
La resistance
In 1992, tbe power of c++ dominated the known programming world. All tbe world?

Not quite. For in a small Gallic village ... Willie Watts talks to chief Eiffel Druid Bertrand Meyer.

calf you give us a sketch history of
yourself and Interactive Software Bn-
glneerlng?

I am originally a pure product of the best
that the French system has to offer in
terms of general, scientific and engineer-
ing education. This was completed by an
MS in computer science at Stanford In the
US.

At Stanford I didn't have enough time to
learn much in detail, but I learned what was
Important and what was not. So that after
that I was able to read a lot and learn by
myself. I was already working in Industry,
but at least what I learnt what was import-
ant from Knuth, McCarthy and a few
people like that. I also learnt about object-
oriented technology at Stanford. I was for-
lunate enough to run Into a description of
Simuia and it struck me right away as the
way to program.

After that I came back to France, and wenl
to work for a company called 'EDF', which
is the equivalent of what the Central Elec-
tricity Generating Board used to be in Bri-
tain. I was head of a group which was in
charge of software engineering, pro-
gramming education, software engineer-
ing tools, libraries and also links with
research in software engineering.

I had a kind of dual role - partly operational
(very operational, actually), but also at the
same time research. The non-academic
side involved, among other things, setting
up a training programme on modem soft-
ware methodology, which opened my eyes
to the reality of industrial software devel-
opment. At the same time I was quite active
in research in programming methodology.
I wrote a book called Methodes de Pro-
grammarian, ie 'Programming Methods',
which was very important for me and was
also quite influential in France. It was used
in the main educational institutions, and It
put me in contact with professors.

Bertrand Meyer and Eiffel
With the current plethora of object-oriented languages and tools, and C++ appar-
ently set to conquer the Universe, the reader might reasonably ask why .EXE
chooses to devote so much space to the inventor of yet another language - a
language which is still comparatively unknown in the wider programming com-
munity.

The answer,in a nutshell, is Meyer's book Object-Oriented Software Construction
(pub. Prentice-Hail, ISBN O~13-629049-3).This book, I feel 1can state with little
danger of effective contradiction, contains the most lucid description of ObJect-
oriented techniques that you will find;whatever their opinion of the Eiffellanguage,
few of Meyers opponents will deny that he can write like an angel.

The book has acted as a superb advertisement for Elffel. Interest in the language
has spread fro~ the academic world.• and Is now beginning to appear in the
commercial mainstream. At the same time, control of Eiffel has been passed from
Meyer's company Interactive Software Engineering to a non-profit consortium and
alternative (non-ISE) impl.ementatlons of the language have begun to appear,
notablr SIG's Implementation for DOS. Eiffells fast becoming apractical possibility
for ordinary projects.

Elffel i~ different. It Is not just another Algol variant with a few bolted-on object
extenslon~. P~ogram.m!,!rsw~o track current thinking should at least to know about
the ideas In Elffel; thiS interview may serve as a taster for further reading. WRW.

El
Bertrand Meyer

divcrgcn<:c rc~idcs in how it should be
done.

I had this dual career for ,lhout eight or nine
years. In 1983, I decided to develop the
academic side of me a little further, so I took
what I thought would be a year's sahbatk:a1
at the University of California Santa Barham
(in the end I staycd four ycars). There I taught
much of the basic software cuniculum.

Now, in the data stmctures and algorithms
course that I taught it was the dep,lrtment
policy that the professor should use C. This
was strange, because most of the other
courses enjoyed a lot of academic fret::dom.
But Cwas a particular requirement because
they were using this course for two pur-
poses: 1) the official one - to teach data
structures and algorithms - and 2) to serve
as a filter to separate the men from the boys.

You're saying tbe course was made
deliberately di.fftcult?

Oh yes. Deliberately pUZZling. I hated it. I
should say that I didn't know C very well at
the time, so I had to learn it - and it was
horrible. I wanted to teach data structures,
algorithms, and systematic approaches to
programming problems. Instead of that, I
found myself trying to help students debug
programs using pointers, finding incorrect
memory references and so on. I decided
that I could never do that again.

So in '85 I statted Interactive Software En-
gineering with a few colleagues in order to
follow up certain aspects of our research.
The work in the company soon became
more interesting, from a purely scientific
viewpoint, than the work we were doing in
the University, because I could use what-
ever I found scientifically valuable as op-
posed to bOWing to the student pressures
to use C.

When we statted the company we really
wanted to develop some CASE tools - in
particular a stmcturaIeditor, now the Archi-
Text product. But I also wanted to use
proper techniques - I didn't want to be too
far from what I was trying to teach. So we
looked around for a decent object-oriented
environment and we just couldn't find one.
Smalltalk was attractive, but it was too far
from the mainstream. C++ was available (as
was Objective C) but we really didn't dis-
cuss it. It was not up to our standards.

J very quickly wrote a specification for a
modern version of Simula, with some sim-
plit1cations and some extensions. I also a
wrote a basic version of the libraries. Li-
braries are the key to the success of object-

oriented technology in EitTel. If it can he
defined by just one sentence, Eitl'd is a
language to write the Eiffel libraries - that is
to say to write the best possible, rcuS:lble
industrial-quality software components
that we could think of.

I did th;lt in jllst a wl',,'k or so, and that was
it. At first, we didn't really think about it as
hdng a tool for others. It was only months
latcrthat we rcaliscd th'lt we had something
that no-one else really had: a complete,
statically-typed, efficiently implemented
language that could actually provide an
object-oriented solution to mainstream in-
dustly. It's only then that we. started think-
ing about marketing the product.

How was EfJJel first implemented?
Was it one oftbose languages whicb
was always implemented ill itse(f7

No. We didn't have a bootlltrap strategy
initially, which may have been a mistllke.
We just used the oovious solution, that Is to
say to write it in C.And Ishould say we were
sorry for that decision for a long time. It is
only in Version 3 that we have managed to
write the entire system in EiffeI. With our
portability requirements, C was the almost
inevitable choice.

What's in a name?
Why Is it called 'EWel"

The question should be. 'How could it be
c.:alledanything else?' It was almost inevit-
able. First there's this habit of naming lan-
guages after people: Pascal, Turing and
many others. We decided, for once, to take
not a scientist but an engineer, and a really
great engineer. Second reason: the method
promotes bottom-up software construc-
tion. If you think of the shape of the Elffel
Tower, and you try to build it top-down ...
Third, and probably the impOl1ant: if yOll
look at that structure, it's an extremely ele-
gant, powerful, reusable, extensible struc-
ture. However it is built of a few small,
simple parts which you combine, whic;h is
exactly the same idea as object-oriented
software constnlction.

The opposition
How would you cbaracterlse tbe dif-
ference between E'lJIel and C++?

There is a difference in philosophy and
there are technical differences. 111e dif-
ference in philosophy comes from a differ-
ent view of what 'compatibility' means. I
don't think there is any disagreement with
respect to the necessity of reusing existing
software, particularly C software. The

nle C++ (or Objective C, or Turbo Pasc;uJ)
approac"h is that you should have compati-
bility at the language lweI. So you take C
and you add things to it. The fiffd view is
that compatibility with existing softw,lre is
not an excuse for polluting the language.
The hlOguage can he C, which is a certain
technology, or it can he ohject-orit.'I1ted,
which is completely c.lill'erent.

You don't make a device t1M is both a
diode and a tmnsistor.lfyou have an exist-
ing machine that uses diodes then, fine -
you want to keep it. You could put in wires
to the tmnsistors and have communication
links and so on, but you don't try to trans-
form a diode into a tl".losistorincrementally.
This is the EitTeIposition. You choose be-
tween the Eiffel, object-oriented world and
the C world, but you should keep the two
separate; because otherwise yOll risk losing
on both counts.

You lose the simplicity of C: you lose the
ability to implement it efficiently, the ease
of writing it and the ease· of teaching the
language, which are the three major ad·
vantages of C. On the object-oriented side,
you again lose a lot. YOll lose simplicity-
because the object-oriented paradigm has
to be combined with totally incompatible
concepts. YOlllose the ease of teaching the
object-oriented paradigm. And you lose
some of the most important advantages of
object-orientedness. For example, it is quite
impossible to have garbage collection in C.
You lose typing - you cannot have both the
C type system and an object-oriented type
system. You lose the abillty to do things like
exception handling properly. as you must
take into account all kinds of bizarre side-
effects.

So you actually lose the most important
benefits, the real breakthroughs, the quan-
tum leaps that you can get from object-
oriented technology, and all because of this
stu pid requirement of remaining com-
patible with something that has nothing to
do with object-oriented technology. The
technolo~ is too good, too important, too
potentially beneficial to damage it because
of concems that may appear valid in 1986,
or 1989, or 1992, but will totally disappear
from the scene if the technology becomes
successful.

As for technical differences, there's a whole
list. Type-checking; assertions; genericity
(particularly constl"dined generidty, which
is the only way to get safe generidty); ex-
ception handling (which has been pro-
posed for CH, but Eiffel has them now),

iB
Bertrand Meyer

the assignment attempt (the ability to force
a type on a variable) whk'h is :lbsoluteIy
essential; and there are the persistence fa-
cilities. Going II little bit beyond the lan-
guage, the presence of standard !ibmries is,
I think, a really stron~ plus for the Eil'fcl
approach. In c++ there are all kinds of
competing Iibr.lrics but nothing has
enwrged as a real standard, in p'llt hecause
the language docs not support the tools
(such as gencricity) for building libmries.

Template faults
With regard to ge1lerlcity, what is
wrong with templates as implemented
in C++?

To start off with, templates are only now
getting into the language. But they are only
an emulation of genericity. In particular
they are notdosely connected to the type
system. and there is no support for con-
strained genericily. It is very important to
be able to accept actual generic parameters
only if they are descendants of a certain
class. For example: I want to have vectors
of something of type T, and I want to be
able to add two vectors, so objects of type
T must have the + operation applkable to

them. It means you can then have a vector
of integers, but you cannot have a vector of
nudear submarines if a nuclear submarine
doesn't have a + operation.

Templates cannot support this because
they arc just a kind ofmacro. I see templates
as making more officiHI wh~\tpeople had
been doing manually in C++ so far, which
is using the pre-processor to generate vari-
ations of a class.

But templates do give you some type
protection... You're saying that's not
enough?

Yes, I am. Type protection in C++ is in any
case always problematical. As long as you
can have those cast~, as long as you can
convert from any pointer type to any other
pointer type, what type we talk about
becomes pretty meaningless.

It' a recent interview witb.EXE, Bjarne
Stroustrup said that he didn't think
tbat it was necessary to add EfJlel-
stylestlPPortforassertions to C++.He
thought it suJfldent tbat one could ac-
quire add-on specialist tools to do tbe
job, and that he did not believe in

cramming too many features 11Itoa
language. Is that not a fair comment:
ifyou need assertions, you should buy
a separate tool?

The comment 'I don't believe in cramming
too many features into a language' isa fair
comment. I would say that about C++. I
don 'tthink itis proper tohave, for example,
function pointers and dynamic binding in
the same language, because itis confusing.
If you don't believe in crowding too many
features into a language, then you wouldn't
produce C++, because c++ is exactly that
It's taking C,which already had its share of
language features, and adding more, in-
cluding some which are redundant and in-
compatible.

This business of function pointers istypical.
If you use an object-oriented language like
Smalltalkor Eiffel, then to obtain automatic
selection from various operations at run-
time you use dynamic binding. If you use
C. you can emulate thls in a rather unpleas-
ant low-level fashion by having arrays (or
other data structures) of function pointers.
Now this is another way of doing things; it's
less nice, but it works. What r don't think is
proper is the C++ approach in which you
have both mechanisms. Programmers have
to choose all the time between the oneway
of doing things and the other, which means
a lot of confusion and compleXity.

I decided that I should learn up about C++
after all, so I went and read the Ellis and
Stroustrup book (C++ Annotated Referrmce
Manual) from cover to cover. I was horri-
fied to see how many criticisms there are in
that book of C and C++. nlere are com-
mentslike, 'thearrayfaciHtyofC. andhence
of CH. is brain-damaged.' You read this
and you say, 'What? You're designing the
language, and now your telling us that
something is still wrong?'

~·.·.atfi'
;in'd,Ii1~lntegQr ..' '. .'unF'9~';l.~~.,:~
,,!c:(¢9~~.t;p~~+t.~~.·:~.Q.r~'?';~.;;.,;..(!;,.!i!
'i'.~$J.W~il·~s·thelr'a·e6u~Sr~g.b~&i'.'"
."~n~l~~"fQr~~'oe~lgnb¥.9,9ntrA, .•.·.

';;A~$I~~m~~i.riie"'Pt-.tttt&l:I$:E;~~I'~~;!
!(rQn4Irrt~~yslng a $peclal assigrimeqt $f '.''..,. r~9r~'X'rirl~r~~
!.}~~m~tto assignto an known obJ~ptfromone·of!l:Il'lkl'lo.••••n4y~~,tpertll~.ps'un
~e9I!1P~QIt.hasJustbeenloaded from apataba.se).lf:the·Wp~;.~¥sterTlprohl he;
assignment. the targetobjeot becomes void; if IUS allo'oYS9Ie,a~prmala$signroent
takElsplaoe.Thls system fulfils the same purPQse ssTul'boPasoal's Ty-l:l$Qf.
. tunetlonand C++'sproposedptrcast () and ref'c~st 0 'safe cast' exten-'fJlons.· '. . -'. - . . .

!,G9,,"lclty. Generic classesare.'typeless'.container classe$ wtlichare assigned
.',~o/p~ when Instartlated. F9r el<ample, one could build an all-purposa list type,
thenYsa It to create a Ustof numbers; a list of windows, a list of addresses. Please
.~~.~.Meyer's commentslnthe text for an explanation of conS/rained generlcity.
)_.".

A~h~kll1~-.Eiff~Ul!la Vf?,rystrongly typed language. In partiqular, alltype~
~";~lrV9Ich}v1~¥e~d8,$crlbes~s.'a ~ordidback-alley deal') Is forbidden.

There are comments like this on many other
aspects. There are comments like, 'This is
available, but don't useit.' I don't think that
is good language design. If you produce a
language design book, you should be
proud of it and there shouldn't be any dark
corners. I think I can say that about Eiffel.
I'm not saying that Eiffe! is perfect, but I
cannot point to any construct in Eiffel for
which there is a comment of the form 'Don't
use it'.

Returning to your question: I don't think
that asseltions should be separate from the
language. Assertions are absolutely essen-
tial to object-oriented design. This was
something which was mentioned inObject-
oriented Software Construction, but clearly

not enough. I've written more about it sinl:e then. It's this whole
idea of Design By Contract. That, for me, gave the theory behind
object-oriented software constnlction. It's not just that you have
classes and inheritance and so on; it's that you build software in
such a w~IYthat it's made of pieces that communicate with each
other on a basis of well-defined obligation••and benefits.

I have tried to expiain Design by Contract in a ch~lpterwith that
title, part of a c;ollectivcbook that has Just appeared, AdvancL'!I' in
Object-Oriented Software Engineering. It's this idea that software
is a combination of various pieces which communicate with each
other not on the basis of pre-defined assumptions, hllt on the basis
of proper and precise definitions of what each one of them expects
from the other and must provide. This is what justifies the idea of
preconditions, postconditions and invariants, ilnd I don't know
how to teach object-oriented programming without them. When J
teach object-oriented techniques, I spend anywhere between one
third and one half of the presentation on assertions - especially in
connection with inheritance. I don't think anyone loanunderstand
inheritance properly without introducing assertions.

I also don't think you can understand the notion of class without
the idea of the invariant, which expresses the integrity constraints
on a certain data type independently of how the data type 1<;
Implemented. This Is where I disagree with BJame Stroustrup. I
don't think assertions are 'fairlyuseful'.

Be assertive
Do you think people who use Ettfel always use the asser-
tion mechanism?

People who use Eiffelwell use them a lot. Even people who don't
include assertions in their own software, because they haven't yet
understood the power of this notion, benefit from them anyway.

The practice of software development in Eiffellspretty much based
on libraries. When you switch to Eiffel, you don't necessarily see
as the major change a change in language or in method; what you
see is away to startworking at aWgher level of abstraction by using
libraries. Now, these basic libraries are fullyloaded with assertions.
The documentation is essentially based on assertions, and their use
is based mainly on assertions too. So even If somebody is only
starting to work with Eiffel,and has is not yet putting assertions in
his own software, he is going to benefit from them anyway.

It is true, however, as you Implicitly suggested, that some people
who start with Eiffel- especially if they come from something else,
like C++- don't necessarily put assertions to their full use. But they
usually start using them after some experience.

Another point about assertions: when reading your book
Object-OrientedSoftware Construction 1found tbat it was not
always obvious to me, as a programmer rather thtm a
mathematician, why particular assertions were applied -
particularly in the case afthe invariant. Is It just that 1am
not smart enough, or have you found tbls to be a more
general difficulty?

In my experience, and the experience of people working with me
- both developers in our company and users - it is tfile that you
don't necessarily get the invariant right first time. As you start
improving a class, adding things to it, and understanding it better,
this process is pretty much embodied in writing the invariant and
improving the invariant. The more you understand what a class is

BHENT· Communlca1lon1 and Telemetly COn8UIIInIa

BEWARE THE PIRATE'S PATCH
You sell your software. You
don't give It away. It needs the
kind of protection that only {
a top quality
UN·PATCHABLE
dongle affords, but
you don't want to
pay the Earth for it,
and you want to be
sure that YOU'llnot
be making mistakes
In incorporating It Into
your code.

The MAXPRO system Is for you. There are
microprocessor based units at reallsltc prices which take
care of complete .EXE flies without access to source code.
Set stop dales, tamper detection and many other facilities
on a menu-driven front end. Encrypt in just moments.
MAXPRO even copes with such as Clipper, QB & Clarion
flies with Inlernal overlays. Neat trick.

For additional Information
contact us at
Brent ColDDluniQuons
Unit 2
Dragon Ind\l8tftal Estate
Harrogate HG1 SDN
Tel: (0423) 566972
Fax: (0423) 501442

II CIRCLE NO. 94011

SOFTWARE SECURITY
MODULES

Hardware devices (dongles) are a recognised and
proven means of protecting software from
unauthorised use and piracy.

Our range of devices offers some of the most robust
and troublefree solutions around. All units are
cascadeable and can be uniquely coded for each
customer. Features Include:

• PC/non-PC. •. Software drivers supplied.
• RS2321Printer. •. Minimum 2year
• Internal memory guarantee.
(some units) •. From £14 to £50

C1L Control Telemetry of London
11 Canfield Place, London NW 3BT
Tel: 071 328 1155 Fax: 071 3289149

II CIRCLE NO. 921 .II

about, the more you are able [0 express
invariantclausesandi when you add a cla~~c;e
toyour inY-doant,then you gJin something in
understanding what the class ~'iabout.

ThL'idoesn't neccssilrily come right the first
time - but proper software design doesn't
come right first time anyway. TIle process
of improving the software and the process
of writing and improving the invariant go
together. It's not surprising that these things
should aprear a little difficult at first - soft-
ware design tsdifficult. But Invariants, and
assertions in general, enable you to get to
the heart of the matter.

Garbage
CatJwe talk about memory ",anage-
ment. Why do you use garbage coUec-
tion, instead of 'manual' heap
managing systems?

In the manual for Eiffel-S,which is the SIG
implementation for DOS, they have a very
nice analogy. They say something like: 'An
object-oriented program without a garbage
coHector is like a pressure cooker without
a valve. You don't know exactly when it is
going to happen, but you know that sooner
or later it is going to explode',

An object-oriented program generally cre-
ates a lot of objects. A lot of them are going
to become unreachable. You can of course
make sure that not too much of that hap-
pens - haVinga garbage collector is not an
excuse forgenerating tons and tons ofgarb-
age, you still have to be careful - but if you
start managing these things yourself it's
dangerous and it's tedious.

It's dangerous because you always run the
risk of 'freeing' (in the sense of C's
free ()) an object which in fact is still
needed. This l'i the source of some of the
worst bugs that existin C programming.It'sa
very serious problem, because the conse-
quence of the error is usually quite remote
from the source of the error. Usuallywhen
you think you can free an objectand you are
wrong - there is stillsome referencepointing
to it-you use that referencemuch later inthe
progl"'J,m,so thilttracingback the cause of the
error maybe extremely diffia.lit.

As for the tedious part: if yOll do your
stllmge management manually, you end up
polluting your code. If you want to do
manual reclamation, you have towrite a lot
of recursive free procedures. As long as
you have the kind of complicated data
structures that are possible in object-
oriented programming, it's not enough to
free one object; yOll have to follow the

pointers. You end up being the garbage
collector yourself. Programmers have bet-
ter things to do with their time.

WI'-~ffl#!l!!NI~D~

The Ellis and
Stroustrup book
is the most
damaging

criticism of c++
that I know

It seems to me that If you don't have a
garbage collector, you lose many of the
major benefits of object-orientation. Per-
sonally I wouldn't write an object-oriented
program in an environment in which I
didn't have a garbage collector.

Cprogrammers are bostlle to garbage
coUectors because of tbe time over-
bead...

That's just because they don't know about
modern garbage collection technology. In
version 3 of our implementation, we esti-
mate that the overhead of garbage collec-
tion - dle difference between running a
program without garbage collection or run-
ning it with garbage collection - is about
20%.But this is not the real overhead, be-
cause ifyou didn't have the garbage collec-
tor, you would have some overhead due to
manual reclamation anyway.With version 3
- version 2.3was not as good in this respect -
we do not expect anybody to run an Eiffel
programwithout garbagecollectionenabled.
Butyou can stillswitch it off ifyou want.

On the street
How many implementations of Eiffel
are tbere at the moment?

Among the ones I know about are; there's
of course ours - Interactive Software Engin-
eering's implementation ofEiffelj there's an
implementation by SIGComputers of Ger-
many, which is essentially a DOS and OS/2
implementation, although there's also a
UNIXversion of it; there's a company in the
US called Power Solutions that is about to
release its implementation; and there's a
GNUversion that is in the making but is not
released yet. Oh, and I hear that there's
some people called Nexnix Ltd in Brighton
who are developing a compiler.

By theway, d1eISEimplementation willsup-
port DOS/Windowssome time later thisyear.

What are tbe main features of version
3 of tbe Eiffel language and environ-
ment?

Probably the most important thing is this
'melting ice' idea, which is an attempt to get
the best of both the interpreted world and
the compiled world. If you look at why
some people use environments such as
LISP :.ystems and Smalltalk systems, once
you have removed the superfluous argu-
ments, it boils down to just one, practical,
serious idea. With an incremental environ-
ment such as Smalltalk - I want to say 'In-
terpretative environment' but that's not
quite accurate - you can get a very quick
turn-around.

Until now, with statically typed, com-
piled, object-oriented languages you
have had to go through a fairly classical
edit-compile-link-execute cycle. This
means in a big system, even for a small
change, there's a fairly long wait. This is
an issue we have been grappling with for
a long time, because there is absolutely
no philosophical reason why you should
have to choose between a quick turn-
around and static typing.

Static typing is good. It gives you safety,
because you are able to catch errors much
earlier, and it gives you efficiency, be-
cause it make it possible to generate
much, much better code. And there's no
reason why these goals should be incom-
patible with a very, very quick turn-
around.

This is essentially what this melting-ice
technology of Version 3 achieves. You can
have extremely quick re-execution after a
change, even though you retain the static
typing. The idea is very simple. Whatever
you change inside the normal development
cycle is going to be interpreted, so that it's
extremely fast to see the results of a change
after you have made it. The interpreter
doesn't have any significant negative effect
on performance, because typically you're
dealing with a big system and after a change
only a small part of it will have been af-
fected, so most of it will still be compiled.
We think that this is a major advantage that
will make all the difference in the world.

Another aspect to version 3 is the presence
of the library called EiffelVision.This is a
graphical user-interface library supporting
various tool kits - to start with Open Look
and Motif - with complete source code
compatibility. So people can write the best

B
Bertrand Meyer

into user interfan: applications in terms of
high-level concepts like menus, windows
and so on, without being concerned with
the details of Motifetc. 111enthey can just
port their application to various gmphical
platforms without making source changes.
Eventually this will also apply to Windows
and Presentation Manager.

AL'iO important in version 3 is the ,lValla-
hility of the standardised relational data-
base interface. This follows the same
principles as our GUI library; that is to say
you prognlm in terms of the SQLmodel and
then you go to some other RDBMSwithout
source code changes. This isvery important
for big projects in commercial areas. Most
big relational systems currently use C, so it
is very important to be able to lIccess tradi-
tional data quite easily and to map objects
onto relational data.

Looking forward
A recent .EXE Survey showed that
about half our readers used C or c++
as their primary development lan-
guage, about 10%use Pasca~ and no
other single language collected more
than about 5%. There were no Eiffel

users. What is your predicttonfor the
result of next year's survey?

Letme consider two years from now, when
Eiffel will have had a chanc'e to make an
impact on the DOSworld. I think thlltpeople
coming from languages like Pascal and
Modula-2 will very naturally migrate to Eif-
fel. They'll find themselves on safe ground
with strong typing, general software engin-
eering concerns and so on. I would see
them migrating en masse to Eiffel.

I think a proportion of people programm-
ing in Cwill migrate to EiITe!as well. Those
are the people who, again, have seriolls
software engineering concerns, and want
to be able to guarantee the quality of the
code they produce. I don't know how much
that is - it's a certain pmportion of people
writing in C today.

All for people using C++ today; they're
still to ,I large extent the avant garde, the
early pioneers. I would say that once these
people have understood the benefits of
object orientation ~lnd the limitations of
C++, they will look for something more
serious. I don't think there is much com-
petition to Eiffel.

So without making any too wild predic-
tions, I think that, if you repeat your slIr-
vey two years from now, from 15%to 250/0
will be using Eiffel.

I think that five years from now, no-one
will be using C++.

This despite tbe fact that 80%of our
C users are looking at C++?

That's all they have heard about. To a
certain extent you cannot expect any-
thing else. Suppose somebody has been
raised to the Stalinist creed, who has
only ever read political literature favour-
ing Marxism and Leninsm. If you ask
him, 'What is the next thing?', he's not
going to answer 'Democracy and the
free market.'

Many tbanks toDrMeyerfortaking tbe time
to give this interview. To find out more
about Etffel, you should contact Caroline
Browne at Applied Logic Distribution (081
7802324).

Now you can incorporate the industry
standard TCP lIP protocol suite in your
system designs WIth FUSION Developer's Kit.

Designed for the OEM and systems
integrator, FUSION Developer's Kit
provides the full Tep lIP protocol suite
mcluding TELNET (virtual terininal), FTP
(File Transfer Protocol), and R-Commands.

FUSION Developer's Kit also has a flexible
C-source code architecture, making it
processor and operating system
mdependent.

Currently used in hundreds of process
control, embedded systems, and end-user
designs, FUSION Developer's Kit from
Network Research comes with full support
and porting services.

____if.Network Research
II CIRCLE NO. 923 II

