
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
31

Interfacing with C, C++ and
other environments
31.1 OVERVIEW: THE COMPONENT COMBINATOR

The more frequent case of external interfaces iscall-out: Eiffel routines
calling non-Eiffel ones. The reverse need (foreign to Eiffel, orcall-in) also
exists. The mechanisms described in this chapter cover both.

Many applications will be happy enough to use the pure Eiffel
mechanisms described in the rest of this book, and will not require any
direct interfaces with other languages. (The next section explains what
circumstances may including foreign software in an Eiffel system.) If you
are mostly interested in understanding the techniques of Eiffel proper, you
should probably get familiar with the principles of external calls by reading
this section and the next four, and move on to the next chapter.

Object technology as realized in Eiffel is aboutcombining components.
Not all of these components are necessarily written in the same language;
in particular, as organizations move to Eiffel, they will want to reuse their
existing investment in components from other languages, and make their
Eiffel systems interoperate with non-Eiffel software.

Eiffel is a “pure” O-O language, not a hybrid between object principles
and earlier approaches such as C, and at the same time anopenframework
for combining software written in various languages. These two properties
might appear contradictory, as if consistent use of object technology meant
closing oneself off from the rest of the programming world. But it’s exactly
the reverse: a hybrid approach, trying to be O-O as well as something
completely different, cannot succeed at both since the concepts are too
distant. Eiffel instead strives, by providing a coherent object framework —
with such principles as Uniform Access, Command-Query Separation,
Single Choice, Open-Closed and Design by Contract — to be acomponent
combinatorcapable of assembling software bricks of many different kinds.

The following presentation describes how Eiffel systems can integrate
components from other languages and environments.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.2814
If you do study the details, you will note that they include, particularly
in the specific external sublanguages supporting interaction with C, C++
and Dynamic Link Libraries, a number of specific mechanisms that may
appear too rich when compared to the general sobriety of Eiffel’s design.
Do not be put off by this wealth of possibilities; the aim is not to complicate
Eiffel but to enable Eiffel developers to take full advantage of non-Eiffel
software at minimum effort. Any new, advanced technology such as Eiffel
must provide effective bridges to older technologies, so that its users can
leverage off existing investment. In particular, having powerful C and C++
interface sublanguages won’t detract you from the simplicity of Eiffel
programming; the effect instead will be that if youdohave to interface with
C and C++ you will be able to do everything you need on the Eiffel side,
rather than having to write special “glue code” in those languages. Eiffel
programmers,remarkably, prefer to program in Eiffel; carefully crafted
interface sublanguages enable them to talk freely to the rest of the world
without having to leave their language, techniques and tools of choice.

In accordance with the terminology used for the different forms of
Routine_bodyin the syntax specifications, the discussion will use the term
internal routine for any Eiffel routine accessible to language processing
tools, andexternal routine for other routines. The name “external” refers
to the routine as viewed from the Eiffel text; the form of the routine as it
appears in its original language will be called theforeign routine.

The semantic specifications presented in this chapter involve the
semantics of languages other than Eiffel. Granting non-Eiffel software
access to Eiffel objects may defeat the properties guaranteed by the
semantic rules of this book. You should exercise care to confine the foreign
languages to their proper role, avoiding unwanted interference with Eiffel
object structures and algorithms.

31.2 WHAT EIFFEL CAN DO WITH THE REST OF THE WORLD

Here is some of what you can do with the foreign language facilities
described in this chapter.

• You may declare an Eiffel routine asexternal, specifying that it comes
from a foreign language. To the rest of the Eiffel software, the routine
looks as if it were a normal Eiffel routine; but calls to it will execute the
foreign code, which must of course have been compiled by a compiler
for the foreign language. This is possible in principle for any foreign
language, and guaranteed for C, C++, Java and Fortran 95.

• You may specify that an external routine, known in Eiffel under a
certain name, hadanother namein its native language, for example if
that name is not legal in Eiffel.

• You may specify that an external routine is actually implemented by a
C macro, avoiding the overhead of function calls.

“Even under extreme
duress, 99.9873% of
Eiffelprogrammersstill
choose Eiffel”, in Proc.
of STOOP-SOLOW
(joint meeting of Soci-
ety for Torturing
Object-Oriented Pro-
grammers and Society
for Observing the Lim-
its of Object Work),
Sing-Sing(NY), Jan.
2001, pp. 5670-8782.

→ In special cases the
“other” language
might be Eiffel itself.
See below.

§31.3 WHEN TO USE EXTERNAL SOFTWARE 815
• You may associate a function and a procedure — a “getter” and a
“setter” — to a C structure (“struct”), so that a call to the function will
automatically access, and a call to the procedure modify, a specified
field of that structure.

• You may eveninclude C code inlinein the body of an external routine,
so that the external routine is in this case “internal” in the sense that it
is specified within the Eiffel code, rather than elsewhere.

• You may use from Eiffel the routines of aDLL (Dynamic Link Library).
You may specify the library and routines in your Eiffel text or, to make
the process fully dynamic, you may obtain or compute this information
at run time, just when you need to access the DLL elements.

• You may use from Eiffel all the facilities of a C++ class:member
functions, static members, data members, constructors, destructors.

• You may use theLegacy++ tool to produce aC++ class wrapper: an
Eiffel class, automatically generated, that makesall the facilities of a
C++ class (as listed above: member functions, data members and so on)
available to the rest of the Eiffel system.

• Going the other way around, you may use theCecil library to let
external software do everything with an Eiffel system that you can do in
Eiffel: create Eiffel objects, call on them any of the features of the
corresponding classes, and so on. In other words Cecil lets you treat an
Eiffel system as apackagethat the rest of the world can use as a library.

• That library can be dynamic: you cangenerate a DLL from an Eiffel
system.

• You can also generateCOM components(for Microsoft’s Component
Object Model) and even XYZ components for execution on the XYZ
virtual machine.

The next sections describe these mechanisms in detail, after a brief review
of the proper role of foreign software elements in the development process.

31.3 WHEN TO USE EXTERNAL SOFTWARE

Why use external software? After all, Eiffel is a complete programming
language, and many systems do not need any external software.

Four cases, however, may require interfacing Eiffel classes with
software written in other languages:

1 • Reuse of older software elements.

2 • Use of libraries written in other languages.

3 • Access to low-level platform-dependent properties.

4 • Use of Eiffel as a tool for re-engineering of software.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.3816
Both cases1 and 2 result from the obvious observation that Eiffel
developments do not proceed alone in the software world, but must be
combined with other products. In case1, an organization may want to reuse
previously developed elements as part of a new system. In case2, the
system will use existing primitives providing facilities in a specialized area
— graphics, databases, user interfaces, expert systems...

In case3, you need to access primitives which depend on the hardware
or the operating system, available through external routines.

In case4, an older non-Eiffel system must be converted to more modern
software technology, but you want to proceed in stages. A possible strategy
is to start by isolating appropriate abstractions in the existing software, and
to build classes around them; the architecture of the resulting system will
be expressed in Eiffel, using the structural mechanisms described in this
book — classes, information hiding, genericity, inheritance, assertions —
but the actual computations will still be performed by external routine
calls. Here Eiffel serves as a packaging mechanism more than as a down-
to-details programming language. This effort may be a first step towards
more thorough re-engineering of the software, encompassing the internals
as well as the structure. This is not an all-or-nothing decision: you may
redo some of the components in Eiffel, for example the most advanced or
innovative ones, and leave some others in the original language if they are
stable and satisfactory.

The external facilities, detailed in the rest of this chapter, include:

• The possibility of specifying a routine asExternal, to indicate that it is
written in another language and compiled separately; this notion will
occupy the major part of the discussion.

• As a special case of theExternalmechanism, the C-Eiffel Interface
Sublanguage, and the corresponding C++ facilities, enabling Eiffel
software to take advantage of special foreign facilities such as C’s
macros and C++’s constructors (next section).

• TheLegacy++ tool for automatic Eiffel wrapping of C++ classes.

• Cecil, the C-Eiffel Call-In Library, allowing other languages to use
almost all of Eiffel’s facilities. (The initial C is in the acronym for
historical reasons, but Cecil can be used from any other language.)

§31.4 REGISTERED LANGUAGES AND THE ROLE OF C 817
31.4 REGISTERED LANGUAGES AND THE ROLE OF C

Eiffel’s external facilities depend in part — especially in the call-in case —
on the properties of external languages; short of covering every
programming language in existence, the specification cannot be
exhaustive. It includes explicit knowledge about a few languages, said to
be theregistered languages, currently C, C++, Java, Fortran 95 and Eiffel
itself. Any Eiffel compiler must support an interface to the registered
languages, as described in this chapter.

Including Eiffel among the registered “foreign” languages is more a matter
of completeness than of obvious necessity. Although in principle this allows
you to integrate previously compiled Eiffel classes as if they were external
software,better way are usually available; a good Eiffel environment should
be able to treat such classes like other Eiffel classes and perform all the
relevant type checking. Another possible use of Eiffel as registered foreign
language is to integrate Eiffel classes compiled with another compiler,
although better interoperability mechanisms are desirable.

Among the registered languages,C, and its more recent variantC++, play
a particular role for a number of technical, political and historical reasons:

• Since the mid-nineteen seventies, C has become the low-levellingua
francaof computing, available on almost all platforms and known to a
growing majority of programmers.

• Almost all dominant operating systems are written in C sometimes with
more recent additions in C++.

• Most programs — from operating systems and database management
systems to graphical libraries, object request brokers and other
component-based development tools, development environments and
many others — provide an Application Programming Interface (API)
for C programs if they provide an API at all. When they offer more than
one API, the one for C is often the reference. So a carefully engineered
C binding is critical for many industrial developments.

• C compilers have benefited from wide use and several decades of
research on compilation technology, aimed at producing efficient code.

• Although C has undergone changes, source code portability is
reasonably good for programmers who follow some basic precautions.

• Many Eiffel implementations, such as ISE Eiffel, compile to C, taking
advantage of the preceding properties, in particular wide availability,
portability, and efficient code generation.

• A high-level language, Eiffel needs a good intermediary to access
facilities from the machine and the operating system. C, more effective
as a tool for use byprogramsthan by humans, plays that role quite well.
Libraries such as EiffelBase go to C when they occasionally must get
out of the high-level language framework to access the nuts and bolts of
the machine. C then plays for the Eiffel programmer exactly the same
role that assembly language plays for the C programmer.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.5818
For all these reasons a special set of facilities — almost a mini-language
within Eiffel, the C-Eiffel InterfaceSublanguage — is available for those
programmers who need fine-tuned access to C mechanisms from Eiffel.
The Sublanguage allows you for example to use C macros, “structs”,
include files, C dynamic link libraries (DLLs), or even to includeinline C
code in Eiffel routines.

Similar possibilities alsoexist for C++, giving Eiffel access to the
components of C++ classes — member functions, constructors, destructors
— and complemented by the automatic Legacy++ wrapper.

The role of these facilities is quite clear: to take the best advantage of C
software, while writingas little C as possible. Eiffel programmers prefer
writing Eiffel. They know that the world isn’t all Chanel perfumes and
candlelight dinners, and that once in a while one must tender to the more
mundane necessities of life. But then they expect the Eiffel compiler,
through the Eiffel-C interface, to do much of the grunt work, and limit their
use of C to the indispensable minimum.

31.5 BASICS OF EXTERNAL ROUTINES

We now start the study of the basic foreign affairs construct,External.

As seen in thediscussionof routines, theRoutine_bodyof anEffective
routine, instead of using the more commonInternalform (beginning with
do or once), may be of theExternalform, which indicates that a call to the
routine is a call to some outside software component.

An Externalclause begins with the keywordexternal, followed by a
Manifest_stringindicating the language in which the routine is written. It
may also contain anExternal_namesubclause, beginning withalias, giving
the routine’s name in its language of origin (or, in the case of inline C
routines, the actual C text).

Here is an example of external routine

f_close(filedesc: INTEGER): INTEGER
-- Close file associated withfiledesc;
-- record status in result.

require
descriptor_exists: exists(associated_file(filedesc))

external
"C"

ensure
zero_iff_ok:

(Result= 0) = closed(associated_file(filedesc))
end

→“THE CINTERFACE
SUBLANGUAGE”,
31.11, page 832.

→ “THE C++
INTERFACE
SUBLANGUAGE”,
31.12, page 837.

← Routine_body was
discussed in8.5, page
218. The syntax is on
page218. The syntax
for External appeared
on page819; it is repro-
duced below.

§31.5 BASICS OF EXTERNAL ROUTINES 819
As this example shows, an external routine may have aPreconditionand
a Postcondition.

Function f_closeperforms a certain action and returns a status report
through its result. This technique is not normally employed by Eiffel
functions, which should instead record the status in an attribute; in
communicating with external software, however, there may be no better way.

You may use anExternal_namesubclause, beginning withalias, to
refer to an external routine through a name other than the one it has in the
foreign language. For example:

The alias specifies that any call tofile_statuswill cause a call to the C
function of name_fstat. There are two possible reasons for such a subclause:

• The native name may be legal in the foreign language but not in Eiffel,
as in thefile_statusexample where the function name_fstat, legal in C,
is illegal in Eiffel since it starts with an underscore.

• Even if the foreign name abides by Eiffel rules, it may violate the
naming conventions of your project.

In the absence of analiassubclause, the feature name passed to the external
software is thelower name of the feature.

So even if you give to an external feature a name following the letter case
conventions of another language, such asSetValuefor an external routine
implemented in C, the name passed to C will besetvalue. Even if it is
implemented as an external routine, an Eiffel feature should follow Eiffel
conventions: call itset_value and usealias "SetValue".

Here is the basic syntax ofExternal routine bodies:

file_status(filedesc: INTEGER): INTEGER
external

"C"
alias

"_fstat"
end

External routines
External =∆ external External_language[External_name]

External_language=∆ Unregistered_language |
Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

← The lower name is
the name all in upper
case. See“TEXTUAL
CONVENTIONS”,
2.13, page 101.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.5820
Although you may intermix routines of theExternalandInternalforms,
it is common practice to separate the two categories, grouping external
routines into their ownFeature_clause. In some cases you will even find
“wrapper” classes consisting mostly or entirely of external routines,
encapsulating a set of external facilities into an abstraction usable directly
by the rest of the Eiffel software.

TheExternalclause is the mechanism that enables Eiffel to interface with
other environments and serve as a “component combinator” for software
reuse and particularly for taking advantage of legacy code.

By default the mechanism assumes that the external routine has the
same name as the Eiffel routine. If this is not the case, use an
External_nameof the form alias "ext_name". The name appears as a
Manifest_string, in quotes, not an identifier, because external languages
may have different naming conventions; for example an underscore may
begin a feature name in C but not in Eiffel, and some languages are case-
sensitive for identifiers whereas Eiffel is not.

Instead of calling a pre-existing foreign routine, it is possible to include
inline C or C++ code; thealiasclause will host that code, which can access
Eiffel objects through the arguments of the external routine.

The language name (External_language) can be an
Unregistered_language: a string in quotes such as"Cobol". Since the
content of the string is arbitrary, there is no guarantee that a particular Eiffel
environment will support the corresponding language interface. This is the
reason for the other variant,Registered_language: every Eiffel compiler
must support the language names"C", "C++" and dll . Details of the
specific mechanisms for every suchRegistered_language appear below.

Some of thevalidity rules below include a provision, unheard of in other
parts of the language specification, allowing Eiffel language processing
tools to rely onnon-Eiffel toolsto enforce some conditions. A typical
example is a rule that requires an external name to denote a suitable foreign
function; often, this can only be ascertained by a compiler for the foreign
language. Such rules should be part of the specification, but we can’t
impose their enforcement on an Eiffel compiler without asking it also to
become a compiler of C, C++ etc.; hence this special tolerance.

The generalsemanticsof executing external calls appeared as part of the
general semantics of calls. The semantic rules of the present discussion
address specific cases, in particular inline C and C++.

§31.6 EXECUTING AN EXTERNAL CALL 821
31.6 EXECUTING AN EXTERNAL CALL

Before exploring the varieties of foreign interfacing mechanisms, we must
understand the precise semantics of external calls, previewed in the general
discussion of call semantics. Only three aspects differ from the semantics
of Internal routines:

1 • Actual-formal argument association.

2 • Value to be returned, if the routine is a function.

3 • Execution of theRoutine_body

The next section will cover items1 and2. Item3, the simplest, was handled
by the generaldiscussion of call semantics. Quoting: --- CHECK ----

Heredf is the version off to be applied to the given target, deduced from
the rules of call semantics (dynamic binding).

In addition to its official arguments, an Eiffel routine has access to the
curr entobject– the target of the current call. This important property does
not necessarily hold for a foreign routine:

• If the foreign routine was written independently of Eiffel, it does not use
the current object. Accordingly, the call, as specified by the above
semantics, will not pass the current object. A typical case is a call to a
primitive of a pre-existing graphics or database package.

• Another case is that of foreign routines specifically written for the needs
of an Eiffel application. Such routines may need access to the current
object; you must then explicitly passCurrent as one of the arguments.

31.7 ARGUMENT AND RESULT TRANSMISSION

The semantics of passing arguments, and of returning the result for a
function, raises the problem of attachment between Eiffel values and
foreign entities.

For internal routines, thesemanticrule was simple, being deduced (like
the semantics ofAssignmentinstructions) from the semantics of the direct
reattachment mechanism: at call time, each formal argument becomes
attached to the corresponding actual; at return time, the result of a function
is the final value attached to the function’sResult entity.

The semantic specification of a direct reattachment allowed flexible
combinations of expanded and reference types in the source and target.
Here is the table which gave the effect in all four possible cases:

If df is an external routine, the effect of the call is to execute that
routine on the actual arguments given, if any, according to the
rules of the language in which it is written.

← “PRECISE CALL
SEMANTICS”, 23.17,
page 643.

←Thenotionofcurrent
object was defined on
page641.

← “Curr entobjectand
routine”, page 640.

← “PRECISE CALL
SEMANTICS”, 23.17,
page 643. The seman-
tics of direct reattach-
ment was in22.7,page
585.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.7822
This specification takes both types – source and target – into account,
particularly in cases 2 and 3 where one is expanded and the other is not.

For external calls, however, we cannot afford such semantic flexibility,
since the target is the formal argument, and we have no way of knowing
how the foreign routine has declared it. The semantic definition must rely
on properties of the actual argument alone.

To depart as little as possible from the rules for internal routines, the
convention for external routines, follow the semantics of direct
reattachment, interpreted as if each formal argument were declared with
exactly the same type as the corresponding actual.

This implies that only cases 1 and 4 of the above table make sense:
either the actual argument is of a reference type, in which case the foreign
routine will receive a reference, or it is of an expanded type, in which case
the foreign routine will receive a copy of the attached object.

For the result of a function, the rule is similar: depending on the type
declared for the function’s result, the Eiffel side will expect the foreign
routine to return a reference or an object.

Clearly, using foreign routines which will handle Eiffel values requires
care. You must trust that the routine can manipulate the values it obtains
from the Eiffel side, and, if it is a function, produces results which conform
to what you expect. So the types of arguments and result must be common
to Eiffel and the external language.

Forbasictypes, this property depends on both the foreign language and
its implementation.

For other types, no major problem will arise for a foreign routine which,
given an object or reference, just needs to do a “store and forward”: pass
on the value to other routines, possibly keeping a copy in a variable of a
suitable type. To do anything more with an Eiffel object, the routine must
access its internal structure; it may avoid relying on implementation-
dependent properties of object representation by using one of the following
two portable mechanisms:

• The features of classINTERNALfrom EiffelBase provide access to the
internal properties of objects (such as the various field values) with an
implementation-independent interface.

SOURCE→ Reference Expanded
TARGET↓
Reference [1] Reference

reattachment
[3] Clone

Expanded [2] Copy (fails if source
void)

[4] Copy

← This table originally
appeared on page588.

This also applies to
Currentif it isoneof the
actual arguments: with
the semantics ofCur-
rent, defined by case2,
page644, what is
passed is a reference to
the current object if the
enclosing class is non-
expanded, otherwise
the current object itself.

→ The basic types
(chapter30) are
BOOLEAN, CHARAC-
TER, INTEGER,
REAL, their sized vari-
ants andPOINTER.

§31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE 823
• The Cecil library, described at the end of this chapter, allows foreign
languages to access Eiffel features.

31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE

In some cases a foreign routine may need to call Eiffel routines, or to access
fields of Eiffel objects.

Foreign access to Eiffel routines may be necessary in particular for the
implementation of so-calledcallback mechanisms as they appear in such
areas as user interfaces, graphics and databases. Callback enables routines
to “plant” the address of one or more routines into another routiner at
initialization time. Later, at various places in its own algorithm,r will call
the planted routines. Because planting is dynamic, the text ofr does not
show what actual routines will be called at the corresponding steps; it only
contains “holes” where different applications may plant different routines.
Often, r is a high-level loop, known as anevent loop, which will
repeatedly execute ritual actions (such as reading user input or updating the
screen) through the planted routines.

In this description, you will have recognized the notion ofiterator
discussed in the presentation of inheritance and deferred features; indeed,
the Eiffel techniques introduced for iterators, relying on deferred routines
and dynamic binding, offer simpler, safer and more elegant alternatives to
call-back. But you may need to use an existing call-back mechanism
implemented in another language, with individual planted operations to be
provided by Eiffel features. So you need the ability to pass to an external
routine the address of an Eiffel feature.

The supporting construct is theAddressform of Actual argument. An
Address, introduced as part of the syntax forActualsin the discussion of
calls, is simply an actual argument of the form

Here feature_or_parenthesized_expressioncan be the name of an Eiffel
feature, a parenthesized expression such as(a + b), as well asCurrentor,
in a function,Result. In all cases what is passed is an address. For a feature
this enables the foreign software to call the feature; for an expression it
gives it access to a location containing the value of the expression. The
latter is useful for a foreign routine that expects not a value but an address
containing that value.

$ feature_or_parenthesized_expression

← On how to imple-
ment a call-back mech-
anism in Eiffel, see
10.15, page 271.

← The syntax forActu-
als appeared on page
618.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.8824
This Addressform of Actual argument is only useful for passing such
addresses to external routines.Internal (Eiffel) routines do not need it,
since thedynamic binding mechanism provides a better way to tell a
supplier what feature it should call at a certain stage of the supplier’s
execution: you just pass the supplier an entity attached to a certain object;
the dynamic type of that object, which may vary from one execution to the
next, determines the applicable routine versions.

Here is the syntax for anAddressargument:

Feature_nameis the most common case.

As to the validity constraint, we saw it as part of theArgumentrule,
which makes$ f valid as actual argument to a call if and only iff, when an
Extended_feature_name, is the final name of a feature of the class.

An Addressargument, as noted, describes the address of a routine or
expression. It is subject to a constraint:

How do we describe an “address” in Eiffel? A basic type is available for
that purpose:POINTER, described by a Kernel Library class. Hence the
type rule:

As a consequence, the declaration for the corresponding formal argument
in the receiving routine must be of the form

or the corresponding declaration in a foreign language.

Address=∆ "$" Address_mark

Address_mark=∆ Variable

Address rule VZAR

An Addressis valid if and only if its Address_markis of a
reference type.

An expanded type would not make sense here as its values have copy rather
than reference semantics.

Address Type rule

An argument of theAddress form is of typePOINTER.

ir2 (...; from_eiffel: POINTER; ...) is ...

← On dynamic bind-
ing, see23.12 and
23.13, starting on page
630.

← Page626.

§31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE 825
Note that this routine can indeed be anInternalEiffel routine as well as an
external one. Although you might expectAddressactual arguments to be
permitted only in calls to external routines, there isno suchconstraint: it
may be useful for anInternalroutineir1 to pass the address of a routiner
to another internal routineir2, so thatir2 may itself passr to an external
routineer. Were this not permitted,ir1 would need to caller directly, which
may not be the desired scheme.

We must preventir2 from performing any operation on its argumentr
other than passing it along to another routine. This simply follows from the
properties of classPOINTER, which has no exported features except for the
universal, harmless featurescopy, clone, equaland consorts fromANY. So
all you can do on an argument of typePOINTER— other than copying it,
cloning it, comparing for equality and so on — is to pass it on to someone else.

--- REWRITE (MOSTLY REMOVE) THE REST OF THIS SECTION

Now the semantics of anAddressargument$ f being passed to a routine
r. We must distinguish between the possible cases forf:

1 • If f is anExtended_feature_name(as noted, the most common case), the
corresponding feature have a versiondf applicable to the current object,
taking into account possible renaming and redefinition.df is the feature
that a callx.f (...) would execute, according to the rules of dynamic
binding, whenx is attached to an object of the current type. The value
passed tor is the address ofdf. This applies to both routines and variable
attributes; for an attribute, the call will pass the address of the field
corresponding todf in the current object. Clearly, this is useful only if
the foreign language can deal with addresses of fields and routines.

2 • If f is a constant attribute or aParenthesizedexpression, what is passed
to the routine is the address of a memory location containing its value.

3 • If f is Current, the value passed is the address of the current object.

Address semantics

The value of anAddressexpression is aPOINTERenabling
foreign software to access the associatedVariable.

The manipulations that the foreign software can perform on the
corresponding pointer depend on the foreign programming language. It is
the implementation’s responsibility to ensure that such manipulations do
not violate Eiffel semantic properties.

The hypothetical con-
straint, an addition to
the argument validity
rule of page626,would
require the called rou-
tinedf to be external.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.8826
4 • If f is Result, the value passed is the address used to store the result to be
returned by the enclosing function.

In case1, wheref denotes a feature, foreign software elements will be able
to call that feature. Such calls require one extra argument, appearing at the
first position and corresponding to the target of the call. Assume

Calls tosome_routine in Eiffel texts may be qualified or unqualified:

Assume now that a call to an external routineext makes the address of
some_routine available to a foreign language:

Let sr be the formal argument forsome_routinein the foreign routine
corresponding toext. The foreign routine will callsome_routinewith one
extra actual argument, appearing at the first position:

The extra argument denotes the call’s target, which in Eiffel appeared
before the dot (as in the case oftarget) or not at all (as withcurrent_object).
It denotes an object or object reference.

The above calls tosr from a foreign language are examples of what what
the beginning of this chapter defined as thecall-in case: exercising Eiffel
mechanisms from the outside. To take this scheme to its full realization the
foreign software needs:

• A way to manipulate Eiffel objects safely (protecting them, in
particular, from the Eiffel garbage collector).

• A clear correspondence between the types of Eiffel and those of the
foreign language.

• An adequate calling mechanism for features.

some_routine(a1: A; b1: B) is...

target.some_routine(x, y)
some_routine(x, y)

ext(..., $ some_routine, ...)

sr (target, x, y)
sr (current_object, x, y)

These calls tosrappear
here inEiffelsyntax,but
the convention for calls
in the foreign language
may be different.

§31.9 SPECIAL INTERFACE SUBLANGUAGES 827
The Cecil library, describedlater in this chapter, provides all of this. But
we are not ready yet to move on to call-in facilities, since we are not
finished with call-out. In addition to the language-independent call-out
constructs just studied, Eiffel’s external interface offers special support for
C and C++ — languages important enough to deserve mini-sublanguages
of their own in the Eiffel syntax forExternal features.

31.9 SPECIAL INTERFACE SUBLANGUAGES

We saw that the syntax for declaring a routine asExternal involves a
language name:

The External_languagemay be anUnregistered_language— a plain
Manifest_stringdescribing an arbitrary language; this is useful only if that
language is known to your specific Eiffel compiler, or uses default
argument passing conventions that will work with Eiffel. But it may also be
aRegistered_language, covering DLL routines, which may come from any
language, and the four languages guaranteed to be handled properly:

IL_external refers to the Intermediate Language of the Microsoft
.NET framework.

The cases of ,C_external, C++_externalandDLL_externalgive rise to
special sublanguages with a host of detailed possibilities, reviewed in the
next three sections. Note that all the C possibilities are also available for
C++, so in practice the third sublanguage is a superset of the second.

31.10 GENERAL SUBLANGUAGE MECHANISMS

The specific sublanguages —C_external, C++_externalandDLL_external
— offer common techniques for specifying certain elements:

External languages
External =∆ external External_language[External_name]

External_language=∆ Unregistered_language | Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

Registered languages
Registered_language=∆ C_external | C++_external|

DLL_external

→ “THE CECIL
LIBRARY”, 31.16,
page 855.

←Thissyntaxappeared
first on page819.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.10828
• Routine signatures.

• Files needed to use the external software, for example C include files or
the files containing a DLL.

• Types used to establish a precise correspondence between the type
systems of Eiffel and those of other languages (for example, between an
Eiffel INTEGER and a Cint).

Before going into the specific sublanguages, let us review these shared
facilities in turn.

Specifying an external routine signature

Since external languages have their own type systems, you may need to
specify that a certain routine expects certain types for its arguments. In
languages such as C and C++ that support “casts” (forced conversions),
these types will be used for casting the arguments.

To specify types in the relevant sublanguages you may include an
External_signaturein the string specifying the language, as in the C
external function declaration

TheExternal_signature part in this example is

indicating that the associated C function expects two arguments of the C
typeint (integer). The names listed must be types of the external language,
such asint for a C routine.EIF_INTEGER_32is a type used for the
correspondence between Eiffel and C types, as explained in alatersection.

It doesn’t matter thatint and EIF_INTEGER_32are not valid Eiffel type
names: remember that anExternal_signaturesuch as the above, like
everything else in the sublanguages under discussion, appears in a string.

As you will have noted, theExternal_signatureonly lists types for
arguments; for a function, you cannot specify a type, because the compiler
will make sure that the function’s result is converted back to the result type
specified for the Eiffel routine. (In this respect the construct name
External_signatureand the keywordsignatureare a little misleading, since
elsewhere in the description of Eiffel the word “signature” covers both
result and argument types, but it still seems to be the best name here.)

your_external(a, b: INTEGER): INTEGER
external

"C signature (int, int)"
end

(int, EIF_INTEGER_32)

→ “Controlling the
Eiffel-C type corre-
spondence”,page836.

§31.10 GENERAL SUBLANGUAGE MECHANISMS 829
The syntax ofExternal_signatureis straightforward:

TheExternal_signature, if at all present, must cover all arguments:

External signatures
External_signature=∆ signature[External_argument_types]

[: External_type]

External_argument_types=∆ "(" External_type_list ")"

External_type_list=∆ { External_type "," …}*

External_type=∆ Identifier

External Signature rule VZES

An External_signaturein the declaration of an externalroutiner
is valid if and only if it satisfies the following conditions:
1 • Its External_type_listcontains the same number of elements

asr has formal arguments.

2 • The final optional component (: External_type) if present if
and only ifr is afunction.

A languageprocessingtool may delegate enforcement of these
requirements to non-Eiffel tools on the chosenplatform.

The rule does not prescribe any particular relationship between the
argument and result types declared for the Eiffel routine and the names
appearing in theExternal_type_listand the finalExternal_typeif any, since
theprecisecorrespondence depends on foreign language properties beyond
the scope of Eiffel rules.

The specification of a non-external routine never includes C-style
empty parenthesization: for a declaration or call of a routine without
arguments you writer, not r (). The syntax ofExternal_argument_types,
however, permits() for compatibility with other languages’ conventions.

The last part of the rule allows Eiffel tools to rely on non-Eiffel tools if
it is not possible, from within Eiffel, to check the properties of external
routines. This provision also applies to several of the following rules.

→ On this correspon-
dence in the C case, see
“Controlling the Eiffel-
C type correspon-
dence”, page 836.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.10830
Specifying external files

To use an external routine, you may need to provide one or more file names:

• A C or C++ function may rely on some “include files”; for example, the
type EIF_INTEGER_32used byyour_exampleabove must have a C
definition, to which the C function must have access. It will find it in an
include file, which you may specify from the Eiffel side.

• To use an external routine from a DLL, you must indicate the file that
contains the DLL.

An External_file_usepart, starting withuse, enables you to say which files
you need. Here is its application to the preceding example, assuming you
want functionyour_external to have access to two C include files:

This example and several that follow use a multi-lineVerbatim_string, written
between an opening"[and a closing%" . We could also use a plain string
without this convention, but then the internal double quote signs", in the
specification of the path name, would have to be written%”; also, interrupted
lines would need to finish with a%, and continuation lines to start with a%.

Here is the syntax ofExternal_file_use:

External signature semantics

An External_signaturespecifies that the associated external routine:
• Expects arguments of number and types as given by the

External_argument_typesif present, and no arguments otherwise.

• Returns a result of theExternal_typeappearing after the colon,
if present, and otherwise no result.

your_external(a, b: INTEGER): INTEGER
external "[

C
signature (int, int)
use<stdio.h>, "/path/user/her_include.h"

]"
end

External file use
External_file_use=∆ useExternal_file_list

External_file_list=∆ { External_file "," …}*

← “MANIFEST
STRINGS”,29.8,page
784.

§31.10 GENERAL SUBLANGUAGE MECHANISMS 831
An External_filerefers to file and path names. Different operating systems have
differentconventions todenotepaths; toavoidworryingabout thesedifferences,
the examples of this chapter assume the Unix/Linux style using forward slash
characters, as in/path/usr/file.c. This convention is also understood by most C
compilers on Windows, even though the native Windows style uses backslash
characters, as ind:\path\usr\file.c. VMS has its own notation.

The difference between the two forms ofExternal_file is that a
C_user_file, of the form "path_name", denotes a file through its exact
location in the file system, whereas aC_system_file of the form
"<file_name>" is relative to the location of standard include files — such
asstdio.h for standard C input and output — in the C installation.

In either case, any files listed must exist and have the expected contents:

External_file=∆ External_user_file |External_system_file

External_user_file=∆ ' " ' Simple_string' " '

External_system_file=∆ "<"Simple_string ">"

As the syntax indicates, you may specify as many external files as you like,
preceded byuseand separated by commas. You may specify two kinds of files:

• “System” files, used only in a C context, appear between angle brackets
< > and refer to specific locations in the C library installation.

• The name of a “user” file appears between double quotes, as in"/path/
user/her_include.h", and will be passed on literally to the operating
system. Do not forget, when using double quotes, that this is all part of
an Eiffel Manifest_string: you must either code them as%" or, more
conveniently, write the string as aVerbatim_string, the first line
preceded by"[and the last line followed by]" .

External File rule VZEF

An External_fileis valid if and only if itsSimple_stringsatisfies
the following conditions:
1 • When interpreted as a file name according to the conventions

of the underlyingplatform, it denotes a file.

2 • The file is accessible for reading.

3 • Thefile’scontentsatisfiestherulesoftheapplicableforeignlanguage.

A languageprocessingtool may delegate enforcement of these
conditions to non-Eiffel tools on the chosenplatform.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.11832
31.11 THE C INTERFACE SUBLANGUAGE

The first special sublanguage that we study,C_external, addresses the
needs of applications developers who need sophisticated access to C
mechanisms (also provided for C++). You can of course limit yourself to
the mechanisms described so far, simply declaring an external routine as
external "C". But to exert more control on how your Eiffel software uses
C mechanisms, you may use a whole slate of special C interface facilities:

• You can specify that a certain external routine is implemented on the C
side as amacro, saving the overhead of function calls.

• You can use anExternal_signature, as studied above, to force a certain
type signature (“prototype”) for the arguments and result of the C
function in the Eiffel-generated C code.

• You can request specificinclude filesfor certain C functions, using the
External_file_useconstruct just studied.

• You can directly access C structures (“structs”) and their components.

• You can even include the C code of an external routine in line, removing
the need to maintain two separate source files, an Eiffel class file and a
C compilation unit (.c file).

The next paragraphs describe these possibilities. They are complemented
by the C++-specific facilities of the following section.

Condition3means for example that if you pass an include file to a C function
the content must be C code suitable for inclusion by a C “include” directive.
Such a requirement may be beyond the competence of an Eiffel compiler,
hence the final qualification enabling Eiffel tools to rely, for example, on
compilation errors produced by a C compiler.

The “conventions of the underlying platforms” cited in condition1
govern the rules on file names (in particular the interpretation of path
delimiters such as/ and \ on Unix and Windows) and, for an
External_system_filename of the form<some_file.h>, the places in the
file system wheresome_file.h is to be found.

External file semantics

An External_file_usein an externalroutine declaration specifies
that foreign language tools, to process the routine (for example to
compile its original code), require access to the listed files.

§31.11 THE C INTERFACE SUBLANGUAGE 833
Syntax specification

Here is the syntax specification for the C interface sublanguage. First we
remind ourselves of the context:

Now theC_external case ofRegistered_language:

External languages
External =∆ external

External_language[External_name]

External_language=∆ Unregistered_language |
Registered_language

Unregistered_language=∆ Manifest_string

External_name=∆ aliasManifest_string

Registered_language=∆ ... | C_external | … Others…

C externals
C_external=∆ ’' " ' C

’[inline]
[External_signature]
[External_file_use]
' " '

← This appeared first
on page819.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.11834
We now explore these capabilities, and look further into how you can
match Eiffel types with their C counterparts.

Specifying C code inline

In all the preceding mechanisms, the C code resides outside of the Eiffel
text, in its own separate files. Although this separation of elements written
in different languages is usually appropriate, you may not like the idea of
having to look after different places, and find it easier to manage your
software by keeping everything at the same place. It is indeed possible to
include C code within the declaration of an external routine. This way you
don’t need to include any external C file in your system.

This possibility is appropriate mostly for short C routines concentrated
in “wrapper” classes providing Eiffel interfaces to C libraries.

The C_externalmechanism makes it possible, from Eiffel, to use the
mechanisms of C. The syntax covers two basic schemes:

• You may rely on an existing C function. You will not, in this case, use
inline. If the C function’s name is different from the lower name of the
Eiffel routine, specify it in thealias (External_name) clause; otherwise
you may just omit that clause.

• You may also write C codewithin the Eiffel routine, putting that code
in thealias clause and specifyinginline.

In the second case the C code can directly manipulate the routine’s formal
arguments and, through them, Eiffel objects. The primary application
(rather than writing complex processing in C code in an Eiffel class, which
would make little sense) is to provide access to existing C libraries without
having to write and maintain any new C files even if some “glue code” is
necessary, for example to perform type adaptations. Such code, which
should remain short and simple, will be directly included and maintained
in the Eiffel classes providing the interface to the legacy code.

Thealiaspart is aManifest_string of one of the two available forms:

• It may begin and end with a double quote" ; then any double quote
character appearing in it must be preceded by a percent sign, as%" ;
line separations are marked by the special code for “new line”,%N .

• If the text extends over more than one line, it is more convenient to use
a Verbatim_string: a sequence of lines to be taken exactly as they are,
preceded by"[at the end of a line and followed by]" at the beginning
of a line.

In this Manifest_string, you may refer to any formal argumenta of the
external routine through the notation$a (a dollar sign immediately
followed by the name of the argument). Fora you may use either upper or
lower case, lower being the recommended style as usual.

← See“MANIFEST
STRINGS”,29.8,page
784.

§31.11 THE C INTERFACE SUBLANGUAGE 835
A C_specialpart may specifyinline, optionally followed by the usual
specifications of a C signature and include files. This indicates that the
actual C text appears in thealiasclause (External_name), which is required
in this case. Here is an example including both an explicit signature and an
include file (which might contain the declaration of a C variablecvar):

TheManifest_stringappearing in thealiasclause is Ccode meant tobe passed
on exactly as it is (except for the replacement of elements in quotes, as
explained next) to a C compiler. The most convenient way to express it is to
use, as here, aVerbatim_string, so that all the lines between the initial"[and
the final]" are plain C text, with no need for special codes to represent
characters such as quotes, or to mark the beginning and end of a line.

The only exception to the verbatim interpretation of the string as C code
is the convention allowing the C code to access entities from the enclosing
Eiffel text. Any occurrence in thealias part of a substring of the form
$eiffel_entity, whereeiffel_entityis a formal argument of the routine or an
attribute of the enclosing class, denotes the corresponding Eiffel entity,
which the Eiffel compiler will replace by the appropriate access code for
the benefit of the C compiler.$x and$y in the above extract are examples
of this facility; they denote the function’sx andy arguments.

This use of the$ operator is consistent with theAddressform of arguments,
serving to pass Eiffel features to external languages.

Note thateiffel_entitymust follow the$ sign with no intervening space.
Any occurrence in the C text of a$ sign not immediately followed by an
Eiffel entity is considered C text to be taken verbatim.

an_inline_function(x,y: INTEGER): INTEGER
external "[

C
inline
use<stdio.h>, /path/user/her_include.h

]"
alias "[

if ($x > cvar) {
some_c_function ($y, cvar++);

}
]"

end

Warning: the content of
thealias clause repre-
sents C, not Eiffel.

← “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 823.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.11836
Here is the validity rule for inline C functions:

Controlling the Eiffel-C type correspondence
In passing arguments to C functions, and getting results back into Eiffel
entities, you need to know exactly how the types will match. Eiffel provides
(through the C library of the supporting environments) a set of predefined
C types used, by default, to represent the types of Eiffel values passed to
and from external C routines. If you are writing external C functions
specifically for use in connection with Eiffel software, you should use these
types (obtained from a standard include file provided with the Eiffel
delivery) to declare the functions’ arguments and results.:

C external rule VZCC

A C_externalfor the declaration of an externalroutiner is valid
if and only if it satisfies the following conditions:
1 • At least one of the optionalinline and External_signature

components is present.

2 • If the inline part is present, the external routine includes an
External_namecomponent, of the formaliasC_text.

3 • If case2 applies, then for any occurrence inC_text of an
Identifiera immediately preceded by a dollar sign$ the lower
name ofa is the lower name of a formal argument ofr.

C Inline semantics

In an externalroutineer of the inline form, anExternal_nameof
the formaliasC_textdenotes the algorithm defined, according to
the semantics of the C language, by a C function that has:
• As its signature, thesignature specified byer.

• As its body,C_textafter replacement of every occurrence of$a,
where thelower name ofa is the lower name of one of the
formal arguments ofer, bya.

Eiffel type Corresponding C type with declaration

BOOLEAN typedefunsignedcharEIF_BOOLEAN

CHARACTER typedef unsigned charEIF_CHARACTER

INTEGER_8 typedef unsigned charEIF_INTEGER_8

INTEGER_16 (16-bit integer) EIF_INTEGER_16

INTEGER (32-bit integer) EIF_INTEGER_32

Eiffel to C
default type
correspondence

§31.12 THE C++ INTERFACE SUBLANGUAGE 837
The C type definitions given in parentheses are platform-dependent. For
example “32-bit integer” will betypedef longon many platforms, but not all.

This will not work, however, if you are using pre-existing C functions,
written without knowledge of Eiffel. In such a case the declarations will not
match those generated by the Eiffel compiler using the correspondence
above, and you may get C compilation errors. Fortunately, the type
checking of C is more bark than bite. You can easily pacify it by “casting”
the type of arguments and results, that is to say, specifying explicit types.

It would be unpleasant to have to do the casting manually on the C code
(if only because we are, as noted, trying through all the facilities described
here to limit the amount of C programming to be done). The
External_signaturefacility is here to help. It allows you to specify the exact
set of casting types for the arguments and result, so that the C compiler will
find what it expects. Here is a typical use:

This example assumes that the C function requires arguments of the C type
int (integer) and returns a result also of that type, which must be cast into
anEIF_INTEGER_32.

31.12 THE C++ INTERFACE SUBLANGUAGE

In addition to the mechanisms available to all external routines, all the C-
specific techniques of the previous sections are available for use with C++
code. So is the Cecil library described in a later section and allowing
external software to call Eiffel. In addition, the C++ interface sublanguage
offers a number of specific mechanisms:

• You can create instances of C++ classes from Eiffel, using the C++
“constructor” of your choice.

• You can apply to these objects all the corresponding operations from the
C++ class: executing functions (“methods”), accessing data members,
executing destructors.

INTEGER_64 (64-bit integer) EIF_INTEGER_64

REAL_32 (32-bit float) EIF_REAL_32

REAL (64-bit integer) EIF_REAL

POINTER typedef char∗ EIF_POINTER

Any reference type typedef char∗ EIF_REFERENCE

your_external(a, b: INTEGER): INTEGER
external

"C (int, int): EIF_INTEGER_32"
end

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.12838
• You can use theLegacy++ tool to produce an Eiffel “wrapper class”
encapsulating all the features of a C++ class, so that the result will look
to the rest of the Eiffel software as if it had been written in Eiffel.

The syntax specification

The C++-specific mechanisms come under the constructC++_external,
one of the variants ofRegistered_language, itself one of the possibilities for
External_language.

Conditions on C++ features

C++ externals
C++_external=∆ ' " ' C++

inline
[External_signature]
[External_file_use]
' " '

As in the C case, you may directly write C++ code which can access the
external routine’s argument and hence Eiffel objects. Such code can,
among other operations, create and delete C++ objects using C++
constructors and destructors.

Unlike in the C case, this inline facility is theonly possibility: you
cannot rely on an existing function. The reason is that C++ functions — if
not “static” — require a target object, like Eiffel routines. By directly
writing appropriate inline C++ code, you will take care of providing the
target object whenever required.

C++ external rule VZC+

A C++_externalpart for the declaration of an externalroutiner is
valid if and only if it satisfies the following conditions:
1 • The external routine includes anExternal_namecomponent, of

the formaliasC++_text.

2 • For any occurrence inC++_textof anIdentifiera immediately
preceded by a dollar sign$, the lower name ofa is the lower
name of a formal argument ofr.

§31.12 THE C++ INTERFACE SUBLANGUAGE 839
Processing C++ features

A C++_external, if present, indicates one of the following, all illustrated by
examples in the next sections:

• If the special feature’s declaration startsfunction, it indicates that the
Eiffel feature will call a C++member function(also known as a
“method”) from the class listed. The function’s name is by default the
same as the name of the Eiffel feature; as usual, you can specify a
different name through thealias clause of the external declaration.

• If the declaration starts withstatic, it indicates a call to a C++
static function.

• If the declaration starts withnew, it indicates a call to one of the
constructorsin the C++ class, which will create a new instance of that
class and apply to it the corresponding constructor function.

• If the declaration starts withdelete, it indicates a call to adestructor
from the C++ class. In this case the Eiffel class will inherit from
MEMORYand redefine thedisposeprocedure to execute the destructor
operations whenever the Eiffel objects are garbage-collected.

• If the declaration starts withdata_member, it indicates access to adata
member (attribute in Eiffel terminology) from the C++ class.

• If it starts withstructure, it provides the same facilities asC_structure.

The techniques for specifyingsignatures, external files and type
correspondence are the same as for C.

C++ Inline semantics

In an external routine er of the C++_external form, an
External_nameof the formaliasC++_textdenotes the algorithm
defined, according to the semantics of the C++ language, by a
C++ function that has:
• As its signature, thesignature specified byer.

• As its body,C++_textafter replacement of every occurrence of
$a, where thelower name ofa is the lower name of one of the
formal arguments ofer, bya.

← “Specifying an
external routine signa-
ture”, page 828;
“Specifying external
files”, page830; “Con-
trolling the Eiffel-C
typecorrespondence”,
page 836.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.12840
Extra argument

For a non-static C++ member function or destructor, the corresponding
Eiffel feature should include an extra argument of typePOINTER, at the
first position. This argument represents the C++ object to which the
function will be applied.

For example, a C++ function

should have the Eiffel counterpart

This scheme, however, is often inconvenient because it forces the Eiffel
side to work on objects in a non-object-oriented way. (The O-O way treats
the current object, within a class, as implicit.) A better approach, used by
Legacy++, is to make a feature such ascpp_addsecret, and to export a
feature whose signature corresponds to that of the original C++ function,
with no extra object argument; that feature will use a secret attribute
object_ptr to access the object. In the example this will give

whereobject_ptris a secret attribute of typePOINTER, initialized by the
creation procedures of the class. To the Eiffel developer,add looks like a
normal object-oriented feature, which takes only the expected argument.
Further examples appear below.

There is no need for an extra argument in the case of static member
functions, constructors and data members.

The next section will illustrate the various available possibilities by
showing the code generated, in each case, by the Legacy++ tool.

void add(int new_int);

cpp_add(obj: POINTER; new_int: INTEGER)
-- Encapsulation of member functionadd.

external "[
"C++

member IntArray
signature (IntArray ∗, int)
useintarray.h

]"
end

add(new_int: INTEGER)
-- Encapsulation of member functionadd.

do
cpp_add(object_ptr, new_int)

end

§31.13 WRAPPING C++ CLASSES: LEGACY++ 841
31.13 WRAPPING C++ CLASSES: LEGACY++

Legacy++ is a tool, not a part of the language specification. Its practical
role is, however, sufficiently important to justify a special section in this
chapter. This will also provide us with a set of examples covering all the
special C++ encapsulation possibilities.

The role of Legacy++

Often you will want to provide an Eiffel encapsulation ofall the facilities
— member functions, static functions, constructors, destructors, data
members — of a C++ class. This means producing an Eiffel class that will
provide an Eiffel feature for each one of these C++ facilities, using external
declarations based on the mechanisms listed in the preceding section.

Rather than writing these external declarations and the class structure
manually, you can use Legacy++ to produce the Eiffel class automatically
from the C++ class.

Calling Legacy++

Legacy++ is called with an argument denoting a.h file that must contain
C++ code: one or more classes and structure declarations. It will translate
these declarations into Eiffel wrapper classes.

The following options are available:

• –E: apply the C preprocessor to the file, so that it will process#include,
#define, #ifdef and other preprocessor directives. This is the default.

• –NE: do not apply the C preprocessor to the file.

• –p directories: usedirectoriesas include path.

• -–ccompiler: usecompileras the C++ compiler.

• –g: treat the C++ code as being intended for the GNU C++ compiler.

Result of applying Legacy++

Running Legacy++ on a C++ file will produce the corresponding Eiffel
classes. Legacy++ processes not only C++ classes but also C++ “structs”;
in both cases it will generate an Eiffel class. Among its properties:

• Legacy++ knows aboutdefault specifiers: public for classes,private
for structs.

• Legacy++; will generate Eiffel features formember functions(static or not).

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.13842
• It will also handle anyconstructorsanddestructorsgiven in the C++
code, yielding the corresponding Eiffel creation procedures. If there is
no constructor, it will produce a creation procedure with no arguments
and an empty body.

• For any non-static member function or destructor, Legacy++ will
generate asecret featurewith an extra argument representing the object,
as explained in the preceding section. It will also produce a public
feature with the same number of arguments as the C++ function, relying
on a call to the secret feature, as illustrated foraddandcpp_addabove.

• The char ∗ type is translated intoSTRING. Pointer types, as well as
reference types corresponding to classes and types that Legacy++ has
processed, will be translated intoPOINTER. Other types will yield the
typeUNRESOLVED_TYPE.

Legacy++ limitations

It is up to you to supply Eiffel equivalents of all the needed types. If
Legacy++ encounters the name of a C++ class or type that is does not know
— it is neither a predefined type nor a previously translated class — it will
use the Eiffel type nameUNRESOLVED_TYPE. If you do not change that
type in the generated class, the Eiffel compiler will report an error.

Legacy++ does not handle inline function declarations and makes no effort
to understand the C++ inheritance structure. More generally, given the
differences in the semantic models of C++ and Eiffel, Legacy++ can only
perform the basic Eiffel wrapping of a C++ class, rather than a full
translation. You should always inspect the result and be prepared to adapt
it manually. Legacy++’s contribution is to take care of the bulk of the work,
in particular the tedious and repetitive parts. The final details are left to the
Eiffel software developer.

Legacy++ example

Consider the following C++ class, which has an example of every kind of
facility that one may wish to access from the Eiffel side:

§31.13 WRAPPING C++ CLASSES: LEGACY++ 843
Here is the result of applying Legacy++ to that class, which will serve as
an illustration of both the C++ interface mechanisms and Legacy++:

class IntArray
{
public:

IntArray (int size);
~IntArray ();
void output ();
void add (int new_int);
static char∗ type ();

protected:
int ∗_integers;

};

note
description:
"Eiffel encapsulation of C++ class IntArray"

class
INTARRAY

inherit
MEMORY
redefine

dispose
end

create
make

feature -- Initialization
make(size: INTEGER)

-- Create Eiffel and C++ objects.
do

object_ptr:= cpp_new(size)
end

feature -- Removal
dispose

-- Delete C++ object.
do

cpp_delete(object_ptr)
end

Warning: this is C++,
not Eiffel.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.13844
feature
output

-- Call C++ counterpart.
do

cpp_output(object_ptr)
end

add(new_int: INTEGER)
-- Call C++ counterpart.

do
cpp_add(object_ptr, new_int)

end

feature { INTARRAY}
underscore_integers: POINTER

-- Value of corresponding C++ data member.
do

Result:= underscore_integers(object_ptr)
end

feature { NONE} -- Externals
cpp_new(size: INTEGER): POINTERis

-- Call single constructor of C++ class.
external"[

C++ newIntArray
signature (EIF_INTEGER_32) use INTARRAY.h

]"
end

cpp_delete(cpp_obj: POINTER)
-- Call C++ destructor on C++ object.

external"[
C++ deleteIntArray
signature () use INTARRAY.h
"]

end

cpp_output(cpp_obj: POINTER)
-- Call C++ member function.

external "[
C++ function IntArray
signature () use INTARRAY.h
]"

alias
"output"

end

§31.14 USING DYNAMIC LINKE LIBRARIES (DLLS) 845
31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)

Dynamic Link Libraries enable an Eiffel system to take advantage of DLL
routines on platforms (such as Windows) supporting the DLL mechanism.
A DLL routine is not compiled into your system but kept separate; your
system will load the routine the first time it needs to call it. This has two
principal advantages:

• You pay only, in memory usage, for what you use. Without DLLs
every system must be compiled with every piece of functionality it
ight use even if 98% of executions don’t need it. This is a source of
size bloat.

• DLLs facilitate software evolution since you can deliver incremental
functionality updates through specific DLL replacements, without
chaning the entire system previously delivered to your users.

cpp_add(cpp_obj: POINTER; new_int: INTEGER)
-- Call C++ member function.

external "[
C++ function IntArray
signature(EIF_INTEGER_32) use INTARRAY.h
]"

alias
"add"

end

cpp_underscore_integers(cpp_obj: POINTER): POINTER
-- Value of C++ data member

external "[
C++ data IntArray
 use INTARRAY.h
]"

alias
"integers"

end

feature { NONE} -- Implementation
object_ptr: POINTER

-- Access to C++ object
end

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.14846
Each of these advantages also implies less pleasant counterparts (leading
to the phrase “DLL hell”): unlike with statically linked systems, a missing
component may not be detected until run time (and in certain executions
only); a product may install a new DLL that invalidates another product;
and you never quite know what your users’ configuration is, which
doesn’t facilitate customer support. DLLs are, however, a very popular
technique. ISE Eiffel includes a DLL tool for generating DLLs from
Eiffel systems.

Eiffel systems also need touse DLLs produced elsewhere. Two
mechanisms are available for that purpose:

• A DLL sublanguage, similar in spirit to the C and C++ sublanguages
reviewed previously, lets you specify DLL routines that you need.
Although based on dynamic linking this is a “static” mechanism in that
you have to express what you need in your software, before compiling.

• There is also a completely dynamic mechanism, DESC, allowing you to
wait until run time to determine what dynamic libraries you need and
what routines you want to call.

We now review these two mechanisms in turn.

The static DLL sublanguage

Using the DLL sublangage you can define an external Eiffel routine relying
on a routine from a DLL. You will use a clauseexternal dll file_nameto
specify thefile_namefor the dynamic library, and a clausealias nameto
specify the name or integer index of the desired routine in that library.

Here is an Eiffel routine encapsulating a function from a DLL:

dynamic_external(a, b, c: INTEGER)
external "[

"dll
signature (WORD, DWORD, WORD)
useherlib.dll

]"
alias

"35"
end

§31.14 USING DYNAMIC LINKE LIBRARIES (DLLS) 847
A dll subclause requires you to specify aDLL index or name, indicating
where to find the routine in the DLL. Use thealias part for that purpose.
Normally, as we have seen, thealias part of anExternaldeclaration gives
the native name of the routine (required only if different from the Eiffel
name). In the case of a DLL it is also acceptable to provide the routine’s
index in the library, an integer, such as35 in the example. There is no
ambiguity: an integer alias denotes an index, anything else is taken as a
name. This variant also requires the presence of anExternal_signaturepart.

Iif your system uses several routines from the same DLL, its execution will
only load one instance of the DLL. When the execution terminates, the Eiffel
run-time system will free all DLL instances loaded in this way.

Here is the syntax for the DLL variant of theexternal part:

DLL externals
DLL_external =∆ ' " ' dll

[windows]
DLL_identifier
[Blanks_or_tabs DLL_index]
[External_signature]
[External_file_use]
' " '

DLL_identifier =∆ Simple_string

DLL_index =∆ Integer

Through aDLL_externalyou may define an Eiffel routine whose execution
calls an external mechanism from a Dynamic Link Library, not loaded until
first use.

The mechanism assumes a dynamic loading facility, such as exist on
modern platforms; it is specified to work with any such platform.

External DLL rule VZDL

A DLL_externalof DLL_identifier i is valid if and only if it
satisfies the following conditions:
1 • When interpreted as a file name according to the conventions

of the underlyingplatform,i denotes a file.

2 • The file is accessible for reading.

3 • The file’s content denotes a dynamically loadable module.

Thealias part also
gives the C text of an
inline routine..

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15848
The DLL mechanism specified here isstatic since it requires you to
indicate, in the software text, the name of the library and the index (in the
form of an integer constant) of the desired routine in that library. One of the
advantages of DLLs is the ability to wait until run time to specify both the
library and the routine. A correspondingdynamic mechanism,
complementing the facilities just described, is also available through the
DESC library studiedlater in this chapter.

The optionalwindows qualifier specifies that the DLL uses the calling
conventions of the Windows platform.

31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME

All the mechanisms discussed so far for calling an external routine require
that you include the routine’s exact name in the Eiffel text (as the Eiffel
routine name if it is the same, afteraliasotherwise), or the routine itself in
the C inline case. Even the Cdll mechanism requires you to specify the
name of the Dynamic Link Library and the index of the desired routine.

The Dynamic External Shared Call mechanism (DESC for short)
removes this limitation by letting you wait until run time to determine the
name of the external routine to be called in a DLL, or even the name of the
DLL itself.

DESC is a library, not a language mechanism, but as important in
practice as the purely linguistic mechanisms defined in this chapter.

In line with the general spirit of Eiffel, the DESC takes care of low-level
aspects of DLL programming, relieving developers from operations which
they would have to perform manually if they were using a language such
as C: loading library instances; sharing these instances; freeing the
instances when they are not needed any more.

DLLs vary with operating systems. The description in this section
applies to Windows.

External DLL semantics

The routine to be executed (after loading if necessary) in a call to
aDLL_externalis the dynamically loadable routine from the file
specified by theDLL_identifier and, within that file, by its name
and theDLL_index if present.

→ “DESC: CALLING
A DLL ROUTINE
DETERMINED AT
RUN TIME”, 31.15,
page 848.

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME 849
DESC overview

The DESC mechanism enables you to construct objects representing
external routines determined at execution time through their name and
libraries, and to call these routines with the appropriate arguments.

Two classes,DLL and DLL_ROUTINE, supported by an auxiliary class
SHARED_LIBRARY_CONSTANTS, provide the basis of DESC:

• An instance of classDLL describes a Dynamically Linked Library. This class
is a descendant of the deferred classSHARED_LIBRARY, covering the
platform-independent notion of shared library.

• An instance of classDLL_ROUTINEdescribes a routine from a DLL.
The class has an attribute of typeDLL describing the library to which
the routine belongs. It has a deferred ancestor
SHARED_LIBRARY_ROUTINEcapturing the platform-independent
notion of shared library routine.

• SHARED_LIBRARY_CONSTANTSintroduces a few declarations useful
for dealing with shared libraries and routines, in particular some integer
constants describing error codes and type codes. It is an ancestor to both
of the preceding classes; application classes using DESC can also
inherit from it to gain access to its facilities.

The normal sequence of operations to use the DESC mechanism is:

1 • Create a library object (an instance ofDLL), providing the library’s
name as argument to the creation procedure.

2 • Create a routine object (an instance ofDLL_ROUTINE), providing the
library object, the routine’s name or index in the library, and the
routine’s signature — number of arguments, types of arguments, type of
result if any — as arguments to the creation procedure.

3 • Apply the procedurecall to the routine object, passing tocall an array
that contains the actual arguments required by the external routine.

You may repeat each of these steps as often as necessary to use multiple
libraries, multiple routines in a library, or multiple calls to a given routine.
More details follow.

Creating a library object

To create a DESC object representing a library and load that library, use a
declaration such as

your_dll: DLL

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15850
replacingyour_dllby whatever name you have chosen to denote the library
in your software; execute a creation instruction of the form

whereyour_lib_name is the name of the file containing the library.

After this call has been executed, the boolean value
your_dll.meaningfulwill be true if and only if the creation has been
successful, that is to say, the given name did correspond to an available
library, and it was possible to load it.

If your_dll.meaningfulis false, you can have more details about the
error by comparing the value ofyour_dll.error_code, an integer, to those
of constant attributes defined in classSHARED_LIBRARY_CONSTANTS.
As expressed by an invariant of classDLL, the value ofmeaningfulis true
if and only iferror_code = 0.

Creating a routine object

To create a DESC object representing a routine from a DLL, use a
declaration such as

replacingyour_routineby the name you have chosen to denote the routine
in your software, and execute a creation instruction of the form

createyour_dll.make("your_lib_name")

your_routine: DLL_ROUTINE

createyour_routinel make_by_name
(your_dll,
"your_routine_name",
[argtyp1, argtyp2, ...],
res_type)

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME 851
or, if you prefer for faster access to identify the routine by an integer index
rather than a name:

In either formyour_dll is the library object obtained at the previous step.
The preconditions for bothmake_by_nameandmake_by_indexinclude the
following clauses on the first argument, known through its formal namelib
(corresponding toyour_dll above) in the routine:

After either call, the boolean valueyour_routine.meaningfulwill be true
if and only if the creation has been successful, that is to say, the given name
or index did correspond to a routine of the library, and it was possible to
open it. If the value is false, you can have more details about the error by
comparing the value ofyour_routine.error_code, an integer, to those of
constant attributes defined in classSHARED_LIBRARY_CONSTANTS. As
expressed by a clause of the invariant of classDLL_ROUTINE, the value of
meaningful is true only iferror_code= 0.

Proceduresmake_by_nameandmake_by_indexare usable not only as
creation procedures but also as normal exported routines, so that you can
later reinitialize the object to represent another external routine. The four
arguments play the following roles:

• The first argument, as noted, denotes the library.

• The second argument identifies the desired routine in the library: by its
name, of typeSTRING, with make_by_name; by its index, of type
INTEGER, with make_by_index.

• The third argument, of typeARRAY[INTEGER], gives the list of type
codes for the arguments to the routine. Each type code is an integer
associated with one of the possible types to be passed to a DLL routine.
Possible type codes appear next.

• The fourth and last argument is a type code for the result.

In the above examples the third argument is declared as a manifest array
through the notation[a1, a2, ...] ; here the array itemsargtyp1, argtyp2, ...
must all be integers giving the type codes of the successive arguments to
the routine, taken from the list appearing next. (Use an empty manifest
array,[] ,if the routine has no arguments.)

create your_routinel make_by_index
(your_dll,
your_routine_index, -- The only differing argument
[argtyp1, argtyp2, ...],
res_type)

require
library_exists: lib /= Void
meaningful: lib l meaningful

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15852
Type codes

For the type codes used in the array serving as third argument to
make_by_nameandmake_by_index,and in the fourth argumentres_type,
the classSHARED_LIBRARY_CONSTANTSprovides a set of constant
integer attributes; the easiest way to let a class use them is to make it an heir
of that library class. Here is the list of codes:

Type code Meaning and comments

T_array Array . What is passed to C is the “special object”
containing the actual array elements, directly usable
by C. To pass the Eiffel array object, use
T_reference. A restriction: the elements of the array
may be references, or they may be of a basic type —
BOOLEAN, INTEGERetc. — but they may not be of
an expanded type other than the basic types.

T_boolean Boolean value. Passed to C as unsigned character: 0
for false, nonzero for true.

T_character. Character value.

T_integer Long integer.

T_no_type No type. Useful for res_type in the case of a
procedure (which has no result type).

T_real Real number.

T_pointer Pointer to C structure.

T_reference Reference to Eiffel object.

T_short_intege
r

Short integer. The Eiffel side will use normal
INTEGER values for the corresponding actual
arguments.

T_string String. What is passed to C is the C form of the
Eiffel string, obtained through the featureto_c of
classSTRING. To pass the Eiffel string object, use
T_reference.

§31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME 853
Calling a routine

Having created the object representing the external routine and attached it
to entityyour_routine, you may now call the routine with arbitrary actual
arguments through the procedurecall, a feature of classDLL_ROUTINE.

The procedure takes a single argument, of typeARRAY [ANY],
containing the successive actual arguments to be passed to the external
routine. The easiest technique is to use a manifest array, as in

Accessing the result of a function

If your_routinedenotes a function (a routine that returns a result), you will
be able to access the result by querying the attached instance of
DLL_ROUTINEthrough one of the following calls, each corresponding to
one of the possible result types:

Consistency requirements and protection against errors

In a call to procedurecall such as the above, the number of elements in the
array and their types must correspond to the signature — number and type
of arguments — specified in the third argument of the latest call to
make_by_nameor make_by_index.

your_routine.call ([–325, 67.2, x, a + b])

Typical call Eiffel type of
the result

your_routine.boolean_result BOOLEAN

your_routine.character_result CHARACTER

your_routine.integer_result INTEGER

your_routine.integer_result INTEGER

your_routine.real_result REAL

your_routine.reference_result
(To use the result, an assignment attempt will
usually be necessary.)

ANY

your_routine.string_result
(Result converted to Eiffel string format
through the featurefrom_c of classSTRING.)

STRING

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.15854
This requirement is captured by a functionconforms_to_signature,
relying on the functionconforms_tofrom the Kernel Library classANY.
The third precondition clause of procedurecall states it:

This precondition, combined with queriesmeaningfuland error_code in
classesDLL andDLL_ROUTINE, provides a certain degree of protection
against possible errors. But the Eiffel side does not know anything about the
external routine, and so cannot check that the number of actual arguments and
their types match the actual signature of that routine. You are responsible for
ensuring that the routine gets what it expects.

Similarly, each of the_resultfeatures has a precondition stating that it
must be compatible with the result type set by the latest call to
make_by_nameor make_by_index. For example in the case of
boolean_resultthe result type must have been set toT_boolean. Here too
there is no protection against type errors at the Eiffel-C border; double-
check your software to make sure that the result types you are positing on
the Eiffel side match what the DLL routines actually declare.

Sharing and freeing

One of the effects of creating a library object through a creation instruction
of the formcreateyour_dll.make("your_lib_name") is, as noted, to load
the library of nameyour_lib_name. When you subsequently create routine
objects relative toyour_dll, they will all share the same library instance.

You may, if you wish, load several instances of a given library: simply
create several library objects, passing in every case the same string
"your_lib_name" as actual argument to themake creation procedure.

If the same library name is used by an external DLL routine, statically
declared through the mechanism studiedearlier in this chapter, and by a
library object created dynamically by the DESC mechanism as an instance of
DLL, two different instances will be loaded.

When a DESC library object is no longer accessible and the garbage
collector reclaims it, this will automatically (through the proceduredispose
of classMEMORYas redefined for classDLL) free the corresponding
library instance.

call (args: ARRAY[ANY])
require

meaningful: meaningful
valid_array: args/= Void
conformant: conforms_to_signature(args)

§31.16 THE CECIL LIBRARY 855
For most uses this automatic freeing will be sufficient. If, however, you
want to free a library manually, you can do so through the call
your_dll.free. As a postcondition of this call,your_dll.meaningfulwill be
false, as well asyour_dll.meaningfulfor any routine objectyour_routine
that was created relative toyour_dll.

31.16 THE CECIL LIBRARY

The mechanisms studied so far supportcall-out: calling foreign
mechanisms from Eiffel. There is a complementary need for acall-in
mechanism, enabling foreign software to call Eiffel features.

Cecil overview

Call-in and call-out are in fact closely related since an external (call-out)
routine may pass, among others,argumentsof theAddressform, denoting
features of the enclosing class. The sole purpose of such arguments is,
obviously, to let foreign routines call the associated Eiffel features.

More generally, some developers may wish to write foreign routines
that create Eiffel objects and apply features to these objects, without
necessarily relying on features explicitly passed by the Eiffel side. This last
section shows a way to do this from C, using a library of C functions called
the C-Eiffel Call-In Library, orCecil. The first C in the acronym is there
mostly for historical reasons: you can use Cecil from any foreign language
that supports standard argument passing conventions.

Cecil role and status

Most developments do not need to use Cecil or its equivalent, and most
developers do not need to learn about it. The ideas are of interest to
installations with a heavy use of C or some other foreign language, if they
want to integrate Eiffel classes in applications driven by their foreign
components. If you are not in this situation, then you most likely should
spare yourself the rest of this chapter; but do shed a tear or two for your less
fortunate colleagues.

Call-in mechanisms belong in foreign languages. The Cecil library this
section describes, then, is not part of Eiffel as a language, but it is a required
component of any Eiffel implementation.

The following Cecil resources should complement the explanations of
this section:

• http://eiffel.com/doc/manuals/library/cecil/is a complete Cecil manual.

← “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 823.

Please send your tax-
deductible contribu-
tions to the HAVOC
fund(Help All Victims
Of C!), Box OO, Palma
de Majorca.

http://eiffel.com/doc/manuals/library/cecil/

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16856
• If you program non-trivial Cecil applications you will benefit from the
set of examples atftp://ftp.eiffel.com/pub/examples/cecil; you can
retrieve individual examples from that directory, or download all
examples, zipped, from ftp://ftp.eiffel.com/pub/examples/cecil/
cecil.zip. The directory is split into two subdirectories:unix-examples
andwindows-examples.

Compiling for Cecil

To use the facilities of an Eiffel system through Cecil you must first
compile a “cecilized” form of it. This may require a special compilation or
(as with ISE Eiffel) you may simply get the “cecilized” form as a standard
output of your compilation with no extra work.

You will of course need to compile your foreign application, a process that is
not always as automatic as Eiffel compilation as managed by good Eiffel
environments. Even here, however, Eiffel can help: you can specify a Make
file in theexternal part of your Ace through a directive of the form

which causes Eiffel compilation to start C compilation using the provided
Make file. (To specify its location, remember that you can use environment
variables, such as$EIFFEL5denoting the location of the Eiffel installation,
in the Ace file.)

As explained next, the foreign software will gain access to the Cecil
mechanisms through two include files produced by the Eiffel environment:
eif_cecil.h and (if execution starts on the foreign side rather than from
Eiffel) eif_setup.h. You will use the “include” option of your C compiler,
normally–I, to specifythe directory where these files reside.

Avoiding abusive optimization

Even with a compiler that generates cecilized code without any special
compilation option, you may have to exert some care if the compiler (again
such as ISE Eiffel) performs dead-code-removal optimization, to delete the
generated code for routines that are not called from within the Eiffel
system. Such routines may still be needed by foreign software as part of the
cecilized interface. To protect them from over-enthusiastic dead code
removal, list them in thevisible clause of the Ace file, as in

external: make: "your_makefile"

→ For the location of
this directory in ISE
Eiffel see“ISE Eiffel
specifics”, page 866.

ftp://ftp.eiffel.com/pub/examples/cecil
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip
ftp://ftp.eiffel.com/pub/examples/cecil/cecil.zip

§31.16 THE CECIL LIBRARY 857
system system_nameroot ... default ... cluster
...
your_cluster: "/home/user/cluster1"

adapt
...

visible
CLASS1
CLASS2

create
"other_make"

export
"feat1", "feat2"

end
end

... Other cluster specifications...
end

→SeeappendixBabout
Lace, in particular“VIS-
IBLE FEATURES”,
B.13, page 1024

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16858
Here all exported features ofCLASS1are available to the external software;
for CLASS2, onlyother_make(for creation) andfeat1andfeat2(for normal
call) are available.

By default the status of features is deduced from the Eiffel class text:
only the publicly available features will be available through the Cecil
interface. You can use theexport clause to override this default, in
particular to make a feature is available to the outside world even though it
is not used in the Eiffel system and hence subject to dead-code removal.

The creation status is determined in a similar way: by default any
procedure listed in Eiffel as a generally available for creation will be
accessible through Cecil; you can override this default through thecreate
subclause of thevisible clause.

Note that because a Cecil application will create and initialize an object
through two separate calls (unlike the Eiffel instructiona.make(…) which
does boty), the creation and export status are the same for Cecil, so listing a
feature undercreate or export has the same effect: making it available to
foreign software through the Cecil interface.

Basic Cecil conventions

The Cecil library contains macros, functions, types and error codes. All
have names beginning with eithereif_ (functions and macros) orEIF_
(types and error codes); examples are the functioneif_type_idand the type
EIF_PROCEDURE, explained below. Their declarations appear in a C
“header file”,eif_cecil.h, which you may add to a C program through the
C preprocessor directive

A similar mechanism will be available for other supported foreign
languages, although the rest of the discussion will assume C or C++.

We now review the various facilities available fromcecil.h. To avoid
any confusion with the format used in the rest of this book for Eiffel
software elements, C code will appear as follows (in color):

• Bold font (as elsewhere for Eiffel keywords) for Cecil functions, macros
and types, such aseif_type_id andEIF_PROCEDURE.

• Italic font, for C names representing Eiffel class names or entities, such
asCLASS_NAME.

• Regular font for ordinary C text, including example variables
illustrating function usage, such asyour_id.

#include "eif_cecil.h"

Eiffel’s emphasis on
clarity suggests using
eiffel_ andEIFFEL_
as prefixes, but some of
the resulting names
would be too long for
some C compilers.

Warning: this is C, not
Eiffel.

§31.16 THE CECIL LIBRARY 859
The basic scheme of using Cecil is the following:

• Build an Eiffel system.

• “Cecilize” it: compile it for Cecil use. This may require some specific
compilation options, or at least, as noted above, protecting features from
dead code removal.

• Write a program in C or some other language that gains access to the
resulting facilities through appropriateincludedirectives and uses Cecil
functions and macros to create Eiffel objects, call features on them, and
receive any resulting exceptions.

Initializing the Eiffel 4 run-time

An application using Cecil, involving both Eiffel and foreign elements,
may start its execution from either side. If execution starts on the non-Eiffel
side — in other words, if the foreign language is in control — it will need,
prior to calling any Eiffel facility, to set up the Eiffel run time to ensure that
Eiffel mechanisms such as garbage collection and signal handling will
work properly. It will also need, before it terminates, to call the run-time
termination mechanisms, ensuring in particular that all Eiffel objects are
freed and the correspondingdisposeprocedures are called to free any
associated system resources.

The runtime setup will typically appear in the foreign application’s
main program. Simply add the preprocessor directive

To start the Eiffel runtime, use

where failure_function() is a function to be called in case of failure to
initialize. To terminate the Eiffel runtime, collect all objects and call their
dispose procedures if any, use

EIF_INITIALIZE and EIF_DISPOSE_ALL are macros defined in
eif_setup.h. The macros assume that the enclosing function, normally the
main program, has the three standard arguments, as in

#include "eif_setup.h"

EIF_INITIALIZE (failure_function);

EIF_DISPOSE_ALL ;

main (int argc, char∗∗argv, char∗∗envp);

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.

Warning: this is C, not
Eiffel.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16860
Manipulating values of basic Eiffel types

If you pass Eiffel values of basic types (integers, booleans and so on)
you will need to make sure that the C side manipulates them properly. For
example there is no guarantee that an EiffelINTEGERand a Cint are the
same; for portability and to guarantee numerical precisions the Eiffel-C
interface includes the following set of macros defining the C representation
of the Eiffel basic types:

The macroEIFFEL_TYPE denotes the C type (actuallyint) covering C
representations of Eiffel types; the possible values are the twelve listed,
plusEIF_REFERENCE, introduced below.

If you have control over the C code, always use the above types to
manipulate Eiffel values from C. So with an Eiffel external function

you may write the C side as

In other cases, the C function pre-exists and you cannot (or do not want to)
change it. In that case you should take care of the proper typing on the
Eiffel side, using theExternal_signaturefacility introducedearlierin this
chapter With a function

you should write the Eiffel external as

EIF_BOOLEAN
EIF_INTEGER_16
EIF_REAL_32

EIF_CHARACTER
EIF_INTEGER_32
EIF_REAL

EIF_INTEGER_8
EIF_INTEGER_64
EIF_POINTER

c_func(ptr: POINTER; obj: OBJECT): INTEGERis
external

"C include %"your_file.h%""
end

EIF_INTEGER_32 c_func(EIF_POINTER ptr,EIF_OBJECT obj)
{ … Function body…}

 int other_func (void∗arg1, char c, FILE∗file)
{ … Function body…}

 other_func(arg1: POINTER; c: CHARACTER; file: POINTER):
INTEGER

external
"C(void∗, char, FILE∗) : int include%""your_file.h%""

end

These names are those
of macros defined in
cecil.h.

Warning: this is C, not
Eiffel.

←See“Controllingthe
Eiffel-C type corre-
spondence”,page836.

Warning: this is C, not
Eiffel.

§31.16 THE CECIL LIBRARY 861
Omitting theExternal_signaturepart (the part that lists the C types before
the colons) would produce C compilation warnings and possibly errors.

Manipulating Eiffel class types

To call Eiffel features, the foreign software will need to access the classes
and types to which they belong. It will know an Eiffel type through a “type-
id”, of typeEIF_TYPE_ID .

To obtain a type-id for a typeTYPENAMEand record it in a C variable
your_id, use the functioneif_type_id, returning anEIF_TYPE_ID :

As usual, you must make sure that the base class ofTYPENAMEis not
optimized away by the compiler.

If the class is generic, include the generic parameters in theTYPENAME
as in:

Given an Eiffel type descriptortype_idof EIF_TYPE_ID , you can obtain
the corresponding Eiffel type name as well as the name of the generating class
(the type’s base class). Useeif_type(tid) for the type name andeif_class(tid)
for the class name. In both cases the result is achar∗, representing a C string.

Accessing an Eiffel object

A foreign function may access Eiffel objects through references passed to
it by the Eiffel side in external calls, or returned by calls toeif_create(see
below). The corresponding variable must be declared of the Cecil type
EIF_OBJECT.

A value your_objectof type EIF_OBJECT is not a C pointer to the
corresponding object. To obtain such a pointer (for example to pass it to a C
function which manipulates objects directly), use the macroeif_access,
which takes anEIF_OBJECT and returns a pointer to the object:

EIF_TYPE_ID your_id;
...
your_id =eif_type_id ("TYPENAME");

your_other_id =eif_type_id ("ARRAY [INTEGER]");

some_function (eif_access (your_object), ...):

Warning: this is C, not
Eiffel.

← “Avoiding abusive
optimization”, page
856.

Warning: this is C, not
Eiffel.

Current C guidelines
suggeststhateif_access
should return avoid ∗.
But many C compilers
only acceptchar∗.

Warning: this is C, not
Eiffel. The result is a
null pointer ifyour_
objectrepresents a void
reference.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16862
The reason for this rule is that an Eiffel implementation supporting garbage
collection may move objects around. Then a pointer passed directly to a C
function might be obsolete by the time the function tries to access the
associated object. Given anEIF_OBJECT, eif_accesswill retrieve a
correct pointer. If the implementation does not move objects,eif_access
will do little or no work.

The result type ofeif_accessis of typeEIF_REFERENCE. A value of
this type is a pointer to an Eiffel object; you can pass it to an Eiffel routine,
or as the result of a C external. Do not, however, pass an
EIF_REFERENCE to another C function, since the object might have
moved; useEIF_OBJECT instead.

What if your_objectis a variable that does not just allow immediate
object processing as above, but retains its value between successive
activations of the C side? In the meantime, the Eiffel side might have
discarded all references to the corresponding object; but then a garbage
collecting implementation must not be allowed to reclaim it! To avoid this,
the C side mustadopt the object, using the functioneif_adopt. Once C
functions do not need to hold the object any more, they may release it
througheif_wean. Here is the scheme:

EIF_OBJECT your_object,...
eif_adopt (your_object);

... Then in the same or another C program unit: ...
some_function (eif_access (your_object), ...);
...
eif_wean (your_object);

Warning: this is C, not
Eiffel.

§31.16 THE CECIL LIBRARY 863
A call to eif_weanactually returns a value: anEIF_REFERENCE to the
object just “weaned”.

You should useeif_adopt for a value of typeEIF_OBJECT, created by
an Eiffel routine and passed as argument to the foreign software. For an
EIF_REFERENCE value returned by one of the Cecil mechanisms, use
eif_protect instead. An example appears next with anEIF_REFERENCE
denoting an Eiffel string created byeif_string ("SOME TEXT"). Function
eif_protect returns anEIF_OBJECT; as with eif_adopt, you should
eif_wean thatEIF_OBJECT when you do not need it any more.

Creating an Eiffel object

To create an object from outside, use the functioneif_create, which takes
anEIF_TYPE_ID argument and returns anEIF_OBJECT. For example:

Assuming classLINKED_LISTwith one generic parameter, this creates a
direct instance ofLINKED_LIST [INTEGER]. Functioneif_create calls
eif_adopt; the C side should calleif_weanwhen and if it does not need the
object any more.

As the example shows,eif_createdoes not call acreation procedure.
To apply a creation procedure, you will need to include a separate call,
using functioneif_procedureas explained below. This departs from Eiffel
conventions, which prohibit creating an object without applying a creation
procedure if the class has aCreatorsclause. With Cecil, forgetting to call a
creation procedure aftereif_createmay produce an object which violates
the class invariant, so you must be particularly vigilant to avoid this error
(which cannot occur in Eiffel).

A shortcut is available for the case of string objects. As you will recall,
STRINGis a normal class with its own creation procedures. To avoid going
through the creation of aSTRINGobject and separate initialization, you
can useeif_string as in:

EIF_OBJECT your_array;
...
your_array =eif_create(eif_type_id ("ARRAY [INTEGER]"));

 EIF_REFERENCE your_string;
EIF_OBJECT your_string_object;
my_string = eif_string ("SOME TEXT");
your_string_object =eif_protect ("my_string");

Warning: this is C, not
Eiffel.

← About creation rules
inEiffelandtheCreators
clause, see chapter20.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16864
The result ofeif_string is anEIF_REFERENCE; if you are going to use
it beyond the immediate context, make sure toeif_protect it as shown.
When you do not need it any more, calleif_wean(your_string_object)to
let the Eiffel garbage collector reclaim it once the Eiffel side is also done
with it.

As a related facility, you can produce an Eiffel arrayeif_arrayfrom a C
arrayc_arraythrough the macro call

wheren, an integer, is the number of array elements andtype_id, an integer,
represents is the type of the array elements. The argumenteif_arraymust
be anEIF_REFERENCE denoting an array;c_arraymust be of type
(type_id∗), with enough space available to hold the array values. The value
of type_id must be one of the Eiffel-C interface typesdefinedearlier:
EIF_BOOLEAN etc. for basic types,EIF_REFERENCE for any
reference type.

You can similarly useeif_string_from_c (eif_string, c_string, n)to get the
C string (char∗) equivalent of an Eiffel string.

Calling routines

Having gained access to Eiffel objects, the foreign application will want to
apply Eiffel routines and attributes to them. To do so it needs pointers to
these routines, which it will obtain through one of a set of Cecil functions
provided for this purpose. For example, having obtained the type-id
your_array as shown above, use the following to assign to variable
your_procnamea pointer to the Eiffel procedure whose Eiffel name in
classARRAYis put:

Functioneif_procedureis one of a group of functions, each corresponding
to a different category of Eiffel routines: procedures, functions returning
results of basic types, class types, bit types. Here is the list of these
functions, with their argument and result types:

All these routines have the same arguments: a string (char ∗ in C),
representing a routine name, and a type-id, obtained througheif_type_id.

These functions look for a routine of namerout_namein the base class
of the type corresponding totype_id. If sucharoutineexists, the result will
be a pointer to a C function representing it desired routine; you may then
call that function on appropriate arguments. For example:

eif_array_from_c (eif_array, c_array, n, type_id)

EIF_PROCEDURE your_array_put:
...
your_array_put =eif_procedure ("put", your_array);

← “Manipulating val-
ues of basic Eiffel
types”, page 860;
“Manipulating Eiffel
classtypes”, page861.

Warning: this is C, not
Eiffel.

→ See“Requesting a
non-existing routine”,
page 865 below about
what happens if the rou-
tine doesn’t exist.
Warning: this is C, not
Eiffel.

§31.16 THE CECIL LIBRARY 865
This applies the routine corresponding togo, accessible through
your_array_putas a result of the above call toeif_procedure, to the object
corresponding to your_array, with the actual argument10. The
corresponding call would have been written in Eiffel asyour_array.put
(345,10). In C, do not forget to enclose the name of the function pointer,
hereyour_array_put, in parentheses, and to useeif_access.

As in Eiffel, the call will use dynamic binding: it will trigger the version
of the feature directly adapted to the type of the target object.

Requesting a non-existing routine

The facilities just reviewed —eif_procedure, eif_reference_functionand
so on — enable the foreign side to gain access to an Eiffel feature. What if
the requested feature does not exist in the class specified? If you stay within
Eiffel this case will not arise since the type checking mechanism will detect
the error at compile time; but from a foreign language no such static check
is possible; the error will only become manifest at run time.

For the outcome in such a case you have a choice between two
behaviors, which you can enforce by calling either of two status-setting
procedures (whose effect will last until a call to the other):

EIF_PROCEDURE eif_procedure
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_REFERENCE_FUNCTION eif_reference_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_INTEGER_32_FUNCTION eif_integer_32_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_CHARACTER_FUNCTION eif_character_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_REAL_32_FUNCTION eif_real_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_REAL_FUNCTION eif_real_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_BIT_FUNCTION eif_bit_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_BOOLEAN_FUNCTION eif_boolean_function
(char∗ rout_name,EIF_TYPE_ID type_id)

EIF_POINTER_FUNCTION eif_pointer_function
(char∗ rout_name,EIF_TYPE_ID type_id)

(your_array_put) (eif_access (your_array), 365, 10)

Warning: this is C, not
Eiffel.

ThewordPOINTER in
EIF_POINTER_
FUNCTION refers to
the EiffelPOINTER
type(see31.8 above),
not to C pointers.

Variants ofeif_integ-
er_32_function also
exist for 8, 16 and 64.

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16866
• You can ensure that a request for a non-existent feature will trigger an
exception, passed as a signal to the foreign side. This is not the default
behavior, but you can obtain it by callingeif_enable_visible_exception.

• By default, functions such aseif_procedureand consorts return a null
value if they can’t find the Eiffel feature. You can restore this default
behavior by callingeif_disable_visible_exception.

Accessing field objects

The macroeif_attribute enables the foreign side to access fields of objects,
corresponding to attributes of the generating classes.

You may use the result ofeif_attribute in two different ways: as an
expression, or “r-value” in C terminology; or as aVariableentity, or “l-
value”, which may then be the target of an assignment. Such an assignment
will re-attach the corresponding object field.

The macro requires four arguments:

The object argument denotes the object of which you want to access a
field.;attrib_namedenotes the nameof theattribute in the generating class.

The third argument,type_id, serves to cast the result to the appropriate
type. It must be one of the Eiffel-C interface typesdefined earlier:
EIF_BOOLEAN etc. for basic types,EIF_REFERENCE for any
reference type.EIFFEL_TYPE covers all these type values. In
EIF_REFERENCE case, do not forget toeif_protect it the result if you
will use it further.

The last argument,status, is a result code. Possible values are *status =
EIF_CECIL_OK , indicating success, EIF_NO_ATTRIBUTE ,
indicating that no field exists in the object for the given name, and
EIF_CECIL_ERROR for other Cecil errors. If you have selected
eif_enable_visible_exceptionas explained above, the last two cases will
trigger an exception.

ISE Eiffel specifics

The following comments apply to the use of Cecil with ISE Eiffel and may
not be relevant for other implementations.

eif_attribute
(EIF_REFERENCE object, char∗ attrib_name,
EIFFEL_TYPE type_id, int const∗ status);

Warning: this is C, not
Eiffel.

← See“Manipulating
values of basic Eiffel
types”, page 860,
which also introduced
EIFFEL_TYPE , and
“Manipulating Eiffel
classtypes”, page861.

§31.16 THE CECIL LIBRARY 867
To will gain access to the Cecil facilities through two include files, both
in $EIFFEL5/bench/spec/$PLATFORM/includewhere$EIFFEL5 is the
Eiffel installation directory and$PLATFORMthe platform code (such as
windows, linux etc.):

• To use Cecil in a C file it suffices to includeeif_eiffel.h.

• The main program may includeeif_setup.h to access facilities for
setting up and terminating the Eiffel run-time. This is not necessary if
execution starts on the Eiffel side; if, however, a C main program starts
execution and needs at some stage to call Eiffel mechanisms it will need
these facilities to get everything initialized on the Eiffel side.

The following Lace options will be useful on Windows:

• Use console_application (yes)if you want to produce a console
application rather than a default (graphical) Windows application.

• UseC_main ("path_name”) to specify that the main program will be the
C file atpath_name.

ISE Eiffel offers three compilation modes: melted (super-fast incremental
recompilation, no C generation), frozen (incremental, C generation),
finalized (full C generation, extensive global optimizations). You can use
Cecil with all three modes.

In the case of a melted system of namesystem_name, you must copy the
file <system_name.melted>from the subdirectoryEIFGEN/W_codeof
your project directory to the directory from which you will execute your C
program. (The execution directory, not the compilation directory). This file
will change after each melting; so on Unix it may be more convenient to
use instead a symbolic link to it, which also saves space.

A limitation exists in case of a melted system: it is not permitted to use
through Cecil any routine that has been melted in the last compilation. This
would raise the run-time exception “$ applied to melted routine”. The
solution is simple: refreeze.

To “cecilize” your system you do not need to use any special Eiffel
compilation option. The only extra concern you need to have is, in finalized
mode, to protect features from the dead-code removal algorithm, as
explained earlier. Compilation produces both C code and a Makefile, in a
subdirectory ofEIFGEN in your project directory:EIFGEN/W_code(in
melted or frozen mode) orEIFGEN/F_code(in finalized mode). To
produce a CECIL library, you must, in a DOS console (Windows) of shell
(Unix), go to the appropriateEIFGEN/x_codedirectory and run the make
utility with the ceciloption:make cecil(Unix), nmake cecil(Windows with
Visual C++ and compatible compilers).

INTERFACING WITH C, C++ AND OTHER ENVIRONMENTS §31.16868
This generates a Cecil archive whose name derived from the name
system_nameof your Eiffel system: system_name.lib (Windows),
libsystem_name.a (Unix). The archive will include the Eiffel runtime
thanks to theinclude directives listed above. Then it suffices to link the
archive with the rest of your application through the link command
appropriate for your operating system.

On Unix, you should use the–lm option to the link command to include
the C mathematical library, required by the Eiffel runtime. You may need
other libraries too, for example–lbsdon Linux, –lpthread(Posix threads)
on Linux, –lthread (Solaris thread library) on Solaris. The linking
command might look like this:

ld –lm –lbsdyour_application.c libsystem_name.a

	31 31 Interfacing with C, C++ and other environments
	31.1 OVERVIEW: THE COMPONENT COMBINATOR
	31.2 WHAT EIFFEL CAN DO WITH THE REST OF THE WORLD
	31.3 WHEN TO USE EXTERNAL SOFTWARE
	31.4 REGISTERED LANGUAGES AND THE ROLE OF C
	31.5 BASICS OF EXTERNAL ROUTINES
	31.6 EXECUTING AN EXTERNAL CALL
	31.7 ARGUMENT AND RESULT TRANSMISSION
	31.8 PASSING THE ADDRESS OF AN EIFFEL FEATURE
	Address Type rule

	31.9 SPECIAL INTERFACE SUBLANGUAGES
	31.10 GENERAL SUBLANGUAGE MECHANISMS
	Specifying an external routine signature
	Specifying external files

	31.11 THE C INTERFACE SUBLANGUAGE
	Syntax specification
	Specifying C code inline
	Controlling the Eiffel-C type correspondence

	31.12 THE C++ INTERFACE SUBLANGUAGE
	The syntax specification
	Conditions on C++ features
	Processing C++ features
	Extra argument

	31.13 WRAPPING C++ CLASSES: LEGACY++
	The role of Legacy++
	Calling Legacy++
	Result of applying Legacy++
	Legacy++ limitations
	Legacy++ example

	31.14 USING DYNAMIC LINKE LIBRARIES (DLLS)
	The static DLL sublanguage

	31.15 DESC: CALLING A DLL ROUTINE DETERMINED AT RUN TIME
	DESC overview
	Creating a library object
	Creating a routine object
	Type codes
	Calling a routine
	Accessing the result of a function
	Consistency requirements and protection against errors
	Sharing and freeing

	31.16 THE CECIL LIBRARY
	Cecil overview
	Cecil role and status
	Compiling for Cecil
	Avoiding abusive optimization
	Basic Cecil conventions
	Initializing the Eiffel 4 run-time
	Manipulating values of basic Eiffel types
	Manipulating Eiffel class types
	Accessing an Eiffel object
	Creating an Eiffel object
	Calling routines
	Requesting a non-existing routine
	Accessing field objects
	ISE Eiffel specifics

