

Software engineering as a domain to formalize

Bertrand Meyer
(with Jocelyn Fiat and Javier Velilla)

Abstract—Software engineering concepts and processes are
worthy of formal study; and yet we seldom formalize them. This
“research ideas” article explores what a theory of software
engineering could and should look like.

Software engineering research has developed formal
techniques of specification and verification as an application of
mathematics to specify and verify systems addressing needs of
various application domains. These domains usually do not
include the domain of software engineering itself. It is, however,
a rich domain with many processes and properties that cry for
formalization and potential verification.

This article outlines the structure of a possible theory of
software engineering in the form of an object-oriented model,
isolating abstractions corresponding to fundamental software
concepts of project, milestone, code module, test and other
staples of our field, and their mutual relationships. While the
presentation is only a sketch of the full theory, it provides a set
of guidelines for how a comprehensive and practical Theory of
Software Engineering should (through an open-source
community effort) be developed.

Keywords—formal methods, theory of software, formal
modeling, object-oriented modeling.

Can software engineering apply one of the most powerful
ideas it has developed over several decades, formal
specification, to itself? This note suggests that formalization
of software engineering concepts is a worthwhile endeavor
and proposes basic elements of such a project – essentially, an
ontology of the core concepts of our field – with the intent of
starting, if there is enough interest, a community-based effort
to produce a widely-accepted model and supporting tools.

Formal methods are mathematical techniques for
specifying elements of a certain IT-related problem domain
and serve as a basis for verifying that they possess certain
properties. It is necessary for this definition to indicate “IT-
related”, since otherwise it would just characterize the
scientific and engineering method in general (physics, for
example, could then be recast as “formal methods” for
studying certain natural phenomena).

The principal IT problem domain to which formal
methods have been applied so far is programming: we specify
the requirements of a system, meaning the objects that it
manipulates and their desired properties, as a basis for
verifying rigorously whether a proposed implementation (a
program) satisfies those requirements.

Software engineering includes much more than
programming, but little in it beyond programming has been
formalized. (There have been a few notable attempts in this
direction, some of which are cited in Section II.) The field
could benefit from such systematic efforts to understand and
describe the concepts of our field in a precise form permitted
by formal methods. Any such formalization should include
not only definitions of the basic concepts (such as product,
team member, delivery, module, deadline, requirement
element, test case, test suite, test oracle, milestone…) and
axioms expressing fundamental properties (for example, a

product on which a developer works must be part of a planned
delivery).

This combination of definitions, axioms and theorems
makes up what in science is called a theory, providing a
precise formalization of a problem domain. We are used to
theories in programming, with examples such as axiomatic
(Floyd-Hoare-Dijkstra) semantics, model checking or abstract
interpretation, as well as theories of algorithmic complexities.
Here the aim is the same, but the objects of discourse are the
basic constituents of the software engineer’s job.

Modeling these “objects” will, in the developments below,
rely on object-oriented techniques, whose basic guidance is to
look for the right abstractions, here abstractions of software
engineering, classifying these abstractions through
inheritance, and specifying their properties through types and
logical properties (contracts).

The present article is a step towards such a theory; it
describes how such a formalization of the software
engineering domain could look like. It does not, of course,
provide the theory, a goal which would require a series of
detailed articles each formalizing an area of software
engineering, or perhaps a textbook, a kind of formal version
of SWEBOK, the Software Engineering Book of Knowledge
[1]. It is intended to provide some basic elements and foster
further discussion and elaboration of actual, detailed theories
which would stand a good chance of wide adoption.

Benefits to be expected of undertaking such efforts
potentially include:

• The ability to define accepted “best industry practices”
in a precise way.

• The ability to determine precisely whether actual
practices conform to them, and to write tools that will
perform such verifications.

• The ability to define both standard processes (say,
waterfall or scrum) and organizations’ own variants
(with, for example, a company has defined its own
process which is based on Scrum but includes elements
of DevOps and company-specific extensions).

• The ability to determine whether the practice of a
project actually meets the process specification, again
with tools to support that verification.

• The ability to prove that certain systems or processes
satisfy stated properties.

• Support for certification (for example, CMMI or ISO).

• The ability to develop better tools, in particular project
management tools, as they can (unlike general-purpose
tools supporting management of projects of any kind)
rely on a precise model of software-specific concepts.

• Support for teaching software engineering in a more
systematic and productive way.

• On a purely intellectual level, a better understanding of
software engineering (as always follows, in any
problem domain, from a formalization effort leading to
a high-quality result).

PREVIOUS EFFORTS
The observation that software is worth formalizing is by

itself not new; it goes back at least to Osterweil’s classic
article [2][3] from 1987, whose title is by itself a manifesto:
“Software processes are software too”. Osterweil did not
attempt to formalize software in a mathematical way, but
emphasized that software processes are worthy of systematic
analysis. Interestingly, he found it necessary to design a
language (in today’s terminology, we would say a DSL, a
Domain-Specific Language). The underlying theory is not,
however, spelled out, and the fame of the paper has not led to
the spread of tools relying on its concepts.

Another early attempt was the “Software Knowledge
Base” [4], which sketched a relational theory of connections
between software elements. It mostly focused, however, on
modules and other program elements, rather than general
artifacts and processes of software engineering.

SWEBOK, already cited, is a major achievement having
codified much of the known understanding of software
engineering and its best practices. SWEBOK is, however,
largely informal. Typical of countless examples is the
definition of “architecture evaluation”:

This definition is precise and useful, but upon seeing it any
practitioner of formal methods will feel an itch to get to work:
we have a number of concepts (ASRs

Another difference with the goal of providing a theory of
software engineering is that SWEBOK is not just descriptive
but normative: it intersperses descriptions of software
concepts with prescriptions of how to handle them according
to industry best practices. That feature is part of the charter of
SWEBOK but a theory must focus on the descriptive (not
mixing “news” and “editorial”). Defining speed, as the
quotient of distance traveled to time to travel it, comes
separately from (and before) enacting speed limits.

The CMMI standard originating with the US DoD [5] also
includes an extensive definition of principles and
“disciplines”, which provide a rich set of definitions of
essential concepts of software engineering. Like SWEBOK,
however, it remains at the level of English descriptions and
does not come close to a full-fledged theory of the field.

The SEMAT effort [6] was proudly announced in 2009 in
an article [7] proclaiming that “methods need theory” and that
the field of software engineering requires a strong theoretical
basis. The result so far has been the “Essence” methodology
whose specification [8] includes useful definitions of basic
concepts, for example (section 4 of that document):

The description, however, remains at the level of an
English text, with no attempt at a more systematic
formalization. In addition, Essence is not a full-fledged theory
of software engineering but a method (somewhat
paradoxically, since the original SEMAT manifesto [7]
announced an attempt to end the proliferation of methods).
Being a method rather than a theory, Essence is like
SWEBOK prescriptive and not just descriptive. In addition it
does not just address well-known concepts of software
engineering but contains “original research” in the sense of
Wikipedia [9] (which prohibits such elements in its own
articles), such as “Alphas” (“Abstract-Level Progress Health
Attributes” [6]), a powerful concept but not one that has yet
gained wide acceptance in the field. We may expect of a
theory that it will focus on classifying and specifying
generally recognized fundamental notions of the problem
domain.

All these efforts provide important definitions and
analyses, which any attempt to formalize the field must take
into account. They do not, however, provide the formalization
itself.

CONVENTIONS
The rest of this presentation, while also not providing full

formalization, will give some elements of what such a
formalization will look like. Rather than fully formal, it
combines elements of three kinds: explanations in plain
English, graphical illustrations, and precise specifications.
This approach, intended for readability, is inspired by an
earlier article on “multirequirements” [10], which presents a
specification methodology integrating these three levels of
presentation.

One of the goals is to come up, after community
discussion, to a widely accepted model – an ontology and
taxonomy – of all the fundamental concepts and tools of
software engineering, their properties and their mutual
relations. The examples below are drawn from a first version
which I developed with Jocelyn Fiat and Javier Velilla from
Eiffel Software. It is in a GitHub repository that we are
preparing to make public.

The precise specification part does not use a mathematical
specification language, but a programming language also
intended as a specification vehicle: Eiffel [11]. The advantage
is to have a readable notation and to benefit from the
structuring mechanisms of object-oriented modeling with
classes, client-supplier relations between them, inheritance
(for classification) and, to describe logical constraints,
“contracts” (preconditions, postconditions, class invariants).
The use of Eiffel as a specification formalism has been widely
described (see e.g. [14]). The description could be expressed
in another contract-equipped object-oriented notation such as
JML [12] or, losing the object-oriented modeling facilities, a
formal specification language such as Z [13].

The graphical notation is BON, Waldén’s and Nerson’s
Business Object Notation [15] [16], a graphical notation for
expressing object-oriented system structures. They can readily
be translated into UML, but BON rests only on a small number
of graphical conventions and supports Design by Contract
concepts. The BON diagrams appearing below are produced
automatically from Eiffel code (or the other way around) by
the EiffelStudio IDE [17].

A Method is the composition of a Kernel and a set of
Practices to fulfill a specific purpose.

The style of the presentation can be described as “mock
tutorial”: we give a few glimpses of what a theoretical
presentation of selected software engineering concepts would
look like. As mentioned, the presentation is very partial (hence
“glimpses”); in addition, while we expect the reader of the
present article to know (for example) what a software project
and a milestone are, the idea is to sketch how a full-fledged
theoretical description would present the entire field to a
student discovering it (the goal of any comprehensive theory).

The various levels (English, graphical, formal) can refer to
each other. In the English text, the phrase “an A” where A is
the name of a class in the formal text means “an instance of
A”, for example “a MODULE” or “a PROJECT”. (We do not
change in the plural, e.g. “two MODULE” without an “s”.)

PROJECTS
Although it is possible to enter the software engineering

world from many sides, one of the universals of the field is the
notion of project. Fig. 1(after the bibliography) shows the
overall “project” cluster. (A cluster is a group of classes, also
called a package in some OO languages.) Here are some
multirequirements-style elements of explanation.

A project is intended to produce a certain collection (SET)
of PRODUCT and has a sequence (LIST) of MILESTONE:

A PRODUCT, as shown, can have sub-products:

A project MILESTONE is defined by a set of
PRODUCT_INCREMENT that the milestone must produce.
A PROJECT_INCREMENT (which could also be called
PRODUCT_VERSION) can be a new product, a
PRODUCT_CREATION, appearing with the particular
milestone, or a PRODUCT_UPDATE providing a new
version of a product that was already present.

An important benefit of the OO approach to modeling relying
on inheritance is that it does not require us to list possibilities
exhaustively, as in “a product increment is either a product
update or a product creation”. Producing such closed lists is
dangerous in the process of building a theory, as it makes it
hard to add new variants later on: each time there is the risk
of having to revisit and update many other parts of the theory
that relied on the knowledge of the exact initial list. With
inheritance (applying the “Open-Closed Principle”), we do
not close such sets of variants of a basic notion but list
variants individually: a PRODUCT_UPDATE is a kind of
PRODUCT_INCREMENT; a PRODUCT_CREATION is
another kind; and so on, but we do not preclude adding new
kinds later on as the theory develops and covers more ground.
Such additions do not normally imply updating the parts of
the theory that have already been developed.

A PRODUCT_INCREMENT of any kind only makes
sense if it is relative to a PRODUCT addressed by the project.
(The PRODUCT is a software artifact, such as a code
MODULE or a TEST_PLAN; a PRODUCT_INCREMENT
is a version of that PRODUCT). One of the roles of producing
a theory of software engineering is to specify such important
properties formally. With object-oriented modeling, they can
be expressed as clauses of class invariants; for example, in
class PRODUCT_INCREMENT:

In words: at least one of the PRODUCT that have been
specified among the targets of the current MILESTONE must
be the PRODUCT for which the current object is a
PRODUCT_INCREMENT.

A key part of the theory will consist of specifying such
fundamental consistency constraints, which, together with
the definition of basic software engineering types
(PRODUCT etc.) make up the basic competence of a
professional software engineer.

CLUSTERS
The “project” cluster sketched above is one of the basic

clusters of the current model. Each cluster covers an important
part of the field. Current ones include: Project, Plans,
Documents, Bugs, Events, Issues, Messages, People (TEAM,
TEAM_MEMBER, STAKEHOLDER etc.), PRODUCTS
(with subclusters including Code and Tests), Tasks, Support,
Discipline (in the CMMI sense) and Processes.

MODELING PROCESSES AND BEST PRACTICES
The classes of the Processes cluster model the notion of
PROCESS (one of its basic classes) and associated
abstractions. Here we only indicate how the present theoretical
framework handles these notions.

The natural inclination is to model a PROCESS (for
example Waterfall, Spiral, RUP, Scrum…) through its
components: REQUIREMENTS_PHASE, DESIGN_PHASE
etc. for the Waterfall; CYCLE, PROTOTYPE etc; SPRINT,
DAILY_MEETING, SPRINT_RETROSPECTIVE etc. (plus
artifacts such as BURNDOWN_CHART) for Scrum.

sub_products: SET [PRODUCT]

class PRODUCT_UPDATE
 inherit PRODUCT_INCREMENT feature ... end

class PRODUCT_CREATION
 inherit PRODUCT_INCREMENT feature ... end

sub_products: SET [PRODUCT]

 milestones: SET [MILESTONE]

∃ e: current_project.milestones |
 product.milestone ∈ e.elements

Closer analysis suggests, however, that this approach is
not the best way to handle the notion of software engineering
process. The abstractions in question, such as the examples
cited, are all important but they do not define a process. They
are important software engineering abstractions with
definitions of their own, independently of how a particular
process variant combines them. Another fundamental
property of the “process” abstraction is that a process defines
how the organization wants to conduct its software business,
but it is an inevitable fact of life that what the organization
actually does will not always match what it wants to do. In OO
modeling terms, a fundamental feature of the PROCESS
abstraction (yielding a method of the corresponding class and
its descendants) is that a process, or some element thereof, can
be followed or not.

These observations suggest that the theory should treat a
PROCESS as a constraint, defined by a boolean-valued
method specifying (if it has value True) that elements of the
project have been conducted in a certain way. Class
PROCESS_RULE, the top of an inheritance hierarchy with
many variants describing process elements, introduces an
abstract function constraint which defines such rules. An
example constraint for the waterfall is

This property is not a class invariant (an axiom of the
theory), which would express that all projects everywhere
observe it! Even if it only expresses that some projects, or just
one specific project will, that approach is not realistic, as it
describes hopes (wishful thinking) rather than a guaranteed
reality. As noted in section II, a theory of a domain of interest
should be descriptive before it becomes normative. More
precisely, its approach to normative rules should be
descriptive too: the theory specifies the rules and mechanisms
to determine whether other objects of the theory (for example,
in the software case, project phases) observe them or not.

In the preceding example, a specific class WATERFALL_
PROCESS (inheriting from PROCESS) will specify a
constraint given by the boolean expression above. PROCESS
and its descendant classes have a function is_satisfied (…
arguments …) which assesses whether components of the
process (given by the arguments) satisfy the constraint.

Process modeling is one of the areas where the power of
OO modeling pays off. One of the features of process models
– other than the property, just noted, that in real life as opposed
to textbooks no project ever follows any process model
exactly, as is to be expected of human-driven phenomena – is
that no company ever adopts a recommended process model
exactly: each organization adapts the model, be it Waterfall,
Spiral, RUP, XP, Lean, Scrum or any other, to its own needs,
constraints and company culture. The object-oriented model
(through its “Open-Closed Principle”) makes it possible to
define new classes, say OUR_SCRUM_VARIANT, which
inherit from a predefined one such as SCRUM_PROCESS
and, using the full power of inheritance, keep what remains
applicable and redefine (“override”) what needs to be adapted.

One of the goals of the present project is to come up, as
part of the theory, with a library of classes covering the major,
best-known process models (as listed above), open to
individual adaptation, through inheritance, by organizations
having defined their own process specifics.

The general idea of specifying processes as constraints
applies more broadly to the description of principles, practices
and disciplines of software engineering

VERIFICATION
Another important application of a theory is to enable

systematic verification of candidate solutions against a
specification. In the case of programs, while testing remains
the usual form of (partial) verification in many industry
circles, more static techniques are also gaining ground.
Theories of programming, such as axiomatic semantics,
provide the basis for verification toolsets, nowadays quite
sophisticated, to verify the correctness of programs. An
example among many is Boogie [18]; others include the
numerous existing tools for model checking and abstract
interpretation.

In the same way, the axioms and theorems of a Theory of
Software Engineering are subject to verification. As with
programs, one can use testing (executing simulation runs of
processes and monitoring preconditions, postconditions and
class invariants) or, more systematically, static verification.

In this respect it is important to note that the object-
oriented techniques used above are compatible with formal
verification. This article started with goals of formal
verification and proceeded to define an object model, but there
is no contradiction between the two: modern object-oriented
languages supporting specification (Design by Contract
techniques), such as Eiffel, JML and Dafny [19] are just as
formal as classical notations officially recognized as “formal
specification languages”; as a result, they come equipped with
a verification (proof) infrastructure. The development of the
AutoProof framework based on Boogie [20] applies this idea
(in addition to the dynamic tests supported by other tools,
based on monitoring contracts at run time) to the static
verification of properties of theory and of individual
processes.

It is also important to point out that many formal properties
do not require a logical expression (a boolean expression in a
precondition, postcondition or class invariant) but can simply
be expressed – as examples have shown – through type
properties. We do not need for example a formal specification
of the property “the targets of a project are products”: we
simply declare targets, in class PROJECT, as being of type
SET [PRODUCT]. Numerous properties are implicitly
specified this way, taking advantage of the compiler’s type
checks (for a powerful type system with generics and
inheritance) as verification. True proof logical specifications
and the associated sophisticated verification mechanisms of a
program prover are reserved for advanced logical constraints.

FUTURE WORK AND CONCLUSION
As noted earlier, we (Jocelyn Fiat, Javier Velilla and I) have
developed a first version of the object model (the ontology),
from which the above extracts are taken. The model consists
of a set of classes, describing abstractions rather than
implementations; the diagram extracts shown above are part
of the overall diagram produced automatically by
EiffelStudio.

For the moment the repository is private, mostly because we
do not know whether anyone else is interested. (Also because
it needs a bit of cleanup before it goes ballistic.) If interest
there is, we will make the repository public; I will provide the
information in a future post.

design_phase.start_time ≥ requirements_phase.end_time

FUTURE WORK AND CONCLUSION
The representative but partial extracts shown in previous

sections are part of an ongoing work to cast the fundamentals
of software engineering into a systematic theory in the form
of an object model. A first version is available for the basic
clusters (Project, Code, Issues, Tasks, Events, Bugs). Work is
continuing on the rest. It follows the principles stated earlier:
description rather than prescription (and prescription itself,
that is to say, normative elements, covered descriptively too);
“no original research” unless strictly necessary (in other
words, we are not out to impose yet another methodology on
the software engineering world, but to describe basic concepts
and allow originators or proponents of any methodology to
describe it precisely); incremental development taking
advantage of reuse (libraries) and inheritance; use of a
sophisticated OO type system; use of formal logical properties
enabling verification by a program prover; and, throughout,
focus on isolating and describing the key abstractions defining
the field of software engineering.

We have started the effort and brought it to a first level of
presentation and verification, but no single team has the
breadth of software engineering competence that would make
it possible for the theory to cover the field. The effort is open-
source and explicitly includes for all interested members of
the community to bring their expertise. Success would mean
that we can at last achieve the goal, often stated but never
realized, of treating the engineering software into a well-
defined domain, worthy of scientific study and covered by a
useful theory.

Acknowledgments In addition to the work of Jocelyn Fiat
and Javier Velilla, this article benefitted from thorough
comments by Jean-Michel Bruel.

REFERENCES
[1] IEEE Computer Society, “Software Engineering Body of Knowledge (SWEBOK)”, Version

4, 2024, available at https://www.computer.org/
education/bodies-of-knowledge/software-engineering.

[2] Lee Osterweil, “Software Processes Are Software Too”, in ICSE '87: Proceedings of the 9th
international conference on Software Engineering, pp. 2 – 13.

[3] Lee Osterweil, “Software Processes Are Software Too, Revisited”, in ICSE 1997, 19th Int
Conf on Software Engineering.

[4] Bertrand Meyer, “The Software Knowledge Base”, in “ICSE ‘85: 8th International Conf. on
Software Engineering”, pp. 158-165.

[5] CMMI Institute, “CMMI Resource Center”, numerous articles available at
https://cmmiinstitute.com/resource-files/public/cmmi-model-quick-reference-guide.

[6] SEMAT project (Software Engineering Method and Theory), at https://www.semat.org/.

[7] Ivar Jacobson and Bertrand Meyer, “Methods Need Theory”, in “Dr. Dobb's Journal”, August
6, 2009.

[8] OMG (Object Management Group), “Essence – Kernel and Language for Software
Engineering Methods”, Version 1.2, available at https://www.semat.org/en/essence-1.html.

[9] Wikipedia, “No original research”, https://en.wikipedia.org/wiki/
Wikipedia:No_original_research.

[10] Bertrand Meyer, “Multirequirements”, in “Modelling and Quality in Requirements
Engineering” (Martin Glinz Festschrift), eds. Norbert Seyff and Anne Koziolek, MV
Wissenschaft, 2013, available at
https://se.inf.ethz.ch/~meyer/publications/methodology/multirequirements.pdf.

[11] Ecma International, “Eiffel: Analysis, Design and Programming Language”, Standard ECMA-
367, second edition, June 2006, available at https://ecma-international.org/publications-and-
standards/standards/
ecma-367/.

[12] David R. Cok, Gary T. Leavens, and Mattias Ulbrich, “Java Modeling Language (JML)
Reference Manual”, 2nd edition, 1 July 2022, available at
https://www.openjml.org/documentation/JML_
Reference_Manual.pdf.

[13] ISO/IEC 13568:2002, “Information Technology — Z Formal Specification Notation —
Syntax, Type System and Semantics (Zipped PDF). ISO. 1 July 200”, 1 July 2002.

[14] Maria Naumcheva, Sophie Ebersold, Alexandr Naumchev, Jean-Michel Bruel, Florian
Galinier, Bertrand Meyer, « , Object-Oriented Requirements: a Unified Framework for
Specifications, Scenarios and Tests”, in JOT (the Journal of Object Technology), vol. 22, no.
1, 2023, pp. 1:1-19, available at http://dx.doi.org/10.5381/jot.2023.22.1.a3.

[15] Kim Waldén and Jean-Marc Nerson, “Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems”, Prentice Hall, 1995. (Full text available, see next
reference.)

[16] BON method pages: https://www.bon-method.com/index_normal.htm.

[17] EiffelStudio Wikipedia entry: https://en.wikipedia.org/wiki/Eiffel
Studio.

[18] K. Rustan M. Leino, “This is Boogie 2”, Microsoft working draft, available at
https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/12/krml178.pdf.

[19] K. Rustan M. Leino and others, Dafny articles and other references available at
https://dafny.org/latest/toc.

[20] AutoProof framework: https://autoproof.constructor.org.

Fig. 1. The PROJECT cluster, overall structure

https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://www.computer.org/education/bodies-of-knowledge/software-engineering
https://cmmiinstitute.com/resource-files/public/cmmi-model-quick-reference-guide
https://www.semat.org/
https://www.semat.org/en/essence-1.html
https://en.wikipedia.org/wiki/Wikipedia:No_original_research
https://en.wikipedia.org/wiki/Wikipedia:No_original_research
https://se.inf.ethz.ch/%7Emeyer/publications/methodology/multirequirements.pdf
https://ecma-international.org/publications-and-standards/standards/ecma-367/
https://ecma-international.org/publications-and-standards/standards/ecma-367/
https://ecma-international.org/publications-and-standards/standards/ecma-367/
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
https://www.openjml.org/documentation/JML_Reference_Manual.pdf
http://dx.doi.org/10.5381/jot.2023.22.1.a3
https://en.wikipedia.org/wiki/EiffelStudio
https://en.wikipedia.org/wiki/EiffelStudio
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/krml178.pdf
https://dafny.org/latest/toc
https://autoproof.constructor.org/

	Previous efforts
	Conventions
	Projects
	Clusters
	Modeling processes and best practices
	Verification
	Future work and conclusion
	Future work and conclusion
	References

