Draft of 17 February 2003
© Bertrand Meyer, 2000-2003

Proving Pointer Program Properties
Part 2 The overall object structure

Bertrand Meyer

ABSTRACT

The run-time object structure of object-oriented programs typically relies|on
extensive use of references (@ointerg. This second part of a general
mathematical framework for reasoning about references handles the overall
properties of the structure, not distinguishing between individual links but gnly
considering whetheany reference exists between two objects. It provides a basis
for dealing with memory management and especially garbage collection.

This is part of a series of articles. Sezefor links to the others.

http://www.inf.ethz.ch/~meyer/ongoing/references/index.html

2 PART 2: THE OVERALL OBJECT STRUCTURE §2.1

2.1 BASICS OF THE RELATION MODEL

The coarse-grained model of object structures developed here will rely on a
relation between objects. For this reason we call it the relation model; the

finer-grained models of the subsequent articles, which take into account
individual attributes of classes, and hence individual fields of objects, will

expand this relation into a setfohctions

Addresses and objects

The execution of an object-oriented system creates and manipulates objects.
Each object is stored at a certain address, and we can only use a finite set of
addresses. We express this by introducing a constant, the set of addresses:

[Al] AddresseslIF (IN))

where IN is the set of natural integers lrd (X), for any setX, is the set of
all finite subsets oK (a subset o IP (X), the powerset oK, which contains all
its subsets). Properpal] specifiesAddressess a finite set of integers.

This property is amaxiom asserting the existence of a distinguished
member,Addressesof a known seilF (IN); the colon “” recalls the type
declarations of some programming languages.

An element ofAddressesepresents a potential object; only at certain
addresses will we find actual objects. We represent this observation by
introducing an explicit variable subsetAddresses

[A2] Objects IF (IN))

with the property that

[I3] Objectsl] Addresses)

[13] is aninvariant, we will have to prove that every event preserves it.

Apointof modeling style, also applicable to later axioms and invariants: it would
be possible to avoid the invariafiB] altogether by defining the s@bjects
directly, in the axionfA2], as a member |F (Addressesrather tharlF (IN).

The practical effect is the same: we would still have to prove that any element
added toObjectsby any event is ilAddressesthis is a type check rather than

an invariant preservation proof. Making the invariant explicit is clearer.

§2.1 BASICS OF THE RELATION MODEL 3

The choice of natural integers -l (IN) — for Addressesand as a

consequence foDbjects deserves a justification. It is legitimate to restrict

ourselves to a finite set of addresses since this is what we will have on any

actual computer or bank of computers; representing them by integers does not

imply any implementation commitment but simply reflects the concept known

as object identity: each object created during execution has a separate

identity, even if its content happens to be identical to that of another object.

Each element oAddressesepresents such a unique identity for a possible

object; it does not have to represent a physical address in the memory of a
computer. We will explordater the more precise propertiesAddresseand - “REPRESENTING

its possible relation to actual memory addresses. ADDRESSES', 2.4,
page 25

It will be useful to give a name to addresses not occupied by objects:

[D4] Unused® AddressesObijects

where—is set difference 4 means “is defined as.”)

Linking objects

The topic of our study is the set of reference links that may exist between
objects. At the highest level of abstraction, we represent it by a relation

[A5] attached IN - IN [

where A - B is the set of relations between any two satand B. (More
precisely we are interested IN 4 [N, the set of finite relations, but this makes
no difference sincAddressegself is finite, so all relations on it are finite.)

Names ofetsof addresses and objects AddresseandObjects start with an
upper-case letter; names foinctions, relations andpredicates asattached
start with a lower-case letter.

The informal meaning o&ttachedis that it contains a paiol, 02] to reflect
that there is a reference from the objecbatto the object ab2. The name
attachedeflects the Eiffel terminology, which says that at run time a reference
may be “attached to” a certain object.

4 PART 2: THE OVERALL OBJECT STRUCTURE §2.1

This model — called from now on theelation Model — provides a good
basis for our study. At run time your program has created a set of objects. Each
object, stored at a certain address, is made of a number of fields; a field may
be of an “expanded” type, meaning that it is a directly usable value — an
integer, a character. — or it may be a reference. A reference either takes us
to another object or is “Void™:

8 2

name ["Almaviva " "Rosina"| name gtrgrrg anobject
landlord T < landlord
loved - loved
servant| | servant
i 12 l 9
hame| " Figaro " "Susanna | name
landlord B landlord
loved - > loved
servant 1 = = [servant

Since this discussion focuses on the references, we ignore the actual object
contents (the expanded fields). The relatmttacheddefines a graph of
references between objects. Ignoring individual fields, it only indicates
whether at least one reference exists between any two objects; it is
represented, for the object graph of the preceding figure, by the bold lines on
the next figure. If two fields of an object are references to the same object (as
landlordandlovedfrom the object labele@dto the object labele8), they yield

only one link in the relation.

2 References
collapsed into
a relation:
attached

§2.1 BASICS OF THE RELATION MODEL 5

By considering only the relatioattached we disregard individual attributes

such adandlord andloved to get a realistic modele will have to reintroduce - “MODELING AT- ec-
them. Until then we can usattachedas a coarse-grain view of the objelﬁégﬂgggéﬁt@fgﬁs
structure, already sufficient to obtain a remarkable set of properties. a '

The model defineattached as relation, meaning a set of pairs; that «
particular pair of addressel, j] belongs to the relation (in symbols,
[i,j] U attached means that there is a reference from the objecttatthe
object afj. With the addresses shown, the relation illustrated is the set of pairs
{[8, 8], [8, 9], [8, 12], [2, 8], [2, 9], [12, 8], [12, 9], [9, 8], [9, 12]}

Void links

Every practical programming language that offers references has a notion of
“void” or “null” reference, used in particular to terminate chains of references
in linked structures. In Eiffeloidalso serves as default initialization value for
reference types (like false fBIOOLEANand zero fotNTEGER.

The Self language tried to do away wibid, but the result seems to confirm
the need for this concept.

How do we modelMoid? We don’t. One of the benefits of using relations and
partial functions is to spare us the need for any special element to represent
Void. If a reference fronobj is void, the corresponding function, a subset of
attached will simply not be defined foobj— will not contain any pair of the

form [obj, ¥ for anyx. The preceding figure illustrates this for objeBtand

12 ("Figaro" and"Susannd) and functionservant This convention is all we
need; it will be invaluable when we prove properties of data structufdin

The Basic Object Constraint

We require the relatioattachedto satisfy a fundamental invariant, the Basic
Object Constraint:

[16] attached] Objects~ Objects)

which expresses that links only exist between objects, not arbitrary addresses.
The Basic Object Constraint is the combination of two separate properties:

[T7] domain (attached [0 Objects
[T8] range (attached OO Objects

where, ifr is a relation,domain (r) is its domain, the set of elemenisuch
thatr contains a pair of the forrfx, y] for somey; andrange (r) is its range,
the set ofy such that contains a pair of the forfw, y] for somex.

6 PART 2: THE OVERALL OBJECT STRUCTURE §2.1

The model could defing 7] and[T8] as two independent invariants and deduce
the Basic Object Constraifi6] as atheorem; we choose to do the reverse, taking
the more complete property as the invariant.

The first par{T7] of the invariantdomain (attached [J Objects states that

all references to objects come from other objects: there’s no one out there
keeping references to our objects. We accordingly call ifNbeéBig Brother
property. It will be essential for modeling dynamic objeatocation, a _ “object creation”
cornerstone of programming with dynamic data structures. Any eventpage 12
creates an object must be able to use any unallocated memory address, m

any element of the setnuseddefined above asddresses Objectg. Without

the No Big Brother property such an element could contain links to objects;
making it part ofObjectsmight then add spurious reference links to the object
structure, destroying its consistency and causing trouble for memory
management, especially garbage collection.

Maintaining this property invariant will impose a constraint on memory
deallocationas performed by a garbage collector (GC): when reclaimin- “Full garbage col-
member ofObjectsto return it to Unused the GC will need to erase (o'ecto.pae 16
“zero out”) all its outgoing links, to satisfy this clause and enable a I
memory allocation event to reuse it without risk.

The second part [T8] of the Basic Object Constraint,
range (attached [J Objects states that if, from an object, we follow a reference,
we get an object. We'll call it thido Zombie property, using the definition

[D9] Zombies® range (attached — Objects

The Basic Object Constraint prohibits zombies through the following
restatement diT 8]:

[T10] Zombies=[J

The Basic Object Constraint must be our obsession when we write software in
languages meant for manual memory management such as C, Pascal, Ada and
C++, where the definition of disaster is to end up with a Zombie object that is
referenced by other objects but not known any more as a member of the
community of objects. This happens because at some point our program has
“freed” the memory allocated to the object (or “disposed” of it in Pascal
terminology) even though some non-zombie, somewhere, somehow, still
keeps a reference to it.

A number of companies exist primarily to provide tools that help developers
debug programs (often in C and C++) that do not satisfy the Basic Object
Constraint, so that promoting that constraint might in the current market
conditions appear anti-business. Any advances reported here are, fortunately, of
a preliminary nature only.

§2.1 BASICS OF THE RELATION MODEL 7

In a language supported by automatic memory management, such as Eiffel,

the Basic Object Constraint is also an obsession, but sensibly transferred from

the application programmers to the authors of the memory management

system, especially thrgarbage collecto{GC).
The No Zombies property has two other consequences presented later: a
particular obligation ofncrementalgarbage collection; and, if we understand - Se€‘Incr emental
Addresseso represent actual memory addresses, a rejection of references todarbae collection’,

bobi : 4wh look at h - : > “page 21, and“REPRE-

subobjectsdiscussed when we look at how to provide a concrete interpretation gENTiNG ADDRESS-
for the setAddresses ES’, 2.4, pae 25

The Basic Object Constraint defines the fundamental invariant under which
the GC will pursue its goal of returning tdselessany obsolete elements of
Objects in this process, it must create neither Big Brothers nor Zombies.

Rather tharfT8] or [T10], we will mostly use the No Zombie property
under yet another form

-- Basic Object Constraint:
[T11] attached Objects) [1 Objects

where, for any relation and a subseX of its source set, (- X+ is the image

of X underr: the set of elementgsuch that contains a pair of the forijx, y]

for some membex of X. Although equivalent tdT8], this form takes
advantage of the image operator, which enjoys such pleasant properties as

-- For any subsets andY of the source set afands:
T2 XO YO r(+X9) O r(-Y")
[T13] rO sOr(+X) O s(-X)

[T14] r (- 09 = domain ()
[T15] (r 08 ¢X)=r (X O s(X)

[T16] r (- X+ O range(r)
[T17] r" (- X9 O range(r)
[T18] id [X] Or O r* (- X+ O range(r)

andmoreto come. These use the following notationksis the empty sefXis - SedT53]and subse-
the complement of a s&t id [X] is the identity relation oiX; if r is a relation, ™ PrOPees

r L is the inverse relation of r* its transitive closure, andt its reflexive

transitive closure.

The discussion will rely extensively on the image operator, which lets us
treat a relation as a function from subsets to subsets, and hence take advantage
of all the notations and properties of functions, more convenient than those of
general relations.

8 PART 2: THE OVERALL OBJECT STRUCTURE §2.2

2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS

In an object store, some objects are “live” and other are “garbage”. The live
objects are those reachable, directly or indirectly, from “root” objects.

Stack and heap

Following the common structure of O-O programming language
implementation, we refer to the set of root objects as “The Stack” and
introduce it explicitly as a variable:

[A19] Stack IF (IN) ®

We require the stack to satisfy two properties:

» Since the model treats all data as objects, the stack may only contain
objects. Some of the values on the stack may be very simple, for example
a single integer (of no interest at this stage since we ignore non-reference
data) or a single reference, but we model them as objects all the same.

* We exclude any references leaditagstack objects, although references
may existfrom stack objects to others, called “heap” objects:

STACK HEAP What pointers
may point to
(From[7]).
The second property does not hold in C++, with its arbitrary C-style pointers,

but Eiffel and some other object models observe it because it makes
programming simpler and safer.

The combination of these properties is our third invariant:

[120] Stackll Objects-range (attached ®

Together witH13], this invariant implies:

[T21] range (attached n Stackd [
[T22] Stack[Objects
[T23] Stack] Addresses

§2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS

We may now define theeap

[D24] Heap2 Objects — Stack

implying that

[T25] Heapl] Objects

[T26] Heapn Stack=[]

[T27] Objects= Stackl] Heap
[T28] range (attached [Heap

Here[J denotes disjoint union of subsets; a property of the férm B = C,
such ag§T27], stands for two separate propertiésnh B=[] andA [B=C.
[T27] follows from [D24] and[T22]. Together with the No Zombies theorem
[T8], [T27] implies range (attached [0 Stack[] Heap from which [T21]
yields the theorerfir 28]. This theorem explains the importance of the heap.

Using the image operator we may draw a set of consequences from the
preceding properties:

[T29] attached(- Objects) [Heap
[T30] attached- Heaps) [0 Heap
[T31] attached (- Objects) O Heap
[T32] attached (- Heaps) [Heap

[T29] uses[T16] to restate[T28]. [T30] follows from [T29] through the
subsetting propertjT12] of images. The last two theorems follow from the
previous two by iterating the same reasoning.

This proofof{T31] and[T32] is a fixpoint proof (generalized proof by induction)
inthe following sense: if for a certain predicate certain relationand a certain
setA we can show thap (A) holds, and moreover that wheneyeX) holds

p (r (- X¥) also holds, then we may deduce thdt* (- A=) holds. This is also
how[T17] and[T18] follows from[T16].

10 PART 2: THE OVERALL OBJECT STRUCTURE §2.2

Live and garbage objects

From roots (the stack) we defitige objects those reachable from the stack
directly or indirectly:

[D33] Live2 attached (- Stack)

as illustrated by the following informal figure of the object store, whose details
will soon be completely clear.

4 N The overall
strrrreett structure

Y

.

‘IIIIIIIIIIIIIIIIIIIII||,,

. .
'lll.,,”\“

Live

Objects._

Some properties follow immediately from the definitiorLnfe [D33]:

[T34] Stack[Live

[T35] Live J Objects

[T36] attached(- Lives) [Live
[T37] attached (- Lives) O Live

[T34] comes from the general property of closures iddix] [r* for any
relationr of source seK. [T35] results from the combination ¢T22], the
closure property of imag€d 18], and the No Zombie propertyf8]. [T36]
follows from taking the image bgttachedof both sides 0fD33] and using
the general property thatcomposed withr* is a subset of*. [T37] takes
[T36] to its fixpoint usingT18].
Outside of Live we find the non-reachable objects, known more

prosaically agiarbage (hence “Garbage Collector”):

§2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS 11

[D38] Garbage2 Obijects — Live

sometimes more convenient to use under the form

[T39] Objects= Live [1 Garbage

which follows from[T35], and itself implies

[T40] Garbagen Stack= [

[T41] Garbagell Heap

[T42] Heap= (Live — Stackll Garbage

[T43] Objects= Stackl] (Live — Stack[] Garbage
[T44] attached! (- Garbage?) O Garbage

Again you may follow all these properties on the preceding figLiré0] is a
consequence dff 34] and[D38]. [T41] restategT40] based orfD24]. [T42]
restate§D24] using[T39] and[T40]. Then[T43] combinegT27] and[T42].
[T44] states that links intésarbagemay only come fronGarbage this is a
consequence dff36] and[T39]. We may not, however, infer the symmetric
propertyattached?! (- Live § O Live: as illustrated by the bold dark-green
links on the last figure, there may be links fr@arbageto Live.

The purpose of a GC is to remove all or somé&aifrbage The inverse of
[T35], Objects] Live, means that there is no garbage. It's not an invariant, but
it will be the goal (the postcondition) of a full GC cycle. Let's give this
property a name:

[D45] No_garbage? Live= Objects

[T29], [T30] and[T36], and their fixpoint variants indicate that each of the sets
Objects Heap and Live is “stable” underattachedand hence its closure,
calling A stable under if r (- A) 0 A. The setStack on the other hand, is
clearly not stable undettached neither isGarbagebecause of the possible
presence of links frorfsarbageto Live (the just noted dark-green links).

Invariants so far

As we will now consider events that may affect the state, and must prove that
each ofthem preserves every invariant, it is useful to collect invariants seen so far:

[13] Objectsl] Addresses Invariants
[16] attached(- Objects) [0 Objects o
[120] Stackd Objects-range (attached (Finallist on page2’.)

12 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

2.3 OBJECT CREATION AND DESTRUCTION

Equipped with a model of the object structures, we now move on to a
description of the the basic memory management operations that may affect
them: object creation, stack allocation, and object deletion including full and
incremental garbage collection.

All will be specified as B-like events, i.e. substitutions that occur under
the control of a certain guard, with an Eiffel-like syntax.

| use this syntax because I'm more comfortable with it, but don’t be misled by
appearances, this is not programming, it's mathematical specification in B style.

Object creation

Our first event models a basic instruction of an O-O language, of the form

createnew newis a variable namg
not a keyword

(C++ syntax:new_= new TYPE_OF_NEW();), which creates a new object
and attaches it toew Here is the corresponding mathematical event:

allocate(existing new Addresse$is

-- Allocate a new object atew chained to the obje
-- atexisting

require --“PRE”InB
from_live existing] Live
new_availablenewl]Live
new_virginal newl] domain (attached

do --“THEN” in B
Objects:= ObjectsL] {new} ||
attached= attached.] {[existing newj}

ensure
possibly_one_mor@®bjects= old Objectsl] { new}
linked attached= old attached_] {[existing new}
new_reachableLive=old Live [J {new}
no_change_to_stackameStack
no_new_garbageGarbage= old Garbage { new
rest_unchangedame(attached (Objects — existing

%)
—~

end

§2.3 OBJECT CREATION AND DESTRUCTION 13

Thedo clause contains two state changes, one affe@ibgctsand the other
attached they are separated by the symljjdio indicate parallel execution.
(Another B notationy, y := e, f for multiple simultaneous assignments, would
also work here.)

The postcondition uses the following two notations:

* samexis an abbreviation fox = old x, expressing that the event doesn’t
change the value of

« “\"denotes restriction: \ A, for a relationr and a subseA of its source
set, is the relation made of all pajiisj] in r whose first elemeritis in A.

So the clausesst_unchangedxpresses that the event doesn’t change anything
in the relatiorattachedexcept for the new link a&ixisting

new Creationin O-O
——». programing

existing

The event's argumeixistingand the precondition claug®em_livereflect the

property that in object-oriented programming, as illustrated abovee, it is only

possible to create an object from another object, which must be live: the
instructioncreatenewwill be part of a class text, and will be executed on

behalf of some instance of that class; if the object were not reachable,

execution would have no way to get to that instructiomefvis anattribute g\(':r‘z éfﬂ‘;dig;t:n’g:m‘
of a classexistingis in theHeap if newis a local variable of a routinexisting variable (Smalitaig,

is an element of th8tack field (NET).

The event usesewas an argument, denoting the abstract address of the
new object. In O-O languages you don't speciBw so we could remove this
argument and instead use an integer outside Lofe, chosen non-
deterministically to satisfy the precondition. It is simpler to makeexplicit.

The last two precondition claussste that we may only reuse an addre— For further com-
ments about these

if is satisfies the following requirements: clauses see nextet-
ti_ng the pecondition
« Itdoesn’t host a live objechéw_availabl® right”. page 15

* It's not in the domain ofttached that is to say, it doesn’t contain a link
to any objectrfew_virgina).

14 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

Let us now prove that the evemtlocate ensures its postcondition and
preserves the invariants:

» Thefirst two clauses of the postconditigmssibly _one_mor@ndlinked,
simply restate the event’s definition.

* Fornew_reachablewe are only adding one link, the p&@axisting new|,
to the relatiorattached so any object iLive will remain in it. Adding the
link implies addingnewto attached(- Live+s) and hence, froniT 36], to
Live itself. The second precondition clausesw_available guarantees
that this is a disjoint union. The only other way to add objectkit@
would be through links frormewto some other addresses (which would
have had to be garbage or non-objects before the event); this is impossible
because of the precondition clausew_virginal without which we
couldn’t do this part of the proof.

* The clausesame_stacis trivial since the event doesn’t modByack

« The clausessame_garbageand rest_unchangedfollow from the
preceding clauses.

* The invariant[I3] statedObjectsl] Addressesits preservation follows . page.
from the postcondition claug®ssibly _one_morsincenew[] Addresses

* Theinvarianfl6] statechttached] Objects— Objects The postcondition . pages.
clausedlinkedtells us that the event may add at most one elenaaig{ing
to its domain,existing and at most one elememewto its range; this
preserves the invariant since both will be membe@hpécts

* Theinvarian{l20] statedStackl] Objects-range (attached . Since the _ pages.
event does not changgtackand does not remove any element frc
Objects it could only invalidate this property by adding a member oi
Stackto range (attached . This means adding tattacheda link leading
into the stack. But the only new link leads tew which from clause
new_availablas not inLive, and hence frorfir 34] not in Stack

§2.3 OBJECT CREATION AND DESTRUCTION 15

Getting the precondition right

The history of the two precondition clausesw_availableandnew_virginal

is instructive. Initially | used a single clausew[]Objects meaning that the
allocation uses a memory cell at a fresh address. The correctness proof was
straightforward. This form, however, is stronger than required: if we find that
an object is inGarbage it's OK to reuse its cell. So | replaced the clause
newJObjectsby new(Live, callednew_availableabove. But then for the
new_reachablgostcondition clausd,ive = old Live O {new}, | could not
prove that the right-hand side is a subset of the left-hand side. The reason, it
turns out, is that it is not always legitimate to recycle a garbage obgetf
newhas a link to another garbage object recyclingnewwill make go —

and possibly other objects as a result — reachable again, so thievewill
contain more than justid Live 0 {new}. Indeed we may only reuse a garbage
object if it contains no links to other objects. The precondition clause
new_virginaltakes care of this, permitting the above proof.

This illustrates that even though the discussion relies on straightforward
concepts t's still possible to make serious mistakes, which an attempt at
mathematical proof will uncover.

The consequences are not just theoretical. In a GC, failing to observe
new_virginalis a real bug: failing to zero out a memory cell before recycling it.

If the cell contains a link to a garbage objgcit this will suddenly bringgoback

like Lazarus to the realm of the living. But a link to a live objézt— such as

the dark green links in the earliigure — is just as bad sinde will now have < Pagell.
a spurious incoming link, preventing it from being reclaimed if, later on, all

legitimate links to it disappear. Such a bug causes inexorably growing “memory

leaks” and has plagued more than one released GC.

The theoretical difficulty goes away if we replaceew_availableand
new_virginalby the stronger single clausew[1Objects This would match

the practice of O-O language implementations: it's fairly easy to keep track of
the set of allObjects whereas finding allocated objects that are ndtiire,
meaning they are inGarbage usually requires performing a garbage
collection; but then, having found the garbage objects, you might just as well
remove them not just fromGarbage but from Objects too. The event
collect_all introducechext, does this. Here we retain the weaker form of thag ; ;amage col-
precondition, since it is permissible, as we have just proved, to reuselection”. page 16
garbage object that you have been able to uncover, provided you zero it «
satisfynew_virginaland preservgl 7] (part of the invarianfi6]). This weaker

precondition will become directly relevant when we consider incremental

garbage collection, as modeleddnyother gent, collect_some - Page22

16 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

Full garbage collection

Although we’ll need to model thetherform of allocation (on the stack), fo - Eventaliocate_on_
.. .) stack page24.
the moment we remain in the heap to examine eventgimtocateobjects,

including both full GC and the freeing of individual garbage objects.

The following event represents a full garbage collection cycle

collect_allis

-- Get rid of all garbage objects.

do
Objects.= Live ||
attached= attached \ Live

ensure
live_only Objects=old Live
restricted_to_liveattached old (attached \ Live
restricted_to_kept

attached= (old attached \ Objects

no_change_to_stackameStack
no_loss_of lifesameLive
all_from_live domain (attached [Live
all_to_live range (attached [J Live
all_live: Objects= Live
garbage_removedsarbage= []

end

In the second assignment the replacementaftachedis attached \ Live
denoting attached restricted to its pairgi, j] for which i [Live; or,

equivalently (see[T39]), attached deprived of all pairs for which
i L] Garbage

The purpose of garbage collection is to restrict the set of objects to live ones, so
the first assignment may seem sufficient; but if we didn’t also resttiathed

we might produce Big Brother elementslimused which keep references to
objects without themselves being@bjects Then theallocateevent wouldn’t

be able to recycle such elementsldfiusedas objects, since they wouldn'’t
satsify its precondition clauseew_virginalas just discussed. It is precisely to
avoid polluting the address space with such wasted elements that we introduced
the propertydomain (attached [0 Objects[T7] into the invariant[I6]; to
preserve it, the evemllect allmust update the relaticatachedin addition

to the seDbjects

§2.3 OBJECT CREATION AND DESTRUCTION 17

Let’s prove that the event ensures the postcondition clauses and preserves
the invariants. The first two clauses of the postconditiwve_only and
restricted_to_liverestate the event’s definition. The next eesricted to kept
is a direct consequence of these two. The claugsehange_to_stadk trivial
since the event doesn’t affestack

The clauseno_loss_of lifestates that the evertollect all does not
change the setlive, defined [D33] as attached (- Stack), meaning
Stack] attached: Stack) [attached- attached- Stack)9) [1... Since the
successive sets in this union are allliive and the event doesn’'t change
attachedon Live, it follows thatLive itself is not changed.

The clauseall_go_from_liveis an immediate consequencelioE_only
For all_lead to_live assume a memberof range (attached that is not in
Live, and hence, becauserad_loss_of lifenot inold Live. Relationattached
must contain a pair of the fornji, x] for somei which, because of
all_go_from_live must be a member afive, that is to say (again because of
no_loss_of_lifgold Live. Such a link from an object inld Live to an object
not inold Live — a link from a live object to a garbage object, which must
have existed before the event — is impossible as it would contfadit

The propertyall_live follows fromlive_onlyandno_loss_of _lifeThe last
clausegarbage removes$ an immediate consequence.

If the invariant[I6], attachedl]l Objects - Objects holds before the
event, it will still hold afterwards as an immediate consequence of the
postcondition clauseestricted to_keptNote that this is only because we
require the event, through its second assignment, to zero aitadhedinks
in the garbage objects that it reclaims — making them, as noted, available for
later recycling by the eveatlocate

Since the event doesn’'t chang&ck it could invalidate the invariarit20],
Stackl] Objects-range (attached, in one of only two ways:

* Byremoving fromObjectsa member ofStack this is impossible because
the postcondition clausenly live keptells us anything removed from
Objectsmust have been outsidelofre, and so, byT34], outside ofLive.

* By adding torange (attached an element of5tack this is impossible
too sincdive_onlytells us the event doesn’'t add any linlattached

The reader, it is hoped, appreciates the eschatological significance of what hasa giant step for one
justbeen achieved. No later than pdgewe have managed to prove thatifthere man not much of astep
is garbage it is all right to remove it. for mankind

18 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

The free list

Practical garbage collectors do not always return the objects they collect to
Unused that is to say, to the operating system. In fact, only the best GCs
achieve this; this means for example that on many versions of Unix they can’t
rely on the standard C routirieee which instead of releasing a cell from the
memory of the current process simply adds it to a special data structure, the
free list from where it is available for reuse by tlsameprocess. Then no
matter how manyree operations you have put in your program, its process
space will not shrink. Only if the GC uses special primitives such as the Unix
sbreakwill the process actually relinquish memory.

This observation suggests that to maintain the realism of our model we
should include a variant of theollect_all event that, instead of moving
garbage away from the set @bjectsto Unusedaddresses, adds garbage
objects to a special sétee We'll have two new eventsree_all which adds
garbage td-ree without removing them fron©bjects anddeallocatewhich
returns the elements dfree to Unused Combining these two events in
sequence must have the same effecbésct_all

Two main advantages follow from this extension to our model:

* We now have the fiexibility of describing a GC that truly frees memory
(collect_al), or can only return garbage to a free liseé_al), or returns
garbage to the free list but occasionally deallocates the free ligirgak
style (ree_allplusdeallocatg.

* We can now modahcrementalgarbage collection. As will be seen in the
next section, this would be impossible without the notion of a free list,
because returning a subset@arbageto Unusedwould violate the No
Big Brother property. The introduction dfree permits a variant of
free_allthat collects some but not all of the garbage.

We introduce the free list as a variable:

[A46] Free IF (IN) ®

Elements ofFree must be objects (otherwise we can't have links to them
without violating No Big Brother); the only place where we can meaningfully
have them is garbage, hence an invariant:

[147] FreeO Garbage ®

§2.3 OBJECT CREATION AND DESTRUCTION 19

In addition, elements dfree must be immediately reusable for the allocation

of new objects — that's their whole raison d’étre —, so they must satisfy the
precondition clauseew_virginal of the allocate event by not having any<- Pagel2
outgoing links, a condition we express through another invariant:

[148] Free n domain (attached =[] [)

In practive this means that any event that adds elemeri®tamust remove
their outgoing links. The following figure illustrates the situation: it shows the
setGarbage extracted from the earlier picture of the overall object structure,
with its new subsedtree

Garbage and
Garbage free list

02
X Free
©3
@ * Removed links

As per[l48], all outgoinglinks have been removed from the objects-iee

but there may still béncominglinks into these objects, such as the red links
into O1 and O2. Such links may only come from non-free garbage as per the
following theorem:

[T49] attached! (- Free.) O Garbage — Free

Proof: incoming links intoFree may not come fronfree because ofl48];
they may only come frontGarbagebecause ofT44]. We may in fact infer
from this a stronger property (althoug9] will be the useful form):

[T50] attached! (- Garbage-) O Garbage — Free

Since the previous events did not involFese, they all preserve our two
new invariants.

20 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

The new evenfree_all— which will also preserve them — is almost
identical tocollect_all(the specification below highlights the differences) but
returns freed elements Eoee rather tharunused

free_allis

-- Move all garbage objects to the free list.

do
Free:= Garbage
attached= attached \ Live

ensure
live_and_free_onlyObjects — Free old Live
restricted_to_liveattached- old (attached \ Live
restricted_to_kept

attached= (old attached \ (Objects — Freg

no_change_to_ stackameStack
no_loss_of lifesameLive
all_from_live domain (attached [J Live
all_to_live_or_freerange (attached O Live [] Free
all_live_or_free Objects= Live [l Free
garbage_freedGarbage= Free

end

Proofs of the postcondition and previous invariants are the same as for
collect_alt proofs for the two new invariants are immediate.

As illustrated on the last figure, the state resulting fioze _allmay still
haveincominglinks into Free.

The following event removes any such links by deallocating the free list:

deallocates
-- Get rid of all objects in the free list.
require
recyclable attached* (- Free.) [J Free
do
Objects.= Objects — Free ||
attached= attached \ Free ||
Free:=[J
ensure

rid_of_free Objects= old Objects — Free
-- Other clauses omitted (see previous events)

end

§2.3 OBJECT CREATION AND DESTRUCTION

21

The precondition requires that incoming links iffi@e come only fromFree
itself, rather than from non-fre@arbageelements (seg49]). This is not the
case for example on the figure of padgg&unless the two links going to O1 and
02 are taken away. Without thi§bjects:= Objects — Freewould create
Zombie links fromObjectsto Unused even if such links can only originate
from Garbage they stilll violate the Basic Object Constraint.

If, on the other hand, no links exist Emeeobjects except frorRreeitself,
then the precondition adeallocateis satisfied. This is the case in particular
when all garbage has been made free:

(Free= Garbage [0 recyclable
-- Hererecyclableis the precondition afieallocate

(Proof: follows directly from[T44].) This means that it is legitimate to use
deallocatejust afterfree_all thanks to the latter event’s last postcondition
clause Garbage= Free

Incremental garbage collection

The eventsollect_allandfree_allrepresent a full GC cycle that removes all
garbage. In a modern language implementation there must also be room for an
incremental GC, which removes some garbage objects but not necessarily all.

This suggests that we need another evatiect soméRejecty whose
argumentRejectsdenotes a set of garbage objects. As a special case,
collect_soméGarbageg will describe the same operation fige_all At the
other extreme, we can usellect_somé€{o}) to describe the collection of a
single objecb, or, in a non-GC-language, a programmer-controlled operation
to free this object safely.

Here iscollect_somen a form as close as possibleree _alt

22 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

collect_soméRejects IP (Objecty) is
-- Get rid of all the objects iRejects
require
recyclable Rejectd | Garbage
do
Free:= Free] Rejects
attached = attached Rejects
ensure
rejects_freedFree= old Free [] Rejects
restricted attached= old (attached Reject$
restricted_to_kept
attached= (old attached \ (Objects — Frep
no_change_to_stackameStack
no_loss_of lifesameLive
from_live_or_other_garbage
domain (attached L] Live [] (Garbage — Rejec)s
-- No counterpart tall_to_live_or_free
all_live_or_free_or_other_garbage
Objects= Live [Free[] (Garbage — Rejects
no_change_to_garbag&arbage= old Garbage

-- Following have no counterpart in previous events:
no_change_to_object®bjects=old Objects
possibly_more_freeld Free [Free

end

The replacement fomttachedis attached \Rejects meaning: attached
deprived of all pairs of the forri, j] wherei L1 RejectsThe proofs are similar

to those of the last two events and left to the reader; the key property is the
precondition recyclable without which we couldn't guarantee
no_loss_of_life

All clauses except the last two are counterparts of thodesef all the
same or weaker. The reason for usiinge_all as our model, rather than
collect_all is thatcollect_somemust be applicable to an arbitrary subset
Rejectsof Garbage then it cannot remove the corresponding objects from
Objects like collect_all since as already noted any links iftejectdrom the
outside (which can only come from oth®arbagg would yield Zombie links.

So here the only possibility isfeee_altlike behavior that moves thReejects
to theFreelists without removing them from the set of objects.

§2.3 OBJECT CREATION AND DESTRUCTION 23

Removing the objects for good — sending thenuttused— means having
adeallocatetake place aftecollect_somgwhich is only possible iattached

! (- Rejects) [Rejectsto ensure the precondition deallocate (This is the
case ifRejectds all of Garbage indeedcollect_soméGarbagg is the same

as free_all) Of course we could add this clause to the precondition of
collect_somaétself, enabling this event to remove tRejectscompletely; but
then the model ceases to be realistic since an incremental collection cycle
would now need to find all the links int®ejectsand hence to work on
Garbage as a whole, whereas the very notion imicremental garbage
collection implies that if you have spotted a fé&ejectsyou can free them
without having to traverse the rest of tarbage So the bestollect_some
can do in the general case is to moveRbgctdo theFreelist.

This reasoning is one of the principal justifications for introducing the
notion of free list into the model.

Recycling an object

Even if prevented to return iejectdo Unusedan incremental GC cycle will

remove them frondomain (attached. That's enough to make them available

to the eventllocate which needs a suitable address for a new object. As we

haveseen, that doesn’t mean an address outsi@#gcts just outside of both ~ See discussion of
Live and (clausenew_virgina) domain (attached. The postcondition cIaus&Bi‘s’e—i’gg'”a'O”
from_live_or_other_garbagef collect_somensures it.

As a consequence we may define an event that, by combining
collect_somandallocate frees an object and immediately reuses its address
for a new object:

recycle(existing Live; reject Object$ is
-- Reuse the address wéwto allocate a new objeg
-- chained to the object axkisting
require
from_live existingl] Live
new_recyclablereject[JGarbage
do -- Two events in sequence:
collect_somé{ new)
allocate(existing new
ensure
... Left to reader (see postconditions of events
collect_somendallocatsg ...

‘:—F

end

24 PART 2: THE OVERALL OBJECT STRUCTURE §2.3

Its correctness requires that, as just noted, the precondit@ioo&tehold after
collect_someThe postcondition and the rest of the proof are left to the reader.

Stack allocation

The previous events had to do with objects allocated on the heap. In the
execution of an object-oriented we also need a stack-based form of allocation,
similar to pre-O-O techniques as present in Algol 60. The following event
provides it; routine calls will use it for every local variable and by-value
argument of a reference (non-expanded) type.

allocate_on_stacknew Addressesis
-- Allocate a new stack object imw
require
new_availablenew[]Objects
do
Stack= Stackl] {new}
ensure
root_added Stack= old Stackl] {new}
end

Proving the postcondition and the preservation of the invariants is easy. Note

that here we cannot any more weaken the preconditien_availableto

newlILive and new[] domain (attached aswe did for the eventllocate if Iy {ﬁf&zzﬁm_w
newis a garbage object, other garbage objects may have links to it; then virginal, page12; see
attempted to recycle it as a stack object we couldn’t any more guarantefs swencoror: som
postcondition, which requiresewto be part of the stack and hence, frostarting on page2
[T21], to admit no incoming link. So for the choice nEwwe exclude all

currently allocated addresses, live as well as garbage. This matches the
behavior of practical memory allocation schemes, which draw stack addresses

and heap addresses from different address pools.

One may similarly define an everitee from_stack(existing that
removes an element from the stack. This is left to the reader.

§2.4 REPRESENTING ADDRESSES 25

2.4 REPRESENTING ADDRESSES

The set of object addresses was specified as a set of integers:

[Al] AddresseslIF (IN) - As2 introduced on
page2.

Do we indeed need to know whatdressess? Not at this stage; we could
proceed for a while without stating whaiddressess made of. One might
even conjecture that this choice of a concrete seAtiniressebetrays that the
author of this discussion is a programmer, faithful to the usual mores of his
species: implement first and maybe think later.

The choice is indeed the mathematical counterpart of what in software
would be an implementation decision. But it seems justified if the goal is to
build a useful model of the execution of programs on computers. Our
computers have memories, and these memories have sequentially numbered
cells. Hence the idea of definifgddressess a set of integers. Even if early
on we don't care about this aspect, it becomes relevant if our eventual aim is
to formalize O-O programs, or even just their GCs.

How much low-level an implementation decision this is depends on the
intuitive semantics we attach N . Fortunately we can continue developing
the model without choosing our exact level of abstraction:

* Under a ‘high-levet interpretation we may think of an abstract memory,
where each cell (denoted by an integer from the domaiattfched
contains an object — an instance of a class. For example the GC of
versions 1 and 2 of ISE Eiffel relied on having all live objects linked
together (through a hidden field added to every object); it also chained
together in a “free list” all the dead objects it reclaimed. With such an
interpretation every integer denotes not a physical address in the
computer’s memory but a position in a list of objects.

26 PART 2: THE OVERALL OBJECT STRUCTURE §2.4

* We may also use ddw-level interpretation and consider the integers to
be the actual starting addresses of the objects’ representation. One of the
pleasant consequences of using relations — or, starting with the next
article, possibly partialunctions— is that they don’t have to be total or
surjective. So if an address doesn’t correspond to the beginning of an
actual object (in particular, if it is not a multiple of 4, assuming objects
start on 32-bit word boundaries and our addresses are counted in bytes) it
will simply not be inObjectsand hence will not denote any object.

This interpretation also yields (when combined with the Basic Object
Constraint) an important property of the moded: references to subobjects

In Eiffel, even though the framework supports subobjects (through the
“expanded” mechanism), a reference will always be attached to a first-level
object, never to a subobject. The experience of early language and compiler
versions showed that permitting references to subobjects complicates the GC
and precludes some optimizations, for no significant expressive benefit.

With the low-level interpretation we will most likely go further in our
specification ofAddressesnd define it as the interval. .memory_higHor
some non-negative integeremory_highFrom there one can start discussing
in detail the properties of a memory management scheme. For example a GC
of the mark-and-sweegind needs in its “sweep” phase to traverse the whole
memory — the interval. .memory_high

This interpretation may also allow us to take into account the actual
content of objects (their “expanded” fields), not just — as in the present
discussion — the references they contain to other objects. The content of an
object identified by the integer (assumingn belongs toObjectg is simply
what’s stored at a set of physical addresses starting atd bounded by
next(n) — 1wherenext(n) is the next member @bjects if any.

At this stage, however, nothing forces us to disallow subobject
references, or to choose the “high-level” interpretation or the “low-level” one,
or any other. Their role is simply to reassure ourselves that the mathematical
model is realistic.

§2.4 REPRESENTING ADDRESSES

27

What has been postulated

Here for convenience is arecapitulation of the assumptions made so far (marked
originally with @ signs): seven axioms, each postulating an element of a known
set, and seven invariants postulating properties of these elements. They make
up the basis of what we need to reason about run-time object structures. Every
one of the events to be studied now will have to preserve the invariants.

[A1] AddressesIF (IN) Axioms
[A2] Objects IF (IN)

[A5] attached IN « IN

Al19 Stack IP (Addresses

[A46] Free IF (IN)

[13] Objectsd] Addresses Invariants
[16] attached(- Objects) 0 Objects

[120] Stackl] Objects-range (attached

[147] Free[d Garbage

148 Free n domain (attached = [

28

PART 2: THE OVERALL OBJECT STRUCTURE §2.4

	Proving Pointer Program Properties
	Part 2: The overall object structure
	2.1 BASICS OF THE RELATION MODEL
	Addresses and objects
	Linking objects
	Void links
	The Basic Object Constraint

	2.2 STACK, HEAP, GARBAGE AND LIVE OBJECTS
	Stack and heap
	Live and garbage objects
	Invariants so far

	2.3 OBJECT CREATION AND DESTRUCTION
	Object creation
	Getting the precondition right
	Full garbage collection
	The free list
	Incremental garbage collection
	Recycling an object
	Stack allocation

	2.4 REPRESENTING ADDRESSES
	What has been postulated

