
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
16
Repeated inheritance
16.1 OVERVIEW

The figure on the next page shows examples of repeated inheritance.

The present chapter is thelastof three devoted to inheritance. It doesn’t
introduce any new language construct but explains the validity rules and
semanitcs of repeated inheritance. As a consequence, it will complete our
understanding of two important inheritance concepts:inherited feature
andname clash.

Our view of inheritance will only be final when we have grasped the
semantics of reattachment and feature call, involving the powerful techniques
of polymorphism anddynamic binding.

This chapter is organized in four parts:

• We look into the circumstances of repeated inheritance.

• We identify thetwo questionsthat repeated inheritance implies for an
object-oriented language — Are features shared or replicated? If
replicated, what does this mean for dynamic binding? — and answer
them through simple language rules.

• We explore applications of the resulting techniques.

• We finish off the formal rules.

Inheritance may bemultiple : a class may have any number of parents. A
more restrictive solution would limit the benefits of inheritance, so central
to object-oriented software engineering.

Because of multiple inheritance, it is possible for a class to be a
descendant of another in more than one way. This case is known as
repeated inheritance; it raises interesting issues and yields useful
techniques, which the following discussion reviews in detail.

←Theother twowere6
and10.

→ “POLYMOR-
PHISM”, 22.11,page
598; “D YNAMICBIND-
ING”, 23.12, page 630.

REPEATED INHERITANCE §16.2426
16.2 CASES OF REPEATED INHERITANCE

TheParentrule indicates that the inheritance graph of a set of classes may
not contain any cycles. It is perfectly possible, however, for two classes to
be connected through more than one path. The figure on the next page
provides two examples.

Here is the definition:

As shown by the two examples in the figure,D can repeatedly inherit from
A directly (a) as well as indirectly(b).

The simplest case, calleddirect repeated inheritanceand makingD a
repeated heirof A, occurs whenD listsA in two or moreParent clauses:

Repeated inheritance, ancestor, descendant
Repeated inheritanceoccurs whenever (as a result ofmultiple
inheritance) two or more of theancestors of a classD have a
commonparentA.
D is then called arepeated descendantof A, andA a repeated
ancestor of D.

class D inherit

A rename… redefine… end

A rename… redefine… end

… Rest of class omitted…

← “Parent rule”,
page 176.

A

D

B

A

D

(a) (b)

f
f

C

Why does the first sen-
tence of the definition
use the word “ances-
tor” rather than
“proper ancestor”?

Direct and
indirect
repeated
inheritance

§16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE 427
The second case,indirect repeated inheritance, arises when at least one
parent ofD is a proper descendant ofA, and at least one other is a
descendant ofA.

The discussion so far has neglected the generic parameters, if any, of the
repeated ancestorA. In reality, aParentis not just a class but aClass_type
— a class name possibly followed by actual generic parameters. Uses ofA
as repeated ancestor with different actual generic parameters still cause
repeated inheritance (D’s ancestors have a common parent class even
though the correspondingParenttypes are different); this case will show up
in the consistency constraints and semantic rules.

16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE

Repeated inheritance, although not a tool for beginners, is in fact a simple
mechanism if approached properly. Only two issues arise, the answers to
which make up this section and the next (and the principal new concepts of
this chapter): does a feature inherited twice yield one feature, or two? If it
yields two, which one should dynamic binding trigger?

First, the matter of repeatedly inherited features:

In the absence of repeated inheritance, the situation was simple: ifY is a
descendant ofX, every feature ofX yieldsatmostone feature ofY. But now
things are not so clear any more. In either of the preceding pictures, what
shouldD get out of a featuref of A: one feature, or two?

The second question arises from the combination of repeated inheritance
and dynamic binding. Assume that in a case of indirect repeated
inheritance,b on the last figure,oneor both of the branches provides a new
version forf:

The first question of repeated inheritance:
Fate of a repeatedly inherited feature

Given a feature from a repeated ancestor, what feature or features
does it yield in a repeated descendant?

→ “THE CASE OF
CONFLICTING
GENERIC DERIVA-
TIONS”, 16.7,page442.

Usuallyone,buttheJoin
mechanism(10.21 and
10.22) may merge sev-
eral inherited features.

The problem arises as
soon asone branch
redefinesf; for symme-
try we assume both do.

REPEATED INHERITANCE §16.4428
Eiffel’s dynamic binding policy (which suffers no exception) tells us that
the call will use the version off applicable toD (regardless of the
declaration ofa). But now we have two such versions. Hence:

Developing answers to these two questions is our principal task for this
chapter. Both answers will turn out to be remarkably simple, but we must
study the issues carefully before we can deduce the answers.

Also remarkable is that we can for a large part tackle the two questions
separately, as they have little bearing on each other.

16.4 SHARING AND REPLICATION

Consider first the question of the fate of a repeatedly inherited feature. In
the common descendant, does it yield one feature, or two?

We cannot settle for a single, universal answer. Depending on the
context, either solution may be the right one, and you will need some
leeway for choosing between them in any particular case:

1 • In some circumstances you may use repeated inheritance precisely
because you like a feature of an ancestor so much that you want two of it.

2 • Often, however, one copy is enough. For example, the scheme illustrated
onthefigureabovemayarisewhenyouwritebothBandC(the intermediate
ancestors) as heirs ofAbecause each needsA’s features, such asf; D needs
the new features introduced byBandC, but only one copy ofA’s features.

The second question of repeated inheritance:
Ambiguities under dynamic binding

Given a feature repeatedly inherited under two different
redeclarations, which one should a call execute if its target is
statically of the repeated ancestor type and dynamically of the
repeated descendant type?

redefine f

f

redefine f

A

CB

D

Conflicting
redefinitions

§16.4 SHARING AND REPLICATION 429
An extreme example of case2 is the universalclassANY of the Kernel
Library, an obligatory ancestor of all Eiffel classes. The presence ofANY
means that any use ofmultiple inheritance is automatically a case of
repeatedinheritance, since even if the two parents,B andC on the figure
below, do not explicitly list a common ancestor, they are automatically
descendants ofANY, makingD a repeated descendant ofANY.

For any non-trivial Eiffel system, the repeated inheritance structure
induced byANY, if we ever tried to draw it, would be rather luxuriant. In
most cases, useful as the features ofANYare, you would not want your
classes to inherit multiple copies of all of them.

The language could of course force you to choose one of the solutions,
1 or 2, globally for all the features from a given repeated ancestor. (This is
roughly the C++ approach, through the notion of “virtual base class”.) But
such a solution would be too restrictive: you may need replication for some
features and sharing for some others. The Eiffel policy uses the expected
default, sharing, but lets you choose the other possibility, replication, for
any specific feature. The criterion is straightforward: is the feature
inherited under a single name, or different names?

← “ANY”, 6.6, page
172;seealsochapter35
for more details.

Any multiple
inheritance
causes
repeated
inheritance
from ANY

ANY

D

B C
Inheritance path
(one or more links)

Homes,
businesses,
and home
businesses

Therenamesubclauses
shown will produce the
desired effect:: sharing
for street_address, rep-
lication for insured_
value. See next.

HOUSE

BUSINESS RESIDENCE

HOME_
BUSINESS

rename insured_value
asbusiness_value

rename insured_value
ashome_value

street_address
insured_value

REPEATED INHERITANCE §16.4430
To see why we need such flexibility, consider the simple example,
illustrated by the figure. In a system used by an insurance company, a class
HOUSE has heirs RESIDENCE and BUSINESS. A special class
HOME_BUSINESShandles the case of people who run a business from
their house; it is legitimate to write this class as an heir to both of the
previous two. The features ofHOUSEinclude attributesstreet_addressand
insured_value. For the street address, an instance ofHOME_BUSINESS
should inherit a single attribute; but forinsured_valueit needs two, since
the insured value may be different for the two viewpoints.

The repeated inheritance mechanism gives you the desired flexibility:
when writing a repeated descendant such asHOME_BUSINESSyou can
decide which repeatedly inherited features will yield single features
(“sharing”) and which duplicate features (“replication”).

The policy is the simplest possible, and follows once again from theno
overloading principle: within a class, make sure every name denotes a
feature and only one. The principle implies that if the inherited features
have the same final name, theymustdenote the same feature, and so will
cause sharing; if they have different final names, they must yield different
features, and will cause replication.

This is the answer to the first question of repeated inheritance, enabling
us to introduce the principal rule of this chapter:

Repeated Inheritance rule

Let D be a class andB1, … Bn (n ≥ 2) beparents ofD based on
classes having a commonancestorA. Let f1, … fn be features of
these respective parents, all having as one of theirseeds the same
featuref of A. Then:
1 • Any subset of these features inherited byD under thesame

final name inD yields a single feature ofD.
2 • Any two of these features inherited under a different name

yield two features ofD.

This is the basic rule allowing us to make sense and take advantage of
inheritance, based on the programmer-controlled naming policy: inheriting
two features under the same name yields a single feature, inheriting them
under two different names yield two features.

The same reasoning
will apply to routines,
such asupdate_
street_address and
change_insured_value.

←“NAMECLASHES”,
10.23, page 290.

SinceA may be any
ancestor, not just a
proper one, the rule
applies to direct
repeated inheritance,
whereB1, … Bn are all
thesameasA,aswellas
to the indirect case.

§16.4 SHARING AND REPLICATION 431
---- REMOVE A fine point about the rule’s phrasing: it refers to “parentsbased
on classeshaving a common ancestor” rather than “parents having a common
ancestor” because aParent is syntactically not a class but a type. With
classD inherit P… we are looking at ancestors not ofP but ofP’s base class.

Also, like all semantic rules, this one assumes that classD is valid. Otherwise.
of course, we would get no feature at all in either case.

The Repeated Inheritance rule applies to attributes as well as to routines. It
provides the designer of a repeatedly inheriting class with all the needed
flexibility through proper choice of names:

• If two or more of the parents ofD happen to have a common ancestor
A, and you do not take any particular renaming action, each feature ofA
will yield just one feature ofD. This will usually be what you want in
simple cases, such as repeated inheritance fromANY as mentioned
above. The rule also renders harmless a common oversight: makingA a
parent ofD becauseD needs the features ofA, forgetting that among the
other parents ofD one is already a descendant ofA.

• If, however, you want two or more versions of a repeatedly inherited
feature, just make sure that it is inherited under different names. This is
the modern version of theloavesandfishes miracle: if you have one of
a good thing, you may turn it into as many as you like, just by asking.

To determine which of the two cases applies, the only criterion that matters
is thefinal name of the feature inD. It will be affected by any renaming
performed inD itself as well as in intermediate ancestors betweenA andD.
This means that, as the author ofD, you are the master when it comes to
setting the fate of a featuref coming from an indirect repeated ancestor
through parentsB andC:

• If f has the same name inB andC, f will normally be shared, but you
may force replication by renaming one of the inherited versions, or
renaming both forms with different names.

• If there has been some renaming betweenA and D’s parents,f will
normally be replicated, but you may force sharing by renaming both
inherited versions to the same name.

Sharing, replication
A repeatedly inherited feature issharedif case1 of the Repeated
Inheritance rule applies, andreplicated if case2 applies.

←Parentsyntax:page169.

"They took up twelve
basketsfulloftheloaves,
and of the fishes", Mark
6:43. Scholars believe
Loaf andFish to be
ancient Aramean for
attributeandroutine.See
Proc. ALOOF 3
(Archaeo-Linguistic
Object-Oriented
Forum), Acapulco,
1998, pp. 798-923.

REPEATED INHERITANCE §16.4432
The sharing case of the Repeated Inheritance rule enables us to understand
fully the notion of name clash and the prohibition of name clashes. The
guideline (made formal by the Join rule) stated that a name clash is
permissible only in three cases:

1 • At most one of the clashing features is effective.

2 • The class redefines all the clashing features into a common version.

3 • The clashing features are the same feature, inherited without
redeclaration from a common ancestor.

It’s the Repeated Inheritance rule that gives its meaning to the last case:
even though there is an appearance of name clash because two parentsB
andC of a classD have a feature with the same name, in reality they are the
same feature, inherited from a common ancestorA. If D inherits it in both
cases under the same name, there is no real name clash; the sharing part of
the Repeated Inheritance rule implies, naturally enough, thatD will get the
feature fromA, exactly as if it had been declared as a direct heir ofA
without any intermediate classes.

This assumes of course that the feature is not redefined anywhere,
otherwise it wouldn’t be the “same” feature. The next section will study the
case of conflicting redeclarations.

← After thedefinitionof
“Nameclash”onp.291.

§16.4 SHARING AND REPLICATION 433
One more general observation is in order on the scope of the Repeated
Inheritance rule. As you will have noted from the definition, the rule only
applies if f is the common seed of the features under consideration or,
equivalently, ifA is their origin.Remember that theseedof a feature is its
original version in the most remote ancestor (the feature’sorigin) where it
appears, regardless of any redeclaration or renaming that it may have
endured between that ancestor and the current class.

This requirement thatA be the origin off is important. Without it, as
illustrated by the preceding figure, the Repeated Inheritance rule would be
ambiguous. In the figure,f is a feature ofA, but it is also a feature (an
inherited one) ofX andY. All three classes are repeated ancestors ofD. To
infer sharing or replication from the rule, we need to know what repeated
ancestor to consider. The rule’s phrasing answers this question precisely:
for f, the only relevant ancestor is classA, the origin of that feature.
Similarly, to determine the fate ofg and h, you must apply the rule
(respectively) toX andY, assumed to be the origins of these features.

← For the precise defi-
nitions see“Origin,
seed”, page 305. Join-
ing a set of features
gives all of them a new
seed and origin.

Only the seed
and origin
matter

A

X Y

f

hg

CB

D

REPEATED INHERITANCE §16.5434
16.5 THE CASE OF REDECLARED FEATURES

The Repeated Inheritance rule would define all we need to know about
repeated inheritance were it not for the second question raised at the
beginning of this chapter: ambiguities under dynamic binding.

Here is the picture again. We assume that bothB andC redefinef:

If D inherits the two versions under the same name, it gets a single feature
(sharing); otherwise, two different features (replication). But then what
happens in a call of the forma.f, wherea is declared of typeA but is
attached, at run time, to an instance ofD?

The sharing case is easy because even in the absence of dynamic
binding we have a problem:D gets two features with the same name. We
know this case! It’s anameclash. That the two features originally come
from a common seed, theA version, doesn’t matter here: at the level ofD
they are nowdifferent features.

Studying thejoin rule has taught us that in such a conflict:

• If all of the variants, or all but one, are deferred and still have a single
signature, there is no particular problem. They will all be joined, and
live happily ever after as a single feature.
If some intermediate redefinition has led to different signatures, you may still
use a join, but it will require a redefinition (or effecting) to a feature whose
signature matches all the inherited ones.

• If two or more are effective, the name clash would make the class
invalid. In the general case we could resolve it by renaming, but here
this would mean featurereplication (the case discussed next), whereas
we are explicitly assumingsharing, meaning all variants have the same
final name. To remove the name clash we have to force a join by
undefining all the effective features except at most one.

Conflicting
redefinitions

redefine f

f

redefine f

A

CB

D

←“NAMECLASHES”,
10.23, page 290.

← “Joinrule”, page309.

§16.5 THE CASE OF REDECLARED FEATURES 435
So here if both redefined versions are effective you must writeD as either

or the form that undefines theC version instead. You may also redefine
both. If you do not include such an undefinition or redefinition, the class is
invalid. We don’t need any new validity constraint to express this
requirement: the rules of the Feature Adaptation chapter took care of it.

This addresses the sharing case. But what if (as in the following figure)
one or both features are renamed, causing replication?

BecauseD renames the two inherited versions off, we have a case of
replication:f yields two features inD, calledfb andfc. These features are
truly different, since bothB andC redefine their inherited versions off.
Note for generality that:

• The example assumes redefinition, but it would arise in any case of
redeclaration, including conflicting effectings of an inherited feature.

• For symmetry, the example assumes that bothB andC redefinef, but the
problem would arise in the same way if one of these classes redefined
the feature and the other kept the original.

• The renaming takes place at the level ofD, but it could occur anywhere
above, or for only one of the features, as long as the final names inD are
different, causing replication.

• The problem will also arise, even without redefinition, in the case of
attributes, as will be seen next.

class D inherit
B

C
… Rest of class omitted…
end

undefinef end

Redeclaration
and replication

redefine f

rename f as fc

f

redefine f

rename f as fb

A

CB

D

←Redeclarationcovers
redefinition and effect-
ing. See“Redeclare,
redeclaration”, page
257,

REPEATED INHERITANCE §16.5436
Only dynamic binding with a target of static type based onA and dynamic
type based onD causes a problem. There is nothing ambiguous about calls
with a target entityd1 of typeD:

The first call will trigger execution of the version off redefined inB, and
the second will use theC version. Nothing new or surprising.

No difficulty arises either with polymorphism and dynamic binding
applied to entities of typesB or C:

To keep things simple, this example assumes thatf is a procedure without
arguments, that the classes involved are all non-generic — so that they are
also types — and thatD has no creation procedure. Also, the classes involved
are all reference (non-expanded); ifB or C were expanded,D would not
conform to them, making the assignments invalid.

The two assignments arepolymorphic, allowing b1 and c1, although
declared of typesB andC, to become attached to an object of typeD. The
type rules permit this sinceD conforms to bothB andC. Complementing
polymorphism,dynamic binding commands that the version executed in
each case is the one redefined by the ancestor closest toD. This means that
(on the last line) the first call will trigger theB version and the second will
trigger theC version. Still no particular problem.

d1: D
…

-- Attachd1 to an object of typeD:
create d1

d1.fb; d1.fc
-- A call of the formd1.f would be invalid,
-- sinceD has no feature of namef.

b1: B; c1: C
…
create d1

-- Attach each entity to an object of typeD:
b1:= d1; c1 := d1

-- The calls of interest:
b1.f ; c1.f

→ “POLYMOR-
PHISM”, 22.11,page
598; “D YNAMICBIND-
ING”, 23.12, page 630.

§16.5 THE CASE OF REDECLARED FEATURES 437
Where the situation becomes potentially ambiguous is if you use
polymorphism and dynamic binding to callf on an entitya1of typeA, the
repeated ancestor, as in

Dynamic binding rules indicate that the call should trigger the version off
applicable to the actual object, which here is an instance ofD. But there are
two such versions off resulting from theB andC redefinitions, and none
of them is a priori better than the other.

Here is for example howB, C and D (deprived of any properties not
relevant to this discussion) might appear:

Will the calla1.f print “Yes!”, obeyingB, or will it obeyCand print “No!”?

a1: A; d1: D
…
create d1

-- Attach the entity to an object of typeD:
a1 := d1

-- The call of interest:
a1.f

class B inherit
A redefine f end

feature
f is do print ("Yes!") end

end

class C inherit
A redefine f end

feature
f is do print ("No!") end

end

class D inherit
B

rename f as fb end
C

rename f as fc end
end

WARNING: D as given
is invalid. As explained
next,oneof thebranches
must use non-conform-
ing inheritance.

REPEATED INHERITANCE §16.5438
One may imagine various language solutions:

• We could rely on the order of theParentclauses forB andC in D But
this is not acceptable: by reversing the order of parents, an innocuous
editing change, you would change the semantics of the class. Besides,
such a convention only makes sense for simple cases such as the above;
with more levels of repeated inheritance, the “order” of ancestors
becomes murky. In theearlierexample, ifB lists its parents in the order
X, Y, butC lists its parents in the reverse order, what is the order ofX and
Y as ancestors ofD?

• We could require the class author to “select” one of the variants for use
in dynamic binding, through a special language construct, every time
such a conflict arises. This solution works and was indeed used in Eiffel
3. But further reflection has shown that a simpler approach was possible.

What makes that approach simpler is that it is more radical:disallow
polymorphismwhenever it could cause dynamic binding trouble. We
suddenly remember that we have a straightforward way to disallow
polymorphism when we don’t want it: instead of plain polymorphic
inheritance, usenon-conforming inheritance, also known asexpanded
inheritancebecause it builds on Eiffel’s notion of expanded class and
indeed uses the keywordexpanded.

A simple way to guarantee that an inheritance branch will not induce
conformance is indeed to add that keyword to the correspondingParent
clause: if you declare a class as

then attachments such asc1 := d1, with c1of typeC andd1of typeD, are
not permitted. Without theexpanded qualification,they would be valid.

To avoid the ambiguity in the previous example it suffices to guarantee
that only one of the two branches is polymorphic, by declaringD as

classD inherit

… No other parents…

class D inherit
B

rename f as fb end

rename f as fc end
end

← Figure page433.

← “NON-CONFORM-
INGINHERITANCE”,
6.8, page 178.

expandedC

This discussion still
assumes that the classes
involved are not them-
selves expanded classes.

expandedC

§16.5 THE CASE OF REDECLARED FEATURES 439
This means that we have chosen only one of the two branches as permitting
polymorphic attachment. So in the kind of situations seen above as causing
trouble with polymorphism and dynamic binding:

There is no ambiguity any more:d1 conforms toa1 in only one way,
throughB, so the featuref to be applied is theB version,fb.

The approach just studied implies resolving all potential dynamic binding
ambiguities in favor of the same parent,B in the example. In rare cases you
might wanta1.f to call theB version for some featuresf, buta1.g to use the
C version for a particularg. We will seelaterin thischapter how to adapt the
technique to this case.

The scheme works just as well for direct repeated inheritance:

a1: A; d1: D
…
a1 := d1; a1.f

class D inherit

renamef as f1end

rename
f as f2

redefine
f2

end
… Rest of class omitted…
end

 f

A

CB

D

f

 fb++ f fc++

Non-conforming inheritance

Renamed into
++ Redefined

Removing
dynamic
binding
ambiguity
through non-
conforming
inheritance

→ “RETAINING VIC-
TORS FROM ALTER-
NATIVEBRANCHES”,
16.11, page 452.

With this form the ver-
sion for dynamic bind-
ing is the redefined one,
f2.Movingexpandedto
the first branch would
select instead the origi-
nal version, under the
namef1.

expandedA

 A

REPEATED INHERITANCE §16.6440
You must mark one of the twoParentclauses involvingA as cases of non-
conforming inheritance—forexamplebyusingexpandedAashere—tomake
validsuchacase involving replicationandredeclarationofoneormore features.

This is the basic mechanism for resolving conflicts in such cases. Note
that using anexpandedqualification for one of the parent branches is the
means, not the end. What the rule will state is thatconformancemay hold
along at most one branch. If an inheritance branch is non-conforming for
some other reason, then it does not create any conflict and there is no need
for the explicitexpandedqualification. In particular, ifC is an expanded
class — so far this sectionhasassumed that none of the classes involved
were expanded — the applicable conformance rules imply thatD will not
conform toC in spite of inheriting from it, so you may dispense with any
special qualification, writing simply

The rule introduced by this discussion is theRepeatedInheritance
Consistency constraint. The rule will be formulated precisely at the end of
this chapter, but it’s basically what we have just seen.

To gain a full understanding, we must now check what happens in two
specific cases: attributes and conflicting generic derivations.

16.6 THE CASE OF ATTRIBUTES

The last example involved a featuref which was a routine. For attributes, a
similar problem arises even in the absence of redefinition.

You may redefine an attribute, but this is only useful for type redefinition,
since the redefined version must still be an attribute. See condition6 of the
Redeclaration rule.

The cause of ambiguity here is that a replicated attribute will yield two
fields rather than one in the repeated descendant. Then, with dynamic
binding, a reference to such a replicated attribute may become ambiguous
in the same way as a reference to a multiply redeclared routine.

This may occur even with direct repeated inheritance of a classD from
a classA, with a scheme such as this:

note
note: "This version of the example assumes an expanded class C."

class D inherit

rename as fb end

renamef as fc end
end

← The assumption was
made on page436.

 B

 C

→ “Repeated Inherit-
ance Consistency con-
straint”, page 458

← “Redeclaration
rule”, page 307.

§16.6 THE CASE OF ATTRIBUTES 441
A direct instance ofA has only one field, corresponding toattr. In an
instance ofD, however,attr yields two fields, forattr1 andattr2:

As in the case of conflicting redeclarations, it is not clear which one of the
fields the following should print:

Becauseanynewattribute impliesanew field inevery instanceof theapplicable
class, we may view replication, for attributes, as implying a kind of implicit
redefinition, similar in its effects to the explicit redefinition of routines.

Similar problem, same solution: whenever the Repeated Inheritance
rule implies replication of an attribute, theRepeated Inheritance
Consistency constraintwill require that one of the inheritance paths involve
non-conforming inheritance, as in

classA feature
attr: SOME_TYPE
some_procedureis do print (attr) end

end

classD inherit
A

rename attr as attr1 end
A

rename attr as attr2 end
end

a1: A; d1: D
…
create d1; a1 := d1; a1.some_proc

class D inherit
A

rename attr as attr1 end

rename attr as attr2 end
end

WARNING:Dasshown
is invalid. Using non-
conforminginheritance
will make it valid; see
the next version.

Attribute
replication

rename attr
as attr2

attr

attr 1

attr 2

attr An instance ofA

An instance ofD

rename attr
as attr1

A

D

→ “Repeated Inherit-
ance Consistency con-
straint”, page 458

expandedA

REPEATED INHERITANCE §16.7442
16.7 THE CASE OF CONFLICTING GENERIC DERIVATIONS

(This section, addresses the semantics of a rare case and may be skipped on
first reading.)

Like attribute replication, differentgenericderivations from a common
generic ancestor cause a form of implicit redefinition.

It is not hard to devise a simple example. Assume thatA is generic, with
one formal generic parameterG, and has a featuref whosesignature
involvesG:

What the body off does is irrelevant; so is the exact nature off — procedure
as above, attribute or function — as long asf’s signature depends onG. The
texts of classesA, B andC as shown only include the properties relevant to
this discussion.

The different generic derivations ofA used in theParentparts ofB andC
causef to have different signatures in these classes:

This means that the namef, in these two classes, denotesdifferent
features: a feature is defined not only by its specification (assertions) and
its implementation, but also by its signature.

What then if you want to write a classD as heir to bothB andC? This
creates a conflict, as in the two previously studied cases (routine
redefinitions and attributes). Because the features are different, sharing is
impossible in this case, but the same replication-based solutions are
available as in the previous two:

1 • Using replication and making sure that at most one of the inheritance
paths uses conforming inheritance.

2 • Letting one of the versions override the other through undefinition.

class A [G] feature
f(x: G)is … Routine body omitted… end

end

class B inherit
A [INTEGER]

end

class Cinherit
A [REAL]

end

in B: [], [INTEGER]
in C: [], [REAL]

→ Chapter12 studies
generic classes and
generic derivations.

← The signature of a
feature is the specifica-
tion of its argument and
result types. See“Sig-
nature, argument sig-
nature of a feature”,
page 149

←Thereasons thatpre-
clude sharing were
analyzed at the begin-
ning of16.5, page 434.

§16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE 443
The second solution requires special care here because the signatures are
different. The problem is that if a version overrides the other it must have
a conforming signature; but this may not be true because of conflicting
generic derivations. In the above example, indeed, the signatures of theB
andC versions are incompatible since neither of the typesINTEGERand
REALconforms to the other. The only solution is to undefine both features
and provide a fresh redeclaration inD. Here, in the absence of a useful
common descendant toINTEGERandREAL, that fresh feature may only
be of the form

and hence cannot do anything useful with its argumentx. (Recall that
NONEis a common descendant of all classes, but has no exported feature.)

In more favorable cases, one of the actual generic parameters used for
generic derivations ofA in B or C will conform to the other; then you may
use its version off to overtake the other’s. Redefinition into a version whose
signature conforms toboth (if possiblenot just throughNONE)will alsowork.

16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE

The most novel aspect of the Repeated Inheritance rule is the replication
case: here for the first time there is a way for one feature of a parent to yield
two or more features in an heir.

Among other applications, this mechanism enables us to “redefine our
feature and eat it”: provide a new version of an inherited routine, but retain
the original as well.

In the majority of cases, you do not need repeated inheritance to achieve
this goal, because the most common use of the original version is to help
write the redefined version.Wehaveseen the simple language mechanism
that directly addresses this need:Precursor. You will simply write the
redefinition of a routine as

With this technique — applicable only to routines, not attributes — the
inherited version doesnot remain a feature of the new class: all you have is
its implementation, usable only in the corresponding redefinition.

f (x: NONE) is do … Some routine body … end

your_routine(args: …)
do

“Something else”

“Yet something else”
end

← “NONE”, 6.7,page
175.

← “ADDING TO
INHERITED BEHAV-
IOR: PRECURSOR”,
10.24, page 293.

Precursor(…)

REPEATED INHERITANCE §16.8444
In some cases you may want the heir class to include both the new
version and the old. This scheme is not commonly useful, if only because
it assumes that the old version still makes sense in the new context —do
not forget, in particular, that if it is an exported routine it must preserve the
new invariant as well as the old one! — but the need does occasionally arise.

When this happens, the replication mechanism of repeated inheritance
will provide the solution. The scheme is simple (see the figure below): if
you want classD, an heir ofA, to redefinef while retaining the original
version, makeD inherit a second time from A — the direct form of
repeated inheritance is usually appropriate in this case — and renamef to
a different name, without redefinition, along that second branch.

To satisfy the Repeated Inheritance Consistency constraint, you will
need to make one of the two inheritance branches non-conforming.This
will usually be the second branch (the one that serves to retain the original
version) since we will want the redefined version to serve as “the version
of f” for D and its descendants under dynamic binding.

The outline forD is:

Although this is the common setup, you are free to choose a different
combination of redefinition and renaming.

class D inherit
A

redefinef end

expandedA
rename f as original_f end

… Rest of class text omitted…
end

← “Unfolded form of an
assertion”, page 281.

Keeping the
original
version
through
replication

f

 f++ f original_f

Non-conforming inheritance

Renamed into
++ Redefined

A

D

§16.9 USING REPLICATION: COUNTERS AND ITERATION 445
It’s a very simple setup. You can use it wheneverPrecursordoesn’t suffice
because you want to keep the original as a feature of the new class with all
the associated privileges. For example:

This class illustrates what to do if you want to keep the original version,
here under the namecompute_interest_as_for_plain_savings, for internal
purposes only: hide it from clients at the point of inheritance through a
New_exports clause that stipulates access to no useful clients. This is
required n particular if the original version does not preserve the invariant
of the new class.

16.9 USING REPLICATION: COUNTERS AND ITERATION

The technique studied in the previous section relies on the Repeated
Inheritance rule’s automatic mechanism for duplicating routines and
attributes. Let’s see a couple more applications of this possibility.

The first example is a pedagogical exercise (due to Christine Mingins).
The inheritance hierarchy is shown on the following figure. We have a
general notion ofINTEGER_COUNTER with

• A queryitem giving the current value associated with the counter.

• A procedurestepwith no argument, to advance the counter by one step.

• A querydeltagiving the amount by which astepwill change the value.

For more generality we can makeINTEGER_COUNTERinherit from
COUNTER[INTEGER] and introduce these three features at the level of
the generic classCOUNTER

Right from the start (inCOUNTER), procedurestepshould have a
postcondition statingitem= old item + delta.

class MONEY_MARKET_ACCOUNTinherit

SAVINGS_ACCOUNT
redefinecompute_interestend

expandedSAVINGS_ACCOUNT
rename

compute_interestas
compute_interest_as_for_plain_savings

export
{ NONE} compute_interest_as_for_plain_savings

end

… Rest of class text omitted…
end

← Compare with the
examples in the discus-
sion ofPrecursorin
10.24, page 293.

← “Adapting the export
status of inherited fea-
tures”, , page 200.

REPEATED INHERITANCE §16.9446
The figure is explicit enough that we don’t need to write the actual class texts.
We have two variants ofINTEGER_COUNTER, representing counters that
increment their value by +1 and –1. It suffices inUP_COUNTERto effect
deltaas returning+1, and–1 in DOWN_COUNTER. Procedurestepshould
be effected to executeitem:= item + delta; this may be done in
INTEGER_COUNTER or evenCOUNTER.

Then we want a notion of counter that can count both up and down, with
two proceduresupanddown. It suffices thatUPDOWN_COUNTERinherit
from bothUP_COUNTERandDOWN_COUNTER, renamingstepto up
anddown, anddelta to incrementanddecrement(these two words being
used as nouns, as in “an increment”, not as verbs as in “increment this”).
Both cases are valid uses of inheritance: an updown counter is definitely an
up counter, and a down counter as well. For dynamically bound uses ofstep
anddeltaon updown counters known statically as just counters, we choose
the “up” interpretation, so the inheritance fromUPDOWN_COUNTERto
DOWN_COUNTERis non-conforming. The machinery of repeated
inheritance gives us exactly what we need thanks to replication.

If the postcondition ofstepis to make sense in both versionsupanddownof
this feature, it is critical that the redeclarations ofstepgo hand in hand with
those ofdelta: the postcondition must meanitem= old item + incrementin
UP_COUNTERand item = old item + decrementin DOWN_COUNTER.
This will require asemantic clarification in the next section.

UPDOWN_
COUNTER

UP_
COUNTER

DOWN_
COUNTER

INTEGER_
COUNTER

COUNTER

[INTEGER]

delta*: G
item*: G

 delta increment

[G –>NUMERIC]
step*

ensure
item= old item + delta

∗

delta+ = 1

 step down

delta+ = –1

 delta decrement
 step up

Non-conforming inheritance

Renamed into
∗ Deferred
+ Effected

Counters, up,
down and both

→ “ReplicationSeman-
tics rule”, page 451.

§16.9 USING REPLICATION: COUNTERS AND ITERATION 447
The second example deals with multiple iterations. Theagentmechanism
actually provides a more dynamic way to address this issue, but the
technique described here can still be interesting in some cases.

Consider an iterator class providing a way to perform certain
operations on every element of a certain structure. These operations are
denoted in the iterator class by deferred routines; descendants will effect
them to represent the actual operations needed in a particular iteration case.
For example a classLINEAR_ITERATION(such as provided by the
iteration cluster of EiffelBase) may include aproceduredo_untilwith this
general form:

Any effective descendant ofLINEAR_ITERATION, describing an iteration
scheme over a specific kind of data structure — for example a list
implemented by an array with a current positionposition—, will effect
start, forth andoff to provide, for the corresponding iterative structure:

• An implementation ofstart, bringing the cursor iteration to the first
position; in the array case, it will be the assignmentposition:= 1.

• An implementation offorth, to advance the cursor by one position: for
arrays,position:= position + 1.

• An implementation ofoff, to query whether we have exhausted the list
of meaningful cursor positions: for arrays, the testposition > count,
wherecount is the number of occupied positions.

The class providing these effective declarations may be a class
LIST_ITERATION. All that remains to do for a descendant needing actual
iterations is to effect the routines describing the actions and tests to be
performed on every list element:prepare, test, action andwrapup.

But what if a class needstwo variants of the iteration mechanism? It is
possible to use repeated inheritance fromLIST_ITERATION, with sharing
for the traversal routines (start, forth, off) and replication for the operation
routinesprepare, test, actionandwrapup, which need separate versions.

An example is an an application that handles lists of atomic particles, as
described by the class

do_until(s: TRAVERSABLE[T])
-- Iterate ons, up to and including
-- the first item satisfyingtest.

do
from

start (s); prepare(s)
until off (s) or else test(s) loop

action(s); forth (s)
end
if not off (s) then action(s) end; wrapup(s)

end

→ Chapter27 covers
agents and include sev-
eral iteration examples.

←Compare tountil_do
in “PARTIALLY
DEFERREDCLASSES
ANDPROGRAMMED
ITERATION”, 10.15,
page 271.

REPEATED INHERITANCE §16.9448
where the lists are sorted by increasing mass. The application needs both to

1 • Print the mass of all particles in a list, up to and including the first
positively charged one.

2 • Compute the total vector speed of the first fifty particles in the list and
store it into an attributetotal_speed. (To add speeds, we assume a
procedureadd in classVECTOR.)

Using repeated inheritance:

class PARTICLEfeature
mass: REAL; speed: VECTOR
positively_charged: BOOLEAN
… Other attributes and routines…

end

class PARTICLE_LIST_PROPERTIESinherit
LIST_ITERATION[PARTICLE]

rename
do_untilas print_masses, prepareas do_nothing,
testas positive_test, actionas print_one_mass,
wrapupas do_nothing

end

expandedLIST_ITERATION[PARTICLE]
rename

do_untilas add_speeds, prepareas set_speed,
testas at_threshold, actionas add_one_speed,
wrapupas do_nothing

end

feature
positive_test(s: FIXED_LIST[PARTICLE]): BOOLEAN

-- Is particle at current cursor position inspositive?
do

Result:= s.item.positively_charged
end

print_one_mass(s: FIXED_LIST[PARTICLE])
-- Print the mass of particle at cursor position ins.

do
print (s.item.mass)

end

… Rest of class omitted…

§16.10 THE SEMANTICS OF REPLICATION 449
16.10 THE SEMANTICS OF REPLICATION

The Repeated Inheritance rule specifies that a feature inherited repeatedly
under two different names yields two features in the repeated descendant.
We must clarify what replication entails, especially for routines. We need
the corresponding semantic rule to ensure the correct functioning of both
examples reviewed in the last section.

For attributes,we saw that replication is to be taken literally: instances
of the common descendants will have two separate fields.

For routines, we normally do not need to replicate any code. But a
special case arises whentwo or more routines, calling each other, get
replicated along the same branch.

Consider our usual diamond-shaped repeated inheritance structure, with
two featuresr andf wherer is an effective routine;f may be an attribute or
a routine. We assume thatr callsf:

Bothr andf get renamed differently along the two branches, so the Repeated
Inheritance rule implies replication for both. In additionf gets redefined, so
that the Repeated Inheritance Consistency constraint applies. The
constraint states that at most one of the inheritance paths may support
conformance; this is achieved here by using non-conforming inheritance
from D to C. Viewed fromA, then, thedynamicbindingversion off in D
is theB version,fb, in the sense that it’s the feature called bya1.f, for a1:
A dynamically attached to an object of typeD.

All this, aswehaveseen, also applies wheneverf is an attribute, even if
neitherB norC redefines it.

Such situations raise a new problem: sincer callsf, andD now has two
versions of he originalf, which one of these shouldrb andrc call?

← Figure“Attrib ute
replication”, page441.

Multiple
routine
replications

r

 f

A

CB

D

f

 fb++ f fc++
 r rb r rc

Non-conforming inheritance

Calls

Renamed into
++ Redefined

→ “Dynamic binding
version”, page 460.

← “THE CASE OF
ATTRIBUTES”, 16.6,
page 440.

REPEATED INHERITANCE §16.10450
Since the example include no redefinition for the features of seedr (r,
ra, rb), the featuresra andrb are just duplicates of the originalr. If they are
identical, they will call the same version off in D; if so, that version should
presumably, in keeping with the spirit of the Repeated Inheritance
Consistency constraint, befb, asfccomes from the non-conforming branch.

But is this right? Conceptually,D has two versions ofr and two versions
of f. The original property ofr was that it called the corresponding version
of f. There doesn’t seem to be any good reason for a replicated version ofr
to call a version off that results from a mutation of the original along a
different inheritance branch.

A rare but illuminating case is forf to be the same routine asr:

AssumeB redefinesr but (to keep things simple)C retains this originalA
version shown above. It seems reasonable to expected that the highlighted
call to r should still be a recursive call, both inC and inD. Why should we
call the B version? This seems a betrayal of the originally intended
semantics, since the routine would now cease being recursive.

These reflections suggest that we should take the notion of replication
seriously. Compiler writers, of course, will avoid physically duplicating the
code of a routine whenever they can. But an Eiffel programmer should be
able to believe the replication case of the Repeated Inheritance rule
literally, as if it caused code duplication for a routine in the same way it
causes field duplication for an attribute.

------ EXPLAIN

r (args: …)
-- A routine that may call itself recursively

do
…

end

Call Replication rule VMCR

It is valid for a featuref repeatedlyinherited by a classD from an
ancestorA, such thatf is shared under repeated inheritance and
not redeclared, to include anunqualifiedcall to a featureg of A
or (if f is an attribute) to be thetarget of an assignment whose
source involvesg if and only if g is, along the corresponding
inheritance paths, also shared.

← “Seed” was defined
on page305. A revised
definition appears on
page below.

r (other_args)

§16.10 THE SEMANTICS OF REPLICATION 451
The following rule expresses this property:

Another way to state this is that replication may cause a form ofimplicit
redefinition: if the replicated routiner calls a featuref that has been
redefined, or is an attribute (in either case causing physical replication),
then even ifr has not been redefined anywhere in the process we must
pretend that it has — to versions that call the corresponding versions off.

If you review the examples of the preceding section, you will notice that
they can only work under this rule:

• In the multiple counter example, the postcondition ofup, inherited by
UP_COUNTERfrom COUNTERasitem= old item + delta, must use
the version ofdeltaapplicable toCOUNTER: increment, with value +1;
for DOWN_COUNTER, the corresponding postcondition fordownmust
usedecrement, with value –1.

If gwere duplicated, there would be no way to know which versionf should
call, or evaluate for the assignment. The “selected” version, discussed
below, is not necessarily the appropriate one.

Replication Semantics rule

Let f andg be two features bothrepeatedlyinherited by a classA
and bothreplicated under the Repeated Inheritance rule, with two
respective sets ofdifferent names:f1 andf2, g1andg2.
If the version off in D is the original version fromA and either
contains anunqualifiedcall tog or (if f is an attribute) is thetarget
of an assignment whosesource involvesg, thef1 version will use
g1 for that call or assignment, and thef2 version will useg2.

This rule (which, unlike other semantic rules, clarifies a special case rather
than giving the general semantics of a construct) tells us how to interpret
calls and assignments if two separate replications have proceeded along
distinct inheritance paths.

REPEATED INHERITANCE §16.11452
• In the multiple iteration example,print_massesandadd_speed, both of
them mere renamings of the general iteration proceduredo_until, must
use the versions of the list item operationsprepare, test, action and
wrapup applicable to its branch.

In both cases this means that even though the calling routine —step, the
seed of bothupanddown, anddo_until, the seed of bothprint_massesand
add_speeds— is never explicitly redefined, it must take into account the
separate redeclarations of features that it calls.

16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES

This is a time for celebration: by now you know all the important concepts
of inheritance and feature adaptation.

There remains to see a technique addressing a fine point of the
combination between dynamic binding and replication (this section) and
the precise rules for the concepts that we have studied but not yet
formalized (next two sections). All this is material that you can safely skip
on first reading.

In studying the rules for redeclaration under repeated inheritance we
have seen how to avoid ambiguities by forcing all branches but one to
involve non-conforming inheritance. What if we want some of the versions
for dynamic binding to come from another branch?

Let’s consider again our basic figure for such cases:

We have learned how to resolve the potential ambiguity of calls such as
a1.f for a1: A dynamically attached to an object of typeD: make sure that
one of the inheritance paths involves non-conforming inheritance. Then the
call will use the version from the other branch.

The winner
and the loser

This is the figureofpage
439, with a new feature
f and different names
for the intermediate
classes.

 f

A

LOSER

D

f

 fw++ f fl++

Non-conforming inheritance

Renamed into
++ Redefined

WINNER

 g gw++ g gl++

g

§16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES 453
Once we have settled on where to use non-conforming inheritance, this

policy will be the same for all features such asf. To emphasize this

property, the intermediate classes (B andC in the original examples) have

been renamedWINNERandLOSERon the last figure. The choice between

them is indeed absolute: like the America’s cup, this is a race with no

second place.

But what if we want to use theWINNERversion for featuref, and for

another feature subject to the same problem —g on the figure — we want

to retain the version redeclared in the other class,LOSER?

The reason this hasn’t been a major concern until this stage of the

discussion is that the case is not common. Most of the time, in repeated

inheritance situations of the above type with conflicting redeclarations, one

of the parents is indeed the victor, providing all the variants for dynamic

binding. (Sometimes it’s because itsform of inheritance was more for

subtyping, and the loser’s was more implementation inheritance.)

But there will be exceptions to this observation, and we need a way to

address them. The idea is simply to rely on the Join mechanism.

First assume that although you want two versions of the originalf you

need only one ofg, theLOSERversion. Then a simple join will solve the

problem: it suffices to inherit both versions under the same name, and to

undefine the one fromWINNER; the other will take over.

If you want to keep both versions ofg, but makegl the selection for

dynamic binding from higher-ups, you will use essentially the same

technique but in this case you need to inheritonce morefrom WINNER(as

if mere repeated inheritance fromA were not already enough), this time in

non-conforming form:

On various forms of
inheritance see the
inheritance methodol-
ogy chapter inObject-
OrientedSoftwareCon-
struction, 2nd edition” .

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

REPEATED INHERITANCE §16.11454
This givesD another version ofgw, leaving you free to do whatever you
like with the first — the one used for dynamic binding —so that you can
let it be overriden bygl’s implementation through renaming, undefinition
and join (the loser’s revenge):

You will obtain a similar effect by redefining thegl from LOSERand thegl
renamed fromgw (in the conformingWINNERbranch) into a common
feature. For attributes — which you can’t undefine — this is the only
possible technique.

class D inherit

WINNER
rename

gwas gl
undefine

gl
end

-- One more time, with feeling:
expandedWINNER

-- Not such a total defeat after all:
expandedLOSER

… Rest of class text omitted…
end

 f

A

LOSER

D

f

 fw++ f fl++

Non-conforming inheritance

Renamed into
++ Redefined

WINNER

 g gw++ g gl++

g

 gw gl–

– Undefined

We like it so
much we want
not just two but
three of it!

§16.12 THE NEED FOR SELECT 455
16.12 THE NEED FOR SELECT

--- EXPLAIN !!!

--- EXPLAIN

16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT

Although we have seen all the concepts, it remains to formalize some of the
definitions and rules:

• The versions of a featureand its dynamic binding version in a
descendant of its class of origin.

• The Repeated Inheritance Consistency constraint— the major
constraint on the use of repeated inheritance.

• The precise definition ofinherited features of a class— needed for the
more general notion of “features of a class”

Select clauses
Select=∆ selectFeature_list

TheSelectsubclause serves to resolve any ambiguities that could arise, in
dynamic binding on polymorphic targets declared statically of a repeated
ancestor’s type, when a feature from that type has two different versions in
the repeated descendant.

Select Subclause rule VMSS

A Selectsubclause appearing in theparentpartfor a classB in a
classD is valid if and only if, for everyFeature_namefnamein
its Feature_list, fnameis the final name inD of a feature that has
two or morepotentialversions in D, andfnameappears only once
in theFeature_list.

This rule restricts the use ofSelectto cases in which it is meaningful: two
or more “potential versions”, a term which also has its own precise
definition. We will encounter next, in the Repeated Inheritance
Consistency constraint, the converse requirement that if there is such a
conflict aSelectmust be provided.

REPEATED INHERITANCE §16.13456
• As a consequence, the precise definition of thefinal name setof a class
and theFeature Name rule, governing the choice of feature names and
avoiding unwanted name clashes.

As noted, this material and the remainder of this chapter are not required on
first reading.

The purpose of the Repeated Inheritance Consistency constraint is to make
sure (by permitting at most one conforming inheritance path) that for any
feature of a class there is at most onedynamic binding versionin any proper
descendant. Before defining “dynamic binding version” we need to know
what a “version” is, but here we’ve essentially done the job already by
introducing the notion of “seed”:

The seed of a featurewasdefined as the original form of the feature in the
class where it was first introduced, prior to any redeclarations, renamings
or other transformations in proper descendants. A version off is a
reincarnation off in a descendant.

The definition of “seed” implies that iff is immediate (introduced by its class
as a new feature) then the common seed off andg mentioned in the above
definition of “version” isf itself.

When may a feature have more than one version in a proper descendant of
its class of origin? The answer was given by the semantic rules of this
chapter: RepeatedInheritance andReplication Semantics rules. The
following rule brings nothing new, but summarizes the consequences of
these previous results.

-- REMOVED CLAUSES:

, and any two among them satisfy any of the following properties:

1 • A redeclaration applied to one has not been applied to the other.

2 • Any of them is anattribute.

3 • They have different signatures.

4 • Any of them calls a feature ofA having (recursively) two or more
versions inD.

Version
A featureg from a classD is aversionof a featuref from anancestor
of D if f andg have a seed in common.

Multiple versions
A classD hasn versions(n ≥ 2) of a featuref of an ancestorA if
and only ifn of its features, all withdifferentfinal names inD,
are allversions off.

← “Origin, seed”,
page 305

← “Repeated Inherit-
ance rule”, page 430;
“ReplicationSemantics
rule”, page 451.

§16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 457
-------- END REMOVED CLAUSES -- DISCUSSION BELOW IS
OBSOLETE

Although this rule doesn’t mention repeated inheritance, it can only be
understood as a consequence of the rules introduced in this chapter: the
only way in whichD may, as required by the definition, have two or more
versions off — meaning, from the definition of “version”, two or more
features with the same seed — is through the replication mechanism of
repeated inheritance.

Case1 is the most common source of multiple versions: the features
have been redeclared in different ways along different inheritance paths, or
one has been redeclared and the others haven’t.

To cover both of these cases, the rule uses careful phrasing: at least one
redeclaration has occurred (along one of the inheritance branches) that
applies to one of the features but not to the other. This may mean, for the
other, no redeclaration at all, or a different redeclaration.

Case2 follows from the discussion ofwhatreplicationmeans in the special
case of attributes. Note that it suffices that one of the features be an
attribute; it may have as its seed a function that, along the other branch, was
either not redeclared or redeclared as a function.

Case3, as stated, sounds very general, but if you reflect about it you will
realize that it is only relevant in the other special case of replication:
conflictinggenericderivations. True, another source of differing signatures
would be redefinition; but then the more general case1 will also apply.

Case4 follows from the discussion ofreplicationsemantics: even if a
routine has not been explicitly redeclared, it may have an implicit
redefinition as a result of replication under repeated inheritance, if it calls
a feature that has been redeclared. This case only applies to routines, since
only a routine may call another feature (routine or attribute). Note that the
call may be in theRoutine_bodybut it might also be, as in theCOUNTER
example, in aPreconditionor Postcondition, as well as in aRescueclause.

For the reader interested in theoretical consistency: clause4 may appear to
risk infinite recursion, since it is possible for a routiner to call a routines
which also callsr. This was the case with the example of a recursive routine
Interpreting the definitionconstructively — as a definition by induction, or a
fixpoint — avoids this problem: to determine the set of features with more
than one version inD we first apply cases1, 2 and3, the non-recursive cases,
to all relevant features; then we repeatedly apply clause4 to include any
features that call a feature already in our set, stopping at the first iteration that
yields nothing new. The process is guaranteed to terminate, since the set of
features ofD (and hence too the transitive closure of the call graph) is finite.

← “THE CASE OF
ATTRIBUTES”, 16.6,
page 440.

← “THE CASE OF
CONFLICTING
GENERIC DERIVA-
TIONS”, 16.7,page442.

← “THE SEMANTICS
OF REPLICATION”,
16.10, page 449.

For an introduction to
fixpoints and the theory
of recursive definitions
seeIntroduction to the
Theory of Program-
ming Languages” .

http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl
http://eiffel.com/doc/itpl

REPEATED INHERITANCE §16.13458
Throughout this chapter we have used the Repeated Inheritance

Consistency constraint, which removed ambiguities for dynamic binding in

the presence of conflicting redeclarations. For all practical purposes the

earlier informal statements of the constraint were sufficient, but now we

can express it in a completely precise form:

A “ conformancepath” is a sequence of classes fromD to A such that each of

the associatedcurrent types conforms to the next. Thanks to the non-

conforming inheritance it is possible forD to have some inheritance paths to

A that are not conformance paths.

According to this constraintit is not invalid for a class to have more than

one conformance path to a proper ancestor if no replication causes any

ambiguity for dynamic binding. As soon as such a potential ambiguity

arises, however, you need to make sure that all inheritance paths, except

possibly one, involve at least one non-conforming link.

Repeated Inheritance Consistency constraint VMRC

It is valid for a classD to have two or moreversions of a feature
f of a proper ancestorA if and only if it satisfies one of the
following conditions:
1 • There is at most oneconformance path fromD to A.

2 • There are two or more conformance paths, and theParent
clause for exactly one of them inD has aSelectclause listing
the name of the version off from the correspondingparent.

← “Conformance
path”, page381; “Cur-
rent type”, page 357.

A

CB

D

§16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT 459
Conversely, nothing forces you, in a repeated inheritance situation with or

without replication, or in any inheritance situation, to have a conforming

path. A class may inherit from another, singly or multiply, without

conformance of the associated current types. This is the case offacility or

implementation-onlyinheritance, which does not permit subtyping. It is

not the most common use of inheritance, but it is possible:

In this case there is no polymorphism: witha1: A andd1: D, attachments

such asa1 := d1are invalid. (Similarly, with the assumptions of the figure,

a1 := b1 andc1 := d1 with b1: B andc1: C.)

A final comment on the Repeated Inheritance Consistency constraint —

important in particular for compiler writers — is that the rule as stated

might seem to require, for any featuref of a classA, verification inevery
proper descendantE of A, at least everyE such that repeated inheritance

with replication occurs somewhere betweenA andE, even if the culprit is

notE but an intermediate descendantD:

You don’t have to worry about what happens inE, however: thanks to the

definition of “version”, if possible dynamic binding ambiguities arises for

E, that can only be (if the only cases of repeated inheritance are those

appearing on the figure) because they arise forD; once you resolve them

for D in accordance with the Repeated Inheritance Consistency constraint,

that will take care ofE as well.

On varieties of inherit-
ance seeObject-
Oriented Software
Construction” .

More than one
path conforms

A

CB

D

No path
conforms

Suffering from
an proper
ancestor’s
repeated
inheritance?

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

REPEATED INHERITANCE §16.13460
Thanks to the constraint we can now definethedynamic bindingversion
(note the singular) of a feature in any descendant of its class of origin:

As you will have noted:

• The definition has moved on from classes to types, since this is what
matters for feature calls and dynamic binding. All the concepts
transpose immediately; in particular, “featuresof a type” was defined
precisely in an earlier chapter.

• If T andU are the same type, case1 applies; so the definition indicates
— as it should — thatf is its own dynamic version.

Dynamic binding version
For any featuref of a typeT and any typeU conformingto T, the
dynamic binding version of f in U is the featureg of U defined
as follows:
1 • If f has only oneversion inU, theng is that feature.

2 • If f has two or more versions inU, then theRepeated
InheritanceConsistency constraint ensures that either exactly
one conformance path exists fromU to T, in which caseg is
the version off in U obtained along that path, or that aSelect
subclause name a version off, in which caseg is that version.

A

CB

D

E

← “CURRENT TYPE,
FEATURES OF A
TYPE”, 12.11, page
357.

§16.14 THE INHERITED FEATURES OF A CLASS 461
The definition enables us to obtain asingle dynamic binding version for
every inherited feature. This is of course the very purpose of the entire
present discussion, and the reason for the Repeated Inheritance
Consistency constraint.

The result is at the very heart of the object-oriented machinery of Eiffel:
when discussing the fundamental computational mechanism, feature call,
we will specify that a calla.f (…) triggers thedynamic binding version
of f in the type of the object dynamically attached toa. Thanks to the
preceding rules and definitions, we now have the guarantee that this notion
will always be unambiguously defined, even under the most sophisticated
forms of multiple and repeated inheritance.

16.14 THE INHERITED FEATURES OF A CLASS

(Like the previous one, you may skip this last section on first reading.)

The final prize we earn from all the work done in this chapter is the
ability to provide a precise, conclusive definition of a key notion: the
features of a class — in particular its inherited features.

As specified in theoriginal discussionof features, the “features of a
class” include its immediate features (those introduced in the class itself),
and its inherited features, which were defined informally as the features
“obtained from” the parents’ features.

The reason for being informal at that earlier stage is now clear: two
mechanisms, repeated inheritance and join, affect how a class may “obtain”
features from its parents. Without these mechanisms, every feature from a
parent (everyprecursor) would yield one feature in the heir. But:

• The join mechanism merges two or more features from parents into a
single one in their common heir.

• With sharing under repeated inheritance, two or more precursors,
inherited from different parents but coming from the same features of a
common ancestor, yield a single feature ofD.

• Conversely, withreplication under direct repeated inheritance (D has
two or moreParentclauses listing the same parent), a single precursor
may yield two or more features ofD.

← Chapter5; see
“IMMEDIA TE AND
INHERITED FEA-
TURES”,5.4,page133.

REPEATED INHERITANCE §16.14462
Only with the benefit of these observations can we now obtain a precise

definition of the “inherited features of a class”, and hence (since immediate

features — the new, non-inherited ones — raise no particular problem) of

thefeatures of a class. Here is the full definition:

Inherited features
Let D be a class. Letprecursors be the list obtained by
concatenating the lists of features of every parent ofD; this list
may contain duplicates in the case of repeated inheritance. The
list inherited of inherited features of D is obtained from
precursors as follows:

1 • In the list precursors, for any set of two or more elements
representing features that are repeatedly inherited inD under
the samename, so that theRepeatedInheritancerule yields
sharing, keep only one of these elements. TheRepeated
InheritanceConsistency constraint (sharing case) indicates
that these elements must all represent the same feature, so that
it does not matter which one is kept.

2 • For every featuref in the resulting list, ifD undefinesf, replace
f by adeferredfeature with the same signature,specification
andheader comment.

3 • In the resulting list, for any set of deferred features with the
same final name inD, keep only one of these features, with
assertions and header comment joined as per theJoin
Semanticsrule. (Keep the signature, which theJoin rule
requires to be the same for all the features involved.)

4 • In the resulting list, remove anydeferredfeature such that the
list contains an effective feature with thesamefinal name.
(This is the case in which a featuref, inheritedaseffective,
effects one or more deferred features: of the whole group, only
f remains.)

5 • All the features of the resulting list have different names; they
are the inherited features ofD in their parent forms. From this
list, produce a new one by replacing any feature thatD
redeclares (throughredefinition oreffecting) with the result of
the redeclaration, and retaining any other feature as it is.

6 • The result is the listinherited of inherited features ofD.

← “Join Semantics
rule”, page 312.

§16.14 THE INHERITED FEATURES OF A CLASS 463
This definition looks a little like an algorithm, but it’s not; you may view it
as a plain mathematical specification. There is no requirement that
compilers implement the corresponding mechanisms by mimicking the
rule’s successive steps, as long as the result is compatible.

The order of the clauses is significant. Note in particular that the very first
step, clause1, takescare once and forall of repeated inheritance. This removes
a small potential ambiguity, which we may remove through a semantic rule
(not a new property, just a consequence of the preceding definition):

The situation is illustrated by the figure below:f is deferred at the level of
A, and nothing else — renaming, effecting… — happens to it down to the
level of D. It’s a case of sharing under repeated inheritance, but we might
also apply the Join semantics, as always when a class inherits under a
single name a set of features, all deferred (or, although this doesn’t apply
here, all deferred except one). You may have wondered about this case:
which of the two semantic rules should we apply? You may also have
brushed off the question: does it matter at all?

Join-Sharing Reconciliation rule

If a class inherits two or more features satisfying both the
conditions ofsharing under theRepeatedInheritancerule and
those of theJoin rule, the applicable semantics is theRepeated
Inheritance rule.

Join, or
sharing?

A

CB

D

∗ Deferred

f ∗ ∗

REPEATED INHERITANCE §16.14464
It matters not much, but it matters just a little and we must leave no

semantic stone unturned. The only difference has to do with assertions.

Assume thatf, deferred as it may be, has a postcondition

Then the Join Semantics ruleprescribes combining the header comments

of the joined features, and also their assertions: through anor for the

preconditions, and anand for postcondition. Becausea and a has the same

value asa, no really bad semantic consequence will follow, but for example

a class documentation tool, such as aflat-short form displayer, might

mistakenly display the postcondition off in D as something like:

Not a disaster, but unnecessarily complex. The Join-Sharing

Reconciliation rule explicitly defines the resulting postcondition in such

a case to be justyour_condition, with a similar consequence for

preconditions and header comments.

Let’s come back to more general properties of the definition of Inherited

Features. To understand the definition, note that the lists under

consideration are lists offeatures, not of feature names, although the

features that remain at the end all have different final names inD. The list

inheritedobtained at step6 of the definition may still contain duplicate

features — with different feature names — as a result of repeated

inheritance with replication. This is why we defineprecursorsas a list

rather than a set. (Unlike a set, a list may contain duplicates.)

ensure
your_condition

ensure
-- FromA:

your_condition
and

-- FromA:
your_condition

←Clauses3and4ofthe
“JoinSemanticsrule”,
page 312.

← “Contract view, flat-
short form”, page 211

§16.14 THE INHERITED FEATURES OF A CLASS 465
In fact these observations also yield a new definition of the “precursors”
of a feature, equivalent to theoriginal one but more precise:

In accordance with this definition the successive steps of the definition of
“inherited features” may only merge features — elements of the list
precusors— if they all have the same final name. This is an important
property because without it the earlier definition of thefinal nameof an
inherited feature would not make sense.

Recall that according to this definition the final namem of a featuref
obtained from a precursor of namen in a parentB is:

• n in the absence of renaming.

• Otherwise, themappearing in aRename_pairof the formrenamen asm
in theParent clause forB in D.

Obviously, if f is obtained from two or more precursors, all this is
meaningless unless we are sure thatm is the same for all these precursors.

This also clarifies the notion offinal name setof a class, originally
introduced — in thesamedefinition as “final name” — as the set of final
names of all the features of a class. These final names are:

• For immediate features, the names under which the class declares them.

• Forinheritedfeatures,theinheritednamesexceptasoverriddenbyrenaming.

Two or more precursors merged into one — because of either a join or
sharing under repeated inheritance — yield just one element of the final
name set. If a feature from a repeated ancestor yields several features under
replication, this adds all the corresponding names to the final name set.

Precursor
A precursor of an inheritedfeature offinal namefnameis any
parent feature — appearing in the listprecursors obtained
through case1 of the definition of “Inheritedfeatures” — that the
feature mergings resulting from the subsequent cases reduce into
a feature of namefname.

← “Pr ecursor (joined
features)”, page 309.
See also the first, sim-
plified definition on
page262.

← “F inal name,
extended final name,
final name set”, page
183.

← “F inal name,
extended final name,
final name set”, page
183.

Both the Repeated
Inheritanceruleandthe
Join rule require all the
merged features tohave
the same final name.

REPEATED INHERITANCE §16.14466
Finally, we introduce a simple constraint capturing the fundamental rule
on choosing feature names:

Feature Name rule VMFN

It is valid for a featuref of a classC to have a certainfinal name
if and only if it satisfies the following conditions:
1 • No other feature ofC has thatsame feature name.

2 • If f is shared underrepeatedinheritance, itsprecursors all have
either noAlias or thesame alias.

Condition 1 follows from other rules: the Feature Declaration rule, the
Redeclaration rule and the rules on repeated inheritance. It is convenient to
state it as a separate condition, as it can help produce clear error messages
in some cases of violation.

Two feature names are “the same”if the lower-case version of their
identifiers is the same.

The important notion in this condition is “other feature”, resulting
from the abovedefinitionof “inheritedfeatures”. When do we considerg
to be a feature “other” thanf? This is the case wheneverg has been declared
or redeclared distinctly fromf, unless the definition of inherited features
causes the features to be merged into just one feature ofC. Such merging
may only happen as a result of sharing features under repeated inheritance,
or of joining deferred features.

Also, remember that ifC redeclares an inherited feature (possibly
resulting from the joining of two or more), this does not introduce any new
(“other”) feature. This was explicitly stated by thedefinition of
“introducing” a feature.

Condition2 complements these requirements by ensuring that sharing
doesn’t inadvertently give a feature more than one alias.

The Feature Name rule crowns the discussion of inheritance and feature
adaptation by unequivocally implementing the No Overloading Principle:
no two features of a class may have the same name. The only permissible
case is when the name clash is apparent only, but in reality the features
involved are all the same feature under different guises, resulting from a
join or from sharing under repeated inheritance.

← “Same feature
name, same operator,
samealias”, page153.
← “Inherited fea-
tures”, page 462.

← “Inherited, immedi-
ate; origin; redeclara-
tion; introduce”, page
133

§16.14 THE INHERITED FEATURES OF A CLASS 467
Consequences of the Feature Name rule includes the following
properties, which for convenience we may group into a new constraint:

Name Clash rule VMNC

The following properties govern thenames of the features of
a classC:
1 • It is invalid for C to introduce two different features with the

same name.

2 • If C introduces a feature with the same name as a feature it
inherits as effective, it must rename the inherited feature.

3 • If C inherits two featuresaseffective from different parents
and they have the same name, the class must also (except
undersharing forrepeatedinheritance) remove the name clash
through renaming.

This is not a new constraint but a set of properties that follow from the Feature
Name rule and other rules. Instead of Eiffel’s customary “This is valid if and
only if …” style, more directly useful to the programmer since it doesn’t just
tell us how to mess things up but also how to produce guaranteeablyvalid
software, the Name Clash rule is of the more discouraging form “You may
not validly write …”. It does, however, highlight frequently applicable
consequences of the naming policy, and compilers may take advantage of it
to report naming errors.

WARNING: not a valid-
ity constraint in the
usual form; see com-
ment at bottom of pre-
ceding page.

REPEATED INHERITANCE §16.14468

	16 Repeated inheritance
	16.1 OVERVIEW
	16.2 CASES OF REPEATED INHERITANCE
	Repeated inheritance, ancestor, descendant

	16.3 THE TWO QUESTIONS OF REPEATED INHERITANCE
	16.4 SHARING AND REPLICATION
	Sharing, replication

	16.5 THE CASE OF REDECLARED FEATURES
	16.6 THE CASE OF ATTRIBUTES
	16.7 THE CASE OF CONFLICTING GENERIC DERIVATIONS
	16.8 KEEPING THE ORIGINAL VERSION OF A REDEFINED FEATURE
	16.9 USING REPLICATION: COUNTERS AND ITERATION
	16.10 THE SEMANTICS OF REPLICATION
	16.11 RETAINING VICTORS FROM ALTERNATIVE BRANCHES
	16.12 THE NEED FOR SELECT
	16.13 THE REPEATED INHERITANCE CONSISTENCY CONSTRAINT
	Version
	Multiple versions
	Dynamic binding version

	16.14 THE INHERITED FEATURES OF A CLASS
	Inherited features
	Precursor

