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Function Calls and Implicit Type Conversions
Consider:

void f(double d);

int x;

...

f(x); // call f with an int

Should this compile?

� x is of the wrong type.

C says yes. So does C++.

� Note: this is an attempt to read minds.
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Function Calls and Overloading
Consider:

void f(int);
void f(double);

Should this compile?

� f is overloaded

C++ says yes.
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Overloading Meets Type Conversions
Now consider an abstract view of a set of overloaded functions and a 
potential call:

void f(SomeParamType1);
void f(SomeParamType2);
...
void f(SomeParamTypeN);

SomeType x;
f(x); // A call to f, but which one?

C++ specifies five levels of parameter matching that can be applied:

1. Exact match (includes “trivial conversions”)

2. Match with promotions (value-preserving)

3. Match with standard conversions (not always value-preserving, 
includes inheritance-based conversions)

4. Match with user-defined conversions

5. Match with ellipsis
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Resolving Function Calls
These rules largely determine which, if any, function should be called. 
Example:

void f(int);
void f(int*);
void f(...)

f(10); // calls f(int) — exact match
f(0); // calls f(int) — exact match

string *ps = new string;

f(ps); // calls f(...) — match with ellipsis

Functions taking multiple parameters do the same thing, only more so.

� For a call to compile, the called function must:
➠ Be at least as good a match on each parameter as all the other 

candidate functions and
➠ Be a strictly better match on at least one parameter.

Note: this is still an attempt to read minds.
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Implicit Template Type Deduction
Consider:

template<typename T>
void f(T);

int x;

f(x); // Deduce that this is a call to f<int>

Note that no type conversion is ever necessary.

� T can always be the passed type.
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Implicit Template Type Deduction
It gets more interesting with one type parameter but multiple function 
parameters:

template<typename T>
void f(const T& x, const T& y);

Should mixed-type calls compile?

int i;
const int ci = 5;

f(i, ci); // Valid? If so,what is T?

double d;

f(i, d); // Valid? If so,what is T?
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Implicit Template Type Deduction
And of course there is the inheritance issue:

class Base { ... };
class Derived:

public Base { ... };

Derived d;
Base& rb = d;

f(rb, d); // Valid? If so,what is T?
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Type Conversions and
Implicit Template Type Deduction

C++ allows some type conversions during implicit type deduction:

� The first and third examples are legal. The second is not.

The allowed conversions are more constrained than for function calls:

� Exact match (with some “trivial conversions”)

� Match with inheritance-based conversions

What’s missing?

� Promotions

� Standard conversions other than inheritance-based ones

� User-defined conversions

Note: again, this is an attempt to read minds.
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The Crux of the Issue
Consider:

f(x); // What is this?

Is this a function call?

� If so, conversion rules for function calls apply.

Is it a request to instantiate and call a template function?

� If so, conversion rules for template instantiation apply.
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The Rubber Hits the Road
The problem is not purely theoretical:

void f(vector<int>::const_iterator it1, vector<int>::const_iterator it2);

vector<int> v;
...
vector<int>::iterator begin = v.begin();
vector<int>::const_iterator end = v.end();

f(begin, end); // fine, this is a function call, so the user-defined
// iterator ⇒ const_iterator conversion applies

template<typename It> void g(It it1, It it2);

g(begin, end); // error, this is a template instantiation, so
// no user-defined conversions apply;
// no type for It can be deduced.
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Specializing Templates
Aber warten Sie mal, wir gehen noch weiter.

It often makes sense to specialize templates for one or more types:

template<typename T>
void f(T); // General template

template<typename T>
void f(T*); // General Template For Pointers

template<>
void f<char*>(char *p); // Template specialization for char*

// pointers. This is not a template.

This turns out to be useful. Really :-)
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Specializing Templates
Consider:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers

char *p;
...
f(p); // Which f is instantiated/called?
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Specializing Templates
Critical observations:

� Only functions can be called.

� Function templates are not functions. They generate functions.

� Before the compiler generates a function, it must choose the template 
to instantiate.

There are only two templates to choose from:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

Here is the call again:

char *p;
...
f(p); // Which f is instantiated/called?

Which template is a better match for a pointer type?
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Specializing Templates
Clearly, the template for pointers is a better match. So:

template<typename T>
void f(T); // (1) General Template

template<typename T>
void f(T*); // (2) General Template for Pointers

template<>
void f<char*>(char *p); // (3) Specialization of (1)

// for char* Pointers
char *p;
...
f(p); // Calls (2), not (3)

The specialization would be considered only if (1) were the selected 
template!

The results would change if (3) were declared this way:

template<>
void f<char>(char *p); // Now this specializes (2), not (1)!
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Resolving Function Calls
In essence, there are three sets of interacting rules:

� Overloading resolution

� Template argument deduction

� Function template partial ordering

All may apply to what looks like a simple function call:

f(x); // all of the above may be involved
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Implications for C++ Programmers
� You must know whether you are using a template name when 

making a function call.

f(x); // what happens here depends on whether f is
// a function name, a template name, or both

� You must document whether functionality you provide comes from 
functions or function templates.

� Be careful not to confuse template argument deduction with 
overloading resolution.
➠ This applies also to non-type template arguments. The conversion 

rules for those also differ from those for overloading resolution.
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Implications for Language Designers
� If X is a good idea and Y is a good idea, X+Y is not necessarily a good 

idea.

� The road to language Hell is paved with good intentions.

� It’s hard to read minds.


