Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or

8 future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Routines

8.1 OVERVIEW

Routines describe computations.

Syntactically, routines are one of the tkimds of feature of a class; th=, chapteri8explores
other kind is attributes, which describe data fields associated with instattributes
of the class. Since every Eiffel operation applies to a specific object, a
routine of a class describes a computation applicable to instances of that
class. When applied to an instance, a routine may query or update some or
all fields of the instance, corresponding to attributes of the class.

A routine is either a procedure, which does not return a result, or a
function, which does. A routine may further be declareddaferred,
meaning that the class introducing it only gives its specification, leaving it
for descendants to provide implementations. A routine that is not deferred
is said to beffective

An effective routine has bhody, which describes the computation to be
performed by the routine. A body is &@ompound or sequence of
instructions; each instruction is a step of the computation.

The present discussion explores the structure of routine declarations,
ending with the list of possible various forms of instructions.

8.2 ROUTINE DECLARATION

A routine declaration describes the interface of a routine and, unless the
routine is deferred, its implementation.

Here are two routine declaratioristal is a functionmovea procedure.

214 ROUTINES §8.2

I _g I total: INTEGER
= -- Sum of attributes, b andc

I deferred
ensure

summedResult=a+b +c
end

move(mice MOUSE men MENU)
-- Move mouse cursor to first item in menu.
require
men_existmen/= Void
do
mice.move(men
end

It is not necessary to repeat the name of the routine as an ending comment,
writing for exampleend -- move as an earlier convention suggested. Most
perTaan] routine texts in well-written Eiffel texts are short, so the ending comment tends
- } to obscure, not help. You may still use an ending comment for the occasional
long routine.

if it satisfies the following condition: NIZE FEATURES’,

| A Feature_declaratigasyouwill remember, declares a routine if and or- “HOWTO RECOG-
| 5.12, pae 145

* There is aFeature_valuancluding an Attribute_or_routing whose
Feature_bodis of theDeferredor Effective_routinekind.

TheFormal_argument@ndType_markparts may or may not be present. If
theQuery_marks present, the declaration describes a function; otherwise
it describes a procedure.

As with any other feature, a routine declaration may include more than
one routine name, as in the following declaration of three procedures:

d proc2, proc3 proc4(x, y: REALD
L require
] X > y
do
print (sqrt(x —)
end

1 H I ” 3 «— WD
Themeaning, as in the general case of “synonym” features, is the saly| TiPLEDECLARA-

that of three separate declarations with idenfieatlaration_body TION", 5.18 page158

The routines remain otherwise independent; in particuaiefining or - Renaming: chaptes
renaming one in a descendant does not affect the others. sredefinition: chapte.0.

§8.3 FORMAL ARGUMENTS 215

8.3 FORMAL ARGUMENTS

@

[P]

A routine may have arguments, corresponding to information that callers
will pass to every execution of the routine.

Formal argument, actual argument
Entities declared in a routine to represent information passed by
callers are the routinefsrmal arguments.

The corresponding expressions in a particular call to the routine
are the call'aactual arguments

Ruleson Call require the number of actual arguments to be the same - Chapter25. Sees.4
number of formal arguments, and the type of each actual argument Page 217below about

. . achieving the effect of a
compatible with (conform or convert to) the type of the formal argumer,zriable number of

the same position in the list. arguments

A note on terminology: Eiffel always uses the teamgument to refer _ About genericity see
to the arguments of a routine. The word “parameter” is never used irchapterl2
context, because it could create confusion with the types that
parameterizelassescalledgeneric parameters

Functiontotal seen earlier has no arguments. Procedoogehas two
formal arguments calledhice and men Assuming bothmoveand total
appear in a clasg&, instructions using typical calls to these routines,
appearing in some routine of a cl&@snight be

I

c1l. move(ma me
n:= cl.total

with cl of type C, mo of type MOUSE me of type MENU, n of type
INTEGER Expressionmoandmeare the actual arguments of the first call.

The formal arguments afiovewere all of different types. As with feature
namesin &eature_declaratioyiou may group two or more formal arguments
of the same type into aRntity declaration_groupThe comma serves as
separator, as in this routine from cla3®O_WAY _LISin EiffelBase:

update_after_deletion
(one other. like first_elementindex INTEGER
... Rest of routine omitted.

216

ROUTINES §8.3

This declares botbneandotheras being of typdike first_elementThe
effect would have been identical with a routine header of the form

update_after_deletion
(one like first_element
other. like first_element
index INTEGER

The preceding examples illustrate the general form of the
Formal_argumentpart of a routine declaration.

I BTNTAX

[EALIDITT

BEETHOND
. r-

Formal argument and entity declarations
Formal_argument€ "(" Entity_declaration_list)"
Entity_declaration_lis€ {Entity_declaration_groufy" ...}*
Entity_declaration_groug Identifier_list Type_mark
Identifier_list2 {ldentifier"," ...}*

As with other semicolons, those separating Eamity declaration_group
from the next are optional. Tretyleguidelines suggest including them for
successive declarations on a line, as with short formal argument lists, but
omitting them between successive lines, as with local variable declarations
(also covered b¥ntity declaration_groyp

A validity constraint mandates a choice of name avoiding any ambiguity:

Formal Argument rule VRFA

Let fa be theFormal_argumenigart of a routing in a clas<C. Let
formals be the concatenation of eveiyentifier_list of every
Entity_declaration_groum fa. Thenfa is valid if and only if no
Identifier e appearing ifiormalsis thefinal name of a feature af.

Another rule, given later, applies the same conditions to naméacaf - “LOCAL VARIABLES

variables. Permitting a formal argument or local variable to bear the ANDRESUL". page

name as a feature could only cause confusion (even if we had a scopii~
removing any ambiguity by specifying that the local name overrides the
feature name) and serves no useful purpose.

I he standard Elffel style suggests diifferent conventions anyway tor features
and formal arguments. Features, which have a wide scope (meaning that they
can be used throughout a class and all its descendants), must have clear,
meaningful names, typically made of one or more full words, separated, if
more than one, by underscores, aspouse_namgbut not overqualified by

the class name: if this feature appears in a cEg$LOYEE do not call it
employee_spouse_naethis would be redundant). For a formal argument,
which has a small scope — most routines in Eiffel are short — the declaration
of the argument and its uses will seldom be more than a few lines apart; you
should choose short, simple names. Abbreviations are perfectly all right, as
in update_pricegr: RATE pc PROMOTION_CODE

§8.4 USING A VARIABLE NUMBER OF ARGUMENTS 217

Being too pompous about names of formal arguments rdegrease

readability by giving arguments more attention that they deserve. Features are

thelaristocracy of a class and deserve full glory; formal arguments (and Iocglee “Further reports of
variables) are their servants and should not try to shine above their rank. ;ominable taste in the
Beginners sometimes use names of the foamTYPE_NAME as in provinces’, in Proc
raise_salary(a_rate RATE a_promotion_code PROMOTION_CODE BISTOOR(45th Intl

Seasoned Eiffel developers consider thimlting kitsch. Cont on Biedermeier
Influences onthe Style of
Typical Object-Oriented
. . Retrograde Implemen-
Complementing the Formal Argument rule is a general rule — ;009 “Sotchj 2004
applicable to local variables, studied later in this chapter — that preclpp. 2045-3497

using the same identifier twice in Bntity _declaration_listClearly, in

| & | x:T1 WARNING: not valid

XV Y- T2

the type ofx would be ambiguous. The type pfvould not be ambiguous
since the two occurrences are part of the s&mgty declaration_groyp
but the duplicate listing of is invalid all the same; it can serve no useful
purpose. This is the only condition onfantity declaration_list

[| Entity Declaration rule VRED

(i, Let el be an Entity declaration_list Let identifiers be the
concatenation of every Identifier_list of every
Entity declaration_grouim el. Thenelis valid if and only if no
Identifierappears more than once in the iligntifiers

8.4 USING A VARIABLE NUMBER OF ARGUMENTS

From the above syntax, and the previewed constraint on valid calls, it
@ follows that every routine has a fixed number of arguments, which is the
I number of entities appearing in th&ntity declaration_listof its
Formal_argumentpart.

These rules do not prevent you from obtaining the effect of routines
?with variable numbers of arguments if you so desire. If the arguments are

of arbitrary types, you may replace by a single argument of TWPELE, ;Oosu‘i‘iucg}ggeg

corresponding to a sequence of arbitrary values, as in

write_formatted values: TUPLE format: STRING)
-- Print all elements ofalues under giverformat
...See below about the procedure body

which you can then call with a “Manifest tuple” consisting of a sequence
of values in brackets:

write_formatted[your_integer, your_string, your_rdal
your_output_format

218 ROUTINES §8.5

The procedure body will analyze the successive tuple elements and their

types. The discussion of tuplglsavs how to write it. — “Emulating a vari-
able number of au-

. . ts”, pae 372.
If all the items are of types conforming to a knowrnyou can, as ar o ¢

alternative to tuples, useRRAY T] as the argument type. A routine to print
numeric values could read

write_numericg values: ARRAYNUMERIQ)
-- Print all elements ofalues
...Procedure body omitted.

where a typical call appears as:
write_numericg{ ARRAYNUMERIQ} [your_integer, your_red) ‘

Here we are passing dNTEGERand aREAL; both of these types conform
to NUMERIC The manifest array passed as argument is a tuple converted
into an array.

8.5 ROUTINE BODY

A Feature_bodhad three possible forms: «~ This syntaxappeared
B first on pagel44

Feature_body2 Deferred| Effective_routing Attribute

The last case will be studied in the discussion of attributes. Routines
correspond to the first two cases:

Routine bodies
Deferred2 deferred

Effective_routine2 Internal| External

Internal 2 Routine_mark Compound
Routine_mark2 do | Once

Once? once["("Key_list")"]

Key list & {Manifest_string'," ...}*

A Feature_bodyf the first possible formDeferred consists of the soI(EEifﬁgEEg?%’

keyworddeferred, this indicates that the routine, and as a consequencpage 266and subse-
enclosing class, adeferred . quent sections

§8.5 ROUTINE BODY 219

A routine of the other form,Effective_routing may be External
indicating that it is implemented in another language. In the remaining and
by far the most common casefernal the routine body is &ompounda g, 5o Pour@ndother
sequence of instructions describing the algorithm to be executed the topic of chaptet7.
initialization of any local variables includirigesulfor a function) on a call

to the routine.

The introductory keyworddo andonceof aninternalbody correspond]
to differentsemantics for calls to the routine: - Fordetaiis:PRECISE
=ClalllL : CALL SEMANTICS',

23.17, pae 643
« With ado body the initialization and body are executed anew for each caul.

« If routine o of classC has aonce body (is then called a “once
routine”), the initialization and body are executed only for the first call
to o applied to an instance a& during any given session. For every
subsequent call on an instance®dluring the same session, the routine
call has no effect; if the routine is a function, the value it returns is tthCEROUTINES,,
same as the value returned by the first call. Once routines are usebs 14 pse 633 pae 633
“smart initialization” actions which must be applied the first time
certain structure is accessed, and sharedinformation. They help
avoid the global variables of conventional programming languages.

You can fine-tune the meaning of “once” by includiogce keysfter

the keywordonce as inonce("THREAD)) to specify that the execution

will take place once in each thread. Other predefined values include
"PROCESS(the default) andOBJECT (to require computation once

for every instance). You can even define your own once keys and then
reset the key, througbncesreset("YOUR_KEY), ensuring that the
next call to any once routine using this key will execute its body again.
The mechanism also makes it possible to define variable keys to be set
from outside the Eiffel text proper, for example in an Ace file.

It is convenient to introduce precise terms:

Once routine, once procedure, once function
A once routineis anlnternalroutiner with a Routine_marlof
the Onceform.

If r is aprocedure it is also ance procedure if r is afunction,
it is also aonce function

220 ROUTINES §8.5

Here is an example procedure (from the EiffelTime library) with all the
optional components excepbsoleteandRescueclauses:

make_findh, m: INTEGER; s: DOUBLE
-- Sethour, minuteandsecondo h, mand integer part o,
-- Setfractional_secondo fractional part of s.
require
correct is_correct_time (h, m, s, False)
local
s_trunc: INTEGER

do
s_trunc := struncated_to_integer
fractional_second := s —s_trunc
make (h, m, s_trunc)

ensure
hour_sethour = h
minute_setminute = m
fine_second_sefine_second =s

end

The various components and their respective roles are the following. All
components except theature_bodwand the finabnd are optional.

 The text appearing immediately after the routine name and arguments,
starting with--, is a Header_commergxplaining the purpose of the
routine. Other comments may be inserted at the end of any line; but thbs
, . R « ~DOCUMENTING
one has a special role, documenting the routine’s interface. tHe CLIENT INTER-

“contract viev” of a class retains header comments. FACE OF A CLASS",
7.8, pae 207

» The keywordrequire introduces arissertion called thePrecondition -, chapterd
of the routine. This expresses the conditions under which a call tc
routine is correct. Herés_correct_timamust be true for the arguments
given. Theldentifiercorrectis a label identifying that assertion.

* The Local_declarationslause, studied below, declares local variables
used only within the routine body, and initialized anew on each call.
Heremake_finauses a local variabke truncof typeINTEGER

* The Feature_bodyis here of theEffective kind, more specifically
Internal starting withdo (the other possibility imnce and continuing
with instructions — zero or more in the general case, here three.

» The keywordensureintroduces anothekssertion thePostconditiorof - chapterd
the routine. This expresses the conditions that a routine call will en
on return if called in a state satisfying the precondition. Here it states
that a number of queries have been set from the values of the arguments.

§8.6 LOCAL VARIABLES AND RESULT 221

what to do if an exception occurs during an execution of the routine. 2nd procedurelefault_

The example does not includeRescueclause. If present, this describi- TheRescueclause

rescueare discussed in
absence of &escueclause has the same effect as the presenc&ebaue getajl in chaptees.

clause just consisting of a call to the proceddefault _escueof the
universal classANY So the example routine could have been writ__
equivalently as

make_findh, m: INTEGER; s: DOUBLE
.. All other clauses as above ...
rescue
default_rescue
end

In its original form, default_rescuehas a null effect, but a class may
redefine it to provide specific exception handling.

8.6 LOCAL VARIABLES AND RESULT

BTN TAX

If present in a routine, &ocal_declaration€lause is the declaration of
variable entities available only within tliesature_bodythey are useful for

the computation it describes, but their values do not need to be retained by
the current object after a call to the routine.

The last example introduced just one local variable:

local
s_trunc: INTEGER

used in thedo clause to hold the value aftruncated_to_integeneeded
by two of the instructions.

In this example there is no need for an automatic initialization of the
variable since the first instruction of the routine assigns it a value. Such an
explicit assignment is not required; if the routine’s execution accesses the
value of the variable when it has not been assigiitialization rules - “Default Initializa-
guarantee a well-defined initial value, for example O for integers and Flenule”. page 508

for booleans.

The general structure ofLacal_declarationslause is:

Local variable declarations
Local_declaration® local [Entity_declaration_li§t

TheEntity_declaration_listnay be absent, as we tolerate an eniptgal part
— perhaps while you are refactoring your software and moving local variable
declarations in and out.

222 ROUTINES §8.6
In addition to the earlier constraint requiring all identifiers in an VRED" 017
Entity_declaration_listto be different, we must avoid any ambigui
between local variables and features of the class:

Local Variable rule VRLV

[EALimi e LetId be theLocal declarationpart of a routing in a classC.

Let locals be the concatenation of evelgentifier_listof every
Entity declaration_groujn Id. Thenld is valid if and only if
everyldentifiere in locals satisfies the following conditions:

1 » No feature ofc hase as itsfinal name.
2 «No formal argument af hase as itsldentifier.

Most of the rules governing the validity and semantics of declared local
variables also apply to a special predefined enRigsult, which may only
appear in a function or attribute, and denotes the value to be returned by the
function. The following definition of “local variable” reflects this similarity.

IIIII':"- TIC-MN

Local variable
The local variables of a routine include ahtities declared in its
Local_declarationpart, if any, and, if it is a query, the predefine
entity Result

o

Result can appear not only in th€ompoundof a function or variable
attribute but also in the option&ostconditiorof a constant attribute, where

it denotes the value of the attribute and allows stating abstract properties of
that value, for example after a redefinition. In this case execution cannot
change that value, but for simplicity we continue to daksult a local
“variable” anyway.

When applying validity and semantics rules, you must tRedult as an
entity of the type declared for the enclosing function’s result. For example,
this function from clas€ LOSED_FIGUREHn EiffelVision treatsResultas

a local variable of typtNTEGER

==
i

fill_style_countINTEGER
-- Number of defined fill styles for this figure
do
Result= global_fill_style count + local_fill_style _count

end

§8.7 EXTERNALS

223

8.7 EXTERNALS

Aroutine may have &eature_bodgf theExternalform, which means that

its implementation is written in another language.

The following examples illustrate the form of Brternalbody:

L4

FEELVIEW

open_file(file_od INTEGER mode CHARACTER
-- Openfile_odin modemode
require
file_statudfile_od <=0
external
"o
end

file_statuqfile_od INTEGER: INTEGER
-- Current status of file associated witk _od
external
"o
alias
" fstat
end

They enable other Eiffel elements to call a C procedure under the Eiffel

nameopen_fileand a C function unddite_status

Such routines are viewed by the rest of a system as normal Eiffel
routines; their only special property is that their execution, instead of being
under the control of the Eiffel system to which they belong, is a call to some

code generated by a compiler for the foreign language.

The second external routine of the example, a function, has a subclause
of the form alias external_nameindicating that this function will be
known through an Eiffel namédile_status different from its name in the
foreign language; by default the two would be the same. Here an alias is
required since the C namefstat begins with an underscore and so is not

a valid Eiffel identifier.

The External mechanism include a wide set of possibilities; in

particular, you may include inline C code directly, throughdhasclause.

A laterchapter is entirely devoted to this mechanism.

- Chapter31L

224

ROUTINES §8.8

8.8 TYPES OF INSTRUCTIONS

instructions. As an introduction to the detailed study of instructions in ter

Thelnternalbody of a non-deferred routine isZompoundor sequence of

chapters, here is an overview of the available variants. The syntax is:

I BTNTAX

Instructions
Compound2 {Instruction™;" ...}*

Instruction2 Creation_instructiopCall |
Assignmen{ Assigner_cal|
Conditional| Multi_branch| Loop
| Debug| Precursot Check| Retry

A Compounds a possibly empty list of instructions, to be executed in - Thapter20.
order given. In the various parts of control structures, such as the brai._.._ _

of a Conditional or the body of alLoop, the syntax never specifies
Instructionbut alwaysCompoung so that you can include zero, one or

more instructions.

A Creation_instructiorcreates a new object, initializes its fields to
default values, calls on it one of the creation procedures of the class (if
any), and attaches the object to an entity.

Call applies a routine to the object attached to a non-void expres= Chapter23.
For the Call to yield an instruction, the routine must be a procedure.

Assignmentthanges the value attached to a variable. - Chapter22

An Assigner_callis a procedure call written with an assignment-li- "ASSIGNER
syntax, as irx.a := b, but with the semantics of a call, as just a notatioSALL". 22.12. pge
599
abbreviation for xset_a (bwhere the declaration efspecifies an assigne.™
commandset_a

Conditional Multi_branch Loop and Compounddescribe compley- Control structures
instructions, orcontrol structures, made out of other instructions; 2"dPebugchapterl’.
execute a control structure is to execute some or all of its constilucin
instructions, according to a schedule specified by the control structure.

Delug, which may also be considered a control structure, is used for
instructions that should only be part of the system when you enable the
debugcompilation option.

Precursor enables you, in redefining a routine, to rely on *precursar10.24

original implementation. page 293
Checkis used to express that certain assertions must hold at ce = Assertions and
moments during run time. Check chapter9.

— Exceptions and
Retryis used in conjunction with the exception handling mechanisretry. chapter26.

	8 8 Routines
	8.1 OVERVIEW
	8.2 ROUTINE DECLARATION
	8.3 FORMAL ARGUMENTS
	Formal argument, actual argument

	8.4 USING A VARIABLE NUMBER OF ARGUMENTS
	8.5 ROUTINE BODY
	Once routine, once procedure, once function

	8.6 LOCAL VARIABLES AND RESULT
	Local variable

	8.7 EXTERNALS
	8.8 TYPES OF INSTRUCTIONS

