
BUGFIX: towards a common language and framework for the
Automatic Program Repair community

Bertrand Meyer
Viktoryia Kananchuk

Li Huang
Bertrand.Meyer@inf.ethz.ch

viktoryia.kononchuk@sit.study
Li.Huang@constructor.org

Constructor Institute
Schaffhausen, Switzerland

ABSTRACT
Techniques of Automatic Program Repair (APR) have the potential
of thoroughly facilitating the task of producing quality software.
After a promising start, however, progress in making APR practical
has been hindered by the lack of a common framework to support
the multiplicity of APR ideas and tools, and of target programming
languages and environments. In this position paper we outline a
general framework to enable the APR community to benefit from
each other’s advances, in particular through a standard language
for describing bugs and their fixes. Such a common framework
— which is also applicable to work on fault seeding — could be a
tremendous benefit to researchers and developers of Interactive
Development Environments (IDEs) who are working to make APR
an effective part of the software developer’s practical experience.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion; Software testing and debugging; Empirical software
validation; Error handling and recovery.

KEYWORDS
Automatic Program Repair, Debugging, Integrated Development En-
vironments, Software tools, Program transformation, Bug seeding,
Software quality

ACM Reference Format:
Bertrand Meyer, Viktoryia Kananchuk, and Li Huang. 2024. BUGFIX: to-
wards a common language and framework for the Automatic Program
Repair community. In 2024 ACM/IEEE International Workshop on Automated
Program Repair (APR ’24 ), April 20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3643788.3648007

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APR ’24 , April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0577-9/24/04. . . $15.00
https://doi.org/10.1145/3643788.3648007

1 INTRODUCTION
We expect software to work properly; failures to meet that expec-
tation, known as faults or bugs, can have serious consequences,
all the more serious that software is now pervasive in the pursuit
of almost all human affairs. Yet, just as the best-behaved children
will occasionally do something silly and the most careful drivers
will occasionally get a speeding ticket, programmers will occasion-
ally produce buggy software. Not just human programmers but
automated ones as well: Artificial Intelligence assistants such as
ChatGPT and Copilot, while impressive in their capabilities, cannot
be trusted to produce bug-free software; they mess up just as much
as we, mere mortals [12].

Techniques of software verification, from tests to static analysis
and proofs, help identify bugs; in recent years the idea has emerged
that while spotting a bug is good, correcting the bug — or, more
realistically, suggesting a correction to the programmer — is bet-
ter. Some early work in this direction includes [9, 15–17, 20, 23];
good surveys can be found in [6, 13, 14]. Ideally, Automatic Pro-
gram Repair (APR) should be included in the basic toolset that
programmers use (IDE, Interactive Development Environment), so
that if a programmer produces a potentially faulty code element,
the IDE’s verification tools silently detect it and pop up a message
that both signals the bug and suggests one or more valid corrections.
Making this scenario possible is the common goal — the common
Graal — of all developers and researchers working on APR. One of
the major obstacles to reaching it is the heterogeneity of the field.
Heterogeneity of APR approaches; diversity of IDEs; diversity of
programming languages; and also diversity of bugs. These hetero-
geneity factors force every APR project to invest a major part of
its effort in recreating a basic bug and fix description framework;
such spurious repetition of work considerably impair progress to-
wards making Automatic Program Repair a standard and effective
part of the software developer’s daily experience. The goal of the
work-in-progress described here is to overcome these obstacles by
establishing a joint framework, BUGFIX, that all APR efforts can
use. The present paper is explicitly intended as a workshop position
paper, intended for discussion and feedback rather than presenting
a fully developed solution. Our intent is to present BUGFIX at the
workshop to elicit feedback from the APR community and go on to
develop a finalized version with the best chances of being widely
adopted, and as a result speeding up the development of Automatic
Program Repair.

https://orcid.org/0000-0002-5985-7434
https://orcid.org/0009-0000-3008-6245
https://orcid.org/0000-0003-3531-4045
https://doi.org/10.1145/3643788.3648007
https://doi.org/10.1145/3643788.3648007


APR ’24 , April 20, 2024, Lisbon, Portugal Bertrand Meyer, Viktoryia Kananchuk, and Li Huang

1 syntax CALL for Java:
2 r (args)
3 syntax CALL for Eiffel:
4 [args.count ≠ 0→ r (args) | r]

2 A BUG-AND-FIX SPECIFICATION
LANGUAGE

At the core of BUGFIX lies a language for describing identified
patterns for both bugs and their fixes. Two observations are in
order:
• The BUGFIX effort focuses on bugs that manifest themselves
through code patterns that are wrong and should be replaced
(fixed) by adapting the patterns. For example, code that uses
f (a, b) when it should use f (b, a). We do not at this point consider
deeper or more elaborate bugs, such as design bugs, as analyzed
for example in [2].
• To illustrate the BUGFIX language, we use a concrete syntax. For
clarity the syntax is keyword-oriented and Eiffel-like. Concrete
syntax details are not important, however, for the concepts dis-
cussed here; the syntax may change in the future. What matters
is the abstract syntax and underlying semantic concepts. In many
practical applications we expect that BUGFIX will be used not
through a human-oriented syntax such as the one illustrated
below but through a program-oriented API (Abstract Program
Interface), for use by APR tools and databases.
The following example, using an ad hoc concrete syntax as just

mentioned, illustrates the argument-reversal bug and its fix.
BUGFIX should support a wide range of programming languages.

It needs, however, to provide bug and fix descriptions for language
mechanisms, or “constructs”, that exist (in different forms) in vari-
ous languages. Examples include routine call, assignment, loop and
so on. The specification of language constructs is the first part of
BUGFIX.

The mechanism supports both the description of a general pat-
tern for each construct and the specification of its realization in
a particular language; the latter should be extendible, so that one
can add new languages and their implementation of predefined
general constructs. The general specification of “routine call” could
correspondingly appear as

1 construct CALL feature

2 args: EXPRESSION∗
3 r: ROUTINE
4 end

where the constructs EXPRESSION and ROUTINE are separately defined.
The specification of CALL simply state that a routine call includes a
routine name (r) and a list of actual arguments (args), each of which
is an instance of EXPRESSION. The specific specifications syntax (in
Java and Eiffel) are below:

Note the conditional expression in the Eiffel case: a call with ac-
tual arguments uses parentheses, as in “r (a, b, c)”, but a call without
arguments is (unlike in Java) just “r” without parentheses. BUGFIX
includes support for such conditional mechanisms.

The separation between a general language construct, such as
CALL, and the specification of its (concrete) syntax for any particular

programming language, contributes to the generality of BUGFIX,
its usability by many different APR projects targeting at different
languages and IDEs, and its extendibility to new environments.

Once the language constructs have been identified, we may pro-
ceed to the core goal of BUGFIX — specifying bug-and-fix patterns.
Here is the swapped-argument example:

1 pattern SWAPPED_ARGUMENTS for

2 c: CALL
3 with

4 a1, a2: EXPRESSION
5 where

6 a1 ∈ c.args ; a2 ∈ c.args
7 a1.index ≠ a2.index
8 fix

9 c [a1← a2, a2← old a1]
10 end

The intent should be clear: we describe a program transformation
whereby two out-of-order arguments are swapped.

The following example covers two commonly encountered bugs:
a programmer uses a sum instead of a difference (PLUS_MINUS), or
use of equality operator instead of inequality (EQ_NEQ).

1 pattern PLUS_MINUS for

2 e: SUM
3 with

4 e1, e2: EXPRESSION
5 where

6 e1 = e.first
7 e2 = e.second
8 fix

9 DIFFERENCE [first← e1, second← e2]
10 end

1 pattern EQ_NEQ for

2 e: EQ_BIN_OP
3 with

4 e1, e2: EXPRESSION
5 where

6 e1 = e.first
7 e2 = e.second
8 fix

9 NEQ_BIN_OP [first← e1, second← e2]
10 end

The examples also illustrate the purpose — and limits — of the
BUGFIX language. Two arguments may or may not be in the right
order; swapping them may or may not be the proper fix. Deciding
on these questions is beyond the scope of BUGFIX: it is the task
of Automatic Program Repair methods and tools. BUGFIX does
not attempt to provide a magical wand for APR, but provides the
(brilliant) devisers of magic wands with a way to develop, test,
validate, experiment, refine, explain, implement and publicize their



BUGFIX: towards a common language and framework for the Automatic Program Repair community APR ’24 , April 20, 2024, Lisbon, Portugal

contributions, and to compare their success in APR, in objective
ways, to the results of magic wands produced by other (brilliant)
developers.

3 GENERALITY ASSESSMENT
The above examples are simple, but the current initial version of
BUGFIX, using the ideas just outlined through these examples,
make it possible to cover a wide range of common bugs.

To address the issue of generality, our design goal for BUGFIX
has not been to address the widest possible range of conceivable
bugs, which might lead to an ambitious but unusable contraption;
we have taken instead the pragmatic approach of looking at the
most common types of bugs; specifically, bugs that are both:
• Actual code bugs (rather than high-level design or requirements
bugs which, as noted, are harder to handle), with clear applicable
fixes.
• Often found in actual code, as illustrated — objectively — by the
empirical study of large software repositories (Linux, Eclipse,
Apache).
We call such bugs, the ones most conducive to successful APR

work,Low-HangingBugs (LHBs). Fortunately a significant amount
of work already exists on the analysis of bugs and fixes for major
software repositories [7]. While not complete, it provides a good
initial catalog of bugs, fromwhich we started with our own ongoing
studies of repositories and used them to collect LHBs.

This analysis of bugs through both the literature and our own
studies leads to a set of Low-Hanging Bugs that seems to occur
widely. Specifically, the current analysis uses the Defects4J [7]
dataset, which is a widely used benchmark for automatic repair
of Java programs. Through an analysis of the 364 representative
bugs in the Defects4J dataset, we find 51 LHBs, accounting for 14%
of the total. For the rest of the non-LHBs (86%), their fixes either
involve multiple lines of code or cover various types of program
constructs, which makes it difficult to generalize fix patterns. These
ever-recurring bugs, identified throughout repositories, appear wor-
thy of particular attention for APR research. The most significant
sub-categories are:
• Missing Null checking (25.5% of LHBs)
• Incorrect variables (23.5%)
• Bugs related to -/+1 (13.7%)
• Misuse of order operators (<, ≤, ≥, > etc.) (11.7%)
• Misuse of False/True (7.8%)

The full list of categories and the current result of our analyses
on Defects4J is available in the Github repository1. As ongoing
work, we also aim to include the EiffelBase library [11] in the
analysis — the initial implementation of EiffelBase had a significant
number of bugs, many of them non-trivial, and has served as the
basis for several earlier studies of bugs and fixes [16, 17, 21]. We
intend to continue to maintain and develop this repository as a
general community resource to help APR researchers and product
developers.

The potential for developing the BUGFIX language for generality
is in principle unbounded: its scope could theoretically encompass

1BUGFIX: github.com/apr-2024/BUGFIX

any program or design transformation. For BUGFIX to be of practi-
cal use, it should strike the right balance between generality and
simplicity.We are adopting a cautious approach favoring the second
of these criteria, keeping BUGFIX a small language, guided by its
applicability to bug and fixes that do appear frequently in practice
— in other words, Low-Hanging-Bugs, where the inspiration comes
not from our own intuition or opinions but from the empirical,
objective study of credible bug and fix repositories.

4 ABSTRACT INTERFACE
To guide the specification and further development of BUGFIX,
we are relying both on an example concrete syntax illustrated
above but, more fundamentally, on an abstract programming in-
terface (API). The original version of the interface is written in
Eiffel, since this language offers powerful abstraction mechanisms,
particularly the Design by Contract specification facilities; for ex-
ample the “where” clause of BUGFIX illustrated by the PLUS_MINUS

example above can directly be expressed by an Eiffel “precondi-
tion” (require clause). From this basic form of expressing BUGFIX
elements (constructs and bug-fix patterns), we will make available
others, notably:
• The concrete syntax form, as illustrated, for easy human compre-
hension.
• Libraries in other common languages, such as Java or Python
(using an open mechanism allowing community contributions).
• Non-programming-language forms, for direct consumption by
tools, in binary formats or exchange formats such as JSON or
XML.
The aim is to encourage the development of a wide range of bug

and bug-fix patterns, open to contributions by all members of the
APR community.

5 FURTHER APPLICATIONS
BUGFIX supports the specification of language constructs and bug-
fix patterns. These patterns are, more generally, code-transformation
schemes. Besides their application to Automatic Program Repair,
which the main focus of this article, they have potential uses for
other efforts involving predefined schemes for program transfor-
mation. Two notable potential examples are:
• Fault seeding. A common technique in testing, and more specif-
ically the analysis of test case quality, is to introduce faults (bugs)
artificially into programs. For the validity of the corresponding
applications, these faults should as much as possible reflect the
patterns of actual bugs produced by programmers. To describe
fault-seeding schemes, one can use BUGFIX: the fix part describes
the correct pattern, and the bug part describes the seeded bug.
• Verification condition generation. Software verification, for
example in Hoare-style axiomatic semantics, needs assertions
about the program, for example loop invariants. A modern, effec-
tive software verification environment should help programmers
produce such “verification conditions”, facilitating a task which
can be conceptually hard and, even when it is not, remains te-
dious and time-consuming. The Daikon tool [5] has pioneered
this line of research by proposing invariant patterns. Such pat-
terns can be described in BUGFIX (ignoring in this case the “fix”
part of specifications).



APR ’24 , April 20, 2024, Lisbon, Portugal Bertrand Meyer, Viktoryia Kananchuk, and Li Huang

More generally, program transformation is a recurring need of
software development tools, arising in many different applications;
BUGFIX can provide a general program-transformation specifica-
tion framework.

6 RELATEDWORK
The idea of identifying and/or analyzing common bug or fix pat-
terns is not new, but it has been mostly applied in specific contexts
or programming languages: the analysis of bug and fix patterns
[1, 18] focuses on the patterns for Java program; the work pre-
sented in [10] and [22] identified project-specific bug patterns with
focuses on method call pairs (two methods should be called in pairs)
or checking return value. Sun et al. [19] identified different cate-
gories of bugs and commonly used fix patterns in Machine Learning
projects. In contrast to the above work, the approach presented
in this paper aims to provide a unified framework that allows to
derive bug and fix patterns in a more general context, involving
various languages or application domains.

Duraes et al. [4] presented a classification of defects, which is an
extension of the Orthogonal Defect Classification (ODC) [3], with
the main focus on the Emulation of Software Faults. Catolino et al.
[2] presented an taxonomy of bug root causes. The primary motiva-
tion of their work, however, lies in expediting error resolution for
developers, not identifying commonly used bug and fix patterns.

A repository described in [8] contains a same set of bugs in two
different languages (Java and Python); it provides a benchmark for
evaluation of multilingual APR tools. BUGFIX shares the similar
vision – to serve as a common platform that allows evaluation and
comparison of APR techniques involving different programming
languages.

7 LIMITATIONS, CONCLUSIONS AND FUTURE
WORK

This workshop contribution describes the inception and first re-
sults of a project intended to provide the Automatic Program Repair
with a common frame of reference, BUGFIX, including a conceptual
framework, a language in the complete sense of the term (abstract
syntax, API, concrete syntax, hooks to an extendible set of program-
ming languages), and a rich and reliable repository of important
and representative examples of bugs and possible fixes, allowing
them (as noted at the end of section 2) to apply their insights and ar-
tifacts to standard examples and validate their effectiveness against
other work.

The limitations of the current state of the work have been made
clear throughout this article. The most obvious is its work-in-
progress nature. It is important, however, to note that the key
design decisions have been made (as described in the preceding sec-
tions) and are here to stay. They follow from a careful examination
of key criteria and an attempt at obtaining an effective tradeoff; the
criteria are: simplicity; learnability; generality; practicality (based
on a long-running analysis of actual bugs as actual people produce
them, from the empirical analysis of actual software repositories).
They determine the essential nature of the BUGFIX framework and
are the principal contribution of the work.

The self-admitted tentative nature of the present description is
not just, however, an item in its list of limitations. It is also, more

importantly, one of its intentional features. This article is a submis-
sion to a workshop and has been designed that way. Instead of a
solution claiming to be fully finalized, which might fit the authors’
personal Weltanschauung of software engineering but fail to miss
the real needs of many developers, it proposes an initial version of
BUGFIX, sufficiently explicit and developed to show the essential
insights, contributions and applications, but still open to refinement.
By using this approach, we expect to elicit constructive feedback
from the APR community and steer the future development of BUG-
FIX towards a final result that will be the most useful possible to a
broad set of APR innovators.

Already in its current state as specified in the preceding sec-
tions, BUGFIX provides a general framework for describing and
processing bugs and their fixes. We hope that its introduction will —
even in a modest way — help advance one of the key goals towards
the more general quest by the software engineering profession
to provide the world with better software: the goal of equipping
software developers — when they occasionally let bugs slip into
their programs, as almost all of them with the possible exception of
Donald Knuth inevitably do, and will continue to do for a long, long
time — with effective, useful and correct suggestions of Automatic
Program Repair.

REFERENCES
[1] Eduardo Cunha Campos and Marcelo de Almeida Maia. 2017. Common bug-

fix patterns: A large-scale observational study. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE,
404–413.

[2] Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. 2019.
Not all bugs are the same: Understanding, characterizing, and classifying bug
types. Journal of Systems and Software 152 (2019), 165–181.

[3] Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar, Michael J Halliday, Di-
ane S Moebus, Bonnie K Ray, and Man-Yuen Wong. 1992. Orthogonal defect
classification-a concept for in-process measurements. IEEE Transactions on soft-
ware Engineering 18, 11 (1992), 943–956.

[4] Joao A Duraes and Henrique S Madeira. 2006. Emulation of software faults: A
field data study and a practical approach. Ieee transactions on software engineering
32, 11 (2006), 849–867.

[5] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of computer programming 69, 1-3 (2007),
35–45.

[6] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2018. Automatic software
repair: A survey. In Proceedings of the 40th International Conference on Software
Engineering. 1219–1219.

[7] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[8] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55–56.

[9] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F Bissyandé.
2018. LSRepair: Live search of fix ingredients for automated program repair. In
2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 658–662.

[10] Benjamin Livshits and Thomas Zimmermann. 2005. Dynamine: finding common
error patterns by mining software revision histories. ACM SIGSOFT Software
Engineering Notes 30, 5 (2005), 296–305.

[11] Bertrand Meyer. 1994. Reusable software: the Base object-oriented component
libraries. Prentice-Hall, Inc.

[12] Bertrand Meyer. 2023. AI Does Not Help Programmers. Blog article at Communi-
cations of the ACM (CACM) (3 June 2023).

[13] Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–24.

[14] Martin Monperrus. 2018. The living review on automated program repair. Ph. D.
Dissertation. HAL Archives Ouvertes.



BUGFIX: towards a common language and framework for the Automatic Program Repair community APR ’24 , April 20, 2024, Lisbon, Portugal

[15] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In International Confer-
ence on Software Engineering (ICSE). IEEE, 772–781.

[16] Yu Pei, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. 2015. Automated
Program Repair in an Integrated Development Environment. In International
Conference on Software Engineering (ICSE), Vol. 2. IEEE, 681–684.

[17] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller.
2014. Automated Fixing of Programs with Contracts. Transactions on Software
Engineering 40, 5 (2014), 427–449.

[18] Mauricio Soto, Ferdian Thung, Chu-Pan Wong, Claire Le Goues, and David
Lo. 2016. A deeper look into bug fixes: patterns, replacements, deletions, and
additions. In Proceedings of the 13th International Conference on Mining Software
Repositories. 512–515.

[19] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017.
An empirical study on real bugs for machine learning programs. In 2017 24th

Asia-Pacific Software Engineering Conference (APSEC). IEEE, 348–357.
[20] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Repair

for Heap Properties. In International Conference on Software Engineering (ICSE).
ACM, 151–162.

[21] Yi Wei, Bertrand Meyer, and Manuel Oriol. 2012. Is branch coverage a good
measure of testing effectiveness? Empirical Software Engineering and Verification:
International Summer Schools, LASER 2008-2010, Elba Island, Italy, Revised Tutorial
Lectures (2012), 194–212.

[22] Chadd C Williams and Jeffrey K Hollingsworth. 2005. Automatic mining of
source code repositories to improve bug finding techniques. IEEE Transactions
on Software Engineering 31, 6 (2005), 466–480.

[23] Jifeng Xuan, Matias Martinez, Favio DeMarco, Maxime Clément, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs. Trans-
actions on Software Engineering 43, 1 (2017), 34–55.


	Abstract
	1 Introduction
	2 A Bug-and-Fix specification language
	3 Generality assessment
	4 Abstract interface
	5 Further applications
	6 Related work
	7 Limitations, conclusions and future work
	References

