
The copyright to this material is held by Scott Meyers Page 1
or by Addison Wesley Longman, Inc. Last Revised: 11/10/02

The Meaning of “f(x)” in C++

Scott Meyers, Ph.D.
Software Development Consultant

smeyers@aristeia.com Voice: 503/638-6028
http://www.aristeia.com/ Fax: 503/638-6614

The copyright to this material is held by Scott Meyers Page 2
or by Addison Wesley Longman, Inc.

Function Calls and Implicit Type Conversions
Consider:

void f(double d);

int x;

...

f(x); // call f with an int

Should this compile?

� x is of the wrong type.

C says yes. So does C++.

� Note: this is an attempt to read minds.



The copyright to this material is held by Scott Meyers Page 3
or by Addison Wesley Longman, Inc.

Function Calls and Overloading
Consider:

void f(int);
void f(double);

Should this compile?

� f is overloaded

C++ says yes.

The copyright to this material is held by Scott Meyers Page 4
or by Addison Wesley Longman, Inc.

Overloading Meets Type Conversions
Now consider an abstract view of a set of overloaded functions and a 
potential call:

void f(SomeParamType1);
void f(SomeParamType2);
...
void f(SomeParamTypeN);

SomeType x;
f(x); // A call to f, but which one?

C++ specifies five levels of parameter matching that can be applied:

1. Exact match (includes “trivial conversions”)

2. Match with promotions (value-preserving)

3. Match with standard conversions (not always value-preserving, 
includes inheritance-based conversions)

4. Match with user-defined conversions

5. Match with ellipsis



The copyright to this material is held by Scott Meyers Page 5
or by Addison Wesley Longman, Inc.

Resolving Function Calls
These rules largely determine which, if any, function should be called. 
Example:

void f(int);
void f(int*);
void f(...)

f(10); // calls f(int) — exact match
f(0); // calls f(int) — exact match

string *ps = new string;

f(ps); // calls f(...) — match with ellipsis

Functions taking multiple parameters do the same thing, only more so.

� For a call to compile, the called function must:
➠ Be at least as good a match on each parameter as all the other 

candidate functions and
➠ Be a strictly better match on at least one parameter.

Note: this is still an attempt to read minds.

The copyright to this material is held by Scott Meyers Page 6
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
Consider:

template<typename T>
void f(T);

int x;

f(x); // Deduce that this is a call to f<int>

Note that no type conversion is ever necessary.

� T can always be the passed type.



The copyright to this material is held by Scott Meyers Page 7
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
It gets more interesting with one type parameter but multiple function 
parameters:

template<typename T>
void f(const T& x, const T& y);

Should mixed-type calls compile?

int i;
const int ci = 5;

f(i, ci); // Valid? If so,what is T?

double d;

f(i, d); // Valid? If so,what is T?

The copyright to this material is held by Scott Meyers Page 8
or by Addison Wesley Longman, Inc.

Implicit Template Type Deduction
And of course there is the inheritance issue:

class Base { ... };
class Derived:

public Base { ... };

Derived d;
Base& rb = d;

f(rb, d); // Valid? If so,what is T?



The copyright to this material is held by Scott Meyers Page 9
or by Addison Wesley Longman, Inc.

Type Conversions and
Implicit Template Type Deduction

C++ allows some type conversions during implicit type deduction:

� The first and third examples are legal. The second is not.

The allowed conversions are more constrained than for function calls:

� Exact match (with some “trivial conversions”)

� Match with inheritance-based conversions

What’s missing?

� Promotions

� Standard conversions other than inheritance-based ones

� User-defined conversions

Note: again, this is an attempt to read minds.

The copyright to this material is held by Scott Meyers Page 10
or by Addison Wesley Longman, Inc.

The Crux of the Issue
Consider:

f(x); // What is this?

Is this a function call?

� If so, conversion rules for function calls apply.

Is it a request to instantiate and call a template function?

� If so, conversion rules for template instantiation apply.



The copyright to this material is held by Scott Meyers Page 11
or by Addison Wesley Longman, Inc.

The Rubber Hits the Road
The problem is not purely theoretical:

void f(vector<int>::const_iterator it1, vector<int>::const_iterator it2);

vector<int> v;
...
vector<int>::iterator begin = v.begin();
vector<int>::const_iterator end = v.end();

f(begin, end); // fine, this is a function call, so the user-defined
// iterator ⇒ const_iterator conversion applies

template<typename It> void g(It it1, It it2);

g(begin, end); // error, this is a template instantiation, so
// no user-defined conversions apply;
// no type for It can be deduced.

The copyright to this material is held by Scott Meyers Page 12
or by Addison Wesley Longman, Inc.

Specializing Templates
Aber warten Sie mal, wir gehen noch weiter.

It often makes sense to specialize templates for one or more types:

template<typename T>
void f(T); // General template

template<typename T>
void f(T*); // General Template For Pointers

template<>
void f<char*>(char *p); // Template specialization for char*

// pointers. This is not a template.

This turns out to be useful. Really :-)



The copyright to this material is held by Scott Meyers Page 13
or by Addison Wesley Longman, Inc.

Specializing Templates
Consider:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers

char *p;
...
f(p); // Which f is instantiated/called?

The copyright to this material is held by Scott Meyers Page 14
or by Addison Wesley Longman, Inc.

Specializing Templates
Critical observations:

� Only functions can be called.

� Function templates are not functions. They generate functions.

� Before the compiler generates a function, it must choose the template 
to instantiate.

There are only two templates to choose from:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

Here is the call again:

char *p;
...
f(p); // Which f is instantiated/called?

Which template is a better match for a pointer type?



The copyright to this material is held by Scott Meyers Page 15
or by Addison Wesley Longman, Inc.

Specializing Templates
Clearly, the template for pointers is a better match. So:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers
char *p;
...
f(p); // Calls (2), not (3)

The specialization would be considered only if (1) were the selected 
template!

The results would change if (3) were declared this way:

template<>
void f<char>(char *p); // Now this specializes (2), not (1)!

The copyright to this material is held by Scott Meyers Page 16
or by Addison Wesley Longman, Inc.

Resolving Function Calls
In essence, there are three sets of interacting rules:

� Overloading resolution

� Template argument deduction

� Function template partial ordering

All may apply to what looks like a simple function call:

f(x); // all of the above may be involved



The copyright to this material is held by Scott Meyers Page 17
or by Addison Wesley Longman, Inc.

Implications for C++ Programmers
� You must know whether you are using a template name when 

making a function call.

f(x); // what happens here depends on whether f is
// a function name, a template name, or both

� You must document whether functionality you provide comes from 
functions or function templates.

� Be careful not to confuse template argument deduction with 
overloading resolution.
➠ This applies also to non-type template arguments. The conversion 

rules for those also differ from those for overloading resolution.

The copyright to this material is held by Scott Meyers Page 18
or by Addison Wesley Longman, Inc.

Implications for Language Designers
� If X is a good idea and Y is a good idea, X+Y is not necessarily a good 

idea.

� The road to language Hell is paved with good intentions.

� It’s hard to read minds.


