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Past decades

Software engineering principles have spread widely
Programming methodology:

 Structured programming
 Object-oriented programming
 Design patterns
 Typed languages

Extension of type system, e.g. security
(Java, .NET), void safety (Spec#, Eiffel)

 More dynamism
 Better tools, IDEs
 Integration with databases and the Web
 Influence of functional programming ideas
 Multithreading is the default, but unsatisfactory
 Security has changed the picture

x.f (…)
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Goal of this talk

1. Sketch the picture for a decade from now

2. Present work being done at ETH and Eiffel Software:
 Language advances
 Integrated verification
 Concurrency
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Three forms of  software development

 1. Casual

 2. Professional

 3. Critical

Simple Web sites, spreadsheets, …

Enterprise computing, simulation, “soft” real-time, …

Transportation, critical infrastructure, “hard” real-time, …



6

How the rest of the world views software

Source: C. Gerber, Stryker Navigation 

ISO 14971 (medical devices): 

Risk = f (LIKELIHOOD, Severity)

Software
(IEC 62304):

LIKELIHOOD = 
100%
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The standard excuse against progress in SE

“Programmers will 
never accept this!”

(Image removed)
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Three developments that sketch the future

Spark (Praxis, UK)
 Verification technology integral part of development
 No commit without proof
 Downside: 1960-s level language

Spec# (MSR, Redmond)
 Proof assistant
 Verification integrated into software development

Daikon (Michael Ernst, now U. Washington)
 Infer assertions from programs
 Dynamic tool, based on catalog of patterns
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Ten years from now

1. We will still be using O-O languages
2. Professional programming will be far more rigorous
3. Verification will be integrated in the development process
4. Every program will have a Web interface
5. Concurrency will be ubiquitous
6. More reliance on objective assessment
7. Software engineering: not just process but technology

Professional programmers:
 Higher level of qualification
 Apply verification techniques routinely
 Not mathematics PhDs
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Verified software

(See Tony Hoare’s “Grand Challenge”)

Two traditional approaches:

 Correctness by construction

 Verify a posteriori

Develop

Verify
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Verification: our vision
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The verification assistant
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Verified software: the obstacles

1. Intellectual and managerial resistance
2. Poor integration of formal verification tools in normal 

development cycle and tools
3. Diversity and incompatibility of verification 

technologies
4. Split between tests and proofs
5. Remaining technical problems for modern programming 

language constructs:
 Frame problem
 Aliasing
 Function objects (closures, agents, delegates…)
 Exception handling
 Devising loop invariants
 Full specifications
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Our language context: Eiffel

Modern object-oriented language

Constant refinement and evolution since 1985
ISO standard (2006, to be revised 2010), ECMA committee

Industrial usage, very large mission-critical applications
Applicable to teaching
(introductory programming at ETH since 2003)

Community large enough to matter, small enough to permit 
evolution
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Eiffel: Features that help

Design by Contract mechanisms:  built-in
Combination of genericity and inheritance
Multiple inheritance
Agents (high-level function objects)
Uniform access (no difference between functions & 
attributes)
Sophisticated type system (covariance)
Void safety: no more null pointer dereferencing
Concurrency extension: SCOOP

Void safety: B. Meyer, E., Stapf, A. Kogtenkov, Avoid a Void,  see 
http://bertrandmeyer.com/tag/void-safety/ (to appear in Hoare 
anniv. volume, 2010; earlier version of mechanism in ECOOP 2005)

x.f (…)
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Our research context: EVE

Eiffel Verification Environment

Open source

Developed at ETH, others’  contributions welcome

6-month release schedule, following EiffelStudio
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The verification assistant

Tools run automatically in background
Automatic verification using proofs and tests
Boogie, jStar, AutoTest

Automatic inference of code and contracts
AutoFix, CITADEL, gin-pink

Present useful information to user
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The verification assistant: example use

Programmer writes code
class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

This slide and the next four are by Julian Tschannen
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Example use

Proof tool finds error & 
extracts counter-example

Postcondition does not hold if:

{balance = 0, amount = 1}

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end
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Postcondition does not hold if:

{balance = 0, amount = 1}

Example use

Test tool takes counter-
example & generates 
failing test case

The program will fail if you run this:

test_1
do

create account
account.deposit (1)

end

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end
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Postcondition does not hold if:

{balance = 0, amount = 1}

Example use

AutoFix takes failing 
test case and generates 
a possible correction

Maybe you should change this to:

deposit (amount: INTEGER)
do

balance := balance + amount
end

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end
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Postcondition does not hold if:

{balance = 0, amount = 1}

Maybe you should change it to:

deposit (amount: INTEGER)
do

balance := balance + amount
end

Example use

AutoTest & proof tool 
check fix to obtain a 
verified correction

Trying the fix now…
test_1 passes
deposit verified

The proposed fix works!
Do you want to use it?

+

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end
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Example language advance: void safety

Goal: remove null-pointer (void-reference) derefencing
Fully operational since 2009

Basic idea: x.f (…) valid only if
x is “attached”
1. Can be proved attached

from context, e.g.
if x /= Void then x.f (…)  end (if x is a local variable)

2. Use an attached type:
x: PERSON -- As opposed to: x: detachable PERSON)
(major problem: initialization of attached variables)

3. Use “object test”:

if attached exp as x then x.f (…) ; …  end

x.f (…)

See reference on slide 15
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AutoTest

Automatic testing:
 Automatic test case generation

 Automated testing process

 Test extraction from failure

 Regression testing

Initially research projects; main results now integrated in 
the standard EiffelStudio delivery.

Andreas Leitner, Ilinca Ciupa, Manuel 
Oriol,  Alexander Pretschner, Yi Wei, 

Arno Fiva, Emmanuel Stapf
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“Automated testing”

What can be automated:
 Test suite execution
 Resilience (continue test process after failure)
 Regression testing
 Test case generation
 Test result verification (oracles)
 Test extraction from failures
 Test case minimization

B. Meyer et al., Programs that test 
themselves, IEEE Computer, Sept. 
2009, http://tinyurl.com/ybbsn2r
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Test case 
execution

AutoTest: programs that test themselves

OracleInput 
generation

??
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Contracts for testing

Contracts provide the right basis:
 A fault is a discrepancy between intent and reality
 Contracts describe intent

A contract violation always signals a fault:
 Precondition: in client
 Postcondition or invariant: in routine (supplier)

In EiffelStudio: select compilation option for contract 
monitoring at level of class, cluster or system.
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Oracle  

Input filter  

Contract-based random

Precondition &
class invariant

Routine

Postcondition &
class invariant

testing

deposit  (v: INTEGER )
require

v > 0
do

balance  := balance  - v
ensure

balance   = old balance  + v
end

invariant -- At class level
balance >= 0
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AutoTest: Test generation

 Input: set of classes + testing time
 Generates instances, calls routines with automatically

selected arguments
 Oracles are contracts:

 Direct precondition violation: skip
 Postcondition/invariant violation: bingo!

 Value selection: Random+ (use special values such as 0, 
+/-1, max and min)

 Add manual tests if desired
 Any test (manual or automated) that fails becomes  part 

of the test suite

Ilinca Ciupa
Andreas Leitner

Yi Wei
Manuel Oriol…
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Minimization: an example

create {STRING} v1
v1.wipe_out
v1.append_character (’c’)
v1.append_double (2.45)
create {STRING} v2
v1.append_string (v2)
v2.fill (’g’, 254343)
...
create {ACCOUNT} v3.make (v2)
v3.deposit (15)
v3.deposit (100)
v3.deposit (-8901)
...

class
ACCOUNT

create
make

feature
make (n : STRING)

require
n /= Void

do
name := n
balance := 0

ensure
name = n
balance = 0

end

name : STRING
balance : INTEGER
deposit (v : INTEGER)

do
balance := balance + v

ensure
balance =

old balance + v
end

invariant
name /= Void
balance >= 0

end
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AutoTest (in EiffelStudio)

Demo
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Random testing: example bug found

*SET
⊆*
⊇*

+
SET1

+
SET2

⊆+ ⊇+

Test:
s1, s2 : SET
s2 ⊆ s1

*: Deferred
+: Effective

Bernd Schoeller
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36

Test generation results

Library Total Failed Total Failed

EiffelBase 40,000 3% 2000 6%

Gobo Math 1500 1% 140 6%

TESTS ROUTINES
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Test generation results and strategy

fc (t)

Class STRINGDefine good assessment criteria:
 Number of faults found
 Time to find all faults

Time

Experimental law:

fc (t ) = a  – b / t 

Ilinca Ciupa, Yi Wei
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Who finds what faults?

On a small EiffelBase subset,
we compared:
 AutoTest
 Manual testing (students) (3 classes, 2 with bugs 

seeded)
 User reports from the field

AutoTest: 62% specification, 38% implementation
User reports: 36% specification, 64% implementation

I.Ciupa, A. Leitner,
M.Oriol, A. Pretschner
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Test extraction

Record every failed execution, make it reproducible by 
retaining objects

Turn it into a regression test

Andreas Leitner, Arno Fiva



40

Specified but unimplemented routine
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Running the system and entering input

(erroneous)

20
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Postcondition 
violated

The violated clause:

balance > old balance

Error caught at run time as contract violation
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This has become a test case

43
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CITADEL: Daikon for Eiffel

How good are automatically inferred contracts?

How do programmer-written and inferred contracts 
compare?

How can contract inference be used to improve the 
quality of contracts in a language with Design by Contract 
support?

Nadia Polikarpova
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This slide and the next 4 are by Nadia Polikarpova
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Observations

Daikon is good at inferring simple contract clauses: 97%
of relevant inferred clauses have the form

 is a variable    
 is a variable or a constant
 is one of

Reasons for inexpressible programmer-written contract
clauses:
 54% due to calling a function with one argument 
 19% due to implications

yx R
x
y
R ≥>≤<≠= ,,,,,
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Observations

What kinds of clauses do programmers miss?
 Implementation properties
 Frame properties
 Theorems
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Results

 A high proportion of inferred contract clauses are 
correct (90%) and relevant (64%) with the large test 
suite (50 calls per method)

 Contract inference doesn’t find all programmer-
written contracts (only 59%)

 Programmers don’t write all inferred contracts (25%)
 These two types of contracts also differ qualitatively
 Contract inference can strengthen programmer-

written postconditions and invariants 
 Contract inference can be used to find missing 

precondition clauses
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AutoFix: programs that fix themselves

Passing & failing 
test cases

Difference

Fix to minimize 
the difference

• 16 faults fixed out of 42

• Some of the fixes are exactly
the same as those proposed 
by professional programmers

Yi Wei, Yu Pei
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AutoFix demo: background

Cursor

before after
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AutoFix

Demo
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Proof technology

Currently: Boogie (Microsoft Research,  based on Z3)

Others possible in the future

Bernd Schoeller, Martin Nordio, Julian Tschannen
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Verifying agents (closures, delegates, function objects)

Implemented an automatic verifier for a subset of Eiffel
 Same architecture as Spec# verifier
 Translation to Boogie
 Boogie verifier

Methodology for function objects
 Using abstract specifications

Julian Tschannen, Martin Nordio, Cristiano Calcagno, 
Bertrand Meyer, Peter Müller, TOOLS 2010

Martin Nordio, Julian Tschannen
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Agent verification: demo

Demo context:
Formatting procedure applies variable formatting 

operation, which may be e.g. align_left, align_right

Precondition of formatting operation is unknown in 
general, but known for specific operations, e.g.

align_left
require

not left_aligned
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Verifying agents

Can prove iterations, e.g.

my_integer_list.do_if
(agent is_negative, agent replace_by_square)
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Verifying exceptions

“Exception invariants” to handle rescue-retry mechanism

Martin Nordio
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Harnessing pointers

Approach 1: use separation logic

Extension of current separation logic techniques to O-O 
constructs (based on work of Matthew Parkinson and 
others)

Stephan van Staden, Cristiano Calcagno
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Harnessing pointers: the alias calculus

Calculus for determining the alias relations that may exist at 
various points in a program
Simple, about a dozen rules

Experimental implementation
Appears efficient and scalable
Not yet included in EiffelStudio or EVE

May be an important step towards solving the frame problem

Bertrand Meyer: Towards a Theory and Calculus of Aliasing, Journal of 
Object Technology (JOT), vol. 9, no. 2, March-April 2010, pp. 37-74, 

http://www.jot.fm/issues/issue_2010_03/column5/
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Towards full specifications

Eiffel contracts (also JML, Spec#...) are typically incomplete
(unlike those of fully formal approaches such as Z)

Our solution:
Use models

A model is a mathematical interpretation of the structures

Model library: MML (Mathematical Model Library)
Fully applicative (no side effects, attributes, assignment etc.)
But: expressed in Eiffel (preserving executability)

Nadia Polikarpova

This slide and the next five are by Nadia Polikarpova
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LIST: contracts
class LIST [G]

...
count: INTEGER

-- Number of elements
i_th (i: INTEGER): G

-- Value at position `i’
require

1 <= i and i <= count
index: INTEGER

-- Cursor position
put_right (v: G)

-- Insert v to the right of cursor
require

index <= count 
ensure

i_th (index + 1) = v
count = old count + 1
index = old index
-- Old elements are still there

end
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-- Theorem

LIST: model-based contracts (1)

note
model: sequence, index

class LIST [G]
...
sequence: MML_SEQUENCE [G]

-- Sequence of elements
index: INTEGER

-- Cursor position
put_right (v: G)

-- Insert v to the right of cursor.
require

index <= sequence.count
ensure

sequence = old (sequence.front (index).extended (x) 
+ sequence.tail (index + 1))

index = old index
end

...
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LIST: model-based contracts (2)

...
i_th (i: INTEGER): G

-- Value at position i.
require

1 <= i and i <= count
ensure

Result = sequence [i]
end

duplicate (n: INTEGER): LIST [G]
-- A copy of at most n elements starting at cursor position

require
n >= 0

ensure
Result.sequence = 

sequence.interval (index, index + n - 1)
Result.index = 0

end
end
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Model-based contracts: applications

On 7 of the most popular EiffelBase classes
Testing  found 4 “functional” faults by violation of 

model-based contracts

EiffelBase: a data structures library with strong contracts
 Provides arrays, lists, sets, maps, stacks, queues
 95% of features have complete contracts
 Aim is to prove the code against these contracts 
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Model-based contracts: future work

Contract more libraries and applications
Testing: more experiments
Proofs: model-based contracts need special support from 
the proof tool
Perform a user study:
 Do programmers understand model-based contracts?
 Can they write model-based contracts?
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Loop invariant inference

Basic idea:
 Start from postcondition

 Infer loop invariant

Carlo Furia
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Strategies for getting invariants

Constant relaxation
Replace constant by variable
Example: array maximum, …

Uncoupling
Replace variable appearing twice by two variables
Examples: square root, partition, …

Variable aging
Use expression representing previous value
Example: array maximum (other implementation)

Term dropping
Remove part of precondition
Example: partition
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Computing a square root
Goal: Result ∗ Result = aResult^ 2 = a i.e.Result^ 2 = a
Strategy: uncoupling; rewrite as

x ∗ y = a    and x = yInvariant Exit condition

from

until loopExit

“Establish invariant”

end

“ Bring x closer to y, maintaining invariant”

; Result := x

x  := 1 y  := a
-- Establish invariant:

x  = y

“Bring x closer to y ”
-- Bring x closer to y, maintaining invariant:

“Restore invariant”

-- Bring x closer to y :
x  := (x + y ) / 2

-- Restore invariant:
y  := a / x

;

i.e.
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The Assertion Inference Paradox

Correctness is consistency of implementation to 
specification

The paradox: if the specification is inferred 
from the implementation, what do we prove?
Possible retorts:
 The paradox only arises for correctness proofs; there 

are other applications, e.g. reverse-engineering legacy 
software

 The result may be presented to a programmer for 
assessment

 Inferred specification may be inconsistent

In this work, we only infer loop invariants
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The border line

Programmer writes postcondition

Tool infers loop invariant



71

Implementation: gin-pink

gin-pink:Generation of INvariants by
PostcondItioN weaKening

 written in Eiffel
 command-line tool

− Boogie in / Boogie out
 works with any high-level language that can be 

translated to Boogie
 available for download from 

http://se.inf.ethz.ch/people/furia/

This slide and the next three are by Carlo Furia
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Experiments on literature examples
Program candididates invariants relevant invariants Time (s)

array 
part. (v1)

38 9 3 93

array 
part. (v2)

45 2 2 205

array  
reversal

134 4 2 529

array  
rev. (ann)

134 6 4 516

bubble 
sort

14 2 2 65

coincid. 
count

1351 1 1 4304

dutch 
flag

42 10 2 117

dutch 
flag (ann)

42 12 4 122
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Experiments on literature examples 
Program candididates invariants relevant invariants Time (s)

longest common 
sub. (ann)

508 22 2 4842

majority count 23 5 2 62

max of array 
(v1)

13 1 1 30

max of arr. (v2) 7 1 1 16

plateau 31 6 3 666

seq. search (v1) 45 9 5 120

seq. search (v2) 24 6 6 58
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Experiments on literature examples

Program candididates invariants relevant invariants Time (s)

shortest path 23 2 2 53

stack search 102 3 3 300

sum of array 13 1 1 44

topolog. sort 21 3 2 101

welfare crook 20 2 2 (100%) 586
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SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Minimal extension to object-oriented programming (one 
keyword)

Assumption: programmers want to retain the ability to 
reason simply about programs (“reasonability” )

Piotr Nienaltowski et al.
e.g. Formal Asp. Comp, 2009

Recent contributions: Sebastian Nanz, 
Benjamin Morandi, Scott West
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Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }
___________________________________

{Prer’ }  x.r (a) {Postr’ }

Priming represents 
actual-formal 

argument substitution

Only n proofs if n exported routines!
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Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step

do
think ; eat (left, right)

end

eat (l, r : separate FORK)
-- Eat, having grabbed l and r.

do … end
end
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An application: hexapod robot

Centralised control

Distributed control

Balance sensing

Load sensing

Sebastian Nanz, Benjamin Morandi, 
Ganesh Ramanathan, Scott West

This slide and next eight by above authors
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Hexapod Locomotion

The hexapod should maintain the static stability by keeping 
the center of gravity within the bounds of the grounded legs.
Dragging of feet should be avoided.
Three degrees of freedom per leg, load sensor on feet, 
forward and rear angle sensing
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The Tripod Gait

Alternating protraction and retraction of tripod pairs
 Begin protraction only if partner legs are down
 Depress legs only if partner legs have retracted
 Begin retraction when partner legs are up



82

The Hexapod Robot

The control program (SCOOP based or other  variants) 
runs on the PC and transmits command to the on-board 
servo controller. 
It also polls the inputs to obtain sensor information.

Commands

Read sensor
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Implementation: Sequential Program
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Implementation: Multi-Threaded Program
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Hexapod implementation: SCOOP
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Implementation: SCOOP
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Demonstration
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Teaching

Introductory programming (1st year)

Software architecture (2nd year)

Advanced courses:
 Software verification
 Distributed and Outsourced Software Engineering
 Concepts of Concurrent Computation
 Eiffel in depth
 Java & C# in depth
 Software engineering seminar
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Introductory programming teaching
Teaching first-year programming is a politically sensitive 
area, as you must contend not only with your students but 
also with an intimidating second audience — colleagues who 
teach in subsequent semesters….
Academics who teach introductory programming are placed 
under enormous pressure by colleagues.
As surely as farmers complain about the weather, 
computing academics will complain about students’ 
programming abilities.

Raymond Lister: After the Gold Rush: Toward 
Sustainable Scholarship in Computing,
10th Conf. on Australasian computing education, 2008
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Concepts or skills?

Skills supported
by concepts
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Principles of our course

 Fully object-oriented from the start, using Eiffel

Outside-in (“Inverted Curriculum”)

 Gentle introduction to formal techniques:
Design by Contract
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Outside-in

The course gives students a large amount of software, 
right from the beginning

TRAFFIC library

 They start out as consumers

 They end up as producers!

“Progressive opening of the black boxes”

TRAFFIC is graphical, multimedia, extendible, and fun!

Michela Pedroni 

Michela Pedroni & numerous student 
projects; about 150,000 lines of Eiffel
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The first “program”

class PREVIEW inherit
TOURISM

feature
explore

-- Prepare & animate route
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input
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The first “program”

class PREVIEW inherit
TOURISM

feature
explore

-- Prepare & animate route
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input
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Textbook

touch.ethz.ch
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DOSE course

Distributed and Outsourced Software Engineering
(since 2004)

Goal: Prepare students to the new, globalized world of 
software development
Some topics:
 Requirements in a distributed project
 Quality assurance
 Project models, CMMI
 Agile methods
 Managing relationships with suppliers, contract 

negotiation
 …

Peter Kolb, Martin Nordio, Roman Mitin
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Project: involving other universities

2009

 Politecnico di Milano (Italy)
 Hanoi University of Technology (Vietnam)
 Odessa National Polytechnic (Ukraine)
 University of Nizhny Novgorod (Russia)
 University of Zurich
 University of Debrecen (Hungary)\
 ETH
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The main lessons students learn

The importance of APIs & 
specifications
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Ten years from now

1. We will still be using O-O languages
2. Professional programming will be far more rigorous
3. Verification will be integrated in the development process
4. Every program will have a Web interface
5. Concurrency will be ubiquitous
6. More reliance on objective assessment
7. Software engineering: not just process but technology
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The verification assistant

Arbiter
Programmer

Suggestions

Boogie
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Sep. logic
prover AutoFix
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generation
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execution

Test results

Interactive
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For more

http://se.ethz.ch

http://www.eiffel.com

Forthcoming conferences:

 TOOLS EUROPE (Malaga, June)
 SEAFOOD (distributed development), Saint 

Petersburg, June
 LASER summer school (Sept. 2010, Elba): 

experimental software engineering, see 
http://se.ethz.ch/laser

http://se.ethz.ch/�
http://www.eiffel.com/�
http://se.ethz.ch/laser�
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