
1

How you will be programming
ten years from now

Bertrand Meyer
Professor of Software Engineering, ETH Zurich
Chief Architect, Eiffel Software, Santa Barbara

ACM Symposium on Applied Computing
Sierre, Switzerland, 23 March 2010

2

Note on these slides

The slides are a superset (about 10% more) of those
presented at the conference.

The original extensively uses animations, so some of the
slides will be hard to understand in the PDF version. If you
would like to get a copy of the original PowerPoint slides
with animation, please contact the author.

© Bertrand Meyer, and other authors as listed for some slides, 2010

3

Past decades

Software engineering principles have spread widely
Programming methodology:

 Structured programming
 Object-oriented programming
 Design patterns
 Typed languages

Extension of type system, e.g. security
(Java, .NET), void safety (Spec#, Eiffel)

 More dynamism
 Better tools, IDEs
 Integration with databases and the Web
 Influence of functional programming ideas
 Multithreading is the default, but unsatisfactory
 Security has changed the picture

x.f (…)

4

Goal of this talk

1. Sketch the picture for a decade from now

2. Present work being done at ETH and Eiffel Software:
 Language advances
 Integrated verification
 Concurrency

5

Three forms of software development

 1. Casual

 2. Professional

 3. Critical

Simple Web sites, spreadsheets, …

Enterprise computing, simulation, “soft” real-time, …

Transportation, critical infrastructure, “hard” real-time, …

6

How the rest of the world views software

Source: C. Gerber, Stryker Navigation

ISO 14971 (medical devices):

Risk = f (LIKELIHOOD, Severity)

Software
(IEC 62304):

LIKELIHOOD =
100%

7

The standard excuse against progress in SE

“Programmers will
never accept this!”

(Image removed)

8

Three developments that sketch the future

Spark (Praxis, UK)
 Verification technology integral part of development
 No commit without proof
 Downside: 1960-s level language

Spec# (MSR, Redmond)
 Proof assistant
 Verification integrated into software development

Daikon (Michael Ernst, now U. Washington)
 Infer assertions from programs
 Dynamic tool, based on catalog of patterns

9

Ten years from now

1. We will still be using O-O languages
2. Professional programming will be far more rigorous
3. Verification will be integrated in the development process
4. Every program will have a Web interface
5. Concurrency will be ubiquitous
6. More reliance on objective assessment
7. Software engineering: not just process but technology

Professional programmers:
 Higher level of qualification
 Apply verification techniques routinely
 Not mathematics PhDs

10

Verified software

(See Tony Hoare’s “Grand Challenge”)

Two traditional approaches:

 Correctness by construction

 Verify a posteriori

Develop

Verify

11

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

12

The verification assistant

Arbiter
Programmer

Suggestions

Boogie
prover

Sep. logic
prover AutoFix

AutoTest

Test case
generation

EVE (IDE)

Suggestions

Test
execution

Test results

Interactive
prover

13

Verified software: the obstacles

1. Intellectual and managerial resistance
2. Poor integration of formal verification tools in normal

development cycle and tools
3. Diversity and incompatibility of verification

technologies
4. Split between tests and proofs
5. Remaining technical problems for modern programming

language constructs:
 Frame problem
 Aliasing
 Function objects (closures, agents, delegates…)
 Exception handling
 Devising loop invariants
 Full specifications

14

Our language context: Eiffel

Modern object-oriented language

Constant refinement and evolution since 1985
ISO standard (2006, to be revised 2010), ECMA committee

Industrial usage, very large mission-critical applications
Applicable to teaching
(introductory programming at ETH since 2003)

Community large enough to matter, small enough to permit
evolution

15

Eiffel: Features that help

Design by Contract mechanisms: built-in
Combination of genericity and inheritance
Multiple inheritance
Agents (high-level function objects)
Uniform access (no difference between functions &
attributes)
Sophisticated type system (covariance)
Void safety: no more null pointer dereferencing
Concurrency extension: SCOOP

Void safety: B. Meyer, E., Stapf, A. Kogtenkov, Avoid a Void, see
http://bertrandmeyer.com/tag/void-safety/ (to appear in Hoare
anniv. volume, 2010; earlier version of mechanism in ECOOP 2005)

x.f (…)

16

Our research context: EVE

Eiffel Verification Environment

Open source

Developed at ETH, others’ contributions welcome

6-month release schedule, following EiffelStudio

17

The verification assistant

Tools run automatically in background
Automatic verification using proofs and tests
Boogie, jStar, AutoTest

Automatic inference of code and contracts
AutoFix, CITADEL, gin-pink

Present useful information to user

18

The verification assistant

Arbiter
Programmer

Suggestions

Boogie
prover

Sep. logic
prover AutoFix

AutoTest

Test case
generation

EVE (IDE)

Suggestions

Test
execution

Test results

Interactive
prover

19

The verification assistant: example use

Programmer writes code
class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

This slide and the next four are by Julian Tschannen

20

Example use

Proof tool finds error &
extracts counter-example

Postcondition does not hold if:

{balance = 0, amount = 1}

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

21

Postcondition does not hold if:

{balance = 0, amount = 1}

Example use

Test tool takes counter-
example & generates
failing test case

The program will fail if you run this:

test_1
do

create account
account.deposit (1)

end

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

22

Postcondition does not hold if:

{balance = 0, amount = 1}

Example use

AutoFix takes failing
test case and generates
a possible correction

Maybe you should change this to:

deposit (amount: INTEGER)
do

balance := balance + amount
end

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

23

Postcondition does not hold if:

{balance = 0, amount = 1}

Maybe you should change it to:

deposit (amount: INTEGER)
do

balance := balance + amount
end

Example use

AutoTest & proof tool
check fix to obtain a
verified correction

Trying the fix now…
test_1 passes
deposit verified

The proposed fix works!
Do you want to use it?

+

class ACCOUNT feature
balance: INTEGER
deposit (amount: INTEGER)
require

amount > 0
do

balance := balance — amount
ensure

balance = old balance + amount
end

end

24

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

25

Example language advance: void safety

Goal: remove null-pointer (void-reference) derefencing
Fully operational since 2009

Basic idea: x.f (…) valid only if
x is “attached”
1. Can be proved attached

from context, e.g.
if x /= Void then x.f (…) end (if x is a local variable)

2. Use an attached type:
x: PERSON -- As opposed to: x: detachable PERSON)
(major problem: initialization of attached variables)

3. Use “object test”:

if attached exp as x then x.f (…) ; … end

x.f (…)

See reference on slide 15

26

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

27

AutoTest

Automatic testing:
 Automatic test case generation

 Automated testing process

 Test extraction from failure

 Regression testing

Initially research projects; main results now integrated in
the standard EiffelStudio delivery.

Andreas Leitner, Ilinca Ciupa, Manuel
Oriol, Alexander Pretschner, Yi Wei,

Arno Fiva, Emmanuel Stapf

28

“Automated testing”

What can be automated:
 Test suite execution
 Resilience (continue test process after failure)
 Regression testing
 Test case generation
 Test result verification (oracles)
 Test extraction from failures
 Test case minimization

B. Meyer et al., Programs that test
themselves, IEEE Computer, Sept.
2009, http://tinyurl.com/ybbsn2r

29

Test case
execution

AutoTest: programs that test themselves

OracleInput
generation

??

3030

Contracts for testing

Contracts provide the right basis:
 A fault is a discrepancy between intent and reality
 Contracts describe intent

A contract violation always signals a fault:
 Precondition: in client
 Postcondition or invariant: in routine (supplier)

In EiffelStudio: select compilation option for contract
monitoring at level of class, cluster or system.

31

Oracle

Input filter

Contract-based random

Precondition &
class invariant

Routine

Postcondition &
class invariant

testing

deposit (v: INTEGER)
require

v > 0
do

balance := balance - v
ensure

balance = old balance + v
end

invariant -- At class level
balance >= 0

32

AutoTest: Test generation

 Input: set of classes + testing time
 Generates instances, calls routines with automatically

selected arguments
 Oracles are contracts:

 Direct precondition violation: skip
 Postcondition/invariant violation: bingo!

 Value selection: Random+ (use special values such as 0,
+/-1, max and min)

 Add manual tests if desired
 Any test (manual or automated) that fails becomes part

of the test suite

Ilinca Ciupa
Andreas Leitner

Yi Wei
Manuel Oriol…

33

Minimization: an example

create {STRING} v1
v1.wipe_out
v1.append_character (’c’)
v1.append_double (2.45)
create {STRING} v2
v1.append_string (v2)
v2.fill (’g’, 254343)
...
create {ACCOUNT} v3.make (v2)
v3.deposit (15)
v3.deposit (100)
v3.deposit (-8901)
...

class
ACCOUNT

create
make

feature
make (n : STRING)

require
n /= Void

do
name := n
balance := 0

ensure
name = n
balance = 0

end

name : STRING
balance : INTEGER
deposit (v : INTEGER)

do
balance := balance + v

ensure
balance =

old balance + v
end

invariant
name /= Void
balance >= 0

end

34

AutoTest (in EiffelStudio)

Demo

35

Random testing: example bug found

*SET
⊆*
⊇*

+
SET1

+
SET2

⊆+ ⊇+

Test:
s1, s2 : SET
s2 ⊆ s1

*: Deferred
+: Effective

Bernd Schoeller

36

36

Test generation results

Library Total Failed Total Failed

EiffelBase 40,000 3% 2000 6%

Gobo Math 1500 1% 140 6%

TESTS ROUTINES

37

Test generation results and strategy

fc (t)

Class STRINGDefine good assessment criteria:
 Number of faults found
 Time to find all faults

Time

Experimental law:

fc (t) = a – b / t

Ilinca Ciupa, Yi Wei

38

Who finds what faults?

On a small EiffelBase subset,
we compared:
 AutoTest
 Manual testing (students) (3 classes, 2 with bugs

seeded)
 User reports from the field

AutoTest: 62% specification, 38% implementation
User reports: 36% specification, 64% implementation

I.Ciupa, A. Leitner,
M.Oriol, A. Pretschner

39

Test extraction

Record every failed execution, make it reproducible by
retaining objects

Turn it into a regression test

Andreas Leitner, Arno Fiva

40

Specified but unimplemented routine

41

Running the system and entering input

(erroneous)

20

42

Postcondition
violated

The violated clause:

balance > old balance

Error caught at run time as contract violation

43

This has become a test case

43

44

CITADEL: Daikon for Eiffel

How good are automatically inferred contracts?

How do programmer-written and inferred contracts
compare?

How can contract inference be used to improve the
quality of contracts in a language with Design by Contract
support?

Nadia Polikarpova

45

Classification

Programmer-
written

Inferred

no
t

ex
pr

es
si

bl
e

no
t

in
fe

rr
ed

im
pl

ie
d

by
 in

fe
rr

ed

both

im
plied by program

m
er-written

new

uninteresting

incorrect

This slide and the next 4 are by Nadia Polikarpova

46

Observations

Daikon is good at inferring simple contract clauses: 97%
of relevant inferred clauses have the form

 is a variable
 is a variable or a constant
 is one of

Reasons for inexpressible programmer-written contract
clauses:
 54% due to calling a function with one argument
 19% due to implications

yx R
x
y
R ≥>≤<≠= ,,,,,

47

Observations

What kinds of clauses do programmers miss?
 Implementation properties
 Frame properties
 Theorems

48

Results

 A high proportion of inferred contract clauses are
correct (90%) and relevant (64%) with the large test
suite (50 calls per method)

 Contract inference doesn’t find all programmer-
written contracts (only 59%)

 Programmers don’t write all inferred contracts (25%)
 These two types of contracts also differ qualitatively
 Contract inference can strengthen programmer-

written postconditions and invariants
 Contract inference can be used to find missing

precondition clauses

49

AutoFix: programs that fix themselves

Passing & failing
test cases

Difference

Fix to minimize
the difference

• 16 faults fixed out of 42

• Some of the fixes are exactly
the same as those proposed
by professional programmers

Yi Wei, Yu Pei

50

AutoFix demo: background

Cursor

before after

51

AutoFix

Demo

52

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

53

Proof technology

Currently: Boogie (Microsoft Research, based on Z3)

Others possible in the future

Bernd Schoeller, Martin Nordio, Julian Tschannen

54

Verifying agents (closures, delegates, function objects)

Implemented an automatic verifier for a subset of Eiffel
 Same architecture as Spec# verifier
 Translation to Boogie
 Boogie verifier

Methodology for function objects
 Using abstract specifications

Julian Tschannen, Martin Nordio, Cristiano Calcagno,
Bertrand Meyer, Peter Müller, TOOLS 2010

Martin Nordio, Julian Tschannen

55

Agent verification: demo

Demo context:
Formatting procedure applies variable formatting

operation, which may be e.g. align_left, align_right

Precondition of formatting operation is unknown in
general, but known for specific operations, e.g.

align_left
require

not left_aligned

56

Verifying agents

Can prove iterations, e.g.

my_integer_list.do_if
(agent is_negative, agent replace_by_square)

57

Verifying exceptions

“Exception invariants” to handle rescue-retry mechanism

Martin Nordio

58

Harnessing pointers

Approach 1: use separation logic

Extension of current separation logic techniques to O-O
constructs (based on work of Matthew Parkinson and
others)

Stephan van Staden, Cristiano Calcagno

59

Harnessing pointers: the alias calculus

Calculus for determining the alias relations that may exist at
various points in a program
Simple, about a dozen rules

Experimental implementation
Appears efficient and scalable
Not yet included in EiffelStudio or EVE

May be an important step towards solving the frame problem

Bertrand Meyer: Towards a Theory and Calculus of Aliasing, Journal of
Object Technology (JOT), vol. 9, no. 2, March-April 2010, pp. 37-74,

http://www.jot.fm/issues/issue_2010_03/column5/

60

Towards full specifications

Eiffel contracts (also JML, Spec#...) are typically incomplete
(unlike those of fully formal approaches such as Z)

Our solution:
Use models

A model is a mathematical interpretation of the structures

Model library: MML (Mathematical Model Library)
Fully applicative (no side effects, attributes, assignment etc.)
But: expressed in Eiffel (preserving executability)

Nadia Polikarpova

This slide and the next five are by Nadia Polikarpova

61

LIST: contracts
class LIST [G]

...
count: INTEGER

-- Number of elements
i_th (i: INTEGER): G

-- Value at position `i’
require

1 <= i and i <= count
index: INTEGER

-- Cursor position
put_right (v: G)

-- Insert v to the right of cursor
require

index <= count
ensure

i_th (index + 1) = v
count = old count + 1
index = old index
-- Old elements are still there

end

62

-- Theorem

LIST: model-based contracts (1)

note
model: sequence, index

class LIST [G]
...
sequence: MML_SEQUENCE [G]

-- Sequence of elements
index: INTEGER

-- Cursor position
put_right (v: G)

-- Insert v to the right of cursor.
require

index <= sequence.count
ensure

sequence = old (sequence.front (index).extended (x)
+ sequence.tail (index + 1))

index = old index
end

...

63

LIST: model-based contracts (2)

...
i_th (i: INTEGER): G

-- Value at position i.
require

1 <= i and i <= count
ensure

Result = sequence [i]
end

duplicate (n: INTEGER): LIST [G]
-- A copy of at most n elements starting at cursor position

require
n >= 0

ensure
Result.sequence =

sequence.interval (index, index + n - 1)
Result.index = 0

end
end

64

Model-based contracts: applications

On 7 of the most popular EiffelBase classes
Testing found 4 “functional” faults by violation of

model-based contracts

EiffelBase: a data structures library with strong contracts
 Provides arrays, lists, sets, maps, stacks, queues
 95% of features have complete contracts
 Aim is to prove the code against these contracts

65

Model-based contracts: future work

Contract more libraries and applications
Testing: more experiments
Proofs: model-based contracts need special support from
the proof tool
Perform a user study:
 Do programmers understand model-based contracts?
 Can they write model-based contracts?

66

Loop invariant inference

Basic idea:
 Start from postcondition

 Infer loop invariant

Carlo Furia

67

Strategies for getting invariants

Constant relaxation
Replace constant by variable
Example: array maximum, …

Uncoupling
Replace variable appearing twice by two variables
Examples: square root, partition, …

Variable aging
Use expression representing previous value
Example: array maximum (other implementation)

Term dropping
Remove part of precondition
Example: partition

68

Computing a square root
Goal: Result ∗ Result = aResult^ 2 = a i.e.Result^ 2 = a
Strategy: uncoupling; rewrite as

x ∗ y = a and x = yInvariant Exit condition

from

until loopExit

“Establish invariant”

end

“ Bring x closer to y, maintaining invariant”

; Result := x

x := 1 y := a
-- Establish invariant:

x = y

“Bring x closer to y ”
-- Bring x closer to y, maintaining invariant:

“Restore invariant”

-- Bring x closer to y :
x := (x + y) / 2

-- Restore invariant:
y := a / x

;

i.e.

69

The Assertion Inference Paradox

Correctness is consistency of implementation to
specification

The paradox: if the specification is inferred
from the implementation, what do we prove?
Possible retorts:
 The paradox only arises for correctness proofs; there

are other applications, e.g. reverse-engineering legacy
software

 The result may be presented to a programmer for
assessment

 Inferred specification may be inconsistent

In this work, we only infer loop invariants

70

The border line

Programmer writes postcondition

Tool infers loop invariant

71

Implementation: gin-pink

gin-pink:Generation of INvariants by
PostcondItioN weaKening

 written in Eiffel
 command-line tool

− Boogie in / Boogie out
 works with any high-level language that can be

translated to Boogie
 available for download from

http://se.inf.ethz.ch/people/furia/

This slide and the next three are by Carlo Furia

72

Experiments on literature examples
Program candididates invariants relevant invariants Time (s)

array
part. (v1)

38 9 3 93

array
part. (v2)

45 2 2 205

array
reversal

134 4 2 529

array
rev. (ann)

134 6 4 516

bubble
sort

14 2 2 65

coincid.
count

1351 1 1 4304

dutch
flag

42 10 2 117

dutch
flag (ann)

42 12 4 122

73

Experiments on literature examples
Program candididates invariants relevant invariants Time (s)

longest common
sub. (ann)

508 22 2 4842

majority count 23 5 2 62

max of array
(v1)

13 1 1 30

max of arr. (v2) 7 1 1 16

plateau 31 6 3 666

seq. search (v1) 45 9 5 120

seq. search (v2) 24 6 6 58

74

Experiments on literature examples

Program candididates invariants relevant invariants Time (s)

shortest path 23 2 2 53

stack search 102 3 3 300

sum of array 13 1 1 44

topolog. sort 21 3 2 101

welfare crook 20 2 2 (100%) 586

75

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

76

SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Minimal extension to object-oriented programming (one
keyword)

Assumption: programmers want to retain the ability to
reason simply about programs (“reasonability”)

Piotr Nienaltowski et al.
e.g. Formal Asp. Comp, 2009

Recent contributions: Sebastian Nanz,
Benjamin Morandi, Scott West

77

Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }

{Prer’ } x.r (a) {Postr’ }

Priming represents
actual-formal

argument substitution

Only n proofs if n exported routines!

78

Dining philosophers

class PHILOSOPHER inherit
PROCESS

rename
setup as getup

redefine step end

feature {BUTLER}
step

do
think ; eat (left, right)

end

eat (l, r : separate FORK)
-- Eat, having grabbed l and r.

do … end
end

79

An application: hexapod robot

Centralised control

Distributed control

Balance sensing

Load sensing

Sebastian Nanz, Benjamin Morandi,
Ganesh Ramanathan, Scott West

This slide and next eight by above authors

80

Hexapod Locomotion

The hexapod should maintain the static stability by keeping
the center of gravity within the bounds of the grounded legs.
Dragging of feet should be avoided.
Three degrees of freedom per leg, load sensor on feet,
forward and rear angle sensing

81

The Tripod Gait

Alternating protraction and retraction of tripod pairs
 Begin protraction only if partner legs are down
 Depress legs only if partner legs have retracted
 Begin retraction when partner legs are up

82

The Hexapod Robot

The control program (SCOOP based or other variants)
runs on the PC and transmits command to the on-board
servo controller.
It also polls the inputs to obtain sensor information.

Commands

Read sensor

83

Implementation: Sequential Program

84

Implementation: Multi-Threaded Program

85

Hexapod implementation: SCOOP

86

Implementation: SCOOP

87

Demonstration

88

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

89

Teaching

Introductory programming (1st year)

Software architecture (2nd year)

Advanced courses:
 Software verification
 Distributed and Outsourced Software Engineering
 Concepts of Concurrent Computation
 Eiffel in depth
 Java & C# in depth
 Software engineering seminar

90

Introductory programming teaching
Teaching first-year programming is a politically sensitive
area, as you must contend not only with your students but
also with an intimidating second audience — colleagues who
teach in subsequent semesters….
Academics who teach introductory programming are placed
under enormous pressure by colleagues.
As surely as farmers complain about the weather,
computing academics will complain about students’
programming abilities.

Raymond Lister: After the Gold Rush: Toward
Sustainable Scholarship in Computing,
10th Conf. on Australasian computing education, 2008

91

Concepts or skills?

Skills supported
by concepts

92

Principles of our course

 Fully object-oriented from the start, using Eiffel

Outside-in (“Inverted Curriculum”)

 Gentle introduction to formal techniques:
Design by Contract

93

Outside-in

The course gives students a large amount of software,
right from the beginning

TRAFFIC library

 They start out as consumers

 They end up as producers!

“Progressive opening of the black boxes”

TRAFFIC is graphical, multimedia, extendible, and fun!

Michela Pedroni

Michela Pedroni & numerous student
projects; about 150,000 lines of Eiffel

94

The first “program”

class PREVIEW inherit
TOURISM

feature
explore

-- Prepare & animate route
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input

95

The first “program”

class PREVIEW inherit
TOURISM

feature
explore

-- Prepare & animate route
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input

96

97

Textbook

touch.ethz.ch

98

DOSE course

Distributed and Outsourced Software Engineering
(since 2004)

Goal: Prepare students to the new, globalized world of
software development
Some topics:
 Requirements in a distributed project
 Quality assurance
 Project models, CMMI
 Agile methods
 Managing relationships with suppliers, contract

negotiation
 …

Peter Kolb, Martin Nordio, Roman Mitin

99

Project: involving other universities

2009

 Politecnico di Milano (Italy)
 Hanoi University of Technology (Vietnam)
 Odessa National Polytechnic (Ukraine)
 University of Nizhny Novgorod (Russia)
 University of Zurich
 University of Debrecen (Hungary)\
 ETH

101

The main lessons students learn

The importance of APIs &
specifications

102

Verification: our vision

Trusted
Components

Proofs
Tests

Architecture
Concurrency

Teaching

Language

103

Ten years from now

1. We will still be using O-O languages
2. Professional programming will be far more rigorous
3. Verification will be integrated in the development process
4. Every program will have a Web interface
5. Concurrency will be ubiquitous
6. More reliance on objective assessment
7. Software engineering: not just process but technology

104

The verification assistant

Arbiter
Programmer

Suggestions

Boogie
prover

Sep. logic
prover AutoFix

AutoTest

Test case
generation

EVE (IDE)

Suggestion
s

Test
execution

Test results

Interactive
prover

105

For more

http://se.ethz.ch

http://www.eiffel.com

Forthcoming conferences:

 TOOLS EUROPE (Malaga, June)
 SEAFOOD (distributed development), Saint

Petersburg, June
 LASER summer school (Sept. 2010, Elba):

experimental software engineering, see
http://se.ethz.ch/laser

http://se.ethz.ch/�
http://www.eiffel.com/�
http://se.ethz.ch/laser�

	How you will be programming�ten years from now
	Note on these slides
	Past decades
	Goal of this talk
	Three forms of software development
	How the rest of the world views software
	The standard excuse against progress in SE
	Three developments that sketch the future
	Ten years from now
	Verified software
	Verification: our vision
	The verification assistant
	Verified software: the obstacles
	Our language context: Eiffel
	Eiffel: Features that help
	Our research context: EVE
	The verification assistant
	The verification assistant
	The verification assistant: example use
	Example use
	Example use
	Example use
	Example use
	Verification: our vision
	Example language advance: void safety
	Verification: our vision
	AutoTest
	“Automated testing”
	AutoTest: programs that test themselves
	Contracts for testing
	Contract-based random
	AutoTest: Test generation
	Minimization: an example
	AutoTest (in EiffelStudio)
	Random testing: example bug found
	Test generation results
	Test generation results and strategy
	Who finds what faults?
	Test extraction
	Specified but unimplemented routine
	Running the system and entering input
	Slide Number 42
	This has become a test case
	CITADEL: Daikon for Eiffel
	Classification
	Observations
	Observations
	Results
	AutoFix: programs that fix themselves
	AutoFix demo: background
	AutoFix
	Verification: our vision
	Proof technology
	Verifying agents (closures, delegates, function objects)
	Agent verification: demo
	Verifying agents
	Verifying exceptions
	Harnessing pointers
	Harnessing pointers: the alias calculus
	Towards full specifications
	LIST: contracts
	LIST: model-based contracts (1)
	LIST: model-based contracts (2)
	Model-based contracts: applications
	Model-based contracts: future work
	Loop invariant inference
	Strategies for getting invariants
	Computing a square root
	The Assertion Inference Paradox
	The border line
	Implementation: gin-pink
	Experiments on literature examples
	Experiments on literature examples
	Experiments on literature examples
	Verification: our vision
	SCOOP mechanism
	Reasoning about objects: sequential
	Dining philosophers
	An application: hexapod robot
	Hexapod Locomotion
	The Tripod Gait
	The Hexapod Robot
	Implementation: Sequential Program
	Implementation: Multi-Threaded Program
	Hexapod implementation: SCOOP
	Implementation: SCOOP
	Demonstration
	Verification: our vision
	Teaching
	Introductory programming teaching
	Concepts or skills?
	Principles of our course
	Outside-in
	The first “program”
	The first “program”
	Slide Number 96
	Textbook
	DOSE course
	Project: involving other universities
	The main lessons students learn
	Verification: our vision
	Ten years from now
	The verification assistant
	For more

