SOFTWARE TECHNOLOGIES

NET Is Goming

Bertrand Meyer, Interactive Software Engineering

nnounced in July 2000, .NET,
Microsoft’s platform for
XML-based Web services, is
currently undergoing a succes-
sion of beta versions for a pro-
jected release late this year or early in
2002. .NET has a central role in Micro-
soft’s strategy to integrate the Internet,
Web services, building block services,
numerous tools for developers, and
many other features.

Curiously though, this next generation
of software hasn’t grabbed the comput-
ing world’s attention as Java did in its
heyday. Yet, in many respects, .NET is a
more important phenomenon. The busi-
ness press, for its part, hasn’t missed the
technology’s significance. Both Business
Week (cover story, 30 Oct. 2000) and
The Economist (January 2001) have
devoted major coverage to .NET.

A FAILURE OR THE FUTURE?

Perhaps it is .NET’s breadth of cover-
age that has puzzled some technical
observers and made them wonder
whether there was anything beyond the
hype. One observer who doesn’t think so
is John Dvorak, who in his November
2000 PC Magazine column wrote that
.NET is “surrounded by too many buzz-
words and generalities to be under-
standable. I'm not sure the company
knows what .NET is, or whether any-
body does. It has the onerous smell of
failure about it already.”

The basis for this indictment seems to
be a Microsoft public relations document
describing an exciting future in which—
thanks to .NET—from your Web-
connected bike at the gym, you can
effortlessly change both your evening’s
restaurant reservation and babysitter
while pedaling away without missing
a beat. If the aim is to set lofty ideals
for the next generation, this example is

Computer

admittedly underwhelming, but since
when are technical journalists supposed
to judge new technologies by press
releases?

wrappers around functions—that is
appropriate for graphical user interface
and Web applications.

While it is likely to become a serious
competitor to Java, C# is not an attempt
to replace all existing languages. In fact,
Microsoft’s own investment in Visual
Basic (recent estimate: 6 million devel-
opers) and C++ would make such a goal
self-defeating.

Instead, a distinctive characteristic of
NET is its language neutrality. In addition
to Microsoft-supported languages, .NET
is open to many others including Cobol,

.NET, an open language enterprise
and Web development platform,
has the potential to dominate

the computing industry for years

to come.

Others have been more perspicacious.
For example, the Patricia Seybold Group
wrote that “.NET is a leading example
of what we believe will be the dominant
architectural model for the third genera-
tion of Internet applications” and that it
has “ominous implications for a large
number of Microsoft competitors.”

WHAT .NET ISN’'T

In describing .NET, it’s useful first to
point out what it is not. It’s neither an
operating system nor a programming lan-
guage. Microsoft operating systems con-
tinue their own evolution—Windows
2000, Me, XP, CE for embedded devices—
although you can expect more .NET bits
to filter down into the base OS. As for pro-
gramming languages, .NET has intro-
duced a new one, C# (C-sharp), but it’s not
the focus of the technology—it’s simply the
means to an end, the basic notation for
programming the .NET runtime.

Technically, C# looks very much like
Java, with extensions similar to mecha-
nisms found in Delphi and Microsoft’s
Visual J++. These extensions include
“properties”—an attempt to remedy
Java’s information-hiding deficiencies—
and an event-driven programming model
using the notion of “delegates”—object

Eiffel, Fortran, Perl, Python, Smalltalk,
and a host of research languages from ML
to Haskell and Oberon. Unlike others in
the industry, Microsoft isn’t trying to con-
vert the world to a new language.

.NET ARCHITECTURE

So what is .NET? A general definition
might be: “An open language platform
for enterprise and Web development.”
The aim is to provide an abstract
machine for professional developers, cov-
ering both traditional IT—client-server,
n-tier—and Web-oriented applications.
Figure 1 shows the six layers of the plat-
form’s overall structure.

Web services. The top layer provides
NET users—persons and companies—
with Web services for e-commerce and
business-to-business applications.

Frameworks and libraries. A set of
frameworks and libraries provides the
most immediately attractive aspect for
developers. These include ASPNET, active
server pages for developing smart Web
sites and services; ADO.NET, an XML-
based improvement to ActiveX Data
Objects, for databases and object-rela-
tional processing; and Windows Forms
for graphics. Altogether, NET contains
thousands of reusable components.

Interchange standards. XML-based
interchange standards serve as a plat-
form-independent means of exchanging
objects. The most important are SOAP
(simple object access protocol), an
increasingly popular way to encode
objects, and WSDL (Web Services
Description Language).

Development environment. The new
Visual Studio.Net provides the tool of
most direct use to developers: A common
software development environment offer-
ing facilities for development, compila-
tion, browsing, and debugging shared by
many languages... This environment, an
outgrowth of Visual Studio extended
with an application programming inter-
face, not only supports Microsoft-imple-
mented languages such as Visual C++,
Visual Basic, and C# but also allows
third-party vendors to plug in tools and
compilers for other languages.

Component model. Before .NET there
were already three major contenders for
leadership in the field of models and stan-
dards for component-based development:
Corba from the Object Management
Group, J2EE from Sun, and Microsoft’s
COM. .NET brings in one more model,
based on object-oriented ideas: With
.NET you can build “assemblies,” each
consisting of a number of classes with
well-defined interfaces. The model is quite
different from COM, although it provides
a transition path; its major attractions are
its simplicity and the absence of an IDL
(Interface Description Language).

Object model. The object model pro-
vides the conceptual basis on which
everything else rests, in particular, NET’s
OO type system. The common language
specification defines restrictions ensuring
language operability.

Common language runtime. The com-
mon language runtime provides the basic
set of mechanisms for executing .NET
programs regardless of their language of
origin: translation to machine code (judi-
ciously incremental translation, or “jit-
ting”), loading, security mechanisms,
memory management (including garbage
collection), version control, and inter-
facing with non-.NET code.

.NET provides these capabilities over
a broad spectrum of hardware and soft-
ware platforms, ranging from very high-

Figure 1. Elements of the .NET architecture. Microsoft’s Web development platform consists of
six layers from the user-visible Web services to the internal object model and common language

runtime.

end servers and Web farms to PCs,
phones, PDAs, other wireless devices,
and Internet appliances.

.NET BENEFITS

Users and developers can expect
numerous benefits from the spread of
.NET. For many, the most impressive
component will be the ASPNET frame-
work. ASP.NET is not an incremental
update of the ASP (active server pages)
technology available on Windows. Itis a
new development that provides tools for
building smart Web sites with extensive
associated programming facilities. An
ASP.NET demo at http://dotnet.eiffel.
com, Interactive Software Engineering’s
Web site devoted to Eiffel under .NET,
illustrates some of the framework’s most
attractive aspects.

e ASP.NET’s Web controls provide a
user interface similar to what is pos-
sible in today’s non-Web GUI envi-
ronments and far beyond what
HTML offers as a default. From
drag and drop to input validation,
Web controls facilitate building Web
pages that look like a modern non-
Web GUIL

e The Web controls, handled by de-
fault on the server side, yield
browser- dependent rendering—
output that is automatically tailored
to the browser. Some operations can
be processed on the client side—for
example, if the Web site visitor is

using a recent version of Internet
Explorer or the browser supports
dynamic HTML or JavaScript. In
the default case, the server handles
the interaction and renders every-
thing as plain HTML.

ASP.NET accomplishes one of the
most delicate aspects of Web request
processing: maintaining a client’s
state. HTTP is a stateless protocol,
but any realistic Web interface—a
shopping basket, for example—must
retain client information from one
page display to the next. ASPNET
maintains session state without stor-
ing client information on the server,
thereby freeing developers from
using cumbersome manual tech-
niques such as URL encoding, hid-
den fields, and cookies. It can
accomplish this both on a single
server and across Web farms.
Through its connection to ADO.
NET, which handles database con-
nections, ASP.NET enables setting
up part of a Web page to reflect the
contents of a database table directly,
without manual intervention. Any-
one who has tried to code HTML
tables displaying database contents
will appreciate this feature.
Because ASP.NET is directly tied to
the .NET object model, compilers,
and runtime mechanisms, the code
associated with a Web page can be
part of an application, however com-
plex, benefiting from mechanisms

August 2001

Software Technologies

such as security, versioning, and jit-
ting, from the efficiency of .NET’s
compiled approach, and from any
NET-supported languages. .NET’s
versioning facilities allow on-the-fly
updates: Just replace a page with its
new version, and it will be automat-
ically compiled the next time around,
without the need to stop and restart
the server.

Closing the gap

Perhaps ASP.NET’s greatest contribu-
tion is that it removes the distinction
between IT—traditional software devel-
opment—and Web development. Web-
enabling an existing application can be a
major effort, and so can equipping a Web
page, beyond pretty pictures, with ad-
vanced processing. ASPNET and .NET in
general have the potential for merging
these two disciplines.

Traditionally, companies have devel-
oped software. In recent years, they have
produced Web sites, initially little more
than marketing brochures, but gradually
acquiring more pro- cessing elements—
CGI scripts, ASP, JavaScript, and so on.
Often, these sites are developed in an ad
hoc fashion that does not benefit from the
traditional I'T experience on the other side
of the house. With .NET, a Web page is a
program, and a program can easily be-
come a Web page.

As a bonus, it’s easy to turn a Web
interface into a traditional non-Web
Windows client GUL. Visitors to the ASP.
NET demo at http://dotnet.eiffel.com can
download the source code to see how to

do this.

WEB SERVICES

NET offers mechanisms that make a
Web page useful as both a human inter-
face and an application program interface.
Because an ASP.NET page is tied to a set
of .NET assemblies (program elements),
it is already an APL You can use a stan-
dard API to receive stock quotes or news
updates, schedule a meeting based on your
colleagues’ Web calendars, or streamline
your company’s purchasing process.

Through its “Hailstorm” initiative,
Microsoft is giving a major push to its
“Passport” technology, already built-in
in Windows XP, enabling computer users

Computer

to define a personal profile, make it avail-
able as a set of Web services, and specify
who can use what parts of it. The aim is
to bring major simplifications to the
many interactions we pursue with many
different companies.

Microsoft, IBM, and other companies
developed the SOAP XML-based format,
which exports .NET objects to the world
at large. Microsoft and IBM are also devel-
oping the Web Services Description
Language as a new standard for Web ser-
vices. Sun recently endorsed both SOAP—
on which the company had previously sent
mixed signals—and WSDL. Although
many questions remain about this evolving
aspect of .NET technology, there is a grow-
ing prospect of achieving true standards,
which would provide some of the Inter-
net’s biggest potential benefits.

ASP.NET removes the
distinction between
traditional software

development and Web

development.

SECURITY

Microsoft’s NET marketing empha-
sizes the Web services part of the tech-
nology. But there is far more to .NET, in
particular a set of mechanisms intended
for software developers rather than users.

NET’s security policy—a benefit to
both users and developers—is a systematic
attempt to shed the image of Windows as
having a poor security record. It combines
four major techniques:

o Type verification. When the site
administrator turns verification on,
all .NET code is subject to verifica-
tion that it obeys the object model’s
type system rules. For example, if
you assign an expression to a vari-
able, the types must conform as
determined by the inheritance hier-
archy. This precludes objects pre-
tending to be something other than
what they are and rules out a whole
class of security violations.

e Origin verification. Any .NET as-
sembly can and usually should be

signed using 128-bit public key cryp-
tography, which prevents imperson-
ating another software source.

o A fine-grained permission mecha-
nism. Each assembly can specify the
exact permissions that it requires its
callers to have: file read, file read
and write, DNS access, and others,
including new programmer-defined
permissions. In addition, the “stack
walk” mechanism ensures that if
you require a permission, you
enforce it not only on direct callers
but also on their direct or indirect
callers—so that if A doesn’t have
permission to call C, it can’t cir-
cumvent this restriction by calling
B, who does have the permission.

® A notion of “principal.” Software
elements can assume various roles
during their lifetime, with each role
giving access to specific security lev-
els. This notion also includes both
predefined variants and program-
mer-definable ones.

VERSIONING

For developers, rather than end users
—although they will indirectly benefit—
NET provides a simple but strong mech-
anism that lets applications specify
precisely what versions they can accept
for the modules they use.

Thus far, Windows has offered two
extreme, unsatisfactory versioning poli-
cies. With dynamic link libraries (DLLs),
any version can, in principle, replace any
other. This leads to subtle incompatibili-
ties and “DLL hell”: An application
installs a new DLL version that replaces
the previous one, with the sudden and
mysterious side effect that some other
application doesn’t work any more. The
other extreme is COM, which avoids this
situation, but at the expense of consider-
ing any update as a new, incompatible
version, which is not flexible enough.

The .NET versioning model defines a
standard version numbering policy and
lets you specify what is acceptable for the
assembly you need: a specific version
number (“I want4.5.2.1 and nothing else
will do”), a certain range of versions
(“4.5.whatever.whatever”), or the last one
that worked. This should satisfy the basic
versioning needs of many applications.

COMPONENT MODEL

.NET also offers developers a new
component model directly based on OO
concepts. By removing the distinction
between a program element and a soft-
ware component, it provides significant
benefits over technologies such as Corba
and COM. Because an assembly provides
a well-defined set of interfaces, other
assemblies can use it directly.

To turn a software element into a
reusable component, Corba and COM
require writing an interface description
in a special Interface Description Lan-
guage (IDL). .NET gets rid of IDL: You
can use a .NET assembly directly as a
component without any further wrap-
ping because it is already equipped with
the necessary information.

The .NET component model is con-
siderably simpler than COM, the previ-
ous standard for component-based
development on Microsoft platforms. It
does away not only with IDL but much
of COM’s historical baggage, from the
HRESULT special type to low-level oper-
ations that keep track of references such
as AddRef and Release, replacing it with
garbage collection. Developers will appre-
ciate this departure from COM, although
in the short term the two models must
coexist; COM Interop, an interoperabil-
ity mechanism, should ease the transition.

SELF-DOCUMENTING COMPONENTS

The trick in removing IDL is to use
interface information that is already pre-
sent in the source code, at least in an OO
language, where the program text con-
tains the list of classes in an assembly, the
list of each class’s features (routines/
methods and attributes/ field), and essen-
tial information for each feature name,
number and types of arguments, whether
it’s a procedure or a function, and type
of result, if any.

Compilers for .NET-supported lan-
guages retain this information as meta-
data—the idea of producing self-
documenting components—in the gen-
erated code. Metadata is not limited to
predefined information. You can use cus-
tom attributes to specify essentially any
information for inclusion in the metadata
and keep it with the component after
compilation.

- JJE 1SE_Runtime
P MANIFEST
=B RegistrationService

#-JJE DataBaseltem

& B I dentifierF actory

- JJE MySting

= t Registrant

! b .class public auto ansi

Wl etor : void()
B _invariant : void])

é B Registrar
- b .class public auto ansi

<

® ‘ HashT able_System_Object_System_|nt32
= ISE.Intemal registiationservice

‘ DataBase System_Object_System_|nt32

b extends RegistrationService.D ataBaseltem
« address : public class System Sting

< address_form : public class System Stiing
< company_name : public class System.Sking
< fust_name : public class System Sting

< last_name : public class System.Sting

<« shing : public class System. Sking

[l make : voidjclass System Sting, class System String.class System
B to_sting : class System Sting()

b extends System.\Web. Services WebService

& registrants_database_done : private static bool
& registrants_database_result : private static class RegistrationServ
& registrations_database_done : private static bool

-~ & registrations_database_result : private static class RegistrationSer

| »

}.ve| 0:0:0:0

.assembly registrationservice as "registrationservice'

K

2z

Figure 2. Examining an assembly originating in an Eiffel application with ILDASM, a graphical

tool that analyzes metadata.

Metadata is accessible in many ways.
ILDASM (intermediate language disas-
sembler) is a graphical tool that lets you
visually examine an assembly’s interface
to obtain information from the meta-
data. Figure 2 shows an ILDASM screen
for an assembly originating in an Eiffel
application. In addition, any program
can access the metadata via the
Reflection library. Because the metadata
is also available in XML format, any
application, whether it is part of .NET
or not, can obtain information about
components

One example of a metadata applica-
tion is our “contract wizard,” which pro-
grammers can use to equip assemblies
compiled from languages other than
Eiffel with Eiffel-like contracts. The pro-
grammer uses the wizard to explore the
classes and their features, interactively

deciding to add contract elements—pre-
conditions, postconditions, class invari-
ants. The wizard uses this input to
generate a proxy assembly that imple-
ments the contracts and call the noncon-
tracted original component. It is not clear
how we could have produced such a tool
without metadata.

LANGUAGE INTEROPERABILITY

Many companies have a significant
software investment in different pro-
gramming languages. .NET’s language
interoperability is intended to avoid los-
ing that investment. The level of inter-
operability goes beyond what has been
available in previous efforts. For exam-
ple, modules written in different lan-
guages can both call each other and—in
the case of classes—inherit from each
other, across languages. Debugging ses-

August 2001

Software Technologies

‘ C# ‘ VB ‘ C++ ‘ Eiffel §|NET languages
N\ \ / /
‘ Language compilers
MSIL code
(plus metadata)
‘ Loader ¢

¥

‘ JIT + verifier

Managed
code

Unjitted routine call

‘ Execution

Figure 3. The .NET program execution model. The language compiler produces MSIIL code that

is translated further to native code.

sions in Visual Studio.Net easily cross
language borders. This ability to mix lan-
guages without incurring costs for spe-
cial wrappers or IDL makes it possible
for developers to choose the best lan-
guage for each part of an application,
based on the expectation that it will
smoothly and automatically interface
with the other parts.

The object model

The object model and the common lan-
guage specification (CLS) are the basis of
NET’s language interoperability. The
object model is a set of concepts—simi-
lar to an OO language, but without the
syntax or anything governing the pro-
grams’ external appearance and presen-
tation—that defines the type system: what
is a class, what is an object, how classes
can inherit from one another, and so on.

Shortcomings. Some of its choices,
obviously influenced by Java, are regret-
table. In particular, there is a clear-cut
distinction between classes—fully imple-
mented abstractions—and interfaces,
which are specified only, with no actual
routines or attributes. Some of object
technology’s major benefits come from
the ability to cover the full spectrum
from abstract specification and design to

Computer

the most detailed and technical aspects
of implementation through a single
notion of class, used as abstractly or con-
cretely as needed at any particular stage.

Also Java-like is the restriction of mul-
tiple inheritance to interfaces. The model
currently does not support genericity, or
type-parameterized classes, but there are
plans to include a generic mechanism in
a later release.

The .NET object model provides a
coherent set of base concepts, based on a
strongly typed OO policy. All language
compilers generate an intermediate code,
MSIL (Microsoft Intermediate Lang-
uage), a machine language for an abstract
stack-oriented, OO machine that knows
about objects, inheritance, methods,
dynamic binding, and other OO con-
cepts. When a compiler generates MSIL
and associated metadata, it produces a
NET assembly that can potentially inter-
act with any other assembly.

Interface rules

Language interoperability comes at a
price: the CLS compatibility constraints.
Fortunately, those constraints only affect
the modules that need to interact with
other languages, typically a small subset.
All other modules, within a particular

language, need not concern themselves
with the CLS.
CLS compliance comes at three levels:

e Supplier (oddly called “frame-
work”): Others can consume what
you produce.

e Consumer: Your modules can be
clients of others’ producer-compli-
ant modules.

e Extender: Your classes can inherit
from classes in other languages.

Typically, a .NET language compiler pro-
vides the option of flagging each module
as compliant or noncompliant at the
desired level.

EXECUTION MODEL

.NET’s common language runtime
provides a basic execution schema,
shown in Figure 3. The language com-
piler produces MSIL code, which is not
interpreted but is translated again, or jit-
ted, to native code. Thus, the target plat-
form will execute only native code.

Jitting

With the default jitter, individual rou-
tines are jitted on demand, as required
by the execution, and then kept in their
jitted form. With EconoJit, a variant
intended for small-memory-footprint
devices, you can specify a maximum
amount of space and apply a caching pol-
icy to remove a jitted routine and make
room for a new one. Another option is
PreJit, which will perform the translation
once for the entire application.

Managed code

Code meant for execution by the
NET runtime is known as “man-
aged”—it benefits from all the runtime’s
facilities such as garbage collection,
exception handling, and security. Gar-
bage collection raises issues for C++,
one of the languages .NET offers. C++
has a lax type system that allows casts
(conversions) between almost arbitrary
types, but it contradicts the require-
ments of safe GC. Indeed, classic C++
cannot generate managed code on
.NET. For the corresponding classes,
you have to use “Managed C++”, a new
variant of the language that imposes

Software Technologies

strong restrictions on type mixes and is
in fact very close to C#.

Microsoft is sending a strong signal to
C++ developers indicating that full com-
patibility with C, the defining property of
classic C++, no longer meets software
development demands in the Internet age.
The combination of managed and unman-
aged classes offers a transition path.

BEYOND WINDOWS

Only some .NET (facilities are
Windows-specific. The Windows Forms
framework is intended to replace the
Windows graphical API and the graphi-
cal part of Microsoft foundation classes
(for C++), and ASP.NET is implemented
on top of Microsoft’s IIS Web server.
Most of the rest of NET could, in prin-
ciple, be implemented on top of Linux,
Solaris, or other systems.

Will we see .NET on non-Microsoft
operating systems? Although you cur-
rently need Windows to use .NET, late
last year Microsoft submitted key parts
of the technology for standardization to
ECMA, an international standardization

body. The elements still under discussion
include the common language runtime,
CLS, MSIL, C#, and more than 1,000
components from the basic libraries.
Microsoft is actively pushing to complete
the work much faster than the usual time
it takes for such standards processes.

The recently announced MONO
effort (http://www.go-mono.net) is in-
tended to develop an open-source imple-
mentation of .NET, based on the ECMA
specifications and suitable for running on
platforms such as Linux. Such efforts
indicate that the transformation of NET
into a multiplatform development envi-
ronment may happen faster than ex-
pected.

opment, .NET has benefited from

an investment in several billions of
dollars in research. Microsoft’s competi-
tors haven’t missed the message, as indi-
cated by several recent announcements
such as Sun’s Open Net Environment.
No one in this industry can be guaran-

A n important but underhyped devel-

teed to hold the lead for long, but
Microsoft has the potential to stage a
major coup. Whatever happens, .NET
will affect nearly everyone involved in
any kind of enterprise or Web develop-
ment.

Bertrand Meyer, CTO of Interactive
Software Engineering, Santa Barbara,
Calif. (hitp:/lwww.dotnetexperts.com),
and an adjunct professor at Monash
University, Melbourne, is the author of
The .NET Video Course (Prentice Hall,
2001). Contact him at Bertrand_Meyer@
eiffel.com.

Meyer gratefully acknowledges the assis-
tance of Raphaél Simon of ISE in prepar-
ing this article.

Editor Info: Michael J. Lutz, Rochester Insti-
tute of Technology, Department of Computer
Science, 102 Lomb Memorial Drive,
Rochester NY 14623; (phone) +1 716 465-
2909; (fax) +1 716 475 7100; mjl@cs.rit.edu

August 2001

Software Technologies

Computer

