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Abstract. Testing processes usually aim at high coverage, but loops
severely limit coverage ambitions since the number of iterations is gen-
erally not predictable. Most testing teams address this issue by adopting
the extreme solution of limiting themselves to branch coverage, which
only considers loop executions that iterate the body either once or not
at all. This approach misses any bug that only arises after two or more
iterations.
To achieve more meaningful coverage, testing strategies may unroll loops,
in the sense of using executions that iterate loops up to n times for some
n greater than one, chosen pragmatically in consideration of the available
computational power.
While loop unrolling is a standard part of compiler optimization tech-
niques, its use in testing is far less common. Part of the reason is that the
concept, while seemingly intuitive, lacks a generally accepted and precise
specification. The present article provides a formal definition and a set
of formal properties of unrolling. All the properties have mechanically
been proved correct (through the Isabelle proof assistant).
Using this definition as the conceptual basis, we have applied an un-
rolling strategy to an existing automated testing framework and report
the results: how many more bugs get detected once we unroll loops more
than once?
These results provide a first assessment of whether unrolling should be-
come a standard part of test generation and test coverage measurement.

Keywords: testing · loop-unrolling · test-coverage

1 Loops, coverage and unrolling

The issue addressed in this work, both theoretically and empirically, is a basic
question of software testing: is branch coverage, the prime practical measure of
testing effectiveness, justified in its drastic simplification of treating a loop like
a conditional, whose body is executed either once or not at all, even though in
an actual program run the body can be executed any number of times? Should
we instead “unroll” loops, improving the approximation by considering not just
zero or one but any number of iterations, up to a set limit? We will first define
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this concept of unrolling rigorously through a mathematical model. Then, using
a set of practical examples and an automated test-generation framework relying
on formal verification, we will examine how much (if anything) testing strategies
miss when they limit themselves to standard branch coverage and, conversely,
how many more bugs we can find if we unroll loops.

1.1 Loops

A key property of computers is their ability to repeat operations, often many
times. The corresponding construct in programming languages is the loop. (Func-
tional languages use recursion or an equivalent mechanism instead, but this dis-
cussion assumes an imperative language.) In its general form, a typical loop
L may be written until e loop B end, with the following execution behavior:
evaluate e (a boolean expression); if its value is True, do nothing; if its value
is False, execute B (the “loop body”, an instruction or sequence of instructions)
and repeat the entire process from the beginning. The loop can also be writ-
ten while c loop B end where c is the logical negation of e. The two forms are
equivalent; this discussion will stick to the until variant. It can be convenient
to include an initialization clause with the keyword from.

A characteristic of such loop constructs is that it is impossible to predict
statically (in other words, from the program text) how many iterations of B a
particular execution of the loop will produce; different executions, with different
input data, may result in different numbers of iterations. (If the program is buggy,
the loop may also fail to terminate after a finite number of iterations.) This
unpredictability is one of the key challenges of software verification, particularly
automatic test generation and associated measures of test coverage.

1.2 Branch coverage

Defined broadly, test coverage is a criterion assessing what share of a program’s
potential executions a given test suite (a set of tests for the program) exercises.
The reason for defining coverage measures is that if we want to use testing to
estimate the quality of the code, and more specifically the number of remain-
ing bugs (as opposed to using testing just for finding bugs [16]), we face the
obvious obstacle that any realistic program has an infinite or intractably large
number of possible executions, forcing us to select [19] a small subset of them
— the test suite — for the test campaign; but we need to have some idea of
how representative the test suite is of the full set. While many measures of test
coverage have been proposed (see e.g. [1] for a survey), by far the most com-
monly used in industry is branch coverage, which measures the percentage of the
program’s possible control paths (paths in the control flow of the program) being
exercised. “Achieving branch coverage” means reaching 100% of those possible
paths; in practice, many development teams in industry set a lower percentage,
such as 80%, as the condition for shipping a product. While empirical studies
have uncovered the limits of branch coverage, showing in particular [24] (see
also [21] and [6]) that an extensive testing campaign can reach a plateau at over
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90% coverage then continue to find bugs long after that stage, they have not
affected the status of branch coverage as a key criterion in practical software
development.

The definition of branch coverage used in practice makes a critical simpli-
fication with respect to loops. The obvious purpose is to skirt the major issue
mentioned above, the impossibility of predicting how many times a loop will be
iterated. The simplification is, however, drastic: branch coverage considers only
two paths for a loop (Fig. 1), one which executes B once, and one that exits
immediately. In other words, it reduces the loop until e loop B end to a simple
conditional instruction if not e then B end.

Fig. 1. Control flow
for a loop

In the reality of program execution, the set of possible
paths is infinite, following the upward arrow of Fig. 1 an
arbitrary number of times n ≥ 0. As a proxy for actual
executions, branch coverage misses cases in which n is 2 or
more. Since loops are essential to computing, it is remark-
able that such a brutal simplification has not prevented
branch coverage from achieving in software development
a role that industry massively finds essential. It is legit-
imate, however, to ask how much we may be losing by
accepting this cavalier approach to loops; and, pragmati-
cally, whether unrolling is feasible, and will enable us to
find more bugs, the basic goal of testing.

The rest of this article develops answers to these questions. Section 2 intro-
duces a mathematically precise definition of loop unrolling. Section 3 explains
how we added an automatic loop unrolling mechanism to an existing framework
for generating tests automatically, relying on a combination of test and proof
techniques. Section 4 analyzes and evalutes the results. Section 5 reviews exist-
ing work, in particular in an area that is distinct from testing but closely related
to it: model checking, which has introduced the unrolling-like notion of bounded
checking. Section 6 lists threats to validity and open issues. Finally, section 7
presents conclusions that current results suggest as to the suitability of adding
loop unrolling to testing strategies and branch coverage measures.

2 A mathematical definition of loop unrolling

2.1 The need for a theoretical analysis

The notion of loop unrolling is intuitively clear: when we need (for example for
testing purposes) a finite approximation for a loop until e loop B end, with its
potentially infinite set of possible executions, use a set of programs that execute
B not at all, once, twice, three times and so on.

In many cases this intuitive view is correct. For example with a loop comput-
ing the maximum of a non-empty array a indexed from 1 to N, from M :=−∞; i := 1
until i > N loop M := max (M, a [i]); i := i + 1 end, executing the body k times
for k <N will yield the maximum of the array slice at indexes 1 to k, which is
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indeed an approximation of the final result. But sometimes this notion of ap-
proximation is far less clear. Assume for example that M is a positive integer,
possibly large, and consider the loop from x :=−M; i := 1 until x > 0 loop
x :=−M + i; i :=−2∗i end. It yields x =−M +2j for the smallest odd integer
j such that log2(j)> M. For lesser values of j, however, the value of x fluctuates
widely, further off from the result (for even values) than the original approx-
imation M! Unlike with the previous example, iterating the loop body an even
number of times, less than the final number, does not give us an “approximation”
of the result in any intuitive (as opposed to theoretical) sense.

More generally, we should not let ourselves be fooled by the view (informally
OK, but not literally true) that “executing the loop until e loop B end means
executing B 0 times, or 1 time, or any number of times”. Depending on the
details of the loop, certain numbers of iterations — such as, say, 4 iterations —
may not be possible at all. A better formulation talks about executing the body
some number of times (not all possible numbers below the maximum if any).
The rest of this section develops the mathematical theory providing the precise
framework removing any ambiguity or potential confusion.

The theory’s underpinnings come from classic work in denotational seman-
tics [23] (see also [15] and, and [17]) and abstract interpretation [7]. The presen-
tation is based on earlier work [18] which, however, did not involve full proofs
of properties, let alone machine-supported ones. All the formal properties stated
in the present article have been proved and machine-checked using the Isabelle
theorem prover [22] and are publicly available. To facilitate cross referencing,
every theorem stated below comes with a name, such as /Concat_station/ be-
low, appearing in smaller font; the same name appears in the Isabelle files for
the corresponding property and its proof. (Names in all upper case, such as
CONCAT_DEF, also appear in the Isabelle files; they denote definitions and hence
do not require proofs.)

2.2 Assumptions

We consider a loop L in the simple form given above: until e loop B end. The
informal semantics is the usual one: execute the instruction B (“body”) 0 or more
times, stopping as soon as e (the “exit condition”) holds. This discussion studies
how we can — in particular for testing purposes — approximate L by a sequence
of nested conditionals:
L0 = check False end --Inapplicable program

Li+1 = if ¬ e then B; Li end --REC_DEF

(Here an instruction check p end, where p is a Boolean property, has no
effect if p has value true upon execution, and otherwise makes the entire program
in which it appears inapplicable. It corresponds to fail in the trace set model of
section 2.4. One can think of it in practice as causing a run-time crash but more
abstractly it is simply an incorrect instruction. In the special case used here,
check False end, defining L0, is simply a program that is never applicable,
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regardless of the input. Another name for check in some verification formalisms
is assume [14]; check False end is essentially the same as Dijkstra’s “abort” [9].)

Subsequent Li+1, for i ≥ 0, are defined for a growing set of possible inputs:
those that, in each case, require at most i executions of B before rendering e
True.

Why is it important to produce such a sequence of approximations? A number
of applications exist, for example in compiler optimization, high-performance
computing and software verification; the concrete impetus for the present study
is to improve on branch coverage. True “path coverage” would imply covering
any number of executions of B, which is impossible in the general case; branch
coverage goes to the other extreme of restricting that number to zero and one.
Unrolling provides an intermediate solution: “execute” the loop a variable number
of times (not just one), tuning the unrolling level in accordance with the testing
needs and the available computing resources (since a higher level requires more
testing time).

2.3 Notation: traces and states

For the purpose of this discussion, the semantics of a program P is given by the
set Traces (P) of its (finite) traces for any given input. In fact we identify P with
its traces.

A trace x is a finite, non-empty sequence of program states written <x1, x2,
. . . >.

In this definition, a program state is defined by the values of the program
variables (in a general sense, which for an object-oriented program will include
the whole heap) as well as a program location (the indication of which instruction
of the program an execution is currently at). Intuitively it corresponds to what
you see if you stop the program during execution and look at what the debugger
tells you.

If s is a state (an element in a trace) and e is an expression, s[e] is the value of
e in state s. For example if s is the state resulting from executing the instruction
sequence x := 2; y := 5 the value of s[x ∗ y] is 10.

The i-th element (state), of a trace x is written xi. Its length (number of
elements) is written |x|. Since traces are non-empty, |x| > 0 and there always
exists a first state, x1, and a last state, written xL. A trace is “stationary” if
it has only one element, i.e. is of the form <x1>. (In this case x1 is the same
as xL.) A stationary trace corresponds to an empty execution, which leaves the
state unchanged.

A concatenation operator using the symbol “+” is available on traces; for
example, <m, n> + <n, o, p> is <m, n, o, p>. As this example suggests, x +
y is defined if and only if xL = y1: the last element of the first operand must be
the same as the first element of the second one. The common element (n in the
example) appears only once in the concatenation. The intuition behind this rule
is that concatenating two program traces only makes sense if the first program
ends in a state from which the second one can take over.
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Formally, x+ y is defined as the trace z of length |x| + | y| – 1 such that zi
= xi for 1 ≤ i ≤ |x| and zi = yi–|x|+1 for |x| + 1 ≤ i ≤ |z|.

The “+” operator is associative and may be used for more than two operands,
as long as they satisfy the requirement that the final state of every operand is
the same as the initial state of the next.
If x + y = z: --/Concat_assoc/

– If x is stationary, then y = z; if y is stationary then
x = z.

--/Concat_station/

– We say that x is a prefix of z, written x <= z (the
relation is a partial order). If y is not stationary then
x is a proper prefix and we write x < z.

--/Concat_order/

– We also say that z is an extension (resp. proper extension) of x. (y is a
“suffix” of z but we do not need that notion.)

A test is a condition — in other words, a Boolean expression — on states.
A trace x satisfies a test v if s[v] holds for some state s in x. (Remember

that a state includes a program location.)
Theorem: if x satisfies v and x ≤z, then z satisfies v. --/Extension_stable/

2.4 Trace sets

Instructions and programs (in the underlying programming language) will be
defined by their trace sets. A trace set is what the name indicates: a set of
traces.

skip is the set of stationary traces (those of the form <x1>, with just one
state).

fail is the empty trace set. (Note that traces themselves cannot be empty, as
they always have an initial state and a final state —- which are the same for a
stationary trace –– but a trace set can be empty.)

We say that a trace set A tests c, or is a test of c, if it contains a trace
satisfying c.

If A and B are trace sets, A + B, also written A ; B, is the set of traces
{z | ∃x : A, y : B | Z = x+ y} --[CONCAT_DEF]

In other words, the set of all traces obtained by concatenating a trace from
A and a trace from B. Unlike the “+” operator on traces, the “+” operator on
trace sets is defined for any operands. (Non-concatenable trace pairs in A and
B, meaning pairs such that xL ̸= y1, simply do not yield any element of A + B.)

Theorems:
fail = fail ; A --/Concat_fail1/

= A ; fail --/Concat_fail2/
A = A ; skip --/Concat_skip1/

= skip ; A --/Concat_skip2/

The “≤” and “<” operators between traces similarly extend to trace sets: A
≤ B is defined as
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∀x : A | ∃y : B | x ≤ y --And similarly for “<”

Unlike the operator on traces, “≤” on trace set is not an order relation since
it is not antisymmetric.

We can “slice” trace sets by conditions, pre- and post-. If c is a Boolean
expression and A is a set of traces:

Restriction: only retain traces whose initial state satisfies c
c / A ≜ {x: A | x1 [c]} --[RESTRICT_DEF]

Corestriction: only retain traces whose last state satisfies c
A \ c ≜ {x: A | xL [c] } --[CORESTRICT_DEF]

Since we define program semantics by traces, we may use the following no-
tations for programs:
A ≡ B := Traces (A) = Traces (B) --[TRACESET_EQ]

A ∪ B := P such that Traces (A) ∪ Traces (B) =
Traces (P) --[TRACESET_UN]

A ⊆ B := Traces (A) ⊆ Traces (B) --[TRACESET_SUB]

x ∈ A := x ∈ Traces (A) --[TRACESET_MEMB]

2.5 Properties of trace sets

The following theorems (all checked mechanically) express formal properties of
trace sets and other basic mechanisms introduced above.
False / A = fail --/False_restrict/
True / A = A --/True_restrict/
A \ False = fail --/False_corestrict/
A \ True = A --/True_corestrict/
c / (d / A) = (c ∧ d) / A --/Two_restrict/
(A \ c) \ d = A \ (c ∧ d) --/Two_corestrict/
(A \ c) ; (d / B) = (A \ (c ∧ d)) ; B) --/Corestrict_restrict1/

= A ; ((c ∧ d) / B) --/Corestrict_restrict2/
⊆ A ; B --/Corestrict_restrict3/

(A \ c) ; (¬ c / B) = fail --/Corestrict_restrict4/
(A \ c) ; B = A ; (c / B) --/Corestrict_restrict5/
(v / A) ; B = v / (A ; B) --/Restrict_compose/
A ; (B \ v) = (A ; B) \ v --/Compose_corestrict/
v / (A ∪ B) = (v / A) ∪ (v / B) --/Restrict_union/
(A ∪ B) \ v = (A \ v) ∪ (B \ v) --/Corestrict_union/
A ; (B ∪ C) = (A ; B) ∪ (A ; C) --/Compose_union1/
(A ∪ B) ; C = (A ; C) ∪ (B ; C) --/Compose_union2/

If t tests A and A ≤ B, then t tests B. --/Test_leq/
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We will now use these concepts to define programming constructs and what
they test.

2.6 Defining control structures

The standard program instructions and control structures are easy to express as
trace sets.

We have already seen skip (defined as the set of one-element traces) and fail
(defined as the empty trace set).

Sequencing (block structure) has also been defined already through the op-
erator “+” or its equivalent “;”, which corresponds to the use of this symbol of
programming languages. Here it correspondingly concatenates traces.

2.7 Conditional instructions

We define the conditional instruction as
if v then A end ≜ (¬ v / skip) ∪ (v / A) --[COND_DEF]

For the present discussion we will not need the commonly used version of the
conditional instruction including an else part, but adding it is trivial.

The definition corresponds to the intuitive semantics of conditionals: an ex-
ecution of C does nothing if v has value False, and otherwise is an execution of
A.

2.8 The power operator

To define loops in the present formalism, it is useful first to introduce an interme-
diate mechanism, the repetition, or “power operator”, applicable to instructions.
If A is an instruction, Ai denotes A iterated i times (skip for i= 0). The precise
definition is by induction:
A0 ≜ skip --[POWER_BASE]
Ai+1 ≜ (A ; Ai) --[POWER_STEP]

2.9 Loops

We define the loop instruction L, written in programming language notation in
the form until e loop B end, as

L ≜
⋃
i: N

(¬e / B)i \ e --[LOOP_DEF1]

This definition corresponds to the intuitive semantics of loops: an execution
of L consists of 0 or more executions of B, from states in which e does not hold,
such that the last of them produces a state where e holds.

Since the definition is a union, we can equivalently replace each element by
the union of the preceding ones:
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L =
⋃

Li --[LOOP_DEF2]

where
Li ≜

⋃
j<i

(¬e / B)j \ e --[DEF2_Li]

Li describes executions that achieve e by executing B repeatedly, but (strictly)
less than i times. In particular, L0 is an empty set, meaning fail, and
L1 = skip \ e --/Loop_Skip1/

= e / skip --/Loop_Skip2/

We can also express the Li sequence (the sequence whose union of all terms
defines L) inductively as
L0 ≜ fail --/Loop3_L0/
Li+1 ≜ Li ∪ ((¬ e / B)i \ e) --/Loop3_Li/

2.10 A loop as a recursive conditional

One way to look at the loop L = “until e loop B end” is as a solution to the
fixpoint equation
L = if ¬ e then B; L end --[FIXEQUA_1]

Rather than proving directly that loops as defined above (through the se-
quence Li) satisfy [FIXEQUA_1], we consider the following sequence of pro-
grams inspired by this equation:
L0 ≜ fail --[FIXDEF_BASE]
Li+1 ≜ if ¬ e then B; Li end --[FIXDEF_STEP]

= (e / skip) ∪ (¬ e / (B; Li)) --by [COND_DEF]
--/Fixdef2_step/

It yields a proposed alternative definition L for loops:

L ≜
⋃
i:N

Li --[LOOP_DEF3]

As a reminder, the original definition was (after adaptation)

L =
⋃

Li --[LOOP_DEF2]

with Li defined by [DEF2_Li] above.

2.11 The two views are equivalent

We will now prove that the definitions are equivalent, by showing by induction
that Li = Li for all i.

Both L0 and L0 are fail. Then for i ≥ 0: --/Def_equiv/
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Li+1 =
⋃

j≤i(¬e/B)j\e --by [DEF2_Li]

Li+1 = (e/skip) ∪ (¬e/(B;Li)) --by /Fixdef2_step/

= (e/skip) ∪ (¬e/(B;Li)) --by induction hypothesis

= L1 ∪ (¬e/(B;Li)) --by /Loop_Skip2/

= L1 ∪ (¬e/(B;
⋃

j<i((¬e/B)j\e))) --by [DEF2_Li]

= L1 ∪ ((¬e/B);
⋃

j<i((¬e/B)j\e)) --by /Restrict_compose/

= L1 ∪
⋃

j<i(¬e/B); ((¬e/B)j\e) --by /Compose_union1/

= L1 ∪
⋃

j<i((¬e/B); (¬e/B)j)\e --by /Compose_corestrict/

= L1 ∪
⋃

j<i((¬e/B)j+1)\e --by [POWER_STEP]

= L1 ∪
⋃

1≤j≤i((¬e/B)j)\e --Change of index

= L1 ∪ (Li − L1) --by [DEF2_Li]

= Li --("—" is set difference)

--QED

Theorem: Li ⊆ L for every i. (This is also true of
Li since it is the same as Li.)

--/Under_approx/

2.12 Some consequences

We call Li the i-unrolling of the loop L. It is of the form
Li ≜ if not e then

if not e then
B
if not e then

. . .
if not e then

B
check False end --Corresponds to fail

end
. . .

end
end

end
with exactly i occurrences of B (i.e. if i = 0 the instruction fails, if i = 1 it

executes B once or fails, if i = 2 it executes B once or twice or fails etc.). In the
general case, an i-unrolling executes B at most i times if it can do so with ‘e’
each time not satisfied, and otherwise fails.

For every trace x of L, there is a smallest i such that x is a trace of Li. By
the definitions, x is also a trace of Lj for all j > i. (Recall that Li ⊆ Lj .) As a
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consequence, for every test t of L, there is a minimum i such that t is a test of the
i-th unrolling (and all subsequent ones). This development gives the theoretical
framework that we need to unroll loops in the present work’s testing strategy.
The default unrolling level is 1 (we treat a loop like an if . . . then . . . end).
The more we unroll, the more extensive the tests will be.

A “bug” is a test for a specific condition (an incorrectness condition). Note
that since an i+1-unrolling includes all the traces, and hence all the bugs, of
an i-unrolling, the number of bugs found by a test can only be an increasing
function of the unrolling level. (Otherwise, there is something wrong with the
implementation of the strategy.)

3 Implementation: adding loop unrolling to an automated
test generation strategy

An automatic test generation strategy called “seeding contradiction (SC)”, intro-
duced by Huang et al. in [10] (using ideas also applied in other work combining
proofs and tests, such as [20]), allows generating test suites that achieve full
branch coverage. It relies on the AutoProof tool, a program proving framework
internally based on the Boogie prover and an SMT solver such as Z3 [2, 8].
When generating tests for a loop, the SC inserts a faulty clause in the form of
“check false end” (as highlighted in Figure 2) inside the loop body. When the
loop body contains no conditional statement (a plain block), it injects a con-
tradiction clause at the beginning of the loop body (Figure 2 (a)); if there are
multiple branches inside the loop body, it injects a contradiction clause in each
of the branches (Figure 2 (b)).

Fig. 2. Seeding contradictions for a loop

After verifying the seeded version, a program prover will report failures of the
seeded clauses (as the assertions will always fail). It obtains a set of counterexam-
ple models from the underlying SMT solver, from which it produces executable
test cases. Executions of those test cases are guaranteed to go through the lo-
cations of the injected “contradictions” and thus cover different branches in the
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loop body. The SC strategy, however, can only ensure that the generated tests
will enter the loop body, without guaranteeing the number of iterations the tests
will perform. To produce tests that will explore the behaviors of the loop to a
certain level, we extend the SC strategy by incorporating loop unrolling. We call
the extended SC strategy SCU — seeding contradiction with unrolling. To allow
generating tests that traverse the loop body a specific number of times, SCU
performs instrumentation on the code with the loop unrolled to a certain level.

Figure 3 and 4 show the SCU approach. If the loop body is plain, SCU inserts
a clause “check not e end” at the end of each unroll level i ∈ {1, ..., n} (n is the
loop unrolling factor). Adding such an assertion at level i forms a task for the
prover — to find a counterexample for the property “not e” at the end of level i.
If such a counterexample exists, SCU produces a test from the counterexample.
During the execution of the test, the exit condition “e” holds at the end of level i,
which enforces the loop to exit. In other words, the test is guaranteed to exercise
the loop exactly i times.

Verification of the seeded version results in n failures and thus n tests; one for
each unroll level. Note that some of the unrolled levels might not be reachable.
For example, when a loop traverses an array whose size should be less than 10,
the loop body is unreachable at unrolled level 10 or above. In those cases, the
prover will produce no tests for the unreachable levels.

Fig. 3. SCU for plain loop body

If the loop body contains conditionals, for each unrolling level i, SCU pro-
duces a test suite consisting of tests that go through every branch. Figure
4 shows the instrumentation of the unrolled loop, whose body contains two
branches. SCU uses an integer variable bn to distinguish different branches in
the unrolled loop. Let m be the number of branches in the original loop (here
m = 2), the value of bn is in the range [1,m ∗ n]. For each unroll level i, it
identifies different branches by inserting at each of the branch an assignment
“bn := j”, where j ∈ [m ∗ (i− 1) + 1, m ∗ i]. A unique value j identifies each
branch. At the end of each unroll level, it inserts m assertions in the form of
“check not (e and bn = j)”. This assertion assigns a task to the prover to find a
counterexample that will satisfy the property “e and bn = j”. The test produced
from the counterexample is guaranteed to go through the jth branch and estab-
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lish the exit condition at the end of unroll level i. If all branches are reachable at
every unroll level, verification of the instrumented version results in m ∗ n tests.

Fig. 4. SCU for conditionals inside loop body

4 Evaluation

We evaluate the implementation of SCU and discuss the trade-offs between per-
formance and unrolling depth, with the objective to answer the following research
questions:

– RQ1 What is the precise impact of loop unrolling on test generation time?
– RQ2 What is the precise impact of loop unrolling on test execution time?
– RQ3 Does loop unrolling actually lead to test suites that find more bugs?

4.1 Experiment design

The experiment uses 12 examples that contain loops, adapted from examples
in the AutoProof tutorial1 and benchmarks of previous software verification
competitions [25] [4] [12]. Each example contains exactly one loop. Table 1 lists
their characteristics, including implementation size (number of Lines Of Code),
number of branches in the loop body.
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Table 1. Examples

Example Lines of Code #Branches in the
loop

BINARY_SEARCH 67 3
MAX_IN_ARRAY 54 2
SQUARE_ROOT 55 3
FACTORIAL 41 0
GCD (Greatest Common Di-
visor)

128 2

SUM_AND_MAX 57 2
PRIME_CHECK 53 2
LINEAR_SEARCH 45 0
ARITHMETIC_ADD 49 0
ARITHMETIC_MULTIPLY34 0
ARITHMETIC_DIVIDE 32 0
INVERSE 46 2

The experiment applies SCU to generate tests for those routines, with loops
unrolled to different depths from 1 to 15. It then compares the fault-identification
performance of the resulting test suites. For each of the examples, the experiment
creates different faulty variants by randomly injecting errors into the correctly
verified version. To assess the overall performance of each unrolling group, it then
performs for each group 20 repetition runs of the following procedures: generate
tests; run the tests on the faulty variants; collect the faults found during testing.

All sessions took place on a machine with a 2.1 GHz Intel 12-Core proces-
sor and 32 GB of memory, running Windows 11 and Microsoft .NET 7.0.203.
Versions used are: EiffelStudio 22.05 (used through AutoProof and AutoTest);
Boogie 2.11.10; Z3 solver 4.8.14. All code and results are available at https:
//github.com/icst-2025-88/loop_unrolling.

4.2 Analyses and results

Impact on Test Generation Time (RQ1) To answer RQ1: What is the
precise effect of loop unrolling on test generation time?, we measure the test
generation time, including the time for verification and for generating test scripts
from counterexamples. Table 2 shows the test generation time of SCU when
different unrolling depths are applied. In some cases, test generation or executing
the generated tests would become intractable when unrolling depth exceeds a
certain level: the experiment can only handle BINARY_SEARCH and SQUARE_ROOT
up to unroll level 10, and GCD and PRIME_CHECK up to unroll level 8.

When the depth is below 5, a test generation task costs less than 1 seconds for
most of the examples. For those examples with plain loop body (there is no condi-
tional inside the loop), including FACTORIAL, LINEAR_SEARCH, ARITHMETIC_ADD,
ARITHMETIC_MULTIPLY, ARITHMETIC_DIVIDE, the overall overhead roughly grows
linearly as the unrolling depth increases. The time cost remains at the same scale.
In the other 7 examples with branches inside the loop body, the time cost in-
creases gradually at small depths, but the increment becomes more substantial
1 http://autoproof.sit.org/autoproof/tutorial

https://github.com/icst-2025-88/loop_unrolling
https://github.com/icst-2025-88/loop_unrolling
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as the depth becomes larger. The difference of the time cost between the ini-
tial and the final unrolling depths is significant and occurs on different scales.
Those examples contain at least 2 branches in their loop bodies, resulting in the
addition of more contradictory contracts during test generation by SCU.

Table 2. Test generation time

Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BINARY_SEARCH 0.95 0.63 0.80 0.77 0.99 1.33 1.46 1.96 2.77 7.05 – – – – –
MAX_IN_ARRAY 0.18 0.22 0.34 0.38 0.59 0.67 0.90 1.06 1.32 1.70 2.11 2.48 2.94 3.36 5.54
SQUARE_ROOT 0.10 0.21 0.30 0.53 0.53 1.16 1.67 2.97 3.85 6.41 – – – – –
FACTORIAL 0.38 0.10 0.11 0.13 0.13 0.15 0.16 0.19 0.21 0.24 0.27 0.30 0.33 0.35 0.40
GCD 0.09 0.11 0.18 0.39 0.61 0.90 1.70 4.27 – – – – – – –
SUM_AND_MAX 0.18 0.32 0.40 0.50 0.68 0.86 1.10 1.50 1.90 2.46 2.90 3.53 3.80 4.59 6.33
PRIME_CHECK 0.68 0.10 0.12 0.14 0.19 0.21 0.26 0.46 – – – – – – –
LINEAR_SEARCH 0.13 0.12 0.16 0.17 0.19 0.19 0.22 0.25 0.26 0.30 0.28 0.38 0.31 0.38 0.35
ARITHMETIC_ADD 0.08 0.11 0.13 0.16 0.17 0.19 0.21 0.25 0.27 0.29 0.34 0.36 0.40 0.42 0.46
ARITHMETIC_MULTIPLY0.09 0.10 0.12 0.14 0.16 0.19 0.21 0.24 0.26 0.29 0.33 0.37 0.37 0.45 0.45
ARITHMETIC_DIVIDE 0.07 0.09 0.11 0.13 0.18 0.19 0.22 0.25 0.27 0.30 0.40 0.38 0.44 0.67 0.54
INVERSE 0.14 0.20 0.29 0.40 0.51 0.62 0.79 0.97 1.12 1.27 1.48 1.68 2.0 2.32 2.57

Impact on Test Execution Time (RQ2) To answer RQ2: What is the precise
effect of loop unrolling on test execution time?, we measure the execution time
of tests generated with different unrolling depths. Table 3 displays the average
execution time for the tests of each unrolling group across the 20 runs. Overall,
the test execution time increases linearly with the unrolling depth, remaining
relatively small — under 0.5 seconds in most cases. The test execution time
for FACTORIAL is notably high, as its contracts rely on a recursive function, the
evaluating the correctness of the contracts incurs additional time cost. The in-
crement in test execution time for BINARY_SEARCH is more substantial than the
others, as it involves an array whose size grows exponentially with the unrolling
depth. When the unrolling depth reaches 8, the size of the input array becomes
considerably large, requiring more computational resources and time. This re-
sults in a significant increase in the execution time when depth rises from depth
8 to 10.

Table 3. Test execution time

Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BINARY_SEARCH 0.09 0.13 0.13 0.14 0.15 0.19 0.24 0.44 1.04 3.04 – – – – –
MAX_IN_ARRAY 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.12
SQUARE_ROOT 0.01 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.06 0.07 – – – – –
FACTORIAL 5.99 9.55 13.06 16.65 20.16 23.72 27.26 30.87 34.46 38.14 41.78 45.32 48.94 52.58 56.22
GCD 0.01 0.01 0.02 0.03 0.04 0.04 0.05 0.06 – – – – – – –
SUM_AND_MAX 0.01 0.01 0.02 0.03 0.04 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.11
PRIME_CHECK 0.01 0.02 – 0.02 0.03 0.04 0.05 0.06 – – – – – – –
LINEAR_SEARCH 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.12 0.13
ARITHMETIC_ADD 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.10 0.11 0.12
ARITHMETIC_MULTIPLY0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
ARITHMETIC_DIVIDE 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.09 0.10 0.11 0.11 0.12
INVERSE 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.08 0.09 0.09 0.10 0.11 0.12
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Effectiveness of SCU (RQ3) To answer RQ3: Does loop unrolling actually
lead to test suites that find more bugs?, we run test suites generated with different
loop unrolling depth and collect number of detected faults. A test suite generated
in a run may contain several test cases that uncover the same failure (violation
of the same contract) multiple times. To avoid the resulting redundancy, the
experiment only collects distinct faults. A distinct fault is identified by a unique
tuple:

< program variant, tag of failed contract, line number >

The evaluation of the performance of fault detection in each unrolling group
of a class c uses the following two criteria:

– Np: the number of distinct faults detected per run, which can be defined as
a function:

Np(i) =

20∑
j=1

|Fc(i, j)|

20

where F (i, j) is the set of distinct faults found at the jth run (1 ≤ j ≤ 20)
with unrolling depth i. Np(i) represents the average performance of fault
detection of unrolling group i. Np(i) is necessary for the assessment, as dif-
ferent test generation runs use different random seeds (for SMT solving),
resulting in different test suites and hence in different detected faults.

– Na: the number of all distinct faults that appear during the 20 repetition
runs of that group, which can be described as a function over the unrolling
depth i:

Na(i) = |
20⋃
j=1

Fc(i, j)|

Informally, Na(i) represents the number of faults that can be found by un-
rolling group i when the experiment repeats the test generation a sufficient
number of times.

Table 4 and Table 5 display the results of Np and Na of the 12 examples. Total
sums up the number of faults of all the examples. Overall, the execution of the
generated tests detect 251 distinct faults during the experiment.

The result a significant improvement in fault detection as unroll depth in-
crease: an average test suite produced by SCU is able to find 63.7% (Np(1) =
159.75) of all distinct faults with unrolling depth of 1, while unrolling the loop
5 times effectively uncovers over 80% (Np(5) = 202.85) of all faults. Con-
sidering all 20 runs, tests generated at unroll depth 1 is able to find 69.3%
(Na(1) = 174) of all faults; unrolling the loop 5 times is good enough to detect
96.4% (Na(5) = 242) of the faults.

For most of the examples (10 out of 12), increasing the unrolling depth indeed
helps in finding more faults. The benefit is most significant for BINARY_SEARCH,
GCD SUM_AND_MAX, SQUARE_ROOT, and FACTORIAL. For some examples, the bene-
fits brought by unrolling is minimal, typically resulting in only 1 or 2 additional
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faults detected; those examples include MAX_IN_ARRAY, ARITHMETIC_MULTIPLY,
ARITHMETIC_DIVIDE, INVERSE, PRIME_CHECK. In the cases of LINEAR_SEARCH and
ARITHMETIC_ADD, however, unrolling appears to have no impact, with no addi-
tional faults detected as the unrolling depth increases. Both examples involve
straightforward operations within the loop: LINEAR_SEARCH iterates through el-
ements, while ARITHMETIC_ADD performs simple addition; they only alter the
value of just a single variable. The result suggests that loops with more complex
conditional statements or intricate data dependencies are more likely to benefit
from unrolling. In contrast, loops with simple operations like basic summation
or iterating through array elements see little advantage from unrolling; the faults
in these cases seem identifiable without requiring deeper unrolling.

Table 4. Performance of bug detected per run (Np)

Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BINARY_SEARCH 25.5 31.7 35.55 38.1 39.15 39.95 41.05 41.8 42.25 42.8 – – – – –
MAX_IN_ARRAY 4.9 5.25 5.45 5.45 5.5 5.5 5.55 5.55 5.55 5.6 5.65 5.7 5.8 5.8 5.8
SQUARE_ROOT 16 18 18.85 18.95 18.95 18.95 18.95 18.95 19 19 – – – – –
FACTORIAL 10 17 17 17 17 17 17 17 17 17 18 18 18 18 18
GCD 13 19 19.8 19.9 19.95 20 20 20 – – – – – – –
SUM_AND_MAX 8.1 13.35 13.55 14.25 15.1 16.45 16.5 16.65 16.85 17.25 17.4 17.8 17.85 18.15 18.15
PRIME_CHECK 22 22 22 22 22 22 22 22.55 – – – – – – –
LINEAR_SEARCH 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
ARITHMETIC_ADD 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ARITHMETIC_MULTIPLY9 9.5 10 10 12 12 12 12 12 12 12 12 12 12 12
ARITHMETIC_DIVIDE 10.5 11.5 11.5 11.5 12 12 12 12 12 12 12 12 12 12 12
INVERSE 19.75 19.95 20 20.1 20.2 20.2 20.3 20.5 20.6 20.6 20.6 20.6 20.8 20.8 20.9
Total 159.75188.25194.7 198.25202.85205.05206.35208 – – – – – – –

Table 5. Performance of bug detected over all runs (Na)

Example 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BINARY_SEARCH 34 51 59 64 69 71 72 74 74 74 – – – – –
MAX_IN_ARRAY 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SQUARE_ROOT 16 19 19 19 19 19 19 19 19 19 – – – – –
FACTORIAL 10 17 17 17 17 17 17 17 17 17 18 18 18 18 18
GCD 13 19 20 20 20 20 20 20 – – – – – – –
SUM_AND_MAX 9 16 16 20 20 22 22 22 22 22 22 22 22 22 22
PRIME_CHECK 22 22 22 22 22 22 22 23 – – – – – – –
LINEAR_SEARCH 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
ARITHMETIC_ADD 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ARITHMETIC_MULTIPLY13 14 14 14 14 14 14 14 14 14 14 14 14 14 14
ARITHMETIC_DIVIDE 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12
INVERSE 20 22 22 22 22 22 22 22 22 22 22 22 22 22 22
Total 174 219 228 237 242 246 247 250 – – – – – – –
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Fig. 6 and Fig. 5 depicts the changes of faults detected in percentage when
the unroll depth increases. This percentage is computed by dividing Np and Na

by their maximum values appear during all testing sessions. The result shows
that in most cases, when the depth is small (less than 5), the curves rise rapidly,
suggesting significant improvements in fault detection. The most significant im-
provement occurs when the depth increases from 1 to 2, which results in an
improvement of Np by 11.3% and Na by 17.9%. As the depth exceeds 5, the
effect of unrolling on fault detection diminishes. Increasing the depth from 5 to
8 yields only a modest improvement of 2.1% for Np and 3.6% for Na, both of
which are less substantial than the gains observed at small depths.

Fig. 5. P (Np): the percentage of faults detected per run at different unrolling levels.

The results presented, while still applied to a small set of examples, speak
largely for themselves. It is striking to see how much branch coverage — the gold
standard of the testing industry, which in fact often defines a goal of only 80%,
with many teams satisfying themselves with much less — misses many bugs that
unrolling discovers, and continues to discover as the unrolling depth increases.
For automated test generation methods like SC, incorporating unrolling as an es-
sential feature seems crucial. Further research and validation would be beneficial
to explore this assertion more thoroughly.

5 Related work

One of the software verification technique that embodies the concept of loop
unrolling is Bounded Model Checking (BMC) [3], which reduces model check-
ing of linear temporal logic (LTL) formulas to propositional satisfiability. BMC
operates by unrolling the transition relation of a finite state machine for a fixed
number of steps k, and then checking whether a property violation can occur. If
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Fig. 6. P (Na): the percentage of faults detected over all 20 runs at different unrolling
levels.

no violation is found, k is increased, and the process is repeated. This approach
allows for a systematic exploration of the state space, with the bound k serving
as a parameter to control the depth of the search.

The approach of this article, while similar in its unrolling technique, con-
structs different properties: if a prover finds a counterexample to an assertion,
this counterexample serves as a test case, guaranteed to reach both the desired
depth in the loop and the specified position within the loop body. Another
distinctive property of the present work lies in its treatment of unwinding cor-
rectness. In the BMC literature, the correctness of unwinding is often assumed,
either treated as self-evident or accepted axiomatically. The research reported
here goes beyond this assumption: we provide a formal proof demonstrating the
equivalence between the unrolled loop and the original loop structure.

Two notable tools that implement BMC are CBMC [13] and JBMC [5], which
verify C and Java programs against the annotated assertions, with loops un-
rolled to a given depth. They can also be used as test generation tool, which
automatically generate tests that satisfy a certain code coverage criteria. This
concept of loop unrolling has also been integrated into a test generation tool
PathCrawler [26, 27] which performs unit testing of C programs to obtain path
coverage. It reduces the problem of covering all loop paths in a loop is to a k-path
objective with the aim of covering loop paths within k loop iterations. Compared
to the present work, such tools apply the idea of loop unrolling to either improve
the efficiency of exploration of systems’ behaviors or to systematically cover dif-
ferent loop paths.

Like the present work, Huster et al. [11] went beyond the traditional criterion
of branch coverage and proposed an approach to detect more possible failures
by explicitly addressing various patterns of loop iteration orders. They group
iteration orders that influence one another into equivalence classes based on how
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the current loop iteration affects the next, thereby reducing the complexity of
covering all possible loop path variations.

6 Threats to validity and open issues

A limitation of the present work is the small size of the sample set of programs,
and the small size of these programs themselves. Although some of them are real
software elements (extracted from widely used libraries), they are not represen-
tative of large-scale production programs. They do, however, include significant
loops, some of them sophisticated, and so provide a credible basis for studying
the potential effects of unrolling.

Another issue is that many of the bugs (although not all) are seeded, rather
than being actual bugs found in released code.

Also limiting the generalization of the present results is the use of an au-
tomated verification framework, AutoProof and the associated “seeding contra-
diction” test-generation framework of Huang et al., which at this stage is still a
research tool rather than a deployed production environment.

While the results obtained in the experiments reported above seem strongly
to suggest that loop unrolling may be feasible without an undue effect on testing
time, they do not clearly uncover a “magic unrolling number” — an absolute
constant N which would enable us to give a general rule-of-thumbs advice to
practicing software developers, as in “unroll 5 times and you will be OK most
of the time”. Looking at Fig. 6 and Fig. 5 does suggest that something around
N = 5 would make sense, but one would need numerous experiments on large and
representative code examples before such an initial heuristic would have enough
confirmation to warrant inclusion into standard industry guidelines. We hope
that the present work provides a solid basis for performing such experiments
leading to firm empirical conclusions.

7 Conclusion

This paper has pursued both a theoretical aim and a practical one. The theoret-
ical contribution is to provide a simple and sound mathematical theory of loop
unrolling, avoiding the ambiguities and confusions that may result from a purely
informal approach; all the corresponding properties come with a mechanically-
checked proof with a leading proof tool, Isabelle. The practical contribution is
to apply this theory to generate loop-unrolled test suites for a number of exam-
ples, of which some involve sophisticated loops. With the qualifications given in
the previous section, the results indicate that: (1) Standard branch coverage, by
ignoring loop body repetitions, does miss a significant number of bugs. (2) It is
practically possible to correct this deficiency by adding automatically unrolled
versions of loops to a test suite. (3) For small unrolling levels, the time penalty
is reasonable, and justified by the potential for finding extra bugs. (4) The clear
bug-finding outcomes confirm the usefulness of using a formal verification frame-
work and applying it to generate high-coverage test suites, as exemplified in
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recent research efforts at the frontier of tests and proofs, two complementary
techniques of program verification.

We hope that these steps provide important information on an essential,
if often overlooked, issue of software engineering: is the cavalier attitude that
the industry commonly applies to loops, by ignoring the property that actually
defines the concept of loop (the ability to repeat instructions!), justified — and
should we not do better?
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