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Third law of exception handling: There are only two ways a 
routine may react as a result of an exception (that is to say, after a 
first strategy to fulfil its contract has not worked): 

• Put back the objects in a stable state, and make a new 
attempt, using the same or another strategy (resumption.) 

• Put back the objects in a stable state, give up on the 
contract, and report failure to the caller by triggering an 
exception (organized panic.) 

In both cases the routine must first "clean up its act" by putting back any 
objects involved into a stable state. We know of course what this means in practice: 
restoring the invariant. This obligation, studied in more detail below, accounts for 
the "organized" part of the panic in the second case. 

In the resumption case, the alternative strategy may in fact be the same as the 
original one. A typical example is the handling of an exception caused by some 
malfunction that may be temporary. For example, one of the Eiffel routines shown 
below attempts to transfer a messager over an unreliable communication line. If the 
transmission fails, the routine just tries again. 

Translated into Ada terms, the above two laws imply a strict rule (violated by 
the square root example): 

Ada exception rule: The execution of every exception handler 
should end by either retrying the unit or executing a raise 
instruction. 

Even if this rule is observed, however, the Ada exception mechanism is still 
too general. In particular, it yields a style that seems to require exit instructions and, 
in at least some resumption cases, gotos (as seen in the example of 1.8.7 below). 
This is all the more worrying that exceptions are already jumps themselves, and, as 
noted, fairly wild ones at that. 

1.8 A DISCIPLINED EXCEPTION HANDLING MECHANISM 

The preceding discussion shows the need for a more disciplined exception 
mechanism. It forms the rationale for the mechanism present in Eiffel. 

Before presenting the mechanism, it is useful to repeat the methodological 
limitations on its use. Whenever possible, special cases should be handled by 
standard control structures - not exceptions. The exception handling facilities are 
meant for cases that elude these normal structures. The preceding discussion left 
only three such cases: operations whose applicability can only be determined by 
attempting them, hence risking failure; very frequent operations with infrequent 
failures; and fault-tolerant programming. 
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1.8.1 Causes for exceptions 

In the execution of an Eiffel system, an exception may occur as a result of any of 
the following events: 

In practice there are four types of exception: 

1 • An explicit assertion is found to be violated: a precondition on routine entry, 
a postcondition on routine exit, an invariant at either time. 

2 • A called routine fails. 

3 • The hardware or operating system sends a signal as a result of some 
abnonnal event such as numerical error, input-output error, user interrupt or 
memory exhaustion. 

4 • An attempt is made to apply a routine to a non-existing object: in x.1 ( ... ), 
the fundamental operation in the Eiffel model of object-oriented 
programming, x is a a void reference, not attached to any object. 

The exception handling mechanism, which follows direcdy from the contract 
theory, is very simple: two language keywords, rescue and retry, plus a class in the 
basic library, EXCEPTIONS, which is not part of the language proper and not 
indispensable for simple uses. 

1.8.2 Rescue and retry 

What happens when one of the above events causes an exception in the 
corresponding routine? The answer is a direct application of the above laws of 
exception handling. Only two responses make sense: resumption and organized 
panic. 

To specify how a routine should behave after an exception, the routine's author 
may include a rescue clause, which expresses the alternate behavior of the routine. 
The rescue clause is triggered whenever an exception occurs during the execution of 
the routine. Execution is interrupted and the rescue clause is executed. The rescue 
clause contains one or more instructions; retry may be among them. Execution of 
the rescue clause terminates in one of the following two ways: 

• If the rescue clause terminates without executing a retry, then the routine 
fails; it will report failure to its caller by triggering a new exception. 

• If the rescue clause executes retry, then the body of the routine (do clause) 
is executed again. 

This mechanism satisfies the three laws. When a routine detects that it is 
unable to fulfil its contract because an exception has arisen, it is physically 
prevented from hiding this fact from its client: it may only return either after one or 
more retry that lead to success, or by exiting from the rescue clause and signaling 
failure. 
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The rescue clause is similar to clauses that occur in human contracts, to allow 
for exceptional, unplanned circumstances. 

In general, only a few routines in a system will have an explicit rescue clause. 
By default, any other routine is considered to have a rescue clause with a null 
effect, so that any exception occurring during an execution of the routine will cause 
failure. We will see in 1.8.5 that it is possible to override this default rescue 
behavior by a class-specific behavior .. 

This is all there is to the language mechanism. It is complemented by a class 
EXCEPTIONS, available in the basic Eiffel Class library, which provides some 
facilities for dealing with exceptions. 

1.8.3 Examples 

The integer reading routine seen above in Ada may be written in Biffel as follows: 

gecinteger Jrom_user: INTEGER is 
-- Read an integer (allow user up to five attempts) 

local 
failures: INTEGER 

do 
Result := getint 

rescue 

failures := failures + 1; 

if failures < 5 then 

end; 

message ("Input must be an integer. Please enter again."); 
retry 

end -- geCinteger Jrom_user 

Result, in a function, is the predefined entity whose final value will be returned 
by the function; failures is declared as a local variable, initialized to zero at the 
beginning of any execution of the routine. (The initialization rules are part of the 
language definition.) After five attempts, the function fails, as is always the case 
when a rescue clause terminates other than by a retry. 

Another example is adapted from one by Booch [2]. We want to compute the 
inverse of a real number x, or 0 if the inverse cannot be computed because x is too 
small. We assume that in this case an attempt to divide 1 by x would trigger a 
predefined (hardware or operating system) exception. Even though the specification 
seems simple, it is typical of problems that are almost impossible to solve without 
some form of exception handling mechanism. Here we may use a simple scheme: 
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quasCinverse (x: REAL): REAL is 
-- l/x if representable, 0 otherwise 

local 

do 
division_attempted: BOOLEAN 

if not division_attempted then 
Result := l/x 

else 
Result := 0 

end 
rescue 

division_attempted := true; 
retry 

end -- quasCinverse 

Boolean local variables such as division_attempted are initialized to false on routine 
entry. 

1.8.4 Discriminating between exceptions 

The above rescue clauses do not attempt to discriminate between possible 
exceptions. For an exception other than arithmetic overflow (in the last example, if 
the interactive user types BREAK during the execution of the routine) you will 
probably want the routine to fail. 

The EXCEPTIONS class from the Basic Eiffel Library provides a mechanism 
for such discrimination: it contains an attribute exception which yields the code of 
the last exception, and predefined constants such as NumericaLerror and 
Violated_assertion which yield the codes of predefined exceptions. To guarantee that 
the retry will only be invoked in the proper case, quasCinverse should be in a class 
inheriting from EXCEPTIONS and have its rescue clause rewritten as: 

rescue 
if exception = NumericaLerror then 

division_attempted := true; 
retry 

end 

This way, any exception whose code is not NumericaLerror will cause the routine 
to fail rather than return O. The other examples may be similarly adapted. 

Class EXCEPTIONS provides a number of other facilities for fine-tuning the 
exception mechanism. For example, in addition to the integer code exception, string 
attributes yield a character code for the last exception, a plain English explanation 
(which may be used to display a message), the names of the class and routine in 
which the exception occurred, the object identification etc. The class also introduces 
a procedure raise allowing programmers to trigger exceptions explicitly. 
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These facilities should be used with care - especially those which make it 
possible to ascertain the nature of an exception. As pointed out by Hoare in his 
Turing lecture [4]: 

The danger of exception handling is that an uexception" is too often a 
symptom of some entirely unrelated problem. For example, a floating­
point overflow may be the result of an incorrect pointer used some 43 
seconds before; and that was due perhaps to programmer oversight, 
transient hardware fault, or even a subtle compiler bug. 

In most cases, the rescue clause should treat all exceptions alike; if it does test 
for individual types of exceptions, this should be because it is specifically meant for 
one of them, as with NumericaLerror in the above example. It should not try to 
discriminate between many different cases; more generally, a rescue clause should 
be extremely simple and short. Otherwise the danger exists for the exception 
mechanism to follow the Ada path and be increasingly used as a substitute for 
standard control structures. 

1.8.5 Rules on rescue clauses 

The rescue clause of a routine describes a standby algorithm that is to be used when 
the primary algorithm, given in the body, fails to achieve the contract. The rescue 
clause does not, however, attempt to perform the original contract, as expressed by 
the postcondition; for if there was a way to achieve this contract in the presence of 
an exception, it should be included in the body. 

All the rescue clause can do is to "patch things up" (for example, in a data 
base transaction, to undo any hannful effect of the aborted operation) and either fail 
or retry. In the former case, the rescue clause is still subject to a contract, albeit a 
reduced one. This contract does not require the rescue clause to achieve the 
routine's postcondition: again, this is not its job. Even though the routine call has 
failed, however, it is essential that the failed rescue clause should leave the 
corresponding object in a clean state. In Biffel we know exactly what a "clean 
state" means for an object: it is a state in which the class invariant is satisfied. 

We may deduce from these observations the contract which is imposed on any 
branch of rescue clause that does not end with a retry: 

• Because an exception may occur at any step during execution of the routine, 
the branch may not make any assumption on the state in which it will be 
triggered. In other words, it must admit the weakest possible condition, 
true, as precondition . 

• Because the branch of the rescue clause must leave the object in a "clean" 
state, it must admit the class invariant as postcondition. 

This yields the formal requirement on such rescue clause branches: 

{true} rescuer {lNV} 
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This rule should be contrasted with rule /2/ (pages 14) on routine bodies (do 
clauses). A routine body must ensure not only the invariant but also the routine's 
postcondition as defined by the ensure clause. 

You may think of the body as the cook in a restaurant, and of the rescue clause 
as the fire brigade. The cook must serve meals and make sure that the restaurant 
does not burn. The fire brigade must return the restaurant to a non-burning state, 
but is not additionally required to serve meals to customers. The input 
requirements, however, are harder on the fire brigade: whereas the cook may 
expect to find the restaurant initially non-burning (invariant) and open 
(precondition), there is no such guarantee for the fire brigade, which may be 
called at any time, as reflected by the use of true as its precondition. 

It was noted above that by default an absent rescue clause is equivalent to one 
with a null effect. But developers need the ability to override this default rescue 
behavior, since it does not guarantee that the invariant will be restored after a 
failure. The exact rule follows from this observation: a routine without an explicit 
rescue clause is considered to have an implicit clause of the fonn 

rescue 
default_rescue 

where defaulcrescue is a routine of class ANY, the "universal" library class which, 
as guaranteed by the language rules, is an ancestor of every possible class. The 
version of defaulcrescue in ANY has a null body; but it is possible to redefine 
defauicrescue in any class C to prescribe some non-null behavior. Then if a 
failure occurs in the execution of a routine r of C, and r has no explicit rescue 
clause, the mechanism will trigger the specific defauicrescue. 

Clearly, a class author who suspects that exceptions may occur in routines of 
the class, and who does not want to write individual rescue clauses for each of 
them, should redefine defauicrescue so as to ensure the invariant. In simple cases 
one of the creation procedures of the class may provide a ready-made 
implementation for defauicrescue since (as seen in /1/, page 14) the contract of a 
creation procedure is precisely to ensure the invariant. 

A branch of the rescue clause that ends with retry is subject to the same 
requirements as a branch leading to failure, but, in addition to the invariant, must 
also re-establish the routine precondition before resumption. 

1.8.6 Checking the checker 

The requirements on rescue clauses are reflected in the policy implemented by the 
Biffel environment at run-time: to avoid infinite loops, the checking of assertions is 
turned off during the execution of rescue code (as it is during the evaluation of an 
assertion, which may contain calls to boolean functions). This is yet another reason 
to make sure that any rescue code (as well as any non-purely-applicative component 
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of an assertion) must be of unimpeachable quality. If it fails, there is no guarantee 
as to what will happen. 

This requirement is not unrealistic. First, any checking method must assume 
that the checking mechanism itself is safe; when you allow auditors into a bank:, or 
inspectors into a nuclear plant, you have no choice but to hope that they will not 
introduce anomalies. Second, rescue clauses and assertions should in practice be 
kept clean and simple, enabling easy manual verification that they will indeed work 
in all cases. 

1.8.7 N-version programming 

Our last example of exception handling will be one of resumption. Taken from 
Saib [12], it is an elementary case of "n-version programming" [1] - a method 
which seeks to attain better software reliability by using methods adapted from 
hardware engineering, relying on fault-tolerance and redundancy. Two or more 
teams are asked to implement an identically specified module; each version serves 
as standby if the other fails. 

Regardless of one's judgment about this approach to software reliability, the 
example provides a good programming exercise. For purposes of comparison let us 
keep Saib's model, which keeps alternating between the two versions as long as one 
fails, although in practice it would seem more reasonable to stop if both attempts 
fail. Here is the Ada version: 

procedure try is begin 
<<Start» -- Start is a label 
loop 

end 
end main; 

begin 
algorithm_I; 
exit; -- Algorithm 1 was successful 

exception 

end 

when others => 
begin 

algorithm_2; 
exit; -- Algorithm 2 was successful 

exception 
when others => goto Start; 

end 

The control structure necessary to achieve the result looks rather contorted: two 
blocks, two exception handlers, two exits from within a loop, and one goto which 
traverses two exception handlers, two blocks and a loop! This would be enough to 
bring "structured programming" back into fashion. A much simpler structure does 
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not appear possible with the Ada exception mechanism. Compare the Eiffel version 
(which is easy to adapt so as to try each algorithm at most once): 

try is 
local 

even: BOOLEAN 
do 

if even then algorithm_2 else algorithm_l end 
rescue 

even := not even; retry 
end -- main 

The choice between the two versions is left to the reader's taste. 

1.9 INHERITANCE AND DYNAMIC BINDING 

The contracting paradigm has led us to a new approach to exception handling -
which appears to be safer than existing approaches, while leading to simpler 
solutions in many cases. 

Another application of this paradigm, which is particularly important for 
object-oriented design and programming, is to shed a new light on the concept of 
inheritance. The notions of redefinition and dynamic binding, in particular, are much 
better understood if we are able to associate a contract with every routine. 

The results of the following discussion have played a central role in the design 
of Eiffel's inheritance mechanism. 

1.9.1 Redefinition 

Inheritance is a key aspect of object-oriented programming, permitting the definition 
of new classes from previously defined ones. A class that inherits from another has 
all the features (routines and attributes) defined in that class, plus its own. 

An important technique associated with inheritance is redefinition. Often, 
when inheriting from a class, it is necessary to provide new implementations of 
some features. For example, an heir to the TABLE class sketched at the beginning 
of this paper could include a new definition of put, as follows: 



class OTHER_TABLE [T] inherit 
TABLE 

redefine put end 
feature 

put (element: n is 
do 
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... New implementation of the insertion operation ... 
end; -- put 

... Other features ... 
end -- class OTHER_TABLE 

Redefinition is fundamental for reusability because in practice we can seldom 
afford to reuse a software component exactly as it stands: most of the time, some 
local adjustments are needed. Inheritance with redefinition provides the appropriate 
degree of flexibility, which has no equivalent in other approaches. 

Redefinition is complemented by two other extremely powerful techniques: 
polymorphism and dynamic binding. 

Polymorphism allows assignments of the form 

ta := o_ta 

where ta is of type TABLE and o_ta of type OTHER_TABLE. In Eiffel, which is a 
strictly typed language, this is possible only because OTHER_TABLE is a 
descendant (direct or indirect heir) of TABLE: the reverse assignment would be 
prohibited. 

When a call of the form t •. put ( ... ) is executed, dynamic binding means that 
the operation to be executed depends on the run-time form of ta: the TABLE 
version will be executed by default, but the OTHER_TABLE version will be 
executed after the above assignment. 

Dynamic binding is a fundamental technique of object-oriented programming 
and has a number of far-reaching implications for software reusability and 
extendibility. But it also carries potential risks: what is to prevent a descendant 
class (direct or indirect heir) from redefining put into a procedure that actually 
performs a deletion or some other operation? 

1.9.2 Honest subcontracting 

Without assertions and the notion of contracting, inheritance and dynamic binding 
may indeed be misunderstood and misused. Contracting provides the appropriate 
view: inheritance with redefinition means subcontracting. When, as a contractor, 
you are charged with a certain task, you do not always carry it out yourself; 
sometimes it it more convenient to turn to somebody else who can do the job better 
or cheaper or both. 
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This is exactly what happens with redefinition and dynamic binding: a routine 
subcontracts its actual implementation to a version better adapted to the run-time 
fonn of its target. For example, the general table insertion routine will subcontract 
to a different algorithm for tables of the OTHER_TABLE form. Presumably, this 
algorithm will be more efficient than the default in this case; this accounts for the 
"cheaper" . 

But an honest subcontractor is not permitted to do just anything he likes. If the 
original contractor is to fulfil the client's request properly, the subcontractor must be 
bound by the same contract. The subcontractor may not place higher demands on 
the client - require a 2-hectare plot of land, for example, where the original 
requirement was just 1 hectare; and he may not return less than was originally 
pledged - a 2-story building rather than the promised 3 stories, or one costing more 
than n francs. 

These rules are readily translated into rules on the assertions of redefined 
routines. The precondition and postcondition of a routine must apply to its redefined 
versions in descendants. This is the basic constraint needed to harness the power of 
redefinition and dynamic binding. 

The exact rule is more subtle. The assertions on the redefined routine do not 
need to be exactly the same as those of the original. As noted, the subcontractor 
may do the job "better" as well as cheaper. Here there are two ways one may do 
the job better: 

• By accepting cases which would have been rejected by the original 
contractor . 

• By returning a better result than initially agreed on. 

For example the above subcontractor is certainly permitted to use a technique 
that will work on a half-hectare parcel, or to produce a building 4 stories or higher. 
For assertions, the rule is expressed as follows: 

Redefinition rule: In the redefinition of a routine, the precondition 
must be weaker than the original, and the postcondition must be 
stronger than the original. 

In this definition, an assertion is said to be stronger than another if it implies it; for 
example x > 3 is stronger than x > 1. "Weaker" is the reverse notion. (More 
correct phrases would be "Stronger [Weaker] than or equal to".) 

The possibility of strengthening the postcondition of a redefined routine is 
essential in practice, as a redefinition will generally use more specific properties of 
the descendant class, adding new properties to the result. For example, a 
descendant ARRAY_TABLE of class TABLE, using an array implementation, might 
have a new integer attribute insertion_index, now set by put to the value of the 
index at which the last insertion was made. The new postcondition will be 



fBI 
count <= capacity; 
item (key) = element; 
count = old count + 1; 

-- Below is the new clause: 
array_item (lascindex) = element 
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Here array_item (i) is the value of the i -th element of the array. 

Another example of postcondition strengthening is the redefinition of a routine 
computing a certain mathematical function of the argument, say its cosine, within a 
certain precision E.. A redefinition is certainly permitted to provide a better 
approximation, say within e 12 of the exact result. What of course it may not do is 
to decrease the precision of the result: the client is entitled to a precision of E. 

For preconditions, the situation is symmetric. The precondition of put was 
count < capacity. In this initial implementation, once a table fills up, clients cannot 
insert any more. This will be the case if TABLE relies on a fixed-size 
implementation. A descendant may introduce a mechanism which automatically 
resizes the table when it fills up. If there is a limit on the number of secondary 
blocks, for example ten times the size of the primary table, the new precondition is 

count <= 11 * capacity 

If the descendant fully removes size limitations, the precondition disappears 
altogether, or, formally, becomes true. Both cases are correct since they weaken the 
original precondition. 

Here again the subcontractor does "better" than required from the original, this 
time by being less demanding on its clients: it accepts cases that the prime 
contractor would have rejected. What would not be acceptable is a more demanding 
subcontractor. 

1.9.3 Assertions in redefinitions: the language rule 

Since it would place an undue burden on compilers to check that the precondition of 
a redefined routine is weaker than the original and the postcondition stronger, Eiffel 
directly enforces the above principles through language rules. 

In the redefined version of a routine, it is not permitted to have plain require 
and ensure clauses. Instead, the precondition and postcondition clauses, if any, must 
be of the form 

require else 
new_pre 

and 
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ensure then 
new_post 

These notations yield the following as new precondition and postcondition for 
the redefined version of the routine: 

new_pre or else originaLprecondition 

new_post and then originaLpostcondition 

where or else and and then are the non-commutative versions of the "or" and 
"and" operators, which evaluate their second argument only if necessary. 

With this rule, the postcondition clause for the redefinition of put mentioned 
above (see IBI) becomes simply 

ensure then 
array_item (lasCindex) = element 

which is automatically "anded" with the original to yield the semantics of fBI. 
Similarly, the new precondition for an improved version of put may be 

require else 
count <= 11 * capacity 

In this example, the resulting precondition is 

count <= capacity or else count <= 11 * capacity 

which of course is equivalent to its second term. It is not impossible that a compiler 
could simplify such assertions, at least in simple cases such as this one (which 
assumes a supplementary assertion stating that capacity is positive). 

1.9.4 Documentation 

If a class includes redefined routines with new assertions, the question arises of 
giving the proper information to a reader of the class text. Clearly, the require else 
and ensure then clauses do not suffice in this case, so that the short form of the 
class will be insufficient. 

This is in fact a consequence of a general problem raised by inheritance: one 
cannot fully understand a class without its ancestry. In Biffel, the problem has a 
simple solution: flattening. 

The flat command of the Eiffel environment reconstructs an inheritance-free 
version of a class, with every inherited feature copied from the appropriate ancestor; 
renaming and redefinition are of course taken into account, and the class invariant is 
expanded so as to accumulate all ancestors' invariant clauses. For a class that has 
parents, interface documentation is obtained by applying short not directly to the 
class text, but to the flattened version produced by flat. 

As an obvious consequence of the redefinition rule, then, flat must expand the 
assertions of redefined routines, so as to take into account the original assertions 
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through the or else and and then operators. (Again, an advanced version of flat 
might use the laws of boolean algebra to simplify some of the resulting assertions.) 
The "flat-short" interface documentation will then show the correct precondition and 
postcondition. 

1.9.5 Taking advantage of improvements 

Informally, the redefinition rule expresses that the interface specification provided to 
clients by a redefined version must be better than the original through a stronger 
postcondition and a weaker precondition. 

But you will have noted that the clients of the original contractor are in fact 
unable to make use of the enhancement offered by the subcontractor: client classes 
can only be written in reference to the original preconditions and postconditions. So 
even if they end up using the better algorithm thanks to dynamic binding, they can 
only rely on the original interface specification. 

This means that a client will be able to benefit from the improved performance 
that a redefinition may yield (the "cheaper" part), but not from improved 
functionality (the "better" part). How useful, then, is it to provide a better 
precondition or postcondition? 

Figure 1.4: Clients and descendants 

The answer is that the enhancement is indeed of no use to clients of the 
original contractors, but may be put to profit by direct clients of the subcontractor. 
Consider the situation illustrated by Figure 1.4 above (which uses the standard 
graphical conventions in Biffel analysis and design, with single arrows for 
inheritance and double arrows for clients). 
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OTHER_TABLE is assumed to be a descendant of TABLE offering an 
enhanced interface for put (weaker precondition, stronger postcondition). C is a 
client of TABLE; it contains code of the form 

ta: TABLE; 

t. put ( ... ) 

Similarly, D is a client of OTHER_TABLE. The designer of C may only rely on 
the original assertions, even though at run-time dynamic binding will cause the 
OTHER_TABLE version of put to be executed if ta is attached to an object of type 
OTHER_TABLE. This will happen for example after an assignment 

ta := o_ta 

with o_ta of type OTHER_TABLE. 

In other words, the contractors' and subcontractors' bureau, although honest -
the result you get is always guaranteed to be at least as good as what you paid for, 
and can even be better - is also stingy: you are not guaranteed anything more than 
what you paid for. 

There is, of course, a way for the client to benefit from the the subcontractor's 
improved services: bypass the original contractor and become a direct client of the 
subcontractor, without dynamic binding. In Figure 1.4, this means drawing a double 
arrow directly from C to OTHER_TABLE. In human contracts too, if you discover 
that your supplier uses the services of a subcontractor, you may sometimes decide to 
avoid the intermediary - a choice the original contractor will usually not like. 

1.9.6 The horrors of static binding 

To conclude this discussion of what the contracting theory brings to inheritance, it is 
appropriate to take a look at a technique which can only be characterized as a 
distortion of the principles of object-oriented programming, although, sadly enough, 
it is used in some languages that claim to be object-oriented (but, in an effort to 
protect the guilty, shall here remain unnamed). 

As noted, redefinition and polymorphism lead to dynamic binding: when we 
apply an operation to an object through the notation x ./, we want to use the version 
of / that is directly adapted to the nature of the object. If the object is of type D , 
and /, coming from an ancestor C of D, has been redefined for D, then the D 
version should be applied. 

That x may be declared of type C is irrelevant here: x is a polymorphic entity 
which may become attached to objects of various types (all descendants of C, such 
as D). This makes it possible for a client to write x./ without having to know what 
exact kind of object x will represent at execution-time. But this facility only makes 
sense precisely because the client has the guarantee that the right version of / will 
be applied in each case. 
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Static binding, implying that we apply the C variant, would be a gross 
mistake: a guarantee that we apply the wrong version! 

The principles developed in this chapter provide a more theoretical perspective 
for the same arguments. Consider the requirements on an object's lifecycle, as 
illustrated by Figure 1.3 (page 12). A routine r, defined in a class C, must preserve 
the invariant INV c of C (this is property /2/ on page 14): 

{pre, & INV c } do, {post, & INV c } 

A version of r redefined in a descendant D of C must preserve the invariant 
INV D of this new class, which is stronger than INV c. Calling the redefined version 
s: 

{pres & INV sub D} dos {posts & INVD } 

There is no reason, however, for the original do, to preserve the stronger 
INV D' In fact, class C need not know about any descendant that it may have. 

Static binding, then, would mean the possibility of applying do, to an object of 
type D. Since the C implementation is not required to preserve INV D, this can 
produce an inconsistent object (one which does not satisfy its own class invariant), 
the worst possible situation in the execution of an object-oriented program, from 
which it is essentially impossible to recover (especially since no exception is 
triggered, the execution appearing to be normal). 

The only argument that can be made in favor of static binding is one of 
perfonnance: with static binding, there is no run-time overhead to look for the 
appropriate routine. But this argument does not make sense: 

• Perfonnance is never an excuse for executing a program incorrectly. If one 
drops the correctness requirement, it becomes very easy to write very fast 
programs. 

• If properly implemented, dynamic binding can be quite cheap. A good 
implementation of Eiffel will find the needed routine in constant time (even 
in the presence of multiple inheritance), and with an overhead that remains 
small compared to the normal cost of routine call in any language. 

• In some cases, it is appropriate to get rid of even this limited overhead. 
This occurs, for example, when a routine f is never redefined, or when an 
entity x is not polymorphic (that is to say, can become attached at run-time 
to objects of only one type). Then static binding or dynamic binding have 
the same semantics. But the detection of such situations, which requires a 
global system analysis, is the job of a computer, not of a human being! It is 
far too tedious and error-prone to be left to programmers. In ISE's Eiffel 
compiler, the optimizer performs this safe application of static binding to 
cases in which it is equivalent to dynamic binding. 



46 Design by contract 

1.9.7 Inheritance: assessment 

The perspective provided by the contract theory seems necessary for a full 
understanding of the notion of inheritance. It may in fact contain the root for an 
axiomatic semantics of inheritance that would complement Cardelli' s denotational 
specification [3]. 

Redefinition and dynamic binding are too often presented as clever techniques 
- almost as tricks - designed to make software more flexible. In the subcontracting 
metaphor developed here, these mechanisms take a precise and fruitful meaning. In 
particular, we have seen that routine redefinitions should not be arbitrary: they are 
constrained by the original assertions. It is the original designer's responsibility to 
choose assertions that are precise enough to attach a useful semantics to the routine 
throughout its avatars in descendants, yet leave enough room to future redefiners. 
Redefinition is a semantics-preserving transformation. 

1.10 A PLEA FOR PARTIAL FUNCTIONS 

The metaphor of programming as a contractual activity has led us to a number of 
important issues of software design: how to deal properly with abnormal cases; how 
to devise an exception mechanism that does not violate rules of systematic program 
construction; how to harness the power of inheritance. 

One of the ideas guiding this discussion has been the inevitability of possibly 
partial functions. 

In mathematics, a partial function is one which is not defined for some 
elements of its source set. Consider for example the inverse function inv on real 
numbers, viewed as a function in R""f--t R (where R is the set of real numbers, and 
X +7 Y is the set of possibly partial functions with source set X and target set Y). 
Function inv is partial since it is not defined for the real number 0.8 

In principle, we could always do without partial functions: iff is a function in 
X --1-7 Y and the domain of f is A, a subset of X, we can consider f as a total 
function in A --1-7 Y. For example, inv is a total function in R • -+7 R, where R· is 
the set of non-zero reals. This technique, however, complicates discussions of 
functions considerably since it leads to treating functions with different domains, 
such as inv, the square root function and the tangent function, as being of different 
"types". 

In computing, routines are implementations of mathematical functions. Almost 
every specification of interest will include operations that are not always applicable; 

g As in [9], we call "total" a function in X -+7 Y which is defined for all members of X, 
and "partial" a function which is not total, that is to say, such that for at least one member x 
of X x is not in the domain of f. "Function" without further qualifier means "possibly 
partial function" - that is to say, either partial or total. 
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even the most common "toy" example used in fonnal specification, stacks, has an 
operation top for which there is no reasonable. default result when the operation is 
applied to an empty stack. This should not be surprising to anyone who has read 
this discussion so far: routine top, iin a class representing stacks, will have a 
precondition other than true. Such a routine implements a mathematical function 
which is partial; it may itself be called a partial routine. 

But partial routines are not popular. For example, one recent text on 
programming methodology [5] which, not surprisingly, promotes the CLU style of 
programming with its heavy reliance on exceptions, states that 

Partial [routines] lead to programs that are not robust. 

based on the obvious argument that such routines will not work for all calls. 

But this argument neglects a fundamental aspect of software design: in the end, 
what makes a software system robust or not is not the greater or lesser tolerance of 
every individual routine. Once the system has been written, it contains only a fixed 
set of calls to each of its routines. So even if the routines are partial the problem of 
deciding whether all calls are correct is finite. 

The robustness of the system is fundamentally affected, however, by the 
coherence of the structure, the consistency of module interfaces, and the simplicity 
of each individual module. 

These goals are often met by accepting that the functions provided are partial, 
so that each program unit may do a well-defined job and do it well without having 
to check for a thousand different normality conditions, once it has been determined 
that the responsibility for establishing these conditions lies with the clients. 

Liskov and Guttag, the authors of [5], rightly warn against the temptation 

not to bother with the checks, or to use them only while debugging. 

But in many cases there is a quite valid argument for omitting checks: simplicity of 
design. If the contracts are spelled out clearly, and a formal enough set of 
preconditions and postconditions is associated with the routines, I would venture the 
inverse warning: guard against the temptation to overcheck, which will lead to 
complex interfaces and over-ambitious techniques (such as unjustified uses of 
exceptions), and from there to decreased robustness - which in software is the 
almost inevitable consequence of undue complexity. 

This view does leave a role for exceptions and recovery techniques, but only as 
a general mechanism that monitors the correct execution of contracts and, whenever 
possible, attempts to rescue clients and contractors from the failure of either party. 

The approach developed in this chapter accepts partial functions as a fact of 
mathematical life and their counterparts, partial routines, as a fact of programming. 
Rejecting the elusive goal of building systems from components that would work 
under any possible circumstances, it prefers to aim at a more modest but perhaps 
more realistic principle: making sure that each component of a system, however 
humble and partial, states as clearly as possible what it will do, and what it will not 
do - which is what contracts are for. 
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APPENDIX: FURTHER SOURCES 

The primary source and inspiration for this work is the research on program proving 
and systematic program construction pioneered by Floyd [C], Hoare [D1 and 
Dijkstra [B1. 

The view of programs as computing partial functions plays an important part in 
the VDM method as presented in [E], which emphasizes the use of preconditions, 
postconditions and invariants. 

The approach to inheritance presented here, and the use of assertions in an 
object-oriented language, appear specific to Eiffel; more details are given in [I]. 

Non-object-oriented languages that support assertions include Euclid [F] and 
Alphard [K]; see also the Ada-based specification language "Anna" [G]. CLU, 
cited in the text, includes non-formal assertions. 

Another view of exceptions may be found in [A]. 

The notion of rescue clause bears some resemblance to Randell's recovery 
blocks [J], but the spirit and aims are different. Recovery blocks as defined by 
Randell are alternate implementations of the original goal of a routine, to be used 
when the initial implementation fails to achieve this goal. In contrast, a rescue 
clause does not attempt to carry on the routine's official business; it simply patches 
things up by bringing the object to a stable state. Any retry attempt uses the 
original implementation again. Also, recovery blocks require that the initial system 
state be restored before an alternate implementation is tried after a failure; this is 
hardly implementable in practice. No such provision is made with rescue clauses in 
Eiffel; the only requirement is that the rescue clause must restore the class invariant 
and, if resumption is attempted, the routine precondition. 

As it exists in Eiffel, the notion of rescue clause actually derives from a 
corresponding formal notion of "surrogate function", also called "doppelganger", in 
the specification method and language M [H]. M is a fonnal specification language, 
not an executable programming language like Eiffel. Functions in an M specification 
may be partial; a surrogate is associated with a partial function, and serves as a 
backup for arguments that do not belong to the domain of that function. It should be 
mentioned, however, that at the time of writing the design of M has not been fully 
ironed out. 
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