
Chapter 1
Design by Contract

Bertrand Meyer
Interactive Software Engineering Inc.

ABSTRACT: This chapter is a contribution to software reliability. It presents a view of
software design based on a metaphor: software construction as a succession of
documented contracting decisions.
This idea provides insights into a number of issues faced by programmers whenever they
try to construct correct and robust software.
Two results of the approach developed in this paper are a coherent approach to the
handling of failures and exceptions, believed to be both simpler and safer than earlier
techniques, and a coherent interpretation of two important but potentially unsafe aspects
of object-oriented programming: inheritance and dynamic binding.
The discussion relies on the Eiffel object-oriented language and environment.

1.1 SCOPE

How can we build reliable software - in other words, software that is both correct
and robust?

Anyone who writes or uses programs knows how pressing this question is. Yet
little of the theoretical work that has been devoted to techniques that could improve
reliability (such as formal specification and verification) has found its way into the
common practice of software development.

Worse yet, much of the literature on object-oriented programming - an
approach that is increasingly recognized as the sine qua non of future advances in
software technology - is all but silent on correctness and robustness, as if it were
satisfactory enough to obtain the flexible and modular structures permitted by
object-oriented methods. This silence is all the more surprising in light of the role
played in object-oriented programming by reuse, perhaps the central concept of the
whole approach: with a method based on general-purpose components meant to be
used in scores of different applications, the correctness and robustness of these
components becomes a critical issue, even more so than in traditional one-of-a-kind
developments.

2 Design by contract

This chapter is a contribution to the search for software reliability, expanding
on the discussions of an earlier book [8]. It does not, of course, offer any magical
recipe, but describes engineering techniques which, if applied consistently, can
considerably improve the trust that we place in our software.

A theory of software design runs through this presentation, based on a
metaphor: software construction as a succession of documented contract decisions.
This idea provides insights into many of the issues programmers face whenever they
try to construct correct and robust software.

In particular, the discussion will analyze the dangers involved in some of the
existing methods for handling failures and exceptions, and will introduce a simpler
approach, which should also be safer. It will also throw some light on a key topic
of object-oriented programming by showing how the contract theory clarifies
inheritance and dynamic binding - two essential components of the object-oriented
method, which are, however, the source of serious potential confusions and dangers
unless developers understand their theoretical underpinnings.

The discussion relies on the Eiffel language [11] and method [8], whose
mechanisms for assertions, exception handling and inheritance result largely from
the reflections reported here. Some elements should be of interest to readers
working in other contexts; there will even be some advice on how not to misuse
exceptions in Ada.

1.2 THE NOTION OF CONTRACT

1.2.1 Decomposing into subtasks

Assume you are writing some program unit implementing a task to be performed at
run-time. The unit describes the task as a combination of more elementary subtasks.
To make things simple, this can be expressed just as a sequence of abstract
instructions, each corresponding to a subtask:

my_task is
do

subtask 1 ;

subtask2 ;

subtaskn ;

end -- my_task

As the implementer of my_task, you are faced with a fundamental decision for
each of the subtaski : should you handle the subtask locally, or should you contract
it out?

Concretely, the first solution means that you implement the task by writing one
or more elementary instructions corresponding to subtaski within the body of
my _task. The second solution means that you write a separate routine, or get access

The notion of contract 3

to a routine written by someone else, and implement subtask; by a call to that
routine.

The decision of contracting out a subtask to a routine may be made for either
or both of two reasons:

• To keep the size of the current unit under control, by separating the details
of a subtask from the unit's main stream.

• More pragmatically, to take advantage of commonality between subtasks,
especially when an existing program element addresses the subtask at hand.

These two incentives respectively reflect the top-down and bottom-up
components of software construction.

The need to choose constantly between direct implementation and contracting
out is a key feature of software development. The design of a software system is the
result of a myriad of minute decisions - "Do we contract out for this particular
subtask, or do we do it here?" Good designers know how to find the appropriate
balance between too much contracting, which produces overly fragmented
architectures, and too little, which yields unmanageably large modules.

1.2.2 Writing down the contract

When you contract out, you must make sure that the contractor will perform the
task as required. As in real life, this is only possible if the agreement is' spelled out
precisely in a contract document.

A contract document protects both sides:

• It protects the client by specifying how much should be done: the client is
entitled to receive a certain result.

• It protects the contractor by specifying how little is acceptable: the
contractor must not be liable for failing to carry. out tasks outside of the
specified scope.

A contract carries mutual obligations and benefits. If I (as the contractor) agree
to build a building at least three stories high, for at most one million francs, on a
parcel of land covering at least one hectare which you (the client) will have to
provide, then you are not obliged to do anything if you do not find a parcel, or if
your parcel is smaller than one hectare; and if I do comply with these obligations,
you can reject my building if it is less than three stories high, or costs more than
one million francs.

The obligations and benefits for both parties in this simplistic example are
summarized in the table of Figure 1.1. Note how the obligation for each maps into a
benefit for the other.

4 Design by contract

Obligations Benefits

Client Provide land Get building
parcel of at least three-story high
one hectare or higher, for at

most one million
francs

Contractor Build building No need to do
three-story high anything if there
or higher for at is no land, or
most one million land is to small
francs·

Figure 1.1: A contract

Primitive as it is, this example serves as evidence of some the fundamental
properties of contracts in human affairs:

• As noted, a contract implies obligations and benefits for both parties.
Usually, an obligation for one maps into a benefit for the other.

• The obligations and benefits are explicit: the role of the contract document is
precisely to spell them out in detail, avoiding ambiguity inasmuch as
humanly feasible.

• Some general clauses may remain implicit because they automatically apply
to all contracts. They reflect the law of the land and other prevailing
regulations.

• One less immediate but equally essential property of contracts is that even
an "obligations" box in a table such as the above is actually also a "benefit"
for the corresponding party. The reason is that such a clause implicitly
expresses that the obligations mentioned are the only ones that bind that
party (apart from the just mentioned universal clauses, if any).

The last property, which may be called the no hidden clauses rule, is
fundamental to the smooth functioning of contracts in a law-based society: when
you see a list of your obligations, it does not just bring "bad news" by stating work
that you must perform; it is also "good news" because it states the limits on the
duties imposed on you.

Assertions: contracting for software 5

1.3 ASSERTIONS: CONTRACTING FOR SOFTWARE

It is surprising that software contracts - routine calls - are not similarly documented
in standard approaches to programming. Yet if we entertain any hope of producing
correct and robust software, the very least we can do is to make explicit the
obligations and guarantees on any call.

The mechanisms for expressing such conditions are called assertions. Some
assertions, called preconditions and postconditions, apply to individual routines;
others, called class invariants, constrain all the routines of a given class.

1.3.1 Assertions on individual routines

To specify the terms of a software contract, we may associate a precondition and a
postcondition with each routine. In Eiffel, they appear in the syntax for routine
declarations, as follows:

routine_name (argument declarations) is
-- Header comment

require
precondition

do
routine body, i.e. instructions

ensure
postcondition

end -- routine_name

The require and ensure clauses (as well as the header comment) are optional. The
precondition and postcondition are "assertions", or lists of boolean expressions,
separated by semicolons, which are equivalent to boolean "ands" but allow
individual identification of the assertion clauses. The precondition expresses
requirements that any call must satisfy if it is to be correct; the postcondition
expresses properties that are ensured in return by the execution of the call.

A missing precondition clause is equivalent to require true, and a missing
postcondition to ensure true. Assertion true is the least committing of all possible
assertions, and is always satisfied.

Consider for example a routine put for adding an element of some type T to a
table. A character key is associated with every table element. Assume the table is
managed by a scheme such as hash-coding, where the insertion position is
determined by the insertion algorithm on the basis of the key (rather than specified
by the client). The routine may be written in the following form:

6 Design by contract

put (element: T, key: STRING) is
-- Insert element with key key

require
count < capacity

do
"I . al . h " ... nsertlon gont m ...

ensure
count <= capacity;
item (key) = element;
count = old count + 1

end -- put

The following explanations. will be useful for the reader not familiar with Eiffel. First we are
in an object-oriented environment in which every operation is relative to a certain class of
objects. The routine will thus be in some class, say TABLE, describing the behavior of tables
through the operations and attributes available on them. (The class should be declared as
TABLE [T], where the generic type parameter T allows use of the same class for tables of
elements of various types. in a type-safe fashion.) The routine will be applied by a client to a
table ta through a call a! the form ta.put (val) where val has the appropriate type.

A class is a set of encapsulated services offered to clients on elements of a certain type, here
TABLE; these services, known as features. are implemented either as routines (procedures or
functions), performing some computation, or as attributes, which simply describe some field
present at run-time in the representation of every object of the type. Here the class will contain
the following features beyond put :

• Function item, such that item (k), called by clients in the form ta. item (k) for some
table ta and some string k, gives the value associated with key k in the table.

• Attributes capacity and count (for clients; ta. capacity and ta • count). giving the table
size and current number of used entries.

The precondition and postcondition of put express the terms of the contract
imposed on any client that wishes to use this routine: put accepts a call if and only
if the table is not full (in other words, has a number of inserted elements, count, less
than its capacity) and yields a table with one more element, such that the value
associated with key is the element inserted. The notation old count, in the
postcondition, denotes the value of count on routine entry; the unary operator old is
used only in postconditions.

1.3.2 A premature question

At this point many readers will already have mentally raised their hands to ask the
question "What happens at run-time if the table is in fact full when put is called?".

A pessimist might view the importance that software developers seem to
attach to this question as a sad comment on the state of software engineering: a sign

Assertions: contracting for software 7

that developers are more interested in trying to limit the consequences of their errors
than in learning how to avoid errors in the first place, or to correct them.

Errors and exceptional conditions do occur, of course; accordingly, we need to
study in detail the effect of assertions on program execution, and the question of
how a program can recover from a run-time assertion violation. This will be done
below. But if we are responsible professionals and have set our priorities straight
we must first look for ways to produce correct software, and then consider what
happens if we have failed to do so. For the time being, assertions are a pure design
and documentation aid: a conceptual tool for building better software, and
explaining the essentials of a software component to its potential users,

1.3.3 Observations on software contracts

The preconditions and postconditions express the terms of the contract. The roster
of benefits and obligations may be given for put in the same style as Figure 1.1:

Obligations Benefits

Client Call put only on Get modified
a non-full table table in which x

is associated
with key

Contractor Insert x so that No need to deal
it may be with the case in
retrieved which table is
through key full before

insertion.

Figure 1.2: A software contract

The bottom-right entry of the table is particularly noteworthy_ If the
precondition is not satisfied, the routine is not bound to do anything, as a house
builder who is not given any land on which to build. This means that the routine
body should not be of the form

if count = capacity then

else
"D 1 'h 1 " ... ea wit norma case ...

end

8 Design by contract

which would defeat the whole purpose of having a precondition (require clause).
This is an absolute rule: either you have the condition in the require, or you have it
in an if instruction in the body of the routine, but never in both.

Because of this, preconditions are sometimes viewed with suspicion. Shouldn't
a routine be prepared to handle all possible inputs?

It should not. Again, the contract metaphor provides the proper perspective to
discuss this issue. The stronger the precondition, the higher the burden on the
client, and the easier for the contractor. (The most comfortable job in the world is
that of a·· routine implementor presented with the precondition false - any
implementation will do, since no call will ever be correct.) The matter of who
should deal with abnormal values is essentially a pragmatic decision about division
of labor: the best solution is the one that achieves the simplest architecture.

If every routine checked for every possible error in its calls, no useful work
would ever be performed. If both the client and the routine check for the same
conditions, the resulting redundancy, when accumulated over a large system, will
yield the complexity and unwieldiness that are so characteristic of today's software.

In many existing programs, one can hardly find the islands of useful processing
in oceans of error-checking code. Much of the redundancy in error checking is
understandable: better check twice than not at all, reason the designers. But with
techniques for defining precisely each party's responsibility, as provided by
assertions, such redundancy, so harmful to the overall program structure, is no
longer necessary.

Not many software engineering textbooks talk in any detail about how to
obtain reliable software. Most of those which do (see for example [5]) state that
individual routines should be able to cope with as many cases as possible - that is
to say, have the weakest possible preconditions. In spite of this conventional
wisdom, however, a good case may be made for routines with strong preconditions.
Such routines will concentrate on performing well a precisely defined task, rather
than attempt to handle all possible abnormal cases.

Developers are traditionally reluctant to distribute modules which will only
work under strict constraints; but this is due to the lack of a standard for
documenting the constraints simply and clearly. Preconditions provide this standard.

1.3.4 Against defensive programming

The method outlined above may be viewed as the exact opposite of the traditional
advice given to programmers preoccupied with reliability: "defensive programming"
- the recommendation to protect every software module by as many checks as
possible,even those which are redundant with checks made by the clients. Include
them anyway, the standard advice goes, just in case: if they do not help, at least
they will not harm.

Assertions: contracting for software 9

But they do harm. The result of such blind checking can only be an increase
in software complexity, which inevitably leads to a decrease in reliability.

The contract theory suggests a different approach. It prompts developers to
specify precisely every consistency condition that could go wrong, and to assign
explicitly the responsibility of its enforcement to one software element, supplier or
client. With these responsibilities clearly defined through contracts, there is no
further need for ad hoc redundant checks.

1.3.5 Who should check?

The rejection of defensive programming means that we never ask both client and
supplier to be responsible for a consistency condition. Either the condition is part
of the precondition, and must be guaranteed by the client; or it is not stated in the
precondition, in which case the supplier must handle it.

Which of these two solutions should we choose? Here there is no absolute rule;
several styles of writing routines are possible, ranging from "demanding" ones
where the precondition is strong (putting the responsibility on clients) to "tolerant"
ones where it is weak (increasing the routine's burden). Choosing between them is
to a certain extent a matter of personal preference; again, the key criterion is to
maximize the overall simplicity of the architecture.

The standard recommended style in Eiffel is on the demanding side: it
encourages writing simple routines with a well-defined contract, rather than routines
which will attempt to handle every imaginable case. Client programmers do not
expect miracles: as long as the conditions on the use of a routine make sense and,
above all, the routine's documentation states these conditions (the contract)
precisely, they will be able to use the routine properly by observing their part of the
deal.

This demanding style is consistently used in the Eiffel Libraries; to take an
example among hundreds, function first in any of the list classes, returning the first
element of a list, has a precondition stating that the list is non-empty. Fair enough.

An objection sometimes heard against this style is that it seems to force every
client to make the same checks, corresponding to the precondition, and so to result
in unnecessary and damaging repetitions.

On further examination, however, this objection does not hold.

First, the presence of a precondition p in a routine r does not necessarily mean
that every call must test for p, as in

10 Design by contract

IN
if x.p then

x.r
else

... Special treatment ...
end

This is only one possible form. What the precondition means is that the client must
guarantee property p, which is not the same as testing for this condition before
each call. If the context of the call implies p, then there is no need for such a test.
A typical form which avoids the test is

x.s; x.r

where the postcondition of s is such that it implies p. For example, x might be a
data structure such as a queue, priority list or stack, r the operation

remove is
-- Remove an element

require
not empty

and s the operation put, which adds an element, and so has the condition not empty
as part of its postcondition. If the call to remove follows a call to put, there is no
need to check for the precondition.

Assume now that this case does not hold and that many clients will indeed
need to check for the precondition, as in fonn IN above. What matters then is the
"Special treatment" in the else clause (dealing with the case in which the
precondition is not satisfied). There are two possibilities:

• The "Special treatment" may be the same for all calls. Then there is indeed
unpleasant repetition in many clients. But this is almost certainly a sign of a
poor contract for the routine r. If there is a well-defined standard action for
the case not p, then the routine's precondition as given is too restrictive; its
contract should be extended (renegotiated, if you like) to include the case
not p, the "Special treatment" being moved from the individual clients to
the routine itself.

• If, however, the "Special treatment" is different for various clients, then the
individual test for p by every client is inevitable. Each has defined its own
way of dealing with the case for which p is not satisfied.

The second possibility indeed occurs frequently, since in many cases a
general-purpose supplier module simply lacks the proper context inability of many
supplier modules to define the handling of abnormal cases, for lack of the proper
context. How could a general-purpose QUEUE class know what to do when
requested to remove an element from an empty queue, or a general-purpose graphics
class know how to react when asked to display a circle on a screen without graphics

Class invariants and class correctness 11

capabilities? Only the clients, in such situations, have enough context information
to decide on the proper action.

1.3.6 Documenting a software contract

For the contract theory to work properly and lead to correct systems, we must
provide client programmers with a proper description of the interface properties of a
class and its routines.

Here assertions can play a key role since they help express the purpose of a
software element such as a routine without reference to its implementation.

The short command of the Eiffel environment serves to document a class by
extracting interface information. In this approach, software documentation is not
treated as a product to be produced and maintained separately from the actual code;
instead, it is the more abstract part of that code, and may be extracted by computer
tools.

Command short will retain only the exported features of a class and, for an
exported routine, will drop the routine body and any other implementation-related
details. However pre- and postconditions are kept. (So is the header comment if
present.) For example short yields the following for the put routine:

put (element: T, key: STRING)
-- Insert element with key key
require

count < capacity
ensure

count <= capacity;
item (key) = element;
count = old count + 1

This expresses simply and concisely the purpose of the routine, without reference to
a particular implementation.

All documentation on Eiffel classes (for example the class specifications in the
book on the Eiffel Library) is produced automatically in this fashion; for classes that
inherit from others, short, as will be seen below, should be combined with another
tool, flat.

1.4 CLASS INVARIANTS AND CLASS CORRECTNESS

Routine preconditions and postconditions could be added to any programming
language supporting routines. More specific to an object-oriented context is the
notion of class invariant, which is also needed to define what it means for a class to
be correct.

12 Design by conll'act

1.4.1 Class invariants

A class invariant is a property that must be satisfied by all instances of the class,
transcending particular routines. For example, all tables (instances of class TABLE)
must satisfy:

o <= count <= capacity

This is a typical invariant property, which in Eiffel appears in the invariant
clause of a class: l

class TABLE [11 feature

... Attribute and routine declarations for
put, item, delete, count, capacity, ...

invariant
o <= count <= capacity

end -- class TABLE

Object creation

: :

i; ... · ·
,:::~:: :',: ",: . : : .

aef

Figure 1.3: Object lifecycle

1 Eiffel also supports another form of invariant. the loop invariant, which will not be
studied any further in this chapter. See [8], and [9] for the theoretical background.

Class invariants and class correctness 13

Two properties characterize a class invariant:

o It must be satisfied after the creation of every instance of the class (every
table in this example). This means that every creation procedure of the
class, called at object creation time, is required to ensure it.

o It must be preserved by every exported routine of the class (that is to say,
every routine available to clients): any such routine must guarantee that the
invariant is satisfied on exit if it was satisfied on entry.

In effect, then, the invariant is added to the precondition and postcondition of
every exported routine of the class. But the invariant characterizes the class as a
whole rather than its individual routines.

Figure 1.3 illustrates these requirements by picturing the lifecycle of any object
as a sequence of transitions between "observable" states. The observable states,
shown as rectangles, are the state immediately following object creation, and any
state subsequently reached after the execution of an exported routine of the object's
generating class. The invariant is the consistency constraint on observable states.
Note that it is not necessarily satisfied in-between these states.

From the contract viewpoint, the invariant may be viewed as a general clause
to be added to a group of contracts and constraining both the client (as it is added to
the routine preconditions) and the contractor (as it must be preserved in the
postconditions). Real-life contracts often contain such general clauses of the form
"All provisions of the XX code shall apply to this contract".

1.4.2 Class correctness

With the above notions it is possible to define what it means for a class to be
correct.

Correctness is always a relative notion, since no software element is correct or
incorrect per se: the only practically useful notion is that of consistency with some
specification. Preconditions, postconditions and invariants give that specification.

The following notation from program proving theory serves to make these
ideas more precise. The formula written

{P} A {Q}

where P and Q are assertions, and A a sequence of instructions, means: "If A is
executed starting in a state in which P is satisfied, the resulting state will satisfy
Q ".2

Note that the person in charge of developing A, who may view the above
formula as a job description, will prefer Q to be as weak as possible (limiting the
ambition of the results to be achieved) and P to be as strong as possible (limiting

2 This formulation does not address the question of whf-ther A's execution indeed
terminates. For a more rigorous discussion see [9].

14 Design by contract

the extent of cases to be covered). For client programmers, of course, the situation
is reversed.

Also useful are the notations pre, for the postcondition of a routine r, post,
for its postcondition, do, for its body (implementation), and INV for the class
invariant. Then we can define the correctness of a class (that is to say, its
consistency with its specification) as follows. Every creation procedure c must
satisfy:

/1/

Furthermore, every exported routine r must satisfy:

/2/
{pre, & INV} do, {post, & INV}

Rule /2/ shows well the dual role of the invariant which, for the implementer
of the supplier class, is both "good news" and "bad news". The presence of INV
on the left is good news since, as noted above, it limits the number of cases to be
covered, restricting the routine's scope to consistent states (those satisfying the
invariant). The occurrence on the right, however, is bad news since it requires the
routine to restore the invariant on exit, in addition to ensuring the contract (the
postcondition).

1.5 MORE ON ASSERTIONS

We now have a good view of the theoretical role of assertions, and the part they
play in the design process for obtaining correct software on the basis of well-defined
contracts.

Before we move on to further applications of the contract theory, in particular
the handling of abnormal cases and the understanding of inheritance, we should
answer the question that was set aside earlier: what happens if a system's execution
violates an assertion at run time? This will also lead us to an important (although
surprising at first) property: the "paradox of assertion semantics", and to a
clarification of the assertion sublanguage and its limitations.

1.5.1 Monitoring assertions

What happens if, during execution, a system violates one of its own assertions?

In the Eiffel environment, the answer depends on a compilation option. For
each class, you may choose between various levels of assertion monitoring, such as:

1 • No assertion checking at all.

More on assertions 15

2 • Preconditions only.

3 • Preconditions and postconditions.

4 • Prec~:mditions, postconditions, invariants.

For a class compiled under option 1, assertions have no effect on system
execution. With option 4, every routine call or return triggers a check: precondition
and invariant (call), postcondition and invariant (return). Option 2 causes checks for
preconditions only. Option 2 is the default.

The effect of an assertion violation (under the last three options) is to raise an
exception. Section 1.8 below explains what behavior will result from an exception
raised during the execution of a system.

1.5.2 Why monitor?

It should be clear from the preceding discussion that an assertion violation is not a
special but expected situation that is meant to be handled in a particular way (such
as out-of-range user input). For such cases, habitual control structures such as the
if-then-else are entirely appropriate. Rather, an assertion violation is always the
consequence of an error of specification, design or implementation - in ordinary
computer parlance, a bug.

Assertion monitoring, then, has only two applications:

• The most common use is simply debugging. Turning assertion checking on
(at either the PRECONDITIONS or ALL_ASSERTIONS level) makes it
possible to detect mistakes.

• A less frequent application (that some readers may find objectionable) is
software fault tolerance. If a large system is released with the expectation
that it may still contain errors, then assertion monitoring will serve to trigger
an exception in such a case; the exception handling facilities described
below may in certain cases be used to recover from the exception.

Let us concentrate on the first application, by far the most frequently and
unquestionably useful. Assertions are ways to express assumptions about the
properties that will hold at various stages of the software's execution (especially
routine entry and return). In classical approaches to software construction, although
programmers typically use many such assumptions in the design process, they
remain infonnal and implicit. Here the assertion mechanism enables us to express
them fully and explicitly, providing many productive checks in case of a buggy
system - one that does not meet the assumptions.

This use of assertions is one of the important applications of the contract
theory; it provides for a debugging, testing and quality assurance mechanism that is
considerably superior to more traditional techniques, since (as opposed to "blind"
testing) it is based on high-level consistency information provided by the
developers.

16 Design by contract

1.5.3 Assertion monitoring and the software lifecycle

An assertion violation, it was said above, always reflects a bug. The contract theory
indicates a different situation for preconditions and postconditions:

e A precondition violation shows a bug in the client: the calling routine did
not observe its part of the deal.

e A postcondition violation shows a bug in the supplier: the called routine did
not perform its task. (An invariant violation is also a supplier bug.)

The first case is particularly interesting in connection with the general software
engineering strategy for building systems in the object-oriented method. As
explained in more detail in [7], the recommended approach is to build successive
"clusters" of classes in a bottom-up order, from more general (reusable) to more
specific (application-dependent). When a developer or (more commonly) a project
manager decides to release a cluster C for general use, this normally implies a high
degree of confidence in its quality; in other words, a belief that no bugs remain in
C. If this is the case and performance constraints suggest economizing on run-time
checks, C may be distributed in a mode that does not monitor postconditions or
invariants. Monitoring preconditions is still useful, however, since the next clusters
to be produced in the cluster development cycle will initially be in a more tentative
state and may contain errors, resulting in violations of preconditions in the trusted
cluster C.

This is one of the reasons why PRECONDITIONS is the default compilation
option. Another, more obvious one, is that it is a reasonable tradeoff between
perfonnance and safety. Checking just preconditions is usually much less of an
overhead than checking everything. Yet it will suffice to avoid the bad consequences
that could result from a client's bug in light of the policy defined in 1.3.4 ("Against
defensive programming"): since suppliers do not protect themselves against violated
preconditions, they may exhibit arbitrary behavior in such a case (the bottom-right
box of contracts such as the one of Figure 1.2).

Pursuing again the contract metaphor, we may view the assertion monitoring
mechanism as the authority, not bound to either clients or suppliers, that checks the
proper observance of contracts: the Chamber of Commerce, perhaps, or the Better
Business Bureau.

1.5.4 The paradox of assertion semantics

It may be shocking at first to see a compilation option (the option that governs the
level assertion monitoring) producing a widely different result at execution time. It
is generally accepted that compilation options may change various aspects of run­
time behavior, for example the execution speed in the case of an optimizing option,
but not the essential semantics of a system execution.

More on assertions 17

Closer analysis reveals, however, that this convention is indeed appropriate,
although it does lead to an interesting paradox, which may be called the paradox of
assertion semantics.

The reason for the paradox is that all reasonable definitions of the semantics of
a programming language (an informal one written in English, or a fonnal
specification using a method such as denotational or axiomatic semantics as e.g. in
[9]) are written with the assumption that the programs being specified are correct. It
would be very strange indeed to write the semantic specification of incorrect
programs. In the case of assertions, however, it has been emphasized that a violation
can only occur for an incorrect system. As a result, the semantics of a language
such as Eiffel which includes an assertion mechanism need not take assertions into
account: the language's semantic definition need not provide for evaluation of
assertions at run-time, and even if it does, it does not matter what actions it specifies
for when an assertion is violated, since in a correct system all assertions will always
be satisfied!

The paradox comes from the observation that there is often no better way of
finding out whether the system is correct than ... to monitor its assertions.

We should not forget, however, that this is only a debugging facility, which
should not affect the behavior of correct systems. In an ideal world, we should be
able to use the assertions to prove the correctness of a class, using definitions /1/
and /2/ of ; then (assuming that the hardware and operating system are correct ...)
we would not need any run-time monitoring of assertions. Until such a situation is
reached, however, run-time checks provide a highly useful, if theoretically
imperfect. alternative mechanism.3

1.5.5 The assertion language

Although the above examples gave a good idea of typical assertions, no fonnal
definition has yet been given of what is permitted in an assertion clause.

Eiffel assertions are boolean expressions, with a few extensions such as the old
notation. Since the whole power of boolean expressions is available, they may
include function calls.

In some cases, one might want to use quantified expressions, of the fonn "For
all x of type T, p (x) holds" or "There exists x of type T, such that p (x)", where
p is a certain boolean property. To include such properties in assertions, you will
need to simulate them using function calls, which would provide loops to represent
the quantifiers.

3 Although to my knowledge no Eiffel proof system has been built at the time of this
writing, a partial but useful multi-tiered proof system seems feasible thanks to the presence of
the assertion mechanism and to the peculiar nature of Eiffel software development, with its
heavy reliance on libraries. This appears to be a promising area for research.

18 Design by contract

Eiffel could be extended to include a full-fledged fonnal specification language,
with first-order predicate calculus. As it stands, however, Eiffel is a programming
language meant for practical software development, and the embedded assertion
language is the result of an engineering tradeoff between different design goals: on
the one han<L support for reliable software development; on the other hand, ability
to generate efficient code and overall language simplicity.

In fact, first-order predicate calculus would not necessarily be sufficient: many
properties, such as "the graph is acyclic" (a typical invariant clause) are not
expressible in this framework, at least not in any simple way. In such a case a
simple and clear boolean function that looks for cycles is just as convincing.

The use of functions - that is to say, computations - is not, of course, without
its dangers. As opposed to routine bodies, which are software elements, by nature
"prescriptive" and imperative, assertions should belong to the descriptive,
mathematical world of specifications. By re-introducing software (functions) into
the assertions, we let the imperative fox into the chicken coop.

In practice, this means that any function used in assertions must be of
unimpeachable quality, avoiding any change to the current state, and any operation
that could result in abnormal situations. In particular, for reasons that should be
obvious, the assertion monitoring mechanism always disables itself temporarily
when, as part of evaluating an assertion, it must call a function.

1.6 DEALING WITH ABNORMAL SITUATIONS

The preceding discussion provides a convenient basis for discussing a problem that
plagues software developers: how to handle "abnonnal" or "exceptional" cases.
This notion is often defined only vaguely. Here we can provide a more precise
definition: an abnormal case arises whenever one of the parties in a contract is
unable to fulfil its obligations.

Exploring the implications of the contract theory will lead us to a better
understanding of the notion of exception, and to a disciplined set of mechanisms for
dealing with abnormal cases.

1.6.1 Honest contracting

Once the tenns of every contract have been properly laid out, the role of each party
is clear. In particular, the responsibility for ensuring the precondition rests with the
client. (Shifting some of the responsibility to the routine would mean loosening the
precondition; the extreme case is that of a routine with precondition true, for which
all calls are correct.) Thus for any call in a correct software system:

Dealing with abnormal situations 19

• Either it should be demonstrable from the context of the call that the
precondition will be always be satisfied.

• Or the call should be protected by a conditional construct or equivalent.

For example, a call to put should be of the fonn

if t. count < t. capacity then
t.put (x)

else
... Deal with case of full table ...

end

unless it can be inferred from the context that the table may never be full at the
point of the call. 4

This straightforward "a priori" scheme is not always applicable. Even if it is
possible to express the precondition formally, it may be impractical in some
situations to require that clients test it before every call.

Consider for example a class MATRIX , with a function

solution (b: VECTOR): VECTOR

for solving linear equations. Here a.solution (b) is the solution of ax = b. The
precondition for the solution to exist is that the matrix be regular, which may be
expressed by a boolean function regular in class MATRIX. The a priori scheme
would mean that any call of the form a. solution (b) in a client would have to be
protected by a test for a. regular.

In practice, however, testing whether a matrix is regular is essentially the same
problem as solving the equation. More precisely, a standard elimination algorithm
used to solve the equation will detect at some step that the matrix is not regular (by
finding a "pivot" that is zero or, in practice, too small). In other words, non­
regularity is detected as a byproduct of attempting to solve the equation. Few
programmers preoccupied with efficiency would accept to write code of the form

if a.regular then
c := a.solution (b)

else

end

where solution repeats the job done by regular.

In such cases, standard control structures are still appropriate if an a posteriori
scheme is used: attempt the operation, and then see whether it has succeeded. For

4 In this example it may be preferable to add to the class a boolean-valued function full
which indicates whether the table is full. Then the precondition becomes not full, and the
property to be tested by the client becomes not t .full , which is more abstract and avoids the
need to refer explicitly to capacity and count.

20 Design by contract

ex ample t we may replace function solution by a proce~ure solve, such that
a.solve (b) will try to solve the equation (attempCto_solve nught be a better name).
Feature regular is now a boolean attribute t whose value is set .by solve: it will be
true if and only if the operation has succeeded. If so, solve WIll also have set the
value of attribute solution to the value of the solution. The client scheme becomes:

a.solve;
if a.regular then ...

The solution is available here as a. solution ...
else

... Non-regular case ...
end

1.6.2 When standard control structures do not suffice

Combined, a priori and a posteriori techniques cover most of the problems of
dealing with abnonnal cases. There remain three categories of situations, however,
in which they are not sufficient:
1 • Operations whose applicability can only be ascertained by attempting

execution.
2 • Frequent operations with small likelihood of failure.

3 • Software fault tolerance.
The first category covers operations for which, as in the a posteriori case, the

only way to determine the operation's applicability is to try to carry it out; but if it
is not applicable, such an attempt may result in disastrous events. Here are two
typical cases:

• Arithmetic overflow: it is hardly possible to detennine whether a + b will be
representable on the machine at hand without attempting to compute this
sum, but in case of overflow this may trigger a fatal hardware or operating
system event unless you have taken special precautions.

• Input and output: for example, to determine whether a disk write operation is
possible, there is often no other way than to attempt the operation and see
what happens.

As a further example, although it is possible to require clients of a file
operation to test first whether the file exists, such a test is not fully trustworthy:
between the time a client tests for (say) f. readable and the time it reads from f,
some other client may have destroyed the file. This raises the more general question
of adapting the contract theory to the context of concurrent programming, which is
discussed in an article [10] presenting the Eiffel model for concurrent computation
and describing the work currently being carried out in this area.

The second category covers frequent operations with infrequent failure. These
are often basic operations, which we expect to succeed most of the time. Arithmetic
operations, mentioned as part of the first category, are also representative of this

Dealing with abnormal situations 21

one; another example is object creation. We may consider such operations to have
preconditions: for arithmetic operations, the mathematical result must fit in the
machine's number system; for object creation, there must be enough free space
available. In principle, then, we could require clients to perform the corresponding
test before every operation. For example, every object creation would be written

if nocenough_space then
speciaCtreatment

else
... Actual creation ...

end

In such cases, however, the operations are so common that such explicit a priori
checking, or some a posteriori variant, would make the software extremely complex.

The third category reflects the problem of software errors and fault-tolerant
computing. You may have a system that you believe is correct, every call being
executed under the proper precondition. Yet you know that you and the other
developers are only human and may have left an error. If it leads to abnormal
behavior at run-time, you still want to be able to detect it and, at the least, terminate
the execution in an orderly fashion.

Standard control structures cannot fully handle situations in these three
categories.

1.6.3 Traditional eJ{ception mechanisms

To deal with abnormal cases, language designers have introduced the notion of
exception. Well-known languages offering such a facility include CLU and Ada.
But the use of exceptions in such languages is much broader than implied by the
above discussion.

One of the main applications of these exception mechanisms is to separate
textually the treatment of nonnal and abnonnal cases. The design of such language
support for exceptions stemmed in part from a desire to avoid the pollution of
program structure implied by the mixture of "useful" processing and handling of
abnormal cases.

If you have exceptions are your disposal, you will treat an abnonnal case not
by the standard control structure

if something_wrong then
handle abnormal case

else
further _processing

end

or its "a posteriori" counterpart, but (using the Ada scheme as example) by

22 Design by contract

if something_wrong then
raise an_exception

end;
further_processing

The effect of the raise instruction is to interrupt processing and pass control to
another segment of the program. Because raise is a control structure, affecting the
control flow, control is guaranteed never to reach further _processing if
something_wrong was true.

With this technique normal cases (further _processing) are separated from
abnormal ones, handled by exception handlers. An exception handler is a clause
that may be attached to a block or routine, and has the form (again using Ada
syntax)

exception
when excepJ => action!;
when excep2 => action2;

There may also be a branch when others => ... which will catch all exceptions not
explicitly named.

When a raise an_exception instruction is executed, the closest appropriate
handler will be invoked. This is the first handler in the dynamic chain (that is to
say the sequence including the current block or routine, its caller, the caller's caller
etc.) whose exception clause has a when branch listing an_exception or others as
its left-hand side. The corresponding right-hand side will be executed, and control
will return to the caller of the unit to which the selected handler belongs. If no unit
in the dynamic chain is has an appropriate handler, the program as a whole fails,
returning control to the operating system.

Apart from exceptions explicitly triggered by programs through raise
instructions, the underlying hardware and operating system may raise predefined
exceptions such as NUMERIC_ERROR and STORAGE_ERROR. As will be seen
below, predefined exceptions are the most useful because they reflect low-level
failures that programmers may not easily avoid by a priori checks.

But let us concentrate for the moment on programmer-raised exceptions. How
useful are they? To find examples, I surveyed a number of commonly available
Ada textbooks, as well as the Ada reference manual and literature on the CLU
language, which has a different exception mechanism.5 These references yielded
several categories of exception usage.

1.6.4 Ada exceptions

A typical example of when not to use exceptions [13] presents a routine for
computing a square root: 6

sqrt (n: REAL) return REAL is begin
if x < 0.0 then

raise Negative;
else

normaLsquare_rooccomputation;
end if;

exception
when Negative =>

put ("Negative argument");
return;

when others => ...
end sqrt

Dealing with abnonnal situations 23

Here when a square root routine is erroneously applied to a negative argument, the
routine prints an error message and ... returns to its caller! The caller has no way of
knowing that anything out of the ordinary has happened.

This is a rather surprising treatment of an abnormal situation: continuing the
computation as if nothing had happened, using meaningless values. Sure, an error
message will printed somewhere, in an attempt to notify the poor user. Thinking of
a realistic use of this routine, like trajectory computation in a missile control system,
we can only wonder whether the general will see the message on the console before
or after he is hit by the missile sent to the wrong side of the battlefield.

It may be unfair to attach too much significance to this example which, in its
original context, was just meant to introduce the Ada language mechanisms for
exception handling. But its very status of elementary programming example in a
book intended to teach "software development" shows, better than any critic of the
language could ever hope to do, the dangers of an ad hoc exception mechanism; if
the elementary pedagogical examples are that scary, what then must uses of the
mechanism look like in "real-world" Ada programs?

5 The following texts were surveyed. ANSI and AJPO: Military Standard: Ada
Programming Language (American National Standards Institute and US Government
Department of Defense. Ada Joint Program Office). February 17. 1983, ANSI/MlL-STD-
1815A- 1983. Grady Booch: Software Engineering with Ada, Benjamin/Cummings
Publishing Co., Menlo Park (Calif.), 1983. A. Nico Habermann and Dewayne E. Perry: Ada
for Experienced Programmers, Addison-Wesley, Reading (Mass.), 1983. Barbara Liskov and
John Guttag: Abstraction and Specification in Program Development. MIT Press, Cambridge
(Mass.), 1986. Sabina Saib: Ada: An Introduction, Holt, Rinehart and Winston, New York,
1985. Ian Sommerville and Ron Morrison: Software Development with Ada, Addison-Wesley,
Wokingham (England), 1987. Putnam P. Texel: Introductory Ada: Packages for
Programming, Wadsworth Publishing Company, Belmont (Calif.), 1986.

6 In this and subsequent examples, minor changes have been made for consistency; they
only affect letter case, identifier names and indentation. Also, in this particular example, the
word Non_positive, used in the original, has been replaced by Negative.

24 Design by contract

The missing element, wnose absence leads to the dangers so apparent in this
example, is a sound notion of what is "normal" and what is "exceptional", as
provided by the contract theory. Implementing this notion in a programming
language requires an assertion mechanism. This is what Ada lacks.

1.6.5 More uses of exceptions

Other examples use exceptions in a way that appears less harmful but simply
unnecessary.

A CLU-based discussion by Liskov and Guttag [5] considers the example of a
function search which returns an index at which an element x appears in a list [.
When you start from such a specification, you are faced with a definition problem:
what should search return when x does not appear in I?

The solution retained by Liskov and Guttag is to write search as a function
that returns an index if x occurs in 1, and otherwise triggers an exception - which
the caller must then handle.

The use of exceptions for such a simple example appears rather overblown.
Exceptions should be reserved for truly exceptional run-time conditions that cannot
be handled by standard techniques. This view is reinforced by the basic paper on the
the CLU exception mechanism, written by some of the same authors [6], which
states that it is acceptable for an implementation to sacrifice some performance in
the handling of exceptional cases, provided that non-exceptional ones are handled
efficiently. But why should unsuccessful search, hardly an uncommon case, not be
subject to the same efficiency requirements as successful search?

Here, of course, exceptions are not needed. A standard technique is to return a
special value in the abnormal case, say 0 if the range of valid indices for the list is
I.. count. Other solutions rely on the notion of "active data structure" and "cursor"
(see [8], chapter 9).

1.6.6 Handling abnormal cases

In other cases, exceptions are simply there because there is no notion of
precondition or postcondition. In an extract from the Ada Reference Manual, which
has served as inspiration for examples found in many Ada textbooks, a module
implementing stacks (using an array called space) has a pop routine of the form

procedure pop (top: out ELEMENT) is
begin

if count = 0 then
raise Stack_underflow

end if;
top := space (count);
count := count - 1;

end pop;

Dealing with abnonnal situations 25

Clearly, the exception contained in this example (as in the square root example)
corresponds to an unformulated precondition: pop should never be called on an
empty stack.

Although the references surveyed contain a number of similar examples of
raising such an exception, I have found no realistic examples showing how to
handle it. Yet this is the really interesting problem!

Let us try to see how the exception could be handled.

It is improper to add an exception clause to pop and handle the exception
locally, as the routine does not know what to do when it is called erroneously on an
empty stack - in the same way that the above square root routine could not know
how to deal with a negative argument. The responsibility lies with the clients.

In any significant system using stacks in several ways, such as a compiler, any
useful treatment of the exception must be specific to each call to pop. This means
that every routine calling pop must include an exception clause with a branch

[EXC]
when Stack_underflow => ... Instructions to deal with empty stack ...

But does this really make any sense? There are only two possibilities: either
the calling routine is indeed prepared to deal with empty stacks; or it includes no
provision for empty stacks.

In the first situation the exception structure is inadequate: the "Instructions to
deal with empty stack" are in a handler, away from the actual call, and lack the
proper context to know what to do with an empty stack. It would have been
considerably simpler and clearer to write the call using the standard a priori
protection scheme:

[TEST]

if "Stack empty" then
... Instructions to deal with empty stack ...

-- Note that here the proper context is available
else

pop (...)
end

26 Design by contract

where the test for "Stack empty" is a function that any stack module will readily
provide. With this formulation the exception will never occur for this call.

The other situation arises when there is indeed a possibility that the exception
will occur; this means that the call has not been properly protected. But then, using
[EXC] is inappropriate: if the programmer has not overlooked the possibility of an
empty stack, then he could just as well have written [TEST]. When you discover
that you have made an error (forgetting about possible empty stacks) and want to
update the software so as to cancel the effect of that mistake, it would take a rather
convoluted mind to conclude that the needed change is the addition of a new clause
to recover from the resulting run-time failures! The right action is the obvious one:
just fix the bug.

Too often the Ada mechanism lures programmers into believing that by just
raising exceptions they can forget about awkward cases. But in the end this only
makes the system either unsafe or more complicated.

How pleasant indeed our life would become if through some incantations we
could make all special cases vanish, and free ourselves of any need for the
if-then-elses of this world. Alas, the programmer is no Aladdin, and raise is no
good genie.

1.6.7 Fault tolerance

There remains only one type of meaningful handling for an exception such as
Stack_underflow: using the exception mechanism for fault-tolerant programming.
This is the situation, mentioned above, in which you believe that your program is
correct and the exception may never occur; but you are a cautious person, having
perhaps seen too many examples of supposedly correct systems that were not so
correct after all, and want to make sure that if a bug remains the system will end its
operation in a clean state and produce meaningful error messages.

In this case the handler should re-raise the exception, so as to notify the caller.
The exception will be propagated along the dynamic chain; the handler in the main
program (the last unit in every dynamic chain) should print an error message and
terminate execution.

This type of exception handling is supported by the parameterless form of the
Ada raise instruction, which does not name an exception. A parameterless raise
occurring in a handler simply re-raises the exception being handled. The exception
clause of the above square root routine should of course have ended with such a
raise rather than the unacceptable return.

The use of exceptions that we have just seen is a technique for coping with
software errors. The handler is used as a last resort when all normal branches of
the program are unable to cope with the situation. But the exception is not
supposed to arise in nonnal operation of the program. This protective technique -
handlers included for situations that should not occur if the program contains no
error - seems legitimate in view of human imperfection.

Dealing with abnonnal situations 27

1.6.8 Resumption

The above response to exceptions may be described as organized panic: cut your
losses and tenninate the current program unit.

Another legitimate fonn appears in some examples. Sometimes an exception is
triggered because some operation was attempted and failed, but this failure is not
necessarily fatal as in the previous case. It may be possible to fix the conditions that
caused the failure and try again. This form of exception handling is known as
resumption. It is not supported by the CLU mechanism; it may be programmed in
Ada, but often (if one is to judge from the examples surveyed) through rather
complicated control structures.

An example of resumption is provided by a routine that reads integer input
from an interactive user. If the input is incorrect, the routine cannot obtain an
integer, but it can prompt the user for a new value. Whenever possible, such
examples should be implemented by standard control structures, of the fonn:

[LOOP]
"Get user input";
while "Input not correct" loop

end

print ("/ nput must be an integer. Please enter again. ");
"Get user input"

A difficulty arises, however, if "Get user input" is performed by an eXlstmg
low-level routine that will fail if the user's input is incorrect. In Ada, the input
routine will trigger an exception; the client may catch this exception and retry the
operation.

Several of the Ada texts surveyed treat such an example, but they choose the
case in which the input must be one among a small number of character strings
(such as Y and N), for which the above structure, [LOOP], is adequate in any
language.

Transposing the example to integers rather than characters yields the form
shown on the next page. Here the program prompts the user at most five times; this
is achieved through a for loop. Note the necessity to exit from the middle of the
loop by an exit instruction. The final raise instruction is appropriate since the
routine has been unable to correct the failure, and signals it to its caller in the hope
that the caller can deal with it better.

28 Design by contract

for i in 1..5 loop
print ("Enter an integer");
begin

-- An internal block is needed here
-- to introduce a local exception handler

get (answer);
-- answer is an integer variable

exit; -- Leave the loop
exception

end;
end for;

when DATA_ERROR =>
if i < 5 then

print ("Input must be an integer. Please enter again.");
else

raise;
end if;

1.7 PRINCIPLES OF EXCEPTION HANDLING

The first requisite of a well-drawn contract is that a
violation by either party should be easy for the other
party to detect and prove.7

1.7.1 The first law of exception handling

The preceding discussion of Ada exceptions, which applies in part to the CLU
model except for resumption, seems to point to a number of cases where exceptions
do fill a need. But ex.ceptions as they exist in such programming languages
generation are subject to serious criticism.

The first criticism is not meant at the mechanism but at its use, or misuse. We
have seen cases in which exceptions tend to be used although they are unneeded;
standard control structures are much preferable.

The main criticism, however, is the danger of the mechanism, which stems
from the absence of a precise methodological approach of software reliability,
serving as a basis for the exception mechanism. In other words, the notion of
contract is missing.

The exception mechanism of Ada and CLU is not a technique for handling
errors; it is simply a control structure, allowing jumps of a rather bold nature since

7 From: Nathan Rosenberg and L.B. Birdzell, Jr., How the West Grew Rich: The Economic
Transformation of the Industrial World, Basic Books, New York, 1986.

Principles of exception handling 29

their scope is only determined at run-time by the dynamic chain (whereas a goto, at
least, is statically bound). This mechanism is not defined with respect to a precise
view of what a routine is about. Without such a view, exceptions are too easily
misused. Specifically, the mechanism violates the following principle:

First law of exception handling: There are only two ways a routine
call may terminate: either the routine fulfils its contract, or its fails
to fulfil it.

This law may seem trivial at first sight; but it is violated by the Ada exception
mechanism, as evidenced by the square root routine: when that routine is incapable
of fulfilling its contract, it "returns" as if nothing had happened, not even notifying
the caller that an abnormal case was encountered.

This possibility of an Ada routine to fail but "pretend" to its caller that
everything just went fine is probably the most dangerous aspect of the mechanism.
It defeats the whole purpose of routine calling, which is to get some specific job
done. A client may be prepared to deal with a contractor that fails to do its job, but
cannot accept a execution which appears to return when in fact it has not achieved
its stated purpose.

1.7.2 The notion of exception and the second law of exception handling

The discussion so far yields a clear definition of one of the two basic concepts
involved in understanding exception handling - failure:

Definition (failure): A routine's failure is its inability to satisfy its
contract.

The other notion is that of exception itself. Informally, an exception is an
abnormal event occurring at run-time. We can now be more precise, however. At
the beginning of this chapter, we considered a routine performing a task divided into
subtasks:

my_task is
do

subtask 1 ;

subtask2 ;

subtaskn ;

end -- my_task

30 Design by contract

Every one of these sub tasks should have its own contract, and anyone of them
may fail to achieve that contract. Such an event is what causes an exception for
my_task. In other words:

Definition (exception): An exception in a routine's execution is the
failure of anyone of the actions perfonned by that execution.

This definition uses the word "action" although the above definition of failures
applies to "routines". The difference is only a pragmatic one: in principle, we
could consider that in the body of a routine all the actions (the subtaski) are routine
calls. In practice, some of these calls are to predefined actions such as arithmetic
operations or object creations, and do not use the syntax of routine calls. From a
theoretical perspective, however, these actions are equivalent to routines, with a
well-defined contract; just as programmer-defined routines, they may fail to fulfil the
contract.

The definition of exception reflects a corollary of the First Law, which may be
phrased as follows:

Second law of exception handling: A routine's failure must always
cause an exception in the execution of the routine's caller.

As indicated above, this excludes the "dishonest" case in which the routine
hides the failure from its caller. To tell that caller, it must trigger an exception.

1.7.3 Strategies for handling exceptions

It may seem at first that exceptions are not that different from failures. If a routine
uses a certain strategy to achieve its contract, and one of the components of the
strategy (one of the subtaski) fails, doesn't this imply that the routine itself has
failed?

Often - but not always. The difference comes from the possibility of
resumption: the calling routine may have an alternative strategy for achieving its
contract, to which it will resort if the first attempted one fails.

This yields the third and last law:

A disciplined exception handling mechanism 31

Third law of exception handling: There are only two ways a
routine may react as a result of an exception (that is to say, after a
first strategy to fulfil its contract has not worked):

• Put back the objects in a stable state, and make a new
attempt, using the same or another strategy (resumption.)

• Put back the objects in a stable state, give up on the
contract, and report failure to the caller by triggering an
exception (organized panic.)

In both cases the routine must first "clean up its act" by putting back any
objects involved into a stable state. We know of course what this means in practice:
restoring the invariant. This obligation, studied in more detail below, accounts for
the "organized" part of the panic in the second case.

In the resumption case, the alternative strategy may in fact be the same as the
original one. A typical example is the handling of an exception caused by some
malfunction that may be temporary. For example, one of the Eiffel routines shown
below attempts to transfer a messager over an unreliable communication line. If the
transmission fails, the routine just tries again.

Translated into Ada terms, the above two laws imply a strict rule (violated by
the square root example):

Ada exception rule: The execution of every exception handler
should end by either retrying the unit or executing a raise
instruction.

Even if this rule is observed, however, the Ada exception mechanism is still
too general. In particular, it yields a style that seems to require exit instructions and,
in at least some resumption cases, gotos (as seen in the example of 1.8.7 below).
This is all the more worrying that exceptions are already jumps themselves, and, as
noted, fairly wild ones at that.

1.8 A DISCIPLINED EXCEPTION HANDLING MECHANISM

The preceding discussion shows the need for a more disciplined exception
mechanism. It forms the rationale for the mechanism present in Eiffel.

Before presenting the mechanism, it is useful to repeat the methodological
limitations on its use. Whenever possible, special cases should be handled by
standard control structures - not exceptions. The exception handling facilities are
meant for cases that elude these normal structures. The preceding discussion left
only three such cases: operations whose applicability can only be determined by
attempting them, hence risking failure; very frequent operations with infrequent
failures; and fault-tolerant programming.

32 Design by contract

1.8.1 Causes for exceptions

In the execution of an Eiffel system, an exception may occur as a result of any of
the following events:

In practice there are four types of exception:

1 • An explicit assertion is found to be violated: a precondition on routine entry,
a postcondition on routine exit, an invariant at either time.

2 • A called routine fails.

3 • The hardware or operating system sends a signal as a result of some
abnonnal event such as numerical error, input-output error, user interrupt or
memory exhaustion.

4 • An attempt is made to apply a routine to a non-existing object: in x.1 (...),
the fundamental operation in the Eiffel model of object-oriented
programming, x is a a void reference, not attached to any object.

The exception handling mechanism, which follows direcdy from the contract
theory, is very simple: two language keywords, rescue and retry, plus a class in the
basic library, EXCEPTIONS, which is not part of the language proper and not
indispensable for simple uses.

1.8.2 Rescue and retry

What happens when one of the above events causes an exception in the
corresponding routine? The answer is a direct application of the above laws of
exception handling. Only two responses make sense: resumption and organized
panic.

To specify how a routine should behave after an exception, the routine's author
may include a rescue clause, which expresses the alternate behavior of the routine.
The rescue clause is triggered whenever an exception occurs during the execution of
the routine. Execution is interrupted and the rescue clause is executed. The rescue
clause contains one or more instructions; retry may be among them. Execution of
the rescue clause terminates in one of the following two ways:

• If the rescue clause terminates without executing a retry, then the routine
fails; it will report failure to its caller by triggering a new exception.

• If the rescue clause executes retry, then the body of the routine (do clause)
is executed again.

This mechanism satisfies the three laws. When a routine detects that it is
unable to fulfil its contract because an exception has arisen, it is physically
prevented from hiding this fact from its client: it may only return either after one or
more retry that lead to success, or by exiting from the rescue clause and signaling
failure.

A disciplined exception handling mechanism 33

The rescue clause is similar to clauses that occur in human contracts, to allow
for exceptional, unplanned circumstances.

In general, only a few routines in a system will have an explicit rescue clause.
By default, any other routine is considered to have a rescue clause with a null
effect, so that any exception occurring during an execution of the routine will cause
failure. We will see in 1.8.5 that it is possible to override this default rescue
behavior by a class-specific behavior ..

This is all there is to the language mechanism. It is complemented by a class
EXCEPTIONS, available in the basic Eiffel Class library, which provides some
facilities for dealing with exceptions.

1.8.3 Examples

The integer reading routine seen above in Ada may be written in Biffel as follows:

gecinteger Jrom_user: INTEGER is
-- Read an integer (allow user up to five attempts)

local
failures: INTEGER

do
Result := getint

rescue

failures := failures + 1;

if failures < 5 then

end;

message ("Input must be an integer. Please enter again.");
retry

end -- geCinteger Jrom_user

Result, in a function, is the predefined entity whose final value will be returned
by the function; failures is declared as a local variable, initialized to zero at the
beginning of any execution of the routine. (The initialization rules are part of the
language definition.) After five attempts, the function fails, as is always the case
when a rescue clause terminates other than by a retry.

Another example is adapted from one by Booch [2]. We want to compute the
inverse of a real number x, or 0 if the inverse cannot be computed because x is too
small. We assume that in this case an attempt to divide 1 by x would trigger a
predefined (hardware or operating system) exception. Even though the specification
seems simple, it is typical of problems that are almost impossible to solve without
some form of exception handling mechanism. Here we may use a simple scheme:

34 Design by contract

quasCinverse (x: REAL): REAL is
-- l/x if representable, 0 otherwise

local

do
division_attempted: BOOLEAN

if not division_attempted then
Result := l/x

else
Result := 0

end
rescue

division_attempted := true;
retry

end -- quasCinverse

Boolean local variables such as division_attempted are initialized to false on routine
entry.

1.8.4 Discriminating between exceptions

The above rescue clauses do not attempt to discriminate between possible
exceptions. For an exception other than arithmetic overflow (in the last example, if
the interactive user types BREAK during the execution of the routine) you will
probably want the routine to fail.

The EXCEPTIONS class from the Basic Eiffel Library provides a mechanism
for such discrimination: it contains an attribute exception which yields the code of
the last exception, and predefined constants such as NumericaLerror and
Violated_assertion which yield the codes of predefined exceptions. To guarantee that
the retry will only be invoked in the proper case, quasCinverse should be in a class
inheriting from EXCEPTIONS and have its rescue clause rewritten as:

rescue
if exception = NumericaLerror then

division_attempted := true;
retry

end

This way, any exception whose code is not NumericaLerror will cause the routine
to fail rather than return O. The other examples may be similarly adapted.

Class EXCEPTIONS provides a number of other facilities for fine-tuning the
exception mechanism. For example, in addition to the integer code exception, string
attributes yield a character code for the last exception, a plain English explanation
(which may be used to display a message), the names of the class and routine in
which the exception occurred, the object identification etc. The class also introduces
a procedure raise allowing programmers to trigger exceptions explicitly.

A disciplined exception handling mechanism 35

These facilities should be used with care - especially those which make it
possible to ascertain the nature of an exception. As pointed out by Hoare in his
Turing lecture [4]:

The danger of exception handling is that an uexception" is too often a
symptom of some entirely unrelated problem. For example, a floating­
point overflow may be the result of an incorrect pointer used some 43
seconds before; and that was due perhaps to programmer oversight,
transient hardware fault, or even a subtle compiler bug.

In most cases, the rescue clause should treat all exceptions alike; if it does test
for individual types of exceptions, this should be because it is specifically meant for
one of them, as with NumericaLerror in the above example. It should not try to
discriminate between many different cases; more generally, a rescue clause should
be extremely simple and short. Otherwise the danger exists for the exception
mechanism to follow the Ada path and be increasingly used as a substitute for
standard control structures.

1.8.5 Rules on rescue clauses

The rescue clause of a routine describes a standby algorithm that is to be used when
the primary algorithm, given in the body, fails to achieve the contract. The rescue
clause does not, however, attempt to perform the original contract, as expressed by
the postcondition; for if there was a way to achieve this contract in the presence of
an exception, it should be included in the body.

All the rescue clause can do is to "patch things up" (for example, in a data
base transaction, to undo any hannful effect of the aborted operation) and either fail
or retry. In the former case, the rescue clause is still subject to a contract, albeit a
reduced one. This contract does not require the rescue clause to achieve the
routine's postcondition: again, this is not its job. Even though the routine call has
failed, however, it is essential that the failed rescue clause should leave the
corresponding object in a clean state. In Biffel we know exactly what a "clean
state" means for an object: it is a state in which the class invariant is satisfied.

We may deduce from these observations the contract which is imposed on any
branch of rescue clause that does not end with a retry:

• Because an exception may occur at any step during execution of the routine,
the branch may not make any assumption on the state in which it will be
triggered. In other words, it must admit the weakest possible condition,
true, as precondition .

• Because the branch of the rescue clause must leave the object in a "clean"
state, it must admit the class invariant as postcondition.

This yields the formal requirement on such rescue clause branches:

{true} rescuer {lNV}

36 Design by contract

This rule should be contrasted with rule /2/ (pages 14) on routine bodies (do
clauses). A routine body must ensure not only the invariant but also the routine's
postcondition as defined by the ensure clause.

You may think of the body as the cook in a restaurant, and of the rescue clause
as the fire brigade. The cook must serve meals and make sure that the restaurant
does not burn. The fire brigade must return the restaurant to a non-burning state,
but is not additionally required to serve meals to customers. The input
requirements, however, are harder on the fire brigade: whereas the cook may
expect to find the restaurant initially non-burning (invariant) and open
(precondition), there is no such guarantee for the fire brigade, which may be
called at any time, as reflected by the use of true as its precondition.

It was noted above that by default an absent rescue clause is equivalent to one
with a null effect. But developers need the ability to override this default rescue
behavior, since it does not guarantee that the invariant will be restored after a
failure. The exact rule follows from this observation: a routine without an explicit
rescue clause is considered to have an implicit clause of the fonn

rescue
default_rescue

where defaulcrescue is a routine of class ANY, the "universal" library class which,
as guaranteed by the language rules, is an ancestor of every possible class. The
version of defaulcrescue in ANY has a null body; but it is possible to redefine
defauicrescue in any class C to prescribe some non-null behavior. Then if a
failure occurs in the execution of a routine r of C, and r has no explicit rescue
clause, the mechanism will trigger the specific defauicrescue.

Clearly, a class author who suspects that exceptions may occur in routines of
the class, and who does not want to write individual rescue clauses for each of
them, should redefine defauicrescue so as to ensure the invariant. In simple cases
one of the creation procedures of the class may provide a ready-made
implementation for defauicrescue since (as seen in /1/, page 14) the contract of a
creation procedure is precisely to ensure the invariant.

A branch of the rescue clause that ends with retry is subject to the same
requirements as a branch leading to failure, but, in addition to the invariant, must
also re-establish the routine precondition before resumption.

1.8.6 Checking the checker

The requirements on rescue clauses are reflected in the policy implemented by the
Biffel environment at run-time: to avoid infinite loops, the checking of assertions is
turned off during the execution of rescue code (as it is during the evaluation of an
assertion, which may contain calls to boolean functions). This is yet another reason
to make sure that any rescue code (as well as any non-purely-applicative component

A disciplined exception handling mechanism 37

of an assertion) must be of unimpeachable quality. If it fails, there is no guarantee
as to what will happen.

This requirement is not unrealistic. First, any checking method must assume
that the checking mechanism itself is safe; when you allow auditors into a bank:, or
inspectors into a nuclear plant, you have no choice but to hope that they will not
introduce anomalies. Second, rescue clauses and assertions should in practice be
kept clean and simple, enabling easy manual verification that they will indeed work
in all cases.

1.8.7 N-version programming

Our last example of exception handling will be one of resumption. Taken from
Saib [12], it is an elementary case of "n-version programming" [1] - a method
which seeks to attain better software reliability by using methods adapted from
hardware engineering, relying on fault-tolerance and redundancy. Two or more
teams are asked to implement an identically specified module; each version serves
as standby if the other fails.

Regardless of one's judgment about this approach to software reliability, the
example provides a good programming exercise. For purposes of comparison let us
keep Saib's model, which keeps alternating between the two versions as long as one
fails, although in practice it would seem more reasonable to stop if both attempts
fail. Here is the Ada version:

procedure try is begin
<<Start» -- Start is a label
loop

end
end main;

begin
algorithm_I;
exit; -- Algorithm 1 was successful

exception

end

when others =>
begin

algorithm_2;
exit; -- Algorithm 2 was successful

exception
when others => goto Start;

end

The control structure necessary to achieve the result looks rather contorted: two
blocks, two exception handlers, two exits from within a loop, and one goto which
traverses two exception handlers, two blocks and a loop! This would be enough to
bring "structured programming" back into fashion. A much simpler structure does

38 Design by contract

not appear possible with the Ada exception mechanism. Compare the Eiffel version
(which is easy to adapt so as to try each algorithm at most once):

try is
local

even: BOOLEAN
do

if even then algorithm_2 else algorithm_l end
rescue

even := not even; retry
end -- main

The choice between the two versions is left to the reader's taste.

1.9 INHERITANCE AND DYNAMIC BINDING

The contracting paradigm has led us to a new approach to exception handling -
which appears to be safer than existing approaches, while leading to simpler
solutions in many cases.

Another application of this paradigm, which is particularly important for
object-oriented design and programming, is to shed a new light on the concept of
inheritance. The notions of redefinition and dynamic binding, in particular, are much
better understood if we are able to associate a contract with every routine.

The results of the following discussion have played a central role in the design
of Eiffel's inheritance mechanism.

1.9.1 Redefinition

Inheritance is a key aspect of object-oriented programming, permitting the definition
of new classes from previously defined ones. A class that inherits from another has
all the features (routines and attributes) defined in that class, plus its own.

An important technique associated with inheritance is redefinition. Often,
when inheriting from a class, it is necessary to provide new implementations of
some features. For example, an heir to the TABLE class sketched at the beginning
of this paper could include a new definition of put, as follows:

class OTHER_TABLE [T] inherit
TABLE

redefine put end
feature

put (element: n is
do

Inheritance and dynamic binding 39

... New implementation of the insertion operation ...
end; -- put

... Other features ...
end -- class OTHER_TABLE

Redefinition is fundamental for reusability because in practice we can seldom
afford to reuse a software component exactly as it stands: most of the time, some
local adjustments are needed. Inheritance with redefinition provides the appropriate
degree of flexibility, which has no equivalent in other approaches.

Redefinition is complemented by two other extremely powerful techniques:
polymorphism and dynamic binding.

Polymorphism allows assignments of the form

ta := o_ta

where ta is of type TABLE and o_ta of type OTHER_TABLE. In Eiffel, which is a
strictly typed language, this is possible only because OTHER_TABLE is a
descendant (direct or indirect heir) of TABLE: the reverse assignment would be
prohibited.

When a call of the form t •. put (...) is executed, dynamic binding means that
the operation to be executed depends on the run-time form of ta: the TABLE
version will be executed by default, but the OTHER_TABLE version will be
executed after the above assignment.

Dynamic binding is a fundamental technique of object-oriented programming
and has a number of far-reaching implications for software reusability and
extendibility. But it also carries potential risks: what is to prevent a descendant
class (direct or indirect heir) from redefining put into a procedure that actually
performs a deletion or some other operation?

1.9.2 Honest subcontracting

Without assertions and the notion of contracting, inheritance and dynamic binding
may indeed be misunderstood and misused. Contracting provides the appropriate
view: inheritance with redefinition means subcontracting. When, as a contractor,
you are charged with a certain task, you do not always carry it out yourself;
sometimes it it more convenient to turn to somebody else who can do the job better
or cheaper or both.

40 Design by contract

This is exactly what happens with redefinition and dynamic binding: a routine
subcontracts its actual implementation to a version better adapted to the run-time
fonn of its target. For example, the general table insertion routine will subcontract
to a different algorithm for tables of the OTHER_TABLE form. Presumably, this
algorithm will be more efficient than the default in this case; this accounts for the
"cheaper" .

But an honest subcontractor is not permitted to do just anything he likes. If the
original contractor is to fulfil the client's request properly, the subcontractor must be
bound by the same contract. The subcontractor may not place higher demands on
the client - require a 2-hectare plot of land, for example, where the original
requirement was just 1 hectare; and he may not return less than was originally
pledged - a 2-story building rather than the promised 3 stories, or one costing more
than n francs.

These rules are readily translated into rules on the assertions of redefined
routines. The precondition and postcondition of a routine must apply to its redefined
versions in descendants. This is the basic constraint needed to harness the power of
redefinition and dynamic binding.

The exact rule is more subtle. The assertions on the redefined routine do not
need to be exactly the same as those of the original. As noted, the subcontractor
may do the job "better" as well as cheaper. Here there are two ways one may do
the job better:

• By accepting cases which would have been rejected by the original
contractor .

• By returning a better result than initially agreed on.

For example the above subcontractor is certainly permitted to use a technique
that will work on a half-hectare parcel, or to produce a building 4 stories or higher.
For assertions, the rule is expressed as follows:

Redefinition rule: In the redefinition of a routine, the precondition
must be weaker than the original, and the postcondition must be
stronger than the original.

In this definition, an assertion is said to be stronger than another if it implies it; for
example x > 3 is stronger than x > 1. "Weaker" is the reverse notion. (More
correct phrases would be "Stronger [Weaker] than or equal to".)

The possibility of strengthening the postcondition of a redefined routine is
essential in practice, as a redefinition will generally use more specific properties of
the descendant class, adding new properties to the result. For example, a
descendant ARRAY_TABLE of class TABLE, using an array implementation, might
have a new integer attribute insertion_index, now set by put to the value of the
index at which the last insertion was made. The new postcondition will be

fBI
count <= capacity;
item (key) = element;
count = old count + 1;

-- Below is the new clause:
array_item (lascindex) = element

Inheritance and dynamic binding 41

Here array_item (i) is the value of the i -th element of the array.

Another example of postcondition strengthening is the redefinition of a routine
computing a certain mathematical function of the argument, say its cosine, within a
certain precision E.. A redefinition is certainly permitted to provide a better
approximation, say within e 12 of the exact result. What of course it may not do is
to decrease the precision of the result: the client is entitled to a precision of E.

For preconditions, the situation is symmetric. The precondition of put was
count < capacity. In this initial implementation, once a table fills up, clients cannot
insert any more. This will be the case if TABLE relies on a fixed-size
implementation. A descendant may introduce a mechanism which automatically
resizes the table when it fills up. If there is a limit on the number of secondary
blocks, for example ten times the size of the primary table, the new precondition is

count <= 11 * capacity

If the descendant fully removes size limitations, the precondition disappears
altogether, or, formally, becomes true. Both cases are correct since they weaken the
original precondition.

Here again the subcontractor does "better" than required from the original, this
time by being less demanding on its clients: it accepts cases that the prime
contractor would have rejected. What would not be acceptable is a more demanding
subcontractor.

1.9.3 Assertions in redefinitions: the language rule

Since it would place an undue burden on compilers to check that the precondition of
a redefined routine is weaker than the original and the postcondition stronger, Eiffel
directly enforces the above principles through language rules.

In the redefined version of a routine, it is not permitted to have plain require
and ensure clauses. Instead, the precondition and postcondition clauses, if any, must
be of the form

require else
new_pre

and

42 Design by contract

ensure then
new_post

These notations yield the following as new precondition and postcondition for
the redefined version of the routine:

new_pre or else originaLprecondition

new_post and then originaLpostcondition

where or else and and then are the non-commutative versions of the "or" and
"and" operators, which evaluate their second argument only if necessary.

With this rule, the postcondition clause for the redefinition of put mentioned
above (see IBI) becomes simply

ensure then
array_item (lasCindex) = element

which is automatically "anded" with the original to yield the semantics of fBI.
Similarly, the new precondition for an improved version of put may be

require else
count <= 11 * capacity

In this example, the resulting precondition is

count <= capacity or else count <= 11 * capacity

which of course is equivalent to its second term. It is not impossible that a compiler
could simplify such assertions, at least in simple cases such as this one (which
assumes a supplementary assertion stating that capacity is positive).

1.9.4 Documentation

If a class includes redefined routines with new assertions, the question arises of
giving the proper information to a reader of the class text. Clearly, the require else
and ensure then clauses do not suffice in this case, so that the short form of the
class will be insufficient.

This is in fact a consequence of a general problem raised by inheritance: one
cannot fully understand a class without its ancestry. In Biffel, the problem has a
simple solution: flattening.

The flat command of the Eiffel environment reconstructs an inheritance-free
version of a class, with every inherited feature copied from the appropriate ancestor;
renaming and redefinition are of course taken into account, and the class invariant is
expanded so as to accumulate all ancestors' invariant clauses. For a class that has
parents, interface documentation is obtained by applying short not directly to the
class text, but to the flattened version produced by flat.

As an obvious consequence of the redefinition rule, then, flat must expand the
assertions of redefined routines, so as to take into account the original assertions

Inheritance and dynamic binding 43

through the or else and and then operators. (Again, an advanced version of flat
might use the laws of boolean algebra to simplify some of the resulting assertions.)
The "flat-short" interface documentation will then show the correct precondition and
postcondition.

1.9.5 Taking advantage of improvements

Informally, the redefinition rule expresses that the interface specification provided to
clients by a redefined version must be better than the original through a stronger
postcondition and a weaker precondition.

But you will have noted that the clients of the original contractor are in fact
unable to make use of the enhancement offered by the subcontractor: client classes
can only be written in reference to the original preconditions and postconditions. So
even if they end up using the better algorithm thanks to dynamic binding, they can
only rely on the original interface specification.

This means that a client will be able to benefit from the improved performance
that a redefinition may yield (the "cheaper" part), but not from improved
functionality (the "better" part). How useful, then, is it to provide a better
precondition or postcondition?

Figure 1.4: Clients and descendants

The answer is that the enhancement is indeed of no use to clients of the
original contractors, but may be put to profit by direct clients of the subcontractor.
Consider the situation illustrated by Figure 1.4 above (which uses the standard
graphical conventions in Biffel analysis and design, with single arrows for
inheritance and double arrows for clients).

44 Design by contract

OTHER_TABLE is assumed to be a descendant of TABLE offering an
enhanced interface for put (weaker precondition, stronger postcondition). C is a
client of TABLE; it contains code of the form

ta: TABLE;

t. put (...)

Similarly, D is a client of OTHER_TABLE. The designer of C may only rely on
the original assertions, even though at run-time dynamic binding will cause the
OTHER_TABLE version of put to be executed if ta is attached to an object of type
OTHER_TABLE. This will happen for example after an assignment

ta := o_ta

with o_ta of type OTHER_TABLE.

In other words, the contractors' and subcontractors' bureau, although honest -
the result you get is always guaranteed to be at least as good as what you paid for,
and can even be better - is also stingy: you are not guaranteed anything more than
what you paid for.

There is, of course, a way for the client to benefit from the the subcontractor's
improved services: bypass the original contractor and become a direct client of the
subcontractor, without dynamic binding. In Figure 1.4, this means drawing a double
arrow directly from C to OTHER_TABLE. In human contracts too, if you discover
that your supplier uses the services of a subcontractor, you may sometimes decide to
avoid the intermediary - a choice the original contractor will usually not like.

1.9.6 The horrors of static binding

To conclude this discussion of what the contracting theory brings to inheritance, it is
appropriate to take a look at a technique which can only be characterized as a
distortion of the principles of object-oriented programming, although, sadly enough,
it is used in some languages that claim to be object-oriented (but, in an effort to
protect the guilty, shall here remain unnamed).

As noted, redefinition and polymorphism lead to dynamic binding: when we
apply an operation to an object through the notation x ./, we want to use the version
of / that is directly adapted to the nature of the object. If the object is of type D ,
and /, coming from an ancestor C of D, has been redefined for D, then the D
version should be applied.

That x may be declared of type C is irrelevant here: x is a polymorphic entity
which may become attached to objects of various types (all descendants of C, such
as D). This makes it possible for a client to write x./ without having to know what
exact kind of object x will represent at execution-time. But this facility only makes
sense precisely because the client has the guarantee that the right version of / will
be applied in each case.

Inheritance and dynamic binding 45

Static binding, implying that we apply the C variant, would be a gross
mistake: a guarantee that we apply the wrong version!

The principles developed in this chapter provide a more theoretical perspective
for the same arguments. Consider the requirements on an object's lifecycle, as
illustrated by Figure 1.3 (page 12). A routine r, defined in a class C, must preserve
the invariant INV c of C (this is property /2/ on page 14):

{pre, & INV c } do, {post, & INV c }

A version of r redefined in a descendant D of C must preserve the invariant
INV D of this new class, which is stronger than INV c. Calling the redefined version
s:

{pres & INV sub D} dos {posts & INVD }

There is no reason, however, for the original do, to preserve the stronger
INV D' In fact, class C need not know about any descendant that it may have.

Static binding, then, would mean the possibility of applying do, to an object of
type D. Since the C implementation is not required to preserve INV D, this can
produce an inconsistent object (one which does not satisfy its own class invariant),
the worst possible situation in the execution of an object-oriented program, from
which it is essentially impossible to recover (especially since no exception is
triggered, the execution appearing to be normal).

The only argument that can be made in favor of static binding is one of
perfonnance: with static binding, there is no run-time overhead to look for the
appropriate routine. But this argument does not make sense:

• Perfonnance is never an excuse for executing a program incorrectly. If one
drops the correctness requirement, it becomes very easy to write very fast
programs.

• If properly implemented, dynamic binding can be quite cheap. A good
implementation of Eiffel will find the needed routine in constant time (even
in the presence of multiple inheritance), and with an overhead that remains
small compared to the normal cost of routine call in any language.

• In some cases, it is appropriate to get rid of even this limited overhead.
This occurs, for example, when a routine f is never redefined, or when an
entity x is not polymorphic (that is to say, can become attached at run-time
to objects of only one type). Then static binding or dynamic binding have
the same semantics. But the detection of such situations, which requires a
global system analysis, is the job of a computer, not of a human being! It is
far too tedious and error-prone to be left to programmers. In ISE's Eiffel
compiler, the optimizer performs this safe application of static binding to
cases in which it is equivalent to dynamic binding.

46 Design by contract

1.9.7 Inheritance: assessment

The perspective provided by the contract theory seems necessary for a full
understanding of the notion of inheritance. It may in fact contain the root for an
axiomatic semantics of inheritance that would complement Cardelli' s denotational
specification [3].

Redefinition and dynamic binding are too often presented as clever techniques
- almost as tricks - designed to make software more flexible. In the subcontracting
metaphor developed here, these mechanisms take a precise and fruitful meaning. In
particular, we have seen that routine redefinitions should not be arbitrary: they are
constrained by the original assertions. It is the original designer's responsibility to
choose assertions that are precise enough to attach a useful semantics to the routine
throughout its avatars in descendants, yet leave enough room to future redefiners.
Redefinition is a semantics-preserving transformation.

1.10 A PLEA FOR PARTIAL FUNCTIONS

The metaphor of programming as a contractual activity has led us to a number of
important issues of software design: how to deal properly with abnormal cases; how
to devise an exception mechanism that does not violate rules of systematic program
construction; how to harness the power of inheritance.

One of the ideas guiding this discussion has been the inevitability of possibly
partial functions.

In mathematics, a partial function is one which is not defined for some
elements of its source set. Consider for example the inverse function inv on real
numbers, viewed as a function in R""f--t R (where R is the set of real numbers, and
X +7 Y is the set of possibly partial functions with source set X and target set Y).
Function inv is partial since it is not defined for the real number 0.8

In principle, we could always do without partial functions: iff is a function in
X --1-7 Y and the domain of f is A, a subset of X, we can consider f as a total
function in A --1-7 Y. For example, inv is a total function in R • -+7 R, where R· is
the set of non-zero reals. This technique, however, complicates discussions of
functions considerably since it leads to treating functions with different domains,
such as inv, the square root function and the tangent function, as being of different
"types".

In computing, routines are implementations of mathematical functions. Almost
every specification of interest will include operations that are not always applicable;

g As in [9], we call "total" a function in X -+7 Y which is defined for all members of X,
and "partial" a function which is not total, that is to say, such that for at least one member x
of X x is not in the domain of f. "Function" without further qualifier means "possibly
partial function" - that is to say, either partial or total.

A plea for partial functions 47

even the most common "toy" example used in fonnal specification, stacks, has an
operation top for which there is no reasonable. default result when the operation is
applied to an empty stack. This should not be surprising to anyone who has read
this discussion so far: routine top, iin a class representing stacks, will have a
precondition other than true. Such a routine implements a mathematical function
which is partial; it may itself be called a partial routine.

But partial routines are not popular. For example, one recent text on
programming methodology [5] which, not surprisingly, promotes the CLU style of
programming with its heavy reliance on exceptions, states that

Partial [routines] lead to programs that are not robust.

based on the obvious argument that such routines will not work for all calls.

But this argument neglects a fundamental aspect of software design: in the end,
what makes a software system robust or not is not the greater or lesser tolerance of
every individual routine. Once the system has been written, it contains only a fixed
set of calls to each of its routines. So even if the routines are partial the problem of
deciding whether all calls are correct is finite.

The robustness of the system is fundamentally affected, however, by the
coherence of the structure, the consistency of module interfaces, and the simplicity
of each individual module.

These goals are often met by accepting that the functions provided are partial,
so that each program unit may do a well-defined job and do it well without having
to check for a thousand different normality conditions, once it has been determined
that the responsibility for establishing these conditions lies with the clients.

Liskov and Guttag, the authors of [5], rightly warn against the temptation

not to bother with the checks, or to use them only while debugging.

But in many cases there is a quite valid argument for omitting checks: simplicity of
design. If the contracts are spelled out clearly, and a formal enough set of
preconditions and postconditions is associated with the routines, I would venture the
inverse warning: guard against the temptation to overcheck, which will lead to
complex interfaces and over-ambitious techniques (such as unjustified uses of
exceptions), and from there to decreased robustness - which in software is the
almost inevitable consequence of undue complexity.

This view does leave a role for exceptions and recovery techniques, but only as
a general mechanism that monitors the correct execution of contracts and, whenever
possible, attempts to rescue clients and contractors from the failure of either party.

The approach developed in this chapter accepts partial functions as a fact of
mathematical life and their counterparts, partial routines, as a fact of programming.
Rejecting the elusive goal of building systems from components that would work
under any possible circumstances, it prefers to aim at a more modest but perhaps
more realistic principle: making sure that each component of a system, however
humble and partial, states as clearly as possible what it will do, and what it will not
do - which is what contracts are for.

4& Design by contract

REFERENCES

[1] Algirdas Avizl\tnis, "The N-version aproach to Fault-Tolerant Software", IEEE
Transactions on Software Engineering, vol. SE-ll, no. 12, pp. 1491-1501,
December 1985.

[2J Grady Booch, Software Engineering with Ada, Benjamin/Cummings Publishing
Co., Menlo Park (Calif.), 1983 (new edition, 1986).

[3J Luca Cardelli, "A Semantics of Multiple Inheritance", in Semantics of Data
Types, ed. Gilles Kahn, David B. McQueen and Gordon Plotkin, pp. 51-67,
Springer-Verlag, Berlin-New York, 1984.

[4J C.A.R. Hoare, "The Emperor's Old Clothes", Communications of the ACM,
vol. 21, no. 8, pp. 75-83, February 1981.

[5J Barbara Liskov and John Guttag, Abstraction and Specification in Program
Development, MIT Press, Cambridge (Mass.), 1986.

[6] Barbara A. Liskov and Alan Snyder, "Exception Handling in CLU", IEEE
Transactions on Software Engineering, vol. SE-5, no. 6, pp. 546-558,
November 1979.

[7] Bertrand Meyer, "The New Culture of Software Development: Reflections on
the Practice of Object-Oriented Design", in D. Mandrioli and B. Meyer (eds.),
Advances in Object-Oriented Software Engineering, Prentice Hall, 1991. (This
volume.), pp. 51-64.

[8] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 1988.

[9J Bertrand Meyer, Introduction to the Theory of Programming Languages,
Prentice Hall, 1990.

[10J Bertrand Meyer, "Sequential and Concurrent Object-Oriented Programming",
in TOOLS 2 (Technology of Object-Oriented Languages and Systems), pp. 17-
28, Angkor/SOL, Paris, June 1990.

[11J Bertrand Meyer, ElfieZ: The Language, Prentice Hall, 1991.

[12J Sabina Saib, Ada: An Introduction, Holt, Rinehart and Winston, New York,
1985.

[13J Ian Sommerville and Ron Morrison, Software Development with Ada,
Addison-Wesley, Wokingham (England), 1987.

Appendix: further sources 49

APPENDIX: FURTHER SOURCES

The primary source and inspiration for this work is the research on program proving
and systematic program construction pioneered by Floyd [C], Hoare [D1 and
Dijkstra [B1.

The view of programs as computing partial functions plays an important part in
the VDM method as presented in [E], which emphasizes the use of preconditions,
postconditions and invariants.

The approach to inheritance presented here, and the use of assertions in an
object-oriented language, appear specific to Eiffel; more details are given in [I].

Non-object-oriented languages that support assertions include Euclid [F] and
Alphard [K]; see also the Ada-based specification language "Anna" [G]. CLU,
cited in the text, includes non-formal assertions.

Another view of exceptions may be found in [A].

The notion of rescue clause bears some resemblance to Randell's recovery
blocks [J], but the spirit and aims are different. Recovery blocks as defined by
Randell are alternate implementations of the original goal of a routine, to be used
when the initial implementation fails to achieve this goal. In contrast, a rescue
clause does not attempt to carry on the routine's official business; it simply patches
things up by bringing the object to a stable state. Any retry attempt uses the
original implementation again. Also, recovery blocks require that the initial system
state be restored before an alternate implementation is tried after a failure; this is
hardly implementable in practice. No such provision is made with rescue clauses in
Eiffel; the only requirement is that the rescue clause must restore the class invariant
and, if resumption is attempted, the routine precondition.

As it exists in Eiffel, the notion of rescue clause actually derives from a
corresponding formal notion of "surrogate function", also called "doppelganger", in
the specification method and language M [H]. M is a fonnal specification language,
not an executable programming language like Eiffel. Functions in an M specification
may be partial; a surrogate is associated with a partial function, and serves as a
backup for arguments that do not belong to the domain of that function. It should be
mentioned, however, that at the time of writing the design of M has not been fully
ironed out.

[A1 Flaviu Cristian, "On Exceptions, Failures and Errors", Technology and Science
of Informatics, vol. 4, no. 1, January 1985.

[B] Edsger W. Dijkstra, A Discipline of Programming, Prentice Hall, Englewood
Cliffs (N.J.), 1976.

[C] Robert W. Floyd, "Assigning Meanings to Programs", in Proceedings
American Mathematical Society Symposium in Applied Mathematics, vol. 19,
pp. 19-31, 1967.

50 Design by contract

[D] C.A.R. Hoare, "An Axiomatic Basis for Computer Programming",
Communications of the ACM, vol. 12, no. 10, pp. 576-580, 583, October 1969.

[E] Cliff B. Jones, Systematic Software Development Using VDM, Prentice-Hall,
Englewood Cliffs (N.J.), 1986.

[F] Butler W. Lampson, Jim J. Homing, Ralph L. London, J. G. Mitchell and
Gerard L. Popek, "Report on the Programming Language Euclid", SIGPLAN
Notices, vol. 12, no. 2, pp. 1-79, February 1977.

[G] David Luckham and Friedrich W. von Henke, "An Overview of Anna, a
Specification Language for Ada", IEEE Software, vol. 2, no. 2, pp. 9-22,
March 1985.

[H] Bertrand Meyer, "M: A System Description Method", Technical Report
TRCS85-15, University of California, Santa Barbara, Computer Science
Department, August 1986.

[1] Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988.

[J] Brian Randell, "System Structure for Software Fault Tolerance", IEEE
Transactions on Software Engineering, vol. SE-1, no. 2, pp. 220-232, June
1975.

[K] Mary Shaw and others, Alphard: Form and Content, Springer-Verlag, Berlin­
New York, 1981.

