
Componentization: the Visitor example 
 

Karine Arnout* Bertrand Meyer** 
karnout@axarosenberg.com Bertrand.Meyer@inf.ethz.ch

Chair of Software Engineering 
ETH (Swiss Federal Institute of Technology) 

Cite as follows: Karine Arnout, 
Bertrand Meyer, Componentization: 
The Visitor Example, to appear in 
Computer (IEEE), 2006. 

CH-8092 Zurich, Switzerland 
http://se.inf.ethz.ch

*Now at AXA Rosenberg, Orinda, California 
**Also Eiffel Software, California 

 

Abstract: In software design, laziness is a virtue: it’s better to reuse than to redo. Design patterns 
are a good illustration. Patterns, a major advance in software architecture, provide a common 
vocabulary and a widely known catalog of design solutions addressing frequently encountered 
situations. But they do not support reuse, which assumes components: off-the-shelf modules ready 
to be integrated into an application through the sole knowledge of a program interface (API). Is it 
possible to go beyond patterns by componentizing them — turning them into components? 

We have built a component library which answers this question positively for a large subset of the 
best-known design patterns. Here we summarize these results and analyze the componentization 
process through the example of an important pattern, Visitor, showing how to take advantage of 
object-oriented language mechanisms to replace the design work of using a pattern by mere 
“ready-to-wear” reuse through an API. The reusable solution is not only easier to use but more 
general than the pattern, removing its known limitations; performance analysis on a large 
industrial application shows that the approach is realistic and scales up gracefully. 
 
Keywords: Design patterns, Reuse, Components, Library design, Componentization 
 

1. FROM PATTERNS TO COMPONENTS 

Design patterns have emerged since initial publications in the mid-nineties [7] as a leading tool for 
software designers. A design pattern is an architectural solution to some frequently encountered 
situation of software design. For example the Visitor pattern, which we’ll use as an example for this 
discussion, addresses the following issue: you have a certain data structure containing objects, and 
you want to enable various software elements, “clients”, to apply their own arbitrary operation to 
every object of the structure, “visiting” each object once; you’d like to avoid having to modify the 
software elements describing the data structure. The Visitor pattern provides a standard design 
structure, described below, to achieve this. The widespread availability of pattern catalogs such as [7] 
has succeeded in establishing a common vocabulary between software developers, enabling for 
example someone in a design discussion to say “we’ll use a Bridge here” and all others (supposedly) 
to understand immediately what this means. The other major advantage of patterns is that they have 
evolved from the collective wisdom of many designers and hence constitute a collective repository of 
“Best Practices” of software design. 

From a software engineering perspective, unfortunately, design patterns also represent a step 
backwards, to pre-reuse times. One of the most fruitful ideas of modern software engineering is 
component reuse: being able to take advantage of previous developments by inserting into an 
application an existing software element, or “component”, which the rest of the application uses 
solely through its API (abstract program interface1). We’ll define components fairly broadly for this 
discussion, not restricting them for example to be binary: 

                                                 
1 API historically means “Application Program Interface”. The acronym is well entrenched but its original 
meaning, apparently going back to old IBM software, no longer relevant. “Abstract Program Interface”, on the 
other hand, captures the notion exactly; we propose to keep the acronym and change its expansion. 

 1

mailto:karnout@axarosenberg.com
mailto:Bertrand.Meyer@inf.ethz.ch
http://se.inf.ethz.ch/


 2 

Definition: software component 
A component is a software element satisfying the following properties: 

• It can be used by other program elements, its “clients”. 
• The author of a component does not need to know who its clients will be. 
• Clients can use a component on the sole basis of its official information — the API. 

A pattern doesn’t satisfy this definition: it provides the description of a solution, but not the solution 
itself; every programmer must program it again for each relevant application. The only reuse that 
patterns provide is reuse of concepts. 

In this analysis, a pattern such as Visitor or Bridge is a good idea carried half-way through: if it 
is that good, one may argue [10], why should we ever have to use it ever again just as a design 
guideline? Someone should have turned it into an off-the-shelf component, a process that we may call 
componentization. The rationale for componentization is simple: it’s better to reuse than to redo. 

Is componentization possible? We set out to answer this conjecture by considering all the 
patterns in the original book by Gamma et al. [7] and trying to turn each of them into a reusable 
component, taking advantages of the object-oriented mechanisms of Eiffel. Section 2 summarizes the 
overall results; the focus of this article, however, is not general but specific: showing the 
componentization process at work on a representative and interesting pattern, Visitor. Section 3 
describes the pattern. Section 4 presents the result of the componentization: the Visitor library. 
Section 5 shows a large-scale example of application. Section 6 analyzes the scope and limitations of 
the approach and presents a conclusion. 

2. OVERALL COMPONENTIZATION RESULTS 
The overall goal of the work described here was to study componentizability in the following sense: 

 

Definition: Componentizable pattern 
A design pattern is componentizable if it is possible to produce a reusable 
component, as defined above, which provides all the functions of the pattern. 

 
We take [7] as our reference to decide whether the result of a componentization attempt provides “all 
the functions” of the pattern at hand. For the components, we have targeted Eiffel classes. Clearly the 
results would be different with another language. 

The following table summarizes the results: 
 

Componentizable patterns 15 65% 
Some library support 6 26% 
Non-componentizable 2 9% 
Total 23 100% 

 



The principal result is that for two thirds of the patterns in the original Design Patterns book we are 
able to provide full componentization, through an Eiffel Pattern Library available for download and 
already used by a number of applications.. 

Only two of the remaining patterns (third row in the table), 9% of the total, prove totally 
impervious to componentization. For others (second row), a quarter of the total, we may talk of 
partial componentization: we have been able to produce support classes, also part of the Pattern 
Library, but they don’t reach full off-the-shelf reuse; some manual work will be required from the 
designers who wish to integrate them in their applications. 

“Partial componentization” covers a number of different situations, distinguished by how much 
work remains necessary. We have devised a classification summarized in the figure below. 
 

 

 3

For more details about this classification see [1] and [2]. 

The most important result of this work overall is the 65% componentization figure: as the 
Pattern Library shows, a substantial majority of the patterns that established the whole pattern 
movement can be entirely replaced by the components, available for any application developer to 
download and integrate in applications. This disproves a view widely held in the pattern community 
that patterns are ideas of an inherently higher level, fundamentally different from components and 
more generally from code. While componentization is not 100% possible, and may never reach that 
level, we may expect advances in programming languages to continue extending the reach of 
componentizable patterns. 

 To make the notion of componentization more vivid, the rest of this paper describes its 
application to an important pattern, Visitor. The example is both interesting in its own right and 
representative of the successful componentization efforts having led to the Pattern Library. 

2 Partially componentizable 3 Non-componentizable



 

 

3. A PATTERN: VISITOR 

The Visitor pattern [7] is a well-known and frequently used design pattern. Let’s take a closer look at 
the goals it tries to satisfy and also its limitations. 

Pattern description 
The Visitor pattern “represent[s] an operation to be performed on the elements of an object structure. 
Visitor lets you define a new operation without changing the classes of the elements on which it 
operates” [7]. 

A Visitor will, as a result, let you plug in some new functionality to an existing class hierarchy. 

To address this goal, the Visitor architecture organizes the class architecture as illustrated 
below for a typical application example. Consider a library, in the usual sense of a place where a user 
can borrow and return books and video recorders. The “target classes” BOOK and 
VIDEO_RECORDER on the figure, both inheriting from a higher-level abstraction BORROWABLE, 
are part of the model for this notion. They have their own features. Now you want to enable library 
employees to apply different operations on borrowable items, such as maintain to check their quality 
and display to find out about their properties. You could extend the class BORROWABLE and its 
descendants with features maintain and display; but if the classes already exist you would have to 
change them. This is a case where an initial object-oriented decomposition, which is generally better 
for devising the architecture [10], has missed some operations of the relevant object types. Often, it’s 
just as simple to add them, as this will not disrupt the architecture. But in some cases you may prefer 
to leave the existing classes untouched, either because the new operations can just as well be 
considered part of another data abstraction, or more prosaically because you can’t touch the original 
classes; for example they might belong to someone else. 

 

 

 

 
 

 4 



Visitor classes Target classes 

 
 

 

 

 

To apply the Visitor pattern to our example you may use new “visitor classes” 
MAINTENANCE_VISITOR and DISPLAY_VISITOR with as many visit_* features as kinds of elements 
to traverse (here, books and video recorders), and equip each descendant of BORROWABLE with a 
feature accept taking an argument of type VISITOR to select, through dynamic binding, the 
appropriate visit_* feature to be called. The Visitor pattern implements a “double-dispatch” 
mechanism: 

Class

Inherits from

Client (uses) * deferred (abstract) 
operation

Class + effective (concrete)
operation

• In a call to accept on a certain object, the appropriate version of accept is determined by the 
type of that object, for example BOOK, one of the target classes. 

• When that version is executed on an argument of type VISITOR, the appropriate visitor 
routine version is determined by the type of the object attached to that argument, for example 
MAINTENANCE_VISITOR, one of the visitor classes. 

The strong point of the pattern is that it is easy to add new functionalities to a class hierarchy: simply 
write a new descendant of VISITOR to traverse the structure in a different way and perform some 
other task. No need to change the existing classes, here BORROWABLE and its descendants, provided 
they already have an accept feature. 

This last restriction is important, however: the classes must have an accept. In other words, 
they must be visitor-ready. What we gain is that they don’t know what kind of visitor, or visiting 
operations, will be performed on them. But we can’t just take an arbitrary existing class and equip it 
with a visiting mechanism if it wasn’t meant for that purpose.  

Although frequently useful and sometimes essential, the Visitor pattern is not always suitable. 
Martin writes: “The VISITOR patterns are seductive. It is easy to get carried away with them […] 
Often, something that can be solved with a VISITOR can also be solved by something simpler” [9]. 

 5



One of the problems is lack of flexibility and extendibility in the resulting designs. While it is 
easy to add visitor classes, the addition of a target class implies modifying all visitor classes, as noted 
by Palsberg and Jay [12]:“A basic assumption of the Visitor pattern is that one knows the classes of 
all objects to be visited. When the class structure changes, the visitors must be rewritten”. 

On the visitor side, you must write a visit procedure for every possible target type; if you want 
to skip objects of some of those types, there is no simpler solution than to write an empty visit routine. 

On the target side, writing the accept features in all target classes is likely to become tedious if 
the target class hierarchy is large:  the implementations will be similar, many performing just 
visitor.visit_something (Current). 

More fundamentally yet, you may not even be able to make these classes visitor-ready; what if, 
as envisioned above, you don’t have control over them? With the Visitor Library, as explained below, 
this problem goes away as there will be no need for accept features as explained below. 

Some of these limitations do not arise in languages that allow “double dispatch” where an 
operation automatically discriminates on the type of two or more of their operands; this is the case 
with the Common Lisp Object System (CLOS), which therefore provides a simple alternative to the 
Visitor pattern. Common object-oriented languages such as Eiffel, Smalltalk, Java, C# and C++ only 
support single dispatch; as a result, programmers wishing to use the Visitor pattern must rely on an 
architecture resembling the above diagram. 

There have been attempts to simplify the Visitor pattern, in particular by removing the need for 
accept features. The Walkabout [12] and Runabout [8] variants exploit the reflection mechanism of 
the Java programming language to select the appropriate visit_* feature and avoid accept procedures. 
The Visitor Library described next goes one step further: it provides a reusable component capturing 
the intent of the Visitor pattern while removing the need for accept features. 

4. THE VISITOR LIBRARY 

The result of the componentization of the Visitor pattern is a Visitor library consisting of just one 
class: VISITOR. The key to the simplicity of the solution is reliance on three language mechanisms: 
genericity, tuples and agents. Genericity lets us define the class as VISITOR [G] where the formal 
generic parameter G represents the (arbitrary) type of objects to be visited. Tuples give us lists of 
values of arbitrary number and types, as in [x, y, z]. An agent is an object representing a certain 
operation (feature) of the system, ready to be executed; for example if a has been assigned agent f, it 
denotes an agent associated with feature f; then a.call ([x, y]) will call f with the given arguments x and 
y. Agents generalize “function pointers” in a type-safe way.  

Before looking at the class interface of VISITOR the best way to understand the practical effect of 
the componentization is to see how a client application will use this class to obtain the effect of the 
Visitor pattern. To rewrite the preceding example using the library, it suffices to proceed as follows: 

• Declare an attribute, say maintenance_visitor,  representing a visitor object: 
 maintenance_visitor: VISITOR [BORROWABLE] 

• Create and initialize the associated object: 

 6 



 create maintenance_visitor.make 

• Write the appropriate visiting routines, for example: 
 maintain_book (a_book: BOOK) is ... Routine declaration …  
 maintain_video_recorder (a_recorder: VIDEO_RECORDER) is ... Routine declaration  
 
This would be needed in any approach. 
 

• Register an action, in the form of a routine represented by an agent, with the visitor: 
 maintenance_visitor.extend (agent maintain_book) 

 In our example we actually wanted to register several actions, so instead of extend we use 
append which takes as argument not a single agent but an array of agents (written as a tuple): 
 maintenance_visitor.append ([agent maintain_book, agent maintain_video_recorder]) 
 
These will be the actions that the visitor must perform on every object it visits. 
 

• At this stage the visitor is ready to be called through the feature visit:  
 

 my_book: BOOK 
 her_video_recorder: VIDEO_RECORDER 
 … 
 maintenance_visitor.visit (my_book) 
 maintenance_visitor.visit (her_video_recorder) 

 
There is no no more need for accept procedures; we have reached the goal of permitting any client 
application to visit a target data structure without making any change to the target classes, or 
requiring the target class authors to have foreseen that someone might require visitation rights. 

The VISITOR features used — make, visit, extend, append — are part of the interface of class 
VISITOR, given below. 

 
class interface 
 
 VISITOR [G] 
 
create 
 
 make -- Creation procedure 
 
feature {NONE} -- Initialization 
 
 make 
    -- Initialize actions. 
 

 7



feature -- Visitor 
 
 visit (x: G) 
    -- Select action applicable to x. 
  require 
    element_exists: x /= Void 
 
feature – Access 
 
 actions: LIST [PROCEDURE [ANY, TUPLE [G]]] 
    -- Actions to be performed depending on the element 
 
feature -- Element change 
 
 extend (a: PROCEDURE [ANY, TUPLE [G]]) 
    -- Extend actions with a. 
  require 
    action_exists: a /= Void 
  ensure 
    has_action: actions.has (a) 
 
 append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]]) is 
    -- Append actions in some_actions to the end of the actions list. 
  require 
    actions_exist: some_actions /= Void 
    no_void_action: not some_actions.has (Void) 
invariant 
 
 actions_exist: actions /= Void 
 no_void_action: not some_actions.has (Void) 
 
end 

 

This interface is simple and can be learned in a few minutes; there is no need to go into the details of 
a software architecture with simulation of double dispatch and other such subtleties. Just create a 
visitor object and pass it the actions that you want to execute on every object to be visited. 

Details of the implementation (including usage instructions and of course the source code) are 
available in [6]. Internally, class VISITOR has a list of actions sorted from the most specific to the 
least specific, which ensures that the action selected when visit gets called is the most appropriate one. 
To save linear searches of this list, the implementation uses a cache; a call to visit will not search the 
list if an associated action is found in the cache. 

Actions are sorted topologically when the client registers the actions into the visitor through 
extend or append. The relation used for the topological sort is the conformance of the dynamic type 
of the actions’ operands. This also solves a subtle problem of the Visitor pattern: that in some cases it 
is desirable to apply the visit operation for an object whose type matches the desired type but is not 
identical to it.  

 8 



5. AN APPLICATION 
 

To verify that the result of the componentization scales up beyond simple examples such as the 
above, we turned to an existing application and rewrote it to replace its uses of the Visitor pattern by 
calls to the Visitor library. 

Gobo Eiffel Lint (gelint) [3] is an Eiffel code analyzer. It is a suitable testbed for our study 
because its size (200,000 lines of code, over 700 classes) is significant yet manageable; it made 
extensive use of the Visitor pattern; and it is open-source, so anyone can examine our results. In 
addition, we had the opportunity to apply gelint, before and after the transformation, to a large 
financial software system from AXA Rosenberg: close to ten thousand classes and two million lines 
of code, providing us with a large-scale example from industrial practice. 

While not a full-fledged compiler, gelint performs many of the functions of a compiler. Its 
purpose is to check the validity and reasonableness of an Eiffel program. It can: 

• Read a control file (“Ace”) and look through the system clusters to map class names to file 
names. 

• Parse the class texts. 
• For each class, generate feature tables including both immediate and inherited features. 
• Analyze the feature implementations, including contracts. 
• Detect and report errors, as well as suspicious situations, going significantly beyond the 

messages and warnings of compilers. Gelint will for example report usage that is not portable 
between implementations.  

The flexibility of the tool means that it can serve as the basis for other tools, such as pretty-printers, 
documentation generators, possibly interpreters and compilers, and for experimenting with proposed 
language extensions. 

The architecture of gelint is based on classes representing Abstract Syntax Trees (ASTs) and 
others representing “processors”. AST objects are passive; the processor objects rely on the Visitor 
pattern to perform the different tasks listed above. This favors extendibility: to add new 
functionalities, it suffices to write new processor classes, without touching the AST classes. It is for 
this kind of situations that designers appreciate the Visitor pattern. 

All processors classes descend from a class ET_AST_PROCESSOR, which declares a set of 
process_* features. The class ET_AST_NULL_PROCESSOR inherits from ET_ AST_PROCESSOR 
and effects all process_* features with an empty body (“do end”); other processor classes can 
redefine the ones they need. One of them is ET_INSTRUCTION_CHECKER, which checks the 
validity of a feature’s instructions. 

This was the original architecture. To switch to the Visitor library we: 
• Added an attribute visitor in class ET_INSTRUCTION_CHECKER: 

 visitor: VISITOR [ET_INSTRUCTION] 
(it is a visitor of ET_INSTRUCTION because this processor visits instructions only). 

 9



• Modified the creation procedure make of ET_INSTRUCTION_CHECKER to create the visitor 
and register agents corresponding to the process_* features redefined in the class: 
 
 make (u: like universe) is 
     -- Create a new instruction validity checker. 
   do 
     ... 
     create visitor.make 
     visitor.append ([ 
           agent process_static_call_instruction, 
           agent process_call_instruction, 
           … and so on for the 12 or so types of instruction … 
          ]) 
      
   end 
The action features (process_*) can be entered in any order. The Visitor Library takes care of 
sorting them to optimize the retrieval of the appropriate action when the procedure visit (of 
class VISITOR [G]) gets called. 

• In the procedure check_instructions_validity of the processor, replaced such expressions as 
 compound.item (i) .process (Current) 
by: 
 visitor.visit (compound.item (i)) 
and similarly for other processors. 

• Cleaned up the AST classes by removing all process routines, were needed anymore. This 
results in considerable simplification of the code. 

After reassuring us that the resulting system performs like the original, we performed a number of 
benchmarks: a static analysis of the code (thanks to gelint itself) to see how it has changed; and a 
dynamic analysis of run-time performance, using as our testbeds both gelint itself and a large, real-life 
program from AXA Rosenberg (9800 classes and about two million lines of Eiffel code). 

Table 1 shows some of the effects on the code. 

 

Metric Original gelint Modified gelint Difference     (%) 
Lines of 

code 198 263 195 512 -1.4% 

Classes 717 718 +0.1% 

Features 67 382 63 421 -5.9% 

Clusters 109 110 +0.9% 
Executable 

size 4104 KB 3660 KB -10.8% 

 

 10 



Table 1: Code statistics of the original and modified versions of gelint 

 

Note the reduced number of features, due to two reasons: 
• There are no more accept features in the AST classes. 
• There are no more visit_* features with an empty body in the processor classes; these cases 

are handled by simply not associating any agent with those types when filling the visitor. 

For the run-time analysis we ran gelint (through Eric Bezault) on AXA Rosenberg’s financial 
research system, comprising 9889 Eiffel classes. Table 3 shows the timing result for the two steps 
(“degrees”) of gelint that rely on the visitor pattern: 

 

Degrees Original gelint Modified gelint Difference       
(in value) 

Difference     
(%) 

Degree 4 23s 30s +7s +30% 

Degree 3 25s 36s +11s +44% 

Table 3: Execution time of original and the modified versions of gelint 
(run on an AXA Rosenberg’s system) 

The modified version relying on the Visitor Library is 30% and 44% slower respectively for the two 
degrees where visitors come into play. (The effect on overall performance, including steps that don’t 
use visitors, is much smaller.) The performance overhead corresponds to the time spent in the linear 
traversal of actions registered to the visitor whenever the feature visit is called to select the action 
applicable to the given element. The caching mechanism helps limit the effect of such traversals. 

Although not negligible, this overhead should be compared to the results for the Walkabout 
variant of the Visitor pattern described by Palsberg et al. [12], making execution a hundred times 
slower than the original.  

On smaller examples, the overhead increases somewhat; for gelint applied to itself (717 
classes), the overhead is +100% for degree 4 and +50% for degree 3 (comparable to the performance 
of Runabout described by Grothoff [8]).  

Overall, an overhead of 30% to a maximum of 100%, accompanied by a small reduction in 
size, makes the Visitor Library usable in practice; it is particularly reassuring that the overhead 
appears to decreases as the size of the application grows. These results confirm the usability of the 
Visitor Library on real-world large-scale systems. 

6. ASSESSMENT AND FUTURE WORK 

The work described in this article is just one example of the componentization effort that has led to 
the Pattern Library [1] [6]. The library includes many more reusable components: Composite Library, 
Command Library, Factory Library [2], Event Library [11], etc. The result is not only a theoretical 

 11



answer to the conjecture that led to this work — that a pattern is a good idea carried halfway through, 
waiting for a component to realize it fully — but a practical solution usable for industrial applications. 

For non-fully componentizable patterns, the componentizability classification gives 
programmers a grid to understand how much work they need to perform to take advantage of a certain 
pattern. A concrete outcome of the analysis has been a graphical Pattern Wizard, (also available for 
download [6]) which automatically generates skeleton classes for the non-componentizable patterns. 

We use the Pattern library (with the help of the Pattern Wizard) to teach design patterns in our 
courses on software architecture and object-oriented design, and have found that it provides an 
illuminating perspective to make the topic understandable. 

On the specific example of componentization presented in this article, the Visitor library meets a 
number of key criteria: 

• Faithfulness: While using a different architecture internally, the Visitor Library fully satisfies 
the intent of the Visitor pattern and keeps the same spirit. 

• Completeness: The library covers all cases described in the original pattern. 
• Simplicity and usability: No need for a double-dispatch mechanism; no need for “accept” 

features”; clients can register the possible actions in any order; ability to skip actions on 
certain types (just ignore them, no need to write an “accept” feature with an empty body). 

• Ease of learning: No pattern to learn, no need to understand advanced design techniques; just 
learn an API, as when using a list or other data structure class, except that the API is smaller 
and simpler. 

• Type-safety: The Visitor Library relies on unconstrained genericity and agents; both 
mechanisms are type-safe. If no action is available for a given type, calling visit simply 
executes an empty body. 

• Performance: As discussed above, switching to the Visitor library implies a time overhead, 
but it appears acceptable. The code is simpler and has fewer features. 

These benefits make the Visitor example, in our opinion, a clear success of pattern componentization. 
We may, on the other hand, note the following limitations: 

• A design concept such as a pattern can be adapted ad libitum. With a reusable solution, 
however flexible, one is limited to what has been provided in the API and what can be 
adapted through inheritance. 

• The Pattern Library relies on some mechanisms (genericity, tuples, agents) present in Eiffel 
[Error! Reference source not found.] but not all available elsewhere. In particular, although 
this aspect has not been emphasized in the present paper, it makes extensive use of contracts, 
not supported by other mainstream languages. So the result is language-dependent. 

• The performance overhead has been noted. In some performance-critical applications it may 
be problematic. 

• While the componentization success that we obtained for the design patterns on the reference 
book on the subject [7] is extremely encouraging, it is no guarantee that future patterns can be 
componentized at the same rate. 

 12 



We started from the challenge of componentization in [10]: “A successful pattern cannot just be a 
book description: it must be a software component, or a set of components”. The work described here 
seems for a large part to bear out this conjecture; it yields directly usable results while leaving ample 
room for more research into the componentization of patterns. 

ACKNOWLEDGEMENTS 

We have benefited from comments and insights from Éric Bezault (AXA Rosenberg) and Emmanuel 
Stapf (Eiffel Software). 

BIBLIOGRAPHY 

1. K. Arnout: From Patterns to Components, Ph.D. dissertation, Dept. Computer Sciences, Chair of 
Software Engineering, Swiss Federal Institute of Technology, Zurich (ETH Zurich), 2004; 
http://se.inf.ethz.ch/people/arnout/patterns/. 

2. Karine Arnout and Bertrand Meyer: From Patterns to Components: The Factory Library 
Example, submitted for publication, 2005. 

3. Eric Bezault: Gobo Eiffel Lint, 2003; at http://cvs.sourceforge.net/viewcvs.py/gobo-
eiffel/gobo/src/gelint/.  

4. ECMA International: Eiffel Analysis, Design and Implementation Language, international 
standard ECMA 367, available from http://www.ecma-international.org. 

5. Eiffel Software: Eiffel documentation at http://www.eiffel.com.  

6. ETH Zurich: downloadable Pattern Library, at http://se.inf.ethz.ch/download. 

7. Eric Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns: Elements of 
Reusable Object-Oriented Software, Addison-Wesley, 1995. 

8. C. Grothoff: “Walkabout Revisited: The Runabout”, Proceedings of the 17th European 
Conference of Object-Oriented Programming, pp. 103-125, ECOOP 2003, Darmstadt, Germany, 
21-25 July 2003; http://www.ovmj.org/runabout/runabout.ps.  

9. Robert C. Martin: “The Visitor Family of Design Patterns”, 2002. Rough chapter from The 
Principles, Patterns, and Practices of Agile Software Development, R. C. Martin, Prentice Hall, 
2002; http://www.objectmentor.com/resources/articles/visitor.  

10. Bertrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, 1997. 

11. Bertrand Meyer: The Power of Abstraction, Reuse and Simplicity: An Object-Oriented Library 
for Event-Driven Design, in From Object-Orientation to Formal Methods: Essays in Memory of 
Ole-Johan Dahl, eds. Olaf Owe, Stein Krogdahl, Tom Lyche, LNCS 2635, Springer-Verlag, 
2004, pages 236-271, also at http://se.ethz.ch/~meyer/publications/lncs/events.pdf.  

12. Jan Palsberg: C. Berry Jay, “The Essence of the Visitor Pattern”, Proceedings of the 22nd IEEE 
International Computer Software and Applications Conferences, COMPSAC’98, 1998, pp. 9-15; 
http://www-staff.it.uts.edu.au/~cbj/Publications/visitor.ps.gz.  

 13

http://se.inf.ethz.ch/people/arnout/patterns/
http://cvs.sourceforge.net/viewcvs.py/gobo-eiffel/gobo/src/gelint/
http://cvs.sourceforge.net/viewcvs.py/gobo-eiffel/gobo/src/gelint/
http://www.ecma-international.org/
http://www.eiffel.com/
http://se.inf.ethz.ch/download
http://www.ovmj.org/runabout/runabout.ps
http://www.objectmentor.com/resources/articles/visitor
http://se.ethz.ch/%7Emeyer/publications/lncs/events.pdf
http://www-staff.it.uts.edu.au/%7Ecbj/Publications/visitor.ps.gz


 

 

 

 

 
Author biographies 

Karine Arnout is an engineer at Axarosenberg in Orinda, California. She holds an engineer’s 
degree from ENST in France and a PhD from ETH Zurich, where she was a postdoc after 
completing her thesis. Her research interests are design patterns, Design by Contract and testing, 
in particular the correlation between contracts and tests. 

Bertrand Meyer is professor of software engineering at ETH Zurich and Chief Architect of 
Eiffel Software in California. 

 14 


