16

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Repeated inheritance

16.1 OVERVIEW

Inheritance may benultiple: a class may have any number of parents. A
more restrictive solution would limit the benefits of inheritance, so central
to object-oriented software engineering.

Because of multiple inheritance, it is possible for a class to be a
descendant of another in more than one way. This case is known as
repeated inheritance; it raises interesting issues and vyields useful
techniques, which the following discussion reviews in detail.

The figure on the next page shows examples of repeated inheritance.

The present chapter is thestof three devoted to inheritance. It doesr*the other two weré
introduce any new language construct but explains the validity rulesand10.
semanitcs of repeated inheritance. As a consequence, it will complet. ...
understanding of two important inheritance conceptkerited feature
andname clash

Our view of inheritance will only be final when we have grasped the _, “PoOLYMOR-
semantics of reattachment and feature call, involving the powerful techniquePHISM”, 22.11 page

of polymorphism andlynamic binding. 598 “D YNAMIC BIND-
ING”, 23.12, pae 630

This chapter is organized in four parts:
» We look into the circumstances of repeated inheritance.

» We identify thetwo questionsthat repeated inheritance implies for an
object-oriented language — Are features shared or replicated? If
replicated, what does this mean for dynamic binding? — and answer
them through simple language rules.

* We explore applications of the resulting techniques.

» We finish off the formal rules.

426 REPEATED INHERITANCE §16.2

16.2 CASES OF REPEATED INHERITANCE

TheParentrule indicates that the inheritance graph of a set of classes =P arent rule”
not contain any cycles. It is perfectly possible, however, for two classiPage 176
be connected through more than one path. The figure on the next page

provides two examples.
’ A) f) .
Direct and
/ indirect
/'\ repeated
B inheritance

(@)

Here is the definition:

o Repeated inheritance, ancestor, descendant Why does the first sen-
. . ; tence of the definition
Repeated inheritanceoccurs whenever (as a resultroultiple use the word “ances-
inheritance) two or more of thancestors of a class have a tor" rather than

“proper ancestor”?

commonparentA.

D is then called aepeated descendanbf A, andA arepeated
ancestorof D.

As shown by the two examples in the figuBecan repeatedly inherit from
A directly (a) as well as indirectlyb).

The simplest case, callatirect repeated inheritanceand makingD a
repeated heirof A, occurs whem lists A in two or moreParentclauses:

classD inherit
Arename... redefine... end
Arename... redefine... end

.. Rest of class omitted.

§16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE 427

—

The second cas@direct repeated inheritance arises when at least one
parent of D is a proper descendant @& and at least one other is a
descendant oA.

The discussion so far has neglected the generic parameters, if any, - “THE CASE OF
repeated ancestéx. In reality, aParenfis not just a class butCailas.s_typeg(é%'g[‘;\‘lfR "
— a class name possibly followed by actual generic parameters. USeTions'. 16,7 panesd2
as repeated ancestor with different actual generic parameters still «
repeated inheritanceD{s ancestors have a common parent class even
though the correspondirigarentypes are different); this case will show up

in the consistency constraints and semantic rules.

16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE

Repeated inheritance, although not a tool for beginners, is in fact a simple
mechanism if approached properly. Only two issues arise, the answers to
which make up this section and the next (and the principal new concepts of
this chapter): does a feature inherited twice yield one feature, or two? If it
yields two, which one should dynamic binding trigger?

First, the matter of repeatedly inherited features:

The first question of repeated inheritance:
Fate of a repeatedly inherited feature

Given a feature from a repeated ancestor, what feature or features
does it yield in a repeated descendant?

In the absence of repeated inheritance, the situation was simplés i& Usually onebutthe Join

descendant of, every feature oX yieldsatmostone feature o¥. But now mechanisnfl0.2land
10.29 may merge sev-

things are not so clear any more. In either of the preceding pictures, erajinherited features
shouldD get out of a featurkof A: one feature, or two?

The second question arises from the combination of repeated inheriThe problem arises as
and dynamic binding. Assume that in a case of indirect repesSoonawnebranch

. . . . redefined; for symme-
inheritanceb on the last figuregneor both of the branches provides a ey we assume both do

version forf:

428 REPEATED INHERITANCE §16.4
Conflicting
f A redefinitions

redefinef £ g ‘) C ‘)redefinef

~_"
D)

Eiffel's dynamic binding policy (which suffers no exception) tells us that
the call will use the version of applicable toD (regardless of the
declaration of). But now we have two such versions. Hence:

The second question of repeated inheritance:
Ambiguities under dynamic binding

Given a feature repeatedly inherited under two different
redeclarations, which one should a call execute if its target is
statically of the repeated ancestor type and dynamically of the
repeated descendant type?

Developing answers to these two questions is our principal task for this
chapter. Both answers will turn out to be remarkably simple, but we must
study the issues carefully before we can deduce the answers.

Also remarkable is that we can for a large part tackle the two questions
separately, as they have little bearing on each other.

16.4 SHARING AND REPLICATION

Consider first the question of the fate of a repeatedly inherited feature. In
the common descendant, does it yield one feature, or two?

We cannot settle for a single, universal answer. Depending on the
context, either solution may be the right one, and you will need some
leeway for choosing between them in any particular case:

1+In some circumstances you may use repeated inheritance precisely
because you like a feature of an ancestor so much that you want two of it.

2 « Often, however, one copy is enough. For example, the scheme illustrated
onthe figure above may arise when you write i&#mdC (the intermediate
ancestors) as heirs Afbecause each neefis features, such dsD needs
the new features introduced ByandC, but only one copy of\s features.

§16.4 SHARING AND REPLICATION 429

An extreme example of casgis the universalclassANY of the Kernel — “ANY”, 6.6, page
Library, an obligatory ancestor of all Eiffel classes. The presende\bf]}O—?nfgr‘;aéf;‘t’;rsam@
means that any use ofultiple inheritance is automatically a case
repeatednheritance, since even if the two pareriBsandC on the figure

below, do not explicitly list a common ancestor, they are automatically
descendants &NY makingD a repeated descendantdfY

ANY Any multiple
inheritance
/(‘\ causes

repeated
/‘S)\ inheritance
B C from ANY
f Inheritance path
+ (one or more links)
o>

For any non-trivial Eiffel system, the repeated inheritance structure
induced byANY if we ever tried to draw it, would be rather luxuriant. In
most cases, useful as the featureAbFY are, you would not want your
classes to inherit multiple copies of all of them.

The language could of course force you to choose one of the solutions,
1or 2, globally for all the features from a given repeated ancestor. (This is
roughly the C++ approach, through the notion of “virtual base class”.) But
such a solution would be too restrictive: you may need replication for some
features and sharing for some others. The Eiffel policy uses the expected
default, sharing, but lets you choose the other possibility, replication, for
any specific feature. The criterion is straightforward: is the feature
inherited under a single name, or different names?

street_address Homes
HOUSE insured_value businesses
and home
renameinsured W renameinsured_va|ue businesses
asbusiness_valu
BUSINES RESIDENC

ashome_value
HOME

BUSINES

Therenamesubclauses
shown will produce the
desired effectsharing
for street_addressep-
lication forinsured_
value See next

430

REPEATED INHERITANCE §16.4

To see why we need such flexibility, consider the simple examhs same reasoning
illustrated by the figure. In a system used by an insurance company, awill apply to routines
HOUSE has heirs RESIDENCE and BUSINESS A special classzﬁggtaggggf%d
HOME_BUSINES$®andles the case of people who run a business fchange insured_value
their house; it is legitimate to write this class as an heir to both of

previous two. The features BfOUSEinclude attributestreet_addresand

insured_valueFor the street address, an instanceH@IME_BUSINESS

should inherit a single attribute; but forsured_valuet needs two, since

the insured value may be different for the two viewpoints.

The repeated inheritance mechanism gives you the desired flexibility:
when writing a repeated descendant suctH@ME_BUSINES$ou can
decide which repeatedly inherited features will yield single features
(“sharing”) and which duplicate features (“replication”).

The policy is the simplest possible, and follows once again fronrméh_ “N AMECLASHES”,
overloading principle: within a class, make sure every name denotd0.23. pae 290
feature and only one. The principle implies that if the inherited feat
have the same final name, theyistdenote the same feature, and so will
cause sharing; if they have different final names, they must yield different
features, and will cause replication.

This is the answer to the first question of repeated inheritance, enabling
us to introduce the principal rule of this chapter:

i SinceA may be any
Repeated Inheritance rule Ancostorot judt a

proper onethe rule
LetD be a class an8y, ... B, (n = 2) beparents oD based on applies to direct

classes having a commamcestoA. Letf,, ... f, be features of repeated inheritance
these respective parents, all having as one of #esids the same WhereBy, ... Byareall

. the same a8, aswellas
featuref of A. Then: 1o the indirect case

1 « Any subset of these features inherited bynder thesame
final name irD yields a single feature @f.

2 * Any two of these features inherited under a different name
yield two features ob.

This is the basic rule allowing us to make sense and take advantage of
inheritance, based on the programmer-controlled naming policy: inheriting
two features under the same name yields a single feature, inheriting them
under two different names yield two features.

§16.4 SHARING AND REPLICATION 431

Sharing, replication

A repeatedly inherited featurestaredif casel of the Repeated
Inheritance rule applies, ameplicated if case2 applies.

---- REMOVE A fine point about the rule’s phrasing: it refers to “pardraised ~ Parensyntaxpagel69
on classe$iaving a common ancestor” rather than “parents having a commo

ancestor” because Rarentis syntactically not a class but a type. With

classD inherit P... we are looking at ancestors not®but of P’s base class.

Also, like all semantic rules, this one assumes that deiss/alid. Otherwise.
of course, we would get no feature at all in either case.

The Repeated Inheritance rule applies to attributes as well as to routines. It
provides the designer of a repeatedly inheriting class with all the needed
flexibility through proper choice of names:

« If two or more of the parents dd happen to have a common ancestor
A, and you do not take any particular renaming action, each featdre of
will yield just one feature oD. This will usually be what you want in
simple cases, such as repeated inheritance WY as mentioned
above. The rule also renders harmless a common oversight: malking
parent ofD becaus® needs the features 8f forgetting that among the
other parents dD one is already a descendantof

« If, however, you want two or more versions of a repeatedly inher'They took up twelve
feature, just make sure that it is inherited under different names. Tlgﬁzkétfgg'%ggggﬁgfs
the modern version of tHeavesandfishes miracle: if you have one (43 scholars believe

a good thing, you may turn it into as many as you like, just by askLoafandFishto be
ancient Aramean for

To determine which of the two cases applies, the only criterion that meaiibutendroutine See
is thefinal name of the feature irD. It will be affected by any renamingarchaeo-Linguistic
performed irD itself as well as in intermediate ancestors betw&andD. Object-Oriented
This means that, as the author@fyou are the master when it comes Bg“sw'“ap”'c"

: ; - pp 798-923
setting the fate of a featufecoming from an indirect repeated ances...

through parentB andC:

« If f has the same name BiandC, f will normally be shared, but you
may force replication by renaming one of the inherited versions, or
renaming both forms with different names.

« If there has been some renaming betwdeand D’s parents,f will
normally be replicated, but you may force sharing by renaming both
inherited versions to the same name.

432 REPEATED INHERITANCE §16.4

fully the notion of name clash and the prohibition of name clashes. The
I guideline (made formal by the Join rule) stated that a name clas- Afterthe definition of
permissible only in three cases: Name clash"on p291.

1 « At most one of the clashing features is effective.

@ The sharing case of the Repeated Inheritance rule enables us to understand

2 «The class redefines all the clashing features into a common versiu.

3+The clashing features are the same feature, inherited without
redeclaration from a common ancestor.

It's the Repeated Inheritance rule that gives its meaning to the last case:
even though there is an appearance of name clash because two Barents
andC of a clas® have a feature with the same name, in reality they are the
same feature inherited from a common ancestdrIf D inherits it in both

cases under the same name, there is no real name clash; the sharing part of
the Repeated Inheritance rule implies, naturally enough[Diveitl get the

feature fromA, exactly as if it had been declared as a direct heiAof
without any intermediate classes.

This assumes of course that the feature is not redefined anywhere,
otherwise it wouldn't be the “same” feature. The next section will study the
case of conflicting redeclarations.

§16.4 SHARING AND REPLICATION 433

One more general observation is in order on the scope of the RepZtarthe precise defi-
Inheritance rule. As you will have noted from the definition, the rule gnitions se€Qrigin._

. PP . . seed” e 305 Join-
app!les if f |s_th¢ common _seed of the features under conS|der_at_|oingaset of features
equivalently, ifA is their origin.Remember that theeedof a feature is itsgives all of them a new
original version in the most remote ancestor (the featumégsin) where it Sed and origin
appears, regardless of any redeclaration or renaming that it may

endured between that ancestor and the current class.

Only the seed
f A and origin
matter

This requirement thaf be the origin off is important. Without it, as
illustrated by the preceding figure, the Repeated Inheritance rule would be
ambiguous. In the figurd,is a feature ofA, but it is also a feature (an
inherited one) o andY. All three classes are repeated ancestoi3.dfo

infer sharing or replication from the rule, we need to know what repeated
ancestor to consider. The rule’s phrasing answers this question precisely:
for f, the only relevant ancestor is class the origin of that feature.
Similarly, to determine the fate af and h, you must apply the rule
(respectively) toX andy, assumed to be the origins of these features.

434 REPEATED INHERITANCE §16.5

16.5 THE CASE OF REDECLARED FEATURES

The Repeated Inheritance rule would define all we need to know about
repeated inheritance were it not for the second question raised at the
beginning of this chapter: ambiguities under dynamic binding.

Here is the picture again. We assume that BathdC redefinef:

D

Conflicting
redefinitions

redefinef £ g C redefinef

N

D)

If D inherits the two versions under the same name, it gets a single feature
(sharing); otherwise, two different features (replication). But then what
happens in a call of the forra.f, wherea is declared of typéA but is
attached, at run time, to an instanc®8of

The sharing case is easy because even in the absence of dynZ~NAMECLASHES”,
binding we have a problenid gets two features with the same name. '10.23. pae 290
know this case! It's amameclash. That the two features originally con
from a common seed, theversion, doesn’t matter here: at the leveDbf
they are nowdifferent features

Studying thgoin rule has taught us that in such a conflict: < “Joinrule”, page309

« If all of the variants, or all but one, are deferred and still have a sii
signature, there is no particular problem. They will all be joined,
live happily ever after as a single feature.

If some intermediate redefinition has led to different signatures, you may still
use a join, but it will require a redefinition (or effecting) to a feature whose
signature matches all the inherited ones.

* If two or more are effective, the name clash would make the class
invalid. In the general case we could resolve it by renaming, but here
this would mean featureeplication (the case discussed next), whereas
we are explicitly assumingharing meaning all variants have the same
final name. To remove the name clash we have to force a join by
undefining all the effective features except at most one.

§16.5 THE CASE OF REDECLARED FEATURES 435

So here if both redefined versions are effective you must e either

classD inherit

B
undefinef end

C
.. Rest of class omitted.

end

or the form that undefines thg version instead. You may also redefine
both. If you do not include such an undefinition or redefinition, the class is
invalid. We don’'t need any new validity constraint to express this
requirement: the rules of the Feature Adaptation chapter took care of it.

This addresses the sharing case. But what if (as in the following figure)
one or both features are renamed, causing replication?

f) Redeclaration
A and replication
redefinef £ g C redefinef
renamefasfb renamef asfc
D

BecauseD renames the two inherited versions fofwe have a case of
replication:f yields two features i, calledfb andfc. These features are
truly different, since botiB and C redefine their inherited versions of
Note for generality that:

» The example assumes redefinition, but it would arise in any cas- Redeclarationcovers

redefinition and effect-
redeclaration, including conflicting effectings of an inherited featurIng Se¢'Redeclap

 For symmetry, the example assumes that BodindC redefin€, but the redeclaation”. page
problem would arise in the same way if one of these classes rede>’.
the feature and the other kept the original.

» The renaming takes place at the leveDgfout it could occur anywhere
above, or for only one of the features, as long as the final nanizaia
different, causing replication.

» The problem will also arise, even without redefinition, in the case of
attributes, as will be seen next.

436

REPEATED INHERITANCE §16.5

Only dynamic binding with a target of static type based®end dynamic
type based o causes a problem. There is nothing ambiguous about calls

with a target entityll of typeD:

d1: D

-- Attachdl1to an object of typ®:
createdl

d1.fb; dl.fc

-- A call of the formd1.f would be invalid,
-- sinceD has no feature of nanfe

The first call will trigger execution of the version dbfedefined inB, and
the second will use the version. Nothing new or surprising.

No difficulty arises either with polymorphism and dynamic binding

applied to entities of type3 or C:

bl B;cl C

createdl

-- Attach each entity to an object of type
bl=dL cl:=d1

-- The calls of interest:
bl.f; cl.f

To keep things simple, this example assumes thgta procedure without
arguments, that the classes involved are all non-generic — so that they are
also types — and thd@ has no creation procedure. Also, the classes involved
are all reference (non-expanded);Bfor C were expanded) would not

conform to them, making the assignments invalid.

The two assignments angolymorphic, allowing bl and c1, although _ “poLymOR-
declared of type®8 andC, to become attached to an object of typeThe PHISM", 22.11 page
type rules permit this sinc® conforms to bottB andC. Complementing@w

polymorphismdynamic binding commands that the version executed

ING”, 23.12, pae 630

each case is the one redefined by the ancestor clodesfitus means that
(on the last line) the first call will trigger thig version and the second will

trigger theC version. Still no particular problem.

§16.5 THE CASE OF REDECLARED FEATURES 437

Where the situation becomes potentially ambiguous is if you use
polymorphism and dynamic binding to célbn an entityal of typeA, the
repeated ancestor, as in

M al: A dl D

I é:'r'eate di

-- Attach the entity to an object of type
al:=d1

-- The call of interest:
al.f

Dynamic binding rules indicate that the call should trigger the versidn of
applicable to the actual object, which here is an instan€e 8ut there are
two such versions df resulting from theB andC redefinitions, and none
of them is a priori better than the other.

Here is for example howB, C and D (deprived of any properties not
relevant to this discussion) might appear:

| 4 | classB inherit
anr Aredefinefend

I feature

fis doprint ("Yes!") end
end

classCinherit
A redefinefend

feature
fis do print ("No!") end
end
classD inherit WARNINGD as given
is invalid As explained
B nextone ofthe branches
renamef asfbend must use non-conform-
ing inheritance
C
renamef asfcend
end

Will the callal.f print “Yes!, obeyingB, or will it obey C and print ‘No!"?

438 REPEATED INHERITANCE §16.5

@ One may imagine various language solutions:

I « We could rely on the order of thearentclauses foB andC in D But - Figure pagei3a
this is not acceptable: by reversing the order of parents, an innoc
editing change, you would change the semantics of the class. Be:
such a convention only makes sense for simple cases such as the
with more levels of repeated inheritance, the “order” of ances
becomes murky. In thearlierexample, ifB lists its parents in the order
X, Y, butCllists its parents in the reverse order, what is the ord&raid
Y as ancestors @7

» We could require the class author to “select” one of the variants for use
in dynamic binding, through a special language construct, every time
such a conflict arises. This solution works and was indeed used in Eiffel
3. But further reflection has shown that a simpler approach was possible.

What makes that approach simpler is that it is more radid&slallow ._ “NON-CONFORM-
polymorphismwhenever it could cause dynamic binding trouble. ANGINHERITANCE’,
suddenly remember that we have a straightforward way to disa®8-Pae 178
polymorphism when we don’t want it: instead of plain polymorpl

inheritance, us@on-conforming inheritance, also known asxpanded

inheritance because it builds on Eiffel's notion of expanded class au

indeed uses the keywoedpanded

A simple way to guarantee that an inheritance branch will not induce
conformance is indeed to add that keyword to the corresporiéamgnt
clause: if you declare a class as

classD inherit
expandedC
... No other parents.

then attachments such a@:= d1, with c1 of type C andd1 of typeD, are

not permitted. Without thexpandedqualification they would be walid. This discussion still
assumes thatthe classes

. Lo . . . involved are not them-
To avoid the ambiguity in the previous example it suffices to guarasejves expanded classes

that only one of the two branches is polymorphic, by decl®iag

classD inherit

B
renamefasfbend
expandedC
renamefasfcend

end

§16.5 THE CASE OF REDECLARED FEATURES

439

t CA)
f st 4% fans fCT
7

AN

D

% Non-conforming inheritance

M Renamed into
++ Redefined

Removing
dynamic
binding
ambiguity
through non-
conforming
inheritance

This means that we have chosen only one of the two branches as permitting
polymorphic attachment. So in the kind of situations seen above as causing

trouble with polymorphism and dynamic binding:

d al A d1 D

I ;31“1:: dl; al.f

There is no ambiguity any moretl conforms toal in only one way,

throughB, so the featuréto be applied is thB version,fb.

The approach just studied implies resolving all potential dynamic bindin¢c_, “RETAINING VIC-
ambiguities in favor of the same pareBtin the example. In rare cases you TORS FROM ALTER-

might wantal.f to call theB version for some featurdsbutal.gto use the
C version for a particulag. We will seelaterin this chapter how to adapt the
technique to this case.

The scheme works just as well for direct repeated inheritance:

classD inherit
expandedA
renamef asflend
A
rename
fasf2
redefine
f2
end
... Rest of class omitted.
end

NATIVEBRANCHES”,
16.11, pae 452

With this form the ver-
sion for dynamic bind-
ing is the redefined one
f2. Movingexpandedto
the first branch would
select instead the origi-
nal versionunder the
namefl.

440 REPEATED INHERITANCE §16.6

You must mark one of the twd”arentclauses involvingA as cases of non-
conforming inheritance — for example by usgxpandedAas here —to make
valid such a case involving replication and redeclaration of one or more features.

This is the basic mechanism for resolving conflicts in such cases. ! THe assumption was
that using arexpandedgqualification for one of the parent branches is fmade on pagé3e
means, not the end. What the rule will state is tt@mtformancemay hold
along at most one branch. If an inheritance branch is non-conformin
some other reason, then it does not create any conflict and there is nc
for the explicitexpandedqualification. In particular, ifC is an expandec
class — so far this sectidmasassumed that none of the classes involved
were expanded — the applicable conformance rules implyRhaill not
conform toC in spite of inheriting from it, so you may dispense with any
special qualification, writing simply

note
note "This version of the example assumes an expanded class C
classD inherit
B
rename asfb end
C
renamef asfcend
end

The rule introduced by this discussion is thepeatedinheritance - “Repeated Inherit-

Consisteng constraint The rule will be formulated precisely at the end atnc.e EO”S'Stegg con-
: - .) pag

this chapter, but it's basically what we have just seen. SHait.-page

To gain a full understanding, we must now check what happens in two
specific cases: attributes and conflicting generic derivations.

16.6 THE CASE OF ATTRIBUTES

The last example involved a feature&hich was a routine. For attributes, a
similar problem arises even in the absence of redefinition.

You may redefine an attribute, but this is only useful for type redefinition, _ “Redeclaation
since the redefined version must still be an attribute. See conditidrihe rule”, page 307
Redeclaration rule.

The cause of ambiguity here is that a replicated attribute will yield wvu
fields rather than one in the repeated descendant. Then, with dynamic
binding, a reference to such a replicated attribute may become ambiguous
in the same way as a reference to a multiply redeclared routine.

This may occur even with direct repeated inheritance of a &assm
a classA, with a scheme such as this:

8§16.6 THE CASE OF ATTRIBUTES 441

| _g | classA feature
o attr: SOME_TYPE

I some_proceduris do print (attr) end
end
; ; WARNINGD as shown
classD inherit is invalid Using non-
A conforminginheritance
rename attr asattrl end will make it valid see
A the next versian

rename attr as attr2 end
end

A direct instance ofA has only one field, corresponding &ttr. In an
instance oD, howeverattr yields two fields, foattrl andattr2:

A | aninstance o Aqyipute

replication

rename attr rename attr
asattrl asattr2 attr 1

An instance oD
D) attr 2

As in the case of conflicting redeclarations, it is not clear which one of the
fields the following should print:

al: A;dL D

createdl; al:= dl; al.some_proc

Because any new attribute implies a new field in every instance of the applicable
class, we may view replication, for attributes, as implying a kind of implicit
redefinition, similar in its effects to the explicit redefinition of routines.

Similar problem, same solution: whenever the Repeated Inherit= “Repeated Inherit-
rule implies replication of an attribute, th&epeated Inheritanceance Consistency con-
Consisteng constrainwill require that one of the inheritance paths Vo2t Page 458
non-conforming inheritance, as in

classD inherit
A
rename attr asattrl end
expandedA
rename attr asattr2 end

end

442 REPEATED INHERITANCE §16.7

16.7 THE CASE OF CONFLICTING GENERIC DERIVATIONS
(This section, addresses the semantics of a rare case and may be skipped on
F 'ii first reading.)

. o — Chapterl2 studies
Like attribute replication, differerdenericderivations from a commorgeneric classes and
generic ancestor cause a form of implicit redefinition. generic derivations

Itis not hard to devise a simple example. Assume Atiatgeneric, with — The signature of a

; ; feature is the specifica-
one formal generic paramet&, and has a featuré WhoseS|gnaturetionOﬂtsargummamd

involvesG: result typesSee'Sig-
nature, argument sig-
classA[G] feature Datu%%@f@a@l -
. . . e
f(x: G)is ... Routine body omitted.. end pade.-
end

classB inherit
A[INTEGER
end

classCinherit
A[REAL
end

What the body of does is irrelevant; so is the exact naturd ef procedure
as above, attribute or function — as longfassignature depends @& The
texts of classed, B andC as shown only include the properties relevant to
this discussion.

The different generic derivations éfused in theParentparts ofB andC
causd to have different signatures in these classes:

in B: [], [INTEGER
in C: [], [REAL

This means that the namie in these two classes, denotdgferent
features a feature is defined not only by its specification (assertions) and
its implementation, but also by its signature.

What then if you want to write a clag as heir to bottB andC? This ~ Thereasonsthatpre-
creates a conflict, as in the two previously studied cases (rog'[_‘]‘;szsehdag{‘?h‘gi’:gi o
_redefini_tion_s anc_l attributes). Because the featur_es are different, _shalning 0f16.5, pae 434
impossiblein this case, but the same replication-based solutions

available as in the previous two:

1 - Using replication and making sure that at most one of the inheritance
paths uses conforming inheritance.

2 «Letting one of the versions override the other through undefinition.

§16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE 443

The second solution requires special care here because the signatures are
different. The problem is that if a version overrides the other it must have

a conforming signature; but this may not be true because of conflicting
generic derivations. In the above example, indeed, the signatures Bf the
andC versions are incompatible since neither of the tyidBEGERand
REALconforms to the other. The only solution is to undefine both features
and provide a fresh redeclarationh Here, in the absence of a useful
common descendant tti TEGERandREAL, that fresh feature may only

be of the form

‘f(x: NONB is do ... Some routine bagd... end ‘

and hence cannot do anything useful with its argumenRecall that . “NoNE”, 6.7.page

,,,,,,

NONEis a common descendant of all classes, but has no exported feal’s

In more favorable cases, one of the actual generic parameters used for
generic derivations oA in B or C will conform to the other; then you may
use its version ofto overtake the other’'s. Redefinition into a version whose
signature conforms to both (if possible not just throNgdNE) will also work.

16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE

The most novel aspect of the Repeated Inheritance rule is the replication
case: here for the first time there is a way for one feature of a parent to yield
two or more features in an heir.

Among other applications, this mechanism enables us to “redefine our
feature and eat it”; provide a new version of an inherited routine, but retain
the original as well.

In the majority of cases, you do not need repeated inheritance to ac- “ADDING TO.

: - . i +INHERITED BEHA-
this goal, because the most common use of the original version is to, 5>~ r =~ 2< o=

write the redefined versiolVe have seen the simple language mechaniig 24, pae 293
that directly addresses this nedekecursar You will simply write the
redefinition of a routine as

your_routine(args ...)
do
“Something else”
Precursor(...)
“Yet something else”
end

With this technique — applicable only to routines, not attributes — the
inherited version doasotremain a feature of the new class: all you have is
its implementation, usable only in the corresponding redefinition.

444

REPEATED INHERITANCE §16.8

In some cases you may want the heir class to include both the new
version and the old. This scheme is not commonly useful, if only because
it assumes that the old version still makes sense in the new conteit - “Unfolded form of an
notforget, in particular, that if it is an exported routine it must preserveasserton’. pae 281
new invariant as well as the old one! — but the need does occasionally wiiow.

When this happens, the replication mechanism of repeated inheritance
will provide the solution. The scheme is simple (see the figure below): if
you want clas®D, an heir ofA, to redefinef while retaining the original
version, makeD inherit a secondtime from A — the direct form of
repeated inheritance is usually appropriate in this case — and retame
a different name, without redefinition, along that second branch.

Keeping the

f A > '1' Non-conforming inheritance orlglnal
version

N> i

e g
\ replication
¥

fr f ms original_f

To satisfy the Repeated Inheritance Consistency constraint, you will
need to make one of the two inheritance branches non-conforming.This
will usually be the second branch (the one that serves to retain the original
version) since we will want the redefined version to serve as “the version
of " for D and its descendants under dynamic binding.

The outline foD is:

classD inherit
A
redefinef end

expandedA
renamefasoriginal_fend

... Rest of class text omitted.
end

Although this is the common setup, you are free to choose a different
combination of redefinition and renaming.

§16.9 USING REPLICATION: COUNTERS AND ITERATION 445

It's a very simple setup. You can use it wheneReecursodoesn’t suffice
because you want to keep the original as a feature of the new class with all
the associated privileges. For example:

4

|

classMONEY_ MARKET_ACCOUNmMmherit — Compare with the
examples in the discus-
SAVINGS ACCOUNT sion ofPrecursoin

i i 10.24, pae 293
redefinecompute_interestnd .24, PEE

expandedSAVINGS_ACCOUNT
rename
compute_interests
compute_interest_as_for_plain_savings
export
{NONE compute_interest_as_for_plain_savings
end

... Rest of class text omitted.
end

This class illustrates what to do if you want to keep the original vers:= "adapting the &port
here under the nameompute_interest_as_for_plain_savinf internal staws of inherited fea-
purposes only: hide it from clients at the point of inheritance throun_tuﬁ;%200
New_exports clause that stipulates access to no useful clients. Th

required n particular if the original version does not preserve the invariant

of the new class.

16.9 USING REPLICATION: COUNTERS AND ITERATION

The technigue studied in the previous section relies on the Repeated
Inheritance rule’s automatic mechanism for duplicating routines and
attributes. Let’s see a couple more applications of this possibility.

The first example is a pedagogical exercise (due to Christine Mingins).
The inheritance hierarchy is shown on the following figure. We have a
general notion oNTEGER _COUNTERVith

* A queryitemgiving the current value associated with the counter.
* A procedurestepwith no argument, to advance the counter by one step.
* A querydeltagiving the amount by which stepwill change the value.

For more generality we can makBITEGER_COUNTERnNherit from
COUNTERI[INTEGER and introduce these three features at the level of
the generic clasSOUNTER

Right from the start (ilCOUNTER, procedurestepshould have a
postcondition statingem= old item + delta

446

REPEATED INHERITANCE §16.9

itent: G Counters up,

delta: G COUNTER down and both
o [G =>NUMERI(Q

ste

ensure
item=old item + delta

T[INTEGEF}

-1- Non-conforming inheritance
NM¥» Renamed into g\lgES'FERﬁ ,

[] Deferred

Effected / \
deltat =1 delta” = -1

UP_) DOWN _
COUNTER COUNTER
step N:N/\-/Sg) A down
delta~» increme delta~» decrement
UPDOWN _)
COUNTER

The figure is explicit enough that we don’t need to write the actual class texts.
We have two variants dNTEGER_COUNTERepresenting counters that
increment their value by +1 and —1. It sufficesli®_ COUNTERo effect
deltaas returningt1, and-1in DOWN_COUNTERProceduretepshould

be effected to executétem:=item + deltg this may be done in
INTEGER_COUNTERr evenCOUNTER

Then we want a notion of counter that can count both up and down, with
two procedurespanddown It suffices that/PDOWN_COUNTERherit
from bothUP_COUNTERand DOWN_COUNTERrenamingstepto up
anddown anddeltato incrementanddecremen{these two words being
used as nouns, as in “an increment”, not as verbs as in “increment this”).
Both cases are valid uses of inheritance: an updown counter is definitely an
up counter, and a down counter as well. For dynamically bound ustsyof
anddeltaon updown counters known statically as just counters, we choose
the “up” interpretation, so the inheritance frdd’DOWN_COUNTERo
DOWN_COUNTERIis non-conforming. The machinery of repeated
inheritance gives us exactly what we need thanks to replication.

If the postcondition obtepis to make sense in both versiomsanddownof - “ReplicationSeman-
this feature, it is critical that the redeclarationsstépgo hand in hand with tics rule”, pege 451
those ofdelta the postcondition must meatem= old item + incremenin
UP_COUNTERanditem = old item + decrementn DOWN_COUNTER

This will require asemantic clarification in the next section.

§16.9 USING REPLICATION: COUNTERS AND ITERATION 447

The second example deals with multiple iterations. @agentmechanism_, chapter27 covers
actually provides a more dynamic way to address this issue, buagelr)tS and include sev-
technique described here can still be interesting in some cases., ~ ©r@terationexamples

Consider aniterator class providing a way to perform certai” comparetantii_do
operations on every element of a certain structure. These operatiolin “PARTIALLY
denoted in the iterator class by deferred routines; descendants will ﬁﬁgiﬁ'égkaa%%s
them to represent the actual operations needed in a particular iteratiorTeg arjion”. 10.15,
For example a clas&INEAR_ITERATION(such as provided by thpage 271
iteration cluster of EiffelBase) may includguaoceduredo_untilwith this

general form:

do_until(s: TRAVERSABLET])
-- Iterate ors, up to and including
-- the first item satisfyingest

do
from
start(s); prepare(s)
until off (s) or elsetest(s) loop
action(s); forth (s)
end
if not off (s) then action(s) end; wrapup(s)
end

Any effective descendant tiNEAR_ITERATIONdescribing an iteration
scheme over a specific kind of data structure — for example a list
implemented by an array with a current positipasition—, will effect
start, forth andoff to provide, for the corresponding iterative structure:

* An implementation ofstart, bringing the cursor iteration to the first
position; in the array case, it will be the assignnparsition:= 1.

» An implementation oforth, to advance the cursor by one position: for
arrays,position:= position + 1
» An implementation obff, to query whether we have exhausted the list

of meaningful cursor positions: for arrays, the tpssition > count
wherecountis the number of occupied positions.

The class providing these effective declarations may be a class
LIST_ITERATIONAII that remains to do for a descendant needing actual
iterations is to effect the routines describing the actions and tests to be
performed on every list elememtrepare test actionandwrapup

But what if a class needwo variants of the iteration mechanism? It is
possible to use repeated inheritance flol@T _ITERATIONwith sharing
for the traversal routinesfart, forth, off) and replication for the operation
routinesprepare test actionandwrapup which need separate versions.

An example is an an application that handles lists of atomic particles, as
described by the class

448

REPEATED INHERITANCE §16.9

FREVEER

classPARTICLEfeature
mass REAL speedVECTOR
positively chargedBOOLEAN
... Other attributes and routines
end

where the lists are sorted by increasing mass. The application needs both to

1 «Print the mass of all particles in a list, up to and including the first
positively charged one.

2 « Compute the total vector speed of the first fifty particles in the list and
store it into an attributeotal_speed (To add speeds, we assume a
procedureaddin classVECTOR)

Using repeated inheritance:

classPARTICLE_LIST_PROPERTI&®erit
LIST_ITERATIONPARTICLE
rename
do_untilasprint_massegrepareasdo_nothing
testaspositive_testactionas print_one_mass
wrapupasdo_nothing
end

expandedLIST_ITERATIONPARTICLE
rename
do_untilasadd_speedprepareasset_speed
testasat_thresholdactionasadd_one_speed
wrapupasdo_nothing
end

feature
positive_tes{s: FIXED_LIST[PARTICLHE): BOOLEAN
-- Is particle at current cursor positionsipositive?
do

Result= s.item. positively charged
end

print_one_mass¢s. FIXED_LIST[PARTICLE)
-- Print the mass of particle at cursor positios.i
do
print (s.item.mas3
end

=)

.. Rest of class omitted.

§16.10 THE SEMANTICS OF REPLICATION 449

16.10 THE SEMANTICS OF REPLICATION

The Repeated Inheritance rule specifies that a feature inherited repeatedly
under two different names yields two features in the repeated descendant.
We must clarify what replication entails, especially for routines. We need
the corresponding semantic rule to ensure the correct functioning of both
examples reviewed in the last section.

For attributeswe saw that replication is to be taken literally: instanc = Figure“Attrib ute
of the common descendants will have two separate fields. replication”, page441

For routines, we normally do not need to replicate any code. B
special case arises wheéwo or more routines, calling each other, get
replicated along the same branch.

Consider our usual diamond-shaped repeated inheritance structure, with
two features andf wherer is an effective routine; may be an attribute or
a routine. We assume thatallsf:

Multiple
routine
replications

r=>f

rxv»rb [A IC
++
f s fC

% Non-conforming inheritance
\,
== Calls

D N> Renamed into
+t Redefined

Bothr andf get renamed differently along the two branches, so the Repé_; *Dynamic binding
Inheritance rule implies replication for both. In additiogets redefined, sersion”. page 460
that the Repeated Inheritance Consistency constraint applies.

constraint states that at most one of the inheritance paths may support
conformance; this is achieved here by using non-conforming inheritance

from D to C. Viewed fromA, then, thedynamicbindingversion off in D

is theB version,fb, in the sense that it's the feature calleddiyf, for al:

A dynamically attached to an object of tyipe

All this, aswe have seen, also applies wheneVas an attribute, even if_ “THE CASE OF

neitherB nor C redefines it. ATTRIBUTES”, 16.6,
page 440
Such situations raise a new problem: sinoallsf, andD now has two

versions of he origind| which one of these shoulld andrc call?

450

REPEATED INHERITANCE §16.10

WAL IO

Since the example include no redefinition for the features of s€ed “seed” was defined
ra, rb), the featuresa andrb are just duplicates of the originallf they are on page305 A revised
identical, they will call the same versionfih D; if so, that version shoulcp:gg'téoeﬁ'o%\?pears on
presumably, in keeping with the spirit of the Repeated Inheritance

Consistency constraint, ifie, asfc comes from the non-conforming branch.

But is this right? Conceptuallip has two versions afand two versions
of f. The original property of was that it called the corresponding version
of f. There doesn’t seem to be any good reason for a replicated version of
to call a version of that results from a mutation of the original along a
differentinheritance branch.

A rare but illuminating case is féto be the same routine as

r(args ...)
-- A routine that may call itself recursively
do

r (other_arg$

end

AssumeB redefineg but (to keep things simple]} retains this originalA
version shown above. It seems reasonable to expected that the highlighted
call tor should still be a recursive call, both @and inD. Why should we

call the B version? This seems a betrayal of the originally intended
semantics, since the routine would now cease being recursive.

These reflections suggest that we should take the notion of replication
seriously. Compiler writers, of course, will avoid physically duplicating the
code of a routine whenever they can. But an Eiffel programmer should be
able to believe the replication case of the Repeated Inheritance rule
literally, as if it caused code duplication for a routine in the same way it
causes field duplication for an attribute.

------ EXPLAIN

Call Replication rule VMCR

Itis valid for a featurd repeatedlynherited by a clasP from an
ancestorA, such thaff is shared under repeated inheritance and
notredeclared, to include amqgualifiedcall to a featurey of A

or (if f is an attribute) to be thtamet of an assignment whos
source involveg if and only if g is, along the correspondin
inheritance paths, also shared.

§16.10 THE SEMANTICS OF REPLICATION

451

If gwere duplicated, there would be no way to know which verggitould
call, or evaluate for the assignment. The “selected” version, discussed
below, is not necessarily the appropriate one.

The following rule expresses this property:

Replication Semantics rule

Let f andg be two features botrepeatedlynherited by a clasé
and bottreplicated under the Repeated Inheritance rule, with two
respective sets dlifferent namestl andf2, g1 andg2.

If the version off in D is the original version fronA and either
contains amnqualifiedcall tog or (if fis an attribute) is thearget
of an assignment whos®urce involveg, thefl version will use
gl for that call or assignment, and tf2eversion will useg2.

This rule (which, unlike other semantic rules, clarifies a special case rather
than giving the general semantics of a construct) tells us how to interpret
calls and assignments if two separate replications have proceeded along
distinct inheritance paths.

Another way to state this is that replication may cause a forimgpficit
redefinition: if the replicated routing calls a featuref that has been
redefined, or is an attribute (in either case causing physical replication),
then even ifr has not been redefined anywhere in the process we must
pretend that it has — to versions that call the corresponding versitns of

If you review the examples of the preceding section, you will notice that
they can only work under this rule:

« In the multiple counter example, the postconditiorupf inherited by
UP_COUNTERrom COUNTERasitem= old item + delta must use
the version ofleltaapplicable taCOUNTER incrementwith value +1;
for DOWN_COUNTERthe corresponding postcondition fdmwnmust
usedecrementwith value —1.

452 REPEATED INHERITANCE §16.11

« In the multiple iteration exampl@rint_masseandadd_speedooth of
them mere renamings of the general iteration procedareintil must
use the versions of the list item operatigmepare test action and
wrapupapplicable to its branch.

In both cases this means that even though the calling routirsteg-the
seed of botlupanddown anddo_until, the seed of botprint_masseand
add_speeds— is never explicitly redefined, it must take into account the
separate redeclarations of features that it calls.

16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES

This is a time for celebration: by now you know all the important concepts
of inheritance and feature adaptation.

£y There remains to see a technique addressing a fine point of the
'ii combination between dynamic binding and replication (this section) and
m‘rﬁthe precise rules for the concepts that we have studied but not yet
formalized (next two sections). All this is material that you can safely skip
on first reading.

In studying the rules for redeclaration under repeated inheritance we
have seen how to avoid ambiguities by forcing all branches but one to
involve non-conforming inheritance. What if we want some of the versions
for dynamic binding to come from another branch?

Let's consider again our basic figure for such cases:

f The winner
g and the loser

A)
4+ ++ Thisisthefigure of page
f N> fW \ f g ﬂ 439 with a new feature

++
gV gW++ ogv-> 9| fand different names

for the intermediate
WINNERY) LOSER) classes

\/ -1- Non-conforming inheritance
D)

M Renamed into

+t Redefined

We have learned how to resolve the potential ambiguity of calls such as
al.f for al: Adynamically attached to an object of type make sure that

one of the inheritance paths involves non-conforming inheritance. Then the
call will use the version from the other branch.

§16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES 453

Once we have settled on where to use non-conforming inheritance, this
policy will be the same for all features such &isTo emphasize this
property, the intermediate class&agndC in the original examples) have
been renameWINNERandLOSERon the last figure. The choice between
them is indeed absolute: like the America’s cup, this is a race with no

second place.

But what if we want to use th&/INNERversion for featurd, and for
another feature subject to the same probleng en the figure — we want

to retain the version redeclared in the other cl=BSER

The reason this hasn’t been a major concern until this stage 0b1'various forms of
. inheritance see the
discussion is that the case is hot common. Most of the time, in repénheritance methodol-
. L . ogy chapter irDbject-
inheritance situations of the above type with conflicting redeclarations orientedSoftwaeCon-

.. . . . struction 2nd editiofi.
of the parents is indeed the victor, providing all the variants for dyna

binding. (Sometimes it's because f@rm of inheritance was more fo.

subtyping, and the loser's was more implementation inheritance.)

But there will be exceptions to this observation, and we need a way to
address them. The idea is simply to rely on the Join mechanism.

First assume that although you want two versions of the oridiyal
need only one of, theLOSERversion. Then a simple join will solve the
problem: it suffices to inherit both versions under the same name, and to

undefine the one froM/INNER the other will take over.

If you want to keep both versions gf but makegl the selection for
dynamic binding from higher-ups, you will use essentially the same
technique but in this case you need to inhenite mordrom WINNER(as
if mere repeated inheritance frofrwere not already enough), this time in

non-conforming form:

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

454 REPEATED INHERITANCE §16.11

f /'j We like it so
g A much we want

- it notjust two but
fM’fWH/ \ ;AA//::SI** three of it
gvsgw

gw gl_ Non-conforming inheritance
Renamed into
Redefined

D - Undefined

13- %

This givesD another version ofjw, leaving you free to do whatever you
like with the first — the one used for dynamic binding —so that you can

let it be overriden bygl's implementation through renaming, undefinition
and join (the loser’s revenge):

classD inherit

WINNER
rename
gwasgl
undefine
gl
end

-- One more time, with feeling:
expandedWINNER

-- Not such a total defeat after all:
expandedLOSER
... Rest of class text omitted.
end

You will obtain a similar effect by redefining thg from LOSERand thegl
renamed fromgw (in the conformingWINNERbranch) into a common

feature. For attributes — which you can't undefine — this is the only
possible technique.

§16.12 THE NEED FOR SELECT 455

16.12 THE NEED FOR SELECT

BTNTAL

[eALiDinT

--- EXPLAIN !

Select clauses
Select? selectFeature_list

The Selectsubclause serves to resolve any ambiguities that could arise, in
dynamic binding on polymorphic targets declared statically of a repeated
ancestor’s type, when a feature from that type has two different versions in
the repeated descendant.

--- EXPLAIN

Select Subclause rule VMSS

A Selectsubclause appearing in tparentpartfor a clasB in a
classD is valid if and only if, for everyFeature _nam&amein
its Feature_listfnameis the final name i of a feature that has
two or morepotentialversions in D, anhameappears only once
in theFeature_list

This rule restricts the use &felectto cases in which it is meaningful: two

or more “potential versions”, a term which also has its own precise
definition. We will encounter next, in the Repeated Inheritance
Consistency constraint, the converse requirement that if there is such a
conflict aSelectmustbe provided.

16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT

Although we have seen all the concepts, it remains to formalize some of the
definitions and rules:

» The versions of a featureand its dynamic binding version in a
descendant of its class of origin.

» The Repeated Inheritance Consistency constraint— the major
constraint on the use of repeated inheritance.

» The precise definition dhherited features of a class— needed for the
more general notion of “features of a class”

456 REPEATED INHERITANCE §16.13

* As a consequence, the precise definition offthal name setof a class
and thelFeature Name rule governing the choice of feature names and
avoiding unwanted name clashes.

r.y As noted, this material and the remainder of this chapter are not required on
"| first reading.

' I The purpose of the Repeated Inheritance Consistency constraint is to make
sure (by permitting at most one conforming inheritance path) that for any
feature of a class there is at most aly@amic binding versioim any proper
descendant. Before defining “dynamic binding version” we need to know
what a “version” is, but here we've essentially done the job already by
introducing the notion of “seed”:

Tm Version
Afeaturegfrom aclas® is aversionof a featurd from anancestor

of D if f andg have a seed in common.

The seed of a featun@asdefined as the original form of the feature in t'"—“Origin, seed”
class where it was first introduced, prior to any redeclarations, renanfage 305

or other transformations in proper descendants. A versior ©f a
reincarnation of in a descendant.

The definition of “seed” implies that ffis immediate (introduced by its class
as a new feature) then the common seeflaidg mentioned in the above
definition of “version” isf itself.

When may a feature have more than one version in a proper descenc'- “Repeated Inherit-
its class of origin? The answer was given by the semantic rules of2iceule’. pge 439

. . . . ReplicationSemantics
chapter: Repeatedinheritance andReplication Semantics rules. Thiye" page 451
following rule brings nothing new, but summarizes the consequenct

these previous results.

Multiple versions
A classD hasn versions(n = 2) of a featurd of an ancestoA if

and only ifn of its features, all withdifferentfinal names inD,
are allversions of.

-- REMOVED CLAUSES:

, and any two among them satisfy any of the following properties:

1 « Aredeclaration applied to one has not been applied to the other.
2 + Any of them is amttribute.

3 * They have different signatures.

4 « Any of them calls a feature oA having (recursively) two or more
versions irD.

§16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 457

———————— END REMOVED CLAUSES -- DISCUSSION BELOW IS
OBSOLETE

Although this rule doesn’t mention repeated inheritance, it can only be
understood as a consequence of the rules introduced in this chapter: the
only way in whichD may, as required by the definition, have two or more
versions off — meaning, from the definition of “version”, two or more
features with the same seed — is through the replication mechanism of
repeated inheritance.

Casel is the most common source of multiple versions: the features
have been redeclared in different ways along different inheritance paths, or
one has been redeclared and the others haven't.

To cover both of these cases, the rule uses careful phrasing: at least one
redeclaration has occurred (along one of the inheritance branches) that
applies to one of the features but not to the other. This may mean, for the

other, no redeclaration at all, or a different redeclaration.

Case2 follows from the discussion afthatreplicationmeans in the specie - “THE CASE OF
case of attributes. Note that it suffices that one of the features bATTRIBJTES. 16.6,
attribute; it may have as its seed a function that, along the other branckwﬁo

either not redeclared or redeclared as a function.

Case3, as stated, sounds very general, but if you reflect about it you — “fHE CASE OF
realize that it is only relevant in the other special case of replica gCE)IZIEHIC(::TIIDI\IIE?QI)«-
conflictinggenericderivations. True, another source of differing signatuTions', 16.7 page442

would be redefinition; but then the more general dasi#l also apply.

Case4 follows from the discussion afeplicationsemantics: even if ¢~ “THE SEMANTICS
routine has not been explicitly redeclared, it may have an imp?BFl%EPL'Cﬁ'gON"’
redefinition as a result of replication under repeated inheritance, if it g s
a feature that has been redeclared. This case only applies to routines
only a routine may call another feature (routine or attribute). Note that the
call may be in theRoutine_bodybut it might also be, as in theOUNTER

example, in &@reconditioror Postconditionas well as in &kescuelause.

For the reader interested in theoretical consistency: cldusay appear to For an introduction to
risk infinite recursion, since it is possible for a routinéo call a routines fixpoints and the theory
which also calls. This was the case with the example of a recursive routine®f r‘fcurso'l"e qeﬁ”'t";lns
Interpreting the definitiogonstructvely — as a definition by induction, or a ?ﬁig—{oﬁj égme
fixpoint — avoids this problem: to determine the set of features with moreming Languaes .
than one version iD we first apply cases, 2 and3, the non-recursive cases,

to all relevant features; then we repeatedly apply clatise include any

features that call a feature already in our set, stopping at the first iteration that

yields nothing new. The process is guaranteed to terminate, since the set of

features oD (and hence too the transitive closure of the call graph) is finite.

http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl

458

REPEATED INHERITANCE §16.13

WALIDITT

Throughout this chapter we have used the Repeated Inheritance
Consistency constraint, which removed ambiguities for dynamic binding in
the presence of conflicting redeclarations. For all practical purposes the
earlier informal statements of the constraint were sufficient, but now we
can express it in a completely precise form:

Repeated Inheritance Consistency constraint VMRC

It is valid for a clasD to have two or moreersions of a feature
f of a properancestorA if and only if it satisfies one of the
following conditions:

1 e There is at most ormnformance path fror to A.
2 *There are two or more conformance paths, andRhent

clause for exactly one of them [has aSelecticlause listing
the name of the version bfrom the correspondingarent.

A “conformancepath” is a sequence of classes frénto A such that each of ~ “Conformance
the associatedturrent types conforms to the next. Thanks to the non- f;g?t ?2983;821;55[?
conforming inheritance it is possible fBrto have some inheritance paths to

A that are not conformance paths.

According to this constrairit is not invalid for a class to have more than

one conformance path to a proper ancestor if no replication causes any
ambiguity for dynamic binding. As soon as such a potential ambiguity
arises, however, you need to make sure that all inheritance paths, except
possibly one, involve at least one non-conforming link.

)

§16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 459

Conversely, nothing forces you, in a repeated inheritance situation wilore than one-
without replication, or in any inheritance situation, to have a confornpath conforms
path. A class may inherit from another, singly or multiply, withc

conformance of the associated current types. This is the cdseilily or
implementation-onlyinheritance, which does not permit subtyping. It

not the most common use of inheritance, but it is possible:

A) No path

/(conforms
.

D

C
&/
Suffering from
D an proper
ancestor’s
repeated
inheritance?
In this case there is no polymorphism: wil: A anddl1: D, attachments
such asal:=dlare invalid. (Similarly, with the assumptions of the figu
al:=blandcl:=dlwith bl Bandcl C.)

A final comment on the Repeated Inheritance Consistency constraint —
important in particular for compiler writers — is that the rule as stated
might seem to require, for any featuref a classA, verification inevery
proper descendafit of A, at least everfe such that repeated inheritance
with replication occurs somewhere betwe®eandE, even if the culprit is
not E but an intermediate descendant

You don't have to worry about what happensEnhowever: thanks to the
definition of “version”, if possible dynamic binding ambiguities arises for
E, that can only be (if the only cases of repeated inheritance are those
appearing on the figure) because they arisddfponce you resolve them

for D in accordance with the Repeated Inheritance Consistency constraint,
that will take care oE as well.

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

460 REPEATED INHERITANCE §16.13

)

el

)

C
el
D
i
|
E)

Thanks to the constraint we can now detinedynamic bindingrersion
(note the singular) of a feature in any descendant of its class of origin:

Dynamic binding version
For any featurd of a typeT and any type&J conformingto T, the

dynamic binding version of f in U is the featurey of U defined
as follows:
1 «If f has only oneersion inU, theng is that feature.

2¢If f has two or more versions i, then the Repeated
InheritanceConsisteng constraint ensures that either exactly
one conformance path exists frdthto T, in which casey is
the version of in U obtained along that path, or thatalect
subclause name a versionfpin which casey is that version.

As you will have noted:
* The definition has moved on from classes to types, since this is '~ "“CURRENT TYPE,

matters for feature calls and dynamic binding. All the conce%fzsﬁ':/‘\
. , . : . , 11, pee
transpose immediately; in particulafeaturesof a type” was definedss,

precisely in an earlier chapter.

« If TandU are the same type, cagapplies; so the definition indicates
— as it should — thdtis its own dynamic version.

§16.14 THE INHERITED FEATURES OF A CLASS 461

The definition enables us to obtairsengle dynamic binding version for
every inherited feature. This is of course the very purpose of the entire
present discussion, and the reason for the Repeated Inheritance
Consistency constraint.

The result is at the very heart of the object-oriented machinery of Eiffel:
when discussing the fundamental computational mechanism, feature call,
we will specify that a calh.f (...) triggers thedynamic binding version
of f in the type of the object dynamically attachedaoThanks to the
preceding rules and definitions, we now have the guarantee that this notion
will always be unambiguously defined, even under the most sophisticated
forms of multiple and repeated inheritance.

16.14 THE INHERITED FEATURES OF A CLASS

4 (Like the previous one, you may skip this last section on first reading.)

' I The final prize we earn from all the work done in this chapter is the
ability to provide a precise, conclusive definition of a key notion: the
features of a class — in particular its inherited features.

As specified in theoriginal discussionof features, the features of a ~ Chapters; see
clasg include its immediate features (those introduced in the class it%
and its inherited features, which were defined informally as the featryres’ 5.4 pae133

“obtained fonm’ the parents’ features.

The reason for being informal at that earlier stage is now clear: two
mechanisms, repeated inheritance and join, affect how a class may “obtain”
features from its parents. Without these mechanisms, every feature from a
parent (everyprecursor) would yield one feature in the heir. But:

» Thejoin mechanism merges two or more features from parents into a
single one in their common heir.

» With sharing under repeated inheritance, two or more precursors,
inherited from different parents but coming from the same features of a
common ancestor, yield a single featur®of

» Conversely, withreplication under direct repeated inheritand? las
two or moreParentclauses listing the same parent), a single precursor
may Yield two or more features Df

462

REPEATED INHERITANCE §16.14

Only with the benefit of these observations can we now obtain a precise
definition of the “inherited features of a class”, and hence (since immediate
features — the new, non-inherited ones — raise no particular problem) of

thefeatures of a classHere is the full definition:

Inherited features

Let D be a class. Letprecursors be the list obtained by,
concatenating the lists of features of every pareriDpfthis list
may contain duplicates in the case of repeated inheritance. [The
list inherited of inherited features of D is obtained from
precursorsas follows:

1 «In the list precursors for any set of two or more elements
representing features that are repeatedly inheritél imder
the samename, so that th&epeatednheritancerule yields
sharing, keep only one of these elements. Repeated
InheritanceConsisteng constraint (sharing case) indicates
that these elements must all represent the same feature, so that

it does not matter which one is kept.

2 «For every featuréin the resulting list, iD undefines, replace
f by adeferredfeature with the same signaturgecification
andheader comment.

3 «In the resulting list, for any set of deferred features with the ~ “Join Semantics
same final name i, keep only one of these features, with ™Ul€". page 312
assertions and header comment joined as per Jiie
Semanticsrule. (Keep the signature, which thioin rule
requires to be the same for all the features involved.)

4 « In the resulting list, remove ardeferredfeature such that the
list contains an effective feature with ttsamefinal name.
(This is the case in which a featufeinheritedas effective,
effects one or more deferred features: of the whole group, anly
f remains.)

5 « All the features of the resulting list have different names; they
are the inherited features DBfin their parent forms. From this
list, produce a new one by replacing any feature tbat
redeclares (througtedefinition oreffecting) with the result of
the redeclaration, and retaining any other feature as it is.

6 » The result is the lishheritedof inherited features dd.

§16.14 THE INHERITED FEATURES OF A CLASS

463

This definition looks a little like an algorithm, but it's not; you may view it
as a plain mathematical specification. There is no requirement that
compilers implement the corresponding mechanisms by mimicking the
rule’s successive steps, as long as the result is compatible.

The order of the clauses is significant. Note in particular that the very first
step, clausg, takes care once and for all of repeated inheritance. This removes
a small potential ambiguity, which we may remove through a semantic rule
(not a new property, just a consequence of the preceding definition):

Join-Sharing Reconciliation rule

If a class inherits two or more features satisfying both the
conditions ofsharing under th&kepeatednheritancerule and
those of theJoinrule, the applicable semantics is tRepeated
Inheritance rule.

The situation is illustrated by the figure belofnis deferred at the level of

A, and nothing else — renaming, effecting— happens to it down to the
level of D. It's a case of sharing under repeated inheritance, but we might
also apply the Join semantics, as always when a class inherits under a
single name a set of features, all deferred (or, although this doesn't apply
here, all deferred except one). You may have wondered about this case:
which of the two semantic rules should we apply? You may also have
brushed off the question: does it matter at all?

Join, or

sharing®
fU E) ¢

O Deferred

464 REPEATED INHERITANCE §16.14

It matters not much, but it matters just a little and we must leave no
semantic stone unturned. The only difference has to do with assertions.
Assume that, deferred as it may be, has a postcondition

ensure
your_condition

Then the Join Semantics rubtgescribes combining the header comme - Clausegand4ofthe

.. . . “J oin Semanticsule”,
of the joined features, and also their assertions: throughbrafor the page 312
preconditions, and aand for postcondition. Becauseand ahas the same _ ..~ viev fat-
value asa, no really bad semantic consequence will follow, but for exarrshortform”. pae 211
a class documentation tool, such adlat-shortform displayer, might

mistakenly display the postconditionfah D as something like:

ensure
-- FromA:
your_condition

and
-- FromA:
your_condition

Not a disaster, but unnecessarily complex. The Join-Sharing
Reconciliation rule explicitly defines the resulting postcondition in such
a case to be jusyour_condition with a similar consequence for
preconditions and header comments.

@ Let's come back to more general properties of the definition of Inherited

Features. To understand the definition, note that the lists under

I consideration are lists deatures not of feature names, although the
features that remain at the end all have different final nam8s e list
inherited obtained at step of the definition may still contain duplicate
features — with different feature names — as a result of repeated
inheritance with replication. This is why we defipeecursorsas a list
rather than a set. (Unlike a set, a list may contain duplicates.)

§16.14 THE INHERITED FEATURES OF A CLASS 465

In fact these observations also yield a new definition of the “precurs - “Precusor (joined

of a feature, equivalent to tleiginal one but more precise: featues)”,_page 309
See also the firssim-

R plified definition on
: Precursor page262
A precursor of aninheritedfeature offinal namefnameis any

parent feature — appearing in the liptecursors obtained
through casé of the definition of Inheritedfeatures— that the
feature mergings resulting from the subsequent cases reduce into
a feature of namiame

In accordance with this definition the successive steps of the definiti(- “Final name

“inherited features” may only merge features — elements of thew‘i
final name set”, pge

precusors— if they all have the same final name. This is an import;g3

property because without it the earlier definition of firal nameof an

inherited feature would not make sense.

Recall that according to this definition the final namef a featuref
obtained from a precursor of namén a parenB is:

* nin the absence of renaming.

* Otherwise, thenappearing in &ename_paif the formrenamenasm
in theParentclause foB in D.

Obviously, if f is obtained from two or more precursors, all this is
meaningless unless we are sure thig the same for all these precursors.

This also clarifies the notion dinal name setof a class, originally — “Einal name

introduced — in thesamedefinition as “final name” — as the set of flnwe

final name set”, pge
names of all the features of a class. These final names are: 183

» For immediate features, the names under which the class declares them.
« Forinheritedfeatures, the inherited names exceptas overridden by renaming.

Two or more precursors merged into one — because of either a joBoth the Repeated
Inheritancerule andthe

sharing under repeated inheritance — yield just one element of the join rule require all the

name set. If afeature from a repeated ancestor yields several featuresmergedfeaturesto have

replication, this adds all the corresponding names to the final name ¢he same final name

466 REPEATED INHERITANCE §816.14
Finally, we introduce a simple constraint capturing the fundamental rule
on choosing feature names:
Feature Name rule VMEN
VT It is valid for a featurd of a classC to have a certaifinal name

if and only if it satisfies the following conditions:
1 < No other feature of has thasame feature name.

2 ¢ If fisshared underepeatednheritance, itprecursors all have
either noAlias or thesame alias.

Condition 1 follows from other rules: the Feature Declaration rule, the
Redeclaration rule and the rules on repeated inheritance. It is convenient to
state it as a separate condition, as it can help produce clear error messages
in some cases of violation.

Two feature names are “the samig'the lower-case version of their “same featue

identifiers is the same. name same opetor,
samealias”, page153
The important notion in this condition isother feature”, resulting — “Inherited fea-

from the abovedefinition of “inherited features”. When do we considgrtures”. pae 462
to be a feature “other” thaff? This is the case whenevghas been declare..

or redeclared distinctly fromfy unless the definition of inherited features

causes the features to be merged into just one featute 8fich merging

may only happen as a result of sharing features under repeated inheritance,

or of joining deferred features.

Also, remember that ifC redeclares an inherited feature (possitM, herited immedi-
resulting from the joining of two or more), this does not introduce any late; origin; redeclan-
(“other”) feature. This was explicitly stated by thdefinition of t'Og introduce”, page
“introducing” a feature. -

Condition2 complements these requirements by ensuring that sharing
doesn't inadvertently give a feature more than one alias.

The Feature Name rule crowns the discussion of inheritance and feature
adaptation by unequivocally implementing the No Overloading Principle:
no two features of a class may have the same name. The only permissible
case is when the name clash is apparent only, but in reality the features
involved are all the same feature under different guises, resulting from a
join or from sharing under repeated inheritance.

§16.14 THE INHERITED FEATURES OF A CLASS 467

Consequences of the Feature Name rule includes the following
properties, which for convenience we may group into a new constraint:

g Name Clash rule VMNC WARNINGnot a valid-

ity constraint in the

A : usual form see com-
T by The following properties govern theames of the features of | at bottom of re-

a clas<C: ceding page

1 «ltis invalid for C to introduce two different features with the
same name.

2 «If Cintroduces a feature with the same name as a feature it
inherits as déctive, it must rename the inherited feature.

3 «If Cinherits two featuress effective from different parents
and they have the same name, the class must also (except
undersharing forepeatednheritance) remove the name clash
through renaming.

This is not a new constraint but a set of properties that follow from the Feature
Name rule and other rules. Instead of Eiffel’'s customary “This is valid if and

e only if ...” style, more directly useful to the programmer since it doesn't just

e tell us how to mess things up but also how to produce guaranteealitly
software, the Name Clash rule is of the more discouraging form “You may
not validly write ...”. It does, however, highlight frequently applicable
consequences of the naming policy, and compilers may take advantage of it
to report naming errors.

468 REPEATED INHERITANCE §16.14

	16 Repeated inheritance
	16.1 OVERVIEW
	16.2 CASES OF REPEATED INHERITANCE
	Repeated inheritance, ancestor, descendant

	16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE
	16.4 SHARING AND REPLICATION
	Sharing, replication

	16.5 THE CASE OF REDECLARED FEATURES
	16.6 THE CASE OF ATTRIBUTES
	16.7 THE CASE OF CONFLICTING GENERIC DERIVATIONS
	16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE
	16.9 USING REPLICATION: COUNTERS AND ITERATION
	16.10 THE SEMANTICS OF REPLICATION
	16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES
	16.12 THE NEED FOR SELECT
	16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT
	Version
	Multiple versions
	Dynamic binding version

	16.14 THE INHERITED FEATURES OF A CLASS
	Inherited features
	Precursor

