the source and target.
Here is the table which gave the effect in all four possible cases:

822

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.7

.

SOURCE- Reference Expanded - Thistféble Originagy
TARGET! appeared on pagess

Reference [1] Reference | [3] Clone
reattachment

Expanded [2] Copy (fails if source | [4] Copy
void)

This specification takes both types — source and target — into account,
particularly in cases 2 and 3 where one is expanded and the other is not.

For external calls, however, we cannot afford such semantic flexibility,
since the target is the formal argument, and we have no way of knowing
how the foreign routine has declared it. The semantic definition must rely
on properties of the actual argument alone.

To de_part as little as possib!e from the rules for internal routines_;,THiy‘a|50 applies to
convention for external routines, follow the semantics of dirCurrentifitisoneofthe
reattachment, interpreted as if each formal argument were declarec2clud argumentswith

. the semantics @ur-
exactly the same type as the corresponding actual. rent, defined by cas,

.. . age644, what is
This implies that only cases 1 and 4 of the above table make sgagsﬁsareference to

either the actual argument is of a reference type, in which case the fothe current object if the

routine will receive a reference, or it is of an expanded type, in which @Qgg’nség%gt'ﬁ:rsv\'nssgon

the foreign routine will receive a copy of the attached object. the current object itself
For the result of a function, the rule is similar: depending on the t

declared for the function’s result, the Eiffel side will expect the fore

routine to return a reference or an object.

Clearly, using foreign routines which will handle Eiffel values requires
care. You must trust that the routine can manipulate the values it obtains
from the Eiffel side, and, if itis a function, produces results which conform
to what you expect. So the types of arguments and result must be common
to Eiffel and the external language.

Forbasictypes, this property depends on both the foreign language - The basic types

its implementation. (chapter30) are
BOOLEAN CHARAC-

For other types, no major problem will arise for a foreign routine whiTER INTEGER _
given an object or reference, just needs to do a “store and forward":Eﬁég;ﬁgfﬁﬁggar"
on the value to other routines, possibly keeping a copy in a variable
suitable type. To do anything more with an Eiffel object, the routine must
access its internal structure; it may avoid relying on implementation-
dependent properties of object representation by using one of the following

two portable mechanisms:

* The features of claddNTERNALfrom EiffelBase provide access to the
internal properties of objects (such as the various field values) with an
implementation-independent interface.

§31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE 823

» The Cecil library, described at the end of this chapter, allows foreign
languages to access Eiffel features.

31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE

In some cases a foreign routine may need to call Eiffel routines, or to access
fields of Eiffel objects.

Foreign access to Eiffel routines may be necessary in particular for the

implementation of so-calledallback mechanisms as they appear in such
wesE greas as user interfaces, graphics and databases. Callback enables routines

to “plant” the address of one or more routines into another routiae
initialization time. Later, at various places in its own algorithmwill call
the planted routines. Because planting is dynamic, the textdoles not
show what actual routines will be called at the corresponding steps; it only
contains “holes” where different applications may plant different routines.
Often, r is a high-level loop, known as amvent loop which will
repeatedly execute ritual actions (such as reading user input or updating the
screen) through the planted routines.

In this description, you will have recognized the notionitgfator ~ On how to imple-
discussed in the presentation of inheritance and deferred features; iramn‘?;‘:nairfél‘z"i;ft;?g';é“ec“'
the Eiffel techniques introduced for iterators, relying on deferred routg 15 _pge 271
and dynamic binding, offer simpler, safer and more elegant alternatives 1o
call-back. But you may need to use an existing call-back mechanism
implemented in another language, with individual planted operations to be
provided by Eiffel features. So you need the ability to pass to an external

routine the address of an Eiffel feature.

The supporting construct is theddressform of Actual agument. An — The syntax foActu-
Address introduced as part of the syntax factualsin the discussion of]>appeared on page
calls, is simply an actual argument of the form o

$ feature_or_parenthesized_expression

Here feature_or_parenthesized _expressaan be the name of an Eiffel
feature, a parenthesized expression sudfaasb), as well aLurrentor,

in a function,Result In all cases what is passed is an address. For a feature
this enables the foreign software to call the feature; for an expression it
gives it access to a location containing the value of the expression. The
latter is useful for a foreign routine that expects not a value but an address
containing that value.

824 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.8

This Addressform of Actual argument is only useful for passing su - On dynamic bind-

addresses to external routinesternal (Eiffel) routines do not need "9 se&23.12and
. . e . . 23.13 starting on page
Ernon| - since thedynamic binding mechanism provides a better way to tellgzq

supplier what feature it should call at a certain stage of the suppliers
execution: you just pass the supplier an entity attached to a certain object;
the dynamic type of that object, which may vary from one execution to the
next, determines the applicable routine versions.

Here is the syntax for alddressargument:

Address2 "$' Address_mark
Address_markl Variable

Feature_namis the most common case.

As to the validity constraint, we saw it as part of tAegumentrule, — Page626
which makes$ f valid as actual argument to a call if and only,ifvhen an
Extended_feature_namis the final name of a feature of the class.

An Addressargument, as noted, describes the address of a routine or
expression. It is subject to a constraint:

Address rule VZAR
T An Addressis valid if and only if its Address_markis of a

reference type.

An expanded type would not make sense here as its values have copy rather
than reference semantics.

How do we describe an “address” in Eiffel? A basic type is available for
that purposePOINTER described by a Kernel Library class. Hence the
type rule:

Address Type rule
An argument of thé\ddressform is of typePOINTER

As a consequence, the declaration for the corresponding formal argument
in the receiving routine must be of the form

l%

‘ ir2 (...; from_eiffel POINTER...)is ...

or the corresponding declaration in a foreign language.

§31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE

825

T

Note that this routine can indeed belaternalEiffel routine as well as arthe hypothetical con-
external one. Although you might expe&tidressactual arguments to bstraint ﬂggtd\'}gmo
permitted only in calls to external routines, thereagsuchconstraint: it ru|eo]9pagﬁwouﬁ;
may be useful for amternalroutineirl to pass the address of a routineequire the called rou-

to another internal routinie2, so thatir2 may itself pass to an externaltinedfto be extermal

routineer. Were this not permittedr,l would need to cakr directly, which
may not be the desired scheme.

We must prevenir2 from performing any operation on its argument
other than passing it along to another routine. This simply follows from the
properties of clasBOINTER which has no exported features except for the
universal, harmless featurespy, clone equaland consorts fromANY. So
all you can do on an argument of tyP®©INTER— other than copying it,
cloning it, comparing for equality and so on —is to pass it on to someone else.

Address semantics

The value of anAddressexpression is &20OINTER enabling
foreign software to access the associatethble

The manipulations that the foreign software can perform on the

corresponding pointer depend on the foreign programming language. It is
the implementation’s responsibility to ensure that such manipulations do
not violate Eiffel semantic properties.

--- REWRITE (MOSTLY REMOVE) THE REST OF THIS SECTION

Now the semantics of afddressargument f being passed to a routine
r. We must distinguish between the possible casds for

1 «If fisanExtended_feature_nan(as noted, the most common case), the
corresponding feature have a versiapplicable to the current object,
taking into account possible renaming and redefinitédis the feature
that a callx.f (...) would execute, according to the rules of dynamic
binding, whenx is attached to an object of the current type. The value
passed to is the address aff. This applies to both routines and variable
attributes; for an attribute, the call will pass the address of the field
corresponding talf in the current object. Clearly, this is useful only if
the foreign language can deal with addresses of fields and routines.

2 «If fis a constant attribute orRarenthesizedxpression, what is passed
to the routine is the address of a memory location containing its value.

3 «If fis Current, the value passed is the address of the current object.

826 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.8

4 «If fis Result the value passed is the address used to store the result to be
returned by the enclosing function.

In casel, wheref denotes a feature, foreign software elements will be able
to call that feature. Such calls require one extra argument, appearing at the
first position and corresponding to the target of the call. Assume

‘ some_routing¢al: A; bl B)is...

k

Calls tosome_routinén Eiffel texts may be qualified or unqualified:

target.some_routing, y)
some_routingx, Y)

Assume now that a call to an external routiee makes the address of
some_routin@vailable to a foreign language:

‘ ext(...,$ some_routine..)

Let sr be the formal argument fasome_routindn the foreign routine
corresponding text The foreign routine will calsome_routinavith one
extra actual argument, appearing at the first position:

These callsterappear
sr (target x, y) . here in Eiffel syntaybut
sr (current_objectx, y) the convention for calls
in the foreign language
may be different

The extra argument denotes the call's target, which in Eiffel appeaicu

before the dot (as in the casetafgef or not at all (as witkcurrent_objeck

It denotes an object or object reference.

The above calls ter from a foreign language are examples of what what
the beginning of this chapter defined as tadl-in case: exercising Eiffel
mechanisms from the outside. To take this scheme to its full realization the
foreign software needs:

« A way to manipulate Eiffel objects safely (protecting them, in
particular, from the Eiffel garbage collector).

* A clear correspondence between the types of Eiffel and those of the
foreign language.

* An adequate calling mechanism for features.

§31.9 SPECIAL INTERFACE SUBLANGUAGES 827

The Cecil library, describethterin this chapter, provides all of this. Bu- “THE CECIL
we are not ready yet to move on to call-in facilities, since we are%ﬂx
finished with call-out. In addition to the language-independent callPe=>
constructs just studied, Eiffel's external interface offers special suppol

C and C++ — languages important enough to deserve mini-sublangt... -

of their own in the Eiffel syntax fdexternalfeatures.

31.9 SPECIAL INTERFACE SUBLANGUAGES

~ Thissyntaxappeared

We saw that the syntax for declaring a routine Bsternalinvolves a¢ . o page19

language name:

External languages
External2 external External_languagfExternal_nampe

External_languagé Unregistered languag®egistered _languag

D

Unregistered_languade Manifest_string

External_name? alias Manifest_string

The External_languageanay be anUnregistered_language- a plain
Manifest_stringdescribing an arbitrary language; this is useful only if that
language is known to your specific Eiffel compiler, or uses default
argument passing conventions that will work with Eiffel. But it may also be
aRegistered_languageovering DLL routines, which may come from any
language, and the four languages guaranteed to be handled properly:

Registered languages
Registered_languagé C_external C++_external

DLL_external

IL_external refers to the Intermediate Language of the Microsoft
.NET framework.

The cases of C_externglC++_externabndDLL_externalgive rise to
special sublanguages with a host of detailed possibilities, reviewed in the
next three sections. Note that all the C possibilities are also available for
C++, so in practice the third sublanguage is a superset of the second.

31.10 GENERAL SUBLANGUAGE MECHANISMS

The specific sublanguages &- externglC++_externaAndDLL_external
— offer common techniques for specifying certain elements:

828

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.10

* Routine signatures.

* Files needed to use the external software, for example C include files or
the files containing a DLL.

» Types used to establish a precise correspondence between the type
systems of Eiffel and those of other languages (for example, between an
Eiffel INTEGERand a dnt).

Before going into the specific sublanguages, let us review these shared
facilities in turn.

Specifying an external routine signature

Since external languages have their own type systems, you may need to
specify that a certain routine expects certain types for its arguments. In

languages such as C and C++ that support “casts” (forced conversions),
these types will be used for casting the arguments.

To specify types in the relevant sublanguages you may include an
External_signaturen the string specifying the language, as in the C
external function declaration

your_externala, b: INTEGER: INTEGER
external
"C signature (int, int)"
end

TheExternal_signaturpart in this example is

\ (int, EIF_INTEGER_3p

indicating that the associated C function expects two arguments of t- “Controlling the
typeint (integer). The names listed must be types of the external |anglm&6
such asint for a C routine.EIF_INTEGER_32is a type used for the ’
correspondence between Eiffel and C types, as explaineiargection.

It doesn’t matter thaint and EIF_INTEGER_32are not valid Eiffel type
names: remember that aBxternal_signaturesuch as the above, like
everything else in the sublanguages under discussion, appears in a string.

As you will have noted, theExternal signatureonly lists types for
arguments; for a function, you cannot specify a type, because the compiler
will make sure that the function’s result is converted back to the result type
specified for the Eiffel routine. (In this respect the construct name
External_signaturand the keywordignatureare a little misleading, since
elsewhere in the description of Eiffel the word “signature” covers both
result and argument types, but it still seems to be the best name here.)

§31.10 GENERAL SUBLANGUAGE MECHANISMS 829

The syntax oExternal_signaturis straightforward:

I ETHNTAL

(Al ininy

External signatures
External_signaturd signature[External_argument_types
[: External_typg

External_argument_type "(" External_type_list)"
External_type_list® {External_type'," ...}*

External_type2 Identifier

TheExternal_signaturdf at all present, must cover all arguments:

External Signature rule VZES
An External_signatur@ the declaration of an externadutiner
is valid if and only if it satisfies the following conditions:

1 «Its External_type_listontains the same number of elements
asr has formal arguments.

2 *The final optional component External_typ# if present if
and only ifr is afunction.

A languageprocessingool may delegate enforcement of these
requirements to non-Eiffel tools on the choptaiform.

The rule does not prescribe any particular relationship between- On this correspon-
argument and result types declared for the Eiffel routine and the n(dggﬁfrg;htrr]‘g %gag‘f*:f
appearing in th&xternal_type_lisand the finaExternal_typéf any, since c type corespon-
theprecisecorrespondence depends on foreign language properties bedence”. pae 836

the scope of Eiffel rules.

The specification of a non-external routine never includes C-style
empty parenthesization: for a declaration or call of a routine without
arguments you write, notr (). The syntax of=xternal _argument_types
however, permit§) for compatibility with other languages’ conventions.

The last part of the rule allows Eiffel tools to rely on non-Eiffel tools if
it is not possible, from within Eiffel, to check the properties of external
routines. This provision also applies to several of the following rules.

830 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.10

External signature semantics

An External_signaturspecifies that the associated external routine:

e Expects arguments of number and types as given by the
External_argument_typégresent, and no arguments otherwise.

e Returns a result of thexternal_typeppearing after the colon
if present, and otherwise no result.

Specifying external files

To use an external routine, you may need to provide one or more file names:

« A C or C++ function may rely on some “include files”; for example, the
type EIF_INTEGER_32used byyour_exampleabove must have a C
definition, to which the C function must have access. It will find itin an
include file, which you may specify from the Eiffel side.

 To use an external routine from a DLL, you must indicate the file that
contains the DLL.

An External_file_usgart, starting withuse enables you to say which files
you need. Here is its application to the preceding example, assuming you
want functionyour_externato have access to two C include files:

m your_externala, b: INTEGER: INTEGER
o external [
C

signature (int, int)

use<stdio.h>, "/pathuserher_include h"

"

end

This example and several that follow use a multi-Nfebatim_stringwritten — “MANIEEST
between an openin and a closings" . We could also use a plain string STRINGS”,29.8,page
without this convention, but then the internal double quote signs the 784

specification of the path name, would have to be writt€nalso, interrupted

lines would need to finish with%, and continuation lines to start witi®a

5

Here is the syntax dExternal_file_use

Ty External file use
External_file_use® useExternal_file_list

External_file_list® {External_file"," ...}*

§31.10 GENERAL SUBLANGUAGE MECHANISMS 831

ALY

External_fle2 External_user fil¢External _system filg

External_user_file '" ' Simple_string'" '

1%

External_system_fil& "<"Simple_string'>"

As the syntax indicates, you may specify as many external files as you like,
preceded buseand separated by commas. You may specify two kinds of files:

« “System” files, used only in a C context, appear between angle brackets
<> and refer to specific locations in the C library installation.

» The name of a “user” file appears between double quotes, #gati/
userher_includeh”, and will be passed on literally to the operating
system. Do not forget, when using double quotes, that this is all part of
an Eiffel Manifest_string you must either code them as' or, more
conveniently, write the string as &erbatim_string the first line
preceded by[and the last line followed by .

An External_filerefers to file and path names. Different operating systems have
different conventions to denote paths; to avoid worrying about these differences,
the examples of this chapter assume the Unix/Linux style using forward slash
characters, as ifpathiusrffile.c. This convention is also understood by most C
compilers on Windows, even though the native Windows style uses backslash
characters, as i\path\usr\filec. VMS has its own notation.

The difference between the two forms @xternal file is that a
C_user_file of the form "path_namg, denotes a file through its exact
location in the file system, whereas @ system_file of the form
"<file_name" is relative to the location of standard include files — such
asstdioh for standard C input and output — in the C installation.

In either case, any files listed must exist and have the expected contents:
External File rule VZEF

An External fileis valid if and only if itsSimple_stringsatisfies
the following conditions:

1 «When interpreted as a file name according to the conventions
of the underlyingplatform, it denotes a file.

2 «The file is accessible for reading.
3« Thefile’s content satisfies the rules of the applicable foreign language.

A languageprocessingool may delegate enforcement of these
conditions to non-Eiffel tools on the chogaatform.

832 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.11

Condition3 means for example that if you pass an include @ila C function

the content must be C code suitable for inclusion by a C “include” directive.
Such a requirement may be beyond the competence of an Eiffel compiler,
hence the final qualification enabling Eiffel tools to rely, for example, on
compilation errors produced by a C compiler.

The “conventions of the underlying platforms” cited in conditifn
govern the rules on file names (in particular the interpretation of path
delimiters such as/ and \ on Unix and Windows) and, for an
External_system_fil@mame of the formxsome_fileh>, the places in the
file system wheresome_filehis to be found.

External file semantics

An External_file_usén an externatoutine declaration specifie
that foreign language tools, to process the routine (for example to
compile its original code), require access to the listed files.

31.11 THE CINTERFACE SUBLANGUAGE

The first special sublanguage that we stu@yexterngl addresses the
needs of applications developers who need sophisticated access to C
mechanisms (also provided for C++). You can of course limit yourself to
the mechanisms described so far, simply declaring an external routine as
external "C". But to exert more control on how your Eiffel software uses

C mechanisms, you may use a whole slate of special C interface facilities:

« You can specify that a certain external routine is implemented on the C
side as anacro, saving the overhead of function calls.

* You can use aixternal_signatureas studied above, to force a certain
type signature (@rototypé) for the arguments and result of the C
function in the Eiffel-generated C code.

« You can request specifinclude filesfor certain C functions, using the
External_file_useonstruct just studied.

* You can directly access C structures (“structs”) and their components.

* You can even include the C code of an external routine in line, removing
the need to maintain two separate source files, an Eiffel class file and a
C compilation unit (file).

The next paragraphs describe these possibilities. They are complemented
by the C++-specific facilities of the following section.

§31.11 THE C INTERFACE SUBLANGUAGE

833

Syntax specification

Here is the syntax specification for the C interface sublanguage. First we

remind ourselves of the context:

External 2 external

External_languagé Unregistered_languade
Registered_language

Unregistered_language Manifest_string

External_name? alias Manifest_string

Registered_language ...|C_external ... Others...

External languages

External_languaggexternal_namg

Now theC_externakase oRegistered_language

I ETHNTAL

C external2 " " 'C
Tinline]
[External_signatuie
[External_file_usk

C externals

~ This appeared first
on page819

834 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.11

The C_externalmechanism makes it possible, from Eiffel, to use the
mechanisms of C. The syntax covers two basic schemes:

* You may rely on an existing C function. You will not, in this case, use
inline. If the C function’s name is different from the lower name of the
Eiffel routine, specify it in thalias (External_namyeclause; otherwise
you may just omit that clause.

* You may also write C codwithin the Eiffel routine, putting that code
in thealias clause and specifyirigline.

In the second case the C code can directly manipulate the routine’s formal
arguments and, through them, Eiffel objects. The primary application
(rather than writing complex processing in C code in an Eiffel class, which
would make little sense) is to provide access to existing C libraries without
having to write and maintain any new C files even if some “glue code” is
necessary, for example to perform type adaptations. Such code, which
should remain short and simple, will be directly included and maintained
in the Eiffel classes providing the interface to the legacy code.

Thealias part is avianifest_stringof one of the two available forms:

« It may begin and end with a double qudtethen any double quotr. seeMANIFEST
character appearing in it must be preceded by a percent sidgn; as?TleGS”!ZQ&Daqe
line separations are marked by the special code for “new f#tid", &4

« If the text extends over more than one line, it is more convenient to use
a Verbatim_stringa sequence of lines to be taken exactly as they are,
preceded by[at the end of a line and followed BY at the beginning
of a line.

In this Manifest_string you may refer to any formal argumeatof the
external routine through the notatioba (a dollar sign immediately
followed by the name of the argument). Foyou may use either upper or
lower case, lower being the recommended style as usual.

We now explore these capabilities, and look further into how you can
match Eiffel types with their C counterparts.

Specifying C code inline

In all the preceding mechanisms, the C code resides outside of the Eiffel
text, in its own separate files. Although this separation of elements written
in different languages is usually appropriate, you may not like the idea of
having to look after different places, and find it easier to manage your
software by keeping everything at the same place. It is indeed possible to
include C code within the declaration of an external routine. This way you
don’t need to include any external C file in your system.

[ETHoD] This possibility is appropriate mostly for short C routines concentrated
in “wrapper” classes providing Eiffel interfaces to C libraries.

§31.11 THE C INTERFACE SUBLANGUAGE 835

A C_speciapart may specifynline, optionally followed by the usual
specifications ba C signature and include files. This indicates that the
actual C text appears in tldias clause External_namk which is required
in this case. Here is an example including both an explicit signature and an
include file (which might contain the declaration of a C variale):

Li] an_inline_functior(xy: INTEGER: INTEGER o e
= external [sents Cnot Eiffel
I c
inline

use<stdio. h>, /pathuserher_includeh

if ($x > cvar) {
some_c_function ($y, cvar++);

TheManifest_strin@ppearing in thaliasclause is C code meantto be passed
on exactly as it is (except for the replacement of elements in quotes, as
explained next) to a C compiler. The most convenient way to express it is to
use, as here,\éerbatim_stringso that all the lines between the inittaland

the final]" are plain C text, with no need for special codes to represent
characters such as quotes, or to mark the beginning and end of a line.

is the convention allowing the C code to access entities from the enclosing
Eiffel text. Any occurrence in thalias part of a substring of the form
$eiffel_entity whereeiffel_entityis a formal argument of the routine or an
attribute of the enclosing class, denotes the corresponding Eiffel entity,
which the Eiffel compiler will replace by the appropriate access code for
the benefit of the C compile®x and3y in the above extract are examples
of this facility; they denote the functiorksandy arguments.

The only exception to the verbatim interpretation of the string as C code

This use of thes operator is consistent with theddressform of aguments, ~ "PASSING THE

serving to pass Eiffel features to external languages. ADDRESS OF AN
EIFFEL FEATURE”,

31.8, pme 823
Note thateiffel_entitymust follow the$ sign with no intervening space

Any occurrence in the C text of &isign not immediately followed by an
Eiffel entity is considered C text to be taken verbatim.

836 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.11
Here is the validity rule for inline C functions:
C external rule vzZCccC
WLILITY A C_externafor the declaration of an externadutiner is valid

if and only if it satisfies the following conditions:

1+ At least one of the optionahline and External_signature
components is present.

2 «If the inline part is present, the external routine includes jan
External_nameomponent, of the forrlias C_text

3 «If case2 applies, then for any occurrence @ textof an
Identifieraimmediately preceded by a dollar sigthe lower
name ofa is the lower name of a formal argument.of

C Inline semantics

In an externatoutineer of theinline form, anExternal_namef
the formalias C_textdenotes the algorithm defined, according to
the semantics of the C language, by a C function that has:

» As its signature, theignature specified bs.

» Asitsbody,C_textafter replacement of every occurrencéaf
where thelower name ofa is the lower name of one of the
formal arguments afr, by a.

Controlling the Eiffel-C type correspondence

In passing arguments to C functions, and getting results back into Eiffel
entities, you need to know exactly how the types will match. Eiffel provides
(through the C library of the supporting environments) a set of predefined
C types used, by default, to represent the types of Eiffel values passed to
and from external C routines. If you are writing external C functions
specifically for use in connection with Eiffel software, you should use these
types (obtained from a standard include file provided with the Eiffel
delivery) to declare the functions’ arguments and results.:

Eiffel type Corresponding C type with declaration Eiffel to C
BOOLEAN typedefunsignedche EIF._ BOOLEAN default type
CHARACTER typedefunsigned chi EIF_ CHARACTER correspondence
INTEGER_8 typedefunsigned chi: EIF_INTEGER_8

INTEGER_16 (16-bitinteger) EIF_INTEGER_16

INTEGER (32-bitinteger) EIF_INTEGER_32

§31.12 THE C++ INTERFACE SUBLANGUAGE 837

INTEGER_64 (64-bit integer) EIF_INTEGER_64
REAL_32 (32-bit float) EIF_REAL_32
REAL (64-bit integer) EIF_REAL
POINTER typedef chaf] EIF_POINTER
Any reference type | typedef chaf] EIF_REFERENCE

The C type definitions given in parentheses are platform-dependent. For
example “32-bit integer” will beéypedef longon many platforms, but not all.

This will not work, however, if you are using pre-existing C functions,
written without knowledge of Eiffel. In such a case the declarations will not
match those generated by the Eiffel compiler using the correspondence
above, and you may get C compilation errors. Fortunately, the type
checking of C is more bark than bite. You can easily pacify it by “casting”
the type of arguments and results, that is to say, specifying explicit types.

It would be unpleasant to have to do the casting manually on the C code
(if only because we are, as noted, trying through all the facilities described
here to limit the amount of C programming to be done). The
External_signaturfacility is here to help. It allows you to specify the exact
set of casting types for the arguments and result, so that the C compiler will
find what it expects. Here is a typical use:

your_externala, b: INTEGER: INTEGER
external
"C (int, int): EIF_INTEGER_32
end

This example assumes that the C function requires arguments of the C type
int (integer) and returns a result also of that type, which must be cast into
anEIF_INTEGER_32

31.12 THE C++ INTERFACE SUBLANGUAGE

In addition to the mechanisms available to all external routines, all the C-

specific techniques of the previous sections are available for use with C++
code. So is the Cecil library described in a later section and allowing

external software to call Eiffel. In addition, the C++ interface sublanguage

offers a number of specific mechanisms:

* You can create instances of C++ classes from Eiffel, using the C++
“constructor” of your choice.

* You can apply to these objects all the corresponding operations from the
C++ class: executing functions (“methods”), accessing data members,
executing destructors.

838 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.12

* You can use théegacy++tool to produce an Eiffel “wrapper class”
encapsulating all the features of a C++ class, so that the result will look
to the rest of the Eiffel software as if it had been written in Eiffel.

The syntax specification

The C++-specific mechanisms come under the consttuet external
one of the variants dRegistered_languagitself one of the possibilities for
External_language

METEIENN C++ externals
C++_external® '" ' C++

inline
[External_signatuile
[External_file_use

As in the C case, you may directly write C++ code which can access the
external routine’s argument and hence Eiffel objects. Such code can,
among other operations, create and delete C++ objects using C++
constructors and destructors.

Unlike in the C case, this inline facility is thenly possibility: you
cannot rely on an existing function. The reason is that C++ functions — if
mumsE not “static” — require a target object, like Eiffel routines. By directly
writing appropriate inline C++ code, you will take care of providing the
target object whenever required.

Conditions on C++ features

C++ external rule VZC+
(LG A C++_externapart for the declaration of an extermaltiner is
valid if and only if it satisfies the following conditions:

1 - The external routine includes &mnternal_nameomponent, of
the formalias C++_text

2 «For any occurrence iG++_textof anldentifieraimmediately
preceded by a dollar sigh the lower name od is the lower
name of a formal argument of

§31.12 THE C++ INTERFACE SUBLANGUAGE 839

Processing C++ features

A C++_externglif present, indicates one of the following, all illustrated by
examples in the next sections:

« If the special feature’s declaration staftsiction, it indicates that the
Eiffel feature will call a C++member function(also known as a
“method”) from the class listed. The function’s name is by default the
same as the name of the Eiffel feature; as usual, you can specify a
different name through thadias clause of the external declaration.

« If the declaration starts witlstatic, it indicates a call to a C++
static function

« If the declaration starts witmew, it indicates a call to one of the
constructoran the C++ class, which will create a new instance of that
class and apply to it the corresponding constructor function.

« |f the declaration starts witbelete it indicates a call to @estructor
from the C++ class. In this case the Eiffel class will inherit from
MEMORYand redefine thdisposeprocedure to execute the destructor
operations whenever the Eiffel objects are garbage-collected.

« If the declaration starts withata_membert it indicates access todata
membeir(attribute in Eiffel terminology) from the C++ class.

« If it starts withstructure, it provides the same facilities & structure

The techniques for specifyingignatures, external files and type . “Specifying an

correspondence are the same as for C. external outine signa-
ture”, page 828

“Specifying eternal
files”, page830Q “Con-
trolling the Eifel-C

. - typecorrespondence”,
C++ Inline semantics page 836

In an external routine er of the C++ external form, an

External_namef the formalias C++_textdenotes the algorithm
defined, according to the semantics of the C++ language, by a
C++ function that has:

* As its signature, theignature specified bs.

* Asits body,C++_textafter replacement of every occurrence of
$a, where thdower name ofa is the lower name of one of the
formal arguments dér, by a.

840 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 831.12

Extra argument

For a non-static C++ member function or destructor, the corresponding
Eiffel feature should include an extra argument of tyff@INTER at the

first position. This argument represents the C++ object to which the
function will be applied.

For example, a C++ function

o ‘void add(int new_in};

] should have the Eiffel counterpart

cpp_addobj: POINTER new_int INTEGER
-- Encapsulation of member functiadd
external [

"C++
member IntArray
signature (IntArray [] int)
useintarray.h

I

end

This scheme, however, is often inconvenient because it forces the Eiffel
side to work on objects in a non-object-oriented way. (The O-O way treats
the current object, within a class, as implicit.) A better approach, used by
Legacy++, is to make a feature suchamp_addsecret, and to export a
feature whose signature corresponds to that of the original C++ function,
with no extra object argument; that feature will use a secret attribute
object_ptrto access the object. In the example this will give

add(new_int INTEGER
-- Encapsulation of member functiadd
do
cpp_addobject_ptr new_inj
end

whereobject_ptris a secret attribute of typ@OINTER initialized by the
creation procedures of the class. To the Eiffel develoged,looks like a
normal object-oriented feature, which takes only the expected argument.
Further examples appear below.

There is no need for an extra argument in the case of static member
functions, constructors and data members.

The next section will illustrate the various available possibilities by
showing the code generated, in each case, by the Legacy++ tool.

831.13 WRAPPING C++ CLASSES: LEGACY++ 841

31.13 WRAPPING C++ CLASSES: LEGACY ++

Legacy++ is a tool, not a part of the language specification. Its practical
role is, however, sufficiently important to justify a special section in this

chapter. This will also provide us with a set of examples covering all the
special C++ encapsulation possibilities.

The role of Legacy++

Often you will want to provide an Eiffel encapsulationalf the facilities

— member functions, static functions, constructors, destructors, data
members — of a C++ class. This means producing an Eiffel class that will
provide an Eiffel feature for each one of these C++ facilities, using external
declarations based on the mechanisms listed in the preceding section.

Rather than writing these external declarations and the class structure
manually, you can use Legacy++ to produce the Eiffel class automatically
from the C++ class.

Calling Legacy++

Legacy++ is called with an argument denotinghdile that must contain
C++ code: one or more classes and structure declarations. It will translate
these declarations into Eiffel wrapper classes.

The following options are available:

» —E: apply the C preprocessor to the file, so that it will procésslude
#define #ifdef and other preprocessor directives. This is the default.

* —NE: do not apply the C preprocessor to the file.

» —p directories usedirectoriesas include path.

» -—c compiler. usecompileras the C++ compiler.

» —Q: treat the C++ code as being intended for the GNU C++ compiler.

Result of applying Legacy++

Running Legacy++ on a C++ file will produce the corresponding Eiffel
classes. Legacy++ processes not only C++ classes but also C++ “structs”;
in both cases it will generate an Eiffel class. Among its properties:

» Legacy++ knows aboulefault specifierspublic for classesprivate
for structs.

* Legacy++; will generate Eiffel features farember functiontatic or not).

842 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.13

« It will also handle anyconstructorsand destructorsgiven in the C++
code, yielding the corresponding Eiffel creation procedures. If there is
no constructor, it will produce a creation procedure with no arguments
and an empty body.

e For any non-static member function or destructor, Legacy++ will
generate aecret featurevith an extra argument representing the object,
as explained in the preceding section. It will also produce a public
feature with the same number of arguments as the C++ function, relying
on a call to the secret feature, as illustratedddd andcpp_addabove.

* The char Otype is translated int& TRING Pointer types, as well as
reference types corresponding to classes and types that Legacy++ has
processed, will be translated inROINTER Other types will yield the
type UNRESOLVED TYPE

Legacy++ limitations

It is up to you to supply Eiffel equivalents of all the needed types. If
Legacy++ encounters the name of a C++ class or type that is does not know
— itis neither a predefined type nor a previously translated class — it will
use the Eiffel type nameNRESOLVED_TYPHf you do not change that
type in the generated class, the Eiffel compiler will report an error.

Legacy++ does not handle inline function declarations and makes no effort
to understand the C++ inheritance structure. More generally, given the
differences in the semantic models of C++ and Eiffel, Legacy++ can only
perform the basic Eiffel wrapping of a C++ class, rather than a full
translation. You should always inspect the result and be prepared to adapt
it manually. Legacy++’s contribution is to take care of the bulk of the work,

in particular the tedious and repetitive parts. The final details are left to the
Eiffel software developer.

Legacy++ example

Consider the following C++ class, which has an example of every kind of
facility that one may wish to access from the Eiffel side:

831.13 WRAPPING C++ CLASSES: LEGACY++

843

class IntArray

{

public:
IntArray (int size);
~IntArray ();
void output ();
void add (int new_int);
static charfdtype ();

protected:
int O _integers;

h

I%

note
description

"Eiffel encapsulation of C++ class IntArray

class
INTARRAY
inherit
MEMORY
redefine
dispose
end

create
make

feature -- Initialization
make(size INTEGER

-- Create Eiffel and C++ objects.

do
object_ptr.= cpp_new(size
end

feature -- Removal
dispose
-- Delete C++ object.
do
cpp_deletdobject_pt)
end

Warning this is C++,
not Eiffel

Here is the result of applying Legacy++ to that class, which will serve as
an illustration of both the C++ interface mechanisms and Legacy++:

844 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.13

feature
output
-- Call C++ counterpart.
do
cpp_outpuiobject_pt)
end

add(new_int INTEGER
-- Call C++ counterpart.
do
cpp_add(object_ptr new_in}
end

feature {INTARRAY
underscore_integer$OINTER
-- Value of corresponding C++ data member.
do
Result= underscore_integer®bject_pt)
end

feature { NONE -- Externals
cpp_new(size INTEGER: POINTERIis
-- Call single constructor of C++ class.
external’[
C++ newlIntArray
] signature (EIF_INTEGER_3PuseINTARRAM

end

cpp_deletdcpp_obj POINTER
-- Call C++ destructor on C++ object.
external’[
C++ deletelntArray
?ignature () useINTARRAM
end
cpp_outpuicpp_obj POINTER
-- Call C++ member function.
external "[
C++ function IntArray
]S:Iignature () useINTARRAM
alias
"output'
end

§31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)

845

cpp_add(cpp_obj POINTER new_int INTEGER
-- Call C++ member function.
external "[

C++ function IntArray
signature (EIF_INTEGER_3PuseINTARRAM
]ll

alias
"add'
end

cpp_underscore_intege(spp_obj POINTER: POINTER
-- Value of C++ data member
external [
C++ data IntArray
]'lIJseINTARRA.\rh
alias

"integers
end

feature {NONE -- Implementation
object_ptr POINTER
-- Access to C++ object

end

31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)

Dynamic Link Libraries enable an Eiffel system to take advantage of DLL

routines on platforms (such as Windows) supporting the DLL mechanism.

A DLL routine is not compiled into your system but kept separate; your
system will load the routine the first time it needs to call it. This has two
principal advantages:

* You pay only, in memory usage, for what you use. Without DLLs
every system must be compiled with every piece of functionality it
ight use even if 98% of executions don’t need it. This is a source of
size bloat.

» DLLs facilitate software evolution since you can deliver incremental
functionality updates through specific DLL replacements, without
chaning the entire system previously delivered to your users.

846 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.14

Each of these advantages also implies less pleasant counterparts (leading
to the phraseDLL hell”): unlike with statically linked systems, a missing
component may not be detected until run time (and in certain executions
only); a product may install a new DLL that invalidates another product;
and you never quite know what your users’ configuration is, which
doesn't facilitate customer support. DLLs are, however, a very popular
technique. ISE Eiffel includes a DLL tool for generating DLLs from
Eiffel systems.

Eiffel systems also need tose DLLs produced elsewhere. Two
mechanisms are available for that purpose:

« A DLL sublanguage, similar in spirit to the C and C++ sublanguages
reviewed previously, lets you specify DLL routines that you need.
Although based on dynamic linking this is a “static” mechanism in that
you have to express what you need in your software, before compiling.

* There is also a completely dynamic mechanism, DESC, allowing you to
wait until run time to determine what dynamic libraries you need and
what routines you want to call.

We now review these two mechanisms in turn.

The static DLL sublanguage

Using the DLL sublangage you can define an external Eiffel routine relying
on a routine from a DLL. You will use a clausxternal dll file_nameto
specify thefile_namefor the dynamic library, and a clausdias nameto
specify the name or integer index of the desired routine in that library.

Here is an Eiffel routine encapsulating a function from a DLL:

A dynamic_externala, b, c. INTEGER
anrid external "[

] "dll

signature (WORDO DWORD WORD
useherlib.dll
]ll
alias
II35II
end

§31.14 USING DYNAMIC LINKE LIBRARIES (DLLS) 847

where to find the routine in the DLL. Use tlaias part for that purpose_gi;(es the C text of an
inline routine.

A dll subclause requires you to speciffpal index or name, indicating Thealias part also

Normally, as we have seen, thas part of anExternaldeclaration gives
the native name of the routine (required only if different from the Eif
name). In the case of a DLL it is also acceptable to provide the routine’s
index in the library, an integer, such 85 in the example. There is no
ambiguity: an integer alias denotes an index, anything else is taken as a
name. This variant also requires the presence &aarnal_signaturpart.

lif your system uses several routines from the same DLL, its execution will
only load one instance of the DLL. When the execution terminates, the Eiffel
run-time system will free all DLL instances loaded in this way.

Here is the syntax for the DLL variant of teeternal part:

RTATAL DLL externals
DLL_external2 '" 'dll

[windows]

DLL_identifier
[Blanks_or_tabs DLL_indgx
[External_signatuie
[External_file_use

DLL_identifier 2 Simple_string

DLL_index 2 Integer

Through aDLL_externalyou may define an Eiffel routine whose execution
calls an external mechanism from a Dynamic Link Library, not loaded until
first use.

The mechanism assumes a dynamic loading facility, such as exist on
modern platforms; it is specified to work with any such platform.

External DLL rule VZDL

(i, A DLL_externalof DLL_identifier i is valid if and only if it
satisfies the following conditions:

1 «When interpreted as a file name according to the conventions
of the underlyinglatform,i denotes a file.

2 « The file is accessible for reading.

3+ The file’s content denotes a dynamically loadable modulel

848 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15

External DLL semantics

The routine to be executed (after loading if necessary) in a call to
aDLL_externalis the dynamically loadable routine from the file
specified by thédLL _identifierand, within that file, by its name
and theDLL_indexif present.

indicate, in the software text, the name of the library and the index (irADLL ROUTINE
form of an integer constant) of the desired routine in that library. One 0%5
advantages of DLLs is the ability to wait until run time to specify both pge gag
library and the routine. A correspondinglynamic mechanism,
complementing the facilities just described, is also available through the

DESC library studiedhter in this chapter.

The DLL mechanism specified here s$tatic since it requires you tC_ «pesc: CALLING

The optionalwindows qualifier specifies that the DLL uses the calling
conventions of the Windows platform.

31.15 DESC: CALLING ADLL ROUTINE DETERMINED AT RUN TIME

All the mechanisms discussed so far for calling an external routine require
that you include the routine’s exact name in the Eiffel text (as the Eiffel
routine name if it is the same, aftelias otherwise), or the routine itself in

the Cinline case. Even the @ll mechanism requires you to specify the
name of the Dynamic Link Library and the index of the desired routine.

The Dynamic External Shared Call mechanism (DESC for short)
removes this limitation by letting you wait until run time to determine the
name of the external routine to be called in a DLL, or even the name of the
DLL itself.

DESC is a library, not a language mechanism, but as important in
practice as the purely linguistic mechanisms defined in this chapter.

In line with the general spirit of Eiffel, the DESC takes care of low-level
aspects of DLL programming, relieving developers from operations which
they would have to perform manually if they were using a language such
as C: loading library instances; sharing these instances; freeing the
instances when they are not needed any more.

DLLs vary with operating systems. The description in this section
applies to Windows.

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME

849

DESC overview

The DESC mechanism enables you to construct objects representing
external routines determined at execution time through their name and
libraries, and to call these routines with the appropriate arguments.

Two classesPLL and DLL_ROUTINE supported by an auxiliary class
SHARED_ LIBRARY_CONSTANP®vide the basis of DESC:

 Aninstance of clasSLL describes a Dynamically Linked Library. This class
is a descendant of the deferred cl&3$ARED_LIBRARYtovering the
platform-independent notion of shared library.

 An instance of clasBLL_ROUTINEdescribes a routine from a DLL.
The class has an attribute of typd L describing the library to which
the routine belongs. It has a deferred ancestor
SHARED_LIBRARY_ROUTINEapturing the platform-independent
notion of shared library routine.

* SHARED_LIBRARY_CONSTANMBoduces a few declarations useful
for dealing with shared libraries and routines, in particular some integer
constants describing error codes and type codes. Itis an ancestor to both
of the preceding classes; application classes using DESC can also
inherit from it to gain access to its facilities.

The normal sequence of operations to use the DESC mechanism is:

1 «Create a library object (an instance BEL), providing the library’s
name as argument to the creation procedure.

2 «Create a routine object (an instanceDdfL_ ROUTINB, providing the
library object, the routine’s name or index in the library, and the
routine’s signature — number of arguments, types of arguments, type of
result if any — as arguments to the creation procedure.

3 * Apply the procedureall to the routine object, passing tall an array
that contains the actual arguments required by the external routine.

You may repeat each of these steps as often as necessary to use multiple
libraries, multiple routines in a library, or multiple calls to a given routine.
More details follow.

Creating a library object

To create a DESC object representing a library and load that library, use a

declaration such as
Amrim

|

‘your_dll: DLL

850 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.15

replacingyour_dllby whatever name you have chosen to denote the library
in your software; execute a creation instruction of the form

createyour_dll.make("your_lib_namg)

whereyour_lib_namds the name of the file containing the library.

After this call has been executed, the boolean value
your_dll.meaningfulwill be true if and only if the creation has been
successful, that is to say, the given name did correspond to an available
library, and it was possible to load it.

If your_dll.meaningfulis false, you can have more details about the
error by comparing the value gbur_dll.error_code an integer, to those
of constant attributes defined in claSIARED_LIBRARY_CONSTANTS
As expressed by an invariant of cld3kL, the value oimeaningfuis true
if and only iferror_code= 0.

Creating a routine object

To create a DESC object representing a routine from a DLL, use a
declaration such as

| a4 | ‘your_routine DLL_ROUTINE

replacingyour_routineby the name you have chosen to denote the routine
in your software, and execute a creation instruction of the form

Li] createyour_routinemake_by name
e (your_dll,
"your_routine_narmig
largtypl, argtyp2 ...}
res_typé

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME

851

or, if you prefer for faster access to identify the routine by an integer index
rather than a name:

L4]
=

createyour_routinemake_by_index
(your_dll,
your_routine_index -- The only differing argument
[argtypl, argtyp2 ...]
res_typé

In either formyour_dllis the library object obtained at the previous step.
The preconditions for bottmake by namandmake_by_indexclude the
following clauses on the first argument, known through its formal niime
(corresponding tgour_dllabove) in the routine:

require
library_exists lib /= Void
meaningful lib. meaningful

After either call, the boolean valugmur_routine meaningfulwill be true

if and only if the creation has been successful, that is to say, the given name
or index did correspond to a routine of the library, and it was possible to
open it. If the value is false, you can have more details about the error by
comparing the value ofour_routineerror_code an integer, to those of
constant attributes defined in claSEIARED_LIBRARY_CONSTANPES
expressed by a clause of the invariant of clakk_ ROUTINE the value of
meaningfuls true only iferror_code= 0.

Proceduresnake by namandmake by indeare usable not only as
creation procedures but also as normal exported routines, so that you can
later reinitialize the object to represent another external routine. The four
arguments play the following roles:

* The first argument, as noted, denotes the library.

» The second argument identifies the desired routine in the library: by its
name, of typeSTRING with make_by nameby its index, of type
INTEGER with make_by_index

* The third argument, of typARRAY[INTEGER, gives the list of type
codes for the arguments to the routine. Each type code is an integer
associated with one of the possible types to be passed to a DLL routine.
Possible type codes appear next.

 The fourth and last argument is a type code for the result.

In the above examples the third argument is declared as a manifest array
through the notatigm@ml, a2, ... |; here the array itemargtypl, argtyp?2 ...

must all be integers giving the type codes of the successive arguments to
the routine, taken from the list appearing next. (Use an empty manifest
array,[],if the routine has no arguments.)

852 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.15

Type codes

For the type codes used in the array serving as third argument to
make_by namandmake_by indexnd in the fourth argumemes_type

the classSHARED_LIBRARY_CONSTANpP®&vides a set of constant
integer attributes; the easiest way to let a class use them is to make it an heir
of that library class. Here is the list of codes:

Type code Meaning and comments

T_array Array . What is passed to C is the “special object”
containing the actual array elements, directly usable
by C. To pass the Eiffel array object, use
T_referenceA restriction: the elements of the array
may be references, or they may be of a basic type —
BOOLEAN INTEGERetc. — but they may not be of
an expanded type other than the basic types.

T_boolean Boolean value Passed to C as unsigned character: O
for false, nonzero for true.

T_character Character value.

T _integer Long integer.

T no_type No type. Useful for res_typein the case of a
procedure (which has no result type).

T real Real number.

T_pointer Pointer to C structure.

T_reference Referenceto Eiffel object.

T_short_intege Short integer. The Eiffel side will use normal

r INTEGER values for the corresponding actual
arguments.
T_string String. What is passed to C is the C form of the

Eiffel string, obtained through the featute c of
classSTRING To pass the Eiffel string object, us
T _reference

11

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME 853

Calling a routine

Having created the object representing the external routine and attached it
to entityyour_routine you may now call the routine with arbitrary actual
arguments through the procedgsd|, a feature of cladsLL_ROUTINE

The procedure takes a single argument, of typRRAY [ANY],
containing the successive actual arguments to be passed to the external
routine. The easiest technique is to use a manifest array, as in

‘ your_routine call ([-325 67.2, x, a + b]) ‘

Accessing the result of a function

If your_routinedenotes a function (a routine that returns a result), you will
be able to access the result by querying the attached instance of
DLL_ROUTINEthrough one of the following calls, each corresponding to
one of the possible result types:

Typical call Eiffel type of
the result

your_routine boolean_result BOOLEAN
your_routinacharacter_result CHARACTER
your_routinainteger_result INTEGER
your_routinainteger_result INTEGER
your_routinereal_result REAL
your_routinereference_result ANY
(To use the result, an assignment attempt w
usually be necessary.)
your_routine string_result STRING
(Result converted to Eiffel string forma
through the featurfom_cof classSTRING)

Consistency requirements and protection against errors

In a call to procedureall such as the above, the number of elements in the
array and their types must correspond to the signature — number and type
of arguments — specified in the third argument of the latest call to
make_by namer make_by index

854 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.15

This requirement is captured by a functioonforms_to_signature
relying on the functiorconforms_tdfrom the Kernel Library clas&NY
The third precondition clause of procedued! states it:

call (args ARRAYANY)])
require
meaningful meaningful
valid_array. args/= Void
conformant conforms_to_signatur@rgs)

This precondition, combined with queri@seaningfuland error_codein
classedDLL andDLL_ROUTINE provides a certain degree of protection
against possible errors. But the Eiffel side does not know anything about the
external routine, and so cannot check that the number of actual arguments and
their types match the actual signature of that routine. You are responsible for
ensuring that the routine gets what it expects.

Similarly, each of the resultfeatures has a precondition stating that it
must be compatible with the result type set by the latest call to
make_by nameor make_by index For example in the case of
boolean_resulthe result type must have been sefltdooleanHere too
there is no protection against type errors at the Eiffel-C border; double-
check your software to make sure that the result types you are positing on
the Eiffel side match what the DLL routines actually declare.

Sharing and freeing

One of the effects of creating a library object through a creation instruction
of the formcreateyour_dIl.make("your_lib_namé) is, as noted, to load
the library of namegrour_lib_nameWhen you subsequently create routine
objects relative tgour_dll, they will all share the same library instance.

You may, if you wish, load several instances of a given library: simply
create several library objects, passing in every case the same string
"your_lib_name as actual argument to theakecreation procedure.

If the same library name is used by an external DLL routine, statically
declared through the mechanism studeatlier in this chapter, and by a
library object created dynamically by the DESC mechanism as an instance of
DLL, two different instances will be loaded.

When a DESC library object is no longer accessible and the garbage
collector reclaims it, this will automatically (through the procedilispose
of classMEMORY as redefined for clasBLL) free the corresponding
library instance.

§31.16 THE CECIL LIBRARY 855

For most uses this automatic freeing will be sufficient. If, however, you
want to free a library manually, you can do so through the call
your_dll.free. As a postcondition of this caljjour_dll.meaningfulwill be
false, as well agour_dll.meaningfulfor any routine objecyour_routine
that was created relative your_dll.

31.16 THE CECIL LIBRARY

The mechanisms studied so far suppadll-out: calling foreign
mechanisms from Eiffel. There is a complementary need foal&in
mechanism, enabling foreign software to call Eiffel features.

Cecil overview

Call-in and call-out are in fact closely related since an external (call-- “PASSING THE
routine may pass, among otheasgyjumentsof the Addressform, denoting %&‘”
features of the enclosing class. The sole purpose of such argumen; g pgeg23

obviously, to let foreign routines call the associated Eiffel features.

More generally, some developers may wish to write foreign routines
that create Eiffel objects and apply features to these objects, without
necessarily relying on features explicitly passed by the Eiffel side. This last
section shows a way to do this from C, using a library of C functions called
the C-Eiffel Call-In Library, orCecil. The first C in the acronym is there
mostly for historical reasons: you can use Cecil from any foreign language
that supports standard argument passing conventions.

Cecil role and status

mMEETHON]
L)

Most developments do not need to use Cecil or its equivalent, and Pleasé send your tax-
developers do not need to learn about it. The ideas are of interedeductible contribu-

. tions to the HAVOC
mstallathns with a h_e-avy use of C or some qther for_elgn Iangque, if fund (Help Al Victims
want to integrate Eiffel classes in applications driven by their foreofC!), Box 0QPaima
components. If you are not in this situation, then you most likely shde Majorca

spare yourself the rest of this chapter; but do shed a tear or two for your less

fortunate colleagues.

Call-in mechanisms belong in foreign languages. The Cecil library this
section describes, then, is not part of Eiffel as a language, but it is a required
component of any Eiffel implementation.

The following Cecil resources should complement the explanations of
this section:

* http://eiffel.com/doc/manuals/library/ceci a complete Cecil manual.

http://eiffel.com/doc/manuals/library/cecil/

856

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

« If you program non-trivial Cecil applications you will benefit from the
set of examples aftp://ftp.eiffel.com/pub/@amples/cecijl you can
retrieve individual examples from that directory, or download all
examples, zipped, from ftp://ftp.eiffel.com/pub/gamples/cecil/
cecil.zip The directory is split into two subdirectoriasnix-examples
andwindows-examples

Compiling for Cecil

To use the facilities of an Eiffel system through Cecil you must first
compile a “cecilized” form of it. This may require a special compilation or
(as with ISE Eiffel) you may simply get the “cecilized” form as a standard
output of your compilation with no extra work.

You will of course need to compile your foreign application, a process that is
not always as automatic as Eiffel compilation as managed by good Eiffel
environments. Even here, however, Eiffel can help: you can specify a Make
file in theexternal part of your Ace through a directive of the form

‘ external: make:your_makefile ‘

which causes Eiffel compilation to start C compilation using the provided
Make file. (To specify its location, remember that you can use environment
variables, such a8EIFFEL5denoting the location of the Eiffel installation,

in the Ace file.)

As explained next, the foreign software will gain access to the C- For the location of
mechanisms through two include files produced by the Eiffel environngﬁe?'srg‘éﬁf’sré'gigf
eif_cecil.h and (if execution starts on the foreign side rather than fispeciics”, page 866
Eiffel) eif _setuph. You will use the “include” option of your C compilel,

normally—I, to specifythe directory where these files reside.

Avoiding abusive optimization

Even with a compiler that generates cecilized code without any special
compilation option, you may have to exert some care if the compiler (again
such as ISE Eiffel) performs dead-code-removal optimization, to delete the
generated code for routines that are not called from within the Eiffel
system. Such routines may still be needed by foreign software as part of the
cecilized interface. To protect them from over-enthusiastic dead code
removal, list them in theisible clause of the Ace file, as in

ftp://ftp.eiffel.com/pub/examples/cecil
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip

§31.16 THE CECIL LIBRARY

857

systemsystem_nammot ... default ... cluster

your_cluster"/homéduserclusterl

adapt
visible
CLASS1
CLASS2
create
"other_make
export
"featl’, "feat?'
end
end

... Other cluster specifications...
end

- See appendi2 about
Lace in particularVIS-
IBLE FEATURES”,
B.13, pae 1024

858

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

Here all exported features GLASSXre available to the external software;
for CLASS2only other_makéfor creation) andeatlandfeat2(for normal
call) are available.

By default the status of features is deduced from the Eiffel class text:
only the publicly available features will be available through the Cecil
interface. You can use thexport clause to override this default, in
particular to make a feature is available to the outside world even though it
is not used in the Eiffel system and hence subject to dead-code removal.

The creation status is determined in a similar way: by default any
procedure listed in Eiffel as a generally available for creation will be
accessible through Cecil; you can override this default througlordege
subclause of theisible clause.

Note that because a Cecil application will create and initialize an object
through two separate calls (unlike the Eiffel instructenrmake(...) which

does boty), the creation and export status are the same for Cecil, so listing a
feature undecreate or export has the same effect: making it available to
foreign software through the Cecil interface.

Basic Cecil conventions

The Cecil library contains macros, functions, types and error codeseitfel's emphasis on
have names beginning with eitheif_ (functions and macros) dElF_ C'_?frify SuggE?Et;‘ EuLsing
(types and error codes); examples are the funetibriype_idand the typeZs raixesbut some of
EIF_PROCEDURE, explained below. Their declarations appear in éhe resulting names
“header file”,eif_cecil.h, which you may adda a C program through thwould be too long for

. . some C compilers
C preprocessor directive !

- - - Warning this is G not
‘#lnclude "eif_cecilh" Eifol D

A similar mechanism will be available for other supported foreign
languages, although the rest of the discussion will assume C or C++.

We now review the various facilities available frarecil.h. To avoid
any confusion with the format used in the rest of this book for Eiffel
software elements, C code will appear as follows (in color):

- Bold font (as elsewhere for Eiffel keywords) for Cecil functions, macros
and types, such a&sf_type_id andEIF_PROCEDURE.

« Italic font, for C names representing Eiffel class names or entities, such
asCLASS NAME

* Regular font for ordinary C text, including example variables
illustrating function usage, suchasur_id

§31.16 THE CECIL LIBRARY 859

The basic scheme of using Cecil is the following:
« Build an Eiffel system.

« “Cecilize” it: compile it for Cecil use. This may require some specific
compilation options, or at least, as noted above, protecting features from
dead code removal.

» Write a program in C or some other language that gains access to the
resulting facilities through appropriateclude directives and uses Cecil
functions and macros to create Eiffel objects, call features on them, and
receive any resulting exceptions.

Initializing the Eiffel 4 run-time

An application using Cecil, involving both Eiffel and foreign elements,
may start its execution from either side. If execution starts on the non-Eiffel
side — in other words, if the foreign language is in control — it will need,
prior to calling any Eiffel facility, to set up the Eiffel run time to ensure that
Eiffel mechanisms such as garbage collection and signal handling will
work properly. It will also need, before it terminates, to call the run-time
termination mechanisms, ensuring in particular that all Eiffel objects are
freed and the correspondirdjsposeprocedures are called to free any
associated system resources.

The runtime setup will typically appear in the foreign application’s
main program. Simply add the preprocessor directive

‘ Warning this is G not

‘#include &if_setup.h” Eiffel.

To start the Eiffel runtime, use

Eiffel.

- - Warning this i t
[EIF_INITIALIZE (failure_function); | fong thisis Gno

wherefailure_function() is a function to be called in case of failure to
initialize. To terminate the Eiffel runtime, collect all objects and call their
disposeprocedures if any, use

—
EIF_DISPOSE_ALL; parning this is G not

EIF_INITIALIZE and EIF_DISPOSE_ALL are macros defined in
eif_setuph. The macros assume that the enclosing function, normally the
main program, has the three standard arguments, as in

— Warning this is G not
‘ main (int argc, charlargv, chaflenvp); Eiffel.

860

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

Manipulating values of basic Eiffel types

If you pass Eiffel values of basic types (integers, booleans and so on)
you will need to make sure that the C side manipulates them properly. For
example there is no guarantee that an EifMff[EGERand a Cint are the
same; for portability and to guarantee numerical precisions the Eiffel-C
interface includes the following set of macros defining the C representation
of the Eiffel basic types:
EIF_BOOLEAN EIF_CHARACTER EIF_INTEGER_8 Zpgqi%asmggﬁﬁf dﬂi’rfse
EIF_INTEGER_16 EIF_INTEGER_32 EIF_INTEGER_64 cecil.h.
EIF_REAL_32 EIF_REAL EIF_POINTER

The macroEIFFEL_TYPE denotes the C type (actualigt) covering C
representations of Eiffel types; the possible values are the twelve listed,
plusElIF_REFERENCE, introduced below.

If you have control over the C code, always use the above types to
manipulate Eiffel values from C. So with an Eiffel external function

c_func(ptr: POINTER obj: OBJECT: INTEGERis
external
"Cinclude %'"your_fileh%"
end

you may write the C side as

- Warni his i
EIF_INTEGER 32c_funcEIF_POINTER ptr,EIF_OBJECT obj)| piga o oS &

{... Function body...}

In other cases, the C function pre-exists and you cannot (or do not wa*4g&controllingthe
change it. In that case you should take care of the proper typing okEiffel-C type core-
Eiffel side, using theExternal_signaturéacility introducedearlierin this SPondence”.page8ss
chapter With a function

- - - Warning this i t
int other_func (voidiargl, char c, FILETile) Eiﬁ;?_'”g 's1sGno

{... Function body...}

you should write the Eiffel external as

other_fundargl: POINTER c. CHARACTERfile: POINTER:
INTEGER
external
"C(void[J char, FILED) : intinclude %™your_file.h%™
end

§31.16 THE CECIL LIBRARY 861

Omitting theExternal_signaturpart (the part that lists the C types before
the colons) would produce C compilation warnings and possibly errors.

Manipulating Eiffel class types

To call Eiffel features, the foreign software will need to access the classes
and types to which they belong. It will know an Eiffel type through a “type-
id”, of type EIF_TYPE_ID.

To obtain a type-id for a typ@ YPENAMEand record it in a C variable
your_id use the functioeif_type_id, returning arElF_TYPE_ID:

EIF_TYPE_ID your_id; Warning this is G not
- - - Eiffel.

I

your_id =eif_type_id ("TYPENAME);

‘Avoiding atu
As usual, you must make sure that the base clasEY®fENAMEis not pt.m.vz";tl'g‘n aQ@S'V

optimized away by the compiler. 856

If the class is generic, include the generic parameters inYHRENAME
asin:

| 4 | ‘your_other_id =if_type id ("ARRAY[INTEGER");

Warning this is G not
‘ Eiffel.

Given an Eiffel type descriptdype_idof EIF_TYPE_ID, you can obtain

the corresponding Eiffel type name as well as the name of the generating class
(the type’s base class). Usié_type(tid) for the type name argif clasqtid)

for the class name. In both cases the resultisaal] representing a C string.

Accessing an Eiffel object

A foreign function may access Eiffel objects through references passed to
it by the Eiffel side in external calls, or returned by calletb create(see
below). The corresponding variable must be declared of the Cecil type
EIF_OBJECT.

A value your_objectof type EIF_OBJECT is not a C pointer to theCurrent C guidelines
corresponding object. To obtain such a pointer (for example to pass it tsuggeStSEhﬂfA _Aceess
function which manipulates objects directly), use the magifoaccess Waming FHhis'iS € hot

which takes aiElF_OBJECT and returns a pointer to the object: o momter et

‘ objectrepresents a void

some_functiondif_accesgyour_object), ...): reference

862 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

The reason for this rule is that an Eiffel implementation supporting garbage

collection may move objects around. Then a pointer passed directly to a C
muni function might be obsolete by the time the function tries to access the

associated object. Given dalF_OBJECT, eif_accesswill retrieve a

correct pointer. If the implementation does not move objegifsaccess

will do little or no work.

The result type oéif_accesss of typeEIF_REFERENCE. A value of
this type is a pointer to an Eiffel object; you can pass it to an Eiffel routine,
or as the result o a C eternal. Do not, however, pass an
EIF_REFERENCE to another C function, since the object might have
moved; usélF_ OBJECT instead.

) What if your_objectis a variable that does not just allow immediate

/™= object processing as above, but retains its value between successive

“'ETm“ activations of the C side? In the meantime, the Eiffel side might have
discarded all references to the corresponding object; but then a garbage
collecting implementation must not be allowed to reclaim it! To avoid this,
the C side musadopt the object, using the functioeif _adopt Once C
functions do not need to hold the object any more, they may release it
througheif_wean Here is the scheme:

EIF_OBJECT your_object,... ‘é\{;gl“”g this is G not
eif _adopt (your_object); '

... Then in the same or another C program unit: ...
some_functiondif_accesgyour_object), ...);

eif_wean(your_object);

§31.16 THE CECIL LIBRARY 863

A call to eif_weanactually returns a value: &lF REFERENCE to the
object just “weaned”.

You should useif_adoptfor a value of typeEIF_OBJECT, created by
an Eiffel routine and passed as argument to the foreign software. For an
EIF_REFERENCE value returned by one of the Cecil mechanisms, use
eif_protectinstead. An example appears next witheElR_ REFERENCE
denoting an Eiffel string created if _string ("SOME TEXT). Function
eif_protect returns anEIF_OBJECT; as with eif _adopt, you should
eif weanthatElF_OBJECT when you do not need it any more.

Creating an Eiffel object

To create an object from outside, use the funciédncreate which takes
anEIF_TYPE_ID argument and returns &iF_OBJECT. For example:

l%l

EIF_OBJECT your_array; \é\i/gg;ing this is G not

your_array =eif create(eif_type_id ("ARRAY[INTEGER"));

Assuming clas$ INKED_LISTwith one generic parameter, this creates a
direct instance of.INKED_LIST[INTEGER. Functioneif create calls
eif_adopt, the C side should cadlif weanwhen and if it does not need the
object any more.

As the example showsjf _createdoes not call acreation procedure. — About creation rules
To apply a creation procedure, you will need to include a separateinEiffelandtheCreators
using functioreif _procedureas explained below. This departs from Eiffia|se see chapteZd
conventions, which prohibit creating an object without applying a creation
procedure if the class haszaeatorlause. With Cecil, forgetting to call a
creation procedure aftegif createmay produce an object which violates
the class invariant, so you must be particularly vigilant to avoid this error

(which cannot occur in Eiffel).

A shortcut is available for the case of string objects. As you will recall,
STRINGSs a normal class with its own creation procedures. To avoid going
through the creation of 8 TRINGobject and separate initialization, you
can useeif_string as in:

EIF_REFERENCE your_string;
EIF_OBJECT your_string_object;
my_string = eif_string ("SOME TEXT);
your_string_object =if_protect ("my_string");

864

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

The result ofeif_string is anEIF_REFERENCE; if you are going to use
it beyond the immediate context, make sureetb protect it as shown.
When you do not need it any more, ceif wean(your_string_objectjo
let the Eiffel garbage collector reclaim it once the Eiffel side is also done
with it.

As a related facility, you can produce an Eiffel aregfy arrayfrom a C
arrayc_arraythrough the macro call

=
i

‘ eif_array_from_c (eif_array, c_array, n, type_id) ‘

wheren, aninteger, is the number of array elementstgpé _id an integer,

represents is the type of the array elements. The argueiiemtrraymust

be anEIF_REFERENCE denoting an array¢_arraymust be of type

(type_idD), with enough space available to hold the array values. The vZ"*Manipulating val-
of type_id must be one of the Eiffel-C interface typeefinedearlier: ues of basic Eil
EIF_BOOLEAN etc. for basic typesEIF_REFERENCE for any SPes - Paeseo

“Manipulating Eiffel
reference type. classtypes”, page 861

You can similarly useif_string_from_c (eif_string, c_string, njo get the
C string €har[) equivalent of an Eiffel string.

Calling routines

Having gained access to Eiffel objects, the foreign application will want to
apply Eiffel routines and attributes to them. To do so it needs pointers to
these routines, which it will obtain through one of a set of Cecil functions
provided for this purpose. For example, having obtained the type-id
your_arrayas shown above, use the following to assign to variable
your_prochamea pointer to the Eiffel procedure whose Eiffel name in
classARRAYs put

==
i

EIF_PROCEDURE your_array_put: ‘éviggl“ng this is G not

your_array_put =if_procedure ("put’, your_array);

Functioneif_procedureis one of a group of functions, each corresponding
to a different category of Eiffel routines: procedures, functions returning
results of basic types, class types, bit types. Here is the list of these
functions, with their argument and result types:

All these routines have the same arguments: a strafgar(d in C),

representing a routine name, and a type-id, obtained thetdipe_id

. . . - Seé'Requesting a
These functions look for a routine of nammut_namen the base clasion-isting outine”.

of the type corresponding tgpe_id If sucharoutineexists, the result will page 865below about
be a pointerd a C function representing it desired routine; you may tl\é\{ﬁgl"”g this is G not u-
call that function on appropriate arguments. For example: '

§31.16 THE CECIL LIBRARY 865

EIF_PROCEDURE eif_procedure \évigg;ing this is G not
(charOrout_nameEIF_TYPE_ID type_id) :

EIF. REFERENCE_FUNCTION eif reference_function ThewordPOINTER in
(charOrout_nameEIF_TYPE_ID type_id) - E{fﬁgg'g‘g'ﬁ—ers o

EIF_INTEGER_32_FUNCTION eif_integer_32_function the EiffelPOINTER
(charOrout_nameEIF_TYPE_ID type_id) type(see31.8abovg,

EIF_CHARACTER_FUNCTION eif character_function notto C pointets
(charOrout_nameEIF_TYPE_ID type_id) Variants ofeif_integ-

EIF_REAL 32 FUNCTION eif real function er_32_functionalso

: ist for 816 and 64
(charOrout_nameEIF_TYPE_ID type_id) existfor 16 an

EIF_REAL_FUNCTION eif_real_function
(charOrout_nameEIF_TYPE_ID type_id)
EIF_BIT_FUNCTION eif_bit_function
(charOrout_nameEIF_TYPE_ID type_id)
EIF_ BOOLEAN_ FUNCTION eif _boolean_function
(charOrout_nameEIF_TYPE_ID type_id)
EIF_POINTER_FUNCTION eif_pointer_function
(charOrout_nameEIF_TYPE_ID type_id)

’ (your_array_put)dif_accesgyour_array), 365, 10)

This applies the routine corresponding o, accessible through
your_array_puas a result of the above call éif_procedure to the object
corresponding toyour_array with the actual argumentlO. The
corresponding call would have been written in Eiffelyasir_array put
(345,10). In C, do not forget to enclose the name of the function pointer,
hereyour_array_putin parentheses, and to &g access

=l Asin Eiffel, the call will use dynamic binding: it will trigger the version
of the feature directly adapted to the type of the target object.

Requesting a non-existing routine

The facilities just reviewed —eif_procedure, eif _reference_functionand

so on — enable the foreign side to gain access to an Eiffel feature. What if
the requested feature does not exist in the class specified? If you stay within
Eiffel this case will not arise since the type checking mechanism will detect
the error at compile time; but from a foreign language no such static check
is possible; the error will only become manifest at run time.

For the outcome in such a case you have a choice between two
behaviors, which you can enforce by calling either of two status-setting
procedures (whose effect will last until a call to the other):

866 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

* You can ensure that a request for a non-existent feature will trigger an
exception, passed as a signal to the foreign side. This is not the default
behavior, butyou can obtain it by calliedf enable_visible _exception

« By default, functions such asif _procedureand consorts return a null
value if they can't find the Eiffel feature. You can restore this default
behavior by callingif _disable_visible _exception

Accessing field objects

The macreeif_attribute enables the foreign side to access fields of objects,
corresponding to attributes of the generating classes.

You may use the result afif attribute in two different ways: as an
expression, or “r-value” in C terminology; or asvariable entity, or “I-
value”, which may then be the target of an assignment. Such an assignment
will re-attach the corresponding object field.

The macro requires four arguments:

eif attribute Warning this is G not
(EIF_REFERENCE object, chaflattrib_name, Eifel.
EIFFEL_TYPE type_id, int consiistatus);

The objectargument denotes the object of which you want to access a
field.; attrib_namealenotes theameof theattribute in the generating class.

The third argumentype_id serves to cast the result to the appropri=*3eeManipulating
type. It must be one of the Eiffel-C interface typegfined earlier: ;%m%%gm
. ypes, pae
EIF_BOOLEAN etc. for basic typesEIF_REFERENCE for any ;.o intoduced
reference type.EIFFEL_TYPE covers all these type values. EIFFEL_TYPE,and
EIF_REFERENCE case, do not forget teif protect it the result if you “Manipulating Eiffel

will use it further. classtypes’. page861

The last argumenstatusis a result code. Possible values are *status =
EIF_CECIL_OK, indicating success, EIF_NO_ ATTRIBUTE ,
indicating that no field exists in the object for the given name, and
EIF_CECIL_ERROR for other Cecil errors. If you have selected
eif_enable_visible exceptioms explained above, the last two cases will
trigger an exception.

ISE Eiffel specifics

The following comments apply to the use of Cecil with ISE Eiffel and may
not be relevant for other implementations.

§31.16 THE CECIL LIBRARY 867

To will gain access to the Cecil facilities through two include files, both
in $EIFFEL5/bench/spec/$PLATFORM/includehere $SEIFFEL5 is the
Eiffel installation directory anéPLATFORMthe platform code (such as
windows linux etc.):

» To use Ceclil in a C file it suffices to incluelié_eiffel.h.

» The main program may includeif_setuph to access facilities for
setting up and terminating the Eiffel run-time. This is not necessary if
execution starts on the Eiffel side; if, howeyvarC main program starts
execution and needs at some stage to call Eiffel mechanisms it will need
these facilities to get everything initialized on the Eiffel side.

The following Lace options will be useful on Windows:

» Use console_application (yesf you want to produce a console
application rather than a default (graphical) Windows application.

» UseC_main (‘bath_nam® to specify that the main program will be the
C file atpath_name

ISE Eiffel offers three compilation modes: melted (super-fast incremental
recompilation, no C generation), frozen (incremental, C generation),
finalized (full C generation, extensive global optimizations). You can use
Cecil with all three modes.

In the case of a melted system of nasystem_name&ou must copy the
file <system_namenelted>from the subdirectonEIFGEN/W_codeof
your project directory to the directory from which you will execute your C
program. (The execution directory, not the compilation directory). This file
will change after each melting; so on Unix it may be more convenient to
use instead a symbolic link to it, which also saves space.

A limitation exists in case of a melted system: it is not permitted to use
through Cecil any routine that has been melted in the last compilation. This
would raise the run-time exceptior$ ‘applied to melted routirfe The
solution is simple: refreeze.

To “cecilize” your system you do not need to use any special Eiffel
compilation option. The only extra concern you need to have is, in finalized
mode, to protect features from the dead-code removal algorithm, as
explained earlier. Compilation produces both C code and a Makefile, in a
subdirectory ofEIFGEN in your project directoryEIFGEN/W_code(in
melted or frozen mode) oEIFGEN/F_code(in finalized mode). To
produce a CECIL library, you must, in a DOS console (Windows) of shell
(Unix), go to the appropriatElFGENKA_codedirectory and run the make
utility with the ceciloption:make ceci{Unix), nmake ceci{Windows with
Visual C++ and compatible compilers).

868 INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS 8§31.16

This generates a Cecil archive whose name derived from the name
system_nameof your Eiffel system: system_namdib (Windows),
libsystem_name (Unix). The archive will include the Eiffel runtime
thanks to thdanclude directives listed above. Then it suffices to link the
archive with the rest of your application through the link command
appropriate for your operating system.

On Unix, you should use them option to the link command to include
the C mathematical library, required by the Eiffel runtime. You may need
other libraries too, for examplebsdon Linux, —Ipthread(Posix threads)
on Linux, —lthread (Solaris thread library) on Solaris. The linking
command might look like this:

| d | ‘Id —Ilm —Ibsdyour_applicationc libsystem_namea ‘

	31 31 Interfacing with C, C++ and other environments
	31.1 OVERVIEW: THE COMPONENT COMBINATOR
	31.2 WHAT EIFFEL CAN DO WITH THE REST OF THE WORLD
	31.3 WHEN TO USE EXTERNAL SOFTWARE
	31.4 REGISTERED LANGUAGES AND THE ROLE OF C
	31.5 BASICS OF EXTERNAL ROUTINES
	31.6 EXECUTING AN EXTERNAL CALL
	31.7 ARGUMENT AND RESULT TRANSMISSION
	31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE
	Address Type rule

	31.9 SPECIAL INTERFACE SUBLANGUAGES
	31.10 GENERAL SUBLANGUAGE MECHANISMS
	Specifying an external routine signature
	Specifying external files

	31.11 THE C INTERFACE SUBLANGUAGE
	Syntax specification
	Specifying C code inline
	Controlling the Eiffel-C type correspondence

	31.12 THE C++ INTERFACE SUBLANGUAGE
	The syntax specification
	Conditions on C++ features
	Processing C++ features
	Extra argument

	31.13 WRAPPING C++ CLASSES: LEGACY++
	The role of Legacy++
	Calling Legacy++
	Result of applying Legacy++
	Legacy++ limitations
	Legacy++ example

	31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)
	The static DLL sublanguage

	31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME
	DESC overview
	Creating a library object
	Creating a routine object
	Type codes
	Calling a routine
	Accessing the result of a function
	Consistency requirements and protection against errors
	Sharing and freeing

	31.16 THE CECIL LIBRARY
	Cecil overview
	Cecil role and status
	Compiling for Cecil
	Avoiding abusive optimization
	Basic Cecil conventions
	Initializing the Eiffel 4 run-time
	Manipulating values of basic Eiffel types
	Manipulating Eiffel class types
	Accessing an Eiffel object
	Creating an Eiffel object
	Calling routines
	Requesting a non-existing routine
	Accessing field objects
	ISE Eiffel specifics

