Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

2 2 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Attaching values to entities

22.1 OVERVIEW

At any instant of a system’s execution, every entity of the system h- Chapter20
certain attachment status: it is either attached to a certain object, ot
(attached to no object). Initially, all entities of reference types are void,;
of the effects of &reation instructioris to attach its target to an object.

The attachment status of an entity may change one or more times during
system execution throughastachment operations, in particular:

» The association of an actual argument of a routine to the corresponding
formal argument at the time of a call.

» TheAssignmeninstruction, which may attach an entity to a new object,
or remove the attachment.

The validity and semantic properties of these two mechanisms are
essentially the same; we study them jointly here.

------- REWRITE ---- You already know everything about the last case.
This chapter explores the other three. It will also examine a closely related
problem, for which the last chapter did the advance work: how to determine
that two entities have the same attachment, oreapgal, in any of the
possible interpretations of this general notion.

580 ATTACHING VALUES TO ENTITIES 822.2

22.2 ROLE OF REATTACHMENT OPERATIONS

Every reattachment operation hasaurce(an expression) andtarget (a
Variableentity). When the reattachment is valid, its effect will be ----

Reattachment, source, target

A reattachment operation is one of:
1« An Assignmenix ;= y; theny is the attachment’s source and x

its target.
2 * The run-time association, during the execution of a routjne

call, of an actual argument (the source) to the corresponding
formal argument (the target).

We group assignment and argument passing into the same category,
reattachment, because their validity and semantics are essentially the same:

« Validity in both cases is governed by the type system: the source - Chapterl4 pre-

) ; i~ Sented both conform-
conformto the target's type, or at leasbnvert to it. The Conversion >- = convertibility

principle guarantees that these two cases are exclusive. See“Conversion prin-

» The semantics in both cases is to attach the target to the value Cple”. page 400
source or a copy of that value.

This chapter explores reattachment operations: their constraints,
semantics, and syntactic forms.

22.3 FORMS OF UNCONDITIONAL REATTACHMENT

As noted, the two forms of unconditional reattachmefgsignment
instructions and actual-formal association, have similar constraints and
essentially identical semantics, studied in the following sections.

The syntax is different, of course. An assignment appears as

li] ‘x::y
]...

wherex, the target, is &ariableentity andy, the source, is an expression.

Very informally, the semantics of this instruction is to replace the value
of x by the current value of; x will keep its new value until the next
execution, if any, of a reattachment (unconditional, conditional, or new
Creatior) of which it is the target.

Actual-formal association arises as a byproduct of routine cal{Sali\
to a non-external routing with one or more arguments induces an
unconditional reattachment for each of the argument positions.

§22.4 SYNTAX AND VALIDITY OF ASSIGNMENT 581

Consider any one of these positions, where the routine declargsian external routine

(appearing in a clagd) gives a formal argument written in another lan-
guagethe exact seman-
. F tics depends on the
‘ re.xT..)is.. other language’s rules

Then consider a call tq where the actual argument at the given position is

y, again an expression. The call must be of one of the following two foi3e¢ Maptezsfor the
known as unqualified and qualified: tions and expressions
|) | ri..v...)
T"' tar (oo, ¥, .00)

-- In this second fornt,must conform to a type based ©n

Qualified or not, the call causes an unconditional reattachment of target
and source for the position shown, and similarly for all other positions.

A qualifiedCall also has a “target”, appearing to the left of the pertad the
second example. Do not confuse this with the target of the actual-formal
attachment induced by the callin this discussion.

Informally again, the semantics of this unconditional reattachment is to set
the value ofx, for the whole duration of the routine’s execution caused by
this particular call, to the value of at the time of call. No further
reattachment may occur during that execution of the routine. Any new call
executed later will start by setting the valuexofo the value of the new
actual argument.

22.4 SYNTAX AND VALIDITY OF ASSIGNMENT

BTN TAX

Here is the syntax of akssignmeninstruction:

Assignments
Assignment2 Variable":=" Expression

Actual-formal association does not have a syntax of its own; it is part 0= 'See chapte3about
Call construct. Call. Syntax pagé18

) .) «~ 19.8introduced
The syntax ofAssignmentequires the target to bevariable Recall that variableentities with
aVariableentity is either an attribute of the enclosing class or a local variSyntax on pagéo4and
. the associated Variable
of the immediately enclosing routine or agent. The latter case includes,e on pagesos
function, the predefined entitiResult A formal routine argument isot a

Variable this property is discussed further in the next section.

582 ATTACHING VALUES TO ENTITIES 822.5

The principal validity constraint in both cases is that the source must
conform or convert to the target. Féissignmentthis is covered by the
following rule:

Assignment rule VBAR

[l An Assignmentis valid if and only if its source expression i
compatible with its target entity.

192}

To be “compatible’means to conform or convert. « “Compatibility
. . . . between types”, e
— This also applies to actual-formal association: the actual argument in a cé37g

must conform or convert to the formal argument. The applicable rule is
argument validity, part of the generaliscussion of call validity.

The two cases, conformance and convertibility, are complementary:
- “THE CALL

o] » Conformance is the more common situation. As you will remembVALIDITY RULE”,
? type U conforms to typel — and, as a consequence, an expressio@@g@3
the first type to an entity of the second one — if the base clakkioh
descendant of the base clasgand, if generic parameters are present,
they also conform; theonformance chapter gave the details. — Chapterl4.

» Convertibility allows reattachments that also perform a conversior — Chapterls.
when you are assigning an integer value to a real target.

22.5 THE STATUS OF FORMAL ROUTINE ARGUMENTS

A% The syntax ofAssignmentrequires the target to be ¥ariable This
/™= includes, as noted, attributes and local variables, but not formal arguments
of the enclosing routine. So in the body of a routine

r(x: SOME_TYPE
T do

end

an assignment :=y, for some expressioy would not be valid. The only
reattachments to a formal argument occur at call time, through the actual-
formal association mechanism.

It is indeed a general rule of Eiffel that routines may not change the
values of their arguments. A routine is an operation to be performed on
Friunr| certain operands; arguments enable callers to specify what these operands
should be in a particular application of the operation. Letting the operation
change the operands would be confusing and error-prone.

§22.6 CONVERSIONS 583

Although some programming languages offer “out” and “in-out” modes for
arguments, they are a notorious source of trouble for programmers, and
complicate the language; for example:

*You must have special rules for the corresponding actual arguments (they must
be variable).

*You must prohibit using the same actual argument twice, agene), but only
if both of the affected argument positions are “out” or “in out”.

The Eiffel rule does not prohibit a routimérom modifying theobjectsthat

it is passed: if a formal argumekis a non-void reference,has access to
the attached object and can perform any valid feature call on it. In the
situation pictured below the body iofnay include a procedure call

X.set_attrib1(2)

whereset_attriblwill update the value of the integer fiesdtribl. What is
not permitted is anAssignmentof target x, which would affect the
reference rather than the object.

—> attrib1 Object may
2 change

reference not

22.6 CONVERSIONS

.y All that beginning Eiffel programmers really need to know about convertibility skip to'SEMANTICS
.ii is that commonly accepted mixed-type arithmetic assignments with no loss OF REATACH-
mrii information, such agour_real:= your_integer(but not the other way around, MENT". 22.7. pge
which requires using a truncation or rounding function) are OK and will caus®®®
the proper conversions. So on first reading you shekifdthis section.

Conformance and convertibility are, as noted, mutually exclusive ci- Chapterl5. Seealso
Let us start our study of reattachment semantics by the second one —Jg‘r?;i?f;gé’nqve“
though conformance is by far the more common case — becausdeserves some justifica-

discussiorof convertibility already told us most of what we need to knction...”, page762

In that discussion we saw that it is possible for a class to decCiwc,
through its creation procedures, one or naeation types as in:

classDATE create
from_tupleconvert{ TUPLE[INTEGERINTEGER INTEGER}

=

I

—

584 ATTACHING VALUES TO ENTITIES 822.6

This is intended to permit attachments from any of the conversion types
(here only one) to the current type, so that you may write

‘compute_revenu@l, "January, 200Q, [1, "January, 2001) ‘

wherecompute_revenuexpects two date arguments. Argument passing in
this case will cause, prior to actual attachment, the creation of a new object
of type DATE and its initialization through the given creation procedure
from_tuple As was noted in the earlier discussion, this means that the call
is equivalent to

compute_revenuereate{ DATE .from_tuple([1, "January, 200Q),
create{ DATE .from_tuplg([1, "January, 2001))

Similarly, a call your_date:= [1, "January, 200Q is equivalent to
createyour_datefrom_tuple([1, "January, 200Q.

Itis also possible to specify conversion through a function in the source
type, rather than a procedure in the target type. Between any two given
types, at most one of these possibilities may apply. If it is possible to
convert an expressioexpto an entitye, we say thatexp converts tox, - “EXPRESSION

through a conversion routine (procedure or function). COMVERTIBILIY,

CONDITIONS”
15.10, pae 412

This semantic specification and the supporting definition rely on - “Conversion Poce-

properties of the conversion mechanism, expressed byCthwersion ?g(')emrl‘gﬁm tozsgS
. e i g

Procedureule and the associategfinitions (convertible types of a clas$omatype”. page40s

which guarantee that everything is unambiguous:

« The definition of “convertible types” tells us th@OURCEmMust appear
among theConversion_typesf a creation procedure of the base class
of TARGET

e Clause 4 of the Conversion Procedure rule, requiring all the
convertible types of a class to be different, guarantees that there is
only one such procedure, making the definition of “applicable
conversion procedure” legitimate.

« Clause$ and7 of the rule guarantee that this procedure has exactly one formal
argument, of a typaARGto whichSOURCHEMust conform or convert.

If SOURCEconverts (rather than conforms) ARG then the attachmer ~ See discussion of
@ will, as was noted in the earlier discussion, cause two conversions rg!iﬁsﬁggahjeﬁﬂ?;’%:
I than one, since to the conversion procedure must convert its argumpage403
type ARG As was also noted, things stop here: a conversion reattach
may cause one conversion (the usual case), or two (iS(h&JRCEtype
converts to thé&RGtype), but no more.

§22.7 SEMANTICS OF REATTACHMENT

585

This discussion completes the specification of reattachment in—*Conversion princi-

convertibility case. Since th@orversionprinciple tells us that a type maP!e”.-page 400
not both convert and conform to another, we may limit our attention, fol

rest of this chapter, to the more common case: reattachments in whic

source of an assignment or argument passimormsto the target.

--- TEXT BELOW MAY HAVE TO BE TRANSFERRED ELSEWHERE

22.7 SEMANTICS OF REATTACHMENT

Let us examine the precise effect of executing an unconditional reattachment
of either of the two forms, for a source conforming to the target.

Because that effect is the same in both cases -Asmignmenix .=y
and a call that useg as actual argument for the formal argumerdgf a
routine — we can use the first as our working example: the assignment

X:=y

wherex is of typeTX andy of typeTY, which must conform td X

The effect depends on the naturelofandTY: reference or expanded?
Here is the basic rule, covering the vast majority of practical cases:

« If both TXandTY are expanded, the assignment copies the value of the
object attached to the source onto the object attached to the target.

« If both are reference types, the operation attackde the object
attached tg, or makes it void if/ is void.

As an example of the first case, in

I

X, Y. INTEGER

y:
X

4
y

the resulting value of will be 4, but the lasfssignmentloes not introduce
any long-lasting association betweeandy; this is becauséNTEGERIs
an expanded type.

As an example of the second casd,Gfis a reference type, then

|

will result inx andy becoming attached to the same object:

X, y. TC
'C'r'eate Effect of
. Yo reference
=Y reattachment

586 ATTACHING VALUES TO ENTITIES 822.7

X - -
-—> integer_attrib . OX
character_attrib
B A
(TY)

This rule addresses the needs of most applications. There remains, of course,
to see what happens when oneTf and TY is expanded and the other
reference. But it is more important first to understand the reasons for the rule
by exploring what potential interpretations make sense in each case.

Consider first the case of references. We start from the run-time
situation pictured below, with two objects labeled OX and OY, assumed
for simplicity to be of the same typ&Y, and accessible through two
references andy. Of course, since the Eiffel dynamic model is fully based
on objectsx andy themselves will often be reference fields of some other
objects, or of the same object; these objects, however, are of no interest for
the present discussion and so they will not appear explicitly.

Before a

integer_attrib 1 ox reattachment

character_attrib 'a

(TY)

- | integer_attrib 2 oy

character_attrib 'B’

(TY)

Three possible kinds of operation may updafeom y: copying, cloning
and reference reattachment.

§22.7 SEMANTICS OF REATTACHMENT 587

The first, copying, makes sense only if botlandy are attached (non._ see1.2, pae 557
void). Its semantics, seen in thest chapter, is to copy every field of ttoncopyand its frozen
source object onto the corresponding field of the target object. It doe"ersiondentical_copy
create a new object, but only updates an existing #v¥eknow how to
achieve it: through procedummopy of the universal clasé&NY or, more
precisely, its frozen versioitlentical_copy ensuring fixed semantics for
all types (whereasopymay be redefined). The next figure illustrates the
effect of a call.identical_copy(x) starting in the above situation.

| _ Effect of
integer_attrib 1 standard copy

character_attrib 'A' | ox

y-copy(x)
(TY)
integer_attrib 1
0)4
character_attrib 'A'" (T

The second operation is a close variant of the first: cloning also ha~ Se1.4, pae
semantics of field-by-field copy, but applied to a newly created object267aboutcloneand
-, _identical_clone
existing object is affected. Here too a general mechanism is availak._

achieve this: a call to functiotlonewhich (anticipating on this section) we
have learned to use in an assignmgnt clone (y). To guard against
redefinition we may use the frozen versiolentical_clone The result is

shown below; the cloning creates a new object, OZ, a carbon copy of OX.

integer_attrib 1 Effect of

standard clone

character_attrib A oy
y := clone(x) (TY)

integer_attrib 1

character_attrib ‘A OY
(TY)

integer_attrib 1

character_attrib 'A oz
(TY)

588 ATTACHING VALUES TO ENTITIES 822.7

Assumingy was previously attached to OY as a result of the precedin¢- “MEMORY MAN-
operation, it is natural to ask: “What happens to the object OY?". This will beAGEMENT", 22.15,
discussed in Eter section. page 608

The third possible operation is reference reattachment. This does not affect

any object, but simply reattaches the target reference to a different object.

The result (already visible in the last figure) may be represented as follows:

integer_attrib 1 Effect of

reference

y:=K) , reattachment
character_attrib A ox

™

To devise the proper rule for semantics, we must study which of these

operations make sense in every possible case. Since the source and target
types may each be either expanded or reference, there will be four cases:

SOURCE TYPE- |Reference Expanded Meaningful
possibilities for
TARGET TYPE the semantics
Reference [1] 2] of reference
o : .| reattachment
» Copy (if neither » Copy (if target not void)
source nor target void, cjone
» Clone
» Reference reattachme This list only takes into
account shallow opera-
Expanded [3] [4] tions Deep variants
. . were discussed 1.5,
o Copy (will fail if » Copy page 571
source is void)

§22.7 SEMANTICS OF REATTACHMENT 589

If all we were interested in was copying and cloning, we would not n- “REFERENCE
any new mechanism: routinédentical_copyand identical_clone from % d
ANY are available for these purposes. The only operation we would m%&ﬁﬁustfa?;g Eyfhe
reference reattachment, corresponding to the last figure. This only nfigure on pagé&02
sense for casg, when both target and source are of reference types: i

target is expanded, as in ca8emnd4, there is no reference to reattach; a..u

if the source is expanded, as in casgeand 4, a reattachment would

introduce aeference to a sub-objecta casaliscusse@ndrejected in the

discussion of the dynamic model.

In casel, however, we do need the ability to specify reference
reattachment, not covered bgpy cloneor their frozen variants. This will
be the semantics of thiessignmeni := y and of the corresponding actual-
formal association when boxtandy are of reference types.

We now have notations for expressing meaningful operations in every
possible case: reference assignment in daseutinesidentical_copyand
identical_clondn the other cases. At least two reasons, however, indicate
that in addition to these case-specific operations we also need a single
notation applicable to all four cases:

* In a generic class;XandTY may be acormal_generic_namthen the - If the formal
class text does not reveal whethxeandy denote objects or referencedeneric isTx, con-

. . . formance require§Y
since 'FhIS depends on the' actual paramej[er used in each &g peidentical to TXf
derivation of the class. But it must be possible for this class texhe formalisTy, TXis
include anAssignmenk:=y, oracallr (..., ,...), with a clearly definegeitherTY or an ances-

. . . tor of TY’sconstraint
meaning in all possible cases. (ANYif TYis uncon-

T . . .strained. See'Dir ect
* The availability of general-purpose copying and cloning mechani; -2 ="~ 22

does not relieve us from the need to define a clear, universal semigeneric’, page 385
for actual-formal association.

Examination of the above table suggests a uniform notation addressing
these requirements. What default semantics is most useful in each case?

« In casel, where both andy denote references, the semantics should be
reference reattachment, if only (as discussed above) because no other
notation is available for that operation.

« In cased, with bothx andy denoting objects, only one semantics makes
sense for a reattachment operation: copying the fields of the source onto
those of the target.
Cloning may also fall

* In case2, with x denoting a reference arycan object, both copying anyiggeringanexception
cloning are possible. But copying only worksifs not void (since thereif there is no more mem-
must be an object on which to copy the source’s fieldsy. if void, g‘m?r‘ﬁz"izb;efn%ﬁ-less

copying will fail, triggering an exception. It would be unpleasantfequent situation than

force class designers to test for void references before any the target being a void
assignment. Cloning, much less likely to fail, is the preferable defeference

semantics in this case.

590

ATTACHING VALUES TO ENTITIES 822.7

* In case3, as in cas4, the targekis an object, so copying is again the only
possible operation. In this case it will fail i§ is void (since there is no
object to copy), but then no operation exists that would always work.

unconditional reattachment in the case of a soaordorming to its target

~ Remember that the

distinct("*CONVER-

This analysis leads to the following definition of the semanticSconvertibility case is

SOURCE TYPE-» |Reference Expanded
TARGET TYPE
Reference [1] [2]
Reference reattachmen| Clone
Expanded [3] [4]
Copy Copy
(Fails if source void)

In this semantic specificationCbpy” and “Clone’ refer to the frozen

[
SIONS’, 22.6. pge
583

The semantics
of conformance

reattachment
NOT a semantic specifi-
cation but only a list of
available possibilities
for such a specification
The actual semantics
appears next

— The table giving
equality semantics on
pageé1iwill be orga-

featuresidentical_copyandidentical_clonethat every class inherits frornizedalongsimilarlines
the universal clas&NY

Arguments could be found for using instead the redefinable vecsippand
@ clonewhich is defined in terms ofopy after all, if the author of a class

redefined these routines, there must have been areason. But itis more prudent
I to stick to the frozen versions, so that the language defines a simple and

uniform semantics for assignment and argument passing on entities of all

types. If you do want to take advantage of redefinition, you can always use

the call.copy.(y) instead of the assignmext=y, or pas<lone(y) instead

of y as an actual argument to a call. These alternatives to unconditional
reattachment apply of course to reference types as well as expanded ones.

For the exception raised in casg if the value ofy is void, the Kernelsee chapterason

Library class

EXCEPTIONS

Void_assigned_to_expanded

introduces the

codexceptions and7 on

classEXCEPTIONS

This semantic definition yields the most commonly needed effect in
each case. This applies in particular to calsasd4, which account for the
vast majority of reattachments occurring in practice: for an integer variable
(cased), it is pleasant to be able to write

‘n::S

k

to produce the effect of

‘ n.copy(3)

Herecopyandident-
ical_copyare the same

§22.7 SEMANTICS OF REATTACHMENT 591

but uses a commonly accepted notation and has the expected result. For a
reference variablg it is normal to expect the call

some_routingy) ‘

simply to pass taome_routin@ reference to the object attacheg,tib any,
rather than to duplicate that object for the purposes of the call. If you do
wish duplication — shallow or deep — to occur, you may make your exact
intentions clear by using one of the calls

some_routingclone(y))
some_routin€identical_clondy))
some_routingdeep_clong))

An interesting application is the case of generic parameters and generically
derived types. If the type of andy is a formal generic parameter of the
enclosing class, as in

|

classGENERIC_EXAMPLEG] feature
example_routine

local

X, Y. G
do

X:=y
end

end

the effect of the highlighted assignment may be reference reattachmi- "EFFECT ON
copying depending on the actual generic parameter used fior the %sz 0
current generic derivation. (Cloning, which only occurs for reference tépage 506~
and expanded source, does not apply to this case since, by constryc.....,

any are of the same type.) We will shortly come back to the effect of

reattachment semantics on generic programming.

A consequence of the validity and semantics rules is the following
semantic principle, which will be important to understand the run-time
behavior of our systems:

Reattachment principle

After a reattachement to a target entitgf type TT, the object
attached ta, if any, is of a type&onforming toTT.

592

ATTACHING VALUES TO ENTITIES 822.7

“If any” because the source of the attachment might have been void. If not,
its valuev is of a typeVT that either conforms or converts 1@ (but not
both). If it conforms, the operation simply reattachds v, satisying the
principle. If it converts, the operation produces a new object of Typ¢his
satisfies the principle too sin@d conforms to itself.

Attaching an entity, attached entity

Attaching an entityeto an objecO is the operation ensuring that
the value ok becomesttached toO.

Although it may seem tautological at first, this definition simply relates the
two terms “attach”, denoting an operation that can change an entity, and
“attached to an object”, denoting the state of such an entity — as determined
by such operations. These are key concepts of the language since:

« A reattachment operation (see next) maytacH its target to a certain
object as defined by the semantic rule; a creation operation creates an
object and similarly dttache$ its creation target to that object.

 Evaluation of an entity, per the Entity Semantics rule, uses (partly
directly, partly by depending on the Variable Semantics rule and
through it on the definition of “value of a variable setting”) the object
attachedto that entity. This is only possible by ensuring, through other
rules, that prior to any such attempt on a specific entity there will have
been operations to “attach” the entity or make it void.

Reattachment Semantics

The effect of a reattachment of source expressionrceand
target entitytargetis the effect of the first of the following steps
whose condition applies:

1 « If sourcecorvertsto target perform acorversionattachment
from sourceto target

2 «If the value ofsourceis a void reference: makiargets value
void as well.

3 ¢ If the value ofsourceis attachedto an object withcopy
semantics: createdone of that object, if possible, amdtach
targetto it.

4 « If the value ofsourceis attached to an object witleference
semantics: attactargetto that object.

§22.8 AN EXAMPLE 593

_ As with other semantic rules describing the “effect” of a sequence of steps,
/== only that effect counts, not the exact means employed to achieve it. In
particular, the creation of a clone in st@pis — as also noted in the
discussion of creation — often avoidable in practice if the target is
expanded and already initialized, so that the instruction can reuse the
memory of the previous object.

Casel indicates that a conversion, if applicable, overrides all other
possibilities. In those other cases, if follows from th&signmentule that - .
sourcemustconform to target

Case2is, from the validity rules, possible only if bothrgetandsource
are declared adetachablaypes.

In case3, a “clone” of an object isobtained by application of thi- .
functionclonedfrom ANY, expression conformance ensures ttlahedis
available (exported) to the type tafrget otherwise, cloning could produc
an inconsistent object.

The cloning might be impossible for lack of memory, in which case the

semantics of the cloning operation specifies triggering an exception, of type

NO_MORE_MEMORMs usual with exceptions, the rest of casdoes not

then apply.

In case4 we simply reattach a reference. Because of the validity rules (no
reference type conforms to an expanded type), the target must indeed be of
an reference type.

This rule defines theffectof a construct through a sequence of cases,
looking for the first one that matches. As usual with semantic rules, this
only specifies the result, but does not imply that the implementation must
try all of them in order.

The semantics of assignment is just a special case of this rule:

Assignment Semantics

The effect of a reassignment := y is determined by the
Reattachment Semantics rule, with soyread targek.

The other cases where Reattachment Semantics applies is actual-formal

association, per stépof the General Catule. - “General Call
Semantics”, pge 645

On the other hand, the semantics @bject_testa construct which also
allows aRead_onlyentity to denote the same value as an expression, i
simple enough that it does not need to refer to reattachment.

22.8 AN EXAMPLE
---- WRONG (OLD SEMANTICS), TO BE REMOVED

594 ATTACHING VALUES TO ENTITIES 822.8

To see the effect of reattachment in various cases, consider the run-time
situation pictured below.

Tl ra i A run-time
T1| rb T2 OBJ1 system

1l T - - snapshot
T1| rd ?
T1| re 2

et
T2 =

OBJ2

[€X
T2

OBJ3

T2

OoBJ4

= oBJs | ©C
(TO

All the entities considered are attributes of a cl&s0C, the complexbOC is not only complex
object on the left, is a direct instance of tyii& of base class. ut composite

The first five attributesrg, rb, rc, rd, re), whose names begin withare of
a reference typ&L The corresponding fields of OC are references. The four
others &t ex ey e2, whose names begin wite, are expanded. The
corresponding fields are sub-objects of OC, which have been given the names
OBJ2 to OBJ5. The reference figla is originally attached to another object
OBJ1, also of typ&2

Assume that clas€ has the following routine, using\ssignment
instructions to perform a number of reattachments:

assignmentss
-- Change various fields.
do
rc:=rb
rd :=ra
re:= et
ex:= ey
ez:=ra
end

§22.9 ABOUT REATTACHMENT 595

If applied to the above OC, this procedure will produce the following
situation:

Tl|ra R Snapshot after
1110 T oBIL assignments
T1| € | 7777
T1| d 77774
T1!| re -
T2 | Clone ofOBJ2|

OBJ2

€Y

T2

0OBJ3
T2 OBJ4
2| oBJs | ©OC

(TO)

The assignmente := et, with reference target and expanded source,
produces a duplicate of object OBJ2.

An attempt to executet := rb, with an expanded target and a void
source, would trigger an exception.

22.9 ABOUT REATTACHMENT

.lc'\.

(This section brings no new Eiffel concept. It will only be of interest to
readers who wish to relate the above concepts to the argument passing
conventions of earlier programming languages.)

It may be useful to compare the semantics of unconditional
reattachment to the mechanisms provided by other languages, in particular
to traditional variants of argument passing semantics.

Consider a call of the form

‘r(..., Y, ...)

This causes an attachment as a result of actual-formal association between
the expression, of typeTY, and the corresponding formal argumenof
typeTX

596 ATTACHING VALUES TO ENTITIES 822.10

An examination of the semantics defined above in light of other
argument passing conventions yields the following observations:

* If both TX and TY are reference types (cask of the table of . pagessa
reattachmensemantics), the reattachment causes sharing of ob
through references, also known adiasing. For actual-formal
association this achieves the effectall by reference with the target
being protected against further reattachment for the duration of the call.

« If both TXandTY are expanded types (cade reattachment copies the
content ofy, an object, onta. This achieves the effect ohll by value.

« If TXis an expanded type afitY a reference type (cagg, the operation
copies ontax the content of the object attachedytdy must be non-
void). This achieves what is often calléereferencing

« If TXis a reference type arklan expanded type (cagk the operation
attaches tox a newly created copy of. This case has no direct
equivalent in traditional contexts; it may be viewed as a form of call by
value combined with call by reference.

22.10 EFFECT ON GENERIC PROGRAMMING

The semantics of unconditional reattachment has a direct effect on both the
production and the use of generic classe a cornerstone of reusable
software production.

For a generic class such @&ENERIC_EXAMPLEbove, it may seem.. pages9i
surprising to see a given syntactical notation, the assignment symb
denote different operations depending on the context, and similarly 1u
argument passing.

This convention corresponds, however, to the most common neethe Adtion of container
generic programming. The container classes of EiffelBase, sucdata structure was pre-
LINKED_LISTTWO_WAY_LISHASH_TABLEand many others, used (360 a1 s ooe
store and retrieve values of various types, provide numerous exans43 '

These classes are all generic and, depending on their generic derivations,

the values they store may be references or objects.

All of these classes have one or more procedures for adding an element
to a data structure; for example, to insert an element to the left of the
current cursor position in a linked list a client will execute

‘ some_listput_left(s)

Almost all of these procedures use assignment for fulfilling their task.
Many do this not directly but through a call of the form

‘ some_cellput (X) ‘

§22.10 EFFECT ON GENERIC PROGRAMMING 597

wheresome_cellrepresenting some individual entry of the data structiSee page===for an
is of a type based on some effective descendant of the deferred g¢'/ﬂ‘éf_tlrza|‘i"s)tnc‘é‘;]a LINK-
classCELL; for example LINKED _LISTuses the descendddtNKABLE,

describing cells of linked lists. Procedysat comes fromCELL, where it

appears (in effective form) as [

I

classCELL[G] feature This is a slight simplifi-
item G; cation the type of the
argument ‘new’ is actu-
put(new G) ally like item which
-- Replace the cell value mew hasthe same immediate
do effect since item is of
. type G
item= new
ensure
item= new
end

... Other features..

Because the addition of an elemerity putuses assignment, what will be
added to the data structure is an object valueisf of expanded type, and
otherwise a reference to an object.

This policy means that if you are a “generic programmer” (a developer
or user of generic classes) you must exercise some care, when dealing with
data structures having diverse possible generic derivations, to make sure
you know what is involved in each case: objects or references to objects.
But it provides the most commonly defaults: a call

‘ some_list_of_integerput_left(25) ‘

inserts the value 25, whereas

‘ some_list_of_integerput_lift (her_bank_accout ‘

does not duplicate the object representing the bank account. Storing a
reference in this case is the most conservative default policy. As in earlier
examples, you can always obtain a different policy by using such calls as

some_list_of integerput_left(clone (her_bank_accouiX
some_list_of_integerput_left(deep_clongher_bank_accouii

which guarantee uniform semantics (duplication, shallow in the first case
and deep in the second) across the spectrum of possible types.
. . . . — End of'SEMAN-
The discussion also applies to the problem sefarching a data TICSOFEQUALITY”,

structure, discussed below. 22.16. pge 610

598 ATTACHING VALUES TO ENTITIES 8§22.11

22.11 POLYMORPHISM

The only type constraint on unconditional reattachment is that (aside - “CONVERSIONS”
the convertibility case) the type of the source must conform to the typ22-6-p@e 583
the target.

If the target is expanded, this means that the types must essentia': “Eéneral conform-
the same; the only permitted flexibility is that one may describe objecance”. pae 380and
a certain form and the other references to objects of exactly the SAMe pracgey Lo
This follows directly from the rule defining conformance when épage 388

expanded type is involved.

If the target is a reference, however (casesd2 of thereattachment._ pagesss
semanticdable), the situation is more interesting. If the target’s base f
is based on a class, the validity rules mean that the base class of uic
source may be not just but any proper descendant Gf This gives a
remarkable flexibility to the type system, while preserving safety thanks to
the conformance restrictions.

As a consequence, an expression declared of Typmay at run time
denote objects not just of typEC but of many other types, all based on
descendants of the base clas3©f

So to study the run-time semantics of Eiffel systems we need to
consider, along with théype of an expression (its type as deduced from
declarations in the software text), its possihteamic types

Dynamic type
The dynamic type of an expressiornx, at some instant of

execution, is the type of the object to whighis attached, or
NONEIf x is void.

%, This should not be confused with ttygpe of x (called itsstatic typeif there _, “Type of an epres-
/®= is any ambiguity), which for an entity is the type with which it is declarsion”. page 774
and for an expression is the type deduced from the types of its constitt

An expression has, of course, only one (static) type. But, as a
property of Eiffel's object-oriented style of computation, it may have m_. _
than one dynamic type. This is knownpasymorphism

TTRFTEET 30

Polymorphic expression; dynamic type and class sets

An expression that has two or more possible dynamic types is
said to begolymorphic.

The set of possible dynamic types for an expresgigrcalled the
dynamic type setof x. The set othaseclasses of these types i
called thedynamic class sebf x.

)

§22.12 ASSIGNER CALL 599

Eiffel has a strongly typed form of polymorphism: the dynamic type set
of an expression is not arbitrary. The type rules are organized to guarantee
that the possible dynamic types forll conform to the (static) type of
This is how the type system keeps polymorphism is under control.

Itis possible to determine the dynamic type set tifrough analysis of
the classes in the system to whighbelongs, by considering all the
attachment and reattachment instructions involxingits entities.

22.12 ASSIGNER CALL

You may have noted that the syntax for assignment

‘ some_variable= some_expression ‘

only supports assignment to/ariableentity; it does not allow assignment
to a field of an object, as in

|

x.a:=b [1] Warning invalid except
as abbreviation for pro-

Some programming languages permit such assignments, but — if vjcedure call See below

just as assignments — they violate fundamental rules of methodc
(information hiding, data abstraction): clients of a class should not have the
ability to modify class instances directly; they should only do so through
the exported procedures of the class. A typical client call may be

X. set_a(b) [17]

assuming the author of the class — who is solely responsible for deciding
what clients may and may not do — has provided a proceseteathat

sets the value of tha field. The procedure might have other properties,
such as imposing requirements on the new values, or triggering a database
update:

set_a(x: T)
-- Updatea to valuex.
require
“Some condition orx, for example to ensure compliance
with an invariant clause involving'’
do
a:=x
“Possibly some other action, for example updating 4
or database to record tlehas been updated”
ensure
set:a=x
end

og

600 ATTACHING VALUES TO ENTITIES 822.12

While [1] is not acceptable as a way to let clients modify fields directly,
some programmers may find it more directly meaningful tfilgf] as a
notation to represent the procedure cafidb a

Assigner commandsprovide this syntactic simplification. When you
declare a query in a class, you may associate with éssignecommand;
in the example this means that the author of the supplier class must have
declareda accordingly, as

a: SOME_TYPHEssignset_a

which specifieset_aas the assigner command associated with the query
a. The consequence of this declaration is to make fidimh x.a:=b, valid,
with the same semantics as fofhh, x.set_a(b).

Form[17] is known as arssigner_call

Remember that it is only a syntactical convenience: Eiffel doesn't
permit violating principles of information hiding and data abstraction, as
would be the case if clients could directly modify fields of objects. You
have no choice but to go through the official interface as defined by the
supplier class author. Assigner call— available only if that author has
decided to provide it, by specifying an assigner command for the query —
simply lets you call the procedure through assignment-like syntax. But the
instruction is still a procedure call, not an assignment.

The instruction is in fact more general than a plain assignment since it
allows you to use arguments. The target query may have any number of
arguments; this is what allows you to write

your_arrayitem(i) := new_value [18]

=
i

as a shorthand for the procedure call

your_arrayput(new_valuei) [19]

This shorthand is made possible by the declaratiateafin classARRAY
which specifies put as an assigner command:

‘item(i: INTEGER: Galias“[]" assignput ... ‘

In this case thalias“[]" specification makes bracket syntax also possible,
allowing the following form as a synonym fdr9] and hence foll8]J:

your_array [i] :=new_value [20]

which makes traditional array assignment syntax available in a fully object-
oriented context.

§22.12 ASSIGNER CALL 601

BTN TAX

More generally, ifqg is a query withn arguments and has an associated
assigner commang which must have + 1 arguments, you may use

‘x.q(al, a, ...,a,) = e ‘

as an abbreviation for

‘x.p(e,al,az,...,an) ‘

The syntax is straightforward:

Assigner calls
Assigner_call® Expressior:=" Expression

The left-hand side is surprisingly general: any expression. The validity rule
will constrain it to be of a form that can be interpreted as a qualified call to
a query, such as.a, or x.f (i, j); but the syntactic form can be different,
using for example bracket syntax asip, j] := x.

You could even use operator syntax, as in

a+b:=c

assuming that, in the type af the functiorplusalias"+" has been defined
with an assigner command, maybe a procedutgract Then the left side
a + bis just an abbreviation for the query call

\ a.plus(b)

and theAssigner_calis just an abbreviation for the procedure call

a.subtract(c, b)

A Call_chain— the syntaxappears in the study of calls — is a dc’ pagesis
separated sequence of two or more features, each possibly with argui
examples ofcall_chainare

X«a
your_arrayitem (i)
x.f (b). g(c, d)

Both the validity and the semantics of &ssigner_calffollow from this
construct’s role as a syntactic simplification for a call.

602 ATTACHING VALUES TO ENTITIES 822.13

As implied by the rules on assigner commanagsjust have one more
argument than the associated queridere are a few examples of assigner
calls and their unfolded forms:

Assigner_call Unfolded form
(assumingq has an assigner
commandp)

X«Q:=e X.p (€)

x.q@:=e X«p (e,a)

x.f(a, b).q(c, d):=e x.f (a, b).p (g ¢, d)

From this notion we derive the validity rule for assigner calls:

Assigner Call rule VBAC

UALIDITY An Assigner_calbf the formtarget:= source wheretargetand

sourceare expressions, is valid if and only if it satisfies the

following conditions:

1 «sourceis compatible withtarget

2 * The Equivalent Dot Form dfrgetis a qualifiedObject_call
whose feature has assigner command.

The first two clauses ensures the conditions of the definition of “unfolded
form” above, so it's indeed legitimate for the third clause to to rely on the
unfolded form of the instruction.

The unfolded form also gives us the semantics:

Assigner Call semantics
The effect of arissigner_caltarget:=source where théequivalent

Dot Form of target is x.f or x.f (arg9 and f has anassigner
command, is, respectivelys. p (sourcg or x.p (source args).

This confirms that the construct is just an abbreviation for a procedure call.

22.13 SEMI-STRICT OPERATORS

4 (This section is only for the benefit of readers with a taste for theory, If skipping go tdCON-
Z=Y% may beskipped. They bring new light on earlier concepts, but introduc& ONAL REA-

TACHMENT", 22.14,
mrﬂ‘ new language rules.) page 607
The application of reattachment semantics to argument passing h.

interesting consequence of makisgmi-strictimplementations possible.
Let us see what this means.

§22.13 SEMI-STRICT OPERATORS 603

The notion of strictness

We may use a definition from programming theory: For a full discussion see

the booKIntr oduction

Strict, non-strict to the Theory of Re

An operation isstrict on one of its operands if it is always neces-
sary to know the value of the operand to perform the operation.
It is non-strict on that operand if it may in some cases yield a
result without having to evaluate the operand.

Many common operations are strict on all arguments: for example you
cannot compute the sum of two integensandn unless you know their
values, so this operation is strict on both arguments.

Not all operations are strict on all arguments, however. Consider a
conditional operation

WARNING: this is a
mathematical notatign
not Eiffel syntax

which yieldsm if the value ofc (a boolean) is truen otherwise. This is
strict onc, but not on the other two arguments, since it does not need to
evaluatem when it finds that is false, or to evaluatewhenc is true.

testcyesmno nend

Detecting that an operation is non-strict on an argument may be
interesting for performance reasons (since it may avoid unnecessary
computations); more importantly, however, non-strict operations may be
more broadly applicable than their strict counterparts. This is immediately
visible on the previous example: a fully strict version of test operation
would always start by evaluating m andn; but then it would fail to yield
a result where is true andn not defined, and whea is false andm not
defined. A "semi-strict" version (strict oo but not onm and n) may,
however, yield results in these cases, provided defined in the first and
nin the second.

The need for semi-strict operators

How does this apply to Eiffel programming? Here the operations of interest
are calls, of the general form

tar (., Y, ...) ‘

and the operands are the targahd the actual arguments suchyai$ any.
Such a call is always strict on its target (which must be attached to an
object). Inaliteral sense, itis also strict on its actual arguments, since it will
need to pass their values to the routine

http://www.eiffel.com/doc/documentation.html#itpl
http://www.eiffel.com/doc/documentation.html#itpl

604

ATTACHING VALUES TO ENTITIES 822.13

When considering an actual argument sucly,adsowever, it is more
interesting to analyze strictness not for the valug biit for the attached
object, if any. Then the specification of unconditional reattachment
semantics yields two cases, depending on the typeg aind of the
corresponding formal argumentrin

A «If both are reference types, the call passes t reference, not thcasea corresponds to

attached object (which does not exist if the valugisfvoid). casel of reattachment
semanticspage588,

B If either type is expanded, the call passes the attached object. (Thea"dcas@to2 3ands.
of y may not be void in this case.)
) . If the target is a refer-
In other words, taking the object to be the operand, actual-folence and the source is

association is non-strict gnin caseA, and is strict in case. expandedcase2 of the
table), actual-formal

The call as a whole will be said to be strict if it is strict on 2SSociation results in

: . - reference reattachment
arguments, andemi-strictotherwise: but the source must first
be clonedso that the
A operation is indeed
Semi-strict strict ony.

A call is semi-strict if it is non-strict on one or more arguments.

This case is called “semi-strict” rather than non-strict because an Eiffel call
is always strict on at least one of its operands: the call’'s target.

If a call may be semi-strict and you want to guarantee strictness on a
particular argument without changing anything in the routine’s text, this is
easy: just use cloning on the actual argument, passorg(y) rather than
y. Functioncloneis clearly strict. The reverse change is not always possible:
if the routine has a formal argument of expanded type, it will always be strict
on the corresponding actuals.

What does semi-strictness mean in practice? Essentially that if both an
actual argumeny and the corresponding formal argument are of reference
types the implementatiomay choose a non-strict argument passing
mechanism, which evaluatgswhen and only when the routine actually

needs/'s value. o ,
The exception is semi-

Such a semi-strict implementation is possible, but, except in one ltsérri;tabsog)'(%?;r?g’:ra‘
it is not guaranteed Implementations are not required to use a NON-Sigjow
argument passing mechanism even if the formal and actual arguments are

both references. This means that when you write a call of the form

‘t.r(...,y,...) ‘

you must make sure that the valueypivhich may be a complex expression,
is always defined at the time of call execution — even in cases for which
does not actually need that value. The call may evajuatgway.

§22.13 SEMI-STRICT OPERATORS 605

Consider for example a routine

M too_strict_for_me
T (i: INTEGER arr: ARRAYREAL; val: REALD: REAL
do
if i>=arr.lowerandi<=arr.upper then
Result= val
end
end

which returns the value of its last argument if its first argumieig,within
the bounds of the middle argument, an array, and returns 0.0 (the default
value forREAL) otherwise. Then consider a call in the same class:

your_array ARRAY[REAL; a: REAL n: INTEGER WARNING: poten-

e tially incorrect
a:=too_strict_for_mén, your_array@ n))

If the value ofn may be outside of the boundsyfur_array then this call

is not correct sinceyour_array @ n, denoting then-th element of
your_array is not defined in this case. Semi-strict implementation (non-
strict on the last argument) would avoid evaluatiosaiearray @ nand
hence ensure proper execution of the call, returning zero; but younotay
assume that the implementation uses this policy.

There is, however, one exception. Asll be seen in detail in the_, “sEmisTRICT

discussion of operator expressions, three functions of the Kernel LilBOOLEAN OPERA-
TORS’, 28.6,page 765

classBOOLEAN are required to be semi-strict (that is to say, non-stric
their single argument). These are functions representing a variant «
common boolean operations: and, or, implies. Their declarations in class
BOOLEANare

conjunction_semistridalias "and then"
(other. BOOLEAN: BOOLEANis do ... end;

disjunction_semistricilias "or elsé'

(other. BOOLEAN: BOOLEANis do ... end;
implicationalias "implies"

(other. BOOLEAN: BOOLEANIs do... end;

606

ATTACHING VALUES TO ENTITIES 822.13

The semantics of these functions readily admits a semi-strict interpretation:
aand thenb should yield false wheneveris false, regardless of the value

of b, and similarly for the others. To state this property concisely for all
three operations, it is useful to express the value of each, as applied to
arguments andb, in terms of the abovad hoctest notation:

Remember that an
test notayes false nab end operator expression

testayes true nobend such asaand thenb

test notayes true nobend stands for a call of tar-
geta and actual argu-

mentb. This explains

. _why all the expressions

This semi-strictness of these boolean operators is important in préc,ngidered here are

because it makes it possible to use them as conditional operators.strictona,sinceacallis

typical example, again using arrays, it is often convenient to waiways stricton its tar-
get See¢THE EQUIV-

=
i

instructions of the form ALENTDOT FORM",
. 28.8. pae 771
i

i >=your_arraylowerand then
i <= your_arrayupperand then
(arr @ n).your_property

then

where the last condition is not defined unless the first two are true (because
i would then be outside of the boundsaof). In the absence of a semi-strict
version of “and”, it would be much more cumbersome (as Pascal
programmers know) to express such examples.

The discussion of boolean operators will show further uses of this s-. See for example

; ; ; it ; continue_untifrom
strict policy, espeuqlly for writing iterators on data structures, VEINE AR TTERATION
examples from the EiffelBase library. on page====

More on strictness

(This more theoretical section may be skipped on first reading.)

What about the ordinary boolean operatamsl andor? You may expect
them to have a strict semantics, but this is not the case — at least not
necessarily. Here the language definition is simply less tolerant: it makes it
incorrect to evaluate expressiomand b anda or b whenb is not defined,
even ifahas value false in the first case and ifias value true in the second
case. There is nothing surprising in this convention, which has its
counterpart in all other forms of expression except those involving semi-
strict operators: no rule in this book will tell you how to compute the value
of m+ n if the value of the integer expressiors not defined.

§22.14 CONDITIONAL REATTACHMENT

607

Because the language definition does not cover cases in which the
second operand afr or and has no value, an implementation that used
then to computeand, andor elseto computeor, is legitimate; it may
produce results in cases for which a strict implementation would not, but
these cases are incorrect anyway.

The reverse is not true: a correct implementatioarad andor does not
necessarily provide a correct implementatioaod thenandor elsesince
it may be strict. In other words: non-semi-strict does not necessarily mean
strict! If you want to guarantee strictness, it does not suffice to rely on the
operatorand and the operatoor; you should use cloning as suggested
above. (Foimplies, which is semi-strict, there is no equivalent non-semi-
strict operator, but you can uset aor b.)

It is legitimate to ask why the semi-strict property of three boolean
@ operators —and then, or else implies — is not expressed as part of the
I language syntax. One could indeed envision a special optional qualifier
nonstrict applicable to formal arguments of reference type:

; Eiffel!
(nonstrict other BOOLEAN: BOOLEAN e

Such a facility was not, however, deemed worth the trouble, since— Chapter33.

common practice of software development seldom requires semi-stric
outside of two special cases: the three boolean operators just studied; and,
as we will see in theelevant chapter, concurrent computation.

22.14 CONDITIONAL REATTACHMENT

To complete the study of reattachment, there remains to see one
mechanism which, like the operations examined so far, may reattach a
reference to a different object. The semantics will in fact be reference

reattachment; what differs is the validity constraint under which you may

apply this mechanism, and also the conditional nature of its effect.

--- REPLACE WITH A SHORT PREVIEW OF Object_test

Limitations of unconditional reattachment

The need for a conditional form of reattachment arises when you must

access an object of a certain typX, but the only name you have to denote
mumsd - that object is an expression of tydé, for two different types with the

“wrong” conformance X conforms toT Y rather than the reverse), or even
no conformance at all. Normally, you would use the assignment

=y \

implicationalias "and then" WARNING: not legal

608

ATTACHING VALUES TO ENTITIES 822.15

with x of typeTX; but this will not work because the fundamental constraint

of unconditional reattachment, expressed inAkeignmentule, assumes
conformance frony to x. Calling a routine withy as actual argument
corresponding to a formal argumentf type TXwould also be invalid for

the same reason. This conformance property is essential to the soundness

of the type system.

22.15 MEMORY MANAGEMENT

A practical consequence of the reference reattachment mechanism, both in
the unconditional form (assignment, argument passing) and in the

conditional form (assignment attempt), is that some objects may become
useless. This raises the question of how, if in any way, the memory space

they used may be reclaimed for later use by newly created objects.

For example, the reference reattachment illustrated by the figure below
may make the object labeled OY unreachable from any useful object.

integer_attrib
1
After character_attrib "
/ Before
Y7 : :
‘ integer_attrib
2
character_attrib
1Bl

OX
(TY)

oy
()

Effect of
reference
reattachment

This is the same as the
second figure of page
588

In a similar way, the result of a cloning operation may make an ok~ gfst figure on page
unreachable. This may be the case with the middle object (also labele&87.
in the earlieillustration of cloning.

§22.15 MEMORY MANAGEMENT 609

What does it mean for an object to be "'usefuRemember that the. «systenexecution”
execution of a system is the execution of a creation procedure (thepage 114
creation procedure) on an object (the root object, an instance o.
system’s root class). The root object will remain in place for the entire
duration of the system’s execution. An object is useful if it may be reached
directly or indirectly, following references, from the either root object or
any of the local variables of a currently executing routine. Because a non-
useful object can have no effect on the remainder of the system’s
execution, it is permissible to reclaim the memory space it uses.

Should a reattachment as illustrated above (or its clone variant)
S ™= gutomatically result in freeing the associated storage? Of course not. The
“'ETE“ object labeled OY may still be reachable from the root through other
reference paths.

It would indeed be both dangerous and unacceptably tedious to lay the
burden of object memory reclamation on developers. Dangerous because it
is easy for a developer to forget a reference, and to recycle an object’s
storage space wrongly while the object is still reachable, resulting in
disaster when a client later tries to access it; and unacceptably tedious
because, even if you know for sure that an object is unreachable, you
should not just recycle its own storage but also analyze all its references to
other objects, to determine recursively whether other objects have also
become unreachable as a result. This makes the prospect of manual
reclamation formidable.

Authors of Eiffel implementation are encouraged to providmebage
collection mechanism which will take care of detecting unreachable
objects. Although many policies are possible for garbage collection, the
following properties are often deemed desirable:

« Efficiency: the overhead on system execution should be low.

* Incrementality: it is desirable to have a collector which works in small

bursts of activity, being triggered at specified intervals, rather than one

which waits for memory to fill up and then takes over for a possibly long

full collection cycle. Interactive applications require bursts to be (at

least on average) of a short enough duration to make them undetectable

at the human scale.

The Kernel Library

« Tunability: library facilities should allow systems to turn collection (ﬂaesgg\"g&%?"
(for example during a critical section of a real-time application) anciggg—‘@pmvides such
again, to request a full collection cycle, and to control the duratiofacilities
the bursts if the collector is incremental.

610 ATTACHING VALUES TO ENTITIES 822.16

22.16 SEMANTICS OF EQUALITY

The previous discussions have shown how to reattach values. A closely
related problem, whose study will conclude this chapter, iscmpare
values, for example to see if they are attached to the same object. This
raises the question of the semantics of the equality operadod its alter

ego the inequality operatér.

If youremember how the study of object duplicatiao|y cloneand ~ “OBJECT EQUAL-
variants) led us to object comparisoaq(ial and its variants), you will™Y".21.6. pae 572
probably have anticipated the current section: just as the assigr
operator:= has the semantics of reference attachment, copy or ¢
depending on the expansion status of its operands, so will the eqt
operator= have the semantics of reference or object equality.

We can devote all our attention to equality since inequality follows: the

effect ofx /=y is defined in all cases to be that of

‘not x=vy)

Two meanings of equality ar priori possible: reference equality, true if
and only if two references are either attached to the same object or both
void; and object equality.

The previous chapténtroduced a function to test object equaligégual _ <oBJECT EQUAL-
from the universal clas&NY, which in its original version will return trueTY". 21.6. paje 572
if and only if two objects are field-by-field equal. As with copying a
cloning operations, it is more prudent to rely on the frozen versiui,
identical guaranteeing uniform semantics. (By redefiningequa) you
may provide another version oéqual for a specific class.) For
conveniencejdentical (like equa) also applies to void values. In the
present discussion, “object equality” denotes an operation that can only
compare two objects, and so must be applied to non-void references.

Here is the table of possibilities, which closely parallels *=Pagesss

corresponding table for unconditional reattachment: Possible
semantics for
TYPE OF FIRST. | Reference Expanded shallow
equality
TYPE OF SECOND
1 NOT a semantic specifi-
cation but only a list of
Reference [1] [2] available possibilities
. . . for such a specification
» Reference equality | « Object equality The actual semantics
* Object equality (if appears next
neither void)

§22.16 SEMANTICS OF EQUALITY 611

Expanded [3] [4]

» Object equality (if |« Object equality
first not void)

For each of the four cases, we must give a reasonable meaning f- Page590
equality operatoe. The line of reasoning applied earlier to unconditiol
reattachment yields the following semantics, which again parallels

table for unconditional reattachment.

TYPE OF FIRST. | Reference Expanded

TYPE OF SECOND
!

Reference [1]Reference equality| [2]identical

Expanded [3]identical identical

So if x andy are references the result of a test
(X=Y |

is true if and only ifx andy are either both void or both attached to the same
object; if either or both ok andy are objects, then the test yields true if and
only if they are attached to field-by-field equal objects, as indicated by
functionidentical_equafrom classANY

As with unconditional reattachment, the semantics given is the most
frequently needed one for each case, and in particular is usually appropriate
for operations on arguments ofFmrmal_generic_namtype. For more
specific semantics, you may use one of the calls

equal(x, y)

deep_equalx, y)
identical_equalXx, y)
identical_deep_equdk, y)

612

ATTACHING VALUES TO ENTITIES 822.16

Many container classes of EiffelBase have routines that query a segReusable Soft-

structure such as a list, set, tree or hash table for occurrences of an ware”. The notion of
lly a value). This may mean either of two things: doegontainer data struc-

(or more genera Yy : y g . g_ : ture was presented in

structure contain a reference to the object of interest? Does it cont10.21, pae 286 and

reference to an object equal to it? You can switch between thesel2.2.p@e 341

interpretations by applying the proceduresompare_objectsand

compare_referencde a certain container, as iny_list. compare_objects

This governs not only searching operations, such as the funictigrbut

also certain insertion and replacement operations that will only add an

element to a structure if it is not already present.

For basic arithmetic types, which are expandedAlamd/= operators .- “CONVERSIONS”
will always callidentical Thanks to the conversion mechanism stud22.6. pae 583
earlierin thischapter, you may use mixed-type equality expressions Wi_ «accountingfor tar-
the limits of the conversions specified in the corresponding classesgetconersion”, , page
example the expressidn0 = 1 is valid (and will return true) even thoug’62
it has aREAL operand and the other is &NTEGER This is because
according to the above semantics the expression meansentical (1),
and INTEGER converts to REAL Thanks to thetamget conversion
mechanism, you may also write= 1.0, with the same result.

http://www.eiffel.com/doc/documentation.html#ru

	22 22 Attaching values to entities
	22.1 OVERVIEW
	22.2 ROLE OF REATTACHMENT OPERATIONS
	Reattachment, source, target

	22.3 FORMS OF UNCONDITIONAL REATTACHMENT
	22.4 SYNTAX AND VALIDITY OF ASSIGNMENT
	22.5 THE STATUS OF FORMAL ROUTINE ARGUMENTS
	22.6 CONVERSIONS
	22.7 SEMANTICS OF REATTACHMENT
	22.8 AN EXAMPLE
	22.9 ABOUT REATTACHMENT
	22.10 EFFECT ON GENERIC PROGRAMMING
	22.11 POLYMORPHISM
	Dynamic type
	Polymorphic expression; dynamic type and class sets

	22.12 ASSIGNER CALL
	22.13 SEMI-STRICT OPERATORS
	The notion of strictness
	The need for semi-strict operators
	More on strictness

	22.14 CONDITIONAL REATTACHMENT
	Limitations of unconditional reattachment

	22.15 MEMORY MANAGEMENT
	22.16 SEMANTICS OF EQUALITY

