
COMPUTING
PRACTICES

Principles of Package Design
Bertrand Meyer

Electricit6 de France (EDF)

1. Introduction
For several years some of us at

EDF have been writing software
tools of general applicability. The
term Atel ier logiciel (software work-
shop) has been used to describe our
team's activity. The tools which have
been constructed and distributed dif-
fer widely in their nature and mode
of utilization. An important category
is that of subprogram packages. A
subprogram package is a group of
routines which may be called by any
program; its purpose is to provide a
means of performing tasks in some
domain of application which the
available programming language
does not directly address.

Examples of subroutine packages
which we have developed during the
past three years include those listed
in Figure 1. Working on these pack-
ages, we have gained various in-
sights. Our aim here is to convey

CR Categories and Subject Descriptors: D.2.0
[Software Engineering[: General-standards;
D.2.2 [Software Engineering]: Tools and
Techniques-modules and interfaces, software
libraries, user interfaces; D.2.7 [Software En-
gineering]: Distribution and Maintenance-
documentation, extensibility; D.3.3 [Program-
ming Languages]: Language Constructs-ab-
stract data types, modules, packages.
General Terms: Design, Documentation, Lan-
guages, Reliability.
Additional Key Words and Phrases: Reusable
software, software tool, Fortran.
Author's present address: B. Meyer, Electricit6
de France (EDF)--Direction des Etudes et
Recherches, 1, avenue du G6n&al de Gaulle,
92141 Clamart, France.
Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
©1982 ACM 0001-0182/82/0700-0419 75¢.

419

SUMMARY: Subprogram packages are groups of related
subroutines used to extend the available facilities in a pro-
gramming system. The results of developing several such
packages for various applications are presented, with a dis-
tinction made between external and internal design criteriab
what properties packages should offer to their users and the
guidelines designers should follow in order to provide them.
An important issue, the design of reusable software, is thus
addressed, and the concept of abstract data types proposed
as a desirable solution.

some of these to other practitioners
who may be confronted with similar
problems. No breakthrough is
claimed; our techniques are mostly
standard. We feel, however, that
their presentation and a discussion
of the software engineering methods
used in the design of our packages
may be helpful to practicing pro-
grammers working in an "industrial"
environment.

In Section 2, we describe our en-
vironment, a large scientific comput-
ing center, and underscore the need
for subprogram packages in relation
to other kinds of software tools. Sec-
tion 3 is a detailed discussion of ex-
ternal design criteria, i.e., how pack-
ages should appear to the outside
world. Section 4 presents our
methods for internal design, i.e., im-
plementation to fulfill the require-
ments of the preceding section; the
gist of our approach is that it consid-
ers a package the implementation of
one or more abstract data types. Sec-
tion 5 concludes with some reflec-
tions on the scope of our experience.

Since naming conventions form
an important part of our discussion,

Communications
of
the ACM

we have, throughout the text, trans-
lated the French words and abbre-
viations appearing in subprogram
names. The package names them-
selves have been preserved.

2. Why Subprogram Packages
The ideas presented here cer-

tainly reflect to some extent the fact
that our computing center is geared
toward scientific, mostly Fortran
programming; and, to a lesser one,
that it uses three IBM computers
(370-168, 3033, 3081) under MVS,
to which a Cray-1 has recently been
added.

The first question the reader may
ask is why we concentrate on collec-
tions of subprograms. Our aim is to
extend the range of facilities offered
by the existing language. There are
at least four other solutions:

(1) convincing users to switch to a
better or more powerful lan-
guage;

(2) writing JCL procedures;
(3) writing conversational proce-

dures;
(4) designing special-purpose pre-

processors.

July 1982
Volume 25
Number 7

COMPUTING
PRACTICES

Briefly, we shall discuss why these
choices are not always satisfactory.

Solution (1) is certainly the ideal
one. However, the sad fact is that
most programmers in industry use
first-generation languages and are
unlikely to try another one. If your
aim is to produce tools that will be
used, you had best conform to the
majority rule. (An even sadder fact,
as we shah see in Section 4, is that
the tool writer is usually barred from
using modern languages because of
technical constraints.)

Solutions (2) and (3) (batch or
conversational procedures) are ade-
quate for tools intended for "end
users", but not for tasks whose exe-
cution is initiated by programs.

Solution (4) (preprocessors) may
seem attractive but there are many
drawbacks involved. One is that it
may lead to the proliferation of pre-
processors serving various purposes,
which will not be, as a rule, mutually
compatible. As an example, consider
the case of a Fortran programmer
who wishes to use the control struc-
tures of "structured programming.
His programs output results to var-
ious graphic devices, and they re-
quire that some arrays have dynamic
bounds (i.e., the bounds are read on
a file before processing begins).
Many preprocessors, such as Ratfor
[5], are available for the first pur-
pose; others, such as Fortran 3D
[11], serve the second one (note,
however, that the current release of
the latter product uses the subpro-
gram package formula); still others
exist for the third requirement. The
input languages for these preproces-
sors will, in general, use wildly dif-
ferent conventions. Their treatment
of errors will not be the same. Some
of them, in generating Fortran code,
will delete comments, while others
will recognize comments under a cer-
tain predefined syntax as directives.
Their combined use will thus be very
difficult and, in many cases, impos-
sible.

Preprocessors present another
well-known problem. Often simple-
minded, they do not provide all the
services expected from a well-engi-
neered compiler (cross-references,
symbol tables, data flow analysis,
useful error messages, source level
optimization). They usually have no
associated run-time systems, let

alone debugging aids. Since they
generate code in existing program-
ming languages, they rely on the as-
sociated facilities. This makes run-
time errors a source of distress: they
must be traced back through a pro-
gram-generated program, which is
hardly more readable than the object
code produced by a compiler.

E n s o r c e l # - -
C h r o n o s - -
T e x t e s - -
A x ~ d i r - -
G e s c r a n - -
T r i - -

free-form input and output
time measurement
text manipulation
direct-access file management
full-screen programming
internal sorting

Fig. 1. Packages and Their Aims.

Initialization and Termination
CALL ASKGGE (answer)
CALL LEAGGE

Defining Screens and Creating Windows
CALL DEFSGE (ns)
CALL MXLSGE (n)

CALL CREWGE (nw, ns, il, it, iu,
id)

CALL DELWGE (nw)
CALL BRIWGE (nw, b)
CALL PROWGE (nw)
CALL FREWGE (nw)
CALL CAPWGE (nw)

CALL ASIWGE (nw)

Changing or Examining the Internal Image
CALL REPWGE (nw, tabcha)

CALL BLAWGE (nw)
CALL ASSSGE (nst, nss)
CALL BLASGE (ns)

CALL NBCWGE (nw, n)

CALL EXAWGE (nw, tabcha)

May I use full screen? (yes, if answer = O)
Leave full-screen mode.

Define ns as the name of a screen.
Set to n the maximum number of window

lines per screen.
Create window nw in screen ns with il, ir,

iu, id as coordinates.
Delete window nw.
Assign brightness b to window nw.
Make window nw protected.
Make window nw free (unprotected).
From now on, convert letters in window

nw to capitals.
From now on, leave any character in win-

dow nw as it stands.

Replace contents of window nw with tab-
cha.

Fill window nw with blanks.
Assign value of screen nss to screen nst.
Fill all unprotected windows of screen ns

with blanks.
Assign to nm the number of changes to

window nw since the last input opera-
tion.

Assign to tabcha the current contents of
window nw.

Input and Output (Affecting the External Image)
CALL WRISGE (ns) Display screen ns on the terminal.
CALL REASGE ins) Input screen ns from the terminal.

Manipulating the Cursor and Function Keys
CALL POSCGE (nw, nline, nco l)

CALL EXACGE (nw, nl ine nco l)

CALL EXAKGE (ns, n)

Position the cursor in window nw, at po-
sition [nline, ncol] .

To what position [nline, nco l] was the cur-
sor in window nw? ([0, O] if not in win-
dow)

Assign to n the number of the function key
used to send the screen contents.

Typed Input-Output (Interface with Package Ensorcel~)
CALL UNIOGE (nw) Direct subsequent output to window nw.
CALL UNIIGE (nw) Obtain subsequent input from window nw.

Fig. 2. Reference Sheet for Gescran.

420 Communications July 1982
of Volume 25
the ACM Number 7

Additionally, it should be noted
that preprocessors only add surface
improvements to Fortran. They usu-
ally do not provide remedies for this
language's intrinsic limitations with
regard to data structuring, dynamic
allocation, pointer variables, intra
and inter-routine type checking, re-
cursion, etc.

Subprogram packages do not suf-
fer from these defects, although, ad-
mittedly, they raise other problems
which we discuss in the next two
sections. To the potential user, they
offer a very neat way of enriching
the existing programming language
with new instructions, implemented
as subprogram calls.

3. External Design Criteria

A subprogram package is a col-
lection of mutually related subpro-
grams. Just how they should be
"related" to each other will be stud-
ied in more detail in Section 4. For
the moment, we turn to an important
question: How should these subpro-
grams be presented to their potential
users? This problem is vital, espe-
cially in light of the fact that pro-
grammers are often reluctant to in-
vest the effort necessary to learn a
new methodology. They will not be
lured into using our packages unless
some very attractive arguments con-
vince them to do so.

In the following subsections we
shall list those desirable qualities
which our packages should possess
and explain exactly how these design
criteria--namely, simplicity; self-re-
straint; ease of use; homogeneity,
safety--were met.

3.1 Overall Simplicity

In the area of simplicity our cen-
tral thesis was that most program-
mers would not use a subprogram
package if it required constant reli-
ance on a reference manual. Al-
though we did insist that users read
part of the manual at least once, our
ideal was that they should then be
able to employ a package for stan-
dard applications without further
reference to any written document.
In practice, we have not succeeded
in reaching this goal completely, but
we have nevertheless succeeded in
concentrating all the necessary infor-
mation for normal use of a package
on a single page. This we consider a
mandatory requirement. For an ex-
ample, see the reference sheet for the
package Gescran as outlined in Fig-
ure 2.

The most important aspect of our
approach is that we do not try to
write complex packages providing a
wide range of services and satisfying
all users' fantasies. Instead, we con-
centrate on a careful study of user
needs and strive to offer simple and
efficient answers to the most impor-
tant of them. Of course, deciding
which issues are the most important
is a design decision since often user
needs are either unexpressed or, if
expressed, require much work to be
transformed into realistic specifica-
tions.

3.2 Self-Restraint

Our subprograms are called by
other programs or subprograms: they
are not directly concerned with solv-
ing "interesting" problems, but
rather with performing general util-

Foreword ("How to Use This Manual")
Section 1--Introduction

2--Individual Subprogram Description
3--Restrictions and Caveat
4--Examples
5--Notions on the Implementation

Appendix A--Error Messages
B--List of External Names
C--Portability
D--Performance
E--Control and Data Flow Graph
F--Quick Reference List (last page)

Fig. 4. Structure of the Manuals.

USER /

\ APPLICATION /
PROGRAM /

~ PACKAGE ~ , ~

SYSTEM /
(compiler,

\run-time system,/
operating /
system, /

Fig. 3. Hierarchy of Programs and Pro-
gram Users.

ity tasks. The application program/
subprogram package/system hierar-
chy is pictured in Figure 3; other
levels may, of course, exist. We shall
refer to the programs which call our
subprograms as application pro-
grams; on the other hand, users will
be those individuals (or programs)
who (which) run application pro-
grams. (These terms, especially the
latter, are two of the most misused in
data processing; we shall strive to use
them precisely.)

Self-restraint is necessary be-
cause there is at least one level, that
of an application program, between
users and our subprograms. The lat-
ter must thus be as invisible to users
as possible. This is especially impor-
tant in connection with errors (Sec-
tion 3.5).

3.3 Ease of Use

Documentation

Documentation is organized in
terms of simplicity, ease of use, and
homogeneity. All packages are doc-
umented by manuals with the same
structure, as shown in Figure 4.

Order of Arguments

One key to ease of use is consis-
tency of design. This criterion be-
comes even more crucial as new
packages are employed and the num-
ber of available subprograms grows.
It requires that a set of regular, co-
herent conventions be strictly ob-
served for all distributed products.

421 Communicat ions
of
the AC M

July 1982
Volume 25
Number 7

COMPUTING
PRACTICES

An important area requiring a
homogeneous policy is parameter or-
der. In a language environment not
providing for key word parameter
transmission, actual arguments to
any subprogram must be given in a
fixed order, which matches that of
formal parameters for the subpro-
gram. Package users must thus know
this order; such a constraint often
becomes a source of annoyance and
errors. It is therefore desirable that
the package designer adhere to some
convention.

For example, in the Textes pack-
age, which allows character string
manipulation using pseudo-string
variables that appear to the compiler
as integer variables (see Section 4.6),
the syntax of some typical calls
would be what is seen in the box
below, itext, flext, and ktext are
pseudo-variables, i and j integers.

The order of arguments decided
on here was the following: in assign-
ments the destination should always
precede the source. This is consistent
with the syntax of most program-
ming languages:

A := f (B , C)

Moreover, since the package's
aim is to provide the equivalent of a
"string" data type as it exists in, say,
PL/I , the chosen order aims to imi-
tate the syntax of languages which
do offer operations on this type; e.g.,
CALL CNCTTX (itext, flext, ktext)
follows the PL/ I pattern itext = flext
11 ktext.

The rule of consistency in the
order of arguments may conflict with
other, equally important criteria con-
cerning the homogeneity of design.
For example, in the Axrdir package
for direct-access file management,
there is a read routine whose call has
the following form

CALL REAFDA (file-id, target,
record-number, error-indicator)

This conforms to the "destination
first" rule, although the file identifier

comes before the target for reasons
of consistency with the rest of the
package. For the write routine, how-
ever, we chose the syntax

CALL WRIFDA (file-id, source,
record-number, error-indicator)

since we thought it would be easy to
remember that corresponding argu-
ments occupy exactly the same po-
sition in both operations, "target"
for read and "source" for write being
symmetric. The destination first rule
is thus violated by WRIFDA.

3.4 Homogeneity

Number of Arguments (operands
and parameters)

The question of arguments in-
volves simplicity as well as homoge-
neity. Not only should arguments
appear in a carefully chosen order,
but the number of them should also
be small if programmers are to re-
member the calling sequence.

Of all the subprograms listed in
Figure 1, 71 percent have zero, one,
or two arguments, and less than 4
percent have more than four (a func-
tion result being counted as an ar-
gument). The maximum number of
arguments is six.

Requiring short argument lists
has an immediate consequence: since
any means of data transmission be-
tween an application program and a
package subprogram other than ar-
gument passing (such as explicit
COMMON block sharing) is
banned, every subprogram may per-
form only a well-defined single task.
In our case, this property became
another motivation for requiring

CALL CRETTX (i text)

CALL CNSTTX (itext, ' xyz . . . ')

CALL CNCTTX (itext, j text, ktext)

CALL SUBTTX (itext, j text, i, I)

short argument lists, rather than a
consequence of this requirement. It
is indeed integral to our design phi-
losophy (see Section 4).

Such an approach has interesting
practical consequences which distin-
guish our packages from many com-
mercially available ones. Let a sub-
program, say f , be used to implement
an operation with a certain number,
say n, of operands. It is often the case
that several operating modes are
available, described by a certain
number, say m, of parameters or op-
tions. Quite commonly, n is small,
but m may be large and will grow as
users request new refinements.

At this point, the reader may ask
for a precise definition of the distinc-
tion between parameters and oper-
ands. Although the difference is in
many cases intuitively obvious, an
absolute definition does not exist.
Rather, the distinction should be
thought of as design decision which
the designer bases on the following
guidelines:

- -The number n of operands
should remain small.

- -The system should be able to
set default values for parameters.

- -Dur ing the package's evolu-
tion, as parameters are added (or
removed), the specification of oper-
ands for any single subprogram must
not be changed.

Thus, the distinction between pa-
rameters and operands is partly a
pledge made by the designer with
respect to the future of the package.

There are three ways of specify-
ing a subprogram f with both oper-
ands and parameters:

(CREate a Text variable)
Create a new string variable, of name i text

(pseudo-declaration).

(CoNStant Text)
Assign the character string ' x y z . . . ' to the string

variable i text.

(CoNCatenate Text)
Assign to i text the value of j tex t concatenated to

that of ktext.

(SUBText)
Assign to i text the value of the substring of j tex t

starting at position i, with I characters.

422 Communications
of
the ACM

July 1982
Volume 25
Number 7

(a) Include all necessary oper-
ands and parameters in every sub-
program call, as in

CALL f(opndl opnd~,
parml parmm).

(b) Include only operands, as in

CALL f(opndl opndn)

and provide other subprograms, one
per parameter, to set the values of
parameters, in the form

CALL setvali(parmi)

with the understanding that the ith
parameter will remain set to the
valueparmi until a new call to setvali.

(c) Use a mixed-mode ap-
proach, with some parameters in-
cluded in the calls to f and others
separately.

Throughout our packages, we ad-
hered to the second approach (b),
which we find preferable for two
basic reasons:

(1) It allows the package de-
signer to set default values for all
parameters, thus freeing the user
from providing arguments corre-
sponding to options not of primary
concern.

(2) Including parameters in the
operation invocation inevitably leads
to problems as the package evolves:
although operands usually do not
change if the initial design is sound,
requests for new parameters will ap-
pear. We have experienced this phe-
nomenon over and over again. For
example, users of Ensorcel6 (free-
form input and output) requested
new facilities for output formatting.
To meet their request, we added a
"color" parameter to the Gescran
subprograms when color displays be-
came available. Had we included pa-
rameters in the calls, all the calling
programs would have had to be

changed, making it very difficult to
entice anyone into using our pro-
grams afterwards. Thanks to our
seemingly drastic policy, we have so
far been able to avoid such a situa-
tion.

Note that the use of a language
allowing subprograms to have both
positional and key word arguments
(such as Ada) would solve the prob-
lems inherent in situation (1), but not
(2).

One may object that our tech-
nique increases the size and external
complexity of packages since there
will be one subprogram per param-
eter per operation. This does not
worry us too much because there is
not much difference in added com-
plexity between a new subprogram,
on the one hand, and a new argu-
ment to an existing subprogram, on
the other.

Another possible drawback is
that application programs will con-
tain many subprogram calls when
they require nondefault options. For
example, if a user wishes to output a
real number X in a particular format,
using Ensorcel6, the sequence of in-
structions could be as long as the one
listed in the box on this page.

Although such code may seem
horrendous to experienced program-
mers, we find it quite acceptable (and
have even come to like it!). It is really
very readable since every call has a
clearly stated single purpose. Also,
remember that parameters remain
set until explicitly changed so after
initialization, there will usually be
fewer calls to the parameter-setting
routines (unless, of course, the user
program wishes to often change op-
tions).

All in all, we feel our strictly
functional approach, with a clear dis-
tinction between operands and pa-

CALL SAVPAR
CALL EXPON(5)

CALL BLANKS (3)
CALL ZONE (9)

CALL NBRDIG(8)
CALL PUTZER
CALL WRIREA(X)
CALL RESPAR

Save the current values of Ensorcel~ parameters.
Real numbers will be output using the exponent (E) format if their

absolute values are not in]10 -x, 10+5[.
Output items will be separated by at least three blanks.
Items will be justified to the right in zones of length 9 (or a multiple

thereof if they do not fit).
At least eight significant digits should be printed.
Trailing zeros should be written (default: blanks).
Write X.
Restore previous parameter values.

423 Communications
of
the ACM

rameters (and between operation
and parameter-setting subprograms),
is very helpful in the design of co-
herent, easy-to-use, and simply
maintained packages.

External Subprogram Names
An important component of ho-

mogeneity as well as the aforemen-
tioned criteria of ease of use is how
external subprogram names are cho-
sen. This issue is a delicate one
(which we had not well understood
when we started our work) because
of four conflicting requirements:

(1) the desire to provide mnemonic
names, as expressive as possi-
ble;

(2) the need to avoid possible con-
flicts with names of subpro-
grams or data segments in the
application programs;

(3) the need for a coherent set of
naming conventions, which
grows with the number of avail-
able packages and subprograms
(and the size of the program-
ming team);

(4) for subprograms callable from
IBM Fortran, the tight 6-char-
acter limit.

At the outset, we had, with clarity
our goal, concentrated on the first
requirement. The reader may have
noted names such as BLANKS and
ZONE in the Ensorcel~ example
cited in Section 3.3. Inevitably, this
led to conflicts with names chosen by
application programmers and we
had to adopt a more balanced strat-
egy. All of our current subprograms
have 6-character names with the fol-
lowing structure:

- -Th ree letters which are an abbre-
viation for a "verb" denoting the
action to be performed, e.g., REA
for read, SET for set;

- - O n e letter indicating the type of
object to which the action applies,
such as I for integer, C for cursor;

- - T w o letters which are a code as-
signed to the package, e.g., GE for
Gescran.

Thus, the subprogram positioning
the cursor somewhere in Gescran has
the name SETCGE.

July 1982
Volume 25
Number 7

COMPUTING
PRACTICES

Using this technique, we have
been able (with some care) to avoid
name clashes. Additionally, the
method is simple to explain in the
package manuals so the name may
be considered mnemonic for the ap-
plication programmers.

3.5 Safety

Treatment of Errors
An important but difficult issue

is that of errors: How should a gen-
eral-purpose routine react in an error
situation?

First, we shall define precisely
what an error is in the context of our
packages. A subprogram in such a
package is intended to complete
some actions and/or to compute
some values. An error arises when
the subprogram detects that an ac-
tion cannot be performed or that a
requested value does not exist. In
either case, it means the subprogram
is able to determine the fact that a
certain element does not belong to
the domain of a certain function
(which is part of the subprogram's
abstract specification).

The possibility of an error made
in writing the subprogram being
ruled out, the cause of the error may
be either of the following:

- - T h e user has provided illegal ar-
guments to a subprogram.

- -Some well-founded request can-
not be satisfied because of external
conditions (e.g., dynamic memory
allocation fails since no more
space exists).

What policy should the package
writer adopt in regard to such errors?
There are two conflicting require-
ments: safety and self-restraint.

(1) Safety implies that no op-
eration not conforming to the appli-
cation programmer's intent and, in
particular, no modification of the ap-
plication program's state other than
those explicitly provided for in the
package's manual should ever be

performed. Additionally, the appli-
cation program must be able to find
out about the error and take any
corrective action it wishes.

(2) The need for self-restraint,
on the other hand, stems from the
fact that it is very difficult to decide
what action to take on the sole basis
of what is known to the subprogram
(the same situation is experienced by,
say, the writer of a lexical analyzer
in a compiler). It suggests that the
package should be able to make a
reasonable correction, without un-
necessarily bothering the calling pro-
gram, let alone causing a system in-
terrupt.

One way to ameliorate the prob-
lem of errors is to avoid illegal ar-
guments by enforcing as few restric-
tions on subprogram calls as possible
(which in effect means expanding the
specifications to include most
"error" cases as peculiar but legal
ones). Because of such a policy, we
experienced very few error cases in
our first packages and were able to
adopt a rather haphazard approach
to error treatment (see the "error-
indicators" in the calls to the Axedir
subprograms in Section 3.3).

Recently, we have arrived at the
following approach. A small pack-
age, called Errare, which is com-
prised of only three subprograms has
been designed:

(1) CALL RECEER (n,
'message'), RECE standing for REC-
ord Error, sets a global error indica-
tor to n and outputs the message
along with other information, in par-
ticular the operating chain (in order
to avoid avalanche effects, a shorter
text is output whenever n is equal to
the previous error indicator).

(2) INDEER (0), an integer
function with no arguments (a
dummy argument is required in For-
tran 66), returns the value of the
global error indicator (as set by the
last call to RECEER; zero if none).

(3) CALL SETUER (n), SET
Unit, directs subsequent message
output performed by RECEER to
output unit number n (recall that in
Fortran, I /0 devices are designated

by integers between one and 99). If
SETUER is not called, error output
will be printed on the standard out-
put file.

With these subprograms, a pack-
age subprogram takes the following
course of action when it detects an
error.

- -Reco rd the error number and out-
put a message with RECEER.

- - I f an action was requested, do not
do anything.

- - I f a value should have been com-
puted, then two subcases arise:
when a sensible approximation ex-
ists, use it as a substitute; other-
wise, return a value chosen to be
as "out of bounds" as possible
(e.g., a negative integer if an ad-
dress was requested).

This technique seems both self-
restrained and safe. It is self-re-
strained because INDEER is a pub-
lic function. Thus, if the application
programmer wishes to correct errors
possibly occurring in a package sub-
program, he can do so by testing
INDEER after the call; the program-
mer will thereby remain in full con-
trol of all events since the package
itself does nothing abnormal except
outputting a message. The technique
is safe because it guarantees that no
illegal action will be performed by
the subprogram. On the other hand,
if no reasonable value can be com-
puted, the result will be so absurd
that it will inevitably lead to program
abort shortly after the call unless the
application program regains control
with INDEER. It is certainly much
better to provoke a "negative ad-
dress" error than to allow the pro-
gram to work on an erroneous but
physically meaningful address.

The use of "abnormal" values,
such as negative numbers when an
address or array index would have
been required, is only possible be-
cause of the lack of strong type
checking in Fortran. The transposi-
tion of this technique to languages
with stronger type requirements re-
quires the presence of an undefined
value in every type. This condition is
met by languages like Algol W and
Simula 67 in which all programmer-

424 Communicat ions
of
the ACM

July 1982
Volume 25
Number 7

defined types are pointer ones with
a special empty value (called null or
none) as one of their elements. No
such possibility exists in Pascal or
Ada whose record types, for exam-
ple, do not possess a void value.

One advantage of our method is
that the treatment of errors does not
interfere with other criteria. In par-
ticular, in terms of argument lists,
the external specification of package
subprograms does not have to be
changed. Better general solutions are
hard to find, short of an exception
facility like those in PL/ I or Ada.

3.6 Functions vs. Subroutines

Almost all of our subprograms
are subroutines (actions) rather than
functions. Using a function may
seem preferable in the case of a sub-
program returning a single value and
having no side-effect; the reader may
have wondered while reading about
the Textes package (Section 3.3) why
we used a subroutine to compute the
concatenation of two strings. Indeed,
if we want to output the concatena-
tion ofj text and ktext, we must write
what appears in the box above in-
stead of the much more natural

CALL P R NTTX (fcnttx (flext,
ktext))

where fcnttx would be a function
returning the concatenated string.

We found three objections to us-
ing functions.

(1) In many systems, including
ours, Fortran functions cannot be
called from Cobol programs
(whereas subroutines can). Since we
do have a few Cobol users, subrou-
tine interfaces must be written any-
way.

(2) A function type must be de-
clared in the calling program, except
when it is integer or single-precision
real and follows the Fortran default
rule (which eliminates logical, dou-
ble precision, and the Fortran 77
character type). This is a source of
errors in systems with no checking at
link or load time.

(3) An important issue in decid-
ing whether to express the same se-
mantics as x = f (a , b) or CALL

f (x , a, b) is that only the latter

INTEGER itext 1

CALL "CRETTX (itext)J

CALL CNCTTX (itext, jtext, ktext)

CALL PRNTTX (itext)

construct gives the subprogram
writer access to all the operands in-
volved, including x, which may be
needed in order to make f sa fe r and /
or more efficient. Both safety and
efficiency were at stake in the choice
made for the Textes package. On the
one hand, since string operands are
integers for the compiler, our subpro-
grams must be able to check whether
both sources and target have been
correctly pseudo-declared, thus
avoiding dangling run-time refer-
ences. On the other hand, the pack-
age uses quite an elaborate memory
management algorithm [7] and will
save a lot of space when itext is the
same string variable as flext or when
the previous allocation for itext is
greater than or equal to length
(flext) + length (ktext).

In view of these factors, we only
use Fortran functions for integer
functions giving the value of some
attribute of an object. This occurs in
the sense of Section 4.2 (that is, an
"accessor function" as defined in
connection with abstract data types).
For example, the length of string
itext is denoted by L N G T T X (itext).

4. Internal Design Techniques

4.1 Framework
In the previous section we de-

scribed our basic aim: to provide our
products' potential users (the appli-
cation programmers) with packages
whose external appearance is sound
and coherent. The key to success is,
of course, that these properties be
matched by the stability and consis-
tency of internal design. As Jackson
[3] remarked about early attempts to
define modular programming, words
like "functional integrity" are not
very useful as practical design guide-
lines as long as they remain unsup-
ported by more technical definitions
of the methods used. The concept
which we have found most fruitful

pseudo-declaration of string variable

assign to itext the concatenated string
output

as a design base for sound subroutine
packages is abstract data types, a
notion now well-established in aca-
demic and research circles although
practically unheard of by most prac-
ticing programmers.

4.2 Abstract Data Types
An abstract data type is the for-

mal definition of a data structure or
class of data structures, as character-
ized by purely functional properties.
The definition of an abstract data
type T comprises three parts:

- - a list of domain names, one of
which is T;

- - a list of function names with as-
sociated functionalities, i.e., do-
mains of the arguments and re-
suits (at least one of these do-
mains must be T for every func-
tion); these functions are the ab-
stract representation of the oper-
ations available on the type;

- - a list of logical assertions on these
functions, which describe the op-
erations' formal properties.

A definition comprised of these ele-
ments is a formal specification of the
data type.

An implementation of an abstract
data type is a set of data definitions
and subprograms operating on the
data defined, such that each datum's
type (with the ordinary meaning of
the word "type" in programming
languages) is associated with one of
the domains in the abstract data
type's definition. Each subprogram
corresponds to one of the functions
and satisfies its functionality require-
ment with respect to input and out-
put arguments. The values of these
arguments satisfy the assertions for
every call of the subprogram.

Some have argued that a good
way, perhaps the best, to construct
truly modular programming systems
is to organize them as sets of abstract

425 Communicat ions
of
the AC M

July 1982
Volume 25
N u m b e r 7

COMPUTING
PRACTICES

data type implementations. This
claim is supported by practical evi-
dence [13].

It and other reasons explain why
we have used abstract data types as
the model for our packages. In fact,
every one of our packages is the con-
scious implementation of one or
more abstract data types. In partic-
ular:

- - T h e Textes package imple-
ments the "text" or "string" type
with operations like the creation of
a constant text, the extraction or
modification of the ith character, or
concatenation.

- - The Chronos package imple-
ments the "time counter" concept.

- - The Ax6dir package imple-
ments the external array type with
"initialize," "read," and "write" as
operations.

- - The Gescran package imple-
ments the "page" (or "screen") and
"window" abstract data types with
operations like "define window in
screen," "write into window," or
"visualize screen."

It is therefore not surprising that
the main design choices we encoun-
tered in implementing packages are
conveniently expressed in terms of
abstract data types. In the following
subsections, we study some of the
most important, namely: linguistic is-
sues; heirarchical design; static vs.
dynamic instanciation; information
hiding.

4.3 Linguistic Issues
The programming language for

writing a package should offer a
structure corresponding to the
schema just presented. This is indeed
the case in many recent languages.
Foremost among these, from the
practitioner's point of view, are the
pioneer, Simula 67 [1, 8], and the
youngest, Ada [2]---the former be-
cause of its availability on a variety
of machines, the latter on account of
its intended wide circulation.

These languages, like their rela-
tives (Lis, Clu, Alphard, Euclid,
Mesa, Modula), include a program
structure ("class" in Simula and
"package" in Ada) with three cate-
gories of elements: data definitions,
subprogram declarations, and state-
ments. Such a structure may be used
to implement an abstract data type
(or an object of such a type, see
Section 4.5); its three components
correspond to data representation,
operations, and initialization, respec-
tively. Given an instance, A, of a
class/package and x as one of its
components (subprogram or data
element), an external module which
is entitled to "use" A may reference
x. This is done either with a "dot
notation", A.x , or directly by its
name, x, provided that the external
module has "acquired" A in some
fashion (inspect A in Simula, use A
in Ada) and there is no name con-
flict.

This kind of solution is very con-
venient, both from the package
writer and application programmer's
point of view. The former designs
and implements the package as a
single module, separately compilable
and verifiable: all the relevant infor-
mation is concentrated in a single,
coherent entity. The application pro-
grammer, when requesting a func-
tion performed by the module, sim-
ply supplies the names of the module
and the function.

Unfortunately, it is usually im-
possible to write subprogram pack-
ages in such a language, even if one
is available. Although "first-genera-
tion" languages like Fortran and
Cobol and the assembly languages
for most machines are geared toward
a very simple, static allocation policy,
newer languages (including not only
"modular languages" but also PL/I ,
Algol W, and Pascal) require a much
more ambitious memory manage-
ment scheme, usually with a stack
and a heap, the latter being subject
to garbage collection. Therefore,
even with well-engineered language
systems permitting separate compi-
lation and linking with modules writ-
ten in other languages, the system
for the more elaborate language must
exercise control at run-time. For

most systems, this precludes the
use of such a language for writing
subprogram packages since the
latter must be accessible to any
program.

The tool writer is thus placed in
a very frustrating situation. He
knows the right language(s) in which
to write a subprogram, but he re-
mains unable to use it. We, for in-
stance, have a very good Simula sys-
tem [9] but must resort to Fortran for
subprogram packages, with all its
drawbacks: no data structure other
than the array, no control structure
other than the If and Goto, no
pointer variables, no dynamically
created elements, no parameterized-
dimension arrays, no recursion, and,
of course, no "class" or "package"
structure.

4.4 Hierarchical Design

In order for each element of a
package to remain simple and un-
derstandable, it is necessary that the
package's structure consist of several
layers in all but the most trivial cases.
For packages seen as implementa-
tions of abstract data types, this
means such an implementation will
use objects belonging to other types,
also defined abstractly, i.e., used
through their properties rather than
representation. Thus, a package is
generally implemented as a hierar-
chy of types. Such a hierarchy is
illustrated in Figure 5. Ensorcel6 1
(output) appears as a means for ma-
nipulating a stream of "printable"
objects, which is represented using
the concept of unbounded character
string, itself implemented as a se-
quence of lines.

Out of the many advantages of
this approach, two are worth noting.
First, it allows the designer to push
down all machine- and system-de-
pendent elements to the lowest levels
of the hierarchy, thus increasing
portability (for example, Gescran
was built for the IBM 3270 terminals,
but only a few subprograms must be
recoded for other similar devices).
Second, it lends itself to top-down
design, which, as Wirth pointed out
[12], should apply to data as well as
control.

426 Communications
of
the ACM

July 1982
Volume 25
Number 7

stream

character
string

line

WRIIEN (write integer)
WRIREN (write real)
WRITEN (write string)
etc.

I
ES41NT (convert integer into string) I

l

ES4REA (convert real into string) I
etc. !

I
ES4WRI (fill line)
RETLIN (write current line) I

Fig. 5. Hierarchy of Types for Writing (Ensorcele 1).

4.5 Static vs. Dynamic
Allocation

A package implementing an ab-
stract data type may provide one of
the following:

(1) one object of the type;
(2) a fixed number of objects of the

type;
(3) an unlimited number of objects,

within the limits of the available
space at execution time.

Solution (1) provides for the im-
plementation of what may be called
an "abstract object" rather than a
type. It is used, for example, in En-
sorcel6 which acts on a single stream
of objects.

Solution (2) is quite natural in
Fortran because of the arrays' static
dimensions. For example, one pack-
age similar to our Textes in terms of
the services offered [10] provides a
fixed number of text variables, cor-
responding to the size of an array in
a COMMON block. Of course, this
often results in unpleasant repercus-
sions since the limit may appear too
large (entailing undue space use) or
too small (requiring recompilation of

within our framework is that a few
non-Fortran (or nonstandard) rou-
tines for dynamic memory allocation
must be used. Packages like Gescran,
Ax6dir, and Textes provide an un-
limited number of instances (char-
acter strings in the first, files in the
second, "screens" and "windows" in
the third).

4.6 Information Hiding
One of the main goals of the

abstract data type approach is a clear
separation between what is visible to
application programmers and what
remains private to the package de-
signer. The latter category should in-
clude all elements dependent on non-
essential hardware, system, imple-
mentation, or design peculiarities.
We have found two techniques use-
ful in enhancing this property: the
careful choice of names and the use
of pseudo-variables.

Internal names are chosen so as
to seem mnemonic only to team
members. Like external names (see
section 3.4), they follow a regular
pattern and make collisions unlikely.

The notion of a pseudo-variable
is more important. In the case o f
packages offering an unbounded
number of type instances, the indi-
vidual objects must be nameable by
the application programs, although
Fortran does not offer a declaration
other than for standard types. The
solution is to declare the objects us-
ing names which appear to the com-
piler as those of integer variables.
Actual "declaration" will then be ef-
fected by a call to an instantiating
subprogram. Such pseudo-variables
were used in the Textes example
cited in Section 3.3.

Internally, the integer variable
will usually contain a pointer to the
location assigned to the object and a
code allowing package subprograms
to check that the variable has not
been modified by an illegal opera-
tions. Indeed, the only legal kind of
operation in which such a pseudo-
variable may appear in an applica-
tion program is parameter transmis-
sion. Any other use (e.g., integer ad-
dition) is forbidden and will nor-
mally be detected in the next call to
a subprogram of the package.

This technique seems the best
way of adapting abstract data type
concept to Fortran: an object is only
available through its name and a set
of well-delimited operations. The re-
suiting programming style is not, of
course, typical of Fortran. In the box
below, an example of Gescran pro-
gramming appears.

5. Conclusion

We believe that the principles ex-
pounded upon in this paper may be
applied with equal success to widely
different kinds of software, and we

separate versions of the package).
We have seldom used this technique;
an example is Chronos, which sets
an absolute limit of 100 time
counters.

Solution (3) comes closest to what
is offered in languages providing
user-defined nonstatic types. Every
object of the type needed in the ap-
plication program must be explicitly
created by it (new statement in Sim-
ula or Pascal). This is the most pow-
erful solution; its main drawbacks

INTEGER SCREE, WlNDO1, WlNDO2 Declare pseudo-variables.
.

CALL DEFSGE (SCREE) Pseudo-declaration of SCREE as a
. screen pseudo-variable.
CALL CREWGE (WlNDO1, SCREE, 2, 5, 7, 12) Pseudo-declaration of WlNDO1 and
CALL CREWGE (WlNDO2, SCREE, 6, 15, 1 ,4) WlNDO2 as windows in screen

CALL REPWGE (WlNDO1, string 1)
CALL REPWGE (WlNDO2, string 2)

"BR' WGE" iW 'N
CALL WRISGE (SCREE)

SCREE.

Initialize contents of windows (RE-
Place contents of windows).

Define WlNDO1 as bright (BRilliance
of Window).

Display SCREE.

427 Communicat ions
of
the AC M

July 1982
Volume 25
Number 7

COMPUTING
PRACTICES

hope that our discussion has shed
some light on a key problem in soft-
ware engineering: how to write reus-
able software. It should be pointed
out, however, that all of our products
are conceptually small. This was a
deliberate decision on our part since
we felt modest-sized team best suc-
ceeds with simple, efficient, and re-
liable programs, rather than large-
scale, ambitious ones. Although we
feel many of our methods would ap-
ply successfully to larger projects, we
do recognize that their applicability
to, say, a vast numerical library re-
mains to be proved.

Acknowledgments
The work reported on here in-

volved, in particular, E. Audin, G.
Brisson, E. de Drouas, and B. Logez.
Many others provided advice--most
notably, A. Bossavit. At a meeting of
the groupe "Grnie Logiciel" (Soft-
ware Enginnering) of AFCET-TTI
(French Computer Society), addi-
tional useful suggestions were made.
The author is also indebted to I.
Qualters for many improvements in

the style of this paper, and to the
reviewers for their comments.

References
I. Dahl, O.J., Myrhaug, B., and Nygaard,
K. Simula 67: Common Base Language. Rep.
S-10, Norsk Regnesentral, Oslo, Norway,
1970. The original description of the first of
the modern modular languages. Assumes the
Algol 60 report as a prerequisite; an inte-
grated report is currently in preparation.

2. Honeywell, Inc. The Ada Programming
Language--Proposed Standard Document.
U.S. Dept. of Defense, 1980, Washington,
D.C. The report on the new U.S. Depart-
ment of Defense language, designed by a
team led by J. Ichbiah.

3. Jackson, M.A. Principles of Program De-
sign. Academic Press, London, 1975.
Describes a popular program design method-
ology, based on the idea that a program's
structure should be modeled on the structure
of the data it manipulates. Prime target:
business data processing.

4. Kernighan, B.W., and Plauger, P.J. Soft-
ware Tools. Addison-Wesley, Reading,
Mass., 1976. A methodology for constructing
composable programs, with a bottom-up
presentation of a number of examples.

5. Kernighan, B.W. Ratfor--A preproces-
sor for rational Fortran. Software--Prac-
tice and Experience (Oct. 1975). One of the
most popular Fortran preprocessors.

6. Meyer, B., and Baudoin, C. M~thodes de
Programmation. Eyrolles, Paris, 1978. A
fairly comprehensive survey on program-
ming methodology, programming techniques,
basic algorithms, and data structures.

7. Meyer, B. Un Ramasse-Miettespar Tri.
Rep. Atelier Logiciel 8, EDF--Direction des

Etudes et Recherches, Sept. 1978. Describes
a particular garbage collection algorithm
used in a package for text manipulation.

8. Meyer, B. Sur quelques concepts mod-
ernes des langages de programmation et leur
Representation en Simula 67. AFCET-GRO-
PLAN, Vol. 9, Carg~se, 1979, pp. 331-395.
How Simula supports modern programming
concepts, such as modularity, genericity, top-
down design of both algorithms and data
structures, etc.

9. Norsk Regnesentral. Simula 67for IBM
System~360--User's Guide; Simula 67for
IBM System 360--Programmer's Guide. Pub.
S-24-1 and S-23-1, Oslo, Norway, 1975.
Reference for the IBM Simula implementa-
tion, a programming environment with desir-
able features like separate compilation and
symbolic debugging.

10. Rose, L.R., and Hellerman, H. Portable
character processing in Fortran and fixed
character environments. 1EEE Trans. Soft-
ware Eng. SE-2, 3 (Sept. 76), 176-185.
A package for text manipulation.

I1. Saltel, E. Manuel Fortran 30. IRIA, Roc-
quencourt, France, 1978. An extension of
Fortran which allows graphic processing.

12. Wirth, N. Program development by step-
wise refinement. Comm. A CM 14, 4 (April
1971), 221-227. A classic reference on the
top-down design of programs. Mentions that
the refinement process should apply to data
structures as well as the algorithmic part.

13. Woodfield, S.W., Dunmore, H.E., and
Shen, V.Y. The effect of modularization and
coments on program comprehension. Proc.
5th Internat. Conf. Software Eng., San
Diego, Calif., March 1981, pp. 215-223.
An experimental study on what factors affect
the readability of programs. Some results
support the view that abstract data types are
a good basis on which to construct modules.

428 Communications
of
the ACM

July 1982
Volume 25
Number 7

