
s

Draft of 17 February 2003
© Bertrand Meyer, 2000-2003
Proving Pointer Program Properties

Part 1: Context and overview

Bertrand Meyer

This is part of a series of articles. Seehere for links to the others.

ABSTRACT

Efforts to reason formally about programs, and in particular toprove their
properties mathematically, have no practical value unless they can handle all the
language facilities on which realistic programs depend. It is then not surprising that
one of the biggest obstacles to the spread of such correctness-guaranteeing method
has been the lack of a good way to model the highly dynamic nature of the run-time
structures created by object-oriented programs — and by most plain C or Pascal
programs — with their heavy use ofpointers, or references, from object to object.
The present discussion proposes a mathematical theory for modeling pointer-rich
object structures and proving their properties.
The model only uses simple concepts from set theory: sets, relations, functions,
composition, restriction, image. For run-time operations all it needs is the notion of
event, a function yielding a new program state from an existing one.
The model has two principal applications:

• Thecoarse-grainedversion of the model, considering only the existence or not
of a reference between an object and another, gives a basis for discussing
overall properties of the object structure, defining as a result the correctness
constraints ofmemory managementand especiallygarbage collection, full or
incremental. Mathematically, this model uses a binaryrelation.

• The fine-grainedversion, based onfunctionswhich together make up the
relation of the coarse-grained version, integrates the properties of individual
object fields. As a result, it allowsproving the correctness of classes
describing structures with luxurious pointer foliage, from linked lists and
graphs to B-trees and double-ended queues.

http://www.inf.ethz.ch/~meyer/ongoing/references/index.html

PART 1: CONTEXT AND OVERVIEW §1.12
1.1 INTRODUCTION

Scope

Advances in the theory of programming enable us to reason more
systematically about programs. This goal is not just academic any more,
thanks in particular to recent tools that permit the mathematical development
of significant industrial systems accompanied by a proof of their correctness.

A wider use of these techniques would be of great benefit to software
technology, but obstacles remain, includingtheoreticalobstacles. One of the
most significant is the lack of a generally accepted mathematical model for the
possibly complex structures, involving numerouspointers (or references)
between objects, that we can direct our programs to create during their
execution. We will study such a model and its application to a variety of
problems, including:

• Memory management, especially garbage collection, for programs that
create many objects linked by references.

• Mathematical proofs of properties of object-oriented components
describing object structures involving possibly complex use of references.

Organization

This presentation includes four separate articles.

• The rest of Part 1,Context and Overview, explains the goals and
assumptions of the project, then (1.2) describes its rationale by recalling
the inevitability of using references when modeling systems. It also
includes a summary of notations (1.3), a bibliography (1.4) and
acknowledgments, all applicable to the full series.

• Part 2 presents acoarse-grained model that describes the pointer
structure as a whole, ignoring individual object fields. The mathematical
framework covers such concepts as abstract addresses, objects, links
between objects, stack, heap, garbage, live objects, and such events as
heap and stack allocation, full and incremental garbage collection,
yielding a substantial set of theorems.

• Part 3 shows how to refine this first model into afine-grained modelfor
proving properties of individual classes and individual object fields.

• Part 4 applies the fine-grained model toprove properties of specific
classesdescribing linked object structures. This part is not yet available
at the time of writing, but the main results appear in a separate paper[12].

§1.1 INTRODUCTION 3
Trusted components

This work is part of a more general effort towards “Trusted Components”[10]:
reusable software elements enjoying guaranteed properties. The project
includes two complementary parts:

• A “low road” aimed at analyzing components built with current
technology — library classes, COM objects, Enterprise Java Beans, .NET
assemblies — through aComponent Quality Modelthat has to take into
account the state of the industry as it is.

• A “high road” aimed at producing components enjoying mathematically
proved properties.

The present work is on the “high road”; it is a required milestone on that road,
since as discussed in section1.2 realistic components need pointers.

Why this should work

There have been numerous attempts before to provide a theory for pointer
structures, none of which has established itself widely in practice — to the
point that Abadi and Cardelli’s treatise on the theory of objects[1] stays aways
from pointers. It is fair to ask why the present one has a better chance. It rests
its claims on three properties: simplicity; abstraction; and object-orientation.

First, the model exclusively relies onsimple mathematical concepts. The
mathematics involved is elementary set theory, nothing else. Anyone who
understands sets, relations, union, intersection and the like can follow from
beginning to end; no lambda calculus, higher-order logic, term rewriting, or
calculi with names of various Greek letters.

Next, the model takes advantage ofabstract operators. Transitive
closure and other high-level operations on relations and functions yield simple
and convincing results. The image operator, for example, is central to the
developments below.

Third, we use theconcepts of object technologyand focus on properties
of object-oriented programs.Most authors of theoretical work in the field
define, as their basic problem, the need to model a non-object-oriented
construct: the C++ or Java assignment to a “qualified target”

x.a := b

PART 1: CONTEXT AND OVERVIEW §1.14
which requires modeling every operation as potentially affecting the full
object store (in the same way that an array operationa [i] := x potentially
affects any element of the arraya). Yet O-O methodology implies that
reference assignments must only occur within a routine of the corresponding
class, under the unqualified form

Like goto avoidance in elementary programming, this rule is both sound for
program design and helpful for mathematical modeling.

We try to take advantage of object technology, whosereusabilitygoal
shifts the focus of proofs toclass invariantsexpressing key properties of the
pointer structures defined by a class. A typical example is

as illustrated by this picture of a run-time linked list structure:

The class-based nature of object-oriented programs enables us to devote our
efforts to proving that the corresponding reusable classes preserve these
invariants. This seems the best way to avoid, in the words of Bornat[4], being

force[d] towards global reasoning[where] every [attribute]
assignment seems to affect every assertion[about] the heap

as seems hard to avoid ifx.a := b is the object of our study. By contrast

a := b

“Starting from the list header and following the reference
first_elementthat leads to a list cell, and then the reference
right that leads from a cell to the next, we will never hit the
same cell twice, and eventually we will hit aVoid”

Run-time
snapshot of a
linked list

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right right
first_

element

(LINKABLE)

right

§1.1 INTRODUCTION 5
The[classical] Floyd-Hoare treatment of assignment to a variable
concentrates attention on assertions that involve that variable,
leaving others untouched, making steps of local reasoning whose
restriction to particular formulæ matches the locality of assignment.

Proofs concentrating on classes give us back that locality. From such proofs
— especially invariance proofs — we can infer the abstract properties of the
routines of a class, as available to client code: Instead ofx.a := b, a client
application in genuine O-O programming uses calls of the formx.r (b); the
interface of the class, expressed in Eiffel by the contracts, gives the properties
of such calls for all exported routinesr.

This is indeed what we need to know when using pointer-manipulating
programs. Programmers don’t use pointer structures for their sake, but as
convenient implementations of abstract structures having certain abstract
properties. For example, a linked list as pictured above is useful as a
representation of an abstract sequential structure; what is relevant, when you
build and use such a structure through a reusable library classLINKED_LIST,
is to know that a call

results in a list having the same elements as before except for a new one, of
contentsome_value, inserted at the front. This property is part of the contracts
for the routineput_right of LINKED_LIST and the class as a whole:

• The routine must ensure its postcondition, which will state that there is a
new element at the front containing the desired value, and that the
remaining elements have been preserved.

• The routine, like all others in the class, must preserve the invariant stated
informally above (no cycle,Void at end).

It’s in proving thatput_fronthas these properties that we’ll need a theory of
pointer manipulations, but that theory can satisfy the principle of locality. Here
the body ofput_front might be of the form

my_list.put_front (some_value)

PART 1: CONTEXT AND OVERVIEW §1.16
which we may illustrate as

relying only on local reasoning aboutfirst_elementand the contract of
procedureput_rightin classLINKABLE. To establish that the implementation
of put_rightsatisfies this contract (stating that the routine reattaches theright
link to the argument) uses reasoning that is in turn local to classLINKABLE.

Using operators on relations and functions

In expressing the properties that make up the contracts of pointer-rich
structures, the abstract style of specification mentioned above will be
particular effective. Authors who have already used such a style to discuss
pointer programming issues include Möller[13] and Backet al. [3]; the
present effort relies on their work and extends it.

Consider the property “We will never hit the same cell twice”, from the
informal description of the linked list invariant. Abstract operators let us state
it concisely as

to be understood as follows:first_elementandright are functions, which for
any object give another object, corresponding to the respective fields in
LINKED_LIST and LINKABLE; the semicolon represents composition of
functions or relations; the asterisk is reflexive transitive closure (the result of
applying a function or relation zero or more times); andid [X] is the identity
relation on a setX. So the formula states that the composition offirst_element
with any number of applications ofright yields no identity pair (no pair of the
form [x, x]) — the desired property. Without the abstract operators, one would
have to write (see for example the style of[15]) something like

create n
n.put_right(first_element)
first_element:= n

(first_element; right*) ∩ id [LINKABLE] = ∅

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right

rightfirst_
element

Inserting an
element at the
front

new

§1.1 INTRODUCTION 7
with the auxiliary function definition

The verbosity is striking; the added variables (x, m, n) play no useful role, and
the recursive function definition is overkill. It’s this kind of notational inflation
that makes simple problems look complicated, leading to a a “big artillery”
style of specification and proof that is hard to pursue very far in practice.

As another example, one of our theoremswill state

wherer (.X.) denotes the image of a subsetX under a relationr, that is to say,
the set of elements to whichr links an element ofX; the relationattachedlinks
two objects if there is a reference from one to the other. The theorem, known
as the “No Zombie” property, expresses the basic rule that following a
reference from any object will lead another object: there are no dangling
references. It’s an invariant that all operations on references must be preserve.
Without the image operator, this could be expressed as

It’s not hard to decide which version to show to a human reader or an
automatic prover.

Proof support

A rule applied to this effort is to ensure that all stated properties are proved,
not just manually but mechanically. At the time of writing the mechanical part
is in progress, using the Atelier B formal development workbench[5].

∀ x: LINKED_LIST. ∀ m, n: .
m ≠ n ⇒ next(x, m) ≠ next(x, n)

next(x, n)= first_element(x) if n = 0
= right (next(x, n–1)) if n > 0

[T11] attached(.Objects.) ⊆ Objects

∀ x: Objects. ∀ l: Attributes(Class(x)) .
(∃ y: . ∃ l: Links. reference(x, l) = y) ⇒ y ∈ Objects

(Not the retained math-
ematical style.)

NI

→ Coarse-grained
model, page7.

NI

PART 1: CONTEXT AND OVERVIEW §1.28
Mathematical basis and style

The mathematical concepts used are from elementary set theory. The notations
are introduced on first use and summarized at theend of Part 1.

“Events” follow the ideas of B[2]. Syntactically, they are expressed in an
Eiffel-like form that should be immediately understandable, specifying for
each event its condition of applicability (precondition:require), itsoperation
on the state (body:do), and properties of the resulting state (postcondition:
ensure), which must be proved as theorems. The model also includes
invariants, which every event must be proved to maintain.

The reader may find the style of mathematical development too detailed,
perhaps tedious, with the inclusion of many theorems, some seemingly
obvious. The aim has been to help understand the issues in depth and to
prepare for machine-checked proofs using Atelier B.

1.2 RATIONALE: WHY USE REFERENCE-BASED MODELS

To prepare the model’s presentation in the next articles of the series, we first
review why pointers are useful and why they cause trouble. This survey
(which you can peruse quickly if you are already convinced of the inevitability
of pointers, and of the theoretical problems they raise, such as dynamic
aliasing) sets the precise context of the rest of the discussion.

The lure of dynamic models

Programmers today want to take advantage of the power of object technology
to build class structures whose run-time instantiations will consist of large
numbers of objects containing many references to each other. It would be
wrong to dismiss the resulting complexity as self-inflicted: unlike the
complexity of a programming language or an analysis notation, which can be
criticized as the result of poor design, the complexity faced here results from
our attempts to model (using a language or notation that may be beyond
reproach) inherently complex aspects of the world. An employee belongs to a
department, a department has a budget, a budget has an applicable period, a
period has a beginning date and an ending date, and so on. Criticizing object
models because they lead to objects that may include many references fields
— a reference field of typeDEPARTMENTin classEMPLOYEEetc. — would
be all the more unfair that one of the achievements of object technology is
precisely that it enables us to describeobject structures of great apparent
complexity while retaining simplicity in the design of the corresponding
classes and their mutual relations, that is to say, the software model.

→ “CONVENTIONS
AND NOTATIONS”,
page 14.

§1.2 RATIONALE: WHY USE REFERENCE-BASED MODELS 9
Another property of reference-rich object structures is that they usually
take advantage of dynamic allocation, meaning that execution creates objects
on demand. You do not need to know in advance how manyEMPLOYEE
objects your program will need: the program will create a “list of employees”
object at the beginning of its execution; if later on it needs a newEMPLOYEE
object it will create it at that time, for example from an employee record in a
database, and add to the list a reference to that object. This is both more
convenient and more economical than having to plan a maximum number of
EMPLOYEEobjects, with the risk of failing in the occasional case that
requires more of them than planned, and of wasting memory in all others.

An added advantage is — in a good object-oriented environment — the
ability to rely on automatic memory managementmechanisms for the
allocation and de-allocation of memory for objects, and particularly on an
automaticgarbage collectionfacility for recycling the memory space used by
objects that can provably be of no longer use to the current execution of a
program. Doing such recycling manually in the program requires considerable
programming work of no direct relevance to the application and, even more
worryingly, can easily lead to grave errors, hard to debug, in the case of
mistakenly recycling space for a still active objects. If the programming
language provides references within a suitable type system, the programming
environment can, through its garbage collector, remove all such worries.

The alternative to using references would be, as in the days before object
technology — indeed, the days before Pascal —, to model everything through
integers and arrays. But no one who has had a taste of object-oriented analysis,
design or programming will voluntarily go back and renounce the benefits of
a model supporting references, dynamic object creation, and automatic
garbage collection.

The challenges of reasoning with references

Unfortunately, approaches to mathematics-based software development and
proof still generally limit themselves to dealing with basic data types such as
integers and booleans, lacking a good formal model for object structures
involving references. The reason is that references introduce properties that
complicate the mathematical description of object structures.

PART 1: CONTEXT AND OVERVIEW §1.210
The most significant isdynamic aliasing, the ability for an object to
become known under two different names, because two different references
point to it. Dynamic aliasing breaks some common, widely assumed modes of
reasoning. We are used to assuming that in a situation such as the following
we understand what is going on:

We assume, at the position markedBefore, that a certain property holds of
some thing we calla. Then someone applies an operation to another thing,b.
This operation does not involvea in any explicit way deducible from the
description of the operation itself. Then we expect that after the operation, the
property we relied on still holds ofa, since the operation should not have
“touched”a.

With the introduction of references, unfortunately, this simple mode of
reasoning does not necessarily hold. Assume thata andb denote references.
A property of a reference is that it may refer to an object; using Eiffel’s
terminology we’ll say that a reference may beattached to an object. (A
reference that is not attached to any object is said to bevoid.) Thena andb
might be attached to the same object, and an operation onb may invalidate a
property ofa, if that property characterizes the attached object.

For example, in the figure below, botha and b are attached to an
EMPLOYEE object with several fields, including salary. If
SOME_PROPERTYsays that the monthly salary of the object attached toa is
less than fifty thousand euros, andSOME_OPERATIONincreases by one the
salary of the object attached tob, SOME_PROPERTYwill not hold at the point
markedAfter above.

-- Before:SOME_PROPERTY holds ofa
Apply SOME_OPERATION to b.
-- After: SOME_PROPERTY still holds ofa

salary49,999
a

b

Aliasing

§1.2 RATIONALE: WHY USE REFERENCE-BASED MODELS 11
This is a case ofaliasing(an object being known through two different names,
herea andb). With non-reference variables, belonging to types that we will
call expandedusing Eiffel terminology again, no such problem arises: ifa and
b are different variables of typeINTEGER, an expanded type, an operation on
b may never change a property ofa.

What makes aliasing even more tricky is that in object-oriented languages
— and any language permitting pointers, such as Pascal or C — aliasing can
bedynamic: we cannot foresee all cases before run time, since aliasing may
result from a reference assignment

which may be executed, or not, depending on input data or interactive user
actions; so in general we have no easy way, when looking at two reference
namesa andb in the program text, to know whether or not they may during
execution ever become attached to a common object. This makes reasoning
about programs much more difficult than with programming models where all
types are expanded.

As already noted, we cannot blame such complexity on programming
models alone. The problem is more fundamental, following from our ability
to refer to things of the world around us in more than one way. Reading a
“Before” assumption and an operation in the above style

we might hastily deduce that after the operation the original assumption still
holds, but we would be wrong if it turns out that Jill’s son is married to the
CEO. Such aliasing can, in life as in computer programs, be dynamic, since
the marriage may take place between the time we hear the gossip and the time
Jill’s salary is raised.

Such examples suggest that it may be unfair to blame pointers for difficulties
which can be traced to the human ability to call things by more than one name.
“The beautiful daughter of Leda”, “Menelas’s wife” and “Helen of Troy” all
denote the same person; readers of Saint-Simon are supposed to know that
“Monsieur” is the King’s brother; and more than one amateur of Russian novels
has had trouble remembering on page 467 that “Daria Alexandrovna” was
introduced as the “Countess Oblonsky” on page 5 and called “Dounia” on page
35, but elsewhere was just “Dolly”.

b := a

-- I heard that both of the CEO’s in-laws make less than 50K.
Memo to personnel: raise Jill’s salary by one euro

PART 1: CONTEXT AND OVERVIEW §1.212
Properties of object structures

Let us get a first idea of where we are heading by considering the kind of

properties that — assuming we overcome the difficulties just reviewed — we

want to be able to prove. Here is a typical example; simple, but beyond the

realm of many proof systems. The example,already previewed, is class

LINKED_LIST from the EiffelBase library, reduced to its essentials. Using

this class leads to run-time object structures that we may picture as follows:

This involves two classes:LINKED_LISTproper, representing the list header

(object at the top left); andLINKABLE, representing the list elements and

meant to be used only byLINKED_LIST, not directly by clients of

LINKED_LIST. The shaded cells represent information associated with the

list, such as the number of items (in theLINKED_LISTobject) and actual list

element contents in theLINKABLE objects.

Such structures are the result of class declarations of the form

class LINKED_LIST[G] feature
first_element: LINKABLE[G]
... Routines (see below) ...

end -- class LINKED_LIST

class LINKABLE[G] feature
right: LINKABLE[G]
... Routines (see below) ...

end -- class LINKABLE

→ Page4.

Void

(LINKED_LIST)

(LINKABLE) (LINKABLE)

right right
first_

element

Run-time
snapshot of a
linked list

§1.2 RATIONALE: WHY USE REFERENCE-BASED MODELS 13
The kinds of properties we will want to prove include:

• No cycles: if at any time during the life of such a list we follow the
first_elementreference from aLINKED_LISTobject, and then follow the
sequence ofright references inLINKABLE objects for as long as
applicable, we will never encounter the sameLINKABLE object twice.

• Void termination: any such sequence eventually links toVoid.

• No tail sharing: starting from two differentLINKED_LISTobjects, such
sequences ofLINKABLEobjects are disjoint.

• The procedureput_front(given next) will result in a list with one more
item than before.

• The procedureremove_frontwill result in a list with one fewer item, and
cause the addition of one object to the list of “garbage”, that is to say,
objects whose memory may be safely returned to the operating system.

The first two of these properties are invariants; they must be ensured by all the
initialization procedures of the class (“constructors” in C++ terminology), and
preserved by all exported routines such asput_front andremove_front.

Here are these two routines — with Eiffel assertions omitted although
they will figure in any acceptable version of the classes. Firstput_front in
LINKED_LIST:

In a practically useful library,put_front would have an argument of typeG
representing the value to be stored in the new element; in this discussion,
however, we may omit the argument since we focus on the references between
objects (the arrows on the last figure) and ignore any non-reference fields in
objects (the figure’s shaded areas).

put_frontis
-- Add element to beginning of list.

local
n: LINKABLE[G]

do
create n
n.put_right(first_element)
first_element:= n

end

PART 1: CONTEXT AND OVERVIEW §1.314
Procedureput_front calls the following procedure from classLINKABLE
(available only, thanks to the mechanism of selective export, to class
LINKED_LIST and its descendants):

Procedureremove_front in LINKED_LIST will be written:

We will explore how to prove the properties of such routines.

1.3 CONVENTIONS AND NOTATIONS

This section serves as reference for the whole set of articles.

The model consists, in the B style, of constants, variables, and events that
affect the variables. Constants and variables are sets (including the special
cases of relations and functions).

In addition to events, the formal elements are of four kinds:axioms
introducing new elements (which may themselves be sets) of known sets;
definitionsintroducing new elements in terms of previously introduced ones;
invariantsexpressing properties that we must prove to be preserved by every
event; andtheoremsthat we must prove to follow from the other properties.
All these elements are numbered in a single sequence, with numbers
respectively starting with A, D, I and T.

We will try to keep our model minimal by limiting the number of
elements that we explicitly postulate: axioms and invariants. (Definitions and
theorems do not introduce any new assumption.) To help keep track of this
goal, every new axiom or invariant is marked by a in the right margin.

put_right(other: LINKABLE[G]) is
-- Makeotherthe new right neighbor of current object.

do
right := other

end

remove_frontis
-- Remove first element of list.

require
not_empty: first_element/= Void

do
first_element:= first_element.right

end

 For example the first
axiom is[A1], the first
definition[D9], the first
invariant [I3] and the
first theorem[T7].

§1.3 CONVENTIONS AND NOTATIONS 15

s

The rest of this section gathers the notations used in the remaining
articles. It is not necessary to study it on first reading since all non-elementary
notations are introduced on first use. Sources for the notation include Z, B, and
reference[7].

Naming conventions

General

Properties of the model

Symbol Name Typical use Meaning

A, B, C,… Set naming conventionA (Names of sets, especially of
addresses or objects, but not relation
or functions, usually start with an
upper-case letter.)

a, b, c,…
r, …
f, …

Member, relation,
function naming
convention

a (Names of set elements, functions
and relations usually start with a
lower-
case letter.)

Symbol Name Typical use Meaning

=∆ Definition x =∆ E From now on, understandx as an
abbreviation forE.

: Distinguished member a: S From now on, assume thatS(a known
set) has a specific member, to be
calleda.

Symbol Name Typical use Meaning

Ai Axiom numberi. [A1] a: S Assume thatS (a known set) has a
specific member, to be calleda.

Di Definition numberi.
(Must be of one of the
two forms shown on
the right.)

[D2] x =∆ E From now on, understandx as an
abbreviation forE.

PART 1: CONTEXT AND OVERVIEW §1.316

r

f

f

f

Sets

Ii Invariant numberi. [I3] A = B All events must preserve the given
property (proof obligation).

Ti Theorem numberi. [T4] A = B The given property follows from
previous definitions, axioms and
theorems

Symbol Name Typical use Meaning

∈ Set membership a ∈ S (True or false.)a is a member ofS.

∅ Empty subset ∅ Subset (of any set) that has no
members.

⊆ Set inclusion X ⊆ Y (True or false.) Every member ofX
(if any) is also a member ofY.

∪ Union of subsets A ∪ B Union of A andB: the subset whose
members are the members of eithe
or both ofA andB.

∩ Intersection of subsets A ∩ B Intersection ofA and B: the subset
whose members are the members o
both ofA andB.

– Difference of subsets B – A Difference of B and A: the subset
whose members are the members o
B that are not members ofA.

Complement of a
subset

X
Complement ofX: the set whose
members are members of the
enclosing set that are not members o
X.

× Cartesian product A × B Cartesian product ofA andB: the set
of pairs[a, b] where a is a member of
A andb a member ofB.

{ } Extension
(enumeration)

{ a, b, c} The set whose members area, b and
c.

Symbol Name Typical use Meaning

§1.3 CONVENTIONS AND NOTATIONS 17

ts

all

l

Logic

Relations and functions

Powerset (X) The set whose members are the subse
of X.

Finite powerset (X) The set whose members are the finite
subsets ofX.

Set of integers The set whose members are
positive integers

. Set of positive integers . The set whose members are al
positive integers

Symbol Name Typical use Meaning

¬ Negation ¬ P True if and only ifP is false.

⇒ Implication P ⇒ Q True unlessP is true andQ is false.

∀ Universal quantifier ∀ j: A . P True if and only ifP holds of everyx
that is an element ofA. (True if A is
an empty subset.)

∃ Existential quantifier ∃ j: A . P True if and only ifP holds of at least
onex that is an element ofA. (False
if A is an empty subset.)

Symbol Name Typical use Meaning

[] Pair [a, b] The pair whose first element isa and
second element isb.

Relation A relation of source setA and target
set B is a set of pairs whose first
element is a member ofA and second
element a member ofB.

Symbol Name Typical use Meaning

PI PI

FI FI

NI NI

NI NI

PART 1: CONTEXT AND OVERVIEW §1.318

t

↔ Set of relations A ↔ B The set of relations of source setA
and target setB, i.e. the set of pairs
[a, b] such thata is a member ofA
andb a member ofB.

↔|| Set of finite relations A ↔|| B The set of relations of source setA
and target setB that are finite sets.
(Their domain and range are both
finite.)

→| Set of functions
(possibly partial)

A →| B Functions of source setA and target
setB: members ofA ↔ B which for
any membera of A have at most one
member pair whose first element isa.

→|| Set of finite functions A →|| B Functions of source setA and target
setB, whose domain is a finite subset

→ Set of total functions A → B Total functions of source setA and
target setB: members ofA |→ B
whose domain isA. (For any member
a of A, such a function has exactly
one member pair whose first elemen
is a.)

domain Domain domain (r) For a relationr of source setA, the
subset ofA whose members are alla
such thatr contains a member pair
whose first element isa.

range Range range (r) For a relationr of target setB, the
subset ofB whose members are allb
such thatr contains a member pair
whose second element isb.

r \ X Restriction r \ X Restriction of relationr to a subsetX
of its target set: the relation
containing every pair inr whose first
element is a member ofX.

id Identity relation id [X] Identity relation onX: the relation of
source setX and target setX whose
members are all the pairs having the
same first and second element.

Symbol Name Typical use Meaning

§1.3 CONVENTIONS AND NOTATIONS 19
(Exponent) Iteration of a relation rn (Forn ≥ 0.) r iteratedn times: ifn = 0,
the identity relation; ifn > 0,
r composed, recursively, withrn–1.

+ Transitive closure of a
relation

r+ Transitive closure ofr:
r1 ∪ r2 ∪ r3 ∪ …

* Reflexive transitive
closure of a relation

r* Reflexive transitive closure ofr:
r0 ∪ r+

cyclic Cyclic relation cyclic (r) (True or false.)r is a cyclic relation:
among the members ofr aren pairs
[a1, a2], [a2, a3], …, [an–1, an], [an,
a1] for somen ≥ 1. (True if r is an
identity relation, or contains an
identity relation, e.g. if it is a
transitive closure.)

–1 Inverse of a relation r –1 Inverse relation ofr: the set of pairs
[a, b] such that the pair[a, b] is a
member of r. The inverse of a
function is a relation, not necessarily
a function.

() Function application f (x) Application of a function f to a
membera of its domain: the element
b (there is exactly one) such that[a,
b] is a member off.

(. .) Image by a relation r (.A.) Image of subsetA under relationf:
the set of allb (if any) such thatr has
a pair [a, b] for some a that is a
member ofA.

(. .) Image by a function f (.A.) Image of subsetA under functionf:
the set of allb (if any) such thatb = f
(a) for somea that is a member ofA.
(Definition equivalent to previous
one but applied to case of a function.)

Symbol Name Typical use Meaning

PART 1: CONTEXT AND OVERVIEW §1.420
Events and assertions

1.4 REFERENCES

This bibliography applies to the entire series of articles.

[1] Martín Abadi and Luca Cardelli:A Theory of Objects, Monographs in
Computer Science, Springer-Verlag, 1996.

[2] Jean-Raymond Abrial,The B Book, Cambridge University Press, 1995.

[3] Ralph Back, X. Fan and Viorel Preoteasa:Reasoning about Pointers in
Refinement Calculus, Technical Report, Turku Centre for Computer Science,
Turku (Finland), 22 August 2002.

[4] Richard Bornat:Proving Pointer Programs in Hoare Logic, in Mathematics
of Program Construction, Springer-Verlag, 2000, pages 102-106.

[5] ClearSy [name of company, no author listed]: Web documents on Atelier
B, www.atelierb.societe.com, last consulted December 2002.

curry Currying curry (f) Curried version off (f specialized on
its first argument): iff is a member of
A × B → C, curry (f) is a memberg of
A → (B → C) such that, for anya, g
(a) is the functionh such that, for any
b, h (b) = f (a, b). This definition uses
total functions but immediately
generalizes to partial functions and
arbitrary relations.

Symbol Name Typical use Meaning

require Precondition require
condition

Event may occur if and only if
condition is satisfied.

ensure Postcondition require
condition

Theorem (must be proved): Event
will yield a result satisfying
condition.

|| Parallel execution x := a || y := b The two operations occur in parallel.

Symbol Name Typical use Meaning

http://www.atelierb.societe.com

§1.4 REFERENCES 21
[6] C.A.R. Hoare and He Jifeng:A Trace Model for Pointers, in ECOOP ‘99
— Object-Oriented Programming, Proceedings of 13th European Conference
on Object-Oriented Programming, Lisbon, June 1999, ed. Rachid Guerraoui,
Lecture Notes in Computer Science 1628, Springer-Verlag, pages 1-17.

[7] Bertrand Meyer:Introduction to the Theory of Programming Languages,
Prentice Hall, 1990.

[8] Bertrand Meyer:Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

[9] Bertrand Meyer, Christine Mingins and Heinz Schmidt: Providing Trusted
Components to the Industry, in Computer(IEEE), vol. 31, no. 5, May 1998,
pages 104-105.

[10] Bertrand Meyer et al.: Trusted Components papers atse.inf.ethz.ch, last
consulted December 2002.

[11] Bertrand Meyer:A Framework for Proving Contract-Equipped Classes,
to appear inAbstract State Machines 2003 - Advances in Theory and
Applications, Proc. 10th International Workshop, Taormina, Italy, March 3-7,
2003, eds. Egon Boerger, Angelo Gargantini, Elvinia Riccobene, Springer-
Verlag 2003. Pre-publication copy atwww.inf.ethz.ch/~meyer/publications/,
last consulted January 2003.

[12] Bertrand Meyer:Towards Practical Proofs of Class Correctness, at
se.inf.ethz.ch/ongoing/references, last consulted February 2002.

[13] Bernhard Möller:Calculating with Pointer Structures, in Algorithmic
Languages and Calculi, Proceedings of IFIP TC2/WG2.1 Working
Conference, Le Bischenberg (France), February 1997, Chapman and Hall,
1997, pages 24-48.

[14] Joseph M. Morris,A general axiom of assignment; Assignment and linked
data structures; A proof of the Schorr-Waite algorithm. In Theoretical
Foundations of Programming Methodology, Proceedings of the 1981
Marktoberdorf Summer School, eds. Manfred Broy and Gunther Schmidt,
Reidel 1982, pages 25-51.

[15] John C. Reynolds:Separation Logic: A Logic for Shared mutable Data
Structures, in Proceedings of 17th Annual IEEE Symposium on Logic in
Computer Science, Copenhagen, July 22-25 2002.

[16] Norihisha Suzuki,Analysis of Pointer “Rotation”, in Communications of
the ACM, vol. 25, no. 5, May 1982, pages 330-335.

http://se.inf.ethz.ch
http://se.inf.ethz.ch/ongoing/references
www.inf.ethz.ch/~meyer/publications/

PART 1: CONTEXT AND OVERVIEW §1.422
Acknowledgments

(This section expresses thanks for feedback received, without any implication
of endorsement or agreement.) Earlier versions of the approach discussed in
this series of articles have presented in several forums, leading to important
comments and criticism: at an IFIP WG 2.3 meeting (Tony Hoare, John
Reynolds, Natarajan Shankar, Michel Sintzoff); at the Turku Centre for
Computer Science (Ralph Back, Viorel Preoteasa); at the Lipari Summer
School of August 2002 (Jean-Raymond Abrial — also at an ETH presentation
and email correspondence — and Egon Boerger); at Monash University
(Christine Mingins); at the Formal Approaches To Software (FATS) seminar
at ETH (Robert Staerk). Karine Arnout provided detailed comments on an
earlier version of the paper. The work on proving classes is pursued with
Bernd Schoeller, who made important suggestions on part 2.

	Proving Pointer Program Properties
	Part 1: Context and overview
	1.1 INTRODUCTION
	Scope
	Organization
	Trusted components
	Why this should work
	Using operators on relations and functions
	Proof support
	Mathematical basis and style

	1.2 RATIONALE: WHY USE REFERENCE-BASED MODELS
	The lure of dynamic models
	The challenges of reasoning with references
	Properties of object structures

	1.3 CONVENTIONS AND NOTATIONS
	Naming conventions
	General
	Properties of the model
	Sets
	Logic
	Relations and functions
	Events and assertions

	1.4 REFERENCES
	Acknowledgments

