
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
8

Routines
8.1 OVERVIEW

8.2 ROUTINE DECLARATION

A routine declaration describes the interface of a routine and, unless the

routine is deferred, its implementation.

Here are two routine declarations;total is a function,movea procedure.

Routines describe computations.

Syntactically, routines are one of the twokinds of feature of a class; the
other kind is attributes, which describe data fields associated with instances
of the class. Since every Eiffel operation applies to a specific object, a
routine of a class describes a computation applicable to instances of that
class. When applied to an instance, a routine may query or update some or
all fields of the instance, corresponding to attributes of the class.

A routine is either a procedure, which does not return a result, or a
function, which does. A routine may further be declared asdeferred,
meaning that the class introducing it only gives its specification, leaving it
for descendants to provide implementations. A routine that is not deferred
is said to beeffective.

An effective routine has abody, which describes the computation to be
performed by the routine. A body is aCompound, or sequence of
instructions; each instruction is a step of the computation.

The present discussion explores the structure of routine declarations,
ending with the list of possible various forms of instructions.

→ Chapter18explores
attributes.

ROUTINES §8.2214
It is not necessary to repeat the name of the routine as an ending comment,
writing for exampleend -- move, as an earlier convention suggested. Most
routine texts in well-written Eiffel texts are short, so the ending comment tends
to obscure, not help. You may still use an ending comment for the occasional
long routine.

A Feature_declaration, asyouwill remember, declares a routine if and only
if it satisfies the following condition:

• There is aFeature_valueincluding an Attribute_or_routine, whose
Feature_body is of theDeferredor Effective_routinekind.

TheFormal_argumentsandType_markparts may or may not be present. If
theQuery_markis present, the declaration describes a function; otherwise
it describes a procedure.

As with any other feature, a routine declaration may include more than
one routine name, as in the following declaration of three procedures:

Themeaning, as in the general case of “synonym” features, is the same as
that of three separate declarations with identicalDeclaration_body.

The routines remain otherwise independent; in particular,redefining or
renaming one in a descendant does not affect the others.

total: INTEGER
-- Sum of attributesa, b andc

deferred
ensure

summed:Result= a + b + c
end

move(mice: MOUSE; men: MENU)
-- Move mouse cursor to first item in menu.

require
men_exist: men/= Void

do
mice.move(men)

end

proc2, proc3, proc4 (x, y: REAL)
require

x > y
do

print (sqrt (x – y))
end

← “HOWTORECOG-
NIZE FEATURES”,
5.12, page 145.

← “SYNONYMS AND
MULTIPLEDECLARA-
TION”, 5.18,page158.

→ Renaming: chapter6
;redefinition: chapter10.

§8.3 FORMAL ARGUMENTS 215
8.3 FORMAL ARGUMENTS

A routine may have arguments, corresponding to information that callers
will pass to every execution of the routine.

Functiontotal seen earlier has no arguments. Proceduremovehas two
formal arguments calledmice and men. Assuming bothmoveand total
appear in a classC, instructions using typical calls to these routines,
appearing in some routine of a classB, might be

with c1 of type C, mo of type MOUSE, me of type MENU, n of type
INTEGER. Expressionsmoandmeare the actual arguments of the first call.

The formal arguments ofmovewere all of different types. As with feature
names inaFeature_declaration,youmaygroup twoormore formalarguments
of the same type into anEntity_declaration_group. The comma serves as
separator, as in this routine from classTWO_WAY_LIST in EiffelBase:

Formal argument, actual argument
Entities declared in a routine to represent information passed by
callers are the routine’sformal arguments.
The corresponding expressions in a particular call to the routine
are the call’sactual arguments.

RulesonCall require the number of actual arguments to be the same as the
number of formal arguments, and the type of each actual argument to be
compatible with (conform or convert to) the type of the formal argument at
the same position in the list.

A note on terminology: Eiffel always uses the termargument to refer
to the arguments of a routine. The word “parameter” is never used in this
context, because it could create confusion with the types that can
parameterizeclasses, calledgeneric parameters.

c1. move
n := c1.total

update_after_deletion
(index: INTEGER)

… Rest of routine omitted…

→ Chapter25. See8.4,
page 217 below about
achieving the effect of a
variable number of
arguments.

← About genericity see
chapter12.

(mo, me)

one, other: like first_element;

ROUTINES §8.3216
This declares bothoneandotheras being of typelike first_element. The
effect would have been identical with a routine header of the form

The preceding examples illustrate the general form of the
Formal_arguments part of a routine declaration.

A validity constraint mandates a choice of name avoiding any ambiguity:

The standard Eiffel style suggests different conventions anyway for features
and formal arguments. Features, which have a wide scope (meaning that they
can be used throughout a class and all its descendants), must have clear,
meaningful names, typically made of one or more full words, separated, if
more than one, by underscores, as inspouse_name(but not overqualified by
the class name: if this feature appears in a classEMPLOYEE, do not call it
employee_spouse_nameas this would be redundant). For a formal argument,
which has a small scope — most routines in Eiffel are short — the declaration
of the argument and its uses will seldom be more than a few lines apart; you
should choose short, simple names. Abbreviations are perfectly all right, as
in update_price(r: RATE; pc: PROMOTION_CODE).

update_after_deletion
(one: like first_element;
other: like first_element;
index: INTEGER)

Formal argument and entity declarations
Formal_arguments=∆ "(" Entity_declaration_list ")"

Entity_declaration_list=∆ {Entity_declaration_group";" …} +

Entity_declaration_group=∆ Identifier_list Type_mark

Identifier_list =∆ { Identifier "," …} +

As with other semicolons, those separating anEntity_declaration_group
from the next are optional. Thestyleguidelines suggest including them for
successive declarations on a line, as with short formal argument lists, but
omitting them between successive lines, as with local variable declarations
(also covered byEntity_declaration_group).

Formal Argument rule VRFA

Let fa be theFormal_argumentspart of a routiner in a classC. Let
formals be the concatenation of everyIdentifier_list of every
Entity_declaration_groupin fa. Then fa is valid if and only if no
Identifiere appearing informals is thefinal name of a feature ofC.

Another rule, given later, applies the same conditions to names oflocal
variables. Permitting a formal argument or local variable to bear the same
name as a feature could only cause confusion (even if we had a scoping rule
removing any ambiguity by specifying that the local name overrides the
feature name) and serves no useful purpose.

→“LOCALVARIABLES
AND RESULT”, page
221.

§8.4 USING A VARIABLE NUMBER OF ARGUMENTS 217
Being too pompous about names of formal arguments maydecrease
readability by giving arguments more attention that they deserve. Features are
the aristocracy of a class and deserve full glory; formal arguments (and local
variables) are their servants and should not try to shine above their rank.
Beginners sometimes use names of the forma_TYPE_NAME, as in
raise_salary(a_rate: RATE; a_promotion_code: PROMOTION_CODE).
Seasoned Eiffel developers consider thisrevolting kitsch.

Complementing the Formal Argument rule is a general rule — also
applicable to local variables, studied later in this chapter — that precludes
using the same identifier twice in anEntity_declaration_list. Clearly, in

the type ofx would be ambiguous. The type ofy would not be ambiguous
since the two occurrences are part of the sameEntity_declaration_group,
but the duplicate listing ofy is invalid all the same; it can serve no useful
purpose. This is the only condition on anEntity_declaration_list:

8.4 USING A VARIABLE NUMBER OF ARGUMENTS

From the above syntax, and the previewed constraint on valid calls, it
follows that every routine has a fixed number of arguments, which is the
number of entities appearing in theEntity_declaration_listof its
Formal_arguments part.

These rules do not prevent you from obtaining the effect of routines
with variable numbers of arguments if you so desire. If the arguments are
of arbitrary types, you may replace by a single argument of typeTUPLE,
corresponding to a sequence of arbitrary values, as in

which you can then call with a “Manifest tuple” consisting of a sequence
of values in brackets:

x: T1
x, y, y: T2

Entity Declaration rule VRED

Let el be an Entity_declaration_list. Let identifiers be the
concatenation of every Identifier_list of every
Entity_declaration_groupin el. Thenel is valid if and only if no
Identifier appears more than once in the listidentifiers.

write_formatted (; format: STRING)
-- Print all elements ofvalues, under givenformat.

…See below about the procedure body…

write_formatted ([your_integer, your_string, your_real],
your_output_format)

See “Further reports of
abominable taste in the
provinces”, in Proc.
BISTOORI(45th Intl.
Conf. on Biedermeier
InfluencesontheStyleof
TypicalObject-Oriented
Retrograde Implemen-
tations), Sotchi, 2004,
pp. 2045-3497.

WARNING: not valid!

→ See chapter13
about tuples.

values: TUPLE

ROUTINES §8.5218
The procedure body will analyze the successive tuple elements and their
types. The discussion of tuplesshows how to write it.

If all the items are of types conforming to a knownT you can, as an
alternative to tuples, useARRAY[T] as the argument type. A routine to print
numeric values could read

where a typical call appears as:

Here we are passing anINTEGERand aREAL; both of these types conform
to NUMERIC. The manifest array passed as argument is a tuple converted
into an array.

8.5 ROUTINE BODY

A Feature_bodyhad three possible forms:

The last case will be studied in the discussion of attributes. Routines
correspond to the first two cases:

A Feature_bodyof the first possible form,Deferred, consists of the sole
keyworddeferred; this indicates that the routine, and as a consequence the
enclosing class, aredeferred .

write_numerics()
-- Print all elements ofvalues.

…Procedure body omitted…

write_numerics({ ARRAY[NUMERIC]} [your_integer, your_real])

Feature_body=∆ Deferred | Effective_routine| Attribute

Routine bodies

Deferred=∆ deferred

Effective_routine=∆ Internal | External

Internal =∆ Routine_mark Compound

Routine_mark=∆ do | Once

Once =∆ once["("Key_list ")"]

Key_list =∆ { Manifest_string "," …} +

→ “Emulating a vari-
able number of argu-
ments”, page 372 .

values: ARRAY[NUMERIC]

←Thissyntaxappeared
first on page144.

→ See“DEFERRED
FEATURES”, 10.11,
page 266and subse-
quent sections.

§8.5 ROUTINE BODY 219
A routine of the other form,Effective_routine, may be External,
indicating that it is implemented in another language. In the remaining and
by far the most common case,Internal, the routine body is aCompound: a
sequence of instructions describing the algorithm to be executed (after
initialization of any local variables includingResultfor a function) on a call
to the routine.

The introductory keywordsdo andonceof anInternalbody correspond
to differentsemantics for calls to the routine:

• With adobody the initialization and body are executed anew for each call.

• If routine o of classC has aonce body (o is then called a ‘‘once
routine’’), the initialization and body are executed only for the first call
to o applied to an instance ofC during any given session. For every
subsequent call on an instance ofC during the same session, the routine
call has no effect; if the routine is a function, the value it returns is the
same as the value returned by the first call. Once routines are useful for
“smart initialization” actions which must be applied the first time a
certain structure is accessed, and forsharedinformation. They help
avoid the global variables of conventional programming languages.

You can fine-tune the meaning of “once” by includingonce keysafter
the keywordonce, as inonce("THREAD") to specify that the execution
will take place once in each thread. Other predefined values include
"PROCESS" (the default) and"OBJECT" (to require computation once
for every instance). You can even define your own once keys and then
reset the key, throughonces.reset("YOUR_KEY"), ensuring that the
next call to any once routine using this key will execute its body again.
The mechanism also makes it possible to define variable keys to be set
from outside the Eiffel text proper, for example in an Ace file.

It is convenient to introduce precise terms:

Once routine, once procedure, once function
A once routine is anInternalroutiner with a Routine_markof
theOnce form.
If r is aprocedure it is also aonce procedure; if r is afunction,
it is also aonce function.

→Compoundandother
control structures are
the topic of chapter17.

→Fordetails:“PRECISE
CALL SEMANTICS”,
23.17, page 643.

→“ONCEROUTINES”,
23.14, page 633.

ROUTINES §8.5220
Here is an example procedure (from the EiffelTime library) with all the
optional components exceptObsolete andRescue clauses:

The various components and their respective roles are the following. All
components except theFeature_body and the finalend are optional.

• The text appearing immediately after the routine name and arguments,
starting with--, is a Header_commentexplaining the purpose of the
routine. Other comments may be inserted at the end of any line; but this
one has a special role, documenting the routine’s interface. The
“contract view” of a class retains header comments.

• The keywordrequire introduces anAssertion, called thePrecondition
of the routine. This expresses the conditions under which a call to the
routine is correct. Hereis_correct_timemust be true for the arguments
given. TheIdentifiercorrectis a label identifying that assertion.

• TheLocal_declarationsclause, studied below, declares local variables
used only within the routine body, and initialized anew on each call.
Heremake_fine uses a local variables_trunc of typeINTEGER.

• The Feature_bodyis here of theEffective kind, more specifically
Internal, starting withdo (the other possibility isonce) and continuing
with instructions — zero or more in the general case, here three.

• The keywordensureintroduces anotherAssertion, thePostconditionof
the routine. This expresses the conditions that a routine call will ensure
on return if called in a state satisfying the precondition. Here it states
that a number of queries have been set from the values of the arguments.

 make_fine (h, m: INTEGER; s: DOUBLE)
-- Sethour, minuteandsecondtoh, mand integer part ofs;
-- Setfractional_second to fractional part of s.

require
correct: is_correct_time (h, m, s, False)

local
s_trunc: INTEGER

do
s_trunc := s.truncated_to_integer
fractional_second := s – s_trunc
make (h, m, s_trunc)

ensure
hour_set: hour = h
minute_set: minute = m
fine_second_set: fine_second = s

end

←“-DOCUMENTING
THE CLIENT INTER-
FACE OF A CLASS”,
7.8, page 207.

→ Chapter9

→ Chapter9

§8.6 LOCAL VARIABLES AND RESULT 221
The example does not include aRescueclause. If present, this describes
what to do if an exception occurs during an execution of the routine. The
absence of aRescueclause has the same effect as the presence of aRescue
clause just consisting of a call to the proceduredefault_rescueof the
universal classANY. So the example routine could have been written
equivalently as

In its original form, default_rescuehas a null effect, but a class may
redefine it to provide specific exception handling.

8.6 LOCAL VARIABLES AND RESULT

If present in a routine, aLocal_declarationsclause is the declaration of
variable entities available only within theFeature_body; they are useful for
the computation it describes, but their values do not need to be retained by
the current object after a call to the routine.

The last example introduced just one local variable:

used in thedo clause to hold the value ofs.truncated_to_integer, needed
by two of the instructions.

In this example there is no need for an automatic initialization of the
variable since the first instruction of the routine assigns it a value. Such an
explicit assignment is not required; if the routine’s execution accesses the
value of the variable when it has not been assigned,initialization rules
guarantee a well-defined initial value, for example 0 for integers and False
for booleans.

The general structure of aLocal_declarations clause is:

TheEntity_declaration_listmay be absent, as we tolerate an emptylocal part
— perhaps while you are refactoring your software and moving local variable
declarations in and out.

 make_fine (h, m: INTEGER; s: DOUBLE)
... All other clauses as above ...

rescue
default_rescue

end

local
s_trunc: INTEGER

Local variable declarations
Local_declarations=∆ local [Entity_declaration_list]

→ TheRescue clause
and proceduredefault_
rescueare discussed in
detail in chapter26.

→ “Default Initializa-
tion rule”, page 508.

ROUTINES §8.6222
In addition to the earlier constraint requiring all identifiers in an

Entity_declaration_listto be different, we must avoid any ambiguity

between local variables and features of the class:

When applying validity and semantics rules, you must treatResult as an

entity of the type declared for the enclosing function’s result. For example,

this function from classCLOSED_FIGUREin EiffelVision treatsResultas

a local variable of typeINTEGER:

Local Variable rule VRLV

Let ld be theLocal_declarationspart of a routiner in a classC.
Let locals be the concatenation of everyIdentifier_listof every
Entity_declaration_groupin ld. Then ld is valid if and only if
everyIdentifiere in locals satisfies the following conditions:
1 • No feature ofC hase as itsfinal name.

2 • No formal argument ofr hase as itsIdentifier.

Most of the rules governing the validity and semantics of declared local
variables also apply to a special predefined entity:Result, which may only
appear in a function or attribute, and denotes the value to be returned by the
function. The following definition of “local variable” reflects this similarity.

Local variable
The local variables of a routine include allentities declared in its
Local_declarationspart, if any, and, if it is a query, the predefined
entityResult.

Result can appear not only in theCompoundof a function or variable
attribute but also in the optionalPostconditionof a constant attribute, where
it denotes the value of the attribute and allows stating abstract properties of
that value, for example after a redefinition. In this case execution cannot
change that value, but for simplicity we continue to callResult a local
“variable” anyway.

fill_style_count: INTEGER
-- Number of defined fill styles for this figure

do
Result:= global_fill_style_count + local_fill_style_count

end

← “VRED”, page217

§8.7 EXTERNALS 223
8.7 EXTERNALS

A routine may have aFeature_bodyof theExternalform, which means that
its implementation is written in another language.

The following examples illustrate the form of anExternal body:

They enable other Eiffel elements to call a C procedure under the Eiffel
nameopen_file and a C function underfile_status.

Such routines are viewed by the rest of a system as normal Eiffel
routines; their only special property is that their execution, instead of being
under the control of the Eiffel system to which they belong, is a call to some
code generated by a compiler for the foreign language.

The second external routine of the example, a function, has a subclause
of the form alias external_name, indicating that this function will be
known through an Eiffel name,file_status, different from its name in the
foreign language; by default the two would be the same. Here an alias is
required since the C name,_fstat, begins with an underscore and so is not
a valid Eiffel identifier.

The External mechanism include a wide set of possibilities; in
particular, you may include inline C code directly, through thealiasclause.
A laterchapter is entirely devoted to this mechanism.

open_file(file_od: INTEGER; mode: CHARACTER)
-- Openfile_od in modemode.

require
file_status(file_od) <= 0

external
"C"

end

file_status(file_od: INTEGER): INTEGER
-- Current status of file associated withfile_od

external
"C"

alias
"_fstat"

end

→ Chapter31.

ROUTINES §8.8224
8.8 TYPES OF INSTRUCTIONS

TheInternalbody of a non-deferred routine is aCompound, or sequence of
instructions. As an introduction to the detailed study of instructions in ter
chapters, here is an overview of the available variants. The syntax is:

Instructions
Compound=∆ { Instruction ";" …}*

Instruction =∆ Creation_instruction | Call |
Assignment | Assigner_call|
Conditional|Multi_branch|Loop
| Debug| Precursor| Check| Retry

A Compoundis a possibly empty list of instructions, to be executed in the
order given. In the various parts of control structures, such as the branches
of a Conditional or the body of aLoop, the syntax never specifies
Instructionbut alwaysCompound, so that you can include zero, one or
more instructions.

A Creation_instructioncreates a new object, initializes its fields to
default values, calls on it one of the creation procedures of the class (if
any), and attaches the object to an entity.

Call applies a routine to the object attached to a non-void expression.
For the Call to yield an instruction, the routine must be a procedure.

Assignment changes the value attached to a variable.

An Assigner_callis a procedure call written with an assignment-like
syntax, as inx.a := b, but with the semantics of a call, as just a notational
abbreviation for x.set_a (b)where the declaration ofaspecifies an assigner
commandset_a.

Conditional, Multi_branch, Loop and Compounddescribe complex
instructions, orcontrol structures, made out of other instructions; to
execute a control structure is to execute some or all of its constituent
instructions, according to a schedule specified by the control structure.

Debug, which may also be considered a control structure, is used for
instructions that should only be part of the system when you enable the
debug compilation option.

Precursor enables you, in redefining a routine, to rely on its
original implementation.

Checkis used to express that certain assertions must hold at certain
moments during run time.

Retry is used in conjunction with the exception handling mechanism.

→ Chapter20.

→ Chapter23.

→ Chapter22.

→ “ASSIGNER
CALL”, 22.12, page
599.

→ Control structures
andDebug: chapter17.

→ Precursor: 10.24,
page 293.

→ Assertions and
Check: chapter9.
→ Exceptions and
Retry: chapter26.

	8 8 Routines
	8.1 OVERVIEW
	8.2 ROUTINE DECLARATION
	8.3 FORMAL ARGUMENTS
	Formal argument, actual argument

	8.4 USING A VARIABLE NUMBER OF ARGUMENTS
	8.5 ROUTINE BODY
	Once routine, once procedure, once function

	8.6 LOCAL VARIABLES AND RESULT
	Local variable

	8.7 EXTERNALS
	8.8 TYPES OF INSTRUCTIONS

