
Draft of 17 February 2003
© Bertrand Meyer, 2000-2003
Proving Pointer Program Properties
Part 3: Considering individual fields
Bertrand Meyer

This is part of a series of articles. Seehere for links to the others.

ABSTRACT

In object-oriented programming, the overall reference structure is the combination
of individual structures induced by the attributes of the underlying classes. This
article makes the transition from a coarse-grained view to one allowing individual
consideration of object fields.

http://www.inf.ethz.ch/~meyer/ongoing/references/index.html

PART 3: CONSIDERING INDIVIDUAL FIELDS §3.12
The previous article in this series has presented a coarse-grain model of the
run-time object structure — the Relation Model — based on a single relation
attached. It is time now to refine the model so that it will more directly reflect
the properties of object structures in an object-oriented language.

3.1 MODELING ATTRIBUTES

Let’s examine what kind of relationattachedrepresents in practice. Consider
a class, with its attributes only, routines omitted

assuming similar descriptions are available forSTRINGand any other needed
classes. The attributeagedenotes the kind of expanded field that we ignore at
this stage of the discussion. ClassSTRINGdenotes strings; we assume that, as
in Eiffel, strings are objects, so thatname denotes a reference field.

Given any instancep of classPERSONthe relationattachedwill contain
exactly four pairs havingp as their first element: one each forlandlord, loved,
servantandname.

The figure on page4 of the previous article omitted the fieldageand treated
STRINGas if it were an expanded rather than reference type, leaving only the
fields landlord, loved, servant. The pairs for the top-left object, numbered8,
were:[8, 8], [8, 9], [8, 12].

Here we can say that all instances of classPERSONhave a “fan-out” of four,
where the fan-out of an objecto is the number of pairs havingo as their first
element. In a typed object-oriented language, this is a general property: the fan-
out is the same for all instances of a class. In addition, the targets of the links
are always of the same types: herelandlord, lovedandservantwill always lead
(if not void) to instances ofPERSON, andnameto instances ofSTRING. This
is an important property of the corresponding run-time object structure, to
which we may give a name:

class PERSONfeature
age: INTEGER
landlord, loved, servant: PERSON
name: STRING

end

Class-Based Nature of Objects
In a typed object-oriented language as considered in this
discussion, every class defines a set of links and link types
applicable to all its instances.

§3.1 MODELING ATTRIBUTES 3
In the Relation Model,attachedis an arbitrary relation; this doesn’t address
the Class-Based Nature of Objects. To have a realistic model and prove all
relevant properties, we must take this property into consideration.

A first attempt

Let us first briefly examine an approach that has been used by several authors
and see why it is not appropriate.

That approach, which we may call the Attribute Function Model,
probably seems the most natural: it refines the Relation Model by considering
that each class defines a two-argument function

where× is cartesian product,Attributesis the set of possible attribute names
(such aslandlord etc. in the example), andA →| B is the set of functions,
possibly partial, fromA to B. (As before we are only interested in the set of
finite functions,A →|| B, but this makes no difference sinceAddressesis finite.)
So for an instancep of PERSONthe functionattribute_linkwill define the
following values, and these only:

using attribute names of the formCLASS_NAME.attribute_nameto identify
each attribute uniquely. (Morelater on this convention.)

The relationship to the original Relation Model is easy to define. If we
define the functionlink, with the signature

as the specialization (“currying”) ofattribute_linkon its first argument, that is
to say, link (a), for any attributea, is the functionlinka such that, for any
addressaddr for which it is defined

attribute_link: Attributes× Addresses→| Addresses

attribute_link("PERSON.landlord", p)
attribute_link("PERSON.loved", p)
attribute_link("PERSON.servant", p)
attribute_link("PERSON.name", p)

link: Attributes→| (Addresses→| Addresses)

linka (addr) = attribute_link(a, addr)

→“TheFunctionUnion
Model”, , page 4.

PART 3: CONSIDERING INDIVIDUAL FIELDS §3.14
then the relationattachedof the Relation Model is in direct correspondence
with the functionlink:

However intuitive at first, this Attribute Function Model is impractical for our
general goal of proving properties of sophisticated programs and libraries. The
reason is simply that the functionattribute_link takes two arguments. This
makes it hard to derive properties of complex structures by combining
properties of simpler ones — our only hope for tackling complexity.

If we stick toone-argument functionsf andg we will be able to deduce,
from properties off andg, properties of their unionf ∪ g, their intersection
f ∩ g, their closuresf* andg* — which tell us which objects can be reached
from a given object — and various combinations of these operations. By
applying these rules repeatedly we can deduce properties of the entire
structure. In other words, a model with one-argument functions will scale up.
With the Attribute Function model we have to drag along the function
attribute_link: Attributes × Addresses→| Addresseswhich treats its two
arguments — attribute tag and object — symmetrically although they have
different roles. Union and intersection don’t represent any relevant property,
and there is no transitive closure. This means we can’t use the strategy of first
studying properties of various attributes in isolation, then combining them
through basic set operations. The model doesn’t scale.

The Function Union Model

To enjoy the convenience of one-argument functions we will simply consider
each attribute of a class, separately, as defining a function on the object
structure. Then the relationattachedof the Relation Model will be the union
of all such functions.

In our example class declaration

[T51] attached= ∪
a: Attributes

link (a)

class PERSONfeature
age: INTEGER
landlord, loved, servant: PERSON
name: STRING

end

§3.1 MODELING ATTRIBUTES 5
each attribute, such aslandlord or name, defines at run time a function from
objects to objects; forname, the function’s domain is the set of instances of
PERSON, and its range is a subset of the set of instances ofSTRING.

For any attributea, we call the corresponding functionlinka as above:

This function represents all the inter-object links induced by the attributea.

To avoid referring explicitly to classes throughout, we consider that an
attribute namea — a member ofAttributes— represents “a certain attribute
of a certain class”; soa carries within itself the indication of its class. This was
achieved by the notationpreviously used to denote attributes:
CLASS_NAME.attribute_name, for examplePERSON.landlord.

That two attributes from two unrelated classes may have the same name doesn’t
affect this property: they are still different members of the setAttributes.

With inheritance, an attribute of a class may also be available in another class.
For example, if classPERSONhas a descendantCHILD, and we applylovedto
an instance of aCHILD, we are using the same memberPERSON.lovedof
Attributes. Here there is noCHILD.loved. Note that the name of the attribute
in the class is once again irrelevant: in Eiffel, which clearly distinguishes
betweenfeaturesand feature names, the attributelovedmay have a different
name in CHILD, but it’s still the attribute we are callingCHILD.loved;
conversely (and perversely)CHILD could have another attribute calledloved
bearing no relation to the original. At the semantic level, where we are dealing,
such naming and other source language issues must have been previously
resolved.

The relationattachedat the center of our model is the union of alllinka
functions, for all attributesa of all classes:

linka: Addresses→| Addresses

Function Union property

[T52] attached= ∪
a: Attributes

linka

wherelinka is a function, denoting the links induced by an
attributea of a class.

← Page3.

←This is thesameprop-
erty as[T51].

PART 3: CONSIDERING INDIVIDUAL FIELDS §3.16
The Function Union property describesattachedas a union of functions. It

gives its name to the model’s new refinement: theFunction Union model.

We may interpret the Function Union property visually by looking again

at the figure that showed our example structure in its relational form,

illustrating the relationattached:

and recalling that it was only intended as a coarse-grain view of the functional

form, which in its fine-grain form shows individual links:

8

12 9

2 References
collapsed into
a relation:
attached

(Firstshownonpage4of
part 2.)

From an object
store

(First shown on page4
of part 2.)

For simplicity, as noted,
the figure showsname
fields as if they were ex-
panded, although they
are actually references
to STRING objects. It
also ignoresage fields.
This does not affect the
discussion.

"Figaro "

name

loved

name
landlord
loved_one

8

"Almaviva "
landlord

"Susanna "
12 9

name

loved

landlord

name

loved

landlord

servant servant

servant

name

loved

2

landlord

servant

"Rosina "

§3.1 MODELING ATTRIBUTES 7
The Function Union model considers that each attribute represents a
mathematical function; here it would call these functionslinklandlord, linkloved
and so on. Each is identified in the figure by a different color. We may draw the
graph representing just one of the functions, for examplelinkloved:

The attachedgraph is the superimposition of all such individual attribute
graphs. With the Function Union model we study each attribute graph
separately, and defineattachedas their union.

[T51] gives the connection with the previous, discarded model — the
Attribute Function model. The two models are indeed conceptually
equivalent, but we get a considerable gain of convenience by switching from
a function inAttributes× Addresses→| Addressesto one-argument functions
from Addresses to itself.

In manipulating functions, one should be careful of the plain union
operator because the union of two functions is a relation but not, in the general
case, a function. In[T52] we don’t mind, since the left-hand side,attached,
was defined from the start as a relation.

More precisely, a union of functions is a function only if they have disjoint
domains, or at least coincide on their domains’ intersection. This is not
necessarily the case here sincelinka functions have the same domain for
attributes coming from the same class. For an instanceo of a class having
attributesa andb, linka and linkb yield the same value if the corresponding
reference fields linko to the same objects. In our example graph object2,
Rosina, links to object8, Almaviva, through bothloved andlandlord.

A single
attribute
function:
linkloved

name
landlord
loved_one

8

12 9

2

PART 3: CONSIDERING INDIVIDUAL FIELDS §3.18
The use of functions in the Function Union Model makes it a good intuitive
picture of the practice of object-oriented programming. For any objecto of
typeC and any attributea of the class, there is exactly one value — denoted
in most languages byo.a — for the corresponding field. (For a non-expanded
attribute that value is eitherVoidor a reference to another object, which makes
no difference in our model.) This is thelinka function.

A strategy

Our newest model suggests a two-step strategy for studying object structures:

1 • First, focus on each relevant attribute separately, studying the properties
of the object subgraph that it induces. This leads quickly to interesting
properties.

2 • Then, by applying the Union operator, infer properties of the full relation
attached, when needed, from properties of the individuallinka functions
that make up that relation.

We will be particularly interested, for step2, in properties that are preserved
by the union operator. We will call themunion-stable. Here is a first repertoire
of union-stability theorems, with straightforward proofs:

Part 4 applies the strategy just defined to modeling the object structures
induced by classes describing fundamental data structures, and proving their
run-time properties.

[T53] f (.A.) ∪ g (.A.) = (f ∪ g) (.A.)
[T54] f* ∪ g* ⊆ (f ∪ g)*
[T55] f + ∪ g+ ⊆ (f ∪ g)+

	Proving Pointer Program Properties
	Part 3: Considering individual fields
	3.1 MODELING ATTRIBUTES
	Class-Based Nature of Objects
	A first attempt
	The Function Union Model
	Function Union property
	A strategy

