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1. Introduction 
For several years some of  us at 

EDF have been writing software 
tools of  general applicability. The 
term Atel ier  logiciel (software work- 
shop) has been used to describe our 
team's activity. The tools which have 
been constructed and distributed dif- 
fer widely in their nature and mode 
of  utilization. An important category 
is that of  subprogram packages. A 
subprogram package is a group of 
routines which may be called by any 
program; its purpose is to provide a 
means of  performing tasks in some 
domain of application which the 
available programming language 
does not directly address. 

Examples of  subroutine packages 
which we have developed during the 
past three years include those listed 
in Figure 1. Working on these pack- 
ages, we have gained various in- 
sights. Our aim here is to convey 
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SUMMARY: Subprogram packages are groups of related 
subroutines used to extend the available facilities in a pro- 
gramming system. The results of developing several such 
packages for various applications are presented, with a dis- 
tinction made between external and internal design criteriab 
what properties packages should offer to their users and the 
guidelines designers should follow in order to provide them. 
An important issue, the design of reusable software, is thus 
addressed, and the concept of abstract data types proposed 
as a desirable solution. 

some of  these to other practitioners 
who may be confronted with similar 
problems. No breakthrough is 
claimed; our techniques are mostly 
standard. We feel, however, that 
their presentation and a discussion 
of  the software engineering methods 
used in the design of  our packages 
may be helpful to practicing pro- 
grammers  working in an "industrial" 
environment. 

In Section 2, we describe our en- 
vironment, a large scientific comput-  
ing center, and underscore the need 
for subprogram packages in relation 
to other kinds of  software tools. Sec- 
tion 3 is a detailed discussion of ex- 
ternal design criteria, i.e., how pack- 
ages should appear  to the outside 
world. Section 4 presents our 
methods for internal design, i.e., im- 
plementation to fulfill the require- 
ments of  the preceding section; the 
gist of  our approach is that it consid- 
ers a package the implementation of 
one or more abstract data types. Sec- 
tion 5 concludes with some reflec- 
tions on the scope of  our experience. 

Since naming conventions form 
an important part of  our discussion, 
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we have, throughout the text, trans- 
lated the French words and abbre- 
viations appearing in subprogram 
names. The package names them- 
selves have been preserved. 

2. Why Subprogram Packages 
The ideas presented here cer- 

tainly reflect to some extent the fact 
that our computing center is geared 
toward scientific, mostly Fortran 
programming; and, to a lesser one, 
that it uses three IBM computers 
(370-168, 3033, 3081) under MVS, 
to which a Cray-1 has recently been 
added. 

The first question the reader may 
ask is why we concentrate on collec- 
tions of  subprograms. Our aim is to 
extend the range of  facilities offered 
by the existing language. There are 
at least four other solutions: 

(1) convincing users to switch to a 
better or more powerful lan- 
guage; 

(2) writing JCL procedures; 
(3) writing conversational proce- 

dures; 
(4) designing special-purpose pre- 

processors. 
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Briefly, we shall discuss why these 
choices are not always satisfactory. 

Solution (1) is certainly the ideal 
one. However, the sad fact is that 
most programmers in industry use 
first-generation languages and are 
unlikely to try another one. If  your 
aim is to produce tools that will be 
used, you had best conform to the 
majority rule. (An even sadder fact, 
as we shah see in Section 4, is that 
the tool writer is usually barred from 
using modern languages because of 
technical constraints.) 

Solutions (2) and (3) (batch or 
conversational procedures) are ade- 
quate for tools intended for "end 
users", but not for tasks whose exe- 
cution is initiated by programs. 

Solution (4) (preprocessors) may 
seem attractive but there are many 
drawbacks involved. One is that it 
may lead to the proliferation of pre- 
processors serving various purposes, 
which will not be, as a rule, mutually 
compatible. As an example, consider 
the case of a Fortran programmer 
who wishes to use the control struc- 
tures of "structured programming. 
His programs output results to var- 
ious graphic devices, and they re- 
quire that some arrays have dynamic 
bounds (i.e., the bounds are read on 
a file before processing begins). 
Many preprocessors, such as Ratfor 
[5], are available for the first pur- 
pose; others, such as Fortran 3D 
[11], serve the second one (note, 
however, that the current release of  
the latter product uses the subpro- 
gram package formula); still others 
exist for the third requirement. The 
input languages for these preproces- 
sors will, in general, use wildly dif- 
ferent conventions. Their treatment 
of  errors will not be the same. Some 
of  them, in generating Fortran code, 
will delete comments, while others 
will recognize comments under a cer- 
tain predefined syntax as directives. 
Their combined use will thus be very 
difficult and, in many cases, impos- 
sible. 

Preprocessors present another 
well-known problem. Often simple- 
minded, they do not provide all the 
services expected from a well-engi- 
neered compiler (cross-references, 
symbol tables, data flow analysis, 
useful error messages, source level 
optimization). They usually have no 
associated run-time systems, let 

alone debugging aids. Since they 
generate code in existing program- 
ming languages, they rely on the as- 
sociated facilities. This makes run- 
time errors a source of distress: they 
must be traced back through a pro- 
gram-generated program, which is 
hardly more readable than the object 
code produced by a compiler. 

E n s o r c e l # - -  
C h r o n o s - -  
T e x t e s - -  
A x ~ d i r - -  
G e s c r a n - -  
T r i - -  

free-form input and output 
time measurement 
text manipulation 
direct-access file management 
full-screen programming 
internal sorting 

Fig. 1. Packages and Their Aims. 

Initialization and Termination 
CALL ASKGGE (answer) 
CALL LEAGGE 

Defining Screens and Creating Windows 
CALL DEFSGE (ns) 
CALL MXLSGE (n) 

CALL CREWGE (nw, ns, il, it, iu, 
id) 

CALL DELWGE (nw) 
CALL BRIWGE (nw, b) 
CALL PROWGE (nw) 
CALL FREWGE (nw) 
CALL CAPWGE (nw) 

CALL ASIWGE (nw) 

Changing or Examining the Internal Image 
CALL REPWGE (nw, tabcha) 

CALL BLAWGE (nw) 
CALL ASSSGE (nst, nss) 
CALL BLASGE (ns) 

CALL NBCWGE (nw, n) 

CALL EXAWGE (nw, tabcha) 

May I use full screen? (yes, if answer = O) 
Leave full-screen mode. 

Define ns as the name of a screen. 
Set to n the maximum number of window 

lines per screen. 
Create window nw in screen ns with il, ir, 

iu, id as coordinates. 
Delete window nw. 
Assign brightness b to window nw. 
Make window nw protected. 
Make window nw free (unprotected). 
From now on, convert letters in window 

nw to capitals. 
From now on, leave any character in win- 

dow nw as it stands. 

Replace contents of window nw with tab- 
cha. 

Fill window nw with blanks. 
Assign value of screen nss to screen nst. 
Fill all unprotected windows of screen ns 

with blanks. 
Assign to nm the number of changes to 

window nw since the last input opera- 
tion. 

Assign to tabcha the current contents of 
window nw. 

Input and Output (Affecting the External Image) 
CALL WRISGE (ns) Display screen ns on the terminal. 
CALL REASGE ins) Input screen ns from the terminal. 

Manipulating the Cursor and Function Keys 
CALL POSCGE (nw, nline, nco l )  

CALL EXACGE (nw, nl ine nco l )  

CALL EXAKGE (ns, n) 

Position the cursor in window nw, at po- 
sition [nline, ncol ] .  

To what position [nline, nco l ]  was the cur- 
sor in window nw? ([0, O] if not in win- 
dow) 

Assign to n the number of the function key 
used to send the screen contents. 

Typed Input-Output (Interface with Package Ensorcel~) 
CALL UNIOGE (nw) Direct subsequent output to window nw. 
CALL UNIIGE (nw) Obtain subsequent input from window nw. 

Fig. 2. Reference Sheet for Gescran. 
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Additionally, it should be noted 
that preprocessors only add surface 
improvements to Fortran. They usu- 
ally do not provide remedies for this 
language's intrinsic limitations with 
regard to data structuring, dynamic 
allocation, pointer variables, intra 
and inter-routine type checking, re- 
cursion, etc. 

Subprogram packages do not suf- 
fer from these defects, although, ad- 
mittedly, they raise other problems 
which we discuss in the next two 
sections. To the potential user, they 
offer a very neat way of enriching 
the existing programming language 
with new instructions, implemented 
as subprogram calls. 

3. External Design Criteria 

A subprogram package is a col- 
lection of  mutually related subpro- 
grams. Just how they should be 
"related" to each other will be stud- 
ied in more detail in Section 4. For 
the moment, we turn to an important 
question: How should these subpro- 
grams be presented to their potential 
users? This problem is vital, espe- 
cially in light of  the fact that pro- 
grammers are often reluctant to in- 
vest the effort necessary to learn a 
new methodology. They will not be 
lured into using our packages unless 
some very attractive arguments con- 
vince them to do so. 

In the following subsections we 
shall list those desirable qualities 
which our packages should possess 
and explain exactly how these design 
criteria--namely, simplicity; self-re- 
straint; ease of use; homogeneity, 
safety--were met. 

3.1 Overall Simplicity 

In the area of  simplicity our cen- 
tral thesis was that most program- 
mers would not use a subprogram 
package if it required constant reli- 
ance on a reference manual. Al- 
though we did insist that users read 
part of  the manual at least once, our 
ideal was that they should then be 
able to employ a package for stan- 
dard applications without further 
reference to any written document. 
In practice, we have not succeeded 
in reaching this goal completely, but 
we have nevertheless succeeded in 
concentrating all the necessary infor- 
mation for normal use of a package 
on a single page. This we consider a 
mandatory requirement. For an ex- 
ample, see the reference sheet for the 
package Gescran as outlined in Fig- 
ure 2. 

The most important aspect of  our 
approach is that we do not try to 
write complex packages providing a 
wide range of  services and satisfying 
all users' fantasies. Instead, we con- 
centrate on a careful study of  user 
needs and strive to offer simple and 
efficient answers to the most impor- 
tant of  them. Of course, deciding 
which issues are the most important 
is a design decision since often user 
needs are either unexpressed or, if 
expressed, require much work to be 
transformed into realistic specifica- 
tions. 

3.2 Self-Restraint 

Our subprograms are called by 
other programs or subprograms: they 
are not directly concerned with solv- 
ing "interesting" problems, but 
rather with performing general util- 

Foreword ("How to Use This Manual" ) 
Section 1--Introduction 

2--Individual Subprogram Description 
3--Restrictions and Caveat 
4--Examples 
5--Notions on the Implementation 

Appendix A--Error Messages 
B--List of External Names 
C--Portability 
D--Performance 
E--Control and Data Flow Graph 
F--Quick Reference List (last page) 

Fig. 4. Structure of the Manuals. 

USER / 

\ APPLICATION / 
PROGRAM / 

~ PACKAGE ~ , ~  

SYSTEM / 
(compiler, 

\run-time system,/ 
operating / 
system, / 

Fig. 3. Hierarchy of Programs and Pro- 
gram Users. 

ity tasks. The application program/ 
subprogram package/system hierar- 
chy is pictured in Figure 3; other 
levels may, of  course, exist. We shall 
refer to the programs which call our 
subprograms as application pro- 
grams; on the other hand, users will 
be those individuals (or programs) 
who (which) run application pro- 
grams. (These terms, especially the 
latter, are two of  the most misused in 
data processing; we shall strive to use 
them precisely.) 

Self-restraint is necessary be- 
cause there is at least one level, that 
of  an application program, between 
users and our subprograms. The lat- 
ter must thus be as invisible to users 
as possible. This is especially impor- 
tant in connection with errors (Sec- 
tion 3.5). 

3.3 Ease of Use 

Documentation 

Documentation is organized in 
terms of  simplicity, ease of use, and 
homogeneity. All packages are doc- 
umented by manuals with the same 
structure, as shown in Figure 4. 

Order of Arguments 

One key to ease of  use is consis- 
tency of  design. This criterion be- 
comes even more crucial as new 
packages are employed and the num- 
ber of  available subprograms grows. 
It requires that a set of regular, co- 
herent conventions be strictly ob- 
served for all distributed products. 
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An important area requiring a 
homogeneous policy is parameter or- 
der. In a language environment not 
providing for key word parameter 
transmission, actual arguments to 
any subprogram must be given in a 
fixed order, which matches that of 
formal parameters for the subpro- 
gram. Package users must thus know 
this order; such a constraint often 
becomes a source of annoyance and 
errors. It is therefore desirable that 
the package designer adhere to some 
convention. 

For example, in the Textes pack- 
age, which allows character string 
manipulation using pseudo-string 
variables that appear to the compiler 
as integer variables (see Section 4.6), 
the syntax of some typical calls 
would be what is seen in the box 
below, itext, flext, and ktext are 
pseudo-variables, i and j integers. 

The order of arguments decided 
on here was the following: in assign- 
ments the destination should always 
precede the source. This is consistent 
with the syntax of most program- 
ming languages: 

A := f (B ,  C . . . .  ) 

Moreover, since the package's 
aim is to provide the equivalent of a 
"string" data type as it exists in, say, 
PL/I ,  the chosen order aims to imi- 
tate the syntax of languages which 
do offer operations on this type; e.g., 
CALL CNCTTX (itext, flext, ktext) 
follows the PL/ I  pattern itext = flext 
11 ktext. 

The rule of consistency in the 
order of arguments may conflict with 
other, equally important criteria con- 
cerning the homogeneity of design. 
For example, in the Axrdir package 
for direct-access file management, 
there is a read routine whose call has 
the following form 

CALL REAFDA (file-id, target, 
record-number, error-indicator) 

This conforms to the "destination 
first" rule, although the file identifier 

comes before the target for reasons 
of consistency with the rest of the 
package. For the write routine, how- 
ever, we chose the syntax 

CALL WRIFDA (file-id, source, 
record-number, error-indicator) 

since we thought it would be easy to 
remember that corresponding argu- 
ments occupy exactly the same po- 
sition in both operations, "target" 
for read and "source" for write being 
symmetric. The destination first rule 
is thus violated by WRIFDA. 

3.4 Homogeneity 

Number of  Arguments (operands 
and parameters) 

The question of arguments in- 
volves simplicity as well as homoge- 
neity. Not only should arguments 
appear in a carefully chosen order, 
but the number of them should also 
be small if programmers are to re- 
member the calling sequence. 

Of all the subprograms listed in 
Figure 1, 71 percent have zero, one, 
or two arguments, and less than 4 
percent have more than four (a func- 
tion result being counted as an ar- 
gument). The maximum number of 
arguments is six. 

Requiring short argument lists 
has an immediate consequence: since 
any means of data transmission be- 
tween an application program and a 
package subprogram other than ar- 
gument passing (such as explicit 
COMMON block sharing) is 
banned, every subprogram may per- 
form only a well-defined single task. 
In our case, this property became 
another motivation for requiring 

CALL CRETTX ( i text) 

CALL CNSTTX (itext, ' xyz .  . . ' )  

CALL CNCTTX (itext, j text,  ktext) 

CALL SUBTTX (itext, j text,  i, I) 

short argument lists, rather than a 
consequence of this requirement. It 
is indeed integral to our design phi- 
losophy (see Section 4). 

Such an approach has interesting 
practical consequences which distin- 
guish our packages from many com- 
mercially available ones. Let a sub- 
program, say f ,  be used to implement 
an operation with a certain number, 
say n, of operands. It is often the case 
that several operating modes are 
available, described by a certain 
number, say m, of parameters or op- 
tions. Quite commonly, n is small, 
but m may be large and will grow as 
users request new refinements. 

At this point, the reader may ask 
for a precise definition of  the distinc- 
tion between parameters and oper- 
ands. Although the difference is in 
many cases intuitively obvious, an 
absolute definition does not exist. 
Rather, the distinction should be 
thought of as design decision which 
the designer bases on the following 
guidelines: 

- -The  number n of operands 
should remain small. 

- -The  system should be able to 
set default values for parameters. 

- -Dur ing the package's evolu- 
tion, as parameters are added (or 
removed), the specification of oper- 
ands for any single subprogram must 
not be changed. 

Thus, the distinction between pa- 
rameters and operands is partly a 
pledge made by the designer with 
respect to the future of the package. 

There are three ways of specify- 
ing a subprogram f with both oper- 
ands and parameters: 

(CREate a Text variable) 
Create a new string variable, of name i text 

(pseudo-declaration). 

(CoNStant Text) 
Assign the character string ' x y z . . . '  to the string 

variable i text. 

(CoNCatenate Text) 
Assign to i text  the value of j tex t  concatenated to 

that of ktext. 

(SUBText) 
Assign to i text the value of the substring of j tex t  

starting at position i, with I characters. 
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(a) Include all necessary oper- 
ands and parameters in every sub- 
program call, as in 

CALL f(opndl . . . . .  opnd~, 
parml . . . . .  parmm ). 

(b) Include only operands, as in 

CALL f(opndl . . . . .  opndn) 

and provide other subprograms, one 
per parameter, to set the values of 
parameters, in the form 

CALL setvali(parmi ) 

with the understanding that the ith 
parameter will remain set to the 
valueparmi until a new call to setvali. 

(c) Use a mixed-mode ap- 
proach, with some parameters in- 
cluded in the calls to f and others 
separately. 

Throughout  our packages, we ad- 
hered to the second approach (b), 
which we find preferable for two 
basic reasons: 

(1) It allows the package de- 
signer to set default values for all 
parameters, thus freeing the user 
from providing arguments corre- 
sponding to options not of  primary 
concern. 

(2) Including parameters in the 
operation invocation inevitably leads 
to problems as the package evolves: 
although operands usually do not 
change if the initial design is sound, 
requests for new parameters will ap- 
pear. We have experienced this phe- 
nomenon over and over again. For 
example, users of  Ensorcel6 (free- 
form input and output) requested 
new facilities for output formatting. 
To meet their request, we added a 
"color" parameter to the Gescran 
subprograms when color displays be- 
came available. Had we included pa- 
rameters in the calls, all the calling 
programs would have had to be 

changed, making it very difficult to 
entice anyone into using our pro- 
grams afterwards. Thanks to our 
seemingly drastic policy, we have so 
far been able to avoid such a situa- 
tion. 

Note that the use of a language 
allowing subprograms to have both 
positional and key word arguments 
(such as Ada) would solve the prob- 
lems inherent in situation (1), but not 
(2). 

One may object that our tech- 
nique increases the size and external 
complexity of packages since there 
will be one subprogram per param- 
eter per operation. This does not 
worry us too much because there is 
not much difference in added com- 
plexity between a new subprogram, 
on the one hand, and a new argu- 
ment to an existing subprogram, on 
the other. 

Another possible drawback is 
that application programs will con- 
tain many subprogram calls when 
they require nondefault options. For 
example, if a user wishes to output a 
real number X in a particular format, 
using Ensorcel6, the sequence of in- 
structions could be as long as the one 
listed in the box on this page. 

Although such code may seem 
horrendous to experienced program- 
mers, we find it quite acceptable (and 
have even come to like it!). It is really 
very readable since every call has a 
clearly stated single purpose. Also, 
remember that parameters remain 
set until explicitly changed so after 
initialization, there will usually be 
fewer calls to the parameter-setting 
routines (unless, of  course, the user 
program wishes to often change op- 
tions). 

All in all, we feel our strictly 
functional approach, with a clear dis- 
tinction between operands and pa- 

CALL SAVPAR 
CALL EXPON(5) 

CALL BLANKS (3) 
CALL ZONE (9) 

CALL NBRDIG(8) 
CALL PUTZER 
CALL WRIREA(X) 
CALL RESPAR 

Save the current values of Ensorcel~ parameters. 
Real numbers will be output using the exponent (E) format if their 

absolute values are not in ]10 -x, 10+5[. 
Output items will be separated by at least three blanks. 
Items will be justified to the right in zones of length 9 (or a multiple 

thereof if they do not fit). 
At least eight significant digits should be printed. 
Trailing zeros should be written (default: blanks). 
Write X. 
Restore previous parameter values. 
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rameters (and between operation 
and parameter-setting subprograms), 
is very helpful in the design of  co- 
herent, easy-to-use, and simply 
maintained packages. 

External Subprogram Names 
An important component of  ho- 

mogeneity as well as the aforemen- 
tioned criteria of  ease of use is how 
external subprogram names are cho- 
sen. This issue is a delicate one 
(which we had not well understood 
when we started our work) because 
of four conflicting requirements: 

(1) the desire to provide mnemonic 
names, as expressive as possi- 
ble; 

(2) the need to avoid possible con- 
flicts with names of subpro- 
grams or data segments in the 
application programs; 

(3) the need for a coherent set of 
naming conventions, which 
grows with the number of avail- 
able packages and subprograms 
(and the size of the program- 
ming team); 

(4) for subprograms callable from 
IBM Fortran, the tight 6-char- 
acter limit. 

At the outset, we had, with clarity 
our goal, concentrated on the first 
requirement. The reader may have 
noted names such as BLANKS and 
ZONE in the Ensorcel~ example 
cited in Section 3.3. Inevitably, this 
led to conflicts with names chosen by 
application programmers and we 
had to adopt a more balanced strat- 
egy. All of  our current subprograms 
have 6-character names with the fol- 
lowing structure: 

- -Th ree  letters which are an abbre- 
viation for a "verb"  denoting the 
action to be performed, e.g., REA 
for read, SET for set; 

- - O n e  letter indicating the type of  
object to which the action applies, 
such as I for integer, C for cursor; 

- - T w o  letters which are a code as- 
signed to the package, e.g., GE for 
Gescran. 

Thus, the subprogram positioning 
the cursor somewhere in Gescran has 
the name SETCGE. 
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Using this technique, we have 
been able (with some care) to avoid 
name clashes. Additionally, the 
method is simple to explain in the 
package manuals so the name may 
be considered mnemonic for the ap- 
plication programmers. 

3.5 Safety 

Treatment of Errors 
An important but difficult issue 

is that of  errors: How should a gen- 
eral-purpose routine react in an error 
situation? 

First, we shall define precisely 
what an error is in the context of our 
packages. A subprogram in such a 
package is intended to complete 
some actions and/or  to compute 
some values. An error arises when 
the subprogram detects that an ac- 
tion cannot be performed or that a 
requested value does not exist. In 
either case, it means the subprogram 
is able to determine the fact that a 
certain element does not belong to 
the domain of a certain function 
(which is part of  the subprogram's 
abstract specification). 

The possibility of an error made 
in writing the subprogram being 
ruled out, the cause of  the error may 
be either of  the following: 

- - T h e  user has provided illegal ar- 
guments to a subprogram. 

- -Some  well-founded request can- 
not be satisfied because of external 
conditions (e.g., dynamic memory 
allocation fails since no more 
space exists). 

What policy should the package 
writer adopt in regard to such errors? 
There are two conflicting require- 
ments: safety and self-restraint. 

(1) Safety implies that no op- 
eration not conforming to the appli- 
cation programmer's intent and, in 
particular, no modification of  the ap- 
plication program's state other than 
those explicitly provided for in the 
package's manual should ever be 

performed. Additionally, the appli- 
cation program must be able to find 
out about the error and take any 
corrective action it wishes. 

(2) The need for self-restraint, 
on the other hand, stems from the 
fact that it is very difficult to decide 
what action to take on the sole basis 
of  what is known to the subprogram 
(the same situation is experienced by, 
say, the writer of  a lexical analyzer 
in a compiler). It suggests that the 
package should be able to make a 
reasonable correction, without un- 
necessarily bothering the calling pro- 
gram, let alone causing a system in- 
terrupt. 

One way to ameliorate the prob- 
lem of  errors is to avoid illegal ar- 
guments by enforcing as few restric- 
tions on subprogram calls as possible 
(which in effect means expanding the 
specifications to include most 
"error" cases as peculiar but legal 
ones). Because of  such a policy, we 
experienced very few error cases in 
our first packages and were able to 
adopt a rather haphazard approach 
to error treatment (see the "error- 
indicators" in the calls to the Axedir 
subprograms in Section 3.3). 

Recently, we have arrived at the 
following approach. A small pack- 
age, called Errare, which is com- 
prised of  only three subprograms has 
been designed: 

(1) CALL RECEER (n, 
'message'), RECE standing for REC- 
ord Error, sets a global error indica- 
tor to n and outputs the message 
along with other information, in par- 
ticular the operating chain (in order 
to avoid avalanche effects, a shorter 
text is output whenever n is equal to 
the previous error indicator). 

(2) INDEER (0), an integer 
function with no arguments (a 
dummy argument is required in For- 
tran 66), returns the value of  the 
global error indicator (as set by the 
last call to RECEER; zero if none). 

(3) CALL SETUER (n), SET 
Unit, directs subsequent message 
output performed by RECEER to 
output unit number n (recall that in 
Fortran, I /0  devices are designated 

by integers between one and 99). If  
SETUER is not called, error output 
will be printed on the standard out- 
put file. 

With these subprograms, a pack- 
age subprogram takes the following 
course of  action when it detects an 
error. 

- -Reco rd  the error number and out- 
put a message with RECEER. 

- - I f  an action was requested, do not 
do anything. 

- - I f  a value should have been com- 
puted, then two subcases arise: 
when a sensible approximation ex- 
ists, use it as a substitute; other- 
wise, return a value chosen to be 
as "out of  bounds" as possible 
(e.g., a negative integer if an ad- 
dress was requested). 

This technique seems both self- 
restrained and safe. It is self-re- 
strained because INDEER is a pub- 
lic function. Thus, if the application 
programmer wishes to correct errors 
possibly occurring in a package sub- 
program, he can do so by testing 
INDEER after the call; the program- 
mer will thereby remain in full con- 
trol of  all events since the package 
itself does nothing abnormal except 
outputting a message. The technique 
is safe because it guarantees that no 
illegal action will be performed by 
the subprogram. On the other hand, 
if no reasonable value can be com- 
puted, the result will be so absurd 
that it will inevitably lead to program 
abort shortly after the call unless the 
application program regains control 
with INDEER. It is certainly much 
better to provoke a "negative ad- 
dress" error than to allow the pro- 
gram to work on an erroneous but 
physically meaningful address. 

The use of  "abnormal" values, 
such as negative numbers when an 
address or array index would have 
been required, is only possible be- 
cause of  the lack of  strong type 
checking in Fortran. The transposi- 
tion of  this technique to languages 
with stronger type requirements re- 
quires the presence of  an undefined 
value in every type. This condition is 
met by languages like Algol W and 
Simula 67 in which all programmer- 
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defined types are pointer ones with 
a special empty value (called null or 
none) as one of  their elements. No 
such possibility exists in Pascal or 
Ada whose record types, for exam- 
ple, do not possess a void value. 

One advantage of  our method is 
that the treatment of  errors does not 
interfere with other criteria. In par- 
ticular, in terms of  argument lists, 
the external specification of  package 
subprograms does not have to be 
changed. Better general solutions are 
hard to find, short of  an exception 
facility like those in PL/ I  or Ada. 

3.6 Functions vs. Subroutines 

Almost all of  our subprograms 
are subroutines (actions) rather than 
functions. Using a function may 
seem preferable in the case of  a sub- 
program returning a single value and 
having no side-effect; the reader may 
have wondered while reading about 
the Textes package (Section 3.3) why 
we used a subroutine to compute the 
concatenation of  two strings. Indeed, 
if we want to output the concatena- 
tion ofj text  and ktext, we must write 
what appears in the box above in- 
stead of  the much more natural 

CALL P R NTTX (fcnttx (flext, 
ktext)) 

where fcnttx would be a function 
returning the concatenated string. 

We found three objections to us- 
ing functions. 

(1) In many systems, including 
ours, Fortran functions cannot be 
called from Cobol programs 
(whereas subroutines can). Since we 
do have a few Cobol users, subrou- 
tine interfaces must be written any- 
way. 

(2) A function type must be de- 
clared in the calling program, except 
when it is integer or single-precision 
real and follows the Fortran default 
rule (which eliminates logical, dou- 
ble precision, and the Fortran 77 
character type). This is a source of  
errors in systems with no checking at 
link or load time. 

(3) An important issue in decid- 
ing whether to express the same se- 
mantics as x = f (a ,  b . . . .  ) or CALL 

f ( x ,  a, b . . . .  ) is that only the latter 

INTEGER itext 1 

CALL "CRETTX (itext)J 

CALL CNCTTX (itext, jtext, ktext) 

CALL PRNTTX (itext) 

construct gives the subprogram 
writer access to all the operands in- 
volved, including x, which may be 
needed in order to make f sa fe r  and /  
or more efficient. Both safety and 
efficiency were at stake in the choice 
made for the Textes package. On the 
one hand, since string operands are 
integers for the compiler, our subpro- 
grams must be able to check whether 
both sources and target have been 
correctly pseudo-declared, thus 
avoiding dangling run-time refer- 
ences. On the other hand, the pack- 
age uses quite an elaborate memory 
management algorithm [7] and will 
save a lot of  space when itext is the 
same string variable as flext or when 
the previous allocation for itext is 
greater than or equal to length 
(flext) + length (ktext).  

In view of  these factors, we only 
use Fortran functions for integer 
functions giving the value of  some 
attribute of  an object. This occurs in 
the sense of  Section 4.2 (that is, an 
"accessor function" as defined in 
connection with abstract data types). 
For example, the length of  string 
itext is denoted by L N G T T X  ( itext ). 

4. Internal Design Techniques 

4.1 Framework 
In the previous section we de- 

scribed our basic aim: to provide our 
products' potential users (the appli- 
cation programmers) with packages 
whose external appearance is sound 
and coherent. The key to success is, 
of  course, that these properties be 
matched by the stability and consis- 
tency of internal design. As Jackson 
[3] remarked about early attempts to 
define modular programming, words 
like "functional integrity" are not 
very useful as practical design guide- 
lines as long as they remain unsup- 
ported by more technical definitions 
of  the methods used. The concept 
which we have found most fruitful 

pseudo-declaration of string variable 

assign to itext the concatenated string 
output 

as a design base for sound subroutine 
packages is abstract data types, a 
notion now well-established in aca- 
demic and research circles although 
practically unheard of  by most prac- 
ticing programmers. 

4.2 Abstract Data Types 
An abstract data type is the for- 

mal definition of  a data structure or 
class of  data structures, as character- 
ized by purely functional properties. 
The definition of  an abstract data 
type T comprises three parts: 

- -  a list of  domain names, one of 
which is T; 

- -  a list of function names with as- 
sociated functionalities, i.e., do- 
mains of  the arguments and re- 
suits (at least one of these do- 
mains must be T for every func- 
tion); these functions are the ab- 
stract representation of  the oper- 
ations available on the type; 

- -  a list of  logical assertions on these 
functions, which describe the op- 
erations' formal properties. 

A definition comprised of these ele- 
ments is a formal specification of the 
data type. 

An implementation of an abstract 
data type is a set of  data definitions 
and subprograms operating on the 
data defined, such that each datum's 
type (with the ordinary meaning of  
the word "type" in programming 
languages) is associated with one of  
the domains in the abstract data 
type's definition. Each subprogram 
corresponds to one of  the functions 
and satisfies its functionality require- 
ment with respect to input and out- 
put arguments. The values of these 
arguments satisfy the assertions for 
every call of  the subprogram. 

Some have argued that a good 
way, perhaps the best, to construct 
truly modular programming systems 
is to organize them as sets of abstract 
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data type implementations. This 
claim is supported by practical evi- 
dence [13]. 

It and other reasons explain why 
we have used abstract data types as 
the model for our packages. In fact, 
every one of  our packages is the con- 
scious implementation of  one or 
more abstract data types. In partic- 
ular: 

- - T h e  Textes package imple- 
ments the "text" or "string" type 
with operations like the creation of  
a constant text, the extraction or 
modification of  the ith character, or 
concatenation. 

- -  The Chronos package imple- 
ments the "time counter" concept. 

- -  The Ax6dir package imple- 
ments the external array type with 
"initialize," "read," and "write" as 
operations. 

- -  The Gescran package imple- 
ments the "page" (or "screen") and 
"window" abstract data types with 
operations like "define window in 
screen," "write into window," or 
"visualize screen." 

It is therefore not surprising that 
the main design choices we encoun- 
tered in implementing packages are 
conveniently expressed in terms of  
abstract data types. In the following 
subsections, we study some of  the 
most important, namely: linguistic is- 
sues; heirarchical design; static vs. 
dynamic instanciation; information 
hiding. 

4.3 Linguistic Issues 
The programming language for 

writing a package should offer a 
structure corresponding to the 
schema just presented. This is indeed 
the case in many recent languages. 
Foremost among these, from the 
practitioner's point of  view, are the 
pioneer, Simula 67 [1, 8], and the 
youngest, Ada [2]---the former be- 
cause of  its availability on a variety 
of machines, the latter on account of 
its intended wide circulation. 

These languages, like their rela- 
tives (Lis, Clu, Alphard, Euclid, 
Mesa, Modula), include a program 
structure ("class" in Simula and 
"package" in Ada) with three cate- 
gories of  elements: data definitions, 
subprogram declarations, and state- 
ments. Such a structure may be used 
to implement an abstract data type 
(or an object of  such a type, see 
Section 4.5); its three components 
correspond to data representation, 
operations, and initialization, respec- 
tively. Given an instance, A, of  a 
class/package and x as one of  its 
components (subprogram or data 
element), an external module which 
is entitled to "use" A may reference 
x. This is done either with a "dot 
notation", A.x ,  or directly by its 
name, x, provided that the external 
module has "acquired" A in some 
fashion (inspect A in Simula, use A 
in Ada) and there is no name con- 
flict. 

This kind of  solution is very con- 
venient, both from the package 
writer and application programmer's 
point of  view. The former designs 
and implements the package as a 
single module, separately compilable 
and verifiable: all the relevant infor- 
mation is concentrated in a single, 
coherent entity. The application pro- 
grammer, when requesting a func- 
tion performed by the module, sim- 
ply supplies the names of  the module 
and the function. 

Unfortunately, it is usually im- 
possible to write subprogram pack- 
ages in such a language, even if one 
is available. Although "first-genera- 
tion" languages like Fortran and 
Cobol and the assembly languages 
for most machines are geared toward 
a very simple, static allocation policy, 
newer languages (including not only 
"modular  languages" but also PL/I ,  
Algol W, and Pascal) require a much 
more ambitious memory manage- 
ment scheme, usually with a stack 
and a heap, the latter being subject 
to garbage collection. Therefore, 
even with well-engineered language 
systems permitting separate compi- 
lation and linking with modules writ- 
ten in other languages, the system 
for the more elaborate language must 
exercise control at run-time. For  

most systems, this precludes the 
use of  such a language for writing 
subprogram packages since the 
latter must be accessible to any 
program. 

The tool writer is thus placed in 
a very frustrating situation. He 
knows the right language(s) in which 
to write a subprogram, but he re- 
mains unable to use it. We, for in- 
stance, have a very good Simula sys- 
tem [9] but must resort to Fortran for 
subprogram packages, with all its 
drawbacks: no data structure other 
than the array, no control structure 
other than the If and Goto, no 
pointer variables, no dynamically 
created elements, no parameterized- 
dimension arrays, no recursion, and, 
of  course, no "class" or "package" 
structure. 

4.4 Hierarchical Design 

In order for each element of a 
package to remain simple and un- 
derstandable, it is necessary that the 
package's structure consist of  several 
layers in all but the most trivial cases. 
For packages seen as implementa- 
tions of  abstract data types, this 
means such an implementation will 
use objects belonging to other types, 
also defined abstractly, i.e., used 
through their properties rather than 
representation. Thus, a package is 
generally implemented as a hierar- 
chy of  types. Such a hierarchy is 
illustrated in Figure 5. Ensorcel6 1 
(output) appears as a means for ma- 
nipulating a stream of  "printable" 
objects, which is represented using 
the concept of  unbounded character 
string, itself implemented as a se- 
quence of  lines. 

Out of  the many advantages of  
this approach, two are worth noting. 
First, it allows the designer to push 
down all machine- and system-de- 
pendent elements to the lowest levels 
of  the hierarchy, thus increasing 
portability (for example, Gescran 
was built for the IBM 3270 terminals, 
but only a few subprograms must be 
recoded for other similar devices). 
Second, it lends itself to top-down 
design, which, as Wirth pointed out 
[12], should apply to data as well as 
control. 
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stream 

character 
string 

line 

WRIIEN (write integer) 
WRIREN (write real) 
WRITEN (write string) 
etc. 

I 
ES41NT (convert integer into string) I 

l 

ES4REA (convert real into string) I 
etc. ! 

I 
ES4WRI (fill line) 
RETLIN (write current line) I 

Fig. 5. Hierarchy of Types for Writing (Ensorcele 1). 

4.5  Static vs. Dynamic 
Allocation 

A package implementing an ab- 
stract data type may provide one of  
the following: 

(1) one object of  the type; 
(2) a fixed number of  objects of  the 

type; 
(3) an unlimited number of  objects, 

within the limits of  the available 
space at execution time. 

Solution (1) provides for the im- 
plementation of  what may be called 
an "abstract object" rather than a 
type. It is used, for example, in En- 
sorcel6 which acts on a single stream 
of  objects. 

Solution (2) is quite natural in 
Fortran because of  the arrays' static 
dimensions. For example, one pack- 
age similar to our Textes in terms of  
the services offered [10] provides a 
fixed number of  text variables, cor- 
responding to the size of  an array in 
a COMMON block. Of course, this 
often results in unpleasant repercus- 
sions since the limit may appear too 
large (entailing undue space use) or 
too small (requiring recompilation of  

within our framework is that a few 
non-Fortran (or nonstandard) rou- 
tines for dynamic memory allocation 
must be used. Packages like Gescran, 
Ax6dir, and Textes provide an un- 
limited number of instances (char- 
acter strings in the first, files in the 
second, "screens" and "windows" in 
the third). 

4.6 Information Hiding 
One of the main goals of  the 

abstract data type approach is a clear 
separation between what is visible to 
application programmers and what 
remains private to the package de- 
signer. The latter category should in- 
clude all elements dependent on non- 
essential hardware, system, imple- 
mentation, or design peculiarities. 
We have found two techniques use- 
ful in enhancing this property: the 
careful choice of  names and the use 
of  pseudo-variables. 

Internal names are chosen so as 
to seem mnemonic only to team 
members. Like external names (see 
section 3.4), they follow a regular 
pattern and make collisions unlikely. 

The notion of  a pseudo-variable 
is more important. In the case o f  
packages offering an unbounded 
number of  type instances, the indi- 
vidual objects must be nameable by 
the application programs, although 
Fortran does not offer a declaration 
other than for standard types. The 
solution is to declare the objects us- 
ing names which appear to the com- 
piler as those of  integer variables. 
Actual "declaration" will then be ef- 
fected by a call to an instantiating 
subprogram. Such pseudo-variables 
were used in the Textes example 
cited in Section 3.3. 

Internally, the integer variable 
will usually contain a pointer to the 
location assigned to the object and a 
code allowing package subprograms 
to check that the variable has not 
been modified by an illegal opera- 
tions. Indeed, the only legal kind of 
operation in which such a pseudo- 
variable may appear in an applica- 
tion program is parameter transmis- 
sion. Any other use (e.g., integer ad- 
dition) is forbidden and will nor- 
mally be detected in the next call to 
a subprogram of  the package. 

This technique seems the best 
way of  adapting abstract data type 
concept to Fortran: an object is only 
available through its name and a set 
of  well-delimited operations. The re- 
suiting programming style is not, of  
course, typical of  Fortran. In the box 
below, an example of  Gescran pro- 
gramming appears. 

5. Conclusion 

We believe that the principles ex- 
pounded upon in this paper may be 
applied with equal success to widely 
different kinds of  software, and we 

separate versions of  the package). 
We have seldom used this technique; 
an example is Chronos, which sets 
an absolute limit of 100 time 
counters. 

Solution (3) comes closest to what 
is offered in languages providing 
user-defined nonstatic types. Every 
object of the type needed in the ap- 
plication program must be explicitly 
created by it (new statement in Sim- 
ula or Pascal). This is the most pow- 
erful solution; its main drawbacks 

INTEGER SCREE, WlNDO1, WlNDO2 Declare pseudo-variables. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CALL DEFSGE (SCREE) Pseudo-declaration of SCREE as a 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  screen pseudo-variable. 
CALL CREWGE (WlNDO1, SCREE, 2, 5, 7, 12) Pseudo-declaration of WlNDO1 and 
CALL CREWGE (WlNDO2, SCREE, 6, 15, 1 ,4 )  WlNDO2 as windows in screen 

CALL REPWGE (WlNDO1, string 1) 
CALL REPWGE (WlNDO2, string 2) 

"BR' WGE" iW 'N 
CALL WRISGE (SCREE) 

SCREE. 

Initialize contents of windows (RE- 
Place contents of windows). 

Define WlNDO1 as bright (BRilliance 
of Window). 

Display SCREE. 

427 Communicat ions  
of 
the AC M 

July 1982 
Volume 25 
Number  7 



COMPUTING 
PRACTICES 

hope that our discussion has shed 
some light on a key problem in soft- 
ware engineering: how to write reus- 
able software. It should be pointed 
out, however, that all of  our products 
are conceptually small. This was a 
deliberate decision on our part since 
we felt modest-sized team best suc- 
ceeds with simple, efficient, and re- 
liable programs, rather than large- 
scale, ambitious ones. Although we 
feel many of  our methods would ap- 
ply successfully to larger projects, we 
do recognize that their applicability 
to, say, a vast numerical library re- 
mains to be proved. 
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