
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
22
Attaching values to entities
22.1 OVERVIEW

------- REWRITE ---- You already know everything about the last case.
This chapter explores the other three. It will also examine a closely related
problem, for which the last chapter did the advance work: how to determine
that two entities have the same attachment, or areequal, in any of the
possible interpretations of this general notion.

At any instant of a system’s execution, every entity of the system has a
certain attachment status: it is either attached to a certain object, or void
(attached to no object). Initially, all entities of reference types are void; one
of the effects of aCreation instruction is to attach its target to an object.

The attachment status of an entity may change one or more times during
system execution through aattachment operations, in particular:

• The association of an actual argument of a routine to the corresponding
formal argument at the time of a call.

• TheAssignmentinstruction, which may attach an entity to a new object,
or remove the attachment.

The validity and semantic properties of these two mechanisms are
essentially the same; we study them jointly here.

← Chapter20.

ATTACHING VALUES TO ENTITIES §22.2580
22.2 ROLE OF REATTACHMENT OPERATIONS

Every reattachment operation has asource(an expression) and atarget (a
Variable entity). When the reattachment is valid, its effect will be ----

This chapter explores reattachment operations: their constraints,
semantics, and syntactic forms.

22.3 FORMS OF UNCONDITIONAL REATTACHMENT

As noted, the two forms of unconditional reattachment,Assignment
instructions and actual-formal association, have similar constraints and
essentially identical semantics, studied in the following sections.

The syntax is different, of course. An assignment appears as

wherex, the target, is aVariableentity andy, the source, is an expression.

Very informally, the semantics of this instruction is to replace the value
of x by the current value ofy; x will keep its new value until the next
execution, if any, of a reattachment (unconditional, conditional, or new
Creation) of which it is the target.

Actual-formal association arises as a byproduct of routine calls. ACall
to a non-external routiner with one or more arguments induces an
unconditional reattachment for each of the argument positions.

Reattachment, source, target
A reattachment operation is one of:
1 • An Assignmentx := y; then y is the attachment’s source and x

its target.

2 • The run-time association, during the execution of a routine
call, of an actual argument (the source) to the corresponding
formal argument (the target).

We group assignment and argument passing into the same category,
reattachment, because their validity and semantics are essentially the same:

• Validity in both cases is governed by the type system: the source must
conformto the target’s type, or at leastconvert to it. The Conversion
principle guarantees that these two cases are exclusive.

• The semantics in both cases is to attach the target to the value of the
source or a copy of that value.

x := y

← Chapter14 pre-
sented both conform-
ance and convertibility.
See“Conversion prin-
ciple”, page 400.

§22.4 SYNTAX AND VALIDITY OF ASSIGNMENT 581
Consider any one of these positions, where the routine declaration
(appearing in a classC) gives a formal argumentx:

Then consider a call tor, where the actual argument at the given position is
y, again an expression. The call must be of one of the following two forms,
known as unqualified and qualified:

Qualified or not, the call causes an unconditional reattachment of targetx
and sourcey for the position shown, and similarly for all other positions.

A qualifiedCall also has a “target”, appearing to the left of the period,t in the
second example. Do not confuse this with the target of the actual-formal
attachment induced by the call,x in this discussion.

Informally again, the semantics of this unconditional reattachment is to set
the value ofx, for the whole duration of the routine’s execution caused by
this particular call, to the value ofy at the time of call. No further
reattachment may occur during that execution of the routine. Any new call
executed later will start by setting the value ofx to the value of the new
actual argument.

22.4 SYNTAX AND VALIDITY OF ASSIGNMENT

Here is the syntax of anAssignment instruction:

Actual-formal association does not have a syntax of its own; it is part of the
Call construct.

The syntax ofAssignmentrequires the target to be aVariable. Recall that
aVariableentity is either an attribute of the enclosing class or a local variable
of the immediately enclosing routine or agent. The latter case includes, in a
function, the predefined entityResult. A formal routine argument isnot a
Variable; this property is discussed further in the next section.

r (…, x: T, …) is …

r (…, y, …)
t.r (…, y, …)

-- In this second form,t must conform to a type based onC.

Assignments
Assignment=∆ Variable ":=" Expression

For an external routine,
written in another lan-
guage, the exact seman-
tics depends on the
other language’s rules.

See chapter23 for the
details of Call instruc-
tions and expressions.

→Seechapter23about
Call. Syntax page618.

← 19.8 introduced
Variable entities, with
syntax on page504and
the associated Variable
rule on page506.

ATTACHING VALUES TO ENTITIES §22.5582
The principal validity constraint in both cases is that the source must
conform or convert to the target. ForAssignmentthis is covered by the
following rule:

The two cases, conformance and convertibility, are complementary:

• Conformance is the more common situation. As you will remember,
typeU conforms to typeT — and, as a consequence, an expression of
the first type to an entity of the second one — if the base class ofU is a
descendant of the base class ofT and, if generic parameters are present,
they also conform; theconformance chapter gave the details.

• Convertibility allows reattachments that also perform a conversion, as
when you are assigning an integer value to a real target.

22.5 THE STATUS OF FORMAL ROUTINE ARGUMENTS

The syntax ofAssignmentrequires the target to be aVariable. This
includes, as noted, attributes and local variables, but not formal arguments
of the enclosing routine. So in the body of a routine

an assignmentx := y, for some expressiony, would not be valid. The only
reattachments to a formal argument occur at call time, through the actual-
formal association mechanism.

It is indeed a general rule of Eiffel that routines may not change the
values of their arguments. A routine is an operation to be performed on
certain operands; arguments enable callers to specify what these operands
should be in a particular application of the operation. Letting the operation
change the operands would be confusing and error-prone.

Assignment rule VBAR

An Assignmentis valid if and only if its source expression is
compatible with its target entity.

To be “compatible”means to conform or convert.

This also applies to actual-formal association: the actual argument in a call
must conform or convert to the formal argument. The applicable rule is
argument validity, part of the generaldiscussion of call validity.

r (: SOME_TYPE)
…
do

…
end

← “Compatibility
between types”, page
376.

→ “THE CALL
VALIDITY RULE”,
25.10, page 673.

← Chapter14.

← Chapter15.

x

§22.6 CONVERSIONS 583
Although some programming languages offer “out” and “in-out” modes for
arguments, they are a notorious source of trouble for programmers, and
complicate the language; for example:

•You must have special rules for the corresponding actual arguments (they must
be variable).

•You must prohibit using the same actual argument twice, as inr (e, e), but only
if both of the affected argument positions are “out” or “in out”.

The Eiffel rule does not prohibit a routiner from modifying theobjectsthat
it is passed: if a formal argumentx is a non-void reference,r has access to
the attached object and can perform any valid feature call on it. In the
situation pictured below the body ofr may include a procedure call

whereset_attrib1will update the value of the integer fieldattrib1. What is
not permitted is anAssignmentof target x, which would affect the
reference rather than the object.

22.6 CONVERSIONS

All that beginning Eiffel programmers really need to know about convertibility
is that commonly accepted mixed-type arithmetic assignments with no loss of
information, such asyour_real:= your_integer(but not the other way around,
which requires using a truncation or rounding function) are OK and will cause
the proper conversions. So on first reading you shouldskip this section.

Conformance and convertibility are, as noted, mutually exclusive cases.
Let us start our study of reattachment semantics by the second one — even
though conformance is by far the more common case — because the
discussionof convertibility already told us most of what we need to know.

In that discussion we saw that it is possible for a class to declare,
through its creation procedures, one or morecreation types, as in:

x.set_attrib1(2)

classDATEcreate

…

Object may
change,
reference not

attrib1x

2

Skip to“SEMANTICS
OF REATTACH-
MENT”, 22.7, page
585.

← Chapter15.Seealso
“The Target Conver-
sion mechanism
deserves some justifica-
tion…” , page762.

from_tupleconvert {TUPLE[INTEGER, INTEGER, INTEGER]}

ATTACHING VALUES TO ENTITIES §22.6584
This is intended to permit attachments from any of the conversion types
(here only one) to the current type, so that you may write

wherecompute_revenueexpects two date arguments. Argument passing in
this case will cause, prior to actual attachment, the creation of a new object
of type DATE and its initialization through the given creation procedure
from_tuple. As was noted in the earlier discussion, this means that the call
is equivalent to

Similarly, a call your_date := [1, "January", 2000] is equivalent to
createyour_date.from_tuple([1, "January", 2000].

It is also possible to specify conversion through a function in the source
type, rather than a procedure in the target type. Between any two given
types, at most one of these possibilities may apply. If it is possible to
convert an expressionexp to an entitye, we say thatexp converts tox,
through a conversion routine (procedure or function).

This semantic specification and the supporting definition rely on the
properties of the conversion mechanism, expressed by theConversion
Procedurerule and the associateddefinitions (convertible types of a class),
which guarantee that everything is unambiguous:

• The definition of “convertible types” tells us thatSOURCEmust appear
among theConversion_typesof a creation procedure of the base class
of TARGET.

• Clause 4 of the Conversion Procedure rule, requiring all the
convertible types of a class to be different, guarantees that there is
only one such procedure, making the definition of “applicable
conversion procedure” legitimate.

• Clauses6and7of theruleguaranteethat thisprocedurehasexactlyoneformal
argument, of a typeARGto whichSOURCEmust conform or convert.

If SOURCEconverts (rather than conforms) toARG, then the attachment
will, as was noted in the earlier discussion, cause two conversions rather
than one, since to the conversion procedure must convert its argument to
typeARG. As was also noted, things stop here: a conversion reattachment
may cause one conversion (the usual case), or two (if theSOURCEtype
converts to theARG type), but no more.

compute_revenue([1, "January", 2000], [1, "January", 2001])

compute_revenue(create{DATE}.from_tuple([1, "January", 2000]),
create{DATE}.from_tuple([1, "January", 2001]))

← “EXPRESSION
CONVERTIBILITY:
THE ROLE OF PRE-
CONDITIONS”,
15.10, page 412.

← “Conversion Proce-
dure rule”, page 403;
“Converting to and
fromatype”, page406;

← See discussion of
clause6 of the Conver-
sion Procedure rule on
page403.

§22.7 SEMANTICS OF REATTACHMENT 585
This discussion completes the specification of reattachment in the
convertibility case. Since theConversionprinciple tells us that a type may
not both convert and conform to another, we may limit our attention, for the
rest of this chapter, to the more common case: reattachments in which the
source of an assignment or argument passingconforms to the target.

--- TEXT BELOW MAY HAVE TO BE TRANSFERRED ELSEWHERE

22.7 SEMANTICS OF REATTACHMENT

Let us examine the precise effect of executing an unconditional reattachment
of either of the two forms, for a source conforming to the target.

Because that effect is the same in both cases — anAssignmentx := y
and a call that usesy as actual argument for the formal argumentx of a
routine — we can use the first as our working example: the assignment

wherex is of typeTX andy of typeTY, which must conform toTX.

The effect depends on the nature ofTXandTY: reference or expanded?
Here is the basic rule, covering the vast majority of practical cases:

• .If both TXandTYare expanded, the assignment copies the value of the
object attached to the source onto the object attached to the target.

• If both are reference types, the operation attachesx to the object
attached toy, or makes it void ify is void.

As an example of the first case, in

the resulting value ofxwill be 4, but the lastAssignmentdoes not introduce
any long-lasting association betweenx andy; this is becauseINTEGERis
an expanded type.

As an example of the second case, ifTC is a reference type, then

will result inx andy becoming attached to the same object:

x := y

x, y: INTEGER
…
y := 4
x := y

x, y: TC
…
createy …
x := y

← “Conversion princi-
ple”, page 400.

Effect of
reference
reattachment

ATTACHING VALUES TO ENTITIES §22.7586
This rule addresses the needs of most applications. There remains, of course,
to see what happens when one ofTX and TY is expanded and the other
reference. But it is more important first to understand the reasons for the rule
by exploring what potential interpretations make sense in each case.

Consider first the case of references. We start from the run-time
situation pictured below, with two objects labeled OX and OY, assumed
for simplicity to be of the same typeTY, and accessible through two
referencesx andy. Of course, since the Eiffel dynamic model is fully based
on objects,x andy themselves will often be reference fields of some other
objects, or of the same object; these objects, however, are of no interest for
the present discussion and so they will not appear explicitly.

Three possible kinds of operation may updatex from y: copying, cloning
and reference reattachment.

(TY)

integer_attrib

character_attrib
’A’

OX
x

y

1

Before a
reattachmentinteger_attrib

character_attrib ’A’

OXx 1

(TY)

OYy

(TY)

integer_attrib

character_attrib ’B’

2

§22.7 SEMANTICS OF REATTACHMENT 587
The first, copying, makes sense only if bothx andy are attached (non-
void). Its semantics, seen in thelast chapter, is to copy every field of the
source object onto the corresponding field of the target object. It does not
create a new object, but only updates an existing one.We know how to
achieve it: through procedurecopy of the universal classANY or, more
precisely, its frozen versionidentical_copy, ensuring fixed semantics for
all types (whereascopymay be redefined). The next figure illustrates the
effect of a cally.identical_copy(x) starting in the above situation.

The second operation is a close variant of the first: cloning also has the
semantics of field-by-field copy, but applied to a newly created object. No
existing object is affected. Here too a general mechanism is available to
achieve this: a call to functionclonewhich (anticipating on this section) we
have learned to use in an assignmentx := clone (y). To guard against
redefinition we may use the frozen versionidentical_clone. The result is
shown below; the cloning creates a new object, OZ, a carbon copy of OX.

← See21.2, page 557
oncopy and its frozen
versionidentical_copy.

integer_attrib

character_attrib ’A’ OX

x 1

(TY)
OY

y

(TY)

integer_attrib

character_attrib ’A’

1

y.copy(x)

Effect of
standard copy

← See21.4, page
567,aboutcloneand
identical_clone.

y := clone(x)

integer_attrib

character_attrib ’A’ OX

x 1

(TY)
OY

y

(TY)

integer_attrib

character_attrib ’A’

1

(TY)
OZ

integer_attrib

character_attrib ’A’

1

Effect of
standard clone

ATTACHING VALUES TO ENTITIES §22.7588
Assumingy was previously attached to OY as a result of the preceding
operation, it is natural to ask: “What happens to the object OY?”. This will be
discussed in alater section.

The third possible operation is reference reattachment. This does not affect
any object, but simply reattaches the target reference to a different object.
The result (already visible in the last figure) may be represented as follows:

To devise the proper rule for semantics, we must study which of these
operations make sense in every possible case. Since the source and target
types may each be either expanded or reference, there will be four cases:

SOURCE TYPE→ Reference Expanded

TARGET TYPE↓

Reference [1]

• Copy (if neither
source nor target void)

• Clone

• Reference reattachment

[2]

• Copy (if target not void)

• Clone

Expanded [3]

• Copy (will fail if
source is void)

[4]

• Copy

→ “MEMORY MAN-
AGEMENT”, 22.15,
page 608.

Effect of
reference
reattachment

x

y

y := (x)

integer_attrib

character_attrib ’A’ OX

1

(TY)

Meaningful
possibilities for
the semantics
of reference
reattachment

This list only takes into
account shallow opera-
tions. Deep variants
were discussed in21.5,
page 571.

§22.7 SEMANTICS OF REATTACHMENT 589
If all we were interested in was copying and cloning, we would not need
any new mechanism: routinesidentical_copyand identical_clone, from
ANY, are available for these purposes. The only operation we would miss is
reference reattachment, corresponding to the last figure. This only makes
sense for case1, when both target and source are of reference types: if the
target is expanded, as in cases3 and4, there is no reference to reattach; and
if the source is expanded, as in cases2 and 4, a reattachment would
introduce areference to a sub-object, a casediscussedandrejected in the
discussion of the dynamic model.

In case 1, however, we do need the ability to specify reference
reattachment, not covered bycopy, cloneor their frozen variants. This will
be the semantics of theAssignmentx := y and of the corresponding actual-
formal association when bothx andy are of reference types.

We now have notations for expressing meaningful operations in every
possible case: reference assignment in case1, routinesidentical_copyand
identical_clonein the other cases. At least two reasons, however, indicate
that in addition to these case-specific operations we also need a single
notation applicable to all four cases:

• In a generic class,TXandTYmay be aFormal_generic_name; then the
class text does not reveal whetherx andy denote objects or references,
since this depends on the actual parameter used in each generic
derivation of the class. But it must be possible for this class text to
include anAssignmentx := y, or a callr (…, y,…), with a clearly defined
meaning in all possible cases.

• The availability of general-purpose copying and cloning mechanisms
does not relieve us from the need to define a clear, universal semantics
for actual-formal association.

Examination of the above table suggests a uniform notation addressing
these requirements. What default semantics is most useful in each case?

• In case1, where bothx andy denote references, the semantics should be
reference reattachment, if only (as discussed above) because no other
notation is available for that operation.

• In case4, with bothx andy denoting objects, only one semantics makes
sense for a reattachment operation: copying the fields of the source onto
those of the target.

• In case2, with x denoting a reference andy an object, both copying and
cloning are possible. But copying only works ifx is not void (since there
must be an object on which to copy the source’s fields). Ifx is void,
copying will fail, triggering an exception. It would be unpleasant to
force class designers to test for void references before any such
assignment. Cloning, much less likely to fail, is the preferable default
semantics in this case.

← “REFERENCE
ATOMICITY”, 19.7,
page502; the excluded
case is illustratedby the
figure on page502.

← If the formal
generic isTX, con-
formance requiresTY
to be identical to TX. If
the formal isTY, TXis
eitherTY or an ances-
tor of TY’s constraint
(ANY if TY is uncon-
strained). See“Dir ect
conformance: formal
generic”, page 385.

Cloning may also fail,
triggeringanexception,
if there is no more mem-
ory available(21.2).
But this is a much less
frequent situation than
the target being a void
reference.

ATTACHING VALUES TO ENTITIES §22.7590
• In case3, as in case1, the targetx is an object, so copying is again the only
possible operation. In this case it will fail ify is void (since there is no
object to copy), but then no operation exists that would always work.

This analysis leads to the following definition of the semantics of
unconditional reattachment in the case of a sourceconforming to its target.

In this semantic specification, “Copy” and “Clone” refer to the frozen
featuresidentical_copyand identical_clonethat every class inherits from
the universal classANY.

Arguments could be found for using instead the redefinable versioncopy, and
clone which is defined in terms ofcopy: after all, if the author of a class
redefined these routines, there must have been a reason. But it is more prudent
to stick to the frozen versions, so that the language defines a simple and
uniform semantics for assignment and argument passing on entities of all
types. If you do want to take advantage of redefinition, you can always use
the call.copy.(y) instead of the assignmentx := y, or passclone(y) instead
of y as an actual argument to a call. These alternatives to unconditional
reattachment apply of course to reference types as well as expanded ones.

For theexception raised in case3 if the value ofy is void, the Kernel
Library class EXCEPTIONS introduces the integer code
Void_assigned_to_expanded.

This semantic definition yields the most commonly needed effect in
each case. This applies in particular to cases1 and4, which account for the
vast majority of reattachments occurring in practice: for an integer variable
(case4), it is pleasant to be able to write

to produce the effect of

SOURCE TYPE→ Reference Expanded

TARGET TYPE↓

Reference [1]
Reference reattachment

[2]
Clone

Expanded [3]
Copy
(Fails if source void)

[4]
Copy

n := 3

n.copy(3)

→ The table giving
equality semantics on
page611 will be orga-
nizedalongsimilar lines.

← Remember that the
convertibility case is
distinct(“CONVER-
SIONS”, 22.6, page
583)

The semantics
ofconformance
reattachment
NOT a semantic specifi-
cation but only a list of
available possibilities
for such a specification.
The actual semantics
appears next.

See chapters26 on
exceptions and37 on
classEXCEPTIONS.

Herecopyandident-
ical_copyare the same.

§22.7 SEMANTICS OF REATTACHMENT 591
but uses a commonly accepted notation and has the expected result. For a
reference variabley, it is normal to expect the call

simply to pass tosome_routinea reference to the object attached toy, if any,
rather than to duplicate that object for the purposes of the call. If you do
wish duplication – shallow or deep – to occur, you may make your exact
intentions clear by using one of the calls

An interesting application is the case of generic parameters and generically
derived types. If the type ofx andy is a formal generic parameter of the
enclosing class, as in

the effect of the highlighted assignment may be reference reattachment or
copying depending on the actual generic parameter used forG in the
current generic derivation. (Cloning, which only occurs for reference target
and expanded source, does not apply to this case since, by construction,x
an y are of the same type.) We will shortly come back to the effect of
reattachment semantics on generic programming.

A consequence of the validity and semantics rules is the following
semantic principle, which will be important to understand the run-time
behavior of our systems:

some_routine(y)

some_routine(clone(y))
some_routine(identical_clone(y))
some_routine(deep_clone(y))

class GENERIC_EXAMPLE[G] feature
example_routine

local
x, y: G

do

end
end

Reattachment principle

After a reattachement to a target entityt of type TT, the object
attached tot, if any, is of a typeconforming toTT.

x := y

→ “EFFECT ON
GENERIC PRO-
GRAMMING”, 22.10,
page 596.

ATTACHING VALUES TO ENTITIES §22.7592
“If any” because the source of the attachment might have been void. If not,
its valuev is of a typeVT that either conforms or converts toTT (but not
both). If it conforms, the operation simply reattachest to v, satisying the
principle. If it converts, the operation produces a new object of typeTT; this
satisfies the principle too sinceTT conforms to itself.

Attaching an entity, attached entity

Attaching an entitye to an objectO is the operation ensuring that
the value ofe becomesattached toO.

Although it may seem tautological at first, this definition simply relates the
two terms “attach”, denoting an operation that can change an entity, and
“attached to an object”, denoting the state of such an entity — as determined
by such operations. These are key concepts of the language since:

• A reattachment operation (see next) may “attach” its target to a certain
object as defined by the semantic rule; a creation operation creates an
object and similarly “attaches” its creation target to that object.

• Evaluation of an entity, per the Entity Semantics rule, uses (partly
directly, partly by depending on the Variable Semantics rule and
through it on the definition of “value of a variable setting”) the object
attachedto that entity. This is only possible by ensuring, through other
rules, that prior to any such attempt on a specific entity there will have
been operations to “attach” the entity or make it void.

Reattachment Semantics

The effect of a reattachment of source expressionsourceand
target entitytarget is the effect of the first of the following steps
whose condition applies:
1 • If sourceconvertsto target: perform aconversionattachment

from source to target.

2 • If the value ofsourceis a void reference: maketarget’s value
void as well.

3 • If the value ofsource is attachedto an object withcopy
semantics: create aclone of that object, if possible, andattach
targetto it.

4 • If the value ofsourceis attached to an object withreference
semantics: attachtargetto that object.

§22.8 AN EXAMPLE 593
The semantics of assignment is just a special case of this rule:

22.8 AN EXAMPLE

---- WRONG (OLD SEMANTICS), TO BE REMOVED

As with other semantic rules describing the “effect” of a sequence of steps,
only that effect counts, not the exact means employed to achieve it. In
particular, the creation of a clone in step3 is — as also noted in the
discussion of creation — often avoidable in practice if the target is
expanded and already initialized, so that the instruction can reuse the
memory of the previous object.

Case1 indicates that a conversion, if applicable, overrides all other
possibilities. In those other cases, if follows from theAssignmentrule that
source mustconform to target.

Case2 is, from the validity rules, possible only if bothtargetandsource
are declared ofdetachable types.

In case3, a “clone” of an object isobtained by application of the
functionclonedfrom ANY; expression conformance ensures thatclonedis
available (exported) to the type oftarget; otherwise, cloning could produce
an inconsistent object.

The cloning might be impossible for lack of memory, in which case the
semantics of the cloning operation specifies triggering an exception, of type
NO_MORE_MEMORY. As usual with exceptions, the rest of case3 does not
then apply.

In case4 we simply reattach a reference. Because of the validity rules (no
reference type conforms to an expanded type), the target must indeed be of
an reference type.

This rule defines theeffectof a construct through a sequence of cases,
looking for the first one that matches. As usual with semantic rules, this
only specifies the result, but does not imply that the implementation must
try all of them in order.

Assignment Semantics

The effect of a reassignmentx := y is determined by the
Reattachment Semantics rule, with sourcey and targetx.

The other cases where Reattachment Semantics applies is actual-formal
association, per step5 of the General Callrule.

On the other hand, the semantics ofObject_test, a construct which also
allows aRead_onlyentity to denote the same value as an expression, is
simple enough that it does not need to refer to reattachment.

→ .

→ .

→ “General Call
Semantics”, page 645.

ATTACHING VALUES TO ENTITIES §22.8594
To see the effect of reattachment in various cases, consider the run-time
situation pictured below.

All the entities considered are attributes of a classC. OC, the complex
object on the left, is a direct instance of typeTC, of base classC.

The first five attributes (ra, rb, rc, rd, re), whose names begin withr, are of
a reference typeT1. The corresponding fields of OC are references. The four
others (et, ex, ey, ez), whose names begin withe, are expanded. The
corresponding fields are sub-objects of OC, which have been given the names
OBJ2 to OBJ5. The reference fieldra is originally attached to another object
OBJ1, also of typeT2.

Assume that classC has the following routine, usingAssignment
instructions to perform a number of reattachments:

assignmentsis
-- Change various fields.

do
rc := rb
rd := ra
re := et
ex:= ey
ez:= ra

end

ra

rb
rc

rd

re

T1

T1

T1

T1

T1

T2

T2

T2

T2

OBJ2

OBJ1

OBJ4

OBJ5

OBJ3

T2

OC

et

ex

ey

ez

?

?

?

(TC)

A run-time
system
snapshot

OC is not only complex
but composite.

§22.9 ABOUT REATTACHMENT 595
If applied to the above OC, this procedure will produce the following
situation:

The assignmentre := et, with reference target and expanded source,
produces a duplicate of object OBJ2.

An attempt to executeet := rb, with an expanded target and a void
source, would trigger an exception.

22.9 ABOUT REATTACHMENT

(This section brings no new Eiffel concept. It will only be of interest to
readers who wish to relate the above concepts to the argument passing
conventions of earlier programming languages.)

It may be useful to compare the semantics of unconditional
reattachment to the mechanisms provided by other languages, in particular
to traditional variants of argument passing semantics.

Consider a call of the form

This causes an attachment as a result of actual-formal association between
the expressiony, of typeTY, and the corresponding formal argumentx, of
typeTX.

r (…, y, …)

ra

rb
rc

rd

re

T1

T1

T1

T1

T1

T2

T2

T2

T2

OBJ2

OBJ1

OBJ4

OBJ5

OBJ3

T2

OC

Clone ofOBJ2et

ex

ey

ez

(TC)

Snapshot after
assignments

ATTACHING VALUES TO ENTITIES §22.10596
An examination of the semantics defined above in light of other
argument passing conventions yields the following observations:

• If both TX and TY are reference types (case1 of the table of
reattachmentsemantics), the reattachment causes sharing of objects
through references, also known asaliasing. For actual-formal
association this achieves the effect ofcall by reference, with the target
being protected against further reattachment for the duration of the call.

• If both TXandTYare expanded types (case4), reattachment copies the
content ofy, an object, ontox. This achieves the effect ofcall by value.

• If TX is an expanded type andTYa reference type (case3), the operation
copies ontox the content of the object attached toy (y must be non-
void). This achieves what is often calleddereferencing.

• If TX is a reference type andTYan expanded type (case2), the operation
attaches tox a newly created copy ofy. This case has no direct
equivalent in traditional contexts; it may be viewed as a form of call by
value combined with call by reference.

22.10 EFFECT ON GENERIC PROGRAMMING

The semantics of unconditional reattachment has a direct effect on both the
production and the use of generic classes — a cornerstone of reusable
software production.

For a generic class such asGENERIC_EXAMPLEabove, it may seem
surprising to see a given syntactical notation, the assignment symbol:=,
denote different operations depending on the context, and similarly for
argument passing.

This convention corresponds, however, to the most common needs of
generic programming. The container classes of EiffelBase, such as
LINKED_LIST, TWO_WAY_LIST, HASH_TABLEand many others, used to
store and retrieve values of various types, provide numerous examples.
These classes are all generic and, depending on their generic derivations,
the values they store may be references or objects.

All of these classes have one or more procedures for adding an element
to a data structure; for example, to insert an element to the left of the
current cursor position in a linked list a client will execute

Almost all of these procedures use assignment for fulfilling their task.
Many do this not directly but through a call of the form

some_list.put_left(s)

some_cell.put (x)

← Page588.

← Page591.

The notion of container
data structure was pre-
sented in10.21, page
286, and12.3, page
343.

§22.10 EFFECT ON GENERIC PROGRAMMING 597
wheresome_cell, representing some individual entry of the data structure,
is of a type based on some effective descendant of the deferred generic
classCELL; for example,LINKED_LISTuses the descendantLINKABLE,
describing cells of linked lists. Procedureput comes fromCELL, where it
appears (in effective form) as [

Because the addition of an elementx by putuses assignment, what will be
added to the data structure is an object value ifx is of expanded type, and
otherwise a reference to an object.

This policy means that if you are a “generic programmer” (a developer
or user of generic classes) you must exercise some care, when dealing with
data structures having diverse possible generic derivations, to make sure
you know what is involved in each case: objects or references to objects.
But it provides the most commonly defaults: a call

inserts the value 25, whereas

does not duplicate the object representing the bank account. Storing a
reference in this case is the most conservative default policy. As in earlier
examples, you can always obtain a different policy by using such calls as

which guarantee uniform semantics (duplication, shallow in the first case
and deep in the second) across the spectrum of possible types.

The discussion also applies to the problem ofsearching a data
structure, discussed below.

class CELL [G] feature
item: G;
put (new: G)

-- Replace the cell value bynew
do

ensure
item= new

end
… Other features…

some_list_of_integers.put_left(25)

some_list_of_integers.put_lift (her_bank_account)

some_list_of_integers.put_left((her_bank_account))
some_list_of_integers.put_left((her_bank_account))

See page====for an
illustration of a LINK-
ABLE list cell.

This is a slight simplifi-
cation; the type of the
argument ‘new’ is actu-
ally like item, which
has thesameimmediate
effect since item is of
type G.

item:= new

clone
deep_clone

→ End of“SEMAN-
TICSOFEQUALITY”,
22.16, page 610.

ATTACHING VALUES TO ENTITIES §22.11598
22.11 POLYMORPHISM

The only type constraint on unconditional reattachment is that (aside from
theconvertibility case) the type of the source must conform to the type of
the target.

If the target is expanded, this means that the types must essentially be
the same; the only permitted flexibility is that one may describe objects of
a certain form and the other references to objects of exactly the same form.
This follows directly from the rule defining conformance when an
expanded type is involved.

If the target is a reference, however (cases1 and2 of thereattachment
semanticstable), the situation is more interesting. If the target’s base type
is based on a classC, the validity rules mean that the base class of the
source may be not justC but any proper descendant ofC. This gives a
remarkable flexibility to the type system, while preserving safety thanks to
the conformance restrictions.

As a consequence, an expression declared of typeTC may at run time
denote objects not just of typeTC but of many other types, all based on
descendants of the base class ofTC.

So to study the run-time semantics of Eiffel systems we need to
consider, along with thetypeof an expression (its type as deduced from
declarations in the software text), its possibledynamic types:

This should not be confused with thetypeof x (called itsstatic type if there
is any ambiguity), which for an entity is the type with which it is declared,
and for an expression is the type deduced from the types of its constituents.

An expression has, of course, only one (static) type. But, as a key
property of Eiffel’s object-oriented style of computation, it may have more
than one dynamic type. This is known aspolymorphism.

Dynamic type
The dynamic type of an expressionx, at some instant of
execution, is the type of the object to whichx is attached, or
NONE if x is void.

Polymorphic expression; dynamic type and class sets
An expression that has two or more possible dynamic types is
said to bepolymorphic.
The set of possible dynamic types for an expressionx is called the
dynamic type setof x. The set ofbaseclasses of these types is
called thedynamic class set of x.

← “CONVERSIONS”,
22.6, page 583.

← “General conform-
ance”, page 380 and
“Dir ectconformance:
expanded types”,
page 388.

← Page588.

→ “Type of an expres-
sion”, page 774.

§22.12 ASSIGNER CALL 599
Eiffel has a strongly typed form of polymorphism: the dynamic type set
of an expression is not arbitrary. The type rules are organized to guarantee
that the possible dynamic types forx all conform to the (static) type ofx.
This is how the type system keeps polymorphism is under control.

It is possible to determine the dynamic type set ofx through analysis of
the classes in the system to whichx belongs, by considering all the
attachment and reattachment instructions involvingx or its entities.

22.12 ASSIGNER CALL

You may have noted that the syntax for assignment

only supports assignment to aVariableentity; it does not allow assignment
to a field of an object, as in

Some programming languages permit such assignments, but — if viewed
just as assignments — they violate fundamental rules of methodology
(information hiding, data abstraction): clients of a class should not have the
ability to modify class instances directly; they should only do so through
the exported procedures of the class. A typical client call may be

assuming the author of the class — who is solely responsible for deciding
what clients may and may not do — has provided a procedureset_athat
sets the value of thea field. The procedure might have other properties,
such as imposing requirements on the new values, or triggering a database
update:

some_variable:= some_expression

x.a := b [1]

x. (b) [17]

set_a(x: T)
-- Update a to valuex.

require
“Some condition onx, for example to ensure compliance
with an invariant clause involvinga”

do
a := x
“Possibly some other action, for example updating a log
or database to record thata has been updated”

ensure
set: a = x

end

Warning: invalidexcept
as abbreviation for pro-
cedure call. See below.

set_a

ATTACHING VALUES TO ENTITIES §22.12600
While [1] is not acceptable as a way to let clients modify fields directly,
some programmers may find it more directly meaningful than[17] as a
notation to represent the procedure call toset_a.

Assigner commandsprovide this syntactic simplification. When you
declare a query in a class, you may associate with it anassignercommand;
in the example this means that the author of the supplier class must have
declareda accordingly, as

which specifiesset_aas the assigner command associated with the query
a. The consequence of this declaration is to make form[17], x.a := b, valid,
with the same semantics as form[1], x.set_a(b).

Form[17] is known as anAssigner_call.

Remember that it is only a syntactical convenience: Eiffel doesn’t
permit violating principles of information hiding and data abstraction, as
would be the case if clients could directly modify fields of objects. You
have no choice but to go through the official interface as defined by the
supplier class author. Assigner call— available only if that author has
decided to provide it, by specifying an assigner command for the query —
simply lets you call the procedure through assignment-like syntax. But the
instruction is still a procedure call, not an assignment.

The instruction is in fact more general than a plain assignment since it
allows you to use arguments. The target query may have any number of
arguments; this is what allows you to write

as a shorthand for the procedure call

This shorthand is made possible by the declaration ofitemin classARRAY,
which specifies put as an assigner command:

In this case thealias “[]" specification makes bracket syntax also possible,
allowing the following form as a synonym for[19] and hence for[18]:

which makes traditional array assignment syntax available in a fully object-
oriented context.

a: SOME_TYPEassignset_a

your_array.item(i) := new_value [18]

your_array.put (new_value, i) [19]

item(i: INTEGER): G alias “[]" …

your_array := new_value [20]

assignput

[i]

§22.12 ASSIGNER CALL 601
More generally, ifq is a query withn arguments and has an associated
assigner commandp, which must haven + 1 arguments, you may use

as an abbreviation for

The syntax is straightforward:

A Call_chain— the syntaxappears in the study of calls — is a dot-
separated sequence of two or more features, each possibly with arguments;
examples ofCall_chainare

Both the validity and the semantics of anAssigner_callfollow from this
construct’s role as a syntactic simplification for a call.

x. q (a1, a2, …, an) := e

x. p (, a1, a2, …, an)

Assigner calls
Assigner_call=∆ Expression ":=" Expression

The left-hand side is surprisingly general: any expression. The validity rule
will constrain it to be of a form that can be interpreted as a qualified call to
a query, such asx.a, or x.f (i, j); but the syntactic form can be different,
using for example bracket syntax as ina [i, j] := x.

You could even use operator syntax, as in

a + b := c

assuming that, in the type ofa, the functionplusalias"+" has been defined
with an assigner command, maybe a proceduresubtract. Then the left side
a + b is just an abbreviation for the query call

a.plus(b)

and theAssigner_call is just an abbreviation for the procedure call

a.subtract(c, b)

x.a
your_array.item(i)
x.f (b). g (c, d)

e

→ Page618.

ATTACHING VALUES TO ENTITIES §22.13602
As implied by the rules on assigner commands,p must have one more
argument than the associated queryq. Here are a few examples of assigner
calls and their unfolded forms:

From this notion we derive the validity rule for assigner calls:

The first two clauses ensures the conditions of the definition of “unfolded
form” above, so it’s indeed legitimate for the third clause to to rely on the
unfolded form of the instruction.

The unfolded form also gives us the semantics:

22.13 SEMI-STRICT OPERATORS

(This section is only for the benefit of readers with a taste for theory, and
may beskipped. They bring new light on earlier concepts, but introduce no
new language rules.)

The application of reattachment semantics to argument passing has the
interesting consequence of makingsemi-strictimplementations possible.
Let us see what this means.

Assigner_call Unfolded form
(assuming q has an assigner
commandp)

x.q := e x.p (e)

x.q (a) := e x.p (e,a)

x.f (a, b).q (c, d) := e x.f (a, b).p (e, c, d)

Assigner Call rule VBAC

An Assigner_callof the formtarget := source, wheretargetand
sourceare expressions, is valid if and only if it satisfies the
following conditions:
1 •source is compatible withtarget.

2 • The Equivalent Dot Form oftarget is a qualifiedObject_call
whose feature has anassigner command.

Assigner Call semantics

The effect of anAssigner_calltarget:=source, where theEquivalent
Dot Form of target is x.f or x.f (args) and f has anassigner
commandp, is, respectively,x.p (source) orx.p (source, args).

This confirms that the construct is just an abbreviation for a procedure call.

If skipping go to“CON-
DITIONAL REAT-
TACHMENT”, 22.14,
page 607.

§22.13 SEMI-STRICT OPERATORS 603
The notion of strictness

We may use a definition from programming theory:

Many common operations are strict on all arguments: for example you
cannot compute the sum of two integersm andn unless you know their
values, so this operation is strict on both arguments.

Not all operations are strict on all arguments, however. Consider a
conditional operation

which yieldsm if the value ofc (a boolean) is true,n otherwise. This is
strict onc, but not on the other two arguments, since it does not need to
evaluatem when it finds thatc is false, or to evaluaten whenc is true.

Detecting that an operation is non-strict on an argument may be
interesting for performance reasons (since it may avoid unnecessary
computations); more importantly, however, non-strict operations may be
more broadly applicable than their strict counterparts. This is immediately
visible on the previous example: a fully strict version of thetest operation
would always start by evaluatingc, m andn; but then it would fail to yield
a result whenc is true andn not defined, and whenc is false andm not
defined. A "semi-strict" version (strict onc but not onm and n) may,
however, yield results in these cases, providedm is defined in the first and
n in the second.

The need for semi-strict operators

How does this apply to Eiffel programming? Here the operations of interest
are calls, of the general form

and the operands are the targett and the actual arguments such asy, if any.
Such a call is always strict on its target (which must be attached to an
object). In a literal sense, it is also strict on its actual arguments, since it will
need to pass their values to the routiner.

Strict, non-strict

An operation isstrict on one of its operands if it is always neces-
sary to know the value of the operand to perform the operation.
It is non-strict on that operand if it may in some cases yield a
result without having to evaluate the operand.

test c yes mno n end

t.r (…, y, …)

For a full discussion see
the book“Intr oduction
to the Theory of Pro-
gramming Languages”.

WARNING: this is a
mathematical notation,
not Eiffel syntax.

http://www.eiffel.com/doc/documentation.html#itpl
http://www.eiffel.com/doc/documentation.html#itpl

ATTACHING VALUES TO ENTITIES §22.13604
When considering an actual argument such asy, however, it is more
interesting to analyze strictness not for the value ofy but for the attached
object, if any. Then the specification of unconditional reattachment
semantics yields two cases, depending on the types ofy and of the
corresponding formal argument inr:

A •If both are reference types, the call passes tor a reference, not the
attached object (which does not exist if the value ofy is void).

B •If either type is expanded, the call passes the attached object. (The value
of y may not be void in this case.)

In other words, taking the object to be the operand, actual-formal
association is non-strict ony in caseA, and is strict in caseB.

The call as a whole will be said to be strict if it is strict on all
arguments, andsemi-strict otherwise:

This case is called “semi-strict” rather than non-strict because an Eiffel call
is always strict on at least one of its operands: the call’s target.

If a call may be semi-strict and you want to guarantee strictness on a
particular argument without changing anything in the routine’s text, this is
easy: just use cloning on the actual argument, passingclone(y) rather than
y. Functioncloneis clearly strict. The reverse change is not always possible:
if the routine has a formal argument of expanded type, it will always be strict
on the corresponding actuals.

What does semi-strictness mean in practice? Essentially that if both an
actual argumenty and the corresponding formal argument are of reference
types the implementationmay choose a non-strict argument passing
mechanism, which evaluatesy when and only when the routine actually
needsy’s value.

Such a semi-strict implementation is possible, but, except in one case,
it is not guaranteed. Implementations are not required to use a non-strict
argument passing mechanism even if the formal and actual arguments are
both references. This means that when you write a call of the form

you must make sure that the value ofy, which may be a complex expression,
is always defined at the time of call execution — even in cases for whichr
does not actually need that value. The call may evaluatey anyway.

Semi-strict

A call issemi-strict if it is non-strict on one or more arguments.

t.r (…, y, …)

CaseA corresponds to
case1 of reattachment
semantics, page588,
andcaseBto2,3and4.

If the target is a refer-
ence and the source is
expanded(case2of the
table), actual-formal
association results in
referencereattachment,
but the source must first
be cloned, so that the
operation is indeed
strict ony.

The exception is semi-
strict boolean opera-
tors, as explained
below.

§22.13 SEMI-STRICT OPERATORS 605
Consider for example a routine

which returns the value of its last argument if its first argument,i, is within
the bounds of the middle argument, an array, and returns 0.0 (the default
value forREAL) otherwise. Then consider a call in the same class:

If the value ofn may be outside of the bounds ofyour_array, then this call
is not correct sinceyour_array @ n, denoting then-th element of
your_array, is not defined in this case. Semi-strict implementation (non-
strict on the last argument) would avoid evaluation ofsome.array @n and
hence ensure proper execution of the call, returning zero; but you maynot
assume that the implementation uses this policy.

There is, however, one exception. Aswill be seen in detail in the
discussion of operator expressions, three functions of the Kernel Library
classBOOLEAN, are required to be semi-strict (that is to say, non-strict on
their single argument). These are functions representing a variant of the
common boolean operations: and, or, implies. Their declarations in class
BOOLEAN are

too_strict_for_me
(i: INTEGER; arr: ARRAY[REAL]; val: REAL): REAL
do

if then
Result:= val

end
end

your_array: ARRAY[REAL]; a: REAL; n: INTEGER
…
a := too_strict_for_me(n,)

conjunction_semistrictalias "and then"
(other: BOOLEAN): BOOLEANis do … end;

disjunction_semistrictalias "or else"
(other: BOOLEAN): BOOLEANis do … end;

implicationalias "implies"
(other: BOOLEAN): BOOLEANis do … end;

i > = arr.lowerand i < = arr.upper

WARNING: poten-
tially incorrect!

your_array@ n)

→ “SEMISTRICT
BOOLEAN OPERA-
TORS”,28.6,page765.

ATTACHING VALUES TO ENTITIES §22.13606
The semantics of these functions readily admits a semi-strict interpretation:
a and thenb should yield false whenevera is false, regardless of the value
of b, and similarly for the others. To state this property concisely for all
three operations, it is useful to express the value of each, as applied to
argumentsa andb, in terms of the abovead hoctest notation:

This semi-strictness of these boolean operators is important in practice
because it makes it possible to use them as conditional operators. As a
typical example, again using arrays, it is often convenient to write
instructions of the form

where the last condition is not defined unless the first two are true (because
i would then be outside of the bounds ofarr). In the absence of a semi-strict
version of “and”, it would be much more cumbersome (as Pascal
programmers know) to express such examples.

The discussion of boolean operators will show further uses of this semi-
strict policy, especially for writing iterators on data structures, with
examples from the EiffelBase library.

More on strictness

(This more theoretical section may be skipped on first reading.)

What about the ordinary boolean operatorsandandor? You may expect
them to have a strict semantics, but this is not the case — at least not
necessarily. Here the language definition is simply less tolerant: it makes it
incorrect to evaluate expressionsa and b anda or b whenb is not defined,
even ifahas value false in the first case and ifb has value true in the second
case. There is nothing surprising in this convention, which has its
counterpart in all other forms of expression except those involving semi-
strict operators: no rule in this book will tell you how to compute the value
of m+ n if the value of the integer expressionn is not defined.

test not a yes false no b end
test a yes true no b end
test not a yes true no b end

if
i >= your_array.lowerand then
i <= your_array.upperand then
(arr @ n).your_property

then
…

Remember that an
operator expression
such asa and thenb
stands for a call of tar-
geta and actual argu-
mentb. This explains
why all the expressions
considered here are
strictona,sinceacall is
always strict on its tar-
get. See“THE EQUIV-
ALENTDOTFORM”,
28.8, page 771.

→ See for example
continue_until from
LINEAR_ITERATION
on page====

§22.14 CONDITIONAL REATTACHMENT 607
Because the language definition does not cover cases in which the
second operand ofor or and has no value, an implementation that usesand
then to computeand, andor else to computeor, is legitimate; it may
produce results in cases for which a strict implementation would not, but
these cases are incorrect anyway.

The reverse is not true: a correct implementation ofand andor does not
necessarily provide a correct implementation ofand thenandor elsesince
it may be strict. In other words: non-semi-strict does not necessarily mean
strict! If you want to guarantee strictness, it does not suffice to rely on the
operatorand and the operatoror; you should use cloning as suggested
above. (Forimplies, which is semi-strict, there is no equivalent non-semi-
strict operator, but you can usenot a or b.)

It is legitimate to ask why the semi-strict property of three boolean
operators —and then, or else, implies — is not expressed as part of the
language syntax. One could indeed envision a special optional qualifier
nonstrict applicable to formal arguments of reference type:

Such a facility was not, however, deemed worth the trouble, since the
common practice of software development seldom requires semi-strictness
outside of two special cases: the three boolean operators just studied; and,
as we will see in therelevant chapter, concurrent computation.

22.14 CONDITIONAL REATTACHMENT

To complete the study of reattachment, there remains to see one
mechanism which, like the operations examined so far, may reattach a
reference to a different object. The semantics will in fact be reference
reattachment; what differs is the validity constraint under which you may
apply this mechanism, and also the conditional nature of its effect.

--- REPLACE WITH A SHORT PREVIEW OF Object_test

Limitations of unconditional reattachment

The need for a conditional form of reattachment arises when you must
access an object of a certain typeTX, but the only name you have to denote
that object is an expression of typeTY, for two different types with the
“wrong” conformance (TXconforms toTYrather than the reverse), or even
no conformance at all. Normally, you would use the assignment

implicationalias "and then"
(nonstrict other: BOOLEAN): BOOLEAN

x := y

WARNING: not legal
Eiffel!

→ Chapter33.

ATTACHING VALUES TO ENTITIES §22.15608
with xof typeTX; but this will not work because the fundamental constraint
of unconditional reattachment, expressed in theAssignmentrule, assumes
conformance fromy to x. Calling a routine withy as actual argument
corresponding to a formal argumentx of typeTXwould also be invalid for
the same reason. This conformance property is essential to the soundness
of the type system.

22.15 MEMORY MANAGEMENT

A practical consequence of the reference reattachment mechanism, both in
the unconditional form (assignment, argument passing) and in the
conditional form (assignment attempt), is that some objects may become
useless. This raises the question of how, if in any way, the memory space
they used may be reclaimed for later use by newly created objects.

For example, the reference reattachment illustrated by the figure below
may make the object labeled OY unreachable from any useful object.

In a similar way, the result of a cloning operation may make an object
unreachable. This may be the case with the middle object (also labeled OY)
in the earlierillustration of cloning.

(TY)

integer_attrib

character_attrib
’A’

OX

x

y

1

(TY)

integer_attrib

character_attrib
’B’

OY

2

$

Before

After

Effect of
reference
reattachment

This is the same as the
second figure of page
588.

← First figure on page
587.

§22.15 MEMORY MANAGEMENT 609
What does it mean for an object to be ‘"useful"?Remember that the
execution of a system is the execution of a creation procedure (the root
creation procedure) on an object (the root object, an instance of the
system’s root class). The root object will remain in place for the entire
duration of the system’s execution. An object is useful if it may be reached
directly or indirectly, following references, from the either root object or
any of the local variables of a currently executing routine. Because a non-
useful object can have no effect on the remainder of the system’s
execution, it is permissible to reclaim the memory space it uses.

Should a reattachment as illustrated above (or its clone variant)
automatically result in freeing the associated storage? Of course not. The
object labeled OY may still be reachable from the root through other
reference paths.

It would indeed be both dangerous and unacceptably tedious to lay the
burden of object memory reclamation on developers. Dangerous because it
is easy for a developer to forget a reference, and to recycle an object’s
storage space wrongly while the object is still reachable, resulting in
disaster when a client later tries to access it; and unacceptably tedious
because, even if you know for sure that an object is unreachable, you
should not just recycle its own storage but also analyze all its references to
other objects, to determine recursively whether other objects have also
become unreachable as a result. This makes the prospect of manual
reclamation formidable.

Authors of Eiffel implementation are encouraged to provide agarbage
collection mechanism which will take care of detecting unreachable
objects. Although many policies are possible for garbage collection, the
following properties are often deemed desirable:

• Efficiency: the overhead on system execution should be low.

• Incrementality: it is desirable to have a collector which works in small
bursts of activity, being triggered at specified intervals, rather than one
which waits for memory to fill up and then takes over for a possibly long
full collection cycle. Interactive applications require bursts to be (at
least on average) of a short enough duration to make them undetectable
at the human scale.

• Tunability: library facilities should allow systems to turn collection off
(for example during a critical section of a real-time application) and on
again, to request a full collection cycle, and to control the duration of
the bursts if the collector is incremental.

←“Systemexecution”,
page 114.

The Kernel Library
class“MEMORY”,
A.6.25 CLASS, page
996, provides such
facilities.

ATTACHING VALUES TO ENTITIES §22.16610
22.16 SEMANTICS OF EQUALITY

The previous discussions have shown how to reattach values. A closely
related problem, whose study will conclude this chapter, is tocompare
values, for example to see if they are attached to the same object. This
raises the question of the semantics of the equality operator= and its alter
ego the inequality operator/=.

If you remember how the study of object duplication (copy, cloneand
variants) led us to object comparison (equal and its variants), you will
probably have anticipated the current section: just as the assignment
operator:= has the semantics of reference attachment, copy or clone
depending on the expansion status of its operands, so will the equality
operator= have the semantics of reference or object equality.

We can devote all our attention to equality since inequality follows: the
effect ofx /= y is defined in all cases to be that of

Two meanings of equality area priori possible: reference equality, true if
and only if two references are either attached to the same object or both
void; and object equality.

The previous chapterintroduced a function to test object equality:equal
from the universal classANY, which in its original version will return true
if and only if two objects are field-by-field equal. As with copying and
cloning operations, it is more prudent to rely on the frozen version
identical, guaranteeing uniform semantics. (By redefiningis_equal, you
may provide another version ofequal for a specific class.) For
convenience,identical (like equal) also applies to void values. In the
present discussion, “object equality” denotes an operation that can only
compare two objects, and so must be applied to non-void references.

Here is the table of possibilities, which closely parallels the
corresponding table for unconditional reattachment:

not (x = y)

TYPE OF FIRST→ Reference Expanded

TYPE OF SECOND
↓

Reference [1]

• Reference equality

• Object equality (if
neither void)

[2]

• Object equality

← “OBJECT EQUAL-
ITY”, 21.6, page 572.

← “OBJECT EQUAL-
ITY”, 21.6, page 572.

← Page588.

Possible
semantics for
shallow
equality

NOT a semantic specifi-
cation but only a list of
available possibilities
for such a specification.
The actual semantics
appears next.

§22.16 SEMANTICS OF EQUALITY 611
For each of the four cases, we must give a reasonable meaning to the
equality operator=. The line of reasoning applied earlier to unconditional
reattachment yields the following semantics, which again parallels the
table for unconditional reattachment.

So if x andy are references the result of a test

is true if and only ifx andy are either both void or both attached to the same
object; if either or both ofx andy are objects, then the test yields true if and
only if they are attached to field-by-field equal objects, as indicated by
function identical_equal from classANY.

As with unconditional reattachment, the semantics given is the most
frequently needed one for each case, and in particular is usually appropriate
for operations on arguments of aFormal_generic_nametype. For more
specific semantics, you may use one of the calls

Expanded [3]

• Object equality (if
first not void)

[4]

• Object equality

TYPE OF FIRST→ Reference Expanded

TYPE OF SECOND
↓

Reference [1]Reference equality [2]identical

Expanded [3]identical identical

x = y

equal(x, y)
deep_equal(x, y)
identical_equal(x, y)
identical_deep_equal(x, y)

← Page590.

ATTACHING VALUES TO ENTITIES §22.16612
Many container classes of EiffelBase have routines that query a data
structure such as a list, set, tree or hash table for occurrences of an object
(or more generally a value). This may mean either of two things: does the
structure contain a reference to the object of interest? Does it contain a
reference to an object equal to it? You can switch between these two
interpretations by applying the procedurescompare_objectsand
compare_referencesto a certain container, as inmy_list.compare_objects.
This governs not only searching operations, such as the functionhas, but
also certain insertion and replacement operations that will only add an
element to a structure if it is not already present.

For basic arithmetic types, which are expanded, the= and/= operators
will always call identical. Thanks to the conversion mechanism studied
earlierin thischapter, you may use mixed-type equality expressions within
the limits of the conversions specified in the corresponding classes. For
example the expression1.0 = 1 is valid (and will return true) even though
it has aREAL operand and the other is anINTEGER. This is because
according to the above semantics the expression means1.0.identical (1),
and INTEGER converts to REAL. Thanks to thetarget conversion
mechanism, you may also write1 = 1.0, with the same result.

See“Reusable Soft-
ware” . The notion of
container data struc-
ture was presented in
10.21, page 286, and
12.2, page 341.

← “CONVERSIONS”,
22.6, page 583.

← “Accountingfor tar-
getconversion”, , page
762

http://www.eiffel.com/doc/documentation.html#ru

	22 22 Attaching values to entities
	22.1 OVERVIEW
	22.2 ROLE OF REATTACHMENT OPERATIONS
	Reattachment, source, target

	22.3 FORMS OF UNCONDITIONAL REATTACHMENT
	22.4 SYNTAX AND VALIDITY OF ASSIGNMENT
	22.5 THE STATUS OF FORMAL ROUTINE ARGUMENTS
	22.6 CONVERSIONS
	22.7 SEMANTICS OF REATTACHMENT
	22.8 AN EXAMPLE
	22.9 ABOUT REATTACHMENT
	22.10 EFFECT ON GENERIC PROGRAMMING
	22.11 POLYMORPHISM
	Dynamic type
	Polymorphic expression; dynamic type and class sets

	22.12 ASSIGNER CALL
	22.13 SEMI-STRICT OPERATORS
	The notion of strictness
	The need for semi-strict operators
	More on strictness

	22.14 CONDITIONAL REATTACHMENT
	Limitations of unconditional reattachment

	22.15 MEMORY MANAGEMENT
	22.16 SEMANTICS OF EQUALITY

