Draft of 17 February 2003
© Bertrand Meyer, 2000-2003

Proving Pointer Program Properties
Part 3. Considering individual fields

Bertrand Meyer

ABSTRACT

In object-oriented programming, the overall reference structure is the combination
of individual structures induced by the attributes of the underlying classes. This
article makes the transition from a coarse-grained view to one allowing individual
consideration of object fields.

This is part of a series of articles. Segefor links to the others.

http://www.inf.ethz.ch/~meyer/ongoing/references/index.html

2 PART 3: CONSIDERING INDIVIDUAL FIELDS §3.1

The previous article in this series has presented a coarse-grain model of the
run-time object structure — the Relation Model — based on a single relation
attached |t is time now to refine the model so that it will more directly reflect
the properties of object structures in an object-oriented language.

3.1 MODELING ATTRIBUTES

Let's examine what kind of relatioattachedrepresents in practice. Consider
a class, with its attributes only, routines omitted

classPERSONeature
age INTEGER
landlord, loved servant PERSON
name STRING

end

assuming similar descriptions are availableSaGiRINGand any other needed
classes. The attributggedenotes the kind of expanded field that we ignore at
this stage of the discussion. CI&ERINGdenotes strings; we assume that, as
in Eiffel, strings are objects, so themedenotes a reference field.

Given any instancp of classPERSONhe relatiorattachedwill contain
exactly four pairs having as their first element: one each fandlord, loved
servantandname

The figure on pagéd of the previous article omitted the fiellheand treated
STRINGas if it were an expanded rather than reference type, leaving only the
fieldslandlord, loved servant The pairs for the top-left object, number8d
were:[8, 8], [8, 9], [8, 12]

Here we can say that all instances of clRERSONave a “fan-out” of four,
where the fan-out of an objeotis the number of pairs havingas their first
element. In atyped object-oriented language, this is a general property: the fan-
out is the same for all instances of a class. In addition, the targets of the links
are always of the same types: hienedlord, lovedandservanwill always lead

(if not void) to instances dPERSONandnameto instances o5 TRING This

is an important property of the corresponding run-time object structure, to
which we may give a name:

Class-Based Nature of Objects

In a typed object-oriented language as considered in this
discussion, every class defines a set of links and link types
applicable to all its instances.

83.1 MODELING ATTRIBUTES 3

In the Relation Modelattachedis an arbitrary relation; this doesn’t address
the Class-Based Nature of Objects. To have a realistic model and prove all
relevant properties, we must take this property into consideration.

A first attempt

Let us first briefly examine an approach that has been used by several authors
and see why it is not appropriate.

That approach, which we may call the Attribute Function Model,
probably seems the most natural: it refines the Relation Model by considering
that each class defines a two-argument function

attribute_link Attributesx Addresses- Addresses

wherex is cartesian productttributesis the set of possible attribute names
(such adandlord etc. in the example), and 4 B is the set of functions,
possibly partial, fromA to B. (As before we are only interested in the set of
finite functions A 4 B, but this makes no difference sindddressess finite.)

So for an instance of PERSONhe functionattribute_linkwill define the
following values, and these only:

attribute_link("PERSONIandlord", p)
attribute_link("PERSONIoved', p)
attribute_link("PERSONservant, p)
attribute_link("PERSONnNamé, p)

using attribute names of the for@LASS_NAMEattribute_nameto identify - ‘The FunctionUnion
each attribute uniquely. (Motater on this convention.) Model", . pege 4

The relationship to the original Relation Model is easy to define. If
define the functiotink, with the signature

link: Attributes4 (Addresses, Addresses

as the specialization (“currying”) @fttribute_linkon its first argument, that is
to say,link (a), for any attributea, is the functionlink, such that, for any
addressddr for which it is defined

link, (addr) = attribute_link(a, addr)

4 PART 3: CONSIDERING INDIVIDUAL FIELDS §3.1

then the relatiorattachedof the Relation Model is in direct correspondence
with the functionlink:

[T51] attached= L] link(a)
a: Attributes

However intuitive at first, this Attribute Function Model is impractical for our
general goal of proving properties of sophisticated programs and libraries. The
reason is simply that the functiaattribute link takes two arguments. This
makes it hard to derive properties of complex structures by combining
properties of simpler ones — our only hope for tackling complexity.

If we stick toone-argument functionsf andg we will be able to deduce,
from properties of andg, properties of their unioh J g, their intersection
f n g, their closures* andg* — which tell us which objects can be reached
from a given object — and various combinations of these operations. By
applying these rules repeatedly we can deduce properties of the entire
structure. In other words, a model with one-argument functions will scale up.
With the Attribute Function model we have to drag along the function
attribute_link Attributes x Addresses} Addresseswhich treats its two
arguments — attribute tag and object — symmetrically although they have
different roles. Union and intersection don’t represent any relevant property,
and there is no transitive closure. This means we can’t use the strategy of first
studying properties of various attributes in isolation, then combining them
through basic set operations. The model doesn'’t scale.

The Function Union Model

To enjoy the convenience of one-argument functions we will simply consider
each attribute of a class, separately, as defining a function on the object
structure. Then the relaticrttachedof the Relation Model will be the union

of all such functions.

In our example class declaration

classPERSONeature
age INTEGER
landlord, loved servant PERSON
name STRING

end

83.1 MODELING ATTRIBUTES 5

each attribute, such dandlord or name defines at run time a function from
objects to objects; foname the function’s domain is the set of instances of
PERSONand its range is a subset of the set of instancB3RING

For any attribute, we call the corresponding functibink, as above:

linky: Addresses. Addresses

This function represents all the inter-object links induced by the attabute

To avoid referring explicitly to classes throughout, we consider that an
attribute namea — a member ofAttributes— represents “a certain attribute
of a certain class”; sacarries within itself the indication of its class. This was
achieved by the notationpreviously used to denote attribute:— Pages.
CLASS_NAMEattribute_namefor examplePERSONIandlord.

That two attributes from two unrelated classes may have the same name doesn't
affect this property: they are still different members of thé\ttebutes

With inheritance, an attribute of a class may also be available in another class.
For example, if clasBERSONas a descenda@HILD, and we applyovedto

an instance of &€HILD, we are using the same memb&ERSONIoved of
Attributes Here there is n€HILD.loved Note that the name of the attribute

in the class is once again irrelevant: in Eiffel, which clearly distinguishes
betweenfeaturesandfeature namesthe attributdovedmay have a different
name inCHILD, but it's still the attribute we are callin@€HILD.loved
conversely (and perversel@HILD could have another attribute callém/ed
bearing no relation to the original. At the semantic level, where we are dealing,
such naming and other source language issues must have been previously
resolved.

The relationattachedat the center of our model is the union of &hk,
functions, for all attributea of all classes:

Function Union property

[T52] attached= |:| link 4 « Thisisthe same prop-
a: Attributes erty as[T51].

wherelink, is a function, denoting the links induced by an
attributea of a class.

6

PART 3: CONSIDERING INDIVIDUAL FIELDS §3.1

The Function Union property describaachedas a union of functions. It
gives its name to the model’s new refinementRtection Union model

We may interpret the Function Union property visually by looking again
at the figure that showed our example structure in its relational form,
illustrating the relatiomttached

References
collapsed into
a relation:
attached

(Firstshown on pagéof
part 2)

and recalling that it was only intended as a coarse-grain view of the functional
form, which in its fine-grain form shows individual links:

8

name

"Almaviva "

landlord

2

"Rosina "

name

loved

Ad

landlord

servant |

|

name| *Figaro "

landlord

loved

servant

v

"Susanna "

loved

servant

name

landlord

loved
servant

From an object
store

(First shown on pagé
of part 2)

For simplicity as noted
the figure showsame
fields as if they were ex-
panded although they
are actually references
to STRINGobjects It
also ignoresagefields
This does not affect the
discussion

§3.1 MODELING ATTRIBUTES

The Function Union model considers that each attribute represents a

mathematical function; here it would call these functiéingngiord, 1NKioved

and so on. Each is identified in the figure by a different color. We may draw the

graph representing just one of the functions, for exatmig, 4
8 2

A single
attribute
f_unction:
IIr‘kloved

The attachedgraph is the superimposition of all such individual attribute
graphs. With the Function Union model we study each attribute graph
separately, and defirstachedas their union.

[T51] gives the connection with the previous, discarded model — the
Attribute Function model. The two models are indeed conceptually
equivalent, but we get a considerable gain of convenience by switching from
a function inAttributesx Addresses): Addresse$o one-argument functions
from Addresseto itself.

In manipulating functions, one should be careful of the plain union
operator because the union of two functions is a relation but not, in the general
case, a function. IIiT52] we don’t mind, since the left-hand sid&ttached
was defined from the start as a relation.

More precisely, a union of functions is a function only if they have disjoint
domains, or at least coincide on their domains’ intersection. This is not
necessarily the case here sirlag, functions have the same domain for
attributes coming from the same class. For an instanoé a class having
attributesa andb, link, andlinky, yield the same value if the corresponding
reference fields linko to the same objects. In our example graph obfgct
Rosina links to objec8, Almaviva through bothovedandlandlord.

8 PART 3: CONSIDERING INDIVIDUAL FIELDS §3.1

The use of functions in the Function Union Model makes it a good intuitive
picture of the practice of object-oriented programming. For any olyjexft
type C and any attribute of the class, there is exactly one value — denoted
in most languages hy.a — for the corresponding field. (For a non-expanded
attribute that value is eith&foid or a reference to another object, which makes
no difference in our model.) This is thek, function.

A strategy

Our newest model suggests a two-step strategy for studying object structures:

1+ First, focus on each relevant attribute separately, studying the properties
of the object subgraph that it induces. This leads quickly to interesting
properties.

2+ Then, by applying the Union operator, infer properties of the full relation
attached when needed, from properties of the individiiak, functions
that make up that relation.

We will be particularly interested, for ste}y in properties that are preserved
by the union operator. We will call theomion-stable Here is a first repertoire
of union-stability theorems, with straightforward proofs:

[TS3] f(¢A-)Tg(A-)=(0 g) (A
[T54] * 0 g O (fO g)*
[T55] f* 0 g* O (fO g)*

Part 4 applies the strategy just defined to modeling the object structures
induced by classes describing fundamental data structures, and proving their
run-time properties.

	Proving Pointer Program Properties
	Part 3: Considering individual fields
	3.1 MODELING ATTRIBUTES
	Class-Based Nature of Objects
	A first attempt
	The Function Union Model
	Function Union property
	A strategy

