
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
3

The architecture of Eiffel software
3.1 OVERVIEW

The present chapter introduces the overall structure of Eiffel software
by discussing in turn the notions of class, system and cluster.

The constituents of Eiffel software are calledclasses. To keep your classes
and your development organized, it is convenient to group classes into
clusters. By combining classes from one or more clusters, you may build
executablesystems.

These three concepts provide the basis for structuring Eiffel software:

• A class is a modular unit.

• A cluster is a logical grouping of classes.

• A systemresults from the assembly of one or more classes to produce
an executable unit.

Of these, only “class”, describing the basic building blocks, corresponds
directly to a construct of the language. To build clusters and systems out of
classes, you will use not a language mechanism, but tools of the
supporting environment.

Clusters provide an intermediate level between classes and systems,
indispensable as soon as your systems grow beyond the trivial:

• At one extreme, a cluster may be a simple group of a few classes.

• At the other end, a system as a whole is simply a cluster that you have
made executable (by selecting aroot classand aroot procedure).

• In-between, a cluster may be a library consisting of several subclusters,
or an existing system that you wish to integrate as a subcluster into a
larger system.

Clusters also serve to store and group classes using the facilities of the
underlying operating system, such as files, folders and directories.

After the basic definitions, the language description will concentrate on
classes, indeed the most important concept in the Eiffel method, which
views software construction as an industrial production activity: combining
components, not writing one-of-a-kind applications.

THE ARCHITECTURE OF EIFFEL SOFTWARE §3.2106
3.2 CLASSES

Classes are not just the modular units of software decomposition: they also
serve as a basis for the types of Eiffel.

This dual view is essential to understanding the notion of class and,
more generally, the principles of object-oriented software construction:

• As a decomposition unit, a class is a module, that is to say a group of
relatedservices packaged together into a named unit.

• As a type, a class is the description of similar run-time data elements, or
objects, called the instances of the class.

Although these two roles may at first seem rather different, it is in fact
useful to support them through a single concept — the class — on the basis
of an important observation (the starting point of the theory ofAbstract
Data Types): a good way of describing a set of similar objects without
describing their implementation is to list the operations applicable to them.
But then if the objects are all instances of the same class, we can define that
class, viewed as a module, so that the services it offers are precisely the
operations available on the instances of the class, viewed as a type.

This identification of services on modules with operations on instances is
what makes it possible to merge the module and type views into the single
concept of class. Thefeatures of a class are these services-operations.

For example, a document processing system could have classes such as
DOCUMENT, PARAGRAPH, FONT, TEXT_DISPLAY. These are the
modular units of the system; their texts can be processed by an Eiffel
language processing tool, such as a compiler. They also describe possible
run-time objects: documents, paragraphs, fonts, displayable views of text.
Systems that include the given classes will be able to create such objects,
modify them, and access their properties.

Each of these classes will contain features; for example,PARAGRAPH
may include featuresindent, describing an operation that indents a
paragraph, andline_count, to determine the number of lines of a paragraph.

To create an instance of a class, you may use acreation instruction ; a
typical form is

wherex is the name of the entity that will denote the newly created object,
andcp is one of the features of the class, which must have been designated
as a creation procedure. This creates an object, makes it accessible
through the namex, and appliescp to initialize it. For example you might
create an instance of class DOCUMENT through

create x.cp (...)

create new_text.make("Isabelle", 250)

“ Object-Oriented Soft-
ware Construction”
discusses the practical
and theoretical roles of
classes.

→ Chapter19explains
the precise nature
of objects.

→ Chapter20.

http://eiffel.com/doc/oosc
http://eiffel.com/doc/oosc

§3.3 CLASS TEXTS AND CLASS NAMES 107
assuming DOCUMENT has a creation proceduremake with two
arguments: a string for the author’s name, an integer for the expected
number of pages.

A bit of more precise terminology is useful here. An instance of a class
C resulting from a creation instruction on a target of the corresponding type
is called adirect instance of C; in the last example,new_textwill be
attached to a direct instance ofDOCUMENT. The reason for this term is
that with the introduction of inheritance we will consider direct instances
of proper descendantsof C also as instances (not direct) ofC.

3.3 CLASS TEXTS AND CLASS NAMES

Every class has a class name, such asDOCUMENTor PARAGRAPH, and
aclass text describing the features of the class and its other properties.

As you know, letter case is not significant in identifiers, so that you can
write a class name asdoCumEntif you really want to. But this is strongly
discouraged. The standard style is to write all class names using their upper
names, such asDOCUMENT.

When you want to display a class in EiffelStudio, you may type its name in
any mix of lower and upper case (lower case is usually more convenient); the
tools will display the upper name.

The classes of a system must all, as discussedbelow, have different names.

3.4 CLUSTERS

As the number of classes in your systems grows, you will need to arrange
these classes into groups, called clusters.

Clusters correspond to the major divisions of a system. For example, a
compiling system may include a lexical cluster, a parsing cluster, a
semantic analysis cluster, an optimization cluster, a generation cluster. A
cluster may encompass a library, such as EiffelBase or EiffelVision; or it
may be an application cluster, encompassing a logically significant subset
of a system’s specific classes.

The figure on the next page illustrates a typical system structure as a set of
layers, each representing a cluster. Every cluster of this example except
KERNEL relies on others through pillars, representing the dependency
relations, client and inheritance, between the clusters’ classes. The lower
clusters, which normally should be built first, provide the basic
capabilities; the higher clusters are more specialized, including
APPLICATION which is assumed to cover the application-specific
facilities of the system. In practice, of course, a system may include several
application clusters.

→Chapter4presentsthe
structure of class texts.

→ Appendix34 pre-
sents style rules.
← The upper name is
the name all in upper
case. See“TEXTUAL
CONVENTIONS”,
2.13, page 101.

→ “Class Name rule”,
page 110.

The analogy with a
physical construction
works only to a point;
theauthorandpublisher
decline any responsibil-
ityshouldyoubuildyour
house with the architec-
ture shown.

THE ARCHITECTURE OF EIFFEL SOFTWARE §3.4108
You may nest clusters; a cluster included in another is called asubcluster.
So we may represent a structure of classes and clusters as a tree, as shown
at the top of the facing page. With this structure, a system as a whole is a
cluster; a library is a cluster; and if you want to embed an existing system
(itself having such a nested structure) as a subsystem in a larger system,
you’ll make it one of its subclusters. Such arbitrary nesting is part of the
Eiffel method’s support for software reuse and composition:

It is useful to define these notions precisely:

Cluster, subcluster, contains directly, contains
A cluster is a collection of classes, (recursively) other clusters
called itssubclusters, or both. The cluster is said tocontain
directly these classes and subclusters.
A clustercontains a classC if it contains directly eitherC or a
cluster that (recursively) containsC.

In the presence of subclusters, several clusters may contain a class, but
exactly one contains it directly.

APPLICATION

USER
INTERFACE

EIFFEL-

EIFFELVISION

WEL

EIFFELBASE

KERNEL

MEDIA

A possible
cluster
structure

Here some of the clus-
ters are Eiffel Software
Libraries.

In each cluster, some
classes are shown, with
possible inheritance
(singlearrow)andclient
(double arrow) links.

§3.4 CLUSTERS 109
In the figure clustersx1, x2andx3all contain classC; the one that contains
C directly isx3. These observations lead us to define two kinds of cluster:

This is not the recommended style, however; themethodological advice
is to keep the two cases separate, so that terminal clusters will contain only
classes and internal clusters will contain directly only subclusters. This is
the case in the example of the last figure.

Beyond this advice, there is no absolute rule on how to group classes
into clusters. It is usually wise to observe the following informal criteria:

• The classes in a cluster should be conceptually related.

• In most cases, the number of classes in a terminal cluster should not
exceed 20. You should consider splitting a terminal cluster into
subclusters if it reaches that size, unless you feel that the classes are
strongly connected and the cluster has a “flat” structure with no obvious
criterion for splitting it.

• Cycles in theclient relation should, in general, only involve classes that
all belong to the same terminal cluster, avoiding cases in whichA is a
client ofB and B a client ofA with A andB in different clusters.

• For any terminal cluster, there should be at least one person who
understands the cluster in its entirety.

Terminal cluster, internal cluster
A cluster isterminal if it contains directly at least one class.
A cluster isinternal if it contains at least onesubcluster.

From these definitions, it is possible for a cluster to be both terminal
and internal.

Internal cluster

Class

Terminal cluster

x1

x2

x3

C

Clusters,
subclusters
and classes

→ “Client” is a rela-
tion between classes,
studied in chapter7.
Cycles in the relation
areexplicitlypermitted;
see“SIMPLE CLI-
ENTS”, 7.4, page 189.

THE ARCHITECTURE OF EIFFEL SOFTWARE §3.5110
Do not look, however, for a cluster construct in Eiffel. The highest-level
construct is the class; clusters, although essential for organizing Eiffel
software and managing its development, do not require language support.
This is because such support would in most cases be redundant with the
facilities provided by operating systems. If, as may be expected, classes are
kept in files, then clusters will use the operating system mechanisms
available to support the grouping of related files: folders (the Windows/
Macintosh term) and directories (Unix/Linux). If, as suggested above, you
make a clear separation between terminal and internal clusters, then some
cluster folders will only contain class files, and the others will only contain
subfolders. In the figure on the preceding page, squares then represent
folders and the circles represent class files.

Eiffel tools, unlike the Eiffel language, should support clusters. The notion of
cluster is also prominent in theLace control language.

3.5 SYSTEMS

By themselves, classes are only building blocks. To obtain an executable
software element, you must assemble one or more classes into asystem
and designate one of them as the “root”. Here are the precise definitions.

We start with a “universe” of classes:

For example, in the EiffelStudio environment, you may define a universe by
specifying (through the control language Lace, or through the graphical
interface) a set ofdirectories(folders), each defining acluster. The cluster is
a set of classes; by default, any file in that directory with a name ending with
.e— for example,your_class.e—, called aclass file, is expected to contain
an Eiffel class. The class texts contained in the class files of the specified
clusters then make up the universe.

A strong requirement constrains the names of classes in a universe:

Universe
A universe is a set of classes.

The universe provides a reference from which to draw classes of interest for
a particular system. Any Eiffel environment will provide a way to specify
a universe.

Class Name rule VSCN

It is valid for auniverse to include a class if and only if no other
class of the universe has the same upper name.

→ Lace is a control lan-
guage for assembling,
compiling and execut-
ing Eiffel systems, cov-
ered by appendixB.

§3.5 SYSTEMS 111
Theprecedingvalidity rule leads to the rulegiving themeaningofaclassname:

As usual, the semantic rule only makes sense if the validity rule holds.

A system will be drawn from a universe; to do this we need to designate
a particular type and a particular procedure as “roots”:

The names that you choose for root type and root procedure should
correspond to suitable types and procedures in the system. To state this rule
we need a notion of dependency between types:

Eiffel expressly does not include a notion of “namespace” as present in some
other languages. Experience with these mechanisms shows that they suffer
from two limitations:

• They only push forward the problem of class name clashes, turning it into
a problem of namespace clashes.

• Even more seriously, they tie a class to a particular context, making it
impossible to reorganize (“refactor”) the software later without breaking
existing code, and hence defeating some of the principal benefits of object
technology and modern software engineering.

Name clashes, in the current Eiffel view, should be handled bytools of the
development environment, enabling application writers to combine classes
from many different sources, some possibly with clashing names, and resolving
these clashes automatically (with the possibility of registering user preferences
and remembering them from one release of an acquired external set of classes
to the next) while maintaining clarity, reusability and extendibility.

Class name semantics

A Class_nameC appearing in the text of a classD denotes the
class calledC in the enclosinguniverse.

System, root type name, root procedure name
A system is defined by the combination of:
1 • A universe.

2 • A type name, called theroot type name.

3 • A feature name, called theroot procedure name.

Type dependency
A typeT depends on a typeR if any of the following holds:
1 •R is aparent of thebase classC of T.

2 •T is aclient ofR.

3 • (Recursively) there is a typeSsuch thatT depends onSandS
depends onR.

THE ARCHITECTURE OF EIFFEL SOFTWARE §3.5112
This makes it possible to define what’s a proper choice of root type:

To complement the conditions on the root type we need one on the root
procedure (the procedure that will start the system’s execution):

This states thatC depends onA if it is connected toA directly or indirectly
through some combination of the basic relations between types and classes
— inheritance and client — studiedlater. Case1 relies on the property that
every type derives from a class, called its “base class”; for example a
generically derived type such asLIST [INTEGER] has base classLIST.
Case3gives us indirect forms of dependency, derived from the other cases.

Root Type rule VSRT

It is valid to designate a typeTNasroottype of asystem of universe
U if and only if it satisfies the following conditions:
1 •TN is the name of astand-alone typeT.

2 •T only involves classes inU.

3 •T’s base class is notdeferred.

4 • The base class of any type on whichT depends is inU.

These conditions make it possible to create the root object:

• A type is “stand-alone” if it only involves class names; this excludes
“anchored” types (like some_entity) and formal generic parameters,
which only mean something in the context of a particular class text.
Clearly, if we want to use a type as root for a system, it must have an
absolute meaning, independent of any specific context. “Stand-alone
type” is defined at the end of the discussion of types.

• A deferred class is not fully implemented, and so cannot have any direct
instances. It wouldn’t work as base class here, since the very purpose of
a root type is to be instantiated, as the first event of system execution.

• To be able to assemble the system, we must ensure that any class to
which the root refers directly or indirectly is also part of the universe.

In condition2, a typeTN “ involves” a classC if it is defined in terms ofC,
meaning thatC is the base class ofTN or of any of its generic parameters:
U [V, X [Y, Z]] involvesU, V, X, YandZ. A non-generic classT used as a type
“involves” only itself.

Root Procedure rule VSRP

It is valid to specify a namepn as root procedure name for a
systemS if and only if it satisfies the following conditions:
1 •pn is the name of acreation procedurep of S’s root type.
2 •p has no formal argument.
3 •p is precondition-free.

→ Inheritance: chap-
ter 6; client: chapter7
(general definition on
page188); base class:
chapter11.

→ “DEFERRED
FEATURES”, 10.11,
page 266

→ “Typesandclasses
involved in a type”,
page 335.

§3.5 SYSTEMS 113
Another condition on the root procedure is that it must be effective (non-
deferred): a deferred procedure has no implementation, and hence cannot
be used to start system execution. But we don’t need such a condition in the
Root Procedure rule, because it follows from the Root Class rule: if the root
class contained a deferred procedure, it would itself have to be declared as
deferred (as a result of arule to be seen in a later chapter), and we have
already precluded that through condition3 of the Root Class rule.

Thanks to the Root Type and Root Procedure rules we no longer have to
talk about type and procedurenames, but can directly refer to the root type,
the root procedure and the root class of a system:

Any language processing tool used to assemble and execute systems must
enable you to perform the following tasks:

1 • Selecting a root class.

2 • If the root class has two or more creation procedures, selecting one of
them — theroot procedure — for the system’s execution.

Techniques to perform these selections fall beyond the scope of Eiffel
proper, relying instead on tools of the environment. One possibility is to
useLace (Language for Assembling Classes in Eiffel), a simple Eiffel-like
notation for specifying how to build and process a system. You may find a
detailed description of Lace in anappendix.

A routine isprecondition-free(condition3) if it has no precondition, or a
precondition that evaluates to true. A routine can impose preconditions on
its callers if these callers are other routines; but it makes no sense to impose
a precondition on the external agent (person, hardware device, other
program...) that triggers an entire system execution, since there is no way
to ascertain that such an agent, beyond the system’s control, will observe
the precondition. Hence the last condition of the rule.

Regarding condition1, note that a non-deferred class that doesn’t explicitly
list any creation procedures is understood to have a single one, procedure
default_create, which does nothing by default but may be redefined in any
class to carry out specific initializations.

Root type, root procedure, root class
In asystemSof root type nameTNand root procedure namepn,
the root type is the type of nameTN, the root class is thebase
class of that root type, and theroot procedure is the procedure
of namepn in that class.

→ “OMITTING THE
CREATION PROCE-
DURE”, 20.4,page519.

→ “Class Header
rule”, page 126.

→ AppendixB.

THE ARCHITECTURE OF EIFFEL SOFTWARE §3.5114
The root type and root procedure are needed toexecutethe system:

System execution

To executeasystem on amachine means to cause the machine to
apply a creation instruction to the system’sroot type.

If a routine is a creation procedure of a type used as root of a system, its
execution will usually create other objects and call other features on these
objects. In other words, the execution of any system is a chain of explosions
— creations and calls — each one firing off the next, and the root procedure
is the spark that detonates the first step.

	3 3 The architecture of Eiffel software
	3.1 OVERVIEW
	3.2 CLASSES
	3.3 CLASS TEXTS AND CLASS NAMES
	3.4 CLUSTERS
	Cluster, subcluster, contains directly, contains
	Terminal cluster, internal cluster

	3.5 SYSTEMS
	Universe
	System, root type name, root procedure name
	Type dependency
	Root type, root procedure, root class

