11

Draft 5.02.00-0, 15 August 2005 (Santa Barbara). Extracted from ongoing work or
future third edition of “Eiffel: The Language”. Copyright Bertrand Meyer 1986-
2005. Access restricted to purchasers of the first or second printing (Prentice Hall
1991). Do not reproduce or distribute.

Types

11.1 OVERVIEW

Types describe the form and properties of objects that can be created during
the execution of a system. The type system lies at the heart of the object-
oriented approach; the use of types to declare all entities leads to more clear

software texts and permits compilers to detect many potential errors and
inconsistencies before they can cause damage.

This chapter — complemented by the next two, which address generic
types and tuple types — presents the type system.

11.2 THE ROLE OF TYPES

Every object is an instance of some type. (More precisely, it drect
instanceof exactly one type; thanks to the inheritance mechanism it may
also be an instance of other, more general types.) Class texts may refer to
eventual run-time objects through the software elements that denote
values: constants, attributes, function calls, formal routine arguments, local
variables, and expressions built from such elements.

Typing in Eiffel is static. For software developers, this means four
practical properties:

 Every element denoting run-time valuestyped it has an associated
type, limiting the possible types of the attached run-time objects.

* This type is immediately clear — to a human reader or to a language
processing tool — from the element itself or the surrounding software
text. For a manifest constant, such as the Intd@dr the type follows
from the way the constant is written; in all other cases it is a
consequence of a type declaration, made compulsory by the validity
rules of the language.

* Non-atomic constructs impose complementary validity constraints,
defining admissible type combinations. For example, an assignment
requires the type of the source to conform to the type of the target.

316 TYPES 811.2

* Since the constraints are defined as conditions on the software text,
language processing tools such as compilers or static analyzers may
check the type consistency of a syststatically, that is to say, just by
examining the system’s text, without making any attempt at execution.

This explicitandstaticapproach to typing has a number of advantages.
It makes software texts easier to read and understand, since developers, by
declaring the types of entities, reveal how they intend to use them. It
enables compilers and other tools to catch many potential errors by
detecting inconsistencies between declarations and actual uses. It gives
compilers information that helps them generate much more efficient code
than would be possible with an untyped (or more weakly typed) language.

Typing in Eiffel is taken seriously. Many languages that claim to be
statically (or even $trongly’) typed allow developers to cheat the type
system, enticing them into sordid back-alley deals sometimes known as
casts No such cheating exists in Eiffel, where the typing rules suffer no
exception. This is essential if we want to have any trust in our software. The
only price to pay for this added security is the need to declare entities
explicitly and to observe validity constraints — obligations which are even
easier to justify if you observe that the type system, far from being a
hindrance to the developer’s freedom of expression, helps in the production
of powerful and readable software systems.

It should be noted, however, that some conceptual issues, having to do wi—~ Chapter2s.
covariance and descendant hidingcan cause type problems in certain
borderline cases. Thehapter on type checking discusses them.

The present chapter and the next two (on generic types and tuple types)
explore the basic forms of types and their properties. This will not exhaust,
however, the issue of typing, which pervades most of the discussions of this
book. To understand the type system fully, you will need important
complements provided by two separate chapters:

 The discussion atonformancewill explain how a type may be used in
. . L - - Conformance is the
lieu of another, and its instances in lieu of that other’s instances. topic of chaptet4,

Chapter23 covers

» The presentation of thigpe checking policy will show how the typinggggsi:ﬂga’gze;hecmng
policy defines the fundamental validity constraints on the mus. *'

important computational construct — feature call.

§11.3 WHERE TO USE TYPES 317

11.3 WHERE TOUSE TYPES

You will need to write a type — a specimen of the constiygte— in the
following contexts:

1+<To declare the result type of an attribute or function: const- Syntaxpagel4l
Declaration_body

2+To declare the arguments of a routine or inline agent: cons'- Page21§ see also
Formal_argumenislefined in terms dEntity declaration_list Inine_agentp. 743

3 +To declare a local routine entity: constrdabcal_declarationgalso . page221
defined in terms oEntity declaration_ligt

4 « To indicate that a class has a certain parent: condbaetnt as part of — Page169
Inheritance.

5 « To specify actual generic parameters, as explained in the next ch- Page342
constructActual_generics

6 * To specify a genericConstraint also in the next chapter: constrL— Page349
Constraint part ofFormal_generics

7 «To indicate an explicit creation type in a creation instruction_ Page543
expression: construéixplicit_creation_type

8 « To choose from a set of instructions, based on an expressions’s ty— Choice page477.
aMulti_branch

9 « To specify the parameters (component types)Tafge_type - Page364
10 «To declare the type of a target aall agent ~ Agent_actuabager44
11 «To specify target conversion for infix operators. — Page762

12 «To call a feature without a target, ifNan_object_call
- Page618

As an example of the first three cases, here is the beginning of a possible
function declaration:

total_occupied_areéwl: LIST[WINDOW): RECTANGLE
-- Smallest rectangle that covers the representation
-- of all windows inwl
local
Xmin, ymin xmax ymax REAL
... Rest of routine omitted ...

[72)

In this example and all the others, types are easy to recognize: apart from
keywords such dike, they use all-upper-case names.

The function has a result (casp of type RECTANGLE probably a - Seechaptet2about

reference type, and one argument (cayf type LIST[WINDOW], a 9enerically derived

13 H a ” M types
genericallyderved” reference type. It uses four local variables (c@)sa

type REAL, a basic expanded type. The usaifNDOWas actual generi

parameter t&.IST provides an example of case

318

TYPES 811.3

The following class beginning uses types in its taareniparts (casé):

classDISPLAY_STATHherit

LIST[WINDOW
INPUT_MODE

An example of cas@is the use of typADDABLEIn a class text starting with

‘classMATRIX[G - ADDABLE] ... \

which states that any actual generic parameter must confoADABLE
(which means roughly that it must be based on a descendant of that class).

An example of cas@ is theCreation_instruction _. See chaptetOabout
creation instructions
‘ create{ WINDOW a.set(x_cornery_cornej ‘ and expressions

which creates a direct instanceWINDOW initializes it using a call t@et
with the given arguments, and attaches ittf a is of type WINDOWYyou
may (and usually should) omit tH&VINDOW part; but it is useful ifa’s
type is a proper ancestor @ INDOWand you expressly want to creas
aWINDOW Another example of cages theCreation_gpressionin

‘screendisplay(create{ WINDOW .set(x_cornery_cornej) ‘

where we pass as argument to proceddigplay an object of type
WINDOW created for the occasion. Here specifying the type is not an
option but a necessity since, unlike the previous case, we don’t have an
entity a with a type declaration to serve as the default.

An example of cas@is a multi-branch instruction

inspect
last_exceptiontype

when{ DEVELOPER_EXCEPTION then
fix_context retry

when{ SIGNAL}, { NO_MORE_MEMORthen
cleanup

end

appearing in this case inRescuelause to process exceptions. This states
what to do depending on the typeladt_exception

An example of casé& (similar in syntax to casé, actual generic
parameters) is the tuple type

‘ TUPLE[REAL INTEGER RECTANGLH

§11.4 HOW TO DECLARE A TYPE 319

which describes “tuples” — sequences of values— with at least three
elements, the first of tyd@EALand so on.

An example of casg0 is

agent{ RECTANGLE -fotate (90)

an agent expression denoting a partially specified operation, ready to call
rotate (assumed to be a procedureRECTANGLEwith a single argument
representing an angle) to rotate any rectangle by 90 degrees.

An example of case ---- ADAPT --- is an instruction

if {x: EXPECTED_TYPE retrieved_from_networthen
X.f

else

end

which determines whether a run-time object obtained from an outside
source is of a certain predicted type.

Casell covers the ability to convert the result of an arithmetic operator
to the type of the second operand, as in the following in tNAESGER

plusalias"+" convert{ COMPLEX } (other REALD: REAL
... Definition of integer addition..

which dispatchegour_real + your_complexo the feature with the same
name in clas€ OMPLEX(rather than the one specified here).

Finally, casel2 allows calls of the form{ T} some_featuravhere
some_featurés a feature of typd that doesn’t need a target, for example
a constant attribute.

11.4 HOW TO DECLARE ATYPE

The basis of the type system is the notion of class: every type is, direc*; ' SeeB ASECLASS,
indirectly, basedon a class, which provides the principal information f%@sn
determm_mg h0_/v instances of the class will look Ilke._ But classes are 17— =0 below
the starting point of a whole set of type mechanisms that afford , ..

considerable flexibility:

« Certain classes, said to lypeneric do not directly describe a type;
instead, they describe a type pattern, with one or more variable parts that
must be filled in, through a “generic derivation”, to yield an actual type.
For example the claskIST [G] describes lists of elements of an
arbitrary type, denoted in the class®y

320

TYPES §11.4

» Within the text of a generic class such BKST, the formal generic
parameters such asG themselves represent types (the possible actual
generic parameters). The class may for example introduce an attribute
of type G, or a routine with an argument or result of tyge
Syntactically, then, a formal generic parameter is a type, although the
exact nature of that type is not known in the class itself; only when a
generic derivation provides the correspondictual generic parameter
(such asVINDOWabove) can we know wh& represents in that case.

« Finally, you may declare an entigin a classC by using aranchored
type of the formlike anchor for some other entityanchor This
mechanism avoids tedious redeclarations since it ties the fatetgpe
to that ofanchotr in C, xis treated as if you had declared it with the type
used for the declaration ofnchor, if a proper descendant of
redeclaresinchorwith a new typex’s type will automatically follow.

Here is the syntactical specification covering all the possibilities.

I BTN TAX

Types
A - Tuple_typds
Type & Class_or_tuple_type defined in the chapter
Formal_generic_namle on tuplespage364
Anchored — Actual_generics
describes alist of types
Class_or_tuple_typ@ Class_typd Tuple_type The specification is on
page342as part of the
Class_type2 [Attachment_mark diseussion of genericity
Class_name in the next chapter

[Actual_generick
Attachment_marké "?" | "I"
Anchored2 [Attachment_marklike Anchor

Anchor 2 Feature _namgCurrent

The most common and versatile kind @lass_type covering typesAclassis ariexpanded
described by a class name, followed by actual generic parameters ﬁfjje';)gsgiﬁf\fjm
class is generic. The class name gives the type’s base classb#fs#ass expanded classand a
is expanded, the&Class_typatself is an expanded type; if the base clasmnon-expanded class

non-expanded, thélass_typds a reference type. otherwise

Class_or_tuple_typeovers tuple types as well as class types. Tuple
types, studied in their owchapter, are a kind of trimmed-down class tyj- Chapterl3dis-
TUPLE[a: X; b: Y; c: Z] acts like a class with three featuras andc of SUSses tuples
the types given. You can omit the label$JPLE[X, Y, ...] describedinite
sequences of values of which the first must be of dypihe second of type
Y and the third of typeZ. Tuple types share a number of properties with
class types, hence the first varianffgfe, covering them both.

§11.5 INSTANCES AND VALUES 321

An Attachment_mark? indicates that the type idetachable its values

may be void — not attached to an object. Theark indicates the reverse:

the type isattached meaning that its values will always denote an object;
language rules, in particular constraints on attachment, guarantee this. No
Attachment_markneans the same asto ensure that a type, by default,

will be attached.

The second syntactical variangormal_generic_namecovers the
formal generic parameters of a clas<C lias been declared as

‘...classC [...G,..]... ‘

then, within the text oC, G denotes a type. As noted, you cannot know the
precise nature of this type just by looking at cl@ % represents whatever
actual generic parameter is provided in a particular generic derivation.

The next categoryanchoredtypes of the formlike anchor accounts
for anchored declarations.

Tuple_type the last category, covers types of the fdrm - Chapterl3dis-
cusses tuples

The rest of this chapter examines these type categories, except f
generic and tuple mechanisms which have their own chapters.

11.5 INSTANCES AND VALUES

For each kind of type in the language, we must specify — along with
associated syntax rules and validity constraints —s#manticef the type.

Defining the semantics of a typanvolves answering two questions:

== * What objects can be produced, during execution, from the description
‘ given byT?

* What are at run time the possible values of an entity or expression of
typeT?

The answers have precise names:

ating type of an object;
Thedirect instancesof a typeT are the run-time objects resulting geneator”. page 498

from: representing amanifest constant, manifest tuple,

Manifest_typeagent orAddressexpression of typé; applying a
creationoperation to darget of typeT; (recursively) cloning an
existing direct instance gt

The values of a typeT are the possible run-time values of an
entity or expression of type

\—l—‘ Direct instances and values of a type ~ SeealsdType gener-

322

TYPES 811.5

Specifying the direct instances might seem sulfficient; the reason we also
need to consider values is the difference betwegrandedandreference
types. A type’s values are objects in the first case, references to objects in
the second.

Expanded types include as a special sub-category the basic types:

BOOLEAN CHARACTERand its sized variants such &1ARACTER_8

INTEGERanNd its sized variants such 88TEGER_8and NATURAL_ 64

REAL and its sized variantsREAL_32and REAL_64 and POINTER - “PASSING THE

covering addresses of features to be passed to external (non-Eiffel) routincABDRESS OF AN
; : : : EIFFEL FEATURE”

Clearly, an entity of integer type should give us an integer value, not 18 823

reference to a dynamically allocated cell that contains an integer. SLEPEeES

Reference provide more flexibility thanks to dynamic object allocation,
allowing the execution to create objects when and only when it needs them;
reference semantics, supporting linked data structures. Expanded types, for
their part, are useful not only for basic types but also for describurig
objectsavoiding indirections. The role of expanded types, and the criteria
for choosing between expanded and reference, are further studied below.

The notion of type has, besides the expanded-reference distinction, a
number of variants detailed in the following sections:

* You may define a type bgnchoring, aslike somethingtying it to the
type of an entity, so that it will follow any redefinitions in descendants.
Anchoring is covered later in this chapter.

* A type may also be @&ormal_generic_nameepresenting a formal
generic parameter of the enclosing class; it then serves as a placeholder
for any type (reference or expanded) that is used in a generic derivation.
The whole generic mechanism will be discussed in the next chapter.

In understanding type semantics, another useful notion is thast@ince
complementing the notion directinstance defined above:

Instance of a type

The instancesof a typeTX are thedirectinstances of any type
conforming toTX.

Since every type conforms to itself, this is equivalent to stating that the
instances of Xare the direct instances ©K and, recursively, the instances
of any other type conforming X

8§11.6 INSTANCES OF A CLASS 323

In the well-known example of an inheritance hierarchy with a dA€&JRE
at the top and descendants describing successively more specific geometrical
T figures, such a€LOSED_FIGUREPOLYGON RECTANGLE SQUARE
I each inheriting from the preceding one, a direct instanc®@fARHEs also
an instance of all the others, includiBQUAREtself.

This also illustrates that a deferred type suck#3URE, which cannot have

direct instances (since creation instructions of tafJ&URE are invalid), - “Creation and
may have instances if the class has effective descendants. defered classes’,
page 529

A semantic rule connects the notion of value and instance:

Instance principle

Any value of a typd is:

« If Tisreference, either areference toiastance ofl or (unless
T is attached) a void reference.

« If Tisexpanded, an instance of

Thanks to this rule, it suffices, when studying type semantics, to define the
direct instances of each possible type. The instances follow immediately
and — since the type’s declaration indicates whether it is reference (and if
s0, attached) or expanded — so do the values.

11.6 INSTANCES OF A CLASS

Along with the instances, direct and indirect, dfype it is convenient to
talk about the corresponding notion fotlass

Instance, direct instance of a class

An instance of a clasSis an instance of any tydebased ort.
Adirectinstance o€ is a direct instance of any tydeébased ort.

For non-generic classes the difference betw@andT is irrelevant, but for

a generic class you must remember that by itself the class does not fully
determine the shape of its direct instances: you need a type, which requires
providing a set of actual generic parameters.

324 TYPES 811.7

11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS

At its core, the notion of type in Eiffel proceeds from the notion of class.
Indeed, we can bring down the properties of any type to those of an
associatedlass_or_tuple_typand, through it, to those of a class:

T Base principle
Any type T proceeds, directly or indirectly, from a

Class_or_tuple_typealled itsbase type and an underlying class
called itsbase class

The base class of a type is also the base class of its base type.

A Class_typeés its own base type; an anchored tyjilee anchor with
anchorhaving base typ® also hadJ as its base type. For a formal generic
parametelG in classC [G —>T] ... the base type is (in simple cases) the
constraining typd, or ANYif the constraint is implicit.

The base class is the class providing the features applicable to instances

of the type. IfTis aClass_typé¢he connection to a class is diretts either

the name of a non-generic class, suctPARAGRAPHor the name of a
generic class followed byctual_genericssuch ad.IST [WINDOW. In

both cases the base classlas the class whose name is used to obfin

with any Actual_genericsremoved: PARAGRAPHand LIST in the
examples. For d&uple_type the base class is a fictitious claBsPLE,
providing the features applicable to all tuples.

For types not immediately obtained from a class we obtain the base
class by going through base type: for example anAnchoredtype of the
form like anchot andanchoris of type LIST [WINDOW, then the base
class of that typd,IST, is also the base classTof

=

H

—

A general property applies to the base class and base type:

Base rule
The base typeof any type is aClass_or_tuple typewith no

Attachment_mark
The base clasof any type other than @lass_or_tuple_typis

- . Aclasstextmay refer to
(recursively) the base class of its base type. a class rather tﬁan a
Thedirect instancesof a type are those of its base type. typeinonly three cases

the beginning of the
class declarationas in

Why are these notions important? Many of a type’s key properties (suclassyOUR_CLASS_

the features applicable to the corresponding entities) are defined by it\AVE:-.; aclients
: part (syntax page04);

class. Furthermore, class texbnostnever directly refer to classes: theand aPrecursorcon-

refer totypesbased on these classes. struct(syntax page96).

X
-

For example, assuming thatis generic:

§11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS 325

« If D is an heir ofC, theInheritancepart of D will list as Parentnot C,
but a type of the fornC [ACTUALY ...].

« To describe objects to whidb's features are applicablB, will declare
an entitye using notC but, again, a type generically derived fr@n

In such situations (and all other uses of types listed earlier) the base class
provides the essential information: what features are associate@wlith

the first example, they give the list of features thahherits fromC; in the
second, they provide the features wHitmay call ore.

As for the base type, besides its role in defining the base class, it ap-» Conformancechap-
in many of theconformancaules, and determines what kind of objecw:g;% creation chap-

creation operation will produce at run time.

Clearly, you may only build a class type, generically derived or not, if
the base class is a class of the universe:

: Class Type rule VTCT

ALY A Class_typeis valid if and only if it satisfies the following
two conditions:
1« ItsClass_namis the name of a class in the surroundimiyerse.

2 «If it has anAttachment_markthat class is not expanded.

The class given by conditiof will be the type’s base class. Regarding
condition2, an expanded type is always attached, sé@achment_mark
would not make sense in that case.

The Base rule simplifies the presentation of type semantics. For every
kind of type reviewed in this chapter and the next two we must specify the
type’s semantics, by stating what are the type’s direct instances and its
values. Thanks to the Base rule the process is straightforward:

[EEwasrics]] : - For Formal_generic_
T Type Semantics rule naméypesthe expandéd
. . . . e reference status depends
To define the semantics of a typé suffices to specify: on each generic deriva-
1 « WhethefT is expanded oreference. tion. SeESEMANTICS
OFGENERICTYPES",

2 * WhetherT, if reference, igttached odetachable. 12.10, pae 355

3 +What isT's base type.
4.If Tis aClass_or_tuple_typavhat are itsbaseclass and its
type parameters if any.

326 TYPES §11.8

As soon as we know's base type, and its actual generic parameters if i Chapterl9.
we will know its direct instances those of its base type, determined by t
rulesontypeinstances. Iff is not a class type, we will know from the Ba:

rule that its base classis the base class of’s base type (itself a
Class_or_tuple_typeFinally, thevaluesof T will be its instances if it is

an expanded type, otherwise references to such instances.

In application of the Type Semantics rule, every presentation of a new
kind of type in this chapter and the next two haseMANTICS paragraph
that simply defines the base type (it@above), the base class in the case
of aClass_or_tuple_typ@l), and whether it is expanded or refererife (

To simplify the discussion, we allow ourselves to use “base class” and
“base type” directly for expressions:

\—l—‘ Base class and base type of an expression

Any expressiore has ebase typeand abase classdefined as the
base type andase class of thgpe ofe.

11.8 CLASS TYPES WITHOUT GENERICITY

We start our exploration of the type categories with the simplest way of
defining a type: using a class without generic parameters.

In this case there is no difference between class and type. Assume for
example a class text of the form

| 4 | classPARAGRAPHeature

first_line_indentINTEGER
other_lines_indeniNTEGER
set_first_line_indenin: INTEGER
... Procedure body omitted ...
... Other features omitted ...
end

Then a class of the same universe (includt@iRAGRAPHItself) may use
PARAGRAPHas a type, for example to declare entities.

Here PARAGRAPHIs declared as a non-expanded class, so the
corresponding type is a reference type. At run-time, entities of that type
represent references which, if not void, are attached to instances of
PARAGRAPHobtained through creation instructions.

§11.9 EXPANDED TYPES 327

If classPARAGRAPHiad been declaredexpanded class.., then the
resulting type would be expanded. In the general case:

: ferent “Generically
A non-generic clasS used as a type (of tiiglass_typeategory) has deerﬁced C?;]Sesr 'ga{pe

the same expansion statusge. it is expanded i€ is anexpanded semantics”, pge 355
class, reference otherwise). It is its obasetype (after removal of
anyAttachment_markandbase class.

Non-generic class type semantics i oy

These are not fascinating notions yet, but we must define a base class and

base type for every type, and they will get less trivial as we move on.
PARAGRAPHused as a type, is its own base type and its own base ¢"Sge chaptet3about
Values of typePARAGRAPHare references to instances of the clecalingfeaturesonentities
Clients of the class magall exported features suchfist_line_indentind
others on entities of tyd@ARAGRAPH

Only one constraint, the Class Type rule, applies @ass_typdhat is
not generic: thédentifier must be the name of a class of the universe.

11.9 EXPANDED TYPES

Most of the types you define will probably be reference types similar to the
last examples L(ST, WINDOW PARAGRAPH.), as they offer the
flexibility of creating objects on demand, and the ability to define linked
structures. You can also use expanded types.

Role of expanded types

An earlier chapterpreviewed some of the possible reasons for usi™?=ypanDED CLI-
expanded types: ENTS”, 7.5, pge 192

» Realism in modeling external world objects, especially when you v
to describe objects that have sub-objects.

* Possible efficiency gain.
* Basic types.
« Interface with other languages.

» Machine-dependent operations.

The first case arises when we use Eiffel objects to model external world
objects which are composite, rather than containing references to other
objects. For example, in a Computer-Aided Design application, we may
view a car as containing, among others, four "wheel" sub-objects, rather
than four references to such objects. Such a decision, illustrated on the
following figure, is only legitimate for objects which may never share sub-
objects: in this example, a wheel may not be part of two different cars.

328

TYPES 811.9

| | Sub-object vs
wheel_1 reference to
another object

wheel_2

wheel_3

wheel 4

Reference
Fields

ninin
i

Other
Expanded
Fields

The second reason is, in some circumstances, a gain in efficiency:
composite objects save space (by avoiding pointers) and time (by avoiding
indirections). For example, if every instance BERSONhas ahead
declaringheadof an expanded type will give the structure illustrated &y

on the next figure, avoiding the indirection ¢f). Here again, this only
applies because there is no sharing of sub-objects, at least if we exclude the
case of Siamese twins.

Composite car

head head object
[F—
Other
fields

(@) (b)

§11.9 EXPANDED TYPES 329

; You must realize, however, that the possible efficiency gain is not guaranteed.
Vi~ 3 The last two figures, and similar illustrations of expanded attributes and

composite objects, are only conceptual descriptions, not implementation
diagrams. (Unlike other languages that shall remain nameless here, Eiffel - Chapter22.

specified in terms of the abstract properties of software execution, not k

prescribing a certain implementation.) The authors of an Eiffel compiler o1

interpreter may choose any representation they wish as long as they guarantee

the semanticof expanded values, according to which (as explained in the

discussion of reattachment irla@erchapter) an assignmext=y must copy

the object attached toonto the object attached xpand an equality test=y

must compare the objects field by field.

Both the time and space gains are important in the case of basic types eh ¢330 apout
as integers or characters; to manipulate the vaJuee should not need ttasic types
allocate an integer object dynamically, or to access it through a refer

For that reason, basic types are described by expanded classes of the Kernel

Library, as explained in later section.

Another opportunity for expanded types may be the need to keep data
structures produced and handled by software elements written in other
languages. An example might be control information associated with a
database management system, which Eiffel routines will not manipulate
directly, but pass back and forth to foreign (non-Eiffel) routines. As you
have no control over the format and size of such data structures, the best
way may be simply to keep them as sub-objects within your Eiffel objects.

Defining expanded types

The class types seen so far may or may not be expanded:

* A Class_typavhose base class is expanded is itself an expanded type;
values of that type are objects (instances of the type).

* A Class_typewhose base class is not expanded is a reference type;
values are references to potential objects, created dynamically.

---- WHOLE DISCUSSION OF “ EXPANDED T” REMOVED -----

Expanded types have specific properties, already previewed. First we must
know precisely when a type is “expanded” and when it is “reference”:

Expanded type, reference type
A type T is expanded if and only if it is not a

Formal_generic_nanmend thebaseclass of itsdeanchoredorm

is anexpanded class.
T is areference typeif it is neither a Formal_generic_name

nor expanded.

330 TYPES 811.9

except for the case of @ormal_generic_namevhich stands for any typ(C“SSEd in the next chap-
to be used as actual generic parameter in a generic derivation: "
derivations might use a reference type, others an expanded type.

Tuple types are, as a consequence of the definition, reference types.

ThIS definition characterizes every type as either reference or expa - ‘Genericity is dis-

Basic types

An important case of expanded types is a collectidbasfictypescovering - Detailed in chapteB0.
B simple values:

:'""i“"‘ « BOOLEAN describing boolean values (true and false).
« CHARACTERdescribing single characters.

« INTEGER and its variants supporting specific sizéBITEGER_8
INTEGER_16INTEGER_64 The sizes of values of typg®NTEGER
must be settable through a compilation option (the recommended value
is 64).

* REAL: floating-point numbers and its variants supporting specific sizes:
REAL_32REAL_64The sizes of values of tydREALmMust be settable
through a compilation option (the recommended value is 64).

* POINTER serving to pass addresses of Eiffel features and expressions
to non-Eiffel routines.

Three types also enjoy special properties but are not considered basic typ - See chapte&sabout
ARRAYSTRINGand tuple types. ARRAYandSTRING

and13about tuples
RN Basic type
The basic types ar8OOLEAN CHARACTERand its sized

variants,INTEGERand itssized variants,REAL and itssized
variants andPOINTER

Like most other types, the basic types are defined by classes, found in the
Kernel Library. In other words they are not predefined, “magic” types, but
fit in the normal class-based type system of Eiffel.

Compilers typically know about them, so that they can generate code
that performs arithmetic and relational operations as fast as in lower-level
languages where basic types are built-in. This is only for efficient
implementation: semantically, the basic types are just like other class types.

Properties of basic types, especially their conformance and sema<cfapterso.
appear in Zhapter devoted to them.

§11.10 ANCHORED TYPES

331

FRELVTEW

The basic types need some special conformance properties. In ge— “EXPANDED TYPE
a typeU conforms to a typd only if U’s base class is a descendanitsf CONFORMANCE,

base class. But thdNNTEGER for example, is not a descendantREAL
Since mathematical tradition suggests allowing the assignmeritfor r
of type REALandi of type INTEGER the definition of conformance wil
include a small number gpecial cases for basic types.

Except forPOINTERwhich has no exported feature of its own, each of the
basic classes describes the operations applicable to values of the corresponding
type (booleans, characters etc.). For compatibility with traditional arithmetic
notation, many of the feature identifiers aiaryor Binary:

11.10 ANCHORED TYPES

[P]

The originality of anAnchoredtype, the last category in this chapter, is that
it carries a provision for automatic redefinition in descendants of the class
where it appears.

An Anchoredtype is of the form

‘ like anchor

with the predictable definitions:

I HEFIEET M2 MS

Anchor, anchored type, anchored entity

Theanchor of an anchored typlke anchoris theentity anchot
A declaration of an entity with such a type is amchored
declaration, and the entity itself is aanchored entity.

The anchor must be either an entity,@urrent. If an entity,anchormust
be the final name of a feature of the enclosing class.

Anchored types avoid “redefinition avalanche”. As long as what you
only consider what happens in a cld@sdeclaring an entity of typéke
anchorin C is the same as declaring it of the same typarmchor sayT.

The difference comes from inheritance: if any descendaft mdefines
the type ofanchorto a new type (conforming td), it will be considered to
have also redefined all the entities anchorezhtthor

Since it is quite common to have a group of related entities that must
keep the same type throughout their redefinitions, anchored declaration is
essential to the smooth functioning of the type system. Without it we would
constantly be writing lots of new declarations serving no other purpose
than type specialization.

14.9, pae 386

332 TYPES §11.10

Anchored examples

redeclaration; the example was that of a routine in the Data Strudowardstheenddf0.9.

We already encountered anchored declarations in the discussior, Tfe encounter was
Library class. INKED_LIST page 263

‘ put_elemenlc: like first_elementi: INTEGER ‘

whose argumerit represents a list cell. This declaration “anchdrsto
first_elementa feature of the class declared of tylp&IKABLE [G] (the

type representing list cells). As a result itself is considered in
LINKED_LISTto have the same type disst_elementLINKABLE [C].
Becauselc has been anchored térst_element any descendant of
LINKED_LISTwhich redefinedirst_elemento a new type, taking into
account more specific forms of list cells (such as cells chained both ways,
or tree nodes), does not need to redefmand all similar entities of the
class: their types will automatically follow the redeclared type of their
anchorfirst_element

Anchoring is often useful for arguments of “set” procedures. If class
EMPLOYEHhas an attributassignmentf typeEMPLOYEE_ASSIGNMENT
and an associated procedure

m set_assignmerfa: EMPLOYEE_ASSIGNMENT ygggm etgidseig gfytlgle_
= -- Makea the employee’s current assignment. see texpl
] require
exists a/= Void
do
assignment= a
ensure
set assignment a
end

itis usually be preferable to use the tyjze assignmerto declare the argument
a. Within the given class, the effect is the same, simeggnments of type
EMPLOYEE_ASSIGNMEN®But if a descendant redefinessignmento a
more specific type — such &NGINEERING_ASSIGNMEN+the signature
of the procedureet_assignmentill automatically follow.

Anchoring to Current

You may useCurrentas anchor. Declaringof typelike Currentin a class
C is equivalent to declaring it of typ€ in C, and redeclaring it of typ®
in any proper descendabtof C.

§11.10 ANCHORED TYPES 333

Among other advantages, this technique avoids lengthy redefinitions.
LINKABLE, mentioned earlier, relies on it. A list cell has a reference to its
right neighbor:

Linkable list
item | right —» cell

This figure and the next
appeared previously on
page264

The attributeright denotes that reference in cldd®NKABLE, where it is
anchored t&Current

I

‘ right: like Current

This declaration guarantees that in any more specialized version of
LINKABLE, described by a proper descendant of cla$&KABLE, right

will automatically denote to objects of the descendant type. An example is
classBI_LINKABLE, representing elements chained both ways:

Bi-linkable list

<+ left || item right +—»
cell

In this case the anchored declaration guarantees that a doubly linked list
element is only used in conjunction with other elements of the same (or a
more specialized) type. Another descendantLtfIKABLE is a class
describing tree nodes; here too, the anchoring guarantees that tree nodes
only refer to other tree nodes, not to simpliNKABLE elements.

Anchoring to an expanded or generic

In like x wherex is a query or argument, there is no particular restriction
on the typeT of x. In the most common caewill be a reference type, but
it may also be anything else, such as:
« An anchored type itself — under a no-cycle requirement explained below.
* An expanded type.

* A Formal_generic_nameepresenting a generic parameter of the
enclosing class.

* A Tuple_type

334 TYPES §11.10

The expanded case is not very exciting because redefinition possiaitic- As a consequence of
very limited for the anchor. It enables you, however, to emphasize tt‘Redeclaation rule”.

o ..page 307and“Dir ect
group of expanded entities must have the same type, and facili,ontormanceexpanded
switching between reference and expanded status if you don'’t get thiypes”, pae 388
time around. [NOTE: NEXT TWO SECTIONS WILL PROBABLY BE

REMOVED.]

The formal parameter case is more subtlex i of typeG in a class - “Generic TypeAdap
C[Q], like x denotes the actual generic parameter correspondirt ltsaetiaoglgé'}?hEDerP3E59
Declaringy: like x has, within the text o€, the same effect as declarifigor anexprRESSION”,
of type G. With z of type C [T] for some typeT, theruleson genericity 28.11, pae 773
imply thatz.y has typeT. If C has a featuré (u: like x), a callz. f(v) will
be valid only if the type of/ is exactlyT — not another type conforming to

T, as would be valid ifi was declared just with the tyge

The same spirit guides the interpretatiorliké t, wheret is of a tuple - “TUPLE TYPE
type such a§UPLE[A, B, C]. If uis declared aJUPLE[A, B, C], the %&e
conformanceulesontupletypes let us assign tonot only a tuple such azMg%ngtssee
[al, b1, c1] (with al of type A and so on) but also a longer tuple such
[a1, bl c1, d1, e]] as long as the initial items are of the requisite typ&s
B andC respectively). But withu of typelike t, only a tuple of exactly three
elements will be permissible. This means that you can have your choice
between a lax interpretation of tuple types (tuples @éms or more, for
somen) and a restrictive one (tuples of exactly items). The strict
interpretation will be useful in particular foputine agents.

§11.10 ANCHORED TYPES 335

Avoiding anchor cycles

To go from the preceding informal presentation of anchored types to their
precise constraint and semantics requires that we address the issue of
anchor chains and prohibit cycles.

The syntax permitx to be declared of typéke anchorif anchoris
itself anchored, of typkke other_ancharAlthough most developments do
not need such anchor chains, they turn out to be occasionally useful for
advanced applications. But then of course we must make sure that an
anchor chain is meaningful, by excluding cycles such dsclared atke
b, b aslike ¢, andc aslike a. The following definition helps.

Anchor set; cyclic anchor
The anchor setof a typeT is the set ofentities containing, for
every anchored typéke anchorinvolved inT:
e anchot
e (Recursively) the anchor set of the typeanthor

An entity a of type T is acyclic anchor if the anchor set off
includesa itself.

The anchor set ofIST [like a, HASH_TABLHElike b, STRIN{ is,
according to this definition, the det, 13} .

Because of genericity, the cycles that make an anchor “cyclic” might
occur not directly through the anchors but through the types they involve,
as witha of typeLIST[like b] whereb is of typelike a. Here we say that a
type “involves” all the types appearing in its definition, as captured by the
following definition.

Types and classes involved in a type
The typesnvolved in a typeT are the following:
o Titself.

e If T is of the forma T’ wherea is an Attachment_mark
(recursively) the types involved TFi.

e If Tis agenericallydervedClass_type@r aTuple typeall the
types (recursively) involved in any of its actual parameters.

The classesinvolved in T are thebaseclasses of the types
involved inT.

336 TYPES §11.10

A[B, C, LIST[ARRAYD]]] involves itself as well a8, C, D, ARRAY[D]
andLIST[ARRAVY[D]. The notion ofcyclic anchorcaptures this notion in
full generality; the basic rule, stated next, will be that i a cyclic anchor
you may not use it as anchor: the tyige a will be invalid.

--- Auxiliary notion:

Constant type

A type T is constant if every type involved in T is a
Class_or_tuple_type

The restriction tcClass_or_tuple_typexcludes formal generic parameters
and anchored types. Constant types are the only ones permitted for constant
attributes denoting manifest types.

Validity and semantics of anchored types

§11.10 ANCHORED TYPES

337

RAL DY

Deanchored form of a type
The deanchored form of a typeT in a classC is the type
(Class_or_tuple_typer Formal_genericdefined as follows:
1 «If Tislike Current: thecurrent type ofC.
2¢If T is like anchor where the typeAT of anchoris not
anchoredAT.

3 «If Tislike anchorwhere the typ&\T of anchoris anchored but
anchoris not acyclic anchor: (recursively) the deanchore
form of AT in C.

4 «If Tis a AT, whereais anAttachment_marka DT, whereDT
is (recursively) the deanchored form Afl deprived of its
Attachment_markf any.

5 «If none of the previous cases appliés:

of anchoris attached or detachable.

Anchored Type rule VTAT

It is valid to use an anchored typgd of the formlike anchorin
a clas<C if and only if it satisfies the following conditions:

1 «anchoris eitherCurrent or the final name of a query Gf
2 sanchoris not acyclic anchor.

3 « Thedeanchored forrT of AT is valid inC.

Thebase class artthse type oAT are those ofJT.

The notions justintroduced enable us to define the validity of anchored types.
Every type has adeanchoredersion, an tinfoldedform” which expands. “Two-TIER DEFI-
thelike:

NITION AND
UNFOLDEDFORMS”,

2.11, pae 99

Although useful mostly for anchored types, the notion of “deanchored
form” is, thanks to the phrasing of the definition, applicablafy type.
Informally, the deanchored form yields, for an anchored type, what the type
“really means”, in terms of its anchor’s type. It reflects the role of
anchoring as what programmers might call a macro mechanism, a
notational convenience to define types in terms of others.

Cased enables us to tre&tlike anchoras a detachable type whether the type

338

TYPES §11.10

An anchored type has no properties of its own; it stands as an abbreviation
for its unfolded form. You will not, for example, find special conformance
rules for anchored type, but should simply apply the usual conformance
rules to its deanchored form.

Other than the no-cycle requirement, the rule on anchors is liberal. In
particularan anchor’s type may be expandegor aFormal_generic_name

ks Anchoring is of limited benefit in these cases, since the conformance rules

leave little possibility of redeclaration for an entity of expanded or formal
generic types. But an anchored declaration can cause no harm, and still has
the benefits of clarity and concision.

Now for the semantics. When we declaras being of typdike anchor
with anchorof type T we considela, for all practical purposes — such as
deciding what features are applicablate- to be of typeTl too. So the base
type oflike anchorwill be T, or more generally the base typeTofsince we
allow T itself to belike other_anchopr some other non-primitive type). Soin

14

m

|

T

‘frozen clone(other. ANY): like otheris ... do ... end ‘

we may consider, within the function’s body, tHaesultis of type ANY
Similarly, with

‘set_assignmerqa: like assignmeitis ... do ... end ‘

whereassignmenis an attribute of typ&MPLOYEE_ASSIGNMENWwe
may treaf, within set_assignmenas being of that same type.

The “current type”, used in thelike Current case, is the class narr- “CURRENTTYPE
equipped with its generic parameters if applicable. So ftikea Current %‘fzsﬁ':’*
declaration in clasBARAGRAPHhe base type iPARAGRAPHin class 7H
HASH_TABLHG, KEY - HASHABLE it is HASH_TABLHG, KEY].

This notion will be discussed in the next chapter.

“Expansion status” means whether the type is expanded or reference. In t— “SEMANTICS OF

of anchoring to &ormal_generic_namas withlike G in a classC [G], we =~ GENERIC TYPES”,
shall see that the expansion status®ftlepends on every particular generic 12.10. pge 355
derivation: it is the same as the expansion status of the corresponding actuai

generic parameter. The statudiké G will follow.

The Anchored Type rule legitimates the use of a recursive definition of the
above semantic rule. To determine the base typiikefanchorwe must
look at the type oinchot which might itself involve one or more types of
the formlike other_ancharleading us to look at the type ofther_anchor

and so on. Because the Anchored Type rule requrehiorto be a non-
cyclic anchor, this process will always terminate. This also applies to the
process of determining whether the type is reference or expanded.

§11.11 GUARANTEEING ATTACHMENT 339

T

Anchored declaration is essentially a syntactical device: you may always
replace it by explicit redefinition. But it is extremely useful in practice,
avoiding much code duplication when you must deal with a set of entities
(attributes, function results, routine arguments) which should all follow
suit whenever a proper descendant redefines the type of one of them, to
take advantage of the descendant’s more specific context.

11.11 GUARANTEEING ATTACHMENT

----- ADD EXPLANATIONS

Attached, detachable

A type is detachableif its deanchoredorm is a Class_type
declared with th@ Attachment_mark

A type isattachedif it is not detachable.

By taking the “deanchored form”, we can apply the concepts of “attached”
and “detachable” to an anchored tylge a, by just looking at the type of
a and finding out whether it is attached or not.

As a consequence of this definition, an expanded type is attached.

As the following semantic definition indicates, the idea of declaring a
type as attached is to guarantee that its values will never be void.

Attached type semantics

Every run-timevalue of arattachedype is non-void éttached to
an object).

340 TYPES §11.12

In contrast, values of a detachable type may be void.

These definitions rely on the run-time notion of@uebeing attached
(to an object) or void. So there is a distinction betweenstiagic property
that an entity is attached (meaning that language rules guarantee that its
run-time values will never be void) or detachable, and tymamic
property that, at some point during execution, its value will be attached or
not. If there’s any risk of confusion we may say “statically attached” for the
entity, and “dynamically attached” for the run-time property of its value.

The validity and semantic rules, in particular on attachment operations,
ensure that attached types indeed deserve this qualification, by initializing
all the corresponding entities to attached values, and protecting them in the
rest of their lives from attachment to void.

From the above semantics, themark appears useless since an absent
Attachment_marthas the same effect. The mark exists to ensure a smooth
transition: since earlier versions of Eiffel did not guarantee void-safety, types
were detachable by default. To facilitate adaptation to current Eiffel and
avoid breaking existing code, compilers may offer a compatibility option
(departing from the Standard, of course) that treats the absence of an
Attachment_markas equivalent t@. You can then uskto mark the types that

you have moved to the attached world and adapt your software at your own
pace, class by class if you wish, to the new, void-safe convention.

11.12 STAND-ALONE TYPES

Stand-alone type

A Type is stand-aloneif and only if it involves neither any
Anchoredtype nor anyrormal_generic_name

In general, the semantics of a type may be relative to the text of class in
which the type appears: if the type involves generic parameters or anchors,
we can only understand it with respect to some class context. A stand-alone
type always makes sense — and always makes the same sense —
regardless of the context.

We restrict ourselves to stand-alone types when we want a solidly
defined type that we can use anywhere. This is the case in the validity rules
enabling creation of epotobject for a system, and the definition obace
function.

	11 11 Types
	11.1 OVERVIEW
	11.2 THE ROLE OF TYPES
	11.3 WHERE TO USE TYPES
	11.4 HOW TO DECLARE A TYPE
	11.5 INSTANCES AND VALUES
	11.6 INSTANCES OF A CLASS
	Instance, direct instance of a class

	11.7 BASE CLASS, BASE TYPE AND TYPE SEMANTICS
	Base principle
	Base rule
	Base class and base type of an expression

	11.8 CLASS TYPES WITHOUT GENERICITY
	11.9 EXPANDED TYPES
	Role of expanded types
	Defining expanded types
	Expanded type, reference type
	Basic types
	Basic type

	11.10 ANCHORED TYPES
	Anchor, anchored type, anchored entity
	Anchored examples
	Anchoring to Current
	Anchoring to an expanded or generic
	Avoiding anchor cycles
	Anchor set; cyclic anchor
	Types and classes involved in a type
	Constant type
	Validity and semantics of anchored types
	Deanchored form of a type

	11.11 GUARANTEEING ATTACHMENT
	Attached, detachable

	11.12 STAND-ALONE TYPES
	Stand-alone type

