
Draft of 17 February 2003
© Bertrand Meyer, 2000-2003
Proving Pointer Program Properties
Part 2: The overall object structure
Bertrand Meyer

This is part of a series of articles. Seehere for links to the others.

ABSTRACT

The run-time object structure of object-oriented programs typically relies on
extensive use of references (orpointers). This second part of a general
mathematical framework for reasoning about references handles the overall
properties of the structure, not distinguishing between individual links but only
considering whetherany reference exists between two objects. It provides a basis
for dealing with memory management and especially garbage collection.

http://www.inf.ethz.ch/~meyer/ongoing/references/index.html

PART 2: THE OVERALL OBJECT STRUCTURE §2.12
2.1 BASICS OF THE RELATION MODEL

The coarse-grained model of object structures developed here will rely on a
relation between objects. For this reason we call it the relation model; the
finer-grained models of the subsequent articles, which take into account
individual attributes of classes, and hence individual fields of objects, will
expand this relation into a set offunctions.

Addresses and objects

The execution of an object-oriented system creates and manipulates objects.
Each object is stored at a certain address, and we can only use a finite set of
addresses. We express this by introducing a constant, the set of addresses:

where is the set of natural integers and (X), for any setX, is the set of
all finite subsets ofX (a subset of (X), the powerset ofX, which contains all
its subsets). Property[A1] specifiesAddresses as a finite set of integers.

This property is anaxiom asserting the existence of a distinguished
member,Addresses, of a known set (); the colon “:” recalls the type
declarations of some programming languages.

An element ofAddressesrepresents a potential object; only at certain
addresses will we find actual objects. We represent this observation by
introducing an explicit variable subset ofAddresses:

with the property that

[I3] is aninvariant; we will have to prove that every event preserves it.

A point of modeling style, also applicable to later axioms and invariants: it would
be possible to avoid the invariant[I3] altogether by defining the setObjects
directly, in the axiom[A2] , as a member of (Addresses) rather than ().
The practical effect is the same: we would still have to prove that any element
added toObjectsby any event is inAddresses; this is a type check rather than
an invariant preservation proof. Making the invariant explicit is clearer.

[A1] Addresses: ()

[A2] Objects: ()

[I3] Objects⊆ Addresses

FI NI

NI FI
PI

FI NI

FI NI

FI FI NI

§2.1 BASICS OF THE RELATION MODEL 3
The choice of natural integers — () — for Addresses, and as a
consequence forObjects, deserves a justification. It is legitimate to restrict
ourselves to a finite set of addresses since this is what we will have on any
actual computer or bank of computers; representing them by integers does not
imply any implementation commitment but simply reflects the concept known
as object identity: each object created during execution has a separate
identity, even if its content happens to be identical to that of another object.
Each element ofAddressesrepresents such a unique identity for a possible
object; it does not have to represent a physical address in the memory of a
computer. We will explorelater the more precise properties ofAddressesand
its possible relation to actual memory addresses.

It will be useful to give a name to addresses not occupied by objects:

where– is set difference. (=∆ means “is defined as.”)

Linking objects

The topic of our study is the set of reference links that may exist between
objects. At the highest level of abstraction, we represent it by a relation

whereA ↔ B is the set of relations between any two setsA and B. (More
precisely we are interested in ↔|| , the set of finite relations, but this makes
no difference sinceAddressesitself is finite, so all relations on it are finite.)

Names ofsetsof addresses and objects, asAddressesandObjects, start with an
upper-case letter; names offunctions, relations andpredicates, asattached,
start with a lower-case letter.

The informal meaning ofattachedis that it contains a pair[o1, o2] to reflect
that there is a reference from the object ato1 to the object ato2. The name
attachedreflects the Eiffel terminology, which says that at run time a reference
may be “attached to” a certain object.

[D4] Unused=∆ Addresses– Objects

[A5] attached: ↔

FI NI

→ “REPRESENTING
ADDRESSES”, 2.4,
page 25.

NI NI

NI NI

PART 2: THE OVERALL OBJECT STRUCTURE §2.14
This model — called from now on theRelation Model — provides a good
basis for our study. At run time your program has created a set of objects. Each
object, stored at a certain address, is made of a number of fields; a field may
be of an “expanded” type, meaning that it is a directly usable value — an
integer, a character… — or it may be a reference. A reference either takes us
to another object or is “Void”:

Since this discussion focuses on the references, we ignore the actual object
contents (the expanded fields). The relationattacheddefines a graph of
references between objects. Ignoring individual fields, it only indicates
whether at least one reference exists between any two objects; it is
represented, for the object graph of the preceding figure, by the bold lines on
the next figure. If two fields of an object are references to the same object (as
landlordandlovedfrom the object labeled2 to the object labeled8), they yield
only one link in the relation.

"Figaro "

name

loved

name
landlord
loved_one

8

"Almaviva "
landlord

"Susanna "
12 9

name

loved

landlord

name

loved

landlord

servant servant

servant

name

loved

2

landlord

servant

"Rosina " From an object
store

8

12 9

2 References
collapsed into
a relation:
attached

§2.1 BASICS OF THE RELATION MODEL 5

.

By considering only the relationattached, we disregard individual attributes
such aslandlordandloved; to get a realistic modelwewill have to reintroduce
them. Until then we can useattachedas a coarse-grain view of the object
structure, already sufficient to obtain a remarkable set of properties.

The model definesattached asa relation, meaning a set of pairs; that a
particular pair of addresses[i, j] belongs to the relation (in symbols,
[i, j] ∈ attached) means that there is a reference from the object ati to the
object atj. With the addresses shown, the relation illustrated is the set of pairs
{[8, 8], [8, 9], [8, 12], [2, 8], [2, 9], [12, 8], [12, 9], [9, 8], [9, 12]}.

Void links

Every practical programming language that offers references has a notion of
“void” or “null” reference, used in particular to terminate chains of references
in linked structures. In Eiffel,Voidalso serves as default initialization value for
reference types (like false forBOOLEANand zero forINTEGER).

The Self language tried to do away withVoid, but the result seems to confirm
the need for this concept.

How do we modelVoid? We don’t. One of the benefits of using relations and
partial functions is to spare us the need for any special element to represent
Void. If a reference fromobj is void, the corresponding function, a subset of
attached, will simply not be defined forobj — will not contain any pair of the
form [obj, x] for anyx. The preceding figure illustrates this for objects9 and
12 ("Figaro" and"Susanna") and functionservant. This convention is all we
need; it will be invaluable when we prove properties of data structures in[12].

The Basic Object Constraint

We require the relationattachedto satisfy a fundamental invariant, the Basic
Object Constraint:

which expresses that links only exist between objects, not arbitrary addresses.
The Basic Object Constraint is the combination of two separate properties:

where, ifr is a relation,domain (r) is its domain, the set of elementsx such
that r contains a pair of the form[x, y] for somey; andrange (r) is its range,
the set ofy such thatr contains a pair of the form[x, y] for somex.

[I6] attached⊆ Objects↔ Objects

[T7] domain (attached) ⊆ Objects
[T8] range (attached) ⊆ Objects

→ and subsequent sec-
tions, as well as Part C.
→ “MODELING AT-
TRIBUTES”,3.1,page2
and subsequent sections

PART 2: THE OVERALL OBJECT STRUCTURE §2.16
The model could define[T7] and[T8] as two independent invariants and deduce
the Basic Object Constraint[I6] as a theorem; we choose to do the reverse, taking
the more complete property as the invariant.

The first part[T7] of the invariant,domain (attached) ⊆ Objects, states that
all references to objects come from other objects: there’s no one out there
keeping references to our objects. We accordingly call it theNo Big Brother
property. It will be essential for modeling dynamic objectallocation, a
cornerstone of programming with dynamic data structures. Any event that
creates an object must be able to use any unallocated memory address, meaning
any element of the setUnused(defined above asAddresses–Objects). Without
the No Big Brother property such an element could contain links to objects;
making it part ofObjectsmight then add spurious reference links to the object
structure, destroying its consistency and causing trouble for memory
management, especially garbage collection.

Maintaining this property invariant will impose a constraint on memory
deallocationas performed by a garbage collector (GC): when reclaiming a
member ofObjectsto return it toUnused, the GC will need to erase (or
“zero out”) all its outgoing links, to satisfy this clause and enable a later
memory allocation event to reuse it without risk.

The second part [T8] of the Basic Object Constraint,
range (attached) ⊆ Objects, states that if, from an object, we follow a reference,
we get an object. We’ll call it theNo Zombie property, using the definition

The Basic Object Constraint prohibits zombies through the following
restatement of[T8]:

The Basic Object Constraint must be our obsession when we write software in
languages meant for manual memory management such as C, Pascal, Ada and
C++, where the definition of disaster is to end up with a Zombie object that is
referenced by other objects but not known any more as a member of the
community of objects. This happens because at some point our program has
“freed” the memory allocated to the object (or “disposed” of it in Pascal
terminology) even though some non-zombie, somewhere, somehow, still
keeps a reference to it.

A number of companies exist primarily to provide tools that help developers
debug programs (often in C and C++) that do not satisfy the Basic Object
Constraint, so that promoting that constraint might in the current market
conditions appear anti-business. Any advances reported here are, fortunately, of
a preliminary nature only.

[D9] Zombies=∆ range (attached) – Objects

[T10] Zombies= ∅

→ “Object creation”,
page 12.

→ “Full garbage col-
lection”, page 16.

§2.1 BASICS OF THE RELATION MODEL 7
In a language supported by automatic memory management, such as Eiffel,
the Basic Object Constraint is also an obsession, but sensibly transferred from
the application programmers to the authors of the memory management
system, especially thegarbage collector (GC).

The No Zombies property has two other consequences presented later: a
particular obligation onincrementalgarbage collection; and, if we understand
Addressesto represent actual memory addresses, a rejection of references to
subobjects,discussed when we look at how to provide a concrete interpretation
for the setAddresses.

The Basic Object Constraint defines the fundamental invariant under which
the GC will pursue its goal of returning toUselessany obsolete elements of
Objects: in this process, it must create neither Big Brothers nor Zombies.

Rather than[T8] or [T10], we will mostly use the No Zombie property
under yet another form

where, for any relationr and a subsetX of its source set,r (.X.) is the image
of X underr: the set of elementsy such thatr contains a pair of the form[x, y]
for some memberx of X. Although equivalent to[T8], this form takes
advantage of the image operator, which enjoys such pleasant properties as

andmoreto come. These use the following notations:∅ is the empty set;X is
the complement of a setX; id [X] is the identity relation onX; if r is a relation,
r –1 is the inverse relation ofr, r+ its transitive closure, andr* its reflexive
transitive closure.

The discussion will rely extensively on the image operator, which lets us
treat a relation as a function from subsets to subsets, and hence take advantage
of all the notations and properties of functions, more convenient than those of
general relations.

-- Basic Object Constraint:
[T11] attached(.Objects.) ⊆ Objects

-- For any subsetsXandYof the source set ofr ands:
[T12] X ⊆ Y ⇒ r (.X.) ⊆ r (.Y.))
[T13] r ⊆ s ⇒ r (.X.) ⊆ s (.X .))
[T14] r –1 (.∅.) =
[T15] (r ∪ s) (.X.) = r (.X.) ∪ s (.X.)
[T16] r (.X.) ⊆ range (r)

[T17] r+ (.X.) ⊆ range (r)

[T18] id [X] ⊆ r ⇒ r* (.X.) ⊆ range (r)

→ See“Incr emental
garbage collection”,
page 21, and“REPRE-
SENTING ADDRESS-
ES”, 2.4, page 25.

domain (r)

→ See[T53]and subse-
quent properties.

PART 2: THE OVERALL OBJECT STRUCTURE §2.28
2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS

In an object store, some objects are “live” and other are “garbage”. The live
objects are those reachable, directly or indirectly, from “root” objects.

Stack and heap

Following the common structure of O-O programming language
implementation, we refer to the set of root objects as “The Stack” and
introduce it explicitly as a variable:

We require the stack to satisfy two properties:

• Since the model treats all data as objects, the stack may only contain
objects. Some of the values on the stack may be very simple, for example
a single integer (of no interest at this stage since we ignore non-reference
data) or a single reference, but we model them as objects all the same.

• We exclude any references leadingto stack objects, although references
may existfrom stack objects to others, called “heap” objects:

The second property does not hold in C++, with its arbitrary C-style pointers,
but Eiffel and some other object models observe it because it makes
programming simpler and safer.

The combination of these properties is our third invariant:

Together with[I3] , this invariant implies:

[A19] Stack: ()

[I20] Stack⊆ Objects– range (attached)

[T21] range (attached) ∩ Stack⊆ ∅
[T22] Stack⊆ Objects
[T23] Stack⊆ Addresses

FI NI

STACK HEAP What pointers
may point to

(From [7]).

§2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS 9
We may now define theheap:

implying that

Here⊕ denotes disjoint union of subsets; a property of the formA ⊕ B = C,
such as[T27], stands for two separate properties:A ∩ B = ∅ andA ∪ B = C.
[T27] follows from [D24] and[T22]. Together with the No Zombies theorem
[T8], [T27] implies range (attached) ⊆ Stack⊕ Heap, from which [T21]
yields the theorem[T28]. This theorem explains the importance of the heap.

Using the image operator we may draw a set of consequences from the
preceding properties:

[T29] uses[T16] to restate[T28]. [T30] follows from [T29] through the
subsetting property[T12] of images. The last two theorems follow from the
previous two by iterating the same reasoning.

This proof of[T31] and[T32] is a fixpoint proof (generalized proof by induction)

in the following sense: if for a certain predicatep, a certain relationr and a certain

setA we can show thatp (A) holds, and moreover that wheneverp (X) holds

p (r (.X.)) also holds, then we may deduce thatp (r* (.A.)) holds. This is also

how [T17] and[T18] follows from[T16].

[D24] Heap=∆ Objects – Stack

[T25] Heap⊆ Objects
[T26] Heap∩ Stack= ∅
[T27] Objects= Stack⊕ Heap
[T28] range (attached) ⊆ Heap

[T29] attached(.Objects.) ⊆ Heap
[T30] attached(.Heap.) ⊆ Heap
[T31] attached+ (.Objects.) ⊆ Heap
[T32] attached* (.Heap.) ⊆ Heap

PART 2: THE OVERALL OBJECT STRUCTURE §2.210
Live and garbage objects

From roots (the stack) we definelive objects, those reachable from the stack
directly or indirectly:

as illustrated by the following informal figure of the object store, whose details
will soon be completely clear.

Some properties follow immediately from the definition ofLive [D33]:

[T34] comes from the general property of closures thatid [X] ⊆ r* for any
relation r of source setX. [T35] results from the combination of[T22], the
closure property of images[T18], and the No Zombie property[T8]. [T36]
follows from taking the image byattachedof both sides of[D33] and using
the general property thatr composed withr* is a subset ofr* . [T37] takes
[T36] to its fixpoint using[T18].

Outside of Live we find the non-reachable objects, known more
prosaically asgarbage (hence “Garbage Collector”):

[D33] Live =∆ attached* (.Stack.)

[T34] Stack⊆ Live
[T35] Live ⊆ Objects
[T36] attached(.Live.) ⊆ Live
[T37] attached* (.Live.) ⊆ Live

Stack
Live – Stack

Heap
Live

Garbage

Objects

The overall
structure

§2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS 11
sometimes more convenient to use under the form

which follows from[T35], and itself implies

Again you may follow all these properties on the preceding figure.[T40] is a
consequence of[T34] and[D38]. [T41] restates[T40] based on[D24]. [T42]
restates[D24] using[T39] and[T40]. Then[T43] combines[T27] and[T42].
[T44] states that links intoGarbagemay only come fromGarbage; this is a
consequence of[T36] and[T39]. We may not, however, infer the symmetric
propertyattached–1 (.Live .) ⊆ Live: as illustrated by the bold dark-green
links on the last figure, there may be links fromGarbage to Live.

The purpose of a GC is to remove all or some ofGarbage. The inverse of
[T35], Objects⊆ Live, means that there is no garbage. It’s not an invariant, but
it will be the goal (the postcondition) of a full GC cycle. Let’s give this
property a name:

[T29], [T30] and[T36], and their fixpoint variants indicate that each of the sets
Objects, Heap and Live is “stable” underattachedand hence its closure,
calling A stable underr if r (.A.) ⊆ A. The setStack, on the other hand, is
clearly not stable underattached; neither isGarbagebecause of the possible
presence of links fromGarbage to Live (the just noted dark-green links).

Invariants so far

As we will now consider events that may affect the state, and must prove that
each of them preserves every invariant, it is useful to collect invariants seen so far:

[D38] Garbage=∆ Objects – Live

[T39] Objects= Live⊕ Garbage

[T40] Garbage∩ Stack= ∅
[T41] Garbage⊆ Heap
[T42] Heap= (Live – Stack) ⊕ Garbage
[T43] Objects= Stack⊕ (Live – Stack) ⊕ Garbage
[T44] attached–1 (.Garbage.) ⊆ Garbage

[D45] No_garbage=∆ Live= Objects

[I3] Objects⊆ Addresses
[I6] attached(.Objects.) ⊆ Objects
[I20] Stack⊆ Objects– range (attached)

Invariants

(Final list on page27.)

PART 2: THE OVERALL OBJECT STRUCTURE §2.312
2.3 OBJECT CREATION AND DESTRUCTION

Equipped with a model of the object structures, we now move on to a
description of the the basic memory management operations that may affect
them: object creation, stack allocation, and object deletion including full and
incremental garbage collection.

All will be specified as B-like events, i.e. substitutions that occur under
the control of a certain guard, with an Eiffel-like syntax.

I use this syntax because I’m more comfortable with it, but don’t be misled by
appearances, this is not programming, it’s mathematical specification in B style.

Object creation

Our first event models a basic instruction of an O-O language, of the form

(C++ syntax:new_= new TYPE_OF_NEW();), which creates a new object
and attaches it tonew. Here is the corresponding mathematical event:

create new

allocate(existing, new: Addresses) is
-- Allocate a new object atnew, chained to the object
-- atexisting.

require -- “PRE” in B
from_live: existing∈ Live
new_available: new∉Live
new_virginal: new∉ domain (attached)

do -- “THEN” in B
Objects:= Objects∪ { new} ||
attached:= attached∪ {[existing, new]}

ensure
possibly_one_more: Objects= old Objects∪ { new}
linked: attached= old attached∪ {[existing, new]}
new_reachable: Live= old Live⊕ { new}
no_change_to_stack: sameStack
no_new_garbage: Garbage= old Garbage –{ new}
rest_unchanged: same(attached\ (Objects – existing))

end

newis a variable name,
not a keyword.

§2.3 OBJECT CREATION AND DESTRUCTION 13
Thedo clause contains two state changes, one affectingObjectsand the other
attached; they are separated by the symbol|| to indicate parallel execution.
(Another B notation,x, y := e, f for multiple simultaneous assignments, would
also work here.)

The postcondition uses the following two notations:

• samex is an abbreviation forx = old x, expressing that the event doesn’t
change the value ofx.

• “ \” denotes restriction:r \ A, for a relationr and a subsetA of its source
set, is the relation made of all pairs[i, j] in r whose first elementi is in A.

So the clauserest_unchangedexpresses that the event doesn’t change anything
in the relationattached except for the new link atexisting.

The event’s argumentexistingand the precondition clausefrom_livereflect the
property that in object-oriented programming, as illustrated abovee, it is only
possible to create an object from another object, which must be live: the
instructioncreatenewwill be part of a class text, and will be executed on
behalf of some instance of that class; if the object were not reachable,
execution would have no way to get to that instruction. Ifnewis anattribute
of a class,existingis in theHeap; if newis a local variable of a routine,existing
is an element of theStack.

The event usesnewas an argument, denoting the abstract address of the
new object. In O-O languages you don’t specifynew, so we could remove this
argument and instead use an integer outside ofLive, chosen non-
deterministically to satisfy the precondition. It is simpler to makenewexplicit.

The last two precondition clausesstate that we may only reuse an address
if is satisfies the following requirements:

• It doesn’t host a live object (new_available).

• It’s not in the domain ofattached, that is to say, it doesn’t contain a link
to any object (new_virginal).

new Creation in O-O
programing

existing

Also called data mem-
ber (C++), instance
variable(Smalltalk),
field (.NET).

→ For further com-
ments about these
clauses see next: “Get-
ting the precondition
right”, page 15

PART 2: THE OVERALL OBJECT STRUCTURE §2.314
Let us now prove that the eventallocate ensures its postcondition and
preserves the invariants:

• The first two clauses of the postcondition,possibly_one_moreandlinked,
simply restate the event’s definition.

• Fornew_reachable: we are only adding one link, the pair[existing, new],
to the relationattached, so any object inLivewill remain in it. Adding the
link implies addingnew to attached(.Live.) and hence, from[T36], to
Live itself. The second precondition clause,new_available, guarantees
that this is a disjoint union. The only other way to add objects toLive
would be through links fromnewto some other addresses (which would
have had to be garbage or non-objects before the event); this is impossible
because of the precondition clausenew_virginal, without which we
couldn’t do this part of the proof.

• The clausesame_stack is trivial since the event doesn’t modifyStack.

• The clausessame_garbageand rest_unchangedfollow from the
preceding clauses.

• The invariant[I3] statedObjects⊆ Addresses; its preservation follows
from the postcondition clausepossibly_one_more sincenew∈ Addresses.

• The invariant[I6] statedattached⊆ Objects↔ Objects. The postcondition
clauselinkedtells us that the event may add at most one element,existing,
to its domain,existing, and at most one element,new to its range; this
preserves the invariant since both will be members ofObjects.

• The invariant[I20] statedStack⊆ Objects– range (attached) . Since the
event does not changeStackand does not remove any element from
Objects, it could only invalidate this property by adding a member of
Stackto range (attached) . This means adding toattacheda link leading
into the stack. But the only new link leads tonew, which from clause
new_available is not inLive, and hence from[T34] not inStack.

← Page2.

← Page5.

← Page8.

§2.3 OBJECT CREATION AND DESTRUCTION 15
Getting the precondition right

The history of the two precondition clausesnew_availableandnew_virginal
is instructive. Initially I used a single clausenew∉Objects, meaning that the
allocation uses a memory cell at a fresh address. The correctness proof was
straightforward. This form, however, is stronger than required: if we find that
an object is inGarbage, it’s OK to reuse its cell. So I replaced the clause
new∉Objectsby new∉Live, callednew_availableabove. But then for the
new_reachablepostcondition clause,Live = old Live ⊕ { new} , I could not
prove that the right-hand side is a subset of the left-hand side. The reason, it
turns out, is that it is not always legitimate to recycle a garbage objectnew. If
newhas a link to another garbage objectgo, recyclingnewwill make go —
and possibly other objects as a result — reachable again, so the newLivewill
contain more than justold Live⊕ { new} . Indeed we may only reuse a garbage
object if it contains no links to other objects. The precondition clause
new_virginal takes care of this, permitting the above proof.

This illustrates that even though the discussion relies on straightforward
concepts t’s still possible to make serious mistakes, which an attempt at
mathematical proof will uncover.

The consequences are not just theoretical. In a GC, failing to observe
new_virginalis a real bug: failing to zero out a memory cell before recycling it.
If the cell contains a link to a garbage objectgo, this will suddenly bringgoback
like Lazarus to the realm of the living. But a link to a live objectlo — such as
the dark green links in the earlierfigure — is just as bad sincelo will now have
a spurious incoming link, preventing it from being reclaimed if, later on, all
legitimate links to it disappear. Such a bug causes inexorably growing “memory
leaks” and has plagued more than one released GC.

The theoretical difficulty goes away if we replacenew_availableand
new_virginalby the stronger single clausenew∉Objects. This would match
the practice of O-O language implementations: it’s fairly easy to keep track of
the set of allObjects, whereas finding allocated objects that are not inLive,
meaning they are inGarbage, usually requires performing a garbage
collection; but then, having found the garbage objects, you might just as well
remove them not just fromGarbage but from Objects too. The event
collect_all, introducednext, does this. Here we retain the weaker form of the
precondition, since it is permissible, as we have just proved, to reuse any
garbage object that you have been able to uncover, provided you zero it out to
satisfynew_virginaland preserve[T7] (part of the invariant[I6]). This weaker
precondition will become directly relevant when we consider incremental
garbage collection, as modeled byanother event,collect_some.

← Page10.

→ “Full garbage col-
lection”, page 16.

→ Page22.

PART 2: THE OVERALL OBJECT STRUCTURE §2.316
Full garbage collection

Although we’ll need to model theotherform of allocation (on the stack), for
the moment we remain in the heap to examine events thatdeallocateobjects,
including both full GC and the freeing of individual garbage objects.

The following event represents a full garbage collection cycle

In the second assignment the replacement forattachedis attached \ Live,
denoting attached restricted to its pairs[i, j] for which i ∈ Live; or,
equivalently (see [T39]), attached deprived of all pairs for which
i ∈ Garbage.

The purpose of garbage collection is to restrict the set of objects to live ones, so
the first assignment may seem sufficient; but if we didn’t also restrictattached
we might produce Big Brother elements inUnused, which keep references to
objects without themselves being inObjects. Then theallocateevent wouldn’t
be able to recycle such elements ofUnusedas objects, since they wouldn’t
satsify its precondition clausenew_virginalas just discussed. It is precisely to
avoid polluting the address space with such wasted elements that we introduced
the propertydomain (attached) ⊆ Objects [T7] into the invariant[I6] ; to
preserve it, the eventcollect_allmust update the relationattachedin addition
to the setObjects.

collect_all is
-- Get rid of all garbage objects.

do
Objects:= Live ||
attached:= attached \ Live

ensure
live_only: Objects= old Live
restricted_to_live: attached= old (attached \ Live)
restricted_to_kept:

attached= (old attached) \ Objects
no_change_to_stack: sameStack
no_loss_of_life: sameLive
all_from_live: domain (attached) ⊆ Live
all_to_live: range (attached) ⊆ Live
all_live: Objects= Live
garbage_removed: Garbage= ∅

end

→ Eventallocate_on_
stack, page24.

§2.3 OBJECT CREATION AND DESTRUCTION 17
Let’s prove that the event ensures the postcondition clauses and preserves
the invariants. The first two clauses of the postcondition,live_only and
restricted_to_live, restate the event’s definition. The next onerestricted_to_kept
is a direct consequence of these two. The clauseno_change_to_stackis trivial
since the event doesn’t affectStack.

The clauseno_loss_of_lifestates that the eventcollect_all does not
change the setLive, defined [D33] as attached* (.Stack.) , meaning
Stack∪ attached(.Stack.) ∪ attached(.attached(.Stack.).) ∪ … Since the
successive sets in this union are all inLive and the event doesn’t change
attached onLive, it follows thatLive itself is not changed.

The clauseall_go_from_liveis an immediate consequence oflive_only.
For all_lead_to_live, assume a memberx of range (attached) that is not in
Live, and hence, because ofno_loss_of_life, not inold Live. Relationattached
must contain a pair of the form[i, x] for some i which, because of
all_go_from_live, must be a member ofLive, that is to say (again because of
no_loss_of_life) old Live. Such a link from an object inold Live to an object
not in old Live — a link from a live object to a garbage object, which must
have existed before the event — is impossible as it would contradict[T36].

The propertyall_live follows from live_onlyandno_loss_of_life. The last
clausegarbage_removedis an immediate consequence.

If the invariant[I6] , attached⊆ Objects↔ Objects, holds before the
event, it will still hold afterwards as an immediate consequence of the
postcondition clauserestricted_to_kept. Note that this is only because we
require the event, through its second assignment, to zero out allattachedlinks
in the garbage objects that it reclaims — making them, as noted, available for
later recycling by the eventallocate.

Since the event doesn’t changeStack, it could invalidate the invariant[I20],
Stack⊆ Objects– range (attached), in one of only two ways:

• By removing fromObjectsa member ofStack; this is impossible because
the postcondition clauseonly_live_kepttells us anything removed from
Objectsmust have been outside ofLive, and so, by[T34], outside ofLive.

• By adding torange (attached) an element ofStack; this is impossible
too sincelive_only tells us the event doesn’t add any link toattached.

The reader, it is hoped, appreciates the eschatological significance of what has
just been achieved. No later than page17, we have managed to prove that if there
is garbage it is all right to remove it.

A giant step for one
man, not much of a step
for mankind.

PART 2: THE OVERALL OBJECT STRUCTURE §2.318
The free list

Practical garbage collectors do not always return the objects they collect to
Unused, that is to say, to the operating system. In fact, only the best GCs
achieve this; this means for example that on many versions of Unix they can’t
rely on the standard C routinefree, which instead of releasing a cell from the
memory of the current process simply adds it to a special data structure, the
free list, from where it is available for reuse by thesameprocess. Then no
matter how manyfree operations you have put in your program, its process
space will not shrink. Only if the GC uses special primitives such as the Unix
sbreak will the process actually relinquish memory.

This observation suggests that to maintain the realism of our model we
should include a variant of thecollect_all event that, instead of moving
garbage away from the set ofObjectsto Unusedaddresses, adds garbage
objects to a special setFree. We’ll have two new events:free_all, which adds
garbage toFreewithout removing them fromObjects; anddeallocatewhich
returns the elements ofFree to Unused. Combining these two events in
sequence must have the same effect ascollect_all.

Two main advantages follow from this extension to our model:

• We now have the flexibility of describing a GC that truly frees memory
(collect_all), or can only return garbage to a free list (free_all), or returns
garbage to the free list but occasionally deallocates the free list insbreak
style (free_all plusdeallocate).

• We can now modelincrementalgarbage collection. As will be seen in the
next section, this would be impossible without the notion of a free list,
because returning a subset ofGarbageto Unusedwould violate the No
Big Brother property. The introduction ofFree permits a variant of
free_all that collects some but not all of the garbage.

We introduce the free list as a variable:

Elements ofFree must be objects (otherwise we can’t have links to them
without violating No Big Brother); the only place where we can meaningfully
have them is garbage, hence an invariant:

[A46] Free: ()

[I47] Free⊆ Garbage

FI NI

§2.3 OBJECT CREATION AND DESTRUCTION 19
In addition, elements ofFreemust be immediately reusable for the allocation
of new objects — that’s their whole raison d’être —, so they must satisfy the
precondition clausenew_virginal of the allocate event by not having any
outgoing links, a condition we express through another invariant:

In practive this means that any event that adds elements toFreemust remove
their outgoing links. The following figure illustrates the situation: it shows the
setGarbage, extracted from the earlier picture of the overall object structure,
with its new subsetFree:

As per[I48], all outgoinglinks have been removed from the objects inFree;
but there may still beincominglinks into these objects, such as the red links
into O1 and O2. Such links may only come from non-free garbage as per the
following theorem:

Proof: incoming links intoFree may not come fromFree because of[I48];
they may only come fromGarbagebecause of[T44]. We may in fact infer
from this a stronger property (although[T49] will be the useful form):

Since the previous events did not involveFree, they all preserve our two
new invariants.

[I48] Free ∩ domain (attached) = ∅

[T49] attached–1 (.Free.) ⊆ Garbage – Free

[T50] attached–1 (.Garbage.) ⊆ Garbage – Free

← Page12.

Garbage
Garbage and
free list

Free

Removed links

O1 O2

O3

PART 2: THE OVERALL OBJECT STRUCTURE §2.320
The new eventfree_all — which will also preserve them — is almost
identical tocollect_all(the specification below highlights the differences) but
returns freed elements toFree rather thanUnused:

Proofs of the postcondition and previous invariants are the same as for
collect_all; proofs for the two new invariants are immediate.

As illustrated on the last figure, the state resulting fromfree_allmay still
haveincominglinks intoFree.

The following event removes any such links by deallocating the free list:

free_all is

deallocateis
-- Get rid of all objects in the free list.

require
recyclable: attached–1 (.Free.) ⊆ Free

do
Objects:= Objects – Free ||
attached:= attached \ Free ||
Free:= ∅

ensure
rid_of_free: Objects= old Objects – Free
-- Other clauses omitted (see previous events)

end

-- Move all garbage objects to the free list.
do

Free:= Garbage
attached:= attached \ Live

ensure
live_and_free_only: Objects – Free= old Live
restricted_to_live: attached= old (attached \ Live)
restricted_to_kept:

attached= (old attached) \ (Objects – Free)
no_change_to_stack: sameStack
no_loss_of_life: sameLive
all_from_live: domain (attached) ⊆ Live
all_to_live_or_free: range (attached) ⊆ Live∪ Free
all_live_or_free: Objects= Live∪ Free
garbage_freed: Garbage= Free

end

§2.3 OBJECT CREATION AND DESTRUCTION 21
The precondition requires that incoming links intoFreecome only fromFree

itself, rather than from non-freeGarbageelements (see[T49]). This is not the

case for example on the figure of page19unless the two links going to O1 and

O2 are taken away. Without this,Objects:= Objects – Freewould create

Zombie links fromObjectsto Unused; even if such links can only originate

from Garbage, they stilll violate the Basic Object Constraint.

If, on the other hand, no links exist toFreeobjects except fromFreeitself,

then the precondition ofdeallocateis satisfied. This is the case in particular

when all garbage has been made free:

(Proof: follows directly from[T44].) This means that it is legitimate to use

deallocatejust after free_all, thanks to the latter event’s last postcondition

clause,Garbage= Free.

Incremental garbage collection

The eventscollect_allandfree_all represent a full GC cycle that removes all

garbage. In a modern language implementation there must also be room for an

incremental GC, which removes some garbage objects but not necessarily all.

This suggests that we need another eventcollect_some(Rejects) whose

argumentRejectsdenotes a set of garbage objects. As a special case,

collect_some(Garbage) will describe the same operation asfree_all. At the

other extreme, we can usecollect_some({ o}) to describe the collection of a

single objecto, or , in a non-GC-language, a programmer-controlled operation

to free this object safely.

Here iscollect_some in a form as close as possible tofree_all:

(Free= Garbage) ⇒ recyclable
-- Hererecyclableis the precondition ofdeallocate

PART 2: THE OVERALL OBJECT STRUCTURE §2.322
The replacement forattached is attached \ Rejects, meaning: attached
deprived of all pairs of the form[i, j] wherei ∈ Rejects. The proofs are similar
to those of the last two events and left to the reader; the key property is the
precondition recyclable, without which we couldn’t guarantee
no_loss_of_life.

All clauses except the last two are counterparts of those offree_all, the
same or weaker. The reason for usingfree_all as our model, rather than
collect_all, is that collect_somemust be applicable to an arbitrary subset
Rejectsof Garbage: then it cannot remove the corresponding objects from
Objects, like collect_all, since as already noted any links intoRejectsfrom the
outside (which can only come from otherGarbage) would yield Zombie links.
So here the only possibility is afree_all-like behavior that moves theRejects
to theFree lists without removing them from the set of objects.

collect_some(Rejects: (Objects)) is
-- Get rid of all the objects inRejects.

require
recyclable: Rejects⊆ Garbage

do
Free:= Free∪ Rejects
attached:= attached \Rejects

ensure
rejects_freed: Free= old Free∪ Rejects
restricted: attached= old (attached \Rejects)
restricted_to_kept:

attached= (old attached) \ (Objects – Free)
no_change_to_stack: sameStack
no_loss_of_life: same Live
from_live_or_other_garbage:

domain (attached) ⊆ Live∪ (Garbage – Rejects)
-- No counterpart toall_to_live_or_free
all_live_or_free_or_other_garbage:

Objects= Live∪ Free∪ (Garbage – Rejects)
no_change_to_garbage: Garbage= old Garbage

-- Following have no counterpart in previous events:
no_change_to_objects: Objects= old Objects
possibly_more_free: old Free⊆ Free

end

PI

§2.3 OBJECT CREATION AND DESTRUCTION 23
Removing the objects for good — sending them toUnused— means having
adeallocatetake place aftercollect_some, which is only possible ifattached–
1 (.Rejects.) ⊆ Rejectsto ensure the precondition ofdeallocate. (This is the
case ifRejectsis all of Garbage; indeedcollect_some(Garbage) is the same
as free_all.) Of course we could add this clause to the precondition of
collect_someitself, enabling this event to remove theRejectscompletely; but
then the model ceases to be realistic since an incremental collection cycle
would now need to find all the links intoRejectsand hence to work on
Garbage as a whole, whereas the very notion ofincremental garbage
collection implies that if you have spotted a fewRejectsyou can free them
without having to traverse the rest of theGarbage. So the bestcollect_some
can do in the general case is to move theRejectsto theFree list.

This reasoning is one of the principal justifications for introducing the
notion of free list into the model.

Recycling an object

Even if prevented to return itsRejectstoUnused, an incremental GC cycle will
remove them fromdomain (attached). That’s enough to make them available
to the eventallocate, which needs a suitable address for a new object. As we
haveseen, that doesn’t mean an address outside ofObjects, just outside of both
Live and (clausenew_virginal) domain (attached). The postcondition clause
from_live_or_other_garbage of collect_some ensures it.

As a consequence we may define an event that, by combining
collect_someandallocate, frees an object and immediately reuses its address
for a new object:

recycle(existing: Live; reject: Objects) is
-- Reuse the address ofnewto allocate a new object,
-- chained to the object atexisting.

require
from_live: existing∈ Live
new_recyclable: reject∈Garbage

do -- Two events in sequence:
collect_some({ new})
allocate(existing, new)

ensure
… Left to reader (see postconditions of events

collect_some andallocate) …
end

← See discussion of
new_virginal on
page15.

PART 2: THE OVERALL OBJECT STRUCTURE §2.324
Its correctness requires that, as just noted, the precondition ofallocatehold after
collect_some. The postcondition and the rest of the proof are left to the reader.

Stack allocation

The previous events had to do with objects allocated on the heap. In the
execution of an object-oriented we also need a stack-based form of allocation,
similar to pre-O-O techniques as present in Algol 60. The following event
provides it; routine calls will use it for every local variable and by-value
argument of a reference (non-expanded) type.

Proving the postcondition and the preservation of the invariants is easy. Note
that here we cannot any more weaken the preconditionnew_availableto
new∉Liveand new∉ domain (attached) aswe did for the eventallocate: if
newis a garbage object, other garbage objects may have links to it; then if we
attempted to recycle it as a stack object we couldn’t any more guarantee the
postcondition, which requiresnew to be part of the stack and hence, from
[T21], to admit no incoming link. So for the choice ofnewwe exclude all
currently allocated addresses, live as well as garbage. This matches the
behavior of practical memory allocation schemes, which draw stack addresses
and heap addresses from different address pools.

One may similarly define an eventfree_from_stack(existing) that
removes an element from the stack. This is left to the reader.

allocate_on_stack(new: Addresses) is
-- Allocate a new stack object atnew.

require
new_available: new∉Objects

do
Stack:= Stack∪ { new}

ensure
root_added: Stack= old Stack⊕ { new}

end

← Clausesnew_
available andnew_
virginal, page12; see
also the discussion of
the eventcollect_some,
starting on page22.

§2.4 REPRESENTING ADDRESSES 25
2.4 REPRESENTING ADDRESSES

The set of object addresses was specified as a set of integers:

Do we indeed need to know whatAddressesis? Not at this stage; we could

proceed for a while without stating whatAddressesis made of. One might

even conjecture that this choice of a concrete set forAddressesbetrays that the

author of this discussion is a programmer, faithful to the usual mores of his

species: implement first and maybe think later.

The choice is indeed the mathematical counterpart of what in software

would be an implementation decision. But it seems justified if the goal is to

build a useful model of the execution of programs on computers. Our

computers have memories, and these memories have sequentially numbered

cells. Hence the idea of definingAddressesas a set of integers. Even if early

on we don’t care about this aspect, it becomes relevant if our eventual aim is

to formalize O-O programs, or even just their GCs.

How much low-level an implementation decision this is depends on the

intuitive semantics we attach to . Fortunately we can continue developing

the model without choosing our exact level of abstraction:

• Under a “high-level” interpretation we may think of an abstract memory,

where each cell (denoted by an integer from the domain ofattached)

contains an object — an instance of a class. For example the GC of

versions 1 and 2 of ISE Eiffel relied on having all live objects linked

together (through a hidden field added to every object); it also chained

together in a “free list” all the dead objects it reclaimed. With such an

interpretation every integer denotes not a physical address in the

computer’s memory but a position in a list of objects.

[A1] Addresses: () ← As introduced on
page2.

FI NI

NI

PART 2: THE OVERALL OBJECT STRUCTURE §2.426
• We may also use a “low-level” interpretation and consider the integers to
be the actual starting addresses of the objects’ representation. One of the
pleasant consequences of using relations — or, starting with the next
article, possibly partialfunctions— is that they don’t have to be total or
surjective. So if an address doesn’t correspond to the beginning of an
actual object (in particular, if it is not a multiple of 4, assuming objects
start on 32-bit word boundaries and our addresses are counted in bytes) it
will simply not be inObjectsand hence will not denote any object.

This interpretation also yields (when combined with the Basic Object
Constraint) an important property of the model:no references to subobjects.
In Eiffel, even though the framework supports subobjects (through the
“expanded” mechanism), a reference will always be attached to a first-level
object, never to a subobject. The experience of early language and compiler
versions showed that permitting references to subobjects complicates the GC
and precludes some optimizations, for no significant expressive benefit.

With the low-level interpretation we will most likely go further in our
specification ofAddressesand define it as the interval1..memory_highfor
some non-negative integermemory_high. From there one can start discussing
in detail the properties of a memory management scheme. For example a GC
of themark-and-sweepkind needs in its “sweep” phase to traverse the whole
memory — the interval1..memory_high.

This interpretation may also allow us to take into account the actual
content of objects (their “expanded” fields), not just — as in the present
discussion — the references they contain to other objects. The content of an
object identified by the integern (assumingn belongs toObjects) is simply
what’s stored at a set of physical addresses starting atn and bounded by
next(n) – 1 wherenext(n) is the next member ofObjects, if any.

At this stage, however, nothing forces us to disallow subobject
references, or to choose the “high-level” interpretation or the “low-level” one,
or any other. Their role is simply to reassure ourselves that the mathematical
model is realistic.

§2.4 REPRESENTING ADDRESSES 27
What has been postulated
Here for convenience is a recapitulation of the assumptions made so far (marked
originally with signs): seven axioms, each postulating an element of a known
set, and seven invariants postulating properties of these elements. They make
up the basis of what we need to reason about run-time object structures. Every
one of the events to be studied now will have to preserve the invariants.

[A1] Addresses: ()
[A2] Objects: ()
[A5] attached: ↔
[A19] Stack: (Addresses)
[A46] Free: ()

[I3] Objects⊆ Addresses
[I6] attached(.Objects.) ⊆ Objects
[I20] Stack⊆ Objects– range (attached)
[I47] Free⊆ Garbage
[I48] Free∩ domain (attached) = ∅

AxiomsFI NI
FI NI
NI NI

PI
FI NI

Invariants

PART 2: THE OVERALL OBJECT STRUCTURE §2.428

	Proving Pointer Program Properties
	Part 2: The overall object structure
	2.1 BASICS OF THE RELATION MODEL
	Addresses and objects
	Linking objects
	Void links
	The Basic Object Constraint

	2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS
	Stack and heap
	Live and garbage objects
	Invariants so far

	2.3 OBJECT CREATION AND DESTRUCTION
	Object creation
	Getting the precondition right
	Full garbage collection
	The free list
	Incremental garbage collection
	Recycling an object
	Stack allocation

	2.4 REPRESENTING ADDRESSES
	What has been postulated

