
Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work on
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall,
1991). Do not reproduce or distribute.
11
Types
11.1 OVERVIEW

This chapter — complemented by the next two, which address generic
types and tuple types — presents the type system.

11.2 THE ROLE OF TYPES

Every object is an instance of some type. (More precisely, it is adirect
instanceof exactly one type; thanks to the inheritance mechanism it may
also be an instance of other, more general types.) Class texts may refer to
eventual run-time objects through the software elements that denote
values: constants, attributes, function calls, formal routine arguments, local
variables, and expressions built from such elements.

Typing in Eiffel is static. For software developers, this means four
practical properties:

• Every element denoting run-time values istyped: it has an associated
type, limiting the possible types of the attached run-time objects.

• This type is immediately clear — to a human reader or to a language
processing tool — from the element itself or the surrounding software
text. For a manifest constant, such as the Integer421, the type follows
from the way the constant is written; in all other cases it is a
consequence of a type declaration, made compulsory by the validity
rules of the language.

• Non-atomic constructs impose complementary validity constraints,
defining admissible type combinations. For example, an assignment
requires the type of the source to conform to the type of the target.

Types describe the form and properties of objects that can be created during
the execution of a system. The type system lies at the heart of the object-
oriented approach; the use of types to declare all entities leads to more clear
software texts and permits compilers to detect many potential errors and
inconsistencies before they can cause damage.

TYPES §11.2316
• Since the constraints are defined as conditions on the software text,
language processing tools such as compilers or static analyzers may
check the type consistency of a systemstatically, that is to say, just by
examining the system’s text, without making any attempt at execution.

Thisexplicitandstaticapproach to typing has a number of advantages.
It makes software texts easier to read and understand, since developers, by
declaring the types of entities, reveal how they intend to use them. It
enables compilers and other tools to catch many potential errors by
detecting inconsistencies between declarations and actual uses. It gives
compilers information that helps them generate much more efficient code
than would be possible with an untyped (or more weakly typed) language.

Typing in Eiffel is taken seriously. Many languages that claim to be
statically (or even “strongly”) typed allow developers to cheat the type
system, enticing them into sordid back-alley deals sometimes known as
casts. No such cheating exists in Eiffel, where the typing rules suffer no
exception. This is essential if we want to have any trust in our software. The
only price to pay for this added security is the need to declare entities
explicitly and to observe validity constraints — obligations which are even
easier to justify if you observe that the type system, far from being a
hindrance to the developer’s freedom of expression, helps in the production
of powerful and readable software systems.

It should be noted, however, that some conceptual issues, having to do with
covariance and descendant hidingcan cause type problems in certain
borderline cases. Thechapter on type checking discusses them.

The present chapter and the next two (on generic types and tuple types)
explore the basic forms of types and their properties. This will not exhaust,
however, the issue of typing, which pervades most of the discussions of this
book. To understand the type system fully, you will need important
complements provided by two separate chapters:

• The discussion ofconformancewill explain how a type may be used in
lieu of another, and its instances in lieu of that other’s instances.

• The presentation of thetype checkingpolicy will show how the typing
policy defines the fundamental validity constraints on the most
important computational construct — feature call.

→ Chapter25.

→ Conformance is the
topic of chapter14.
Chapter23 covers
calls; on type checking,
see chapter25.

§11.3 WHERE TO USE TYPES 317
11.3 WHERE TO USE TYPES

You will need to write a type — a specimen of the constructType— in the
following contexts:

1 • To declare the result type of an attribute or function: construct
Declaration_body.

2 • To declare the arguments of a routine or inline agent: construct
Formal_arguments, defined in terms ofEntity_declaration_list.

3 • To declare a local routine entity: constructLocal_declarations(also
defined in terms ofEntity_declaration_list).

4 • To indicate that a class has a certain parent: constructParent, as part of
Inheritance.

5 • To specify actual generic parameters, as explained in the next chapter:
constructActual_generics.

6 • To specify a genericConstraint, also in the next chapter: construct
Constraint, part ofFormal_generics.

7 • To indicate an explicit creation type in a creation instruction or
expression: constructExplicit_creation_type.

8 • To choose from a set of instructions, based on an expressions’s type, in
aMulti_branch.

9 • To specify the parameters (component types) of aTuple_type.

10 •To declare the type of a target of aCall_agent.

11 •To specify target conversion for infix operators.

12 •To call a feature without a target, in aNon_object_call.

As an example of the first three cases, here is the beginning of a possible
function declaration:

In this example and all the others, types are easy to recognize: apart from
keywords such aslike, they use all-upper-case names.

The function has a result (case1) of type RECTANGLE, probably a
reference type, and one argument (case2) of type LIST[WINDOW], a
“genericallyderived” reference type. It uses four local variables (case3) of
typeREAL, a basic expanded type. The use ofWINDOWas actual generic
parameter toLIST provides an example of case5.

total_occupied_area(wl:):
-- Smallest rectangle that covers the representations
-- of all windows inwl

local
xmin, ymin, xmax, ymax:
... Rest of routine omitted ...

← Syntax: page141.

← Page216; see also
Inline_agent, p. 743.

← Page221.

← Page169.

→ Page342.

→ Page349.

→ Page543.

→ Choice, page477:.

→ Page364.

→Agent_actual,page744:

→ Page762:

→ Page618.

LIST[WINDOW] RECTANGLE

REAL

→Seechapter12about
generically derived
types.

TYPES §11.3318
The following class beginning uses types in its twoParentparts (case4):

An example of case6 is the use of typeADDABLEin a class text starting with

which states that any actual generic parameter must conform toADDABLE
(which means roughly that it must be based on a descendant of that class).

An example of case7 is theCreation_instruction

which creates a direct instance ofWINDOW, initializes it using a call toset
with the given arguments, and attaches it toa. If a is of typeWINDOWyou
may (and usually should) omit the{ WINDOW} part; but it is useful ifa’s
type is a proper ancestor ofWINDOWand you expressly want to createa s
aWINDOW. Another example of case7 s theCreation_expression in

where we pass as argument to proceduredisplay an object of type
WINDOWcreated for the occasion. Here specifying the type is not an
option but a necessity since, unlike the previous case, we don’t have an
entitya with a type declaration to serve as the default.

An example of case8 is a multi-branch instruction

appearing in this case in aRescueclause to process exceptions. This states
what to do depending on the type oflast_exception.

An example of case9 (similar in syntax to case5, actual generic
parameters) is the tuple type

class DISPLAY_STATEinherit

…

class MATRIX[G –>] ...

create{ } a.set(x_corner, y_corner)

screen.display(create{ } .set(x_corner, y_corner))

inspect
last_exception.type

when { } then
fix_context; retry

when { }, { then
cleanup

end

TUPLE[]

LIST[WINDOW]
INPUT_MODE

ADDABLE

→Seechapter20about
creation instructions
and expressions.WINDOW

WINDOW

DEVELOPER_EXCEPTION

SIGNAL NO_MORE_MEMORY

REAL, INTEGER, RECTANGLE

§11.4 HOW TO DECLARE A TYPE 319
which describes “tuples” — sequences of values— with at least three
elements, the first of typeREALand so on.

An example of case10 is

an agent expression denoting a partially specified operation, ready to call
rotate(assumed to be a procedure ofRECTANGLE, with a single argument
representing an angle) to rotate any rectangle by 90 degrees.

An example of case ---- ADAPT --- is an instruction

which determines whether a run-time object obtained from an outside
source is of a certain predicted type.

Case11covers the ability to convert the result of an arithmetic operator
to the type of the second operand, as in the following in classINTEGER

which dispatchesyour_real + your_complexto the feature with the same
name in classCOMPLEX (rather than the one specified here).

Finally, case12 allows calls of the form{ } some_featurewhere
some_featureis a feature of typeT that doesn’t need a target, for example
a constant attribute.

11.4 HOW TO DECLARE A TYPE

The basis of the type system is the notion of class: every type is, directly or
indirectly, basedon a class, which provides the principal information for
determining how instances of the class will look like. But classes are only
the starting point of a whole set of type mechanisms that afford you
considerable flexibility:

• Certain classes, said to begeneric, do not directly describe a type;
instead, they describe a type pattern, with one or more variable parts that
must be filled in, through a “generic derivation”, to yield an actual type.
For example the classLIST [G] describes lists of elements of an
arbitrary type, denoted in the class byG.

agent{ } .rotate(90)

if { x: } retrieved_from_networkthen
x.f
…

else
…

end

plusalias "+" convert { } (other: REAL): REAL
… Definition of integer addition…

RECTANGLE

EXPECTED_TYPE

COMPLEX

T

→ See“BASECLASS,
BASE TYPE AND
TYPE SEMANTICS”,
11.7, page 324 below.

TYPES §11.4320
• Within the text of a generic class such asLIST, the formal generic
parameterssuch asG themselves represent types (the possible actual
generic parameters). The class may for example introduce an attribute
of type G, or a routine with an argument or result of typeG.
Syntactically, then, a formal generic parameter is a type, although the
exact nature of that type is not known in the class itself; only when a
generic derivation provides the correspondingactual generic parameter
(such asWINDOWabove) can we know whatG represents in that case.

• Finally, you may declare an entityx in a classC by using ananchored
type of the form like anchor for some other entityanchor. This
mechanism avoids tedious redeclarations since it ties the fate ofx’s type
to that ofanchor: in C, x is treated as if you had declared it with the type
used for the declaration ofanchor; if a proper descendant ofC
redeclaresanchor with a new type,x’s type will automatically follow.

Here is the syntactical specification covering all the possibilities.

Class_or_tuple_typecovers tuple types as well as class types. Tuple
types, studied in their ownchapter, are a kind of trimmed-down class type;
TUPLE [a: X; b: Y; c: Z] acts like a class with three featuresa, b andc of
the types given. You can omit the labels:TUPLE[X, Y, …] describesfinite
sequences of values of which the first must be of typeX, the second of type
Y and the third of typeZ. Tuple types share a number of properties with
class types, hence the first variant ofType, covering them both.

Types
Type =∆ Class_or_tuple_type |

Formal_generic_name |
Anchored

Class_or_tuple_type=∆ Class_type| Tuple_type

Class_type=∆ [Attachment_mark]
Class_name
[Actual_generics]

Attachment_mark=∆ "?" | "!"

Anchored=∆ [Attachment_mark] like Anchor

Anchor =∆ Feature_name | Current

The most common and versatile kind isClass_type, covering types
described by a class name, followed by actual generic parameters if the
class is generic. The class name gives the type’s base class. If thebaseclass
is expanded, theClass_typeitself is an expanded type; if the base class is
non-expanded, theClass_type is a reference type.

→ Tuple_type is
defined in the chapter
on tuples, page364.

→ Actual_generics
describes a list of types.
The specification is on
page342as part of the
discussion of genericity
in the next chapter.

A class is an"expanded
class" if its Class_
header begins with
expanded class, and a
non-expanded class
otherwise.

→ Chapter13 dis-
cusses tuples.

§11.5 INSTANCES AND VALUES 321
The second syntactical variant,Formal_generic_name, covers the
formal generic parameters of a class. IfC has been declared as

then, within the text ofC, G denotes a type. As noted, you cannot know the
precise nature of this type just by looking at classC; G represents whatever
actual generic parameter is provided in a particular generic derivation.

The next category,Anchoredtypes of the formlike anchor, accounts
for anchored declarations.

Tuple_type, the last category, covers types of the formT

The rest of this chapter examines these type categories, except for the
generic and tuple mechanisms which have their own chapters.

11.5 INSTANCES AND VALUES

For each kind of type in the language, we must specify — along with
associated syntax rules and validity constraints — thesemanticsof the type.

 Defining the semantics of a typeT involves answering two questions:

• What objects can be produced, during execution, from the description
given byT?

• What are at run time the possible values of an entity or expression of
typeT?

The answers have precise names:

An Attachment_mark? indicates that the type isdetachable: its values
may be void — not attached to an object. The! mark indicates the reverse:
the type isattached, meaning that its values will always denote an object;
language rules, in particular constraints on attachment, guarantee this. No
Attachment_markmeans the same as!, to ensure that a type, by default,
will be attached.

... class C [...,G,...] ...

Direct instances and values of a type

Thedirect instancesof a typeTare the run-time objects resulting
from: representing amanifest constant, manifest tuple,
Manifest_type, agent orAddressexpression of typeT; applying a
creationoperation to atarget of typeT; (recursively) cloning an
existing direct instance ofT.
The values of a typeT are the possible run-time values of an
entity or expression of typeT.

→ Chapter13 dis-
cusses tuples.

→Seealso“Type,gener-
ating type of an object;
generator”, page 498.

TYPES §11.5322
Specifying the direct instances might seem sufficient; the reason we also
need to consider values is the difference betweenexpandedandreference
types. A type’s values are objects in the first case, references to objects in
the second.

Expanded types include as a special sub-category the basic types:
BOOLEAN; CHARACTERand its sized variants such asCHARACTER_8;
INTEGERand its sized variants such asINTEGER_8and NATURAL_64;
REAL and its sized variants.REAL_32 and REAL_64; and POINTER,
covering addresses of features to be passed to external (non-Eiffel) routines.
Clearly, an entity of integer type should give us an integer value, not a
reference to a dynamically allocated cell that contains an integer.

Reference provide more flexibility thanks to dynamic object allocation,
allowing the execution to create objects when and only when it needs them;
reference semantics, supporting linked data structures. Expanded types, for
their part, are useful not only for basic types but also for describingsub-
objectsavoiding indirections. The role of expanded types, and the criteria
for choosing between expanded and reference, are further studied below.

The notion of type has, besides the expanded-reference distinction, a
number of variants detailed in the following sections:

• You may define a type byanchoring, aslike something, tying it to the
type of an entity, so that it will follow any redefinitions in descendants.
Anchoring is covered later in this chapter.

• A type may also be aFormal_generic_namerepresenting a formal
generic parameter of the enclosing class; it then serves as a placeholder
for any type (reference or expanded) that is used in a generic derivation.
The whole generic mechanism will be discussed in the next chapter.

In understanding type semantics, another useful notion is that ofinstance,
complementing the notion ofdirect instance defined above:

Instance of a type

The instancesof a typeTX are thedirect instances of any type
conforming toTX.

Since every type conforms to itself, this is equivalent to stating that the
instances ofTXare the direct instances ofTXand, recursively, the instances
of any other type conforming toTX.

→ “PASSING THE
ADDRESS OF AN
EIFFEL FEATURE”,
31.8, page 823.

§11.6 INSTANCES OF A CLASS 323
In the well-known example of an inheritance hierarchy with a classFIGURE
at the top and descendants describing successively more specific geometrical
figures, such asCLOSED_FIGURE, POLYGON, RECTANGLE, SQUARE,
each inheriting from the preceding one, a direct instance ofSQUAREis also
an instance of all the others, includingSQUARE itself.

This also illustrates that a deferred type such asFIGURE, which cannot have
direct instances (since creation instructions of targetFIGURE are invalid),
may have instances if the class has effective descendants.

A semantic rule connects the notion of value and instance:

Thanks to this rule, it suffices, when studying type semantics, to define the
direct instances of each possible type. The instances follow immediately
and — since the type’s declaration indicates whether it is reference (and if
so, attached) or expanded — so do the values.

11.6 INSTANCES OF A CLASS

Along with the instances, direct and indirect, of atype, it is convenient to
talk about the corresponding notion for aclass:

Instance principle

Any value of a typeT is:
• If T is reference, either a reference to aninstance ofT or (unless

T is attached) a void reference.

• If T is expanded, an instance ofT.

Instance, direct instance of a class
An instance of a classC is an instance of any typeT based onC.
A direct instance ofC is a direct instance of any typeTbased onC.

For non-generic classes the difference betweenCandT is irrelevant, but for
a generic class you must remember that by itself the class does not fully
determine the shape of its direct instances: you need a type, which requires
providing a set of actual generic parameters.

→ “Cr eation and
deferred classes”,
page 529.

TYPES §11.7324
11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS

At its core, the notion of type in Eiffel proceeds from the notion of class.
Indeed, we can bring down the properties of any type to those of an
associatedClass_or_tuple_type and, through it, to those of a class:

A general property applies to the base class and base type:

For example, assuming thatC is generic:

Base principle

Any type T proceeds, directly or indirectly, from a
Class_or_tuple_typecalled itsbase type, and an underlying class
called itsbase class.
The base class of a type is also the base class of its base type.

A Class_typeis its own base type; an anchored typelike anchor with
anchorhaving base typeU also hasU as its base type. For a formal generic
parameterG in classC [G –> T] … the base type is (in simple cases) the
constraining typeT, orANYif the constraint is implicit.

The base class is the class providing the features applicable to instances
of the type. IfT is aClass_typethe connection to a class is direct:T is either
the name of a non-generic class, such asPARAGRAPH, or the name of a
generic class followed byActual_generics, such asLIST [WINDOW]. In
both cases the base class ofT is the class whose name is used to obtainT,
with any Actual_genericsremoved: PARAGRAPHand LIST in the
examples. For aTuple_type, the base class is a fictitious classTUPLE,
providing the features applicable to all tuples.

For types not immediately obtained from a class we obtain the base
class by going through base type: for exampleT is anAnchoredtype of the
form like anchor, andanchor is of typeLIST [WINDOW], then the base
class of that type,LIST, is also the base class ofT.

Base rule

The base typeof any type is aClass_or_tuple_type, with no
Attachment_mark.
The base classof any type other than aClass_or_tuple_typeis
(recursively) the base class of its base type.
Thedirect instances of a type are those of its base type.

Why are these notions important? Many of a type’s key properties (such as
the features applicable to the corresponding entities) are defined by its base
class. Furthermore, class textsalmostnever directly refer to classes: they
refer totypes based on these classes.

A class text may refer to
a class rather than a
type in only three cases:
the beginning of the
class declaration, as in
classYOUR_CLASS_
NAME…; a Clients
part (syntax page204);
and aPrecursor con-
struct(syntaxpage296).

§11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS 325
• If D is an heir ofC, theInheritancepart ofD will list as Parentnot C,
but a type of the form C [ACTUAL1, …].

• To describe objects to whichC’s features are applicable,D will declare
an entitye using notC but, again, a type generically derived fromC.

In such situations (and all other uses of types listed earlier) the base class
provides the essential information: what features are associated withC. In
the first example, they give the list of features thatD inherits fromC; in the
second, they provide the features whichD may call one.

As for the base type, besides its role in defining the base class, it appears
in many of theconformancerules, and determines what kind of object a
creation operation will produce at run time.

Clearly, you may only build a class type, generically derived or not, if
the base class is a class of the universe:

The Base rule simplifies the presentation of type semantics. For every
kind of type reviewed in this chapter and the next two we must specify the
type’s semantics, by stating what are the type’s direct instances and its
values. Thanks to the Base rule the process is straightforward:

Class Type rule VTCT

A Class_typeis valid if and only if it satisfies the following
two conditions:
1 • ItsClass_nameis the name of a class in the surroundinguniverse.

2 • If it has anAttachment_mark, that class is not expanded.

The class given by condition1 will be the type’s base class. Regarding
condition2, an expanded type is always attached, so anAttachment_mark
would not make sense in that case.

Type Semantics rule

To define the semantics of a typeT it suffices to specify:
1 • WhetherT is expanded orreference.

2 • WhetherT, if reference, isattached ordetachable.

3 • What isT’s base type.

4 • If T is a Class_or_tuple_type, what are itsbaseclass and its
type parameters if any.

→ Conformance: chap-
ter 14; creation: chap-
ter 20.

→ For Formal_generic_
nametypestheexpanded/
reference status depends
on each generic deriva-
tion. See“SEMANTICS
OFGENERICTYPES”,
12.10, page 355.

TYPES §11.8326
As soon as we knowT’s base type, and its actual generic parameters if any,
we will know itsdirect instances: those of its base type, determined by the
rulesontypeinstances. IfT is not a class type, we will know from the Base
rule that its base classis the base class ofT’s base type (itself a
Class_or_tuple_type). Finally, thevaluesof T will be its instances if it is
an expanded type, otherwise references to such instances.

In application of the Type Semantics rule, every presentation of a new
kind of type in this chapter and the next two has aSEMANTICS paragraph
that simply defines the base type (item3 above), the base class in the case
of aClass_or_tuple_type (4), and whether it is expanded or reference (1).

To simplify the discussion, we allow ourselves to use “base class” and
“base type” directly for expressions:

11.8 CLASS TYPES WITHOUT GENERICITY

We start our exploration of the type categories with the simplest way of
defining a type: using a class without generic parameters.

In this case there is no difference between class and type. Assume for
example a class text of the form

Then a class of the same universe (includingPARAGRAPHitself) may use
PARAGRAPH as a type, for example to declare entities.

Here PARAGRAPHis declared as a non-expanded class, so the
corresponding type is a reference type. At run-time, entities of that type
represent references which, if not void, are attached to instances of
PARAGRAPH, obtained through creation instructions.

Base class and base type of an expression
Any expressionehas abase typeand abase class, defined as the
base type andbase class of thetype ofe.

class PARAGRAPHfeature
first_line_indent: INTEGER;
other_lines_indent: INTEGER;
set_first_line_indent(n: INTEGER)

... Procedure body omitted ...
... Other features omitted ...

end

→ Chapter19.

§11.9 EXPANDED TYPES 327
If classPARAGRAPHhad been declared aexpanded class…, then the
resulting type would be expanded. In the general case:

These are not fascinating notions yet, but we must define a base class and
base type for every type, and they will get less trivial as we move on.

PARAGRAPH, used as a type, is its own base type and its own base class.
Values of typePARAGRAPHare references to instances of the class.
Clients of the class maycall exported features such asfirst_line_indentand
others on entities of typePARAGRAPH.

Only one constraint, the Class Type rule, applies to aClass_typethat is
not generic: theIdentifier must be the name of a class of the universe.

11.9 EXPANDED TYPES

Most of the types you define will probably be reference types similar to the
last examples (LIST, WINDOW, PARAGRAPH…), as they offer the
flexibility of creating objects on demand, and the ability to define linked
structures. You can also use expanded types.

Role of expanded types

An earlier chapterpreviewed some of the possible reasons for using
expanded types:

• Realism in modeling external world objects, especially when you want
to describe objects that have sub-objects.

• Possible efficiency gain.

• Basic types.

• Interface with other languages.

• Machine-dependent operations.
The first case arises when we use Eiffel objects to model external world
objects which are composite, rather than containing references to other
objects. For example, in a Computer-Aided Design application, we may
view a car as containing, among others, four "wheel" sub-objects, rather
than four references to such objects. Such a decision, illustrated on the
following figure, is only legitimate for objects which may never share sub-
objects: in this example, a wheel may not be part of two different cars.

Non-generic class type semantics

A non-generic classCused as a type (of theClass_typecategory) has
the same expansion status asC (i.e. it is expanded ifC is anexpanded
class, reference otherwise). It is its ownbasetype (after removal of
anyAttachment_mark) andbase class.

→ The generic version
will be only slightly dif-
ferent: “Generically
derived class type
semantics”, page 355.

→ See chapter23 about
callingfeaturesonentities.

← “EXPANDED CLI-
ENTS”, 7.5, page 192.

TYPES §11.9328
The second reason is, in some circumstances, a gain in efficiency:

composite objects save space (by avoiding pointers) and time (by avoiding

indirections). For example, if every instance ofPERSONhas ahead,

declaringheadof an expanded type will give the structure illustrated by(a)

on the next figure, avoiding the indirection of(b). Here again, this only

applies because there is no sharing of sub-objects, at least if we exclude the

case of Siamese twins.

wheel_1

wheel_2

wheel_3

wheel_4

Reference
Fields

Other
Expanded
Fields

Sub-object vs.
reference to
another object

head
head

Other
fields

(a) (b)

Composite car
object

§11.9 EXPANDED TYPES 329
You must realize, however, that the possible efficiency gain is not guaranteed.
The last two figures, and similar illustrations of expanded attributes and
composite objects, are only conceptual descriptions, not implementation
diagrams. (Unlike other languages that shall remain nameless here, Eiffel is
specified in terms of the abstract properties of software execution, not by
prescribing a certain implementation.) The authors of an Eiffel compiler or
interpreter may choose any representation they wish as long as they guarantee
the semanticsof expanded values, according to which (as explained in the
discussion of reattachment in alaterchapter) an assignmentx := y must copy
the object attached toy onto the object attached tox, and an equality testx = y
must compare the objects field by field.

Both the time and space gains are important in the case of basic types such
as integers or characters; to manipulate the value3, we should not need to
allocate an integer object dynamically, or to access it through a reference.
For that reason, basic types are described by expanded classes of the Kernel
Library, as explained in alater section.

Another opportunity for expanded types may be the need to keep data
structures produced and handled by software elements written in other
languages. An example might be control information associated with a
database management system, which Eiffel routines will not manipulate
directly, but pass back and forth to foreign (non-Eiffel) routines. As you
have no control over the format and size of such data structures, the best
way may be simply to keep them as sub-objects within your Eiffel objects.

Defining expanded types

The class types seen so far may or may not be expanded:

• A Class_typewhose base class is expanded is itself an expanded type;
values of that type are objects (instances of the type).

• A Class_typewhose base class is not expanded is a reference type;
values are references to potential objects, created dynamically.

---- WHOLE DISCUSSION OF “ EXPANDED T” REMOVED -----

Expanded types have specific properties, already previewed. First we must
know precisely when a type is “expanded” and when it is “reference”:

Expanded type, reference type
A type T is expanded if and only if it is not a
Formal_generic_nameand thebaseclass of itsdeanchoredform
is anexpanded class.
T is a reference type if it is neither a Formal_generic_name
norexpanded.

→ Chapter22.

→See,page330,about
basic types.

TYPES §11.9330
Basic types

An important case of expanded types is a collection ofbasictypescovering
simple values:

• BOOLEAN, describing boolean values (true and false).

• CHARACTER, describing single characters.

• INTEGER and its variants supporting specific sizes:INTEGER_8,
INTEGER_16, INTEGER_64. The sizes of values of typeINTEGER
must be settable through a compilation option (the recommended value
is 64).

• REAL: floating-point numbers and its variants supporting specific sizes:
REAL_32, REAL_64. The sizes of values of typeREALmust be settable
through a compilation option (the recommended value is 64).

• POINTER, serving to pass addresses of Eiffel features and expressions
to non-Eiffel routines.

Three types also enjoy special properties but are not considered basic types:
ARRAY, STRINGand tuple types.

Properties of basic types, especially their conformance and semantics,
appear in achapter devoted to them.

This definition characterizes every type as either reference or expanded,
except for the case of aFormal_generic_name, which stands for any type
to be used as actual generic parameter in a generic derivation: some
derivations might use a reference type, others an expanded type.

Tuple types are, as a consequence of the definition, reference types.

Basic type
The basic types areBOOLEAN, CHARACTERand its sized
variants,INTEGERand itssizedvariants,REAL and itssized
variants andPOINTER.

Like most other types, the basic types are defined by classes, found in the
Kernel Library. In other words they are not predefined, “magic” types, but
fit in the normal class-based type system of Eiffel.

Compilers typically know about them, so that they can generate code
that performs arithmetic and relational operations as fast as in lower-level
languages where basic types are built-in. This is only for efficient
implementation: semantically, the basic types are just like other class types.

→ Genericity is dis-
cussed in the next chap-
ter.

→Detailed inchapter30.

→Seechapters36about
ARRAY andSTRING
and13 about tuples.

→ Chapter30.

§11.10 ANCHORED TYPES 331
The basic types need some special conformance properties. In general,
a typeU conforms to a typeT only if U’s base class is a descendant ofT’s
base class. But thenINTEGER, for example, is not a descendant ofREAL.
Since mathematical tradition suggests allowing the assignmentr := i for r
of typeREALandi of type INTEGER, the definition of conformance will
include a small number ofspecial cases for basic types.

Except forPOINTERwhich has no exported feature of its own, each of the
basic classes describes the operations applicable to values of the corresponding
type (booleans, characters etc.). For compatibility with traditional arithmetic
notation, many of the feature identifiers areUnaryor Binary.

11.10 ANCHORED TYPES

The originality of anAnchoredtype, the last category in this chapter, is that
it carries a provision for automatic redefinition in descendants of the class
where it appears.

An Anchored type is of the form

with the predictable definitions:

Anchored types avoid “redefinition avalanche”. As long as what you
only consider what happens in a classC, declaring an entity of typelike
anchorin C is the same as declaring it of the same type asanchor, sayT.
The difference comes from inheritance: if any descendant ofC redefines
the type ofanchorto a new type (conforming toT), it will be considered to
have also redefined all the entities anchored toanchor.

Since it is quite common to have a group of related entities that must
keep the same type throughout their redefinitions, anchored declaration is
essential to the smooth functioning of the type system. Without it we would
constantly be writing lots of new declarations serving no other purpose
than type specialization.

like anchor

Anchor, anchored type, anchored entity
Theanchor of an anchored typelike anchoris theentityanchor.
A declaration of an entity with such a type is ananchored
declaration, and the entity itself is ananchored entity.

The anchor must be either an entity, orCurrent . If an entity,anchormust
be the final name of a feature of the enclosing class.

→ “EXPANDED TYPE
CONFORMANCE”,
14.9, page 386.

TYPES §11.10332
Anchored examples

We already encountered anchored declarations in the discussion of
redeclaration; the example was that of a routine in the Data Structure
Library classLINKED_LIST:

whose argumentlc represents a list cell. This declaration “anchors”lc to
first_element, a feature of the class declared of typeLINKABLE [G] (the
type representing list cells). As a result,lc itself is considered in
LINKED_LIST to have the same type asfirst_element, LINKABLE [G].
Because lc has been anchored tofirst_element, any descendant of
LINKED_LISTwhich redefinesfirst_elementto a new type, taking into
account more specific forms of list cells (such as cells chained both ways,
or tree nodes), does not need to redefinelc and all similar entities of the
class: their types will automatically follow the redeclared type of their
anchor,first_element.

Anchoring is often useful for arguments of “set” procedures. If class
EMPLOYEEhas an attributeassignmentof typeEMPLOYEE_ASSIGNMENT,
and an associated procedure

it isusuallybepreferable touse the typelike assignmenttodeclare theargument
a. Within the given class, the effect is the same, sinceassignmentis of type
EMPLOYEE_ASSIGNMENT; but if a descendant redefinesassignmentto a
morespecific type—suchasENGINEERING_ASSIGNMENT—thesignature
of the procedureset_assignment will automatically follow.

Anchoring to Current

You may useCurrentas anchor. Declaringx of typelike Current in a class
C is equivalent to declaring it of typeC in C, and redeclaring it of typeD
in any proper descendantD of C.

put_element(lc: like first_element; i: INTEGER)

set_assignment(a: EMPLOYEE_ASSIGNMENT)
-- Makea the employee’s current assignment.

require
exists: a /= Void

do
assignment:= a

ensure
set: assignment= a

end

→ The encounter was
towards theendof10.9,
page 263.

Warning: this is not the
recommended style —
see text.pl

§11.10 ANCHORED TYPES 333
Among other advantages, this technique avoids lengthy redefinitions.
LINKABLE, mentioned earlier, relies on it. A list cell has a reference to its
right neighbor:

The attributeright denotes that reference in classLINKABLE, where it is
anchored toCurrent:

This declaration guarantees that in any more specialized version of
LINKABLE, described by a proper descendant of classLINKABLE, right
will automatically denote to objects of the descendant type. An example is
classBI_LINKABLE, representing elements chained both ways:

In this case the anchored declaration guarantees that a doubly linked list
element is only used in conjunction with other elements of the same (or a
more specialized) type. Another descendant ofLINKABLE is a class
describing tree nodes; here too, the anchoring guarantees that tree nodes
only refer to other tree nodes, not to simpleLINKABLE elements.

Anchoring to an expanded or generic

In like x wherex is a query or argument, there is no particular restriction
on the typeT of x. In the most common caseT will be a reference type, but
it may also be anything else, such as:

• An anchored type itself — under a no-cycle requirement explained below.

• An expanded type.

• A Formal_generic_namerepresenting a generic parameter of the
enclosing class.

• A Tuple_type.

right: like Current

item right
Linkable list
cell
This figure and the next
appeared previously on
page264.

item rightleft Bi-linkable list
cell

TYPES §11.10334

f
The expanded case is not very exciting because redefinition possiblitiesare
very limited for the anchor. It enables you, however, to emphasize that a
group of expanded entities must have the same type, and facilitates
switching between reference and expanded status if you don’t get the first
time around. [NOTE: NEXT TWO SECTIONS WILL PROBABLY BE
REMOVED.]

The formal parameter case is more subtle. Ifx is of typeG in a class
C [G], like x denotes the actual generic parameter corresponding toG.
Declaringy: like x has, within the text ofC, the same effect as declaringy
of type G. With z of type C [T] for some typeT, the ruleson genericity
imply thatz.y has typeT. If C has a featuref (u: like x), a callz. f(v) will
be valid only if the type ofv is exactlyT — not another type conforming to
T, as would be valid ifu was declared just with the typeG.

The same spirit guides the interpretation oflike t, wheret is of a tuple
type such asTUPLE [A, B, C]. If u is declared asTUPLE [A, B, C], the
conformancerulesontupletypes let us assign tou not only a tuple such as
[a1, b1, c1] (with a1 of typeA and so on) but also a longer tuple such as
[a1, b1, c1, d1, e1] as long as the initial items are of the requisite types (A,
B andC respectively). But withu of typelike t, only a tuple of exactly three
elements will be permissible. This means that you can have your choice
between a lax interpretation of tuple types (tuples ofn items or more, for
some n) and a restrictive one (tuples of exactlyn items). The strict
interpretation will be useful in particular forroutine agents.

→ As a consequence o
“Redeclaration rule”,
page 307 and“Dir ect
conformance:expanded
types”, page 388.

→ “GenericTypeAdap-
tation rule”, page 359;
see also“THE TYPE
OFANEXPRESSION”,
28.11, page 773.

→ “TUPLE TYPE
CONFORMANCE”,
14.10,page388. On the
rules for agents, see

§11.10 ANCHORED TYPES 335
Avoiding anchor cycles

To go from the preceding informal presentation of anchored types to their
precise constraint and semantics requires that we address the issue of
anchor chains and prohibit cycles.

The syntax permitsx to be declared of typelike anchor if anchor is
itself anchored, of typelike other_anchor. Although most developments do
not need such anchor chains, they turn out to be occasionally useful for
advanced applications. But then of course we must make sure that an
anchor chain is meaningful, by excluding cycles such asa declared aslike
b, b aslike c, andc aslike a. The following definition helps.

Anchor set; cyclic anchor
The anchor setof a typeT is the set ofentities containing, for
every anchored typelike anchorinvolved inT:
• anchor.

• (Recursively) the anchor set of the type ofanchor.

An entity a of type T is a cyclic anchor if the anchor set ofT
includesa itself.

The anchor set ofLIST [like a, HASH_TABLE[like b, STRING]] is,
according to this definition, the set{ a, b} .

Because of genericity, the cycles that make an anchor “cyclic” might
occur not directly through the anchors but through the types they involve,
as witha of typeLIST [like b] whereb is of typelike a. Here we say that a
type “involves” all the types appearing in its definition, as captured by the
following definition.

Types and classes involved in a type
The typesinvolved in a typeT are the following:
• T itself.

• If T is of the form a T’ where a is an Attachment_mark:
(recursively) the types involved inT’.

• If T is agenericallyderivedClass_typeor aTuple_type: all the
types (recursively) involved in any of its actual parameters.

The classesinvolved in T are thebaseclasses of the types
involved inT.

TYPES §11.10336
--- Auxiliary notion:

Validity and semantics of anchored types

A [B, C, LIST [ARRAY[D]]] involves itself as well asB, C, D, ARRAY[D]
andLIST [ARRAY[D]. The notion ofcyclic anchorcaptures this notion in
full generality; the basic rule, stated next, will be that ifa is a cyclic anchor
you may not use it as anchor: the typelike a will be invalid.

Constant type
A type T is constant if every type involved in T is a
Class_or_tuple_type.

The restriction toClass_or_tuple_typeexcludes formal generic parameters
and anchored types. Constant types are the only ones permitted for constant
attributes denoting manifest types.

§11.10 ANCHORED TYPES 337
The notions just introduced enable us to define the validity of anchored types.
Every type has andeanchoredversion, an “unfoldedform” which expands
thelike:

Deanchored form of a type
The deanchored form of a type T in a classC is the type
(Class_or_tuple_type or Formal_generic) defined as follows:
1 • If T is like Current : thecurrent type ofC.

2 • If T is like anchor where the typeAT of anchor is not
anchored:AT.

3 • If T is like anchorwhere the typeATof anchoris anchored but
anchor is not acyclic anchor: (recursively) the deanchored
form of AT in C.

4 • If T is a AT, wherea is anAttachment_mark: a DT, whereDT
is (recursively) the deanchored form ofAT deprived of its
Attachment_mark if any.

5 • If none of the previous cases applies:T.

Although useful mostly for anchored types, the notion of “deanchored
form” is, thanks to the phrasing of the definition, applicable toany type.
Informally, the deanchored form yields, for an anchored type, what the type
“really means”, in terms of its anchor’s type. It reflects the role of
anchoring as what programmers might call a macro mechanism, a
notational convenience to define types in terms of others.

Case4 enables us to treat? like anchoras a detachable type whether the type
of anchor is attached or detachable.

Anchored Type rule VTAT

It is valid to use an anchored typeAT of the formlike anchorin
a classC if and only if it satisfies the following conditions:
1 •anchor is eitherCurrent or the final name of a query ofC.

2 •anchor is not acyclic anchor.

3 • Thedeanchored formUT of AT is valid inC.

Thebase class andbase type ofAT are those ofUT.

← “TWO-TIER DEFI-
NITION AND
UNFOLDEDFORMS”,
2.11, page 99.

TYPES §11.10338

Other than the no-cycle requirement, the rule on anchors is liberal. In
particularan anchor’s type may be expanded, or aFormal_generic_name.
Anchoring is of limited benefit in these cases, since the conformance rules
leave little possibility of redeclaration for an entity of expanded or formal
generic types. But an anchored declaration can cause no harm, and still has
the benefits of clarity and concision.

Now for the semantics. When we declarea as being of typelike anchor
with anchorof typeT we considera, for all practical purposes — such as
deciding what features are applicable toa — to be of typeT too. So the base
type oflike anchorwill be T, or more generally the base type ofT (since we
allowT itself to belike other_anchoror some other non-primitive type). So in

we may consider, within the function’s body, thatResultis of typeANY.
Similarly, with

whereassignmentis an attribute of typeEMPLOYEE_ASSIGNMENT, we
may treata, within set_assignment, as being of that same type.

The “current type”, used in thelike Current case, is the class name
equipped with its generic parameters if applicable. So for alike Current
declaration in classPARAGRAPHthe base type isPARAGRAPH; in class
HASH_TABLE[G, KEY –> HASHABLE] it is HASH_TABLE[G, KEY].
This notion will be discussed in the next chapter.

“Expansion status” means whether the type is expanded or reference. In the
of anchoring to aFormal_generic_name, as withlike G in a classC [G], we
shall see that the expansion status ofG depends on every particular generic
derivation: it is the same as the expansion status of the corresponding actual
generic parameter. The status oflike G will follow.

The Anchored Type rule legitimates the use of a recursive definition of the
above semantic rule. To determine the base type oflike anchorwe must
look at the type ofanchor, which might itself involve one or more types of
the formlike other_anchor, leading us to look at the type ofother_anchor
and so on. Because the Anchored Type rule requiresanchorto be a non-
cyclic anchor, this process will always terminate. This also applies to the
process of determining whether the type is reference or expanded.

An anchored type has no properties of its own; it stands as an abbreviation
for its unfolded form. You will not, for example, find special conformance
rules for anchored type, but should simply apply the usual conformance
rules to its deanchored form.

frozen clone(other: ANY): like otheris … do … end

set_assignment(a: like assignment) is … do … end

→ “CURRENTTYPE,
FEATURES OF A
TYPE”, 12.11, page
357.

→ “SEMANTICS OF
GENERIC TYPES”,
12.10, page 355.

§11.11 GUARANTEEING ATTACHMENT 339
11.11 GUARANTEEING ATTACHMENT

-----ADD EXPLANATIONS

Anchored declaration is essentially a syntactical device: you may always
replace it by explicit redefinition. But it is extremely useful in practice,
avoiding much code duplication when you must deal with a set of entities
(attributes, function results, routine arguments) which should all follow
suit whenever a proper descendant redefines the type of one of them, to
take advantage of the descendant’s more specific context.

Attached, detachable
A type is detachable if its deanchoredform is a Class_type
declared with the? Attachment_mark.
A type isattached if it is not detachable.

By taking the “deanchored form”, we can apply the concepts of “attached”
and “detachable” to an anchored typelike a, by just looking at the type of
a and finding out whether it is attached or not.

As a consequence of this definition, an expanded type is attached.

As the following semantic definition indicates, the idea of declaring a
type as attached is to guarantee that its values will never be void.

Attached type semantics

Every run-timevalue of anattachedtype is non-void (attached to
an object).

TYPES §11.12340
11.12 STAND-ALONE TYPES

In contrast, values of a detachable type may be void.

These definitions rely on the run-time notion of avaluebeing attached
(to an object) or void. So there is a distinction between thestaticproperty
that an entity is attached (meaning that language rules guarantee that its
run-time values will never be void) or detachable, and thedynamic
property that, at some point during execution, its value will be attached or
not. If there’s any risk of confusion we may say “statically attached” for the
entity, and “dynamically attached” for the run-time property of its value.

The validity and semantic rules, in particular on attachment operations,
ensure that attached types indeed deserve this qualification, by initializing
all the corresponding entities to attached values, and protecting them in the
rest of their lives from attachment to void.

From the above semantics, the! mark appears useless since an absent
Attachment_markhas the same effect. The mark exists to ensure a smooth
transition: since earlier versions of Eiffel did not guarantee void-safety, types
were detachable by default. To facilitate adaptation to current Eiffel and
avoid breaking existing code, compilers may offer a compatibility option
(departing from the Standard, of course) that treats the absence of an
Attachment_markas equivalent to?. You can then use! to mark the types that
you have moved to the attached world and adapt your software at your own
pace, class by class if you wish, to the new, void-safe convention.

Stand-alone type
A Type is stand-alone if and only if it involves neither any
Anchoredtype nor anyFormal_generic_name.

In general, the semantics of a type may be relative to the text of class in
which the type appears: if the type involves generic parameters or anchors,
we can only understand it with respect to some class context. A stand-alone
type always makes sense — and always makes the same sense —
regardless of the context.

We restrict ourselves to stand-alone types when we want a solidly
defined type that we can use anywhere. This is the case in the validity rules
enabling creation of arootobject for a system, and the definition of aonce
function.

	11 11 Types
	11.1 OVERVIEW
	11.2 THE ROLE OF TYPES
	11.3 WHERE TO USE TYPES
	11.4 HOW TO DECLARE A TYPE
	11.5 INSTANCES AND VALUES
	11.6 INSTANCES OF A CLASS
	Instance, direct instance of a class

	11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS
	Base principle
	Base rule
	Base class and base type of an expression

	11.8 CLASS TYPES WITHOUT GENERICITY
	11.9 EXPANDED TYPES
	Role of expanded types
	Defining expanded types
	Expanded type, reference type
	Basic types
	Basic type

	11.10 ANCHORED TYPES
	Anchor, anchored type, anchored entity
	Anchored examples
	Anchoring to Current
	Anchoring to an expanded or generic
	Avoiding anchor cycles
	Anchor set; cyclic anchor
	Types and classes involved in a type
	Constant type
	Validity and semantics of anchored types
	Deanchored form of a type

	11.11 GUARANTEEING ATTACHMENT
	Attached, detachable

	11.12 STAND-ALONE TYPES
	Stand-alone type

